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GPUs are an important part of any High Performance Computing (HPC) architecture. To 
make optimal use of the specifics of a GPU architecture, we need programming models 
that naturally support the parallel execution model of a GPU. CUDA and OpenCL are two 
widely used examples of such programming models. Furthermore, we also need to redesign 
algorithms such that they adhere to this parallel programming model, and we need to be 
able to prove the correctness of these redesigned algorithms.
In this paper we study two examples of such parallelized algorithms, and we discuss how 
to prove their correctness (data race freedom and (partial) functional correctness) using the 
VerCors program verifier. First of all, we prove the correctness of two parallel algorithms 
solving the prefix sum problem. Second, we show how such a prefix sum algorithm is used 
as a basic block in a stream compaction algorithm, and we prove correctness of this stream 
compaction algorithm, taking advantage of the earlier correctness proof for the prefix sum 
algorithm.
The proofs as described in this paper are developed over the CUDA implementations of 
these algorithms. In earlier work, we had already shown correctness of a more high-level 
version of the algorithm. This paper discusses how we add support to reason about CUDA 
programs in VerCors, and it then shows how we can redo the verification at the level of 
the CUDA code. We also discuss some practical challenges that we had to address to prove 
correctness of the actual CUDA-level verifications.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

As software is becoming an integral part of our daily lives, the development of techniques to ensure the reliability 
and correctness of this software is essential. In particular with the advent of multi-core and many-core hardware such as 
Graphics Processing Units (GPUs), this has become even more challenging. GPUs naturally support parallel execution, with 
many threads cooperating together, executing the same instructions, but on different data (known as the Single Instruction 
Multiple Data (SIMD) programming model). This parallel execution can substantially improve the performance, but also 
provides a risk for the reliability of the software. This paper illustrates how program verification can be used to provide 
such correctness guarantees on some well-known parallel GPU algorithms.
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More concretely, this paper contributes the following. First of all, we introduce CUDA [21], a well-known program-
ming model for GPU architectures, and we discuss how we add verification support for CUDA programs in the VerCors 
program verifier [6]. The VerCors program verifier provides support for deductive verification of concurrent programs, us-
ing permission-based separation logic. In particular, VerCors support a GPU-specific variant of permission-based separation 
logic [7]. The VerCors verifier already supported this logic for its own built-in language, called PVL. This paper discusses how 
we extend this support to the commonly used CUDA programming framework, and how it can be used to prove memory 
and thread safety (i.e., absence of data races1), as well as (partial) functional correctness of CUDA implementations.2

Second, we illustrate how this support to reason about CUDA programs is used to verify the CUDA implementation of 
some well-known parallel (GPU-based) algorithms. We first discuss the verification of two algorithms that provide a solution 
to the prefix sum problem [10,17,5,27]. These algorithms take an array of integers and, for each element, they compute the 
sum of the previous elements. Algorithms that solve the prefix sum problem are an important building stone for other 
parallel algorithms, such as stream compaction, summed-area table, radix sort, quick sort, etc; see Blelloch [5]. In addition, 
we also discuss the verification of one algorithm that uses such a prefix sum algorithm, namely stream compaction [15,14,
26,4], and for which parallel versions are known to outperform their sequential (CPU-based) counterparts. The verification 
of the stream compaction algorithm crucially depends on the verification of the prefix sum algorithm. Stream compaction 
reduces an input array to a smaller array by removing undesired elements, and many other applications, such as collision 
detection and sparse matrix compression, rely on it. The reduction in size by eliminating undesired elements is useful 
because (1) the computation can be done more efficiently by not wasting the computation power on undesired elements 
and, (2) it greatly reduces the transfer costs between the CPU and GPU, especially for applications where data transfer 
between the CPU and GPU is frequent.

There are only a few approaches that support reasoning about GPU programs, see e.g. [7,19,12,18,3]; most of these focus 
on finding data races. In general, proving functional correctness of parallel GPU programs is a difficult task due to the 
hierarchical structure of threads and different levels of memory accesses. In particular, in the verifications discussed in this 
paper, we had to address several challenges, for which we needed the powerful tool support as provided by the VerCors 
program verifier. First, both prefix sum algorithms are in-place, i.e. we need to reason about values that are unstable and 
that change during the algorithm. Moreover, the computational pattern of the prefix sum algorithms makes it complex to 
reason about the final result, and it was a challenge to find suitable properties that relate the internal computation steps 
in the algorithms to the final result. For the verification of the stream compaction algorithm, the main challenge was to 
take advantage of the specification of the prefix sum algorithm. In particular, the input of the prefix sum is of a restricted 
format, the input array just contains flags and therefore the output can be used as indices of elements in another array. 
To take advantage of this, several additional properties had to be proved to show that the prefix sum result can indeed be 
safely used as array indices.

To summarize, this paper provides the following contributions:

• Support to reason about CUDA programs added to the VerCors program verifier
• A correctness proof for both data race freedom and functional correctness of two CUDA implementations of parallel 

algorithms that solve the prefix sum problem.
• A correctness proof for both data race freedom and functional correctness of a parallel stream compaction algorithm, 

implemented in CUDA, and using one of the prefix sum algorithms.

To the best of our knowledge, this is the only tool-supported verification of data race freedom and functional correctness 
of the prefix sum and stream compaction algorithms, implemented in CUDA.

This paper is an extended version of our papers presented at NFM 2020 [25] and ICTAC 2020 [24]. In the NFM 2020 
paper we proved the correctness of the two parallel prefix sum algorithms at the pseudocode level. In the ICTAC 2020 
paper we proved the parallel stream compaction algorithm at the pseudocode level. In this paper, we add CUDA verification 
support to the VerCors program verifier, and then redo the verification for the actual CUDA implementations.

This paper is organized as follows. After some background information on GPUs, CUDA and the VerCors verifier, Section 3
describes how we add support for CUDA verification in VerCors. Then, Section 4 shows how we prove correctness of two 
parallel prefix sum algorithms, implemented in CUDA. Section 5 presents the verification of stream compaction algorithm, 
also implemented in CUDA. Finally, Section 6 presents related work, and Section 7 concludes the paper, and discusses future 
work.

2. Background

This section first explains GPU hardware and the CUDA programming platform briefly. Then it describes the VerCors 
verifier and its underlying logic.

1 A data race occurs when two or more threads may access the same memory location simultaneously where at least one of them is a write.
2 This paper does not consider termination proofs of CUDA programs.
2
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Fig. 1. GPGPU architecture and programming model.

2.1. GPU and CUDA programming

Fig. 1 gives an overview of the GPU architecture and its programming model.3 GPUs have many simpler, but more 
efficient cores than CPUs that can run many threads simultaneously. A GPU has several MultiProcessors (MPs) and each MP 
has some Streaming Processors (SPs). GPUs have a hierarchical memory structure. The fastest memory is a register, which is 
local to a single thread. Each MP has a shared memory, which is the second-fastest memory. Threads from one block cannot 
access the shared memory of other blocks. Finally, the slowest memory is global memory. This is accessible by all threads 
and by the CPU and thus can be used for communication between all threads and from and to the host.

CUDA allows software developers to implement parallel algorithms on NVIDIA GPUs. A CUDA program is a CPU-GPU 
program. It means part of the program runs on CPU and the other part runs on the GPU. The CPU part is called host and the 
GPU part is called kernel. The typical workflow in a CUDA program is that we copy data from the host to the device (GPU), 
and then, we call the kernel from the host, running on the device. Each thread executes the kernel code on its own part of 
the data. Finally, we copy data back from the device to the host.

