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Abstract—1In this paper, we present an improved framework
for the instance-aware semantic segmentation of road furniture
in mobile laser scanning data. In our framework, we first detect
road furniture from mobile laser scanning point clouds. Then we
decompose the detected pieces of road furniture into poles and
their attached components, and extract the instance information
of the components with different features. Most importantly,
we classify the components into different categories by combining
a classifier and a probabilistic graphic model named DenseCRF,
which is the major contribution of this paper. For the classifica-
tion of the components using DenseCRF, the unary potentials and
the pairwise potentials are first obtained. The unary potentials
are obtained from the classifier which takes the instance infor-
mation of components as the input. The pairwise potentials are
calculated considering contextual relations between components.
By utilising DenseCRF, the contextual consistency of components
is preserved, and the performance is significantly improved
compared to our previous work. We collect three datasets to
test our framework, and compare the classification performances
of six different classifiers with and without DenseCRF. The
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combination of random forest with DenseCRF outperforms the
other methods and achieves high overall accuracies of 83.7%,
96.4% and 95.3% in these three datasets. Experimental results
demonstrate that our framework reliably assigns both semantic
information and instance information for mobile laser scanning
point clouds of road furniture.

Index Terms—Densely connected conditional random fields,
instance-aware semantic segmentation, mobile laser scanning
point clouds, pole-like road furniture.

I. INTRODUCTION

OAD furniture has long been playing an important role

in traffic functionalities, and with the development of
autonomous driving system, the automatic recognition of road
furniture has become a prevalent research topic since the
recognition precision will significantly influence the system
reliability. To enhance the recognition, Stanford has made a
priori list of traffic light locations so that its vehicle, Junior, can
detect traffic lights in different lighting conditions. However,
this kind of priori list relies heavily on manual interpretation,
which is tedious and time-consuming. In this case, to auto-
matically produce such a prior list of road furniture is in great
demand.

Benefiting from the utilisation of mobile laser scan-
ning (MLS) system which is broadly used to collect 3D point
clouds of urban road scenes, significant progress has been
made in the automatic recognition of road furniture in point
clouds in recent years [1]-[3], [7], [10]. Specifically, since
the rapid development of laser scanners has enabled MLS to
capture denser and more accurate point clouds, road furniture
recognition has therefore been advanced from the detection
of pole-like road furniture to the recognition of different types
of pole-like road furniture. However, the current granularity in
pole-like road furniture recognition is still too coarse to meet
the demand for precise and detailed mapping. Most studies
simply classify pole-like road furniture as a whole, which is
inappropriate for road furniture with mixed functionalities. For
instance, a piece of road furniture with multiple classes can
only be detected as a traffic light or a street light (Fig. 1a) by
most previous work, whereas it should at least be decomposed
as shown in Fig. 1b. Based on the functionalities, this piece
of road furniture can be further interpreted as two vertical
poles, one horizontal pole, three street lights, five traffic lights
and five traffic-functionality signs (Fig. lc), which is more
appropriate for current demands of industrial applications such
as 3D precise mapping.
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Fig. 1. A piece of road furniture with multiple functionalities. The
original point cloud of one piece of road furniture (a) is decomposed into
traffic-functionality components, where each colour denotes a component (b),
and further interpreted based on their functionalities (c) (Orange: traffic-
functionality signs, yellow: street lights, cyan: traffic lights, green: vertical
poles, blue: horizontal poles).

In order to obtain a more fine-grained recognition, a piece
of our early work about semantic segmentation of pole-like
road furniture has been proposed in [2]. However, features
were not well designed and contextual consistency between
components was not exploited in our previous framework,
which led to some misinterpretations of road furniture. In this
paper, we thereby introduce densely connected conditional
random field (DenseCRF), a probabilistic graphical model
(PGM), and subsequently propose a novel framework based
on it to improve the robustness of the previous recognition
method. Besides, unary and pairwise potentials are adopted
in DenseCRF to preserve both the mounting patterns of road
furniture and the contextual consistency between components.
In this framework, road furniture is first detected from MLS
data. Then these pieces of road furniture are segmented into
poles and their attached components at the level of instance
information by a decomposition algorithm [4]. The instance
information in this paper is to distinguish individual objects
from each other — even if they belong to the same class.
For example, traffic lights are not only assigned with class
labels but each traffic light is also tagged with an identification
number. As illustrated in Fig. 1, five traffic lights have been
detected and segmented. The components are subsequently
categorised based on their functionalities, using a combination
of a simple classifier and DenseCRF, whereas the classifier
can be any machine learning frameworks or knowledge-driven
methods. In our experiment, five machine learning classifiers
and a knowledge-driven classifier are tested with and without
DenseCREF to verify the effectiveness of our framework, while
deep neural network classifiers are not tested in this paper
due to the limited number of poles’ attached components. The
results show that the performance of pole-like road furniture
interpretation in MLS data has been significantly improved
compared to our previous framework [2], and the combination
of random forest (RF) classifier and DenseCRF performs the
best among all our test cases.

