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This paper summarizes the development and application of spa-
tial statistical models in satellite optical remote sensing. The
paper focuses on the development of a conceptual model that
includes the measurement and sampling processes inherent in
remote sensing. We organized this paper into five main sections:
introducing the basis of remote sensing, including measurement
and sampling; spatial variation, including variation through the
object-based data model; advances in spatial statistical mod-
elling; machine learning and explainable AI; a hierarchical on-
tological model of the nature of remotely sensed scenes. The
paper finishes with a summary. We conclude that optical remote
sensing provides an important source of data and information
for the development of spatial statistical techniques that, in turn,
serve as powerful tools to obtain important information from the
images.
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1. Introduction

Remote sensing is a measurement-based discipline and as such it leads to the creation of data
hat have specific characteristics (Curran, 1985). The specific nature of these data has led to (or
enefitted from) the development and application of many explicitly spatial statistical techniques.
his paper serves to provide a historical look, over the last decade, at some key developments and
pplications of spatial statistical models in satellite optical remote sensing. Appendix provides a
lassification of the references in this paper. However, more fundamentally, this paper focuses on
he development of conceptual models of the measurement and sampling processes inherent in
emote sensing, the nature of spatial information in remotely sensed images, and the nature of the
eal scenes that remotely sensed data are created from (Quattrochi and Goodchild, 1997; Stein et al.,
999; Atkinson and Tate, 2000; Goodchild, 2004; Miller, 2004; Ge et al., 2019). We also consider
riefly some of the concepts underlying the spatial statistical techniques themselves. Thus, this
aper seeks to question the nature of remotely sensed data and information, arguing that future
esearch in spatial statistics for remote sensing should be guided by the concepts that emerge. This
aper is not a review of methods that have emerged over the last decade. Such a task would be
hallenging given the volume of activity and production.
We organized this paper into seven sections as follows. Following this introduction, we consider

easurement and sampling processes in remote sensing after briefly introducing the basis of remote
ensing as a tool. We then consider the spatial variation and potential information in these data,
sing the spatial covariance function as a very crude lens with which to analyse continuous varia-
ion. We also consider variation through the object-based data model. Advances in spatial statistical
odelling are considered in Section 4, with examples of key developments being multiple-point
eostatistics, mixed (spatial) regression models using the Bayesian inference paradigm and fuzzy
bjects. In Section 5, we examine machine learning, deep learning and explainable AI, drawing
ut some key concepts from these methods that we use to assess the appropriateness of these
pproaches for certain tasks, and develop further our conceptual models. Section 6 extends the
earning from earlier sections to develop a hierarchical ontological model of the nature of remotely
ensed scenes of interest, which then allows us to reflect further on the appropriateness of
echniques and gaps that may demand new spatial statistical modelling approaches. Section 7
rovides a summary.

. Remote sensing as a source of data

In this section, we develop a conceptual model of remote sensing as a source of spatial (and
pace–time) environmental data. In so doing, we set the basis for subsequent sections which aim to
nalyse the data produced. The basic tenet is that principled methods for handling remotely sensed
ata should consider the ways that the data were produced.

.1. The basic concept underlying remote sensing

We start by reminding readers of Spatial Statistics of the basic concepts underlying satellite
optical remote sensing (Curran, 1985). The material is rudimentary, but it serves to build the
proposition that this paper majors on in later sections.

In satellite optical remote sensing, light from the Sun traverses the atmosphere (where it is
marginally scattered, refracted and so on), and eventually reaches the Earth’s surface. Depending
on the surface material and its properties, the light is (i) absorbed, (ii) transmitted through to a
subsequent layer and (iii) reflected in three proportions summing to one. Light exists across a
continuum of wavelengths referred to as the electromagnetic spectrum (EMS), with optical light
representing the visible and infrared wavelengths. Conditional upon the wavelength, the light
may be absorbed, transmitted and reflected in different proportions, thus, producing spectra. The
reflected light traverses through the atmosphere again, where it is scattered, refracted and so on,
before exiting the Earth’s atmosphere. Satellite optical remote sensing is then the task of measuring

from space the reflected light such as to inversely infer some properties of the material at the Earth’s
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surface. This inverse process is the fundamental basis of remote sensing. Thus, it can be seen that
remote sensing is a tool for measurement, much like a telescope or microscope. As a measurement
tool, it is important to consider the measurement properties of remote sensing devices as this will
have a bearing on subsequent spatial statistical analysis of the data.

Note: other types of remote sensing are common, including (i) in different wavelengths (e.g., mi-
crowave remote sensing, which focuses on extracting surface texture, di-electric properties of soil
and polarization characters of various features using the microwave part of the electromagnetic
spectrum) and (ii) with different platforms (e.g., the airborne and UAV platforms that can provide
rich information about object shape, size, orientation, texture and contextual relationship). How-
ever, much of what is described here for satellite optical remote sensing translates readily to these
other types.

2.2. Discretization and the measurement process

In all cases of remote sensing, to measure one must discretize. This discretization occurs across
the EMS, across space and across time, amongst others (e.g., numerical precision, angle of view).
From the perspective of spatial statistics this amounts to an important sampling decision (and
potentially a discretization of the actual space operated on) and so we review it briefly here.

In optical remote sensing, it is common to measure the EMS in broad segments called ‘wave-
bands’ (i.e., bounded integrals over the EMS). Satellite sensors such as Landsat operate a few broad
wavebands, commonly referred to as multispectral remote sensing (Arvidson et al., 2006; Williams
et al., 2006; Wulder et al., 2008, 2012; Yan and Roy, 2016). Variation between these wavebands can
be used to infer properties of the material at the Earth’s surface. For example, a high reflectance
in the green and near-infrared wavebands is characteristic of vegetation, whereas a relatively low
reflectance in all wavebands is characteristic of water, which tends to absorb light across the optical
EMS (Curran, 1985). In contrast, hyperspectral optical sensors measure reflected light in many
hundreds of wavebands, leading to the possibility to make more nuanced inferences about the
Earth’s surface materials.

Across space, discretization occurs through the array of cells that constitute the ‘sensor’. Modern
optical sensing devices generally involve a rectangular array of cells onto which the reflected light
is projected via a lens. This discretization decision allows the production of an image, which has
great utility from a spatial statistical modelling perspective. However, it also necessarily invokes
the three concepts of support, spatial resolution and pixel (Atkinson and Tate, 2000). The difference
between the first two is subtle, but essentially hinges on the fact that the support is a first-order
concept (being defined for a single measurement) while the spatial resolution is a second-order
concept (depending on more than one observation). The pixel of each remotely sensed image is
neither of these, being rather, simply an element or cell (of the data array or image) to which a
measurement value is allocated. The support is a geostatistical concept representing the space on
which a measurement is made, or observation is defined, and it has three parameters; size, geometry
and orientation (Atkinson and Tate, 2000; Ge et al., 2019). It represents one element of the spatial
(space–time) sampling strategy, with the other elements being the pattern of observations and the
xtent.
It is notable that the support of measurements in remote sensing is commonly represented by a

2D Gaussian function (or similar function) referred to as the ‘point spread function’ (PSF), with its
tails extending far beyond the limits of a pixel (Wang et al., 2020c). It is in this important regard
that the support (PSF) is different to the way that most people imagine measurement on a pixel
(which could be better described as having a ‘square wave response’). Far too little spatial statistics
research in remote sensing has accommodated the spatial sampling effects of the PSF.