In the CUDA programming model, programmers can define threads in a hierarchical level as grids and blocks. A block 
indicates a number of threads running on one MP. A grid shows the total number of blocks to run on one GPU. Both 
grids and blocks can be defined in one, two or three dimensions by the programmer; however, the GPU scheduler decides 
how to assign thread blocks to MPs. CUDA provides a mechanism for barrier synchronization amongst the threads within 
a block, but there is no programming primitive for inter-block synchronization. Thus, inter-block synchronization can be 
achieved using the host side. In addition, there are also primitive atomic operations which can be used to avoid read/write 
inconsistencies in global and shared memories.

2.2. VerCors program verifier

VerCors is a program verifier to specify and verify concurrent and parallel programs. It supports high-level languages 
such as (subsets of) Java, CUDA, OpenCL, OpenMP and PVL, where PVL is VerCors’ internal language for prototyping new 
features. VerCors can be used to verify memory safety and functional correctness of programs.

Fig. 2 shows the high-level architecture of VerCors. To use VerCors, programs should be annotated with pre/post-
conditions using permission-based separation logic [9,2,8]. Then, VerCors encodes the annotated programs via several 
program transformation steps into the intermediate representation language (Silver) of the Viper framework [20,28]. Finally 
the back end of Viper (Silicon) translates the annotated program into proof obligations which are sent to an automated 
theorem prover; in our case Z3 [13].

3 The figure is taken from NVIDIA CUDA C Programming Guide: http://docs .nvidia .com /cuda /-cuda -c -programming -guide /index .html.
3
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Fig. 2. VerCors tool set overall architecture.

List 1 Parallel left rotation in PVL.

context_everywhere array != NULL && array.length == size;
requires (\forall* int i; i >= 0 && i < size; Perm(array[i], 1));
ensures (\forall* int i; i >= 0 && i < size; Perm(array[i], 1));
ensures (\forall int i; i >= 0 && i < size; (i != size-1 ==> array[i] == \old(array[i+1]))

&& (i == size-1 ==> array[i] == \old(array[0])) );
void leftRotation(int[] array, int size){

par threadBlock (int tid = 0 .. size)
requires tid != size-1 ==> Perm(array[tid+1], 1\2);
requires tid == size-1 ==> Perm(array[0], 1\2);
requires Perm(array[tid], 1\2);
ensures Perm(array[tid], 1);
ensures tid != size-1 ==> array[tid] == \old(array[tid+1]);
ensures tid == size-1 ==> array[tid] == \old(array[0]);
{

int temp;
if (tid != size-1){ temp = array[tid+1]; }
else{ temp = array[0]; }
barrier(threadBlock)

requires tid != size-1 ==> Perm(array[tid+1], 1\2);
requires tid == size-1 ==> Perm(array[0], 1\2);
requires Perm(array[tid], 1\2);
ensures Perm(array[tid], 1);
{}

array[tid] = temp;
}

}

In the annotations, permissions are used to capture which memory locations may be accessed by which threads. Permis-
sions are written as fractional values in the interval (0, 1] (cf. Boyland [9]): any fraction in the interval (0, 1) indicates a read 
permission, while 1 indicates a write permission. A write permission can be split into multiple read permissions and read 
permissions can be added up, and transformed into a write permission if they add up to 1. The soundness of the program 
logic ensures that in each memory location, the total number of permissions among all threads accessing this location does 
not exceed 1. Thus, verified programs ensure the absence of data races. The next section gives an example that shows how 
to specify and verify a program using the VerCors verifier.

3. CUDA verification in VerCors

This section first shows how to verify parallel programs written in PVL using VerCors. Then, we discuss how we add sup-
port to reason about CUDA programs to VerCors, by transforming CUDA programs into the parallel programming constructs 
of PVL. Finally, we present an example verification of a CUDA program using VerCors.

3.1. Parallel PVL verification

To verify parallel algorithms, PVL defines several parallel programming constructs (i.e., parallel blocks, barriers, atomics, 
etc). List. 1 gives an example of a parallel block that uses a barrier to synchronize the threads. It contains a function 
named “leftRotation” that rotates the elements of an array to the left. Inside the function, there is a parallel block named 
“threadBlock” (lines 7-25). The keyword par is used to define the parallel block, followed by an arbitrary name for the 
block. The par block first specifies the number of threads in the parallel block, as well as a name for the thread identifier. 
In this example, we have “size” threads in the range from 0 to “size-1” and “tid” is used to refer to each thread (line 7).

The body of the parallel block is executed by each thread. Therefore, each thread (“tid”) stores its right neighbor in a 
temporary location (i.e., “temp”), except thread “size-1” which stores the first element in the array (lines 16-17). Then all 
4
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List 2 General template of CUDA thread hierarchies in PVL.

requires (\forall* int i; i >= 0 && i < gcount;
(\forall* int j; j >= 0 && j < bsize; pre(i, j)));

ensures (\forall* int i; i >= 0 && i < gcount;
(\forall* int j; j >= 0 && j < bsize; post(i, j)));

void HostCode(){
· · ·
par Grid (int gid = 0 .. gcount)
requires (\forall* int k; k >= 0 && k < bsize; pre(gid, k));
ensures (\forall* int k; k >= 0 && k < bsize; post(gid, k));
{

par Block (int tid = 0 .. bsize)
requires pre(tid);
ensures post(tid);
{

· · ·
}

}
}

threads synchronize at the barrier (line 18). The keyword barrier and the name of the parallel block as an argument 
(e.g., “threadBlock” in the example) are used to define a barrier in PVL. After that, each thread writes the value read before 
the barrier into its own location at index “tid” in the array (line 24).

To verify this function in VerCors, we annotate the barrier, in addition to the function and the parallel block. To specify 
permissions, we use predicate Perm(L, π) where L is a heap location and π a fractional value in the interval (0, 1].4

Pre- and postconditions, (denoted by keywords requires and ensures, respectively in lines 2-5, 8-13), must hold at 
the beginning and the end of the function (or par block), respectively. The keyword context_everywhere is used to 
specify an invariant (line 1) that must hold throughout the function (including the par block). As precondition of the 
function, we have write permission over all locations in the array (line 2). At the beginning of the parallel block, each 
thread reads from its right neighbor, except thread “size-1” which reads from location 0 (lines 16-17). Therefore, we specify 
read permissions as precondition of the parallel block in lines 8-9. Since after the barrier each thread (“tid”) writes into 
its own location at index “tid”, we change the permissions in the barrier such that each thread has write permissions to 
its own location (lines 19-22). When a thread reaches the barrier, it has to fulfill the barrier preconditions, and then it 
may assume the barrier postconditions. Moreover, the barrier postconditions must follow from the barrier preconditions. 
Therefore, each thread has initially read permission in its own location as well (line 10). As a result, the accumulation of 
available permissions in each location of the array is 1 and we can change it into write permission in the barrier. Note that 
the body of the barrier is empty (line 23).

As postcondition of the parallel block (1) first each thread has write permission to its own location (this comes from the 
postcondition of the barrier) in line 11 and (2) the elements are truly shifted to the left (lines 12-13). From the postcondition 
of the parallel block, we can establish the corresponding postcondition for the function (lines 3-5). Note that the keyword 
\old is used for an expression to refer to the value of that expression before entering a function (lines 4-5). Moreover, 
\forall∗ indicates universal separating conjunction over permission predicates and \forall denotes standard universal 
conjunction over logical predicates.

3.2. CUDA verification

CUDA to PVL transformation To be able to verify CUDA programs in VerCors, we transform a CUDA program into a PVL 
program internally in the tool. The main challenge to support verification of CUDA programs is to handle the hierarchical 
structure to define threads in CUDA (i.e., grids and blocks). To address this, we map a CUDA kernel into two nested PVL 
parallel blocks. List. 2 illustrates the general template resulting from the transformation.