The contributions of this paper are as follows:

e A novel framework is proposed for instance-aware sematic
segmentation of pole-like road furniture, in which DenseCRF
is introduced to improve the classification of poles’ attached
components.

e Unary potentials are adopted in DenseCRF to depict the
mounting patterns of poles and their attached components,
where new contextual features are designed as the input for
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their calculation. Besides, pairwise potentials are utilised in
DenseCRF to preserve the contextual consistency between
attached components.

e The state-of-the-art performance is achieved by our frame-
work in terms of accuracy. In the meantime, the generalisation
capability of our framework is validated by applying the
trained model on Espoo winter dataset to Espoo spring dataset
and vice versa.

The remainder of this paper is organised as follows. Related
work is outlined in Section II. Our novel framework is
described in Section III. The experiments and the analysis are
conducted in Section IV. In the end, we draw conclusions and
outlook our future work.

II. RELATED WORK

Research carried out on object recognition in point clouds
can be categorised into model-driven methods and data-driven
methods. Model-driven methods identify objects based on a
series of manually designed rules which are constructed by
empirical experience. Data-driven methods, on the contrary,
recognise objects using a series of supervised statistical learn-
ing models which are trained from labelled datasets. The
fundamental difference is that model-driven methods rely on
handcrafted rules obtained from experiences, and data-driven
methods do not require manually designed rules.

A. Model-Driven Methods

One commonly adopted model-driven method for object
recognition in point clouds is the knowledge-driven method.
This type of methods represents early work on object recogni-
tion in MLS data, which combine a set of manually designed
rules and hand-crafted features to recognise objects in MLS
data.

Techniques for recognising parameterised shapes such as
planar surfaces and cylinders were reviewed in [5]. Early
work to extract pole-like road furniture in MLS point clouds
by introducing co-axial cylinder model fitting was presented
in [1]. This method was subsequently refined in [3] by adding
a scanline segmentation pre-process. A voxel-based co-axial
analysis was introduced in [6] to hasten the computation
compared to [1] and [3]. In [7], a percentile-based method
was presented to detect pole-like road furniture in MLS data,
and a set of shape templates were defined to classify traffic-
functionality signs. This piece of work was optimised in [8]:
rules were added with reflective feature constraints, which
resulted in significant improvement in the recognition rate
of traffic-functionality signs. In [9], a seed growing method
was proposed to separate connected trees, and a template
matching method was used to recognise pole-like furniture.
A hierarchical strategy composed of rules and multi-scale
supervoxels was proposed in [10] to recognise roadside
objects in MLS data. In [11], a slice-cut method was proposed
to identify road poles in MLS data. The method combined the
co-axial cylinder fitting model and slice-wise features, which
is robust to both sparse and dense point clouds.

Shape information was exploited in [12] to classify traffic
signs. Compared to the work in [7], this method heavily relies
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on the radiometric attribute of point clouds. A series of rules in
combination with multi-neighbourhood features were designed
in [13] to extract linear, planar and scattered elements. Two-
dimensional density-based features were employed in [14] to
detect poles from MLS data. These two methods are not robust
to thick poles, of which eigen-based features are computed
to be planar. Knowledge-driven methods are appropriate for
recognition tasks with a small number of classes such as the
detection of pole-like road furniture in MLS data. Numerous
training samples are not required for knowledge-driven meth-
ods. This type of methods is widely applied in industrial areas
because of its good interpretability.

B. Data-Driven Methods

Data-driven methods can be divided into traditional machine
learning methods and deep learning methods. Traditional
machine learning methods utilise handcrafted features and
trained statistical learning models to identify objects. Different
from traditional machine learning methods, deep learning
methods automatically learn features directly from the data.