In time, discretization occurs through individual images which represent cross-sections through
time. Time-series of remotely sensed images (i.e., space–time cubes) can be constructed readily
because some of the world’s most popular and long-standing satellite sensor series (e.g., NOAA-
AVHRR, Terra/Aqua-MODIS, Landsat-TM/ETM/OLI) have been acquiring images for decades with a
fixed revisit interval (e.g., 16 days for Landsat TM, 1-to −2 days for AVHRR/MODIS) (Arvidson et al.,
006; Williams et al., 2006; Wulder et al., 2008, 2012; Zhu andWoodcock, 2014; Yan and Roy, 2016).
3



P.M. Atkinson, A. Stein and C. Jeganathan Spatial Statistics xxx (xxxx) xxx

t
s
i
t
a
a
(

o
s
s
p
c
s
a
A
a
t

2

i
C
t
M
2
n

s
e
t

3

s
s

3

d
p
b
r
l
t

Unfortunately, the ubiquitous problem of cloud cover means that the frequency of useable images
(or parts of images) is lower (i.e., longer) than the revisit intervals, but with appropriate statistical
methods, complete times-series of images can be constructed (Song and Huang, 2012; Mondal et al.,
2017; Wang and Atkinson, 2018; Belgiu and Stein, 2019; Guo et al., 2020) (see Section 4).

It is interesting to consider that the above discretization processes in remote sensing determine
o a large extent the nature of the spatial statistical models that might be applied to the data
ubsequently. The most obvious impact (i.e., constraint on subsequent statistical model choices)
s that remotely sensed images are discretized across space into pixels. This means potentially
hat the Euclidean space itself is discretized into a regular grid of possible values. Operations that
re made directly on that grid generally deny the underlying continuous space of the real world,
n insight not dissimilar to that from aggregation in the so-called modifiable areal unit problem
MAUP; Openshaw, 1984; Fotheringham and Wong, 1991).

From a spatial statistical perspective it is useful to distinguish between continuous random fields
r Random Functions (RFs) (also, in the specific case, termed Gaussian Processes, GPs) (that are
tochastic in their attribute), and spatial objects (that could be stochastic in their geometry). Both
tochastic models of the real world may be useful in different circumstances. In both cases, it is
ossible to fit such models to the image data directly, but this imposes the discretized space and
onstrains the solution to be on a grid. For example, it is possible to define objects in remotely
ensed images by grouping the labels of nearby clusters of pixels, but these objects will be blocky
s a result and oriented in the same direction as the image overall (Aplin and Atkinson, 2001).
lternatives that escape the strictures of the pixel and image grid are possible and have gained much
ttention recently. The most obvious example of this comes from geostatistical change of support
heory (Cressie, 1996; Kyriakidis, 2004; Atkinson, 2013). This is discussed further in Section 4.

.3. Measurement error

While describing the nature of remotely sensed data as a consequence of sampling decisions,
t is worthwhile to make a philosophical statement about the nature of measurement error.
onceptually, we believe that all measurements about the real world are integrals over space and
ime; that is, they have a support in space–time, with a particular size, geometry and orientation.
easurement error is then added to this integral with a particular distribution (Atkinson and Tate,
000). We have no evidence for this sequence of ‘integral-then-error’, but it is a useful, and rather
atural, conceptual construct.
The measurement error can arise from many different sources, including sensor noise, atmo-

pheric attenuation and uncertainty in the PSF definition. Measurement error can involve random
rror, but it can also involve systematic error. Not enough attention has been paid to accommodating
his important source of uncertainty in spatial statistical models applied to remotely sensed data.

. Information in remotely sensed data

In this section, we develop some concepts related to the extraction of information from remotely
ensed data. We do this in two parts: by considering continuous spatial variation and by considering
patial objects. First, we define information crudely.

.1. Definition of information

For the purposes of this paper, we define information (or at least potential information) as the
ifference between data, values or things. In a single waveband remotely sensed image, therefore,
otential information exists in the differences between pixels. Since, mathematically, the difference
etween two pixels A and C separated by, and joined by, a third pixel B in-between them is already
epresented in the two relations A-B and B-C, it is clear that potential information in an image is
ocal, existing only between neighbouring pixels that share a common boundary (edge) (specifically
he King’s neighbourhood case).
4
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Differences also can exist with data outside the image, and differences can exist between the
mage and the expectations of the viewer, which are amassed as a function of experiences, and
eneralizations of these experiences, over time (to summarize the complex cognitive process of the
uman brain). Nevertheless, the definition of (potential) information as difference holds in all these
hree cases; the concept is general (Wang et al., 2019).

It is in this context that the variance parameter of a Gaussian statistical distribution is useful as a
iagnostic since it is based on difference and describes what is expected on average. It is particularly
seful when extended spatially into the spatial covariance function that parameterizes a RF (or GP).

.2. Spatial variation on a grid

Accepting that remotely sensed measurements are made generally on an image grid, let us start
y considering the spatial variation that exists amongst the pixel values on that grid. We focus
n the RF model for illustrative purposes; in particular, its parameterization through the spatial
ovariance, but many other approaches could be used in its place.
It is possible to calculate the empirical spatial covariance and to fit a model to it using an

ppropriate method of inference. Common permissible (authorized) functions include the Matérn
amily of models, including the popular exponential covariance model. The exponential model has
wo parameters, the so-called sill variance and the range (or practical range). To a certain extent,
he sill variance of the exponential model can be thought of as the spatial equivalent of the point
ariance, although strictly it is the a priori variance and not the sample variance (Journel and
uijbregts, 1978). The range on the other hand has no equivalent in the point distribution.
The range parameter, as a simplifying representation, tells us a lot about the potential informa-

ion content of the image. For example, if the range is long (large) relative to the extent of the image
hen there is much redundancy in the image (more data for little information); conversely if it is
hort (small) there is much potential information relative to the number of data. In a related sense,
he range informs about the scale(s) of spatial variation present in the image. Useful references on
cale in remote sensing and geography have been provided elsewhere (Atkinson and Tate, 2000;
u and Li, 2009; Goodchild, 2011; Lloyd, 2014; Zhang et al., 2014a; Jiang and Brandt, 2016; Jiang,
018).
Beyond the range, which represents an upper limit on the extent of any correlation, the shape of

he spatial covariance function also is informative. For example, one can think of the exponential
odel, which is asymptotic towards the sill variance, as representing a set of scales of variation, each
ith its own information-to-redundancy ratio. Put differently, and invoking briefly the object-based
iew of the world, if the image were comprised of objects, the objects would be of different sizes.
Note: the above is a coarse statement to illustrate the concept only (e.g., the range is independent

f the number of times that a pattern is repeated). Nevertheless, we contend that such insights are
otentially useful. A recent trend in spatial statistics applied to remote sensing has been to no longer
nalyse spatial statistical functions such as the spatial covariance for what they tell us about the
ature of the property of interest. This is discussed again in Section 4.
Despite the above insights about the scales of spatial variation and potential information (and

edundancy), what is intelligible or interpretable (and pleasing) to a human being is not the same
s ‘potential information’. An image that is rich with potential information can be difficult to ‘read’
y a human being. This is for two reasons: (i) human beings tend to naturally identify functional
bjects and invoke the simplifying object-based view of the world and (ii) it is easier to identify
nly a few things than many things. This is why we differentiated between potential information
with the underlying variation characterized on average by the spatial covariance) and what we
ould think of more naturally as information (e.g., the underlying variation collapsed down further

nto semantically meaningful, functional, object-based representations).