As we can see, the outer parallel block (i.e., Grid) indicates the number of blocks in a grid and the inner one (i.e., Block) 
indicates the number of threads per block. The two nested parallel blocks encode the CUDA kernel that runs on a GPU and 
everything outside the two nested parallel blocks encodes the host code that runs on the CPU. To verify the CUDA kernel 
part, the user only needs to add thread-level annotations for the inner parallel block. The specifications for the outer block 
are inferred by VerCors as separation conjunction over all threads in a block (lines 9-10 in List. 2). Similarly, the specification 
for the whole kernel is inferred by VerCors as separation conjunction over all thread blocks in the grid (lines 2-5 in List. 2).

4 The keywords read and write can also be used instead of fractions in VerCors.
5
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List 3 Parallel left rotation in CUDA.

/*@ context_everywhere array != null && array.length == size;
requires threadIdx.x != size-1 ? \pointer_index(array, threadIdx.x+1, 1\2)

: \pointer_index(array, 0, 1\2);
requires \pointer_index(array, threadIdx.x, 1\2)
ensures \pointer_index(array, threadIdx.x, 1);
ensures threadIdx.x != size-1 ==> array[threadIdx.x] == \old(array[threadIdx.x+1]);
ensures threadIdx.x == size-1 ==> array[threadIdx.x] == \old(array[0]); @*/

__global__ void CUDALeftRotation(int *array, int size) {
int temp;
int tid = threadIdx.x; // get the thread id
if (tid != size-1) { temp = array[tid+1]; } else { temp = array[0]; }

/*@ requires tid != size-1 ? \pointer_index(array, tid+1, 1\2)
: \pointer_index(array, 0, 1\2);

requires \pointer_index(array, threadIdx.x, 1\2)
ensures \pointer_index(array, tid, 1); @*/

__syncthreads();
array[tid] = temp;

}

Moreover, the barrier and atomic operations in CUDA are transformed into the corresponding ones in PVL. Note that 
the barrier always synchronizes threads inside the inner block. We refer to [7,1] for more details about reasoning of GPU 
programs with barriers and atomic operations.

CUDA verification example List. 3 shows how we verify the kernel part of the same left rotation program written in CUDA. 
We assume there is only one thread block in the grid and there are “size” threads in that block. As there are pointers 
in CUDA, we use \pointer_index(S, idx, π) in the specification to specify permission over a specific location idx that 
pointer S points to.5 This CUDA example is transformed in PVL, which returns (in essence) the same annotated PVL program 
as in List. 1.

CUDA verification challenges A major challenge that we encounter when we verify CUDA programs is the abundance of 
nested quantified expressions in the specification, because the extracted pre- and postconditions of the grids and kernel 
are quantified over the number of threads per block and the number of blocks in a grid (lines 2-5 in List. 2). These nested 
universal quantifiers make the reasoning about the generated proof obligations more difficult for the underlying theorem 
prover Z3.

To mitigate this problem, we had to extend the VerCors tool implementation with many simplification rules that during 
the transformation process syntacticly replace these complicated expressions by simpler ones. For instance, for an array arr
the tool applies a simplification rule that replaces

(\forall ∗ int i; i >= 0 && i < gcount;
(∀ ∗ int j; j >= 0 && j < bsize; Perm(arr,bsize × i + j)))

by

bsize > 0 ⇒ (\forall ∗ int i; i >= 0 && i < gcount × bsize; Perm(arr, i)).

The situation becomes even more complicated when there are non-linear arithmetic access patterns to an array (e.g., 2 
× tid + 1), which requires many specialized simplification rules to be added, for all different access patterns. It is future 
work to investigate if we can find more general simplification rules that can address a large range of array access patterns.

4. Prefix sum

In this section, we explain the prefix sum problem and discuss two parallel solutions to this problem implemented in 
CUDA. Then, we show how to verify data race-freedom and functional correctness of both algorithms. Instead of presenting 
the full specification, we explain the main ideas and verification steps.6 We end the section with a discussion of verification 
challenges that were introduced by actually verifying the CUDA implementation, rather than the PVL pseudocode.

5 We use the predicate \pointer((S0, . . . , Sn), �, π) to indicate that all array references S0, . . . , Sn have length �, and that the current thread has 
permission π ∈ (0, 1] for them.

6 The full specification is available at https://github .com /Safari1991 /Prefixsum -StreamCompaction.
6
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Fig. 3. After the up-sweep phase (left) and the down-sweep phase (right) in Blelloch’s algorithm (two arrows coming to a circle indicate summation and 
one arrow indicates replacement, red color values show the effect of computations and circles with thick border are indicators as in Algorithm 1). (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

4.1. Prefix sum problem

Given an array of integers, the prefix sum of the array is another array with the same size such that each element is the 
sum of all previous elements. The prefix sum problem is to find an algorithm such that it satisfies the following:

• INPUT: An array Input of integers of size N.

• OUTPUT: An array Output of size N such that O utput[i] =
i∑

t=0

Input[t] for 0 ≤ i < N .

In the exclusive prefix sum algorithm, where the ith element is excluded from the summation, the output will be:

• OUTPUT: An array Output of size N such that O utput[i] =
i−1∑

t=0

Input[t] for 0 ≤ i < N .

Blelloch [5] introduced an exclusive parallel in-place algorithm that solves the prefix sum problem. Kogge-Stone [17]
proposed an inclusive parallel in-place prefix sum algorithm. These two parallel versions are frequently used in practice (for 
example as a primitive operation in libraries AMD APP SDK,7 and NVIDIA CUDA SDK8).

4.2. Blelloch’s parallel prefix sum

Blelloch’s algorithm [5] consists of two phases: up-sweep and down-sweep. Fig. 3 illustrates both the up and down-
sweep phases visually, and Algorithm 1 shows the implementation of the in-place algorithm in CUDA. The up-sweep phase 
is implemented in lines 3-8 of the algorithm and the down-sweep phase is implemented in lines 11-20. Each iteration 
in the up/down phases in Algorithm 1 (lines 3-8/11-20) corresponds to a different level in Fig. 3. We assume that at the 
beginning of Algorithm 1, the input and output array have the same values. There is a variable, stride, which initially is 1 
(line 2) and which is updated in both phases (lines 8 and 20). In the figure, the input values are at level 0 in the up-sweep 
phase. As we can see, in each iteration of the up-sweep, two nodes are summed up at each level (line 5). As a result, the 
last element at the highest level is the sum of the input values. In the down-sweep phase, we first set the last element to 
0 (lines 11-12). Then, we use the partial sums calculated during the up-sweep to compute the prefix sum of the input. The 
complete prefix sum is computed as the lowest level of the down-sweep (lines 14-17). Note that in order to synchronize 
threads at each level of both phases, a barrier is needed (lines 6 and 18). There is also a barrier between up-sweep and 
down sweep (line 9).

4.2.1. Data race-freedom
To show that the algorithm is data race-free, we need to specify permissions over resources that are shared among 

threads. Algorithm 1 has two arrays for input and output. Thus, we specify how threads can read or write from these two 
arrays.

In the input array, each thread (tid) only needs read access to location tid. The situation is more complicated for the 
output array. Fig. 4 visualizes the permission scheme of threads for the output array graphically. The red elements indicate 
the initial permissions for both phases. In the up-sweep, each thread needs write access to indicator and indicator − stride
(line 5 in Algorithm 1). Since initially, indicator and stride are 2 × tid + 1 and 1, respectively, we specify write access for each 
thread to locations 2 × tid + 1 and 2 × tid, indicated by the red color in Fig. 4 (left). Then, in each iteration, indicator and 
stride are updated. Therefore, in the barrier of up-sweep (line 6), we change the permissions according to the new values of 
indicator and stride, as shown in blue.