Traditional machine learning methods have been widely
adopted in MLS data processing, and great progress has
been achieved in recent years. In [15], Laplacian smoothing
and the principal component analysis (PCA) were utilised to
detect and classify pole-like objects from MLS data into three
categories: utility poles, street lights and street signs. However,
one piece of pole-like road furniture with multiple classes is
still treated as a single one where the attached objects to poles
are not separated and classified. A framework was presented
in [16] to recognise objects in 3D point clouds of urban
scenes based on shape and contextual features. In [17], the
implicit shape models (ISM) were employed to automatically
localise and recognise objects in urban scene point clouds.
A template matching framework was proposed in [18] to
classify urban road facilities into street signs, street lights and
bus stations. The Support Vector Machine (SVM) is employed
to classify pole-like road objects in MLS data [19]-[22], [36].
Random forest (RF) is adopted to semantically segment mobile
laser scanning point clouds [23] and [24]. A framework
was designed in [25] to classify 3D point clouds in urban
road scene by employing optimal neighbourhood selection to
extract features. Both [16] and [25] demonstrate that RF
outperforms the other machine learning classifiers for semantic
segmentation of MLS data of urban scenes.

Contextual consistency, however, is not preserved in the
aforementioned frameworks which utilise simple machine
learning classifiers. The work in [26] represents an early
attempt on the interpretation of point clouds by utilising
probabilistic graphic models. In [27], a multi-stage inference
procedure was proposed to semantically segment point clouds
by utilising unary classifiers, contextual features and multi-
round stacking. Instead of performing inference over a graph-
ical model, the inference procedure was taken as a composition
of predictors in [28] to classify 3D point clouds. Markov
Random Fields (MRFs) were adopted in [29] to recognise
pole-like structures in MLS point clouds. Conditional Random
Fields (CRFs) were explored in [30] to semantically segment
ALS data. To address the intensive computation problem,

an efficient fully connected CRF inference method was applied
in [31], which was based on mean field approximation to
perform fast semantic segmentation of 3D point clouds. Node
features and edge features were coded in a parsimonious
graphical model in [32] to semantically segment indoor scene
point clouds into different categories. Multiscale features in
combination with context analysis were employed in [33]
to conduct semantic labelling and instance segmentation of
indoor 3D point clouds. Compared to the knowledge-driven
method, traditional machine learning classifiers do not require
manually designed rules to perform point cloud classification.

Deep neural networks have significantly advanced point
cloud interpretation in recent years [34]. However, deep
learning frameworks require much more training samples than
traditional machine learning classifiers. Deep learning frame-
works can be categorised into three types based on the type
of data fed into neural networks: voxel-based networks, multi-
view projection-based networks and point-based networks.

In voxel-based networks, point clouds are structured as
voxels to be fed into neural networks. An early voxel-
based network was proposed in [35] to classify objects in
point clouds. They voxelised point clouds into a volumetric
occupancy grid, after which a supervised 3D Convolutional
Neural Network (3D CNN) was introduced to classify voxels.
Three-dimensional CNN was then applied in [36] to recog-
nise objects in point clouds of urban scenes. Similarly, 3D
ShapeNets was developed in [37] to recognise objects in
2.5 depth images, retrieve 3D shapes and predict the next-
best-view. In [38], 3D fully convolutional neural networks
(3D FCNN) and CRF were combined to semantically label
point clouds. An improved VoxelNet was designed in [39] to
detect objects in 3D point clouds. The OctNet was presented
in [40] to perform both the semantic segmentation task and
the classification task in 3D data. Voxel-based neural networks
allow for hierarchical feature learning and keep multiple levels
of abstraction. Therefore, they have been widely adopted in
semantic segmentation, object detection and classification in
point clouds.

In multi-view projection-based networks, point clouds are
projected from different viewpoints to generate images. Differ-
ent from voxel-based networks, multi-view projection-based
networks take multi-view projected images as input for the
learning process. The labelled multi-view images are then
back-projected to original point clouds for prediction. In [41],
a multi-view convolutional neural network was proposed for
3D shape recognition, which represents an early-stage attempt.
The SnapNet was developed in [42] to semantically label
3D point clouds with 2D deep segmentation neural networks.
SnapNet flexibly suits various types of point clouds such
as Lidar data or photogrammetric point clouds. Similar to
SnapNet, a multi-view based neural network was proposed in
[43] to semantically segment 3D outdoor scenes. Because of
the loss of information during the projection stage, the quality
of point clouds (e.g., incomplete and noisy) heavily affects the
performance of this type of methods.