.3. Spatial variation on a continuous space

If one considers again the discretization process described in Section 2.2, it is not difficult to
ee that the values in pixels are integrals (plus some measurement error). As such, the discussion
5
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in Section 3.2 relates to the differences between pixels in an image and nothing is said about
he differences within pixels that have been obscured through the measurement process. Through
measurement, all the variation (potential information) within the support (i.e., PSF) is reduced
down to a single value and all that remains in terms of potential information lies in the differences
between the pixel values (and differences with other data, and with the interpreter’s expectations).
This statement is obvious, but it also has profound implications for the principled statistical handling
of remotely sensed imagery.

It is the intersection of the sampling strategy (spectral, spatial, temporal) implicit in the imaging
sensor with the real world that determines the spatial variation and potential information content
of remotely sensed imagery (noting, importantly, that spatial variation exists only in data after
measurement and not before it). A major parameter of the sampling framework is the support,
with its three sub-parameters. In terms of information (i.e., neglecting uncertainty momentarily),
it is not whether the support is large or small that matters; it is whether the support is large or
small relative to the spatial range (also frequency) of the variation that is produced in the data, and
especially the variation due to the features of potential interest to the investigator. If the support
is too large, the variation may not be resolvable. If the support is too small, there may be too much
redundancy in the image. Interestingly, as alluded to above, the sweet spot for human interpretation
generally involves a lot of redundancy. The human brain requires some redundancy in order to
resolve structure, or to ‘see’ functional objects.

The consequence of acknowledging that within-support variation is lost through measurement is
to reconsider the nature of the data that spatial statisticians can operate on and the specification of
the models that are appropriate to fit to the data. For example, downscaling and image fusion have
become very popular topics in geostatistics and spatial statistics applied to remote sensing (Song
and Huang, 2012; Sales et al., 2013; Wang and Atkinson, 2018; Belgiu and Stein, 2019; Guo et al.,
2020; He and Yokoya, 2018; Dadrass Javan et al., 2021; Li et al., 2021). It is possible, conceptually,
to define the stochastic model at the point support scale and to fit such point support models to
data observed on a positive finite support. This insight is crucial and it is leading to spatial statistical
models that try to escape the strictures of the measurement processes that created the data in the
first place. This is important because, after all, in environmental and related sciences, our interest
is not generally in the data; it is (or should be) in the real world.

Geostatistical change of support (CoS) models do this in some respects (e.g., in that the RF is
spatially continuous), but not in others (e.g., the spatial covariance is defined initially on a positive
measurement support, and subsequent inference at a finer support is ill-posed) (Jin et al., 2018;
Kyriakidis, 2004; Liu et al., 2008; Yoo et al., 2010; Yoo and Kyriakidis, 2006). Despite their success
and widespread adoption in recent years CoS models represent a ‘step along the way’. Thus, this
paper makes a call to spatial statisticians to reconsider the remotely sensed image, not as the object
of study, but as a partial window on the real world, and to design spatial statistical models that
acknowledge this deficit. CoS models are described further in Section 4.

3.4. Spatial objects

It is important to view the consequence of discretization across space in relation to the object-
based model. As discussed above, humans naturally identify and label functional objects in their
surroundings. They do this primarily to survive; an evolved ability. However, commonly these
functional objects (e.g., car, telephone, desk) are human constructs only; strictly they do not exist in
the real world. It can be reasonably argued that animals and plants are singular objects in the real
world (in the sense that they are singularly integrated collections of biochemical processes), a view
common in ecology (Forman, 1995), but it is also true that they are simultaneously collections of
physical particles (i.e., not objects at all). Such a philosophical discussion is important, but beyond
the present scope.

Despite the above, if we can accept the legitimacy of the existence of spatial objects in the real
orld, then their intersection with a regular grid of measurement cells with a particular support
reates spatial data on those objects. From these data, inversely, the objects may be identified and
abelled. However, the ability to do this depends on the interaction between the support and those
6
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spatial objects in the real world, specifically the size of the support relative to the size of the objects.
Too large a support and the object may not be sufficiently resolvable. Too small a support and the
object may be identified, but at large data redundancy cost. If the objective is to resolve the variation
in the geometry (boundary) of the object in detail then an even smaller support may be required.

Lying between measurement and the ability to identify and label the original objects of interest
s the concept of the ‘mixed pixel’ (Peng et al., 2022). Mixed pixels occur when more than one
bject class contributes to the overall signal measured and allocated to a pixel. For example, if the
nterest is in identifying cars in a car park, the intersection of the support with the scene may lead
o many pixels within the image that are partially car and partially car park. These so-called mixed
ixels occur along the boundaries of the spatial objects of interest. The existence of mixed pixels
emands attention to the spatial support issue and the selection of statistical methods that address
his problem head on. Since remotely sensed images commonly cover scenes that comprise multiple
bjects, the mixed pixel problem is fairly ubiquitous.
The goal of spatial statistical analysis is not always focused on the segmentation and labelling

f objects, of course (see Sections 3.2 and 3.3). However, it is important to consider that scenes
omprised of objects (i.e., phenomena that humans would readily identify as functional objects with
emantic meaning) are the norm in remote sensing. For example, in an urban area, an image may
nclude data relating to buildings, gardens, garages, retail outlets, industrial buildings, car parks,
oads, rivers, train lines, and so on. In this context, it is interesting that the focus of much spatial
tatistical analysis in remote sensing has been based on the analysis of spatial continua (e.g., through
pplication of regression models and geostatistical RFs) (Moran, 1950), and less so stochastic objects
nd their boundaries (e.g., Mandelbrot, 1967). We feel that application of RFs in remote sensing
hould be done acknowledging the spatial object-based nature of the variation in images, with
ttention also paid to the stochastic analysis of objects and the graphs that connect them. We discuss
his problem further in Section 4.

.5. A note on sampling design

Developments in spatial sampling design have received much benefit from remote sensing
Wang et al., 2012). Spatial sampling design methods can be categorized into model-based and
esign-based sampling. Model-based sampling requires the use of an optimization function, such
s equal spreading or obtaining the minimized geostatistical Kriging variance, while design-based
ampling requires a random component in the sampling design. A relatively straightforward proce-
ure is to implement a design on the discrete pixels in an image. In such a case, it is straightforward
o allocate a spatial statistical sampling design such as random or grid sampling, where the pixels to
e sampled are identified. Similarly, a model-based optimal sampling strategy can be implemented
o optimize the classification of an image, for example, using the Kappa statistic.