7 http://developer.amd .com /tools /heterogeneous -computing /amd -accelerated -parallel -processing -app -sdk.
8 https://developer.nvidia .com /gpu -computing -sdk.
7
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Algorithm 1 Blelloch’s Prefix Sum Algorithm in CUDA.
1: __global__ void exclusivePrefixsumKernel(int* Input, int* Output, int N)
2: int tid = threadIdx.x; int indicator = 2 × tid + 1; int stride = 1;
3: while stride < N do
4: if indicator < N && indicator ≥ stride then
5: Output[indicator] = Output[indicator] + Output[indicator − stride];
6: __syncthreads();
7: indicator = 2 × indicator + 1;
8: stride = 2 × stride;
9: __syncthreads();

10: indicator = N × tid + N − 1; stride = N / 2;
11: if indicator < N then
12: Output[indicator] = 0;

13: while stride ≥ 1 do
14: if indicator < N && indicator ≥ stride then
15: int temporary = Output[indicator];
16: Output[indicator] = Output[indicator] + Output[indicator − stride];
17: Output[indicator − stride] = temporary;

18: __syncthreads();
19: indicator = (indicator − 1) / 2;
20: stride = stride / 2;

Fig. 4. Permission patterns for array of length 8: (left) up-sweep and (right) down sweep phases of Blelloch’s algorithm (Wti indicates thread i has write 
permission, red color indicates initial permissions of active threads, blue shows changes in permission pattern and green shows lost permissions which 
assigned to thread 0.

Note that, in each iteration some threads lose permissions, since indicator exceeds the array length (N). According to 
this scheme, at the end of up-sweep, no threads have permissions left to access elements of the output array due to 
indicator > N (blue color disappears). However, we need the same pattern of permissions in down-sweep, and in the barrier 
between up and down sweep (line 9), we cannot invent permissions, but we can only redistribute the current permissions. 
To solve this, we specify that one random thread (thread 0) collects the lost permissions in each iteration (indicated by 
green). As we can see, at the end of the up-sweep, thread 0 has write permission to all locations in the array.

In the down-sweep phase, Fig. 4 (right), we have the same permission pattern in reverse direction. In the down-sweep 
phase, thread 0 is the only one whose indicator initially is in the bound of the output size (i.e., indicator is N × tid + N − 1). 
Thus, initially, thread 0 has write access to indicator and indicator − stride (indicated in red). Note that, at the beginning of 
this phase we update stride to N/2. Thread 0 also has write permission for the rest of elements (indicated by green color), 
since we need the permissions to redistribute them in the barrier of down-sweep (line 18). As we can see, when we move 
down, the permission scheme changes according to indicator and stride. In the end, each thread (tid) has write permission 
to its own location (tid) of the output array. In this way threads can safely compute the prefix sum in parallel.

4.2.2. Functional correctness
To verify functional correctness, we show that at the end of this algorithm, the output array contains the prefix sum of 

the input array. Proving functional correctness of this algorithm is particularly challenging because:

1. The algorithm is in-place; i.e., the elements change in each iteration.
2. There are two phases, each with different computations.
3. The intermediate steps are non-trivial, and non-trivial invariants have to be proven to conclude that indeed the prefix 

sum is proven.

To overcome the above challenges, we keep track of the values in each iteration of the algorithm. For this history of values, 
we use ghost variables (i.e., for each iteration in both phases, we assign the current values of the output array to a ghost 
variable of type sequence). Moreover, we need to specify invariants that relate the computations in up-sweep and down-
8
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List 4 The Build_full_history function.

/*@ requires stride > 0 && stride < | f_hist_prev_lvl|;
ensures |\result| == | f_hist_prev_lvl|-i;
ensures (\forall int j; j ≥0 && j <|\result|; ((i <| f_hist_prev_lvl|) &&

((i+ j)≥stride) && (((i+ j)%(2×stride)) == (2×stride-1))) ==>
\result[ j] == f_hist_prev_lvl[i+ j] + f_hist_prev_lvl[i+ j-stride]);

ensures (\forall int j; j ≥0 && j <|\result|; ((i <| f_hist_prev_lvl|) &&
(((i+ j)<stride) || (((i+ j)%(2×stride)) != (2×stride-1)))) ==>
\result[ j] == f_hist_prev_lvl[i+ j]); @*/

static pure seq<int> Build_full_history(seq<int> f_hist_prev_lvl, int stride,
int i) = i <|f_hist_prev_lvl| ? (

((i%(2×stride)) == (2×stride-1) && (i ≥ stride) ?
seq<int> {f_hist_prev_lvl[i] + f_hist_prev_lvl[i-stride]} +

Build_full_history(f_hist_prev_lvl, stride, i+1) :
seq<int> {f_hist_prev_lvl[i]} +

Build_full_history(f_hist_prev_lvl, stride, i+1) )) : seq<int> {};

sweep. If we look at the only values that change in Fig. 3 (the red-colored values), we notice that in up-sweep (left) the 
sum of those values equals the sum of the values in the input array in each iteration. Further, in the down-sweep (right), 
the red values at each level are the prefix sum of the red values at the corresponding level in the up-sweep. Therefore, our 
general strategy to tackle the above challenges is:

1. Define different ghost variables in both up-sweep and down-sweep to keep a history of values.
2. Define mathematical functions to update the ghost variables (according to actual computations) in each iteration of the 

algorithm.
3. Prove functional correctness over the ghost variables using two invariants:

(a) In the up-sweep, the sum of values that change in each iteration equals the sum of the values in the input array.
(b) In the down-sweep, the values that change at each level are the prefix sum of the values that change at the corre-

sponding level in up-sweep.

4. Relate the ghost variables to the actual arrays; i.e., prove that the elements in the ghost variables capture the same 
elements as in the actual arrays.

Up-sweep ghost variables We go through the steps above to show functional correctness of the algorithm. First, in the up-
sweep phase, we define two ghost variables: one to keep track of all values in each iteration as a full history (f_hist with 
type sequence of sequences), and one to keep the history of the only values that change as a partial history (p_hist with 
type sequence of sequences). We define two different ghost variables, because p_hist is used to show preservation of the 
above two invariants, while f_hist is used to prove that the ghost variable in down-sweep is capturing the elements in the 
output array. Initially, these two ghost variables contain the values in the input array.

The next step is to define mathematical functions over these ghost variables to update them in the same way as the 
actual computations do over the actual arrays. To update f_hist in each iteration of up-sweep, we must add a new sequence 
of current values in the output array to the chain of sequences in f_hist. Therefore, we define a Build_full_history function 
as shown in List. 4. The function takes the previous level in f_hist, named as f_hist_prev_lvl, the stride and an integer i. The 
integer i, starts from 0 and increases up to the length of f_hist_prev_lvl, indicates the location of elements in f_hist_prev_lvl
to be updated. The Build_full_history function goes through all elements and updates the elements if the condition (i%(2 ×
stride)) = (2 × stride − 1) && (i ≥ stride) holds (lines 11-13), otherwise it keeps the elements unchanged (lines 14-15). Note 
that this is a recursive function that captures the same computation as in the algorithm, but over the ghost variable. The 
postconditions (lines 2-8) specify that the result is either the sum of two elements (according to stride) if the condition 
holds (lines 3-5) or unchanged (lines 6-8) otherwise. By applying this function (to f_hist_prev_lvl), in each iteration of 
the algorithm, a full history of values is created like a matrix as sequence of sequences (Fig. 5 (left)). In the figure, the 
underlined elements show the locations where the condition (in Build_full_history) holds and the blue ones show how the 
values change according to stride.