Point-based neural networks directly feed networks with
point clouds. Two representative pioneering point-based neural
networks are PointNet [44] and PointCNN [45]. In PointNet,
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Fig. 2. The workflow of pole-like road furniture interpretation.

transformation matrices and symmetric functions were utilised
to construct deep neural networks to classify objects or seman-
tically segment scene in point clouds. PointNet, however,
only preserves local features or global features and is not
able to capture local structures. To tackle this problem, the
PointNet++ is proposed in [46] to recognise objects in 3D
point clouds by constructing a hierarchical PointNet. On the
base of transformation matrices and CNN, the PointCNN
was developed in [45] to semantically label point clouds.
Compared to the vanilla PointNet [44], PointCNN preserves
local structures in the networks. Recently, inspired by PointNet
and PointCNN, many deep neural networks are architected
to conduct object detection [47]-[49], semantic segmenta-
tion [50]-[54] and instance segmentation [51], [55] in 3D
point clouds.

The aforementioned studies have achieved great progress
for point cloud processing. However, most of them classify
objects as single classes or interpret scenes at an object level.
Little effort has been made on the interpretation of road
scene in MLS point clouds with both semantic labels and
instance information at a component level by using contextual
consistency, which is also the highlight of this paper. In our
research, we combine model-driven methods and data-driven
methods to interpret road furniture.

III. METHODOLOGY

In this section, we introduce a framework to automatically
segment point clouds of road furniture into components with
both semantic and instance information, which can be divided
into five stages as shown in Fig. 2: 1. unorganised point clouds
are partitioned into blocks based on the recorded trajectory
information, 2. pole-like road furniture is extracted from each
block of point clouds, 3. the pieces of furniture are segmented
into poles and their attached components, 4. features are
extracted from these separated components, 5. components are

Section II-E! | Section 11I-D,

classified based on the extracted features using a combination
of a simple classifier and DenseCRF.

In the fifth stage, unary potentials are obtained from the
trained classifier to depict probabilities of classes for the com-
ponents. Pairwise potentials are calculated encoding contextual
consistency and fed into the constructed DenseCRF which
refine the intermediate classification from the simple unary
classifiers.

A. Data Partitioning

To prevent memory overflow caused by the large size of
MLS data and reduce computation time, we first divide the
data into blocks along the trajectory of the mobile vehicle
both on straight roads (Fig. 3a) and curved roads (Fig. 3b). The
trajectory is split into line segments with a manually specified
length, and then the whole point cloud is sliced into blocks
perpendicular to the trajectory at the segment edges.

B. Pole-Like Road Furniture Detection

In this stage, ground points are first removed from each
block. A point is regarded as a ground point if it has a
small standard deviation of height variance (SDHV) of its
neighbouring points and below a relative elevation to its
corresponding trajectory point. The threshold of SDHYV is set
to be 0.15m, and the threshold of the relative elevation is
decided by the mounting height of laser scanners.

Then pole-like road furniture is detected from the remaining
above-ground points. A connected component analysis is per-
formed to segment above-ground points into separate objects.
A rough classification is then conducted to identify the objects
as buildings, trees or pole-like road furniture. An object is
recognised as a building according to the height and 2D length
of the bounding box and the area of the extracted surface,
since both the bounding box of a building and the area of a
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(b)

Fig. 3. Two partitioned blocks of point clouds coloured by their elevation
(Yellow lines represent block lines). (a) One straight road segment. (b) One
curved road segment.

building facade are supposed to be large. Trees are recognized
and removed based on the rule that trees are much lower than
other objects in terms of the ratio of points with the first return.
In the meantime, pole-like road furniture is detected using
a slice-cutting algorithm combined with a co-axial cylinder
fitting analysis, and an occlusion analysis is implemented to
exclude incorrectly detected pole-like objects behind building
facades [4].

C. Pole-Like Road Furniture Decomposition

A decomposition algorithm is adopted to segment the
detected pole-like road furniture into poles and their attached
components (e.g., street light heads, traffic signs, etc.) [56].

Three methods are implemented to extract poles from pole-
like road furniture based on their types. The 2D density-based
method is designed for the furniture with many components.
The random sample consensus (RANSAC) line fitting method
is proposed to cope with the furniture consisting of hori-
zontal poles. The slice-cutting based method is used for the
remainder.