Of some interest in relation to sampling design is the variability within a pixel. Such variability
s commonly ignored by averaging the within-block variability to create and allocate a single
eflectance value to the pixel, the support of which is governed by the point spread function. Rulinda
t al. (2011) undertook sampling within a pixel: field data were collected within single pixels of the
SG-Seviri NDVI product. Its spatial resolution of approximately 5 × 5 km at the latitude of the
tudy area (Rwanda) was too coarse to provide reliable information for the purpose of properly
tudying NDVI variability, and a statistical design was implemented within five individual pixels.
wo transects in the EW direction were allocated at random positions on the NS-axis within the
rea projected on the ground; similarly two transects were positioned at random positions on the
W axis to investigate the variability in the NS direction. It was, thus, possible to characterize the
ithin-pixel spatial variability.
More recently, Wang et al. (2020c) suggested the spatial statistical trinity. In this generic

ramework a relation is presented between universe, sampling and inference. This conceptual
ntegration is useful because it points to the utility of designing model-based approaches that are
onnected fully through this trinity, and which identify the best choice amongst various estimators
or a universe or population under study. We suggest that more attention is required to develop this
rinity further, for example, to generalize sampling to escape the strictures of spatial discretization
nd the spatial support, amongst others.
7
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Having introduced some fundamental concepts in relation to measurement and spatial infor-
ation, we now review some recent developments in spatial statistics (Section 4) and machine

earning (Section 5) in remote sensing.

. Characterizing imagery using spatial statistics

As introduced above, remote sensing images consist of data, commonly represented as ‘digital
umbers’ (Section 2), while the interest is generally in extracting information from these data
Section 3). The spatial statistical models that characterize the variation in spatial data, and which
llow us to predict or forecast (predict in the future) some property of interest are, thus, critical.
For spatial statistical modelling we see major recent contributions as threefold: (i) developments

n geostatistical change of support theory and multiple point geostatistics, that depend on higher-
rder moments; (ii) the development and application of explicitly spatial statistical regression
odels, which supersede traditional linear regression models by introducing a spatial dependence

erm between pixels, which plays a critical role, and which require the Bayesian inference paradigm;
nd (iii) the handling of objects, such as by random sets and fuzzy objects, where the spatial variation

of the content, and random delineations of object boundaries, are the major uncertainties to address.

4.1. Geostatistics

Geostatistics, emerging since the 1960s in mining (Cressie, 1993; Journel, 1993; Cressie and
Wikle, 2015), has since the 1980s served as a spatial prediction engine in remote sensing. Geostatis-
tics serves as a useful and important statistical model for (i) handlingmissing data (e.g., generated by
the presence of clouds or cloud shadow, or by a failing sensor component); (ii) upscaling from a set
of pixels to a homogeneous object; (iii) downscaling from a coarse pixel that covers a certain area on
the ground to a finer spatial resolution; and (iv) fusion of images of a certain spatial resolution with
other images of a different spatial resolution. Major contributions came from Atkinson et al. (1992,
1994) and Addink and Stein (1999). These concerned the absence of pixels and filled in the empty
pixels by geostatistical interpolation. Many examples exist of the development of spatial statistical
models for filling gaps due to clouds and cloud shadows (Chen et al., 2014, 2020, 2021) and due to
sensor failures (dropped pixels) (Chen et al., 2011, 2012; Wang et al., 2021).

At the beginning of the century, scaling issues became more prominent, and several groups
advanced the field in the search to address the challenging issue of downscaling spatial continua
(Cressie, 1996; Kyriakidis, 2004; Pardo-Igúzquiza et al., 2006; Goovaerts, 2006, 2007; Atkinson et al.,
2008; Atkinson, 2013; Hutengs and Vohland, 2016; Wang et al., 2016a,b; Jeganathan and Mondal,
2017). Even greater effort was paid to the challenge of downscaling reflectance to categories
(referred to as sub-pixel mapping) (Atkinson, 1997; Tatem et al., 2001, 2002; Atkinson, 2005;
Khasetkasem et al., 2005; Thornton et al., 2007; Tolpekin and Stein, 2009; Ardila et al., 2011;
Nguyen et al., 2011; Su et al., 2012; Ling et al., 2013; Ai et al., 2014; Wang et al., 2014; Hu et al.,
2015; Ge et al., 2016; Chen et al., 2018). Both change of support goals aim to escape the strictures
of the pixel in remote sensing. As introduced above, the pixel is seen commonly as the average
reflectance of light from a limited support on the terrain, and disentangling the reflectance into a
set of finer supports representing the original reflectance or mapping to (e.g., land cover) categories
is challenging (and ill-posed mathematically). This can be done if additional information is available.
For example, a support of, say, 30 m × 30 m (a common unit in Landsat images) in an agricultural
area may consist of a building, pavement and agricultural fields. If we have some prior expectation
of the spatial structure of the infrastructure elements, then it is essentially possible to downscale
the aggregated signal into more spatially resolved information.

As introduced in Section 2, a key concept in geostatistical analysis is the spatial covariance
function, or its related function, the semivariogram (Rossi et al., 1992). Both characterize the spatial
variation and parameterize a RF. Under the condition of second-order stationarity of the RF, the two
are related by a simple expression. With this in mind, remotely sensed images can be conceptualized
as a realization from a RF. However, the appropriateness of this stationarity decision may be
somewhat hard to maintain from a geographical point of view. It is more natural to consider that
8
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the pixel values are generated by the reflectance from crisply defined spatial objects on the ground,
such as agricultural fields, buildings and water bodies. More reasonably, the spatial variation within
the objects, can be considered as homogeneous and generated by a stochastic RF, while the variation
between objects less so.

A typical way ahead is as follows. One first identifies spatial units, usually related to land
over, that capture the major distinguishing elements in the scene. Such spatial units are obtained
y segmentation and classification of, for example, multi-band images. Often, these units have a
lear physical meaning. Next, the seemingly homogeneous units are further considered: variability
xists within these units and such variability, traditionally expressed by the standard deviation,
s currently better described by RFs. Such a stratified approach distinguishes the between-strata
ariability from the within-strata variability. While this approach seems comprehensive, we note
hat such integrated modelling is relatively rare and, further, there exists a scarcity of attempts to
o this incorporating change of support theory.
The last decade has seen the emergence of multiple-point geostatistics (MPG; Guardiano and

rivastava, 1993; Strebelle, 2002; Liu, 2006; Mariethoz et al., 2010; Ge and Bai, 2011; Straubhaar
t al., 2011; Tahmasebi et al., 2012; Ge, 2013; Tang et al., 2015; Bai et al., 2016). Geostatistics based
n the stationary covariance-based RF model is limited because the spatial covariance function is a
wo-point statistic (Atkinson, 2004). This means that moments are limited to first and second-order
nd, thus, by definition such RF models can simulate only very simple images with variation that is
mooth and continuous and that lack detail and information. MPG replaces the spatial covariance
ith a training image from which rich, higher-order moments can be obtained (Strebelle, 2002).
here exist many concerns over the MPG approach, but it does bring the convincing advantage of
eing able to simulate more realistic remotely sensed images.
In the above context, we argue two things: (i) researchers developing and applying stochastic

F models in remote sensing should pay more attention to the stochastic modelling of objects
nd their boundaries (as well as the combination of the object-based and RF models) and (ii) the
eostatistical RF (or GP) is surprisingly limited in its ability to characterize data and it is curious to us
hat multiple-point geostatistics and related higher-order moment approaches do not seem to have
ound wide application outside of a few key research groups. Put differently, and notwithstanding
heir specific utilities, given that it is so obvious that stationary covariance-based RFs (GPs) are
nrealistic and inappropriate representations, why are they still so ubiquitous in remote sensing?