To update p_hist, which keeps only the values that change during the iterations, we define a Build_partial_history function 
(see List. 5). It takes the previous sequence, p_hist_prev_lvl, as an argument, and it creates a sequence that contains the 
values that changed according to the actual computation by summing up each pair of elements (lines 4-5). Note that the 
function uses operations head and tail, where head returns the first element of a sequence and tail returns a new 
sequence by eliminating the first element. Fig. 5 (middle) shows the result of applying Build_partial_history to p_hist_prev_lvl.
9
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Fig. 5. Ghost variables: (left) Building f_hist by applying Build_full_history to f_hist_prev_lvl, blue color indicates how value changes, (middle) Building p_hist
by applying Build_partial_history to p_hist_prev_lvl, colors show combination of each pair and (right) creating down_seq by applying p_sum to p_hist_lvl.

List 5 The Build_partial_history function.

//@ requires |p_hist_prev_lvl| ≥ 0;
static pure seq<int> Build_partial_history(seq<int> p_hist_prev_lvl) =
1 < |p_hist_prev_lvl| ?
seq<int> {head(p_hist_prev_lvl) + head(tail(p_hist_prev_lvl))} +
Build_partial_history(tail(tail(p_hist_prev_lvl))) : p_hist_prev_lvl;

List 6 The epsum function.

/*@ requires 0 ≤ i && i ≤ |p_hist_lvl|;
ensures |\result| == |p_hist_lvl|-i;
ensures (\forall int j; j ≥0 && j <|\result|;

\result[ j] == intsum(take(p_hist_lvl, i+ j))); @*/
static pure seq<int> epsum(seq<int> p_hist_lvl, int i) =

i <|p_hist_lvl| ? seq<int> {intsum(take(p_hist_lvl, i))} + epsum(p_hist_lvl, i+1) :
seq<int> { };

Down-sweep ghost variables Next, in the down-sweep phase, we define a ghost variable, down_seq, as a sequence to keep 
the values that change only in the current iteration. In this way, we can show that the values that change in the down-
sweep are in fact the exclusive prefix sum of the values changed in the up sweep in the corresponding iteration. To update 
down_seq in each iteration of down-sweep, we define a function, epsum (List. 6), and we apply it to the corresponding 
level of p_hist, shown as p_hist_lvl in the function. The argument i is initially 0. Note that the intsum operation sums all 
elements in a sequence and take(xs,i) returns the i first elements of a sequence xs. The epsum function calculates the 
exclusive prefix sum for each element in p_hist_lvl and returns it as a sequence to update down_seq. As an example, Fig. 5
(right) shows how down_seq is updated in each iteration. As we can see, the elements in down_seq are the exclusive prefix 
sum of the elements in p_hist at each level. Hence, it is the exclusive prefix sum of the lowest level which is the input array.

Relating ghost variables and concrete variables We proved functional correctness over the ghost variables, but we need to 
prove it against the actual arrays. Therefore, the last step is to relate them. First of all, it is trivial to relate the levels in 
f_hist to the output array, because of the postconditions in List. 4 (lines 2-8). However we should also relate the output array 
and p_hist and this is more challenging. Fig. 6 indicates the relationship between the output array and p_hist, according to 
tid and indicator, where gray colors (in the table) indicate the active threads in each iteration. The loop of the algorithm 
starts from level 1. We update the values in the output array according to the current values. Correspondingly, the values 
are created in p_hist according to the previous level. The indicator and stride are also updated in each iteration. In the 
output array and p_hist, the same colors belong to one thread according to tid, indicator and stride. The invariants that 
we have in each iteration of up-sweep are Output[indicator] = p_hist[lvl − 1][2 × tid + 1] and Output[indicator − stride] = 
p_hist[lvl − 1][2 × tid]. To prove them as loop invariants in VerCors, we need some smaller steps and prove a property:

Property 1. For any sequence xs:
(∀i.0 ≤ i < |xs|: Build_partial_history(xs)[i] = xs[2 × i] + xs[2 × i + 1]).

Using this property and the invariants, we can establish the relation between the output array and p_hist. The invariants 
that hold in each iteration of the down-sweep phase are Output[indicator] = down_seq[tid] and Output[indicator − stride] = 
10
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Fig. 6. Relation between Output (left) and p_hist (middle) according to active threads (grey color) in the table (right): Output[indicator] = 
p_hist[lvl − 1][2 × tid + 1] and Output[indicator − stride] = p_hist[lvl − 1][2 × tid] (lvl > 0).

Fig. 7. Relation between the actual array, Output, (left) and the ghost variable, down_seq (middle) according to active threads (grey color) in the table (right).

p_hist[lvl][2 × tid] (see Fig. 7, for an example). Again, the gray colors indicate the active threads and the same colors (in 
ghost and array) belong to one thread. To prove the invariants in the tool, we first prove these two properties:

Property 2. For any sequence xs:
(∀i.0 ≤ i < |xs|/2: epsum(Build_partial_history(xs))[i] = epsum(xs)[2 × i]).

Property 3. For any sequence xs:
(∀i.0 ≤ i < |xs|/2 → epsum(xs)[2 × i + 1] = epsum(xs)[2 × i] + xs[2 × i]).

As in up-sweep, by using the invariants, the two properties and several intermediate small steps, we can establish the 
relation between down_seq and the output array. We refer to the verified implementation for further proof details.9

4.3. Kogge-Stone’s parallel prefix sum

In contrast to Blelloch’s algorithm, Kogge-Stone’s [17] algorithm consists of one phase. Algorithm 2 illustrates the encod-
ing and Fig. 8 illustrates the algorithm visually. The levels in the figure correspond to the loop in lines 3-11 of the algorithm. 
In the figure, the lowest level is the input values. As we can see, at each level, each thread (tid) sums up elements in loca-
tions tid and tid − offset. Since threads need current values before updating, in the algorithm, we use an auxiliary variable, 
temp, and a barrier (line 7). The threads are synchronized at each level by another barrier (line 10). As a result, at the 
highest level, where offset exceeds the length of the array, the values are the prefix sum of the values in the input array.

4.3.1. Data race-freedom
To verify data race freedom of this algorithm, we need to specify permissions over the output array. Fig. 9 shows the 

permission pattern in each iteration. As in Algorithm 2, each thread (tid) first needs read permission to locations tid and 
tid − offset (lines 4 and 6). Since offset initially is 1, each thread (tid) needs read permission to its own (tid) and its left 
(tid − 1) locations as indicated by the red color in Fig. 9. Then, in the first barrier (line 7), each thread gives up read 
permissions and obtains write permission to its location to store the results of the computation in line 9 (as shown in blue 
in Fig. 9). Finally, threads reach the second barrier (line 10) and we change the permissions according to the new value 
of offset for the next iteration. This is indicated in green in the figure. This pattern is repeated by each iteration of the 

9 The full specification is available at https://github .com /Safari1991 /Prefixsum -StreamCompaction /blob /main /Blelloch .cu.
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Fig. 8. Kogge-Stone’s prefix sum algorithm (two arrows coming to a circle indicate summation and one arrow indicates replacement, red color values show 
the effect of computations and circles with thick border show tid ≥ offset as in Algorithm 2).