Components attached to poles are separated into individual
components based on their spatial relations after removing
the extracted poles. A connected component analysis is first
used, and a set of splitting and merging rules are then utilised
to refine the over-segmentation and under-segmentation of
components [4].

D. Feature Extraction

As each segmented component represents a meaningful
part of road furniture, we treat each component as a unit
to extract its features. Based on the composition of features,
we divide features into two groups: unary features and contex-
tual features as shown in Fig. 4. Compared to other methods

3D shape
features

Intensity

features Component ’

Geometric size

features
U Relative angle
nary features
features
Contextual Relative height
features features

Fig. 4. Component-wise features.

using traditional pointwise features or voxel-wise features, our
method extracts component-wise features and thus preserves
more important clues such as the relation between different
components.

1) Unary Features: Three sets of unary features are
extracted directly from the components: 3D shape features for
describing shapes, reflectance features for material properties,
and geometric features for geometric attributes such as size.

3D shape features are obtained from the eigenvalues 4;
of the covariance matrix of the point cloud of a component,
including the normalised eigenvalues ¢; (Eq. 1), linearity Ep,
planarity Ep, scattering Eg, linear-planarity E7 p, omnivari-
ance E¢, anisotropy E4 and entropy Er (Equations 2 to 8).

e = ii/ziii,

ief{l,2,3}, Ay>Ar>43>0 (1)

EL = (e1 —e2) el ()
Ep = (e2—e3) [e 3)
Es=e3/el 4)
Erp=(ea—e3) /e (5)
Eo = Jeieze3 (6)
Ex = (e1 —e3) [er ™)
Ep = Z; eiln (e;) (8)

The two-dimensional reflectance features are designed to
indicate the intensity attribute of components which are used
for the recognition of traffic-functionality signs. They are
composed of the median value /); and the average value /4
of the recorded intensity of points for each component.

Geometric features are extracted by constructing a bounding
box for each component. The features include the length G,
the width G, the height Gy, the 2D maximum range Gpr
which is the 2D largest distance on the XY plane between two
points in a component, the volume Gy and the ratio feature
G ru. The volume feature and the ratio feature are calculated
as follows:

Gy =GL -Gw-GH )
Gru = Gr/GH (10)

2) Contextual Feature: Different from unary features which
depict attributes of components themselves, contextual features
describe the relative position between poles and their attached
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components. Contextual features are composed of relative
height features and relative angle features.

Relative height features are the height differences between
the key positions of components and poles, where the key
positions include the lowest (sub-indexed by L), the centre
(sub-indexed by C) and the highest (sub-indexed by H). There
are five relative height features [2] including RHcr, RHcH,
RH;;, RHyr, RHpyp, where the first sub-index of each
notation denotes the key position of a component, and the
second denotes the key position of a pole.

Relative angle features are angles between poles and their
attached components. Besides the two features RAyp, RAny
proposed in our previous work [2], we add two more
features RApy and RApp in this paper. The four features
are described in the following equations:

—

RANp = |Cy - Pp| = |cosanp]| (11)
— —

RANy = |Cy - Vy| = |cosany| (12)
— —

RApy = |Cp - Vy| = |cosapy] (13)
— —

RApp = |Cp - Pp| = |cosapp] (14)

where 8\/ and C—‘; are the unit vectors of the normal direction
and the principal direction of a component respectively, and
Pp and Vy are the unit vectors of the principal direction and
vertical direction of the connecte_d) pole oghe component. ay p
is the relative angle between Cy and Pp, ayy is the ange
between Cy and Vy, apy is the angle Estween Cp and Vy,
and app is the angle between Cp and Pp.

E. Probabilistic Component Classification

Features extracted in Section III-D are utilised as the input
for the classification of the components by using DenseCRF
combined with a classifier. DenseCRF [57] is employed to
preserve contextual consistency, i.e., to model the relations
between different components. In contrast to traditional CRF,
DenseCRF is capable of encoding potentials for long-range
relations (i.e., relations between not only adjacent nodes but
also non-adjacent nodes). Thus, DenseCRF is well suited in
our case to learn the mounting rules of components in urban
scenes, since in our research, plenty of components in the
same category share long-range relations. For instance, the
distance between neighbouring street lights is often fixed.
By using DenseCRF, more relations between components can
be encoded and more contextual consistency patterns could be
preserved.