.2. Mixed models and the Bayesian inference paradigm

Spatial statistical modelling of remote sensing images is based commonly upon the linear model.
uch models can be applied at the individual pixel level or at the object level. Often, the linear model
alls short because of its assumptions of i.i.d. residuals. More commonly, the presence of spatial
ependence in the residuals from the regression model needs to be acknowledged and taken into
ccount. This has led to the development of mixed regression models or spatial regression models.
An early example of a mixed regression model was the autologistic regression model (Augustin

t al., 1996). This combined a generalized linear model (GLM; a linear regression model predicting
ontinua augmented with a link function on the predictand mapping the prediction to some other
ata type; in the autologistic case a binary outcome). The autologistic model was fitted using the
ibbs sampler. Augustin et al. (1996) presented an interesting and relevant study on biodiversity
here they developed the autologistic model based on the Gibbs sampler in a remote sensing
ontext.
A spatial regression model can be conceptualized as being an additive model that in the most

imple case combines two effects; a linear fixed effect and a spatial random effect, plus an error
erm. The linear fixed effect term is the usual linear (or GLM) model, while the spatial random effect
an be a geostatistical model as, for example, in regression kriging or a conditionally autoregressive
CAR) or simultaneous autoregressive (SAR) term, as in Augustin et al. (1996), amongst others.

A major difference between the geostatistical and CAR/SAR spatial random effect that usually
uides the choice of the most appropriate approach is the aggregation level of the data. Geostatistics
s used commonly to deal with data on a grid or on a quasi-point support, while SAR and CAR models
re most suited for data represented on irregular supports such as census Wards.
9
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Mixed regression models generally require inference using the Bayesian inference paradigm. In
he seminal paper of Diggle et al. (1998) for the first time the term ‘‘model-based geostatistics’’ was
oined as a major step forward to integrate geostatistics (and the mixed regression model approach)
ith Bayesian inference. This paper attracted major attention and put modern and computer-

ntensive geostatistical modelling of spatial data into a wider statistical context. In relation to
lassical geostatistics, the key gain of the ‘‘model-based geostatistics’’ approach was the important
tep to admit and model the uncertainty in the parameters of the RF. At the same time, the
pproach emphasized explanation through covariates over geostatistical prediction, which was
elegated to operating on the linear model residuals. This shift in emphasis can be argued strongly
rom an inference and prediction perspective, but it has led to a reduction in attention on the
haracterization of spatial variation.

.3. Objects

Spatial statistics is well developed when it comes to the identification of segments and allocation
f classes. Based on image analysis, homogeneous spatial objects can be identified that are then
ssigned a class label. A key goal in remote sensing is to spatially segment imagery, and various
ethods have been developed. K -nearest neighbour classification and maximum likelihood clas-
ification are archetypal tools for classifying images consisting of multiple wavebands. Problems
merging in hyperspectral images where the number of bands (typically some hundreds) can be
rohibitive for applying these image classification methods have largely been overcome, while
egmentation and classification of single band images is of a simpler nature. However, the objects
nd their classes emerging from segmentation and classification have inherent uncertainties. On the
ne hand, objects are rarely homogeneous internally, and thresholds or processing adjustments have
o be applied to overcome over-segmentation and the emergence of anomaly classes. On the other
and, the spatial boundaries between classes are often far form crisp, even in the natural world.
isher et al. (2004) recognized this most clearly when posing the question: Where is Helvellyn?
he mountain clearly is somewhere, but the edges of the mountain are gradually there, and it is
mpossible to state with full confidence when, during a hike, one steps for the first time on the
ountain.
In a range of papers, attention was given to random sets as a methodology to represent uncertain

bjects. Zhao et al. (2010) studied the uncertainty of lake boundaries, Zhou and Stein (2013) focused
n traffic objects derived from LiDAR data, Sidiropoulou Velidou et al. (2015) investigated the
ccurrence of linear geological objects, while Kohli et al. (2016) studied the delineation of slum areas
n different cities around the globe. Random sets are based on probabilistic functions, and specify
he probability that an object is present at a location. Their application leads to identification of the
ore of an object (i.e., the area where the object exists with certainty, the support of an object),
nd intermediate areas where an object is present with different degrees of probability. As Fig. 1
hows, the core set (C) is most certainly the object, and the region U ⊃ C represents an area where
possibly the object exists as well, while the white area outside U, i.e. UC is outside the support, and
does not include the object.

In Kohli et al. (2016) the knowledge of 19 experts was used to delineate a slum area. In certain
parts of the image, all experts agreed on the presence of a slum resulting in identifying C. In some
other parts the experts agreed that there was no slum, hence identifying UC. In the remaining parts
here was no consensus, resulting in intermediate interpretations. The fraction of agreeing experts
hen served as the probability of the presence of a slum. In Zhao et al. (2010) a spatio-temporal
nalysis was used, where the probability of a lake was identified as its presence in a time-series of
2 monthly periods over a time span of 10 years.
Research and thinking on fuzzy set objects extends the conceptual model that we build in this

aper, and the statements that we make in relation to this model, such as calls for more research

n spatial objects, should include considerations of their often fuzzy definition in reality.

10
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Fig. 1. Random set representation of an uncertain object.

. The rise and rise of machine learning

Machine learning and deep learning have seen considerable success and widespread application
n remote sensing in recent years. This resurgence is interesting, not least because earlier in the
areers of the authors of this paper, we saw the ‘‘rise-then-decline’’ of artificial neural networks
ANNs) in remote sensing in the 1990s (Atkinson and Tatnall, 1997). That decline over two decades
go occurred primarily as a result of the criticism of statisticians and scientists that ANNs were
black box’ models. That is, one could not easily interpret (or control) what was going on inside the
ox because the ANN comprised so many parameters (e.g., weights between nodes in the multiple
ayers of the ANN). This lack of interpretability remains a concern with modern machine learning
pproaches although progress is being made through ‘explainable AI’ (XAI). Nevertheless, the vast
umbers of data associated with remotely sensed images, and with time-series of remotely sensed
mages, in particular, have meant that the data-led approaches of machine learning were destined
o find their niche in remote sensing.

The recent resurgence we see as occurring primarily in three phases, the first relating to machine
earning, the second relating to deep learning and the third to explainable AI (XAI).