Algorithm 2 Kogge-Stone’s Prefix Sum Algorithm in CUDA.
1: __global__ void inclusivePrefixsumKernel(int* Input, int* Output, int N)
2: int tid = threadIdx.x; int offset = 1;
3: while offset < N do
4: int temp = Output[tid];
5: if tid ≥ offset then
6: temp = Output[tid − offset] + temp;

7: __syncthreads();
8: if tid ≥ offset then
9: Output[tid] = temp;

10: __syncthreads();
11: offset = 2 × offset;

Fig. 9. Permissions in Kogge-Stone’s algorithm; Rti ,t j indicates read permission by threads i and j, Wti indicates write permission by thread i, red color 
shows initial permissions, blue/green show how the permissions change in the first/second barrier.

algorithm. At the end of this algorithm, since offset is greater than all tids, each thread only has read permission to its own 
location (tid).

4.3.2. Functional correctness
Next, we discuss how to verify functional correctness of the algorithm. The difference between this algorithm and the 

Blelloch’s algorithm is that first, Kogge-Stone is an inclusive prefix sum algorithm and second, there is only one phase. 
Having one phase makes it easier to verify functional correctness, even though this algorithm is in-place as well. We could 
reuse several of the functions and operations we defined for the earlier verification. Since this algorithm is for an inclusive 
prefix sum, first of all, we slightly change the definition of epsum to be an inclusive prefix sum (as ipsum). The strategy 
to verify this algorithm is the same as before, i.e., we define a ghost variable to capture the elements in the output array 
and a function to update this ghost variable in the same way as the actual computation does. Then, we prove functional 
correctness over this ghost variable by using a suitable property. Finally, we relate the ghost variable to the output array in 
every iteration.

As we can see in Fig. 8, in each iteration, the values from index 0 up to index offset are actually the inclusive prefix 
sum of the input array. We use this property as a loop invariant to show that at the end of the algorithm, we have the 
prefix sum of the input array. Thus, we define a ghost variable, temp_seq, and we update it inside the loop according to 
the partial_prefixsum function in List. 7. This function captures the same computation as in the algorithm. We can see from 
the postcondition of the function (lines 4-6 in List. 7) that if index (and the corresponding tid) is less than offset, then the 
12
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second intsum returns 0, and the first intsum returns the prefix sum up to index.10 Thus, in each iteration for tid less 
than offset the result will be the prefix sum in temp_seq. Therefore, in the end, when offset is the length of the input (and 
output) array, all values in the ghost variable are the prefix sum of the values in the input array.

List 7 The partial_prefixsum function.

/*@ requires |input_seq| ≥ 0 && index ≥ 0 && index ≤ |input_seq|;
requires of f set > 0 && of f set ≤ 2×|input_seq|;
ensures |\result| == |input_seq| - index;
ensures (\forall int j; 0≤ j && j <|\result|; \result[ j] ==

intsum(take(input_seq, index+ j+1)) -
intsum(take(input_seq, index+ j+1-of f set))); @*/

static pure seq<int> partial_prefixsum(seq<int> input_seq, int index, int offset) =
index < |input_seq| ? seq<int> {intsum(take(input_seq, index+1)) -

intsum(take(input_seq, index+1-offset))} +
partial_prefixsum(input_seq, index+1, offset) : seq<int> { };

As we use offset in the function and from the postcondition that we defined, VerCors can infer that in each iteration for 
tid less than offset, temp_seq and the output array have the same values (specified by a loop invariant). Thus, we conclude 
that Kogge-Stone’s algorithm indeed computes the prefix sum.

4.4. Verification challenges for CUDA

During the verification of the CUDA implementations of the two prefix sum algorithms in VerCors, we encountered 
several challenges. First, after defining the ghost variables inside the kernel, we had to specify that the initial values in 
those sequences are the same as the input. Unfortunately, in our current version of the VerCors verifier, it is not possible to 
define pure functions to initialize the sequences according to the concrete input, because pure functions only can be used 
for sequences and not pointers and arrays. The second problem that we encountered is when we need to re-establish the 
relation between the ghost variables and concrete ones after a barrier. We prove the relation before the barrier, but as the 
permission pattern changes in the barrier, we should re-establish the relation again. Unfortunately, again with the current 
version of the tool, we cannot specify this in the barrier. The reason for this is that the current version of the VerCors verifier 
has a set-up for ghost variables that is not well-tailored to C programs (as CUDA is a variant of the C support in VerCors). 
There are no fundamental reasons, but adjusting this requires a major reorganization of the tool’s internals. Therefore, as a 
temporary workaround we added a few explicit assumptions in the CUDA programs, which specify the relevant properties 
about the ghost variables. It should be stressed that when the PVL pseudocode version of the algorithm was verified, these 
properties all could be proven, thus we see no fundamental problem with adding those assumptions, it is just a practical 
temporary workaround.

As we use non-linear access patterns to an array (i.e., 2 × tid and 2 × tid + 1) in the prefix sum algorithms, the 
underlying theorem prover Z3 has a hard time to prove or refute complicated proof obligations with nested quantifiers, as 
also mentioned above. However, to be able to benefit from the synchronization algorithm on the GPU, the two prefix sum 
examples are implemented in such a way that the entire algorithm resides in one kernel. The consequence of this design 
choice is that we can only have one thread block, which is restricted to a limited number of threads. That means, the input 
size is restricted to that limit. However, the advantage of this for verification is that instead of using threadIdx.x +blockIdx.x ×
blockDim.x, we can use threadIdx.x as thread identifiers. This simplifies proof obligations and mitigates the problem in Z3. 
To be able to do this, we explicitly specify that the number of thread blocks is one in the contract of the kernel. In this way, 
we further simplify the generated proof obligations in Z3.

In general, we find that specifying the number of thread blocks and threads per block explicitly in the contract simplifies 
the complexity, as we can replace thread block variable (e.g., gcount) and size of blocks (bsize) by concrete values in the 
proof. Note that these are necessarily user-specified parameters when invoking a CUDA kernel.

5. Stream compaction

So far we verified two parallel prefix sum solutions, Blelloch’s and Kogge-Stone’s algorithms. Next, we prove the partial 
correctness of parallel stream compaction as an application of the prefix sum. To verify the stream compaction algorithm, 
we explain how to reuse the verified Blelloch’s prefix sum algorithm. Again, we first show how to prove data race-freedom, 
and then we discuss functional correctness. We explain the main ideas mostly by using pictures instead of presenting the 

10 Note that, the partial_prefixsum is a recursive function. In lines 4-6, for the final result, j is 0 and the parameter of take will be index + 1, which 
means the first index + 1 elements (i.e., starting from 0 it becomes up to element index).
13
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Fig. 10. An example of stream compaction of size 8.

Algorithm 3 Stream Compaction Algorithm in CUDA.
1: __global__ void streamCompactionKernel(int* Input, int* Output, int* Flag, int* ExPre, int N)
2: exclusivePrefixsumKernel(Flag, ExPre, N);
3: __syncthreads();
4: if Flag[tid] == 1 then
5: Output[ExPre[tid]] = Input[tid];

full specification.11 We end the section with a discussion of verification challenges that were introduced by actually verifying 
the CUDA implementation, rather than the PVL pseudocode.

5.1. Stream compaction problem

Given an array of integers as input and an array of booleans that flag which elements are desired, stream compaction 
returns an array that holds only those elements of the input whose flags are true. The stream compaction problem is to find 
an algorithm such that it satisfies the following:

• INPUT: two arrays, Input of integers and Flag of booleans of size N.
• OUTPUT: an array Output of size M (M ≤ N) such that

– ∀ j. 0 ≤ j < M: O utput[ j] = t ⇒ ∃i. 0 ≤ i < N:
Input[i] = t ∧ F lag[i].

– ∀i. 0 ≤ i < N: Input[i] = t ∧ F lag[i] ⇒ ∃ j. 0 ≤ j < M: O utput[ j] = t .