1) Definition of DenseCRF: Our DenseCRF model is essen-
tially an undirected graph g = {v (S), ¢ (S)} (Fig. 5). Here
S = {S1,..., Sy} denotes the N components extracted in
the decomposition stage. v (S) is the set of nodes in the
graph which are fully connected, and each node represents an
extracted component S;. & (S) is the set of undirected edges
between different nodes in the graph.

We further define the class labels of the components as I =
{Ii, ..., In}, where the domain of each [; is a set of class
labels L = {ly,...,Ix}. A random field (/|S, w) conditioned

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Node: v(§)
Edge: £(S)
Component with

featuresand
position: §

Fig. 5.

The constructed DenseCRF.

on S and model parameters w = {a)ﬂ, a)p} is characterized by
a Gibbs distribution as follows [57]:

P(I|S,w) =exp(—E (I|S, )/ Z (S, w) (15)

where the marginal partition function Z (S, ®) transforms
the potentials into probabilities. The Gibbs energy function
E (I|S, w) of a label assignment is defined as follows:

E(I1S,®) = D" oy (Li1Si; o)
i

2 e (1 1)1(15)50,) 16)

where ¢, is the unary potential parameterised by w,, and ¢,
is the pairwise potential parameterised by w,.

2) Unary Potential: The unary potential ¢, for a component
is the probability of the component being assigned to a specific
class label /,,, which is described as follows

Pu (Ii = In|Si; a),u) =P (Ii = In|Si; CU,u)

A classifier, which takes the unary features and contextual
features of the components as the input, is adopted to compute
¢ Tor each class of every component. In this paper, six differ-
ent classifiers are tested to compare their performances includ-
ing a knowledge-driven method, three discriminative learning
models, random forest (RF), support vector machine (SVM)
and multinomial logistic regression (MLR), and two generative
learning models, Gaussian mixture model (GMM) and naive
Bayes (NB).

For the knowledge-driven method, we define a set of
rules to classify these components empirically learned from
the mounting regulations of road furniture. These rules are
encoded as a set of feature constraints formulated for the
corresponding template of each class. Take traffic signs as
an instance, they are constrained by the following features:
1. Traffic signs are normally connected to vertical poles, and
the connected position is not assumed to be located in the
lowest part of their attached poles. 2. Traffic signs contain parts
that are close to planar and have high intensity in the point
cloud. 3. The relative angle between the normal direction of
a traffic sign and the principal direction of its connected pole
is perpendicular. Detailed description can be found from our
previous work [58].

As one of the most superior traditional machine learning
classifiers, RF has been widely applied in the classification of
point clouds [24]. In this paper, the RF classifier ensembles
the mounting rules of components in urban road scenes with

a7
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numerous weak learners [59] to predict the probability of
each class for every component. We feed RF manual labels of
components and their extracted features » for training. Trees
are constructed for the data augmented by the bagging strategy.
To explore the effectiveness of our designed features, the Gini
index is introduced to compute the feature importance as in
[60]. Two parameters, the number of trees N7 and the depth
of trees Dr, are utilised and tuned in the RF classifier, and a
grid search is used to obtain the optimal combination of these
two parameters.

SVM is a binary classifier that maximizes the margin,
that is, the distance of the closest vectors to the decision
surface in both classes [61]. We use the one-vs-all strategy
to solve the multiclass problem. Radial basis function (RBF)
kernel is used with the C-SVM to enable nonlinear decision
surfaces. The model contains hyperparameters y and C for
the training and prediction. Similar to RF, we use a grid
search for hyperparameter tuning. To mitigate effects from
the unimportant features, the backward elimination [62] is
utilised for feature selection.

MLR is to build a linear predictor function with a set
of linearly combined weights to predict probabilities of
observations.

GMM in this paper assumes that all the components with
features are generated from the mixture of a certain number
of Gaussian distributions with unknown parameters. In other
words, GMM is a sum of multivariate Gaussian distributions,
and each distribution represents one class of components.
In our implementation, components with features and manual
labels are fed into GMM to estimate the parameters using
expectation maximization (EM).

NB assumes that given the class label, the value of a
particular feature is independent of the values of any other
features, and each value of the features follows a Gaussian
distribution. The maximum a posterior (MAP) is adopted to
estimate the parameters.