.1. Machine learning

The first resurgence occurred through the development and adoption of specific techniques that
ere ‘game changers’ (i.e., which brought sufficient novelty to update the community’s thinking
bout what was possible). The archetypal example of machine learning in remote sensing was the
eed-forward, back-propagation ANN. Essentially a flexible, nonlinear regression model, the ANN
as applied widely with high accuracy in the 1990s (Atkinson and Tatnall, 1997).
Focusing primarily on classification (as opposed to regression) of remotely sensed images, the

echniques that brought paradigm shifts were, for example, the support vector machine (SVM;
ang et al., 2006; Zhang et al., 2014b) which demonstrated that training data (support vectors)
ear the (non-linear) boundaries in feature space between classes are more important (indeed all
hat is needed) relative to those further away, and they could be identified through local kernels,
nd (ii) the Random Forest, a tree-based classifier that when fitted has the advantage of having
n expression spatially as a non-stationary model, allowing generalization of parameters to local
onditions, and which brings the added advantage of identifying the importance of each input
eature (Breiman, 2001; Rodriguez-Galiano et al., 2012; Hutengs and Vohland, 2016). Such machine
earning algorithms shifted the balance of attention from the model to the data and, thus, were
deal for taking advantage of the massive numbers of data produced by remote sensing satellites.

At the same time, a disadvantage of machine learning algorithms arises for precisely the same
eason as above; they generally focus on the data and, thus, miss the opportunity to focus on
eality. This problem is irrelevant in relation to human choices expressed through the internet
e.g., to recommender systems) since such human choices lack a spatial support, but they matter
n the environmental and related sciences. How can spatial statisticians integrate conceptually rich

nderstandings, as presented in this paper, into such models?

11
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5.2. Deep learning

More recently, deep learning has produced a sharp rise in interest from the remote sensing
ommunity, although that interest is now plateauing. The story of deep learning in remote sensing
s interesting and we precis it here, focusing on how it works, what it can do and what it cannot
o. The cardinal example of deep learning applied to remote sensing is the convolutional neural
etwork (CNN), with many examples in the literature (Masi et al., 2016; Song et al., 2018; Zhang
t al., 2018). Thus, we focus on the CNN, acknowledging that it is but one of many deep learning
pproaches (Das and Ghosh, 2016; Shao and Cai, 2018; Zhang et al., 2018; Yeh et al., 2019). The
NN was designed for the task of identifying or classifying ‘‘higher-order representations’’ that are
enerally (but not uniquely) object-based. This statement requires some unpacking.
Prime among the concepts introduced above is that the task of the CNN is different than for

tandard classifiers. Standard classifiers in remote sensing are targeted on labelling low-order
epresentations, primarily land cover; the first-order state of the land surface. In contrast, land use
s a higher-order representation that relates to function. CNNs are able to predict such higher-order
epresentations, whereas standard classifiers cannot. Through the research of the 1980s and 1990s,
t is well known that while land cover can be inferred directly from remotely sensed reflectance
n a per-pixel basis, land use cannot. In contrast, land use must be inferred through the relations
etween pixels or through the relations between objects defined on those pixels (or objects defined
n a continuous space mapped to those pixels). It is for this reason that so-called texture classifiers
f the 1980s and 1990s were applied successfully to classify land use. Texture classifiers first
reated texture ‘‘bands’’ by applying texture filters to the original broadband imagery and then
iscriminated between the classes of interest in the higher dimensional feature space created by the
riginal-plus-texture wavebands. The CNN exploits a similar principle through convolution (texture)
nd pooling layers within a deep neural network such that the features to extract and utilize are
etermined automatically based on processing of the input.
This brings us to a second concept that defines CNNs in remote sensing. CNNs take as their

nput an image patch instead of an image pixel. Indeed, CNNs were designed originally for the
dentification of single representations within images (e.g. it is an agricultural field, it is a forest).
ut simply, the CNN exploits second-order and higher-order relations (e.g., texture) in the input
mage patch to target the classification of higher-order representations such as (to give a simple
ase) land use. This focus on higher-order representations will be expanded on in Section 6.
A third interesting concept related to CNNs is that the representations that are targeted are

ommonly (albeit not ubiquitously) readily expressed as spatial objects. For example, an agricultural
ield or a forest patch can be thought of as a functional object. Hence, the land use classes of interest,
uch as field and forest, can be conceptualized as functional objects in a scene.
The above conceptualization of what a CNN is can help us to determine what it can and cannot

o. First, since CNNs are targeted on higher-order representations their utility is primarily in doing
hat standard classifiers cannot (e.g., identifying higher-order features such as ‘it’s a train station’,

it’s a golf course’), and they generally are not required for classifying land cover, even if they can do
hat accurately. A recent example concerns the sensitivity of areas for bush fires to start (Bergado
t al., 2021). Second, the fact that the CNN takes a patch as input means that the prediction has
coarse spatial support, even if the result is allocated to a central pixel artificially. This is an
nfortunate consequence when one is interested not in identifying something within an image,
ut labelling the multiple ‘objects’ that exist across an image (as is commonly the case in remote
ensing). Third, the fact that CNNs generally target spatial objects is missed by the algorithm that is
ocused only on identification or labelling a feature and not on its geometry. These factors should
uide application of CNNs in remote sensing, and also give clues as to where gaps exist for further
evelopment.
There are many other ANN developments in remote sensing presently, including in relation to

enerative adversarial networks (GANs; Bermudez et al., 2019; Fuentes Reyes et al., 2019) and
-Nets which aim to resolve the above issues to some extent. U-nets have contributed widely
n remote sensing research. Their use requires careful selection of the involved parameters. See

ersello and Stein (2017) for a general presentation in the remote sensing domain. The applications

12
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are useful in image segmentation, where clear advances have been gained in building outline
detection (Zhao et al., 2021) and in detection of informal settlements (Mboga et al., 2017). This
also includes the rather technical polarimetric SAR data that require complex arithmetic (Mullissa
et al., 2019). The purpose of this paper is not to review these methods, but rather to draw attention
to the underlying concepts.

5.3. Explainable AI

Explainable AI is currently a very hot topic in remote sensing. Whereas publications using deep
earning have plateaued, explainable AI is on the rise. The goal of explainable AI is to render the
nner mappings of AI approaches, predominantly machine and deep learning algorithms in the
resent remote sensing context, amenable to interpretation. There exist several different levels
o this including access, intelligibility and so on. For recent reviews see Angelov et al. (2021) and
inardatos et al. (2021). An interesting example of the development of an XAI approach in remote
ensing is Gu et al. (2022). In this approach, IF-THEN rules are encoded within the algorithm and
he result of classification is presented to the user not only as a class allocation per image patch,
ut in terms of the IF-THEN rules that led to the allocation. This means that the user is easily able
o understand why the decision was made and whether the decision makes sense. This closes the
oop between prediction and user-based validation and allows the investigator the opportunity to
nderstand, most crucially, how to improve the model. We expect to see much research attention
eing paid to XAI approaches in remote sensing over the next few years.