– ∀i, j. 0 ≤ i, j < N: ( F lag[i] ∧ F lag[ j] ∧ i < j ⇐⇒
(∃k, l. 0 ≤ k, l < M: O utput[k] = Input[i] ∧
O utput[l] = Input[ j] ∧ k < l) ).

Algorithm 3 shows the pseudocode of the parallel algorithm and Fig. 10 presents an example of stream compaction. 
Initially we have an input and a flag array (implemented as integers of zeros and ones). To keep the flagged elements 
and discard the rest, first we calculate the exclusive prefix sum (e.g., Blelloch’s algorithm) of the flag array. Interestingly, 
for the elements whose flags are 1, the exclusive prefix sum indicates their location (index) in the output array. In the 
implementation, the input of the prefix sum function is Flag and the output is stored in ExPre (line 3). Then all threads are 
synchronized by the barrier in line 3, after which all the desired elements are stored in the output array (lines 4-5).

5.2. Data race-freedom

Again, to prove data race-freedom, we specify how threads access shared resources by adding permission annotations 
to the code. In Algorithm 3, we have several arrays that are shared among threads. There are three locations in the algo-
rithm where permissions can be redistributed: before Algorithm 3 as preconditions, in the exclusive prefix sum function as 
postconditions and in the barrier (redistribution of permissions). Fig. 11 visualizes the permission pattern for those shared 
arrays, which reflects the permission annotations in the code according to these three locations. The explanation of the 
permission patterns in each array in these three locations is as follows:

• Input: since each thread (tid) only needs read permission (line 5 in Algorithm 3), we define each thread to have read 
permissions to its “own” location at index tid throughout the algorithm (Fig. 11). This also ensures that the values in 
Input cannot be changed.

• Flag: since Flag is the input of the exclusive prefix sum function, its permission pattern at the beginning of Algorithm 3
must match the permission preconditions of the exclusive prefix sum function (i.e., Algorithm 1). Thus, following the 
preconditions of Algorithm 1, we define the permissions such that each thread (tid) has read permissions to its “own” 
location (Fig. 11: left). The exclusive prefix sum function returns the same permissions for Flag in its postconditions 
(Fig. 11: middle). Since, each thread needs read permission in line 4 of Algorithm 3, we keep the same permission 
pattern in the barrier (line 3) as well (Fig. 11: right).

11 The full specification is available at https://github .com /Safari1991 /Prefixsum -StreamCompaction.
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Fig. 11. Permission pattern of arrays in stream compaction algorithm corresponding to Fig. 10; Rti/Wti means thread i has read/write permission. Green 
color indicates permission changes.

• ExPre: since ExPre is the output of the exclusive prefix sum function (i.e., Algorithm 1), the permission pattern at the 
beginning of Algorithm 3 should match the permission preconditions of Algorithm 1. Thus, each thread (tid < half ExPre
size) has write permissions to locations 2 × tid and 2 × tid + 1 (Fig. 11: left). As postcondition of the exclusive prefix sum 
function (i.e., Algorithm 1), each thread has write permission to its “own” location in ExPre (Fig. 11: middle). Since each 
thread only needs read permission in line 5 of Algorithm 3, we change the permission pattern from write to read in the 
barrier (Fig. 11: right).

• Output: it is only used in line 5 of Algorithm 3 and its permissions are according to the values in ExPre. Thus, the initial 
permissions for Output can be arbitrary and in the barrier (line 3), we specify the permissions such that each thread (tid) 
has write permission in location ExPre[tid] if its flag is 1 (indicated by tf in Fig. 11: right).

5.3. Functional correctness

Proving functional correctness of the parallel stream compaction algorithm consists of two parts. First, we prove that the 
elements in the exclusive prefix sum function (ExPre) are in the range of the output, thus they can be used safely as indices 
in Output (i.e., line 6 in Algorithm 3). Second, we prove that Output contains all the elements whose flags are 1, and does 
not contain any elements whose flags are not 1. Moreover, the order of desired elements, the ones whose flags are 1, in 
Input must be the same as in Output.

We define two ghost variables, inp_seq and flag_seq as sequences of integers to capture all values in arrays Input and 
Flag, respectively. Since values in Input and Flag do not change during the algorithm,12 inp_seq and flag_seq are always the 
same as Input and Flag.13

First, to reuse of the exclusive prefix sum specification (line 2 in Algorithm 3) from Algorithm 1, we should consider 
two points: (1) the input to the exclusive prefix sum (Flag) in the stream compaction algorithm is restricted to 0 and 1; 
and (2) the elements in the exclusive prefix sum function (ExPre) should be safely usable as indices in Output (i.e., line 5 
in Algorithm 3). Therefore, we use VerCors to prove some more properties to reason about the values of the prefix sum of 
the flag. For space reasons, we show the properties without discussing the proofs here. The first property that we prove in 
VerCors is that the sum of a sequence of zeros and ones is non-negative:

Property 4. For any sequence f lag_seq (with only zeros and ones):
(∀i.0 ≤ i < | f lag_seq|: f lag_seq[i] = 0 ∨ f lag_seq[i] = 1) ⇒

intsum( f lag_seq) ≥ 0.

We need Property 4 since the prefix sum for each element is the sum of all previous elements. We benefit from the first 
property to prove in VerCors that all the elements in the exclusive prefix sum of a sequence flag_seq (only zeros and ones) 
are greater than or equal to zero and less than or equal to the sum of elements in flag_seq:

Property 5. For any sequence f lag_seq (with only zeros and ones):
(∀i.0 ≤ i < | f lag_seq|: f lag_seq[i] = 0 ∨ f lag_seq[i] = 1) ⇒

(∀i.0 ≤ i < |epsum( f lag_seq)|:epsum( f lag_seq)[i] ≥ 0 ∧
epsum( f lag_seq)[i] ≤ intsum( f lag_seq)).

This gives the lower and upper bound of elements in the prefix sum, which are used as indices in Output. This prop-
erty is not sufficient to prove that the elements are in the range of Output due to two reasons. First, an element in the 

12 Note that threads only have read permissions over Input and Flag.
13 Thus, properties for inp_seq and flag_seq also hold for Input and Flag.
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List 8 The filter function.

/*@ requires |inp_seq| == | f lag_seq|;
requires (\forall int i; 0 ≤ i && i < | f lag_seq|;

f lag_seq[i]==0 || f lag_seq[i]==1);
ensures |\result| == intsum( f lag_seq);
ensures 0 ≤ |\result| && |\result| ≤ | f lag_seq|; @*/

static pure seq<int> filter(seq<int> inp_seq, seq<int> flag_seq) = |inp_seq|>0 ?
head(flag_seq)==1 ? seq<int>{head(inp_seq)} + filter(tail(inp_seq), tail(flag_seq))
: filter(tail(inp_seq), tail(flag_seq)) : seq<int>{};

List 9 The proof steps to relate out_seq to Output array.

seq<int> out_seq = f ilter(inp_seq, f lag_seq);
assert |out_seq| == intsum( f lag_seq); // by line 4 in List. 8
if( f lag_seq[tid] == 1)

// applying Property 7
assert inp_seq[tid] == f ilter(inp_seq, f lag_seq)[epsum( f lag_seq)[tid]];
assert out_seq == f ilter(inp_seq, f lag_seq); // by line 1
assert inp_seq[tid] == out_seq[epsum( f lag_seq)[tid]]; // by lines 5-6
assert O utput[ExPre[tid]] == Input[tid]; // by lines 4-5 in Algorithm 3
assert O utput[ExPre[tid]] == out_seq[epsum( f lag_seq)[tid]]; // by lines 7-8

prefix sum can be as large as the sum of ones in the flag. Hence, it might exceed Output size which is in the range 0 to 
intsum(flag_seq) − 1. Second, we only use the elements in the prefix sum whose flags are 1. Property 5 does not specify 
those elements explicitly. Therefore, we prove another property in VerCors to explicitly specify the elements in the prefix 
sum whose flags are 1 as follows:

Property 6. For any sequence f lag_seq (with only zeros and ones):
(∀i.0 ≤ i < | f lag_seq|: f lag_seq[i] = 0 ∨ f lag_seq[i] = 1) ⇒

(∀i.0 ≤ i < |epsum( f lag_seq)| ∧ f lag_seq[i] = 1:
(epsum( f lag_seq)[i] ≥ 0 ∧ epsum( f lag_seq)[i] < intsum( f lag_seq))).

Property 6 guarantees that the elements in the prefix sum whose flags are 1 are truly in the range of Output, and can be 
used safely as indices. Moreover, we already proved that epsum(flag_seq) is equal to the result of the exclusive prefix sum 
function (i.e., ExPre).

Second, we define a ghost variable, out_seq, as a sequence of integers and a mathematical function, filter, as shown in 
List. 8. This function computes the compacted list of an input sequence, inp_seq, by filtering it according to a flag sequence, 
flag_seq. Thus, for each element in inp_seq, this function checks its flag to either add it to the result (line 6) or discard it 
(line 7). The function specification has two preconditions: (1) the length of both sequences is the same (line 1) and (2) each 
element in flag_seq is either 0 or 1 (lines 2). The postcondition states that the length of the compacted list (result) is the 
sum of all elements in flag_seq (line 3) which is at most the same length as flag_seq (line 4). We apply the filter function to 
inp_seq and flag_seq (as ghost statements) at the end of Algorithm 3 to update out_seq.

To reason about the values in out_seq and relate it to inp_seq and flag_seq we prove the following property in VerCors:

Property 7. For any equal sized sequences input_seq and f lag_seq:
(∀i.0 ≤ i < | f lag_seq|: f lag_seq[i] = 0 ∨ f lag_seq[i] = 1) ⇒

(∀i.0 ≤ i < |epsum( f lag_seq)| ∧ f lag_seq[i] = 1:
(inp_seq[i] = f ilter(inp_seq, f lag_seq)[epsum( f lag_seq)[i]])).

From Property 7, we can prove in VerCors that all elements in inp_seq (and Input) whose flags are 1 are in out_seq and 
the order is also preserved. Since we specify that the length of out_seq is the sum of all elements in the flag, which is the 
number of ones (line 4 in List. 8), we also prove that there are no elements in out_seq whose flags are not 1.

The last step is to relate out_seq to Output. List. 9 shows the proof steps which are located at the end of Algorithm 3. 
Through some smaller steps, and using Property 7 we prove in VerCors that out_seq and Output is the same (line 9). Note 
that, we proved that for each tid, epsum( f lag_seq)[tid] is equal to ExPre[tid].

As we can see in this verification, we could reuse the specification of the verified prefix sum algorithm, by proving some 
more properties. We should note that the time we spent to verify the stream compaction algorithm is much less than the 
verification of the exclusive prefix sum algorithm.
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5.4. Verification challenges for CUDA

Since the CUDA implementation of stream compaction reuses the prefix sum implementation, the complexity of the 
annotated CUDA file increases. As a result, we encounter non-termination problems with the verification in the tool, as 
Z3 cannot prove nor refute the properties when they are all in one file. To solve this problem, we split up the code over 
several files. First of all, we removed the host part and only preserved the kernel part. This does not make any difference 
for the verification as there is only one parallel block and the algorithm completely runs inside the kernel. Second, to keep 
the verification effort manageable, we prove all lemmas in a separate file and only use their specification during the kernel 
verification. Again, this does not affect what is proven, but it does have a significant impact on the verification time.

6. Related work

There are only a few approaches to reason about GPU programs. Those mostly focus on finding data races. In dynamic 
approach, programs are instrumented, and then memory accesses are recorded by running them, trying to identify data 
races (e.g., cuda-memcheck [22], Oclgrind [23] and GRace [29]). This is a simple technique to apply, but since it depends on 
concrete inputs, it does not guarantee the absence of data races. An improvement over this approach is dynamic symbolic 
execution where concrete and symbolic (concolic) execution is used, such as GKLEE [19] and KLEE-CL [12]. There are also 
several static approaches to verify data race-freedom of GPU programs. In static approaches, we use logic and theorem 
provers to guarantee the absence of data races. The key of this approach is using invariants to prove data race-freedom. In 
addition to VerCors, tools such as PUG [18] and GPUVerify [3] are based on this approach. VeriFast is a static verification tool 
to prove functional correctness of single-threaded and multithreaded C and Java programs, but it is not able to reason about 
GPU programs. Except VerCors and VeriFast [16], none of these tools can reason about functional correctness of concurrent 
programs.

There is no previous work on formally verifying the parallel stream compaction algorithm on GPUs. The closest related 
work to the verification of prefix sum algorithms is by Chong et al. [11]. They verify data race-freedom and propose a 
method to verify functional correctness of Blelloch’s and Kogge-Stone’s algorithm along with two other parallel prefix sum 
algorithms for all inputs up to fixed sizes. They show that if a parallel prefix sum algorithm is proven to be data race-free, 
then the correctness can be established by generating one test case. They use GPUVerify to prove data race-freedom of 4 
parallel prefix sum algorithms. Their approach is applicable for any parallel prefix sum algorithm with other operations and 
types instead of summation and integers. Comparing VerCors to their tool, GPUVerify benefits from more automation, while 
we need to specify the annotations manually. However, to verify even data race-freedom of GPU programs in GPUVerify, 
the input size must be bounded. As a result, they only show functional correctness for a fixed input size (a realistic size for 
current GPUs). In this paper, we verified data race-freedom and also functional correctness of the two algorithms for any 
arbitrary size of input. We believe that it should be no problem to also prove the other two algorithms.

In our opinion, the advantage of our approach is that our verification approach for the prefix sum can be reused for 
these two new algorithms, while Chong might not be able to reuse his prefix sum approach to verify the parallel stream 
compaction algorithm.

7. Conclusion

This paper shows how we verify data race-freedom and functional correctness of CUDA implementations of two parallel 
prefix sum algorithms, Blelloch’s and Kogge-Stone’s algorithm, using the VerCors verifier. Furthermore, we have proven the 
correctness of the parallel stream compaction algorithm on top of the verified prefix sum. To prove these algorithms, we 
added CUDA support to the VerCors verifier. Proving functional correctness of Blelloch’s algorithm is challenging for multiple 
reasons. First, the algorithm is in-place. Second, it consists of two independent, but related phases and third, it is non-trivial 
to relate the computations in both phases to conclude the desired end result (i.e., that it establishes a prefix sum). We 
address these challenges by introducing ghost variables and defining suitable functions that mimic the computations on 
the ghost variables. Moreover, we prove suitable properties that help us to reason about the algorithm. The verification of 
Kogge-Stone’s algorithm is not as hard as the Blelloch’s algorithm, since there is only one phase. We benefit from functions, 
operations and properties that are defined in the earlier verification and reuse them in the second verification. In the 
stream compaction algorithm, since the input to the prefix sum sub-routine is a flag array, we should prove more properties 
of the prefix sum. Moreover, we define ghost variables and suitable functions that mimic the actual computations in the 
verification of the presented algorithms.

As future work, we would like to investigate how to further automate the process of proof creation. We believe that 
a substantial part of the required annotations, in particular those related to permissions, can be generated automatically. 
Moreover, we plan to verify more CUDA implementations of parallel algorithms in VerCors.
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