. Semantic and ontological considerations

The concepts introduced through the sections of this paper lead us to a more refined un-
erstanding of the nature of remotely sensed data and, thereby, the appropriateness of spatial
tatistical methods for application to these data. Perhaps most importantly it can reveal gaps in the
apability of some methods that point to the need for model development. It is for this reason that
e were motivated to write this paper, because we feel that it may motivate other researchers,

n particular, spatial statisticians, to restate problems in remote sensing, and rethink the spatial
tatistical solutions that are appropriate for them. In this section we develop this conceptual model
urther by considering the choice of method for particular goals, and by introducing semantic and
ntological considerations (Wang et al., 2020c).

.1. Choice of goal, method and spatial resolution

Woodcock and Strahler (1987) first identified that the choice of spatial resolution in remote
ensing is conditional not only on the goal of the analysis (which is fairly obvious), but also
n the method and the frequency of spatial variation in the scene. In fact, as Woodcock and
trahler explain, more commonly, it is the choice of method and choice of spatial resolution, that
s conditional on the goal and the interaction of the spatial resolution with the frequency of spatial
ariation. The same holds true today. Common goals in remote sensing for handling continuous
patial variation are the statistical prediction of continua (e.g., biomass per ha) based on regression-
ype models and the classification of land cover, both of which can be achieved operating on pixels
irectly. Invoking the object-based data model, a common goal is to segment (i.e., identify) and
lassify (label) objects in an image, again operating at the pixel level (on local connected groups of
ixels). Whether these pixel-level goals are appropriate depend to a certain extent on the data, and
ore specifically the interaction of the spatial resolution with the frequency of spatial variation in

he scene (in either continuous variation or implicit objects).
Generally, but especially where the pixel size is large relative to the scales of variation of

nterest, the goal can be restated to focus on the punctual support (or quasi-point support) scene
f interest (i.e., ultimately reality) rather than the image itself. The image is, after all, generally not
he researcher’s interest. Indeed, the image is limited precisely by the sampling strategy decisions

hat were taken to achieve measurement, and it is in this sense an extremely partial representation

13
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of reality. Refocusing the goal outside of this limited sampled view of reality offers the possibility
to escape the measurement and sampling processes. It offers the possibility to fit models defined
on a punctual support that map to the data on a positive support, such that other mappings can
be generated readily (e.g., to a coarser support, to a finer support or to a support with complex
geometry such as a census Ward). This is important, because one of the most significant challenges
in environmental data science today is the inability to allow datasets to speak to each other that
were obtained with different supports (and other measurement characteristics) (Gotway and Young,
2002, 2007; Young and Gotway, 2007). We are thinking of data fusion as one example, but more
generally we are thinking of interoperability as another. Such interoperability requires principled
mappings that can transform data on one support to data on another support exchangeably. We
are some way off from such a vision. Nevertheless, it is an important vision because environmental
data come in a wide variety of shapes and sizes (property definitions, sampling frameworks,
measurement characteristics, error characteristics), and we draw the attention of spatial statisticians
to it.

6.2. A hierarchical ontology for remote sensing

This paper has highlighted that remotely sensed scenes are comprised of land covers (states)
e.g., Hansen and Loveland, 2012) and land uses (functional objects) (e.g., Chen et al., 2021). We
ow extend this thinking to develop a conceptual ontological model that is potentially of great use
n considering the goals of spatial statistical modelling in remote sensing. We contend that land
over and land use are intimately linked in a coupled ontology, with land use sitting at a higher-
rder of representation above land cover (Zhang et al., 2019; Hong et al., 2019; Wang et al., 2020c).
his is fairly clear when one considers the classic case of the land use ‘urban’ which we know to be
omprised of constituent land covers (grass, tarmac, concrete, roof tiles, water and so on) arranged
n particular spatial patterns. In this sense, land use is ‘built on’ the constituent land cover states. Not
nly this, but we contend that whereas land cover exists as a pixel-based concept (it is meaningful
o describe the land cover state in a pixel, e.g., grass), land use exists more meaningfully as an
bject-based concept (e.g., residential buildings, car park, roads). Note that the land use ‘urban’ is
lightly different in that it is effectively higher-order than, say, its constituent buildings.
Zhang et al. (2019) realized the above and developed a statistical joint distribution modelling

pproach that capitalized on the ontological connectedness between land cover and land use as
higher-order representation. To predict land use it was necessary to use a CNN (see above),
aking this joint distribution model unique in that it the coupled a low-order classifier (multi-

ayer perceptron) with a higher-order classifier (CNN); referred to as ‘joint deep learning’ (JDL).
oreover, the joint distribution model was fitted between land cover defined at the pixel level and

and use defined as objects. Prediction of one was used to inform the other. The consequence of joint
modelling was that the accuracy of classification of both land cover and land use increased greatly
through iterative fitting, exploiting the joint dependence.

In fact, as alluded to above in relation to the urban land use, a hierarchical ontology can be
defined for land cover and land use, where functional higher-order representations sit above land
use. Concepts such as ‘train station’ and ‘golf course’ are complex higher-order representations
that lie at a higher level in a hierarchical ontology than land covers (lowest level) and land uses
(the level above land cover). For example, in the case of a train station, the concept is predicated
on both land covers (tarmac, roof tiles, gravel tracks) and land uses (long thin buildings, roads,
car park, railway lines) arranged in specific identifiable patterns. Indeed, ‘urban’ is also a complex
construct and sits above some more fundamental land covers and land uses, as suggested above.
This conceptualization is important, not least because it helps to direct the application of techniques
such as deep learning CNNs to appropriate goals, but also because it suggests new possibilities for
the development of spatial statistics.

What is the value, at least in a research context, of yet another pixel-based, standard clas-
sification method once the semantically and ontologically rich, and sampling framework-free,
conceptualization of reality presented here is considered?
14
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7. Summary

The contribution of this paper is not to review the methods of recent years, but to review
he conceptualizations and representations underlying these methods, and to offer some common
hemes. The foci of this paper are necessarily a small and biased (partial) sample of what may be
mportant conceptually in relation to the development and application of spatial statistics in remote
ensing. Nevertheless, it is hoped that readers of Spatial Statistics will find some inspiration for their
future research ideas.

The common themes drawn out through this paper can be summarized as follows:

1. Measurement, sampling and data: remotely sensed images are a function of what is out there
in reality and spatial (space–time) sampling processes. As a result of the harsh razor of the
sampling framework, and particularly the spatial support, remotely sensed data represent
an extremely limited window on the world. Methods that are applied directly to the data
are hostage to the sampling framework, as though the image were reality. Spatial statistical
methods that obviate the strictures of the support and pixel should be the focus of future
research.

2. Information and variation: geostatistical RF characterizations can be helpful in revealing the
scales of spatial variation in spatial data and, thus, the potential information content and,
conversely, redundancy in data. They can provide some insights about the data (and the
scene) to experienced interpreters, and these insights have a range of uses, including guiding
the researcher as to whether a particular method is appropriate for a task. The recent
trend towards prediction (through mixed regression models) in place of characterization and
interpretation is worthy of reflection as we feel that something has been lost. At the same
time, it should be acknowledged that the geostatistical RF (GP) model is extremely limited
as it is based on two-point statistics. In addition, we introduced the object-based data model
as an alternative to spatial continua, noting that such representations are human constructs.
More attention should be paid in remote sensing to object-based conceptualizations by those
applying RF models, and to stochastic models of object geometry.

3. Spatial statistical models: We discussed major recent developments in spatial statistics applied
to remote sensing as geostatistical change of support theory and multiple point geostatistics,
mixed (spatial) regression models using the Bayesian inference paradigm and fuzzy spatial
objects. These are just a few of the key developments, but they serve to illustrate a trend
towards increasingly complex modelling taking advantage of computer power, and the
development of our conceptual understanding of both principled statistical models and the
landscape to which those models are applied.

4. Machine and deep learning: the key advantage underlying the recent success of deep learning
is that it offers the possibility to predict something that was hardly achievable before.
Unfortunately, not all applications of deep learning (primarily CNNs) in remote sensing have
targeted higher-order representations. The message is: use the right model for the right task
and consider your goals carefully. We also showed that standard CNNs suffer the drawbacks
of an induced patch-sized support and an inability to represent object boundaries directly
(although alternative deep learning approaches do aim to tackle these).

5. Ontologies and graphs: We suggested a hierarchical ontology of land cover and land use,
coupled with yet higher-order representations, for remote sensing. It seems to us that
defining the appropriate conceptual ontology should come first, the selection of goals second
and the selection of appropriate methods third. This is a gross over-simplification, of course,
but it is salutary to ask how often do we actually consider the ontological landscape on which
we are operating? Probably rarely or at least not often enough. We certainly argue that a firm
conceptual understanding frommeasurement and sampling through data models to statistical
model characterizations is key to useful inference and prediction. Indeed, it is through careful
construction of an appropriate conceptualization that inference can be made meaningful.

It is interesting to reflect that the broad conceptual view of the landscape of remote sensing as
ntroduced in this paper was developed over decades (see Atkinson and Tate, 2000). New spatial
15
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Table A.1
Classification of references cited in this paper, provided to support further search and review.
Model Type Data Model Application Goal Reference

Geostatistics

Random Field (RF)
stochastic model
representing spatial
continua applied to
images

Spatial prediction in
mining

Cressie (1993), Journel
(1993), Cressie and
Wikle (2015).

Spatial prediction in
remote sensing

Atkinson et al. (1992,
1994);
Addink and Stein (1999).

Gap filling due to cloud
and cloud shadow in
remote sensing

Chen et al. (2014, 2020,
2021).

Error removal due to
sensor failure in remote
sensing

Chen et al. (2011, 2012),
Wang et al. (2021).

Time-series image
construction in remote
sensing

Song and Huang (2012),
Mondal et al. (2017),
Wang and Atkinson
(2018), Belgiu and Stein
(2019), Guo et al. (2020).

Geostatistical change
of support and
downscaling continua

Random Field (RF) stochastic
model representing spatial
continua applied to images

Increase in spatial
resolution in remote
sensing above that of
the input image

Cressie (1996), Kyriakidis
(2004); Pardo-Igúzquiza
et al. (2006); Atkinson
(2013); Atkinson et al.
(2008); Goovaerts (2006,
2007); Hutengs and
Vohland (2016); Jin et al.
(2018); Liu et al. (2008);
Wang et al. (2016a,b);
Yoo et al. (2010); Yoo
and Kyriakidis (2006).

Sub-pixel mapping Various solutions, but generally
admits a solution space not
limited to the discretized
image

Classification of land
cover in remote sensing
at a finer spatial
resolution than the input
image

Atkinson (1997), Tatem
et al. (2001, 2002),
Atkinson (2005),
Khasetkasem et al.
(2005), Thornton et al.
(2007), Tolpekin and
Stein (2009), Ardila et al.
(2011), Nguyen et al.
(2011), Su et al. (2012),
Ling et al. (2013), Ai
et al. (2014), Wang et al.
(2014), Hu et al. (2015),
Ge et al. (2016), Chen
et al. (2018).

Multiple Point
Geostatistics

Data-based approach generally
applied directly to the
discretized space of the image

Image pattern recreation
and simulation

Guardiano and Srivastava
(1993), Strebelle (2002),
Liu (2006), Mariethoz
et al. (2010), Ge and Bai
(2011), Straubhaar et al.
(2011); Tahmessabi et al.
(2012), Bai et al. (2016),
Ge et al. (2013), Tang
et al. (2015).

(continued on next page)

statistical methods and data science methods with novel capabilities were introduced over this time,
and users of those methods were educated through their study and application, allowing them to
enrich their own conceptual model and understanding of reality and remotely sensed data, as well
as what a good spatial statistical model should be. This was certainly the case in our experiences.
16
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Table A.1 (continued).
Model Type Data Model Application Goal Reference

Model-Based
Geostatistics using
Bayesian Inference

Random Field (RF) stochastic
model representing spatial
continua applied to images

Prediction of continua
based on covariates.
Models the uncertainty
in RF estimation

Augustin et al. (1996),
Diggle et al. (1998).

Random Sets Object-based stochastic model
commonly applied directly to
images

Segmentation and
classification of images
into objects, including
object boundary
delineation and
uncertainty therein

Zhao et al. (2010), Zhou
and Stein (2013),
Sidiropoulou Velidou
et al. (2015), Kohli et al.
(2016).

Non-linear learning
(i.e., Machine
Learning methods,
including ANNs,
SVMs, Random Forest,
GANs, etc.) for
classification

Data-based approach applied
directly to the discretized
space of the image

Classification of remote
sensing images,
commonly to land cover

Atkinson and Tatnall
(1997), Yang et al.
(2006), Zhang et al.
(2014b), Breiman (2001),
Rodriguez-Galiano et al.
(2012), Hutengs and
Vohland (2016),
Bermudez et al. (2019),
Fuentes Reyes et al.
(2019), Persello and
Stein (2017), Zhao et al.
(2021), Mboga et al.
(2017), Mullissa et al.
(2019).

Higher-order,
non-linear learning
(i.e, Deep Learning
methods, including
CNNs, U-Nets) for
classification

Data-based approach applied
directly to the discretized
space of the image (although
see U-Nets)

Higher-order (spatial and
functional) classification
of remote sensing
images, commonly to
land use

Masi et al. (2016), Song
et al. (2018), Zhang et al.
(2018), Das and Ghosh
(2016), Shao and Cai
(2018), Zhang et al.
(2018), Yeh et al. (2019),
Bergado et al. (2021).

Interpretable,
non-linear learning
(i.e., XAI -Explainable
Artificial Intelligence)
for classification

Data-based approach applied
directly to the discretized
space of the image

Identification of the
decisions underlying the
classification of images

Gu et al. 2020; Angelov
et al. 2021; Linardatos
et al. (2021).

Ontological Models Commonly defined for spatial
objects on a continuous space

Conceptualization of
remote sensing scenes
such as to aid the design
of stochastic models

Hong et al. (2019), Wang
et al. (2020a,b).

As remote sensing is a mature subject, we believe that the broad conceptual model that we have
resented here for remote sensing is fairly advanced. It is possible that other subjects would benefit
rom similar, explicitly spatial, conceptual constructions.
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