3) Pairwise Potential: Pairwise potential is designed to
explore the contextual relations between different components
during the classification. The pairwise potential ¢, is encoded
by two kernels, the appearance kernel kapp and the relative
location kernel kpejioc expressed in Equations 18-20. The
appearance kernel is to emphasize that nearby components
sharing similar features are likely to be in the same class
based on the observation, while the relative location kernel
is to encourage components with a similar height to be in the
same class.

op (1 1) |(515)) 1@, ) = e (1 1) K ((51:8)) 1)
= (1, 1) {0k, (5i.5))
ok (5.5)
kapp (5. 1) = exp (= (|pi=pj| ~a)? /207
— -5l /255) a9

Kretoc (1, 5;) = exp(= (| pi—p, | - a)° /262)
(20)

(18)

where p; and p; are the positions of components S; and §;,
and f; and f; are the feature vectors of S; and S;. u (I;, I;)
is a simple label compatibility function given by the Potts
model which penalises class changes with similar components.
The kernel parameters 8 = {Ha, 04,0, } are utilised to control

the degree of proximity and similarity. a)g,l) and wéz) are the
pairwise parameters of the potential.
4) Inference and Training: For the inference, the

KL-divergence is adopted in our model in combination
with mean fields to approximate the probability distribution
function [57] instead of computing the CRF distribution
directly using Markov chain Monte Carlo (MCMC). It is
because that it is difficult to make the model converge
efficiently since the computational complexity of message
passing between nodes is extremely high in the graph
due to the large number of edges in DenseCRF. In the
message passing process, we use the high-dimensional
filtering convolution with a Gaussian kernel. This reduces
the complexity of the intractable message passing process to
linear, which highly facilitates the inference process.

For the training, the intersection over union (IOU) is used
as the loss function which mitigates imbalances in the training
data, and gradient-based optimisation is used to minimise
the loss function. The gradient-based optimisation includes
the mean field gradient, unary and pairwise gradients. The
label compatibility and kernel parameters are learned with the
tuning of unary and pairwise gradients. The parameters of
unary potentials are learned during the training of the unary
classifiers. With the trained model, the label of a component
is predicted as the class with the highest probability:

[ = argmax P (I|S; w)
IeL

21

IV. EXPERIMENTAL RESULTS

To evaluate the performance of our framework, we conduct
experiments on three datasets, one collected in Enschede,
a medium-sized city in the east of the Netherland, and the other
two in Espoo, the second-largest city of Finland, in different
seasons. Detailed description of our datasets can be found in
our previous work [2]. Our experiments are only conducted
on the three datasets since there are a considerable number
and types of pole-like road furniture in these three datasets,
whereas the number of pole-like road furniture samples in
other benchmark datasets is limited. Besides, the appearance
of pole-like road furniture is noticeably different between
Enschede and Espoo.

A. Results

To quantitively evaluate the reliability of our framework,
we compare it to our previous work [2] in which merely unary
classifiers were employed. The reliability on different datasets
has been thoroughly validated by the remarkable performance
of our framework as shown in Table I. The highest overall
accuracy (OA) of classification of components is above 83.5%
in the Enschede dataset, and above 95.0% in both Espoo winter
and spring dataset.
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TABLE I

THE OVERALL ACCURACY OF ROAD FURNITURE INTERPRETATION OF
FIVE DIFFERENT METHODS

Method Dataset Enschede Espoo winter  Espoo spring
KD 64.4% 51.5% 59.5%
KD-DenseCRF 72.7% 73.8% 86.5%
SVM 72.2% 79.1% 78.2%
SVM-DenseCRF 76.7% 85.1% 89.6%
RF 81.0% 92.3% 94.1%
RF-DenseCRF 83.7% 96.4% 95.3%
MLR 21.4% 19.3% 14.1%
MLR-DenseCRF 451% 57.4% 51.4%
GMM 29.0% 35.4% 40.7%
GMM-DenseCRF 59.6% 61.9% 85.7%
NB 59.1% 86.8% 86.8%
NB-DenseCRF 65.5% 90.9% 90.0%

Then the combinations of every single unary classifier and
DenseCRF are fully explored as shown in Table I. Amongst
all these methods, the combination of RF and DenseCRF
(RF-DenseCRF) performs the best, and DenseCRF improves
the accuracy of RF, the state-of-the-art method in the inter-
pretation of road furniture [2], by 2.7%, 4.1% and 1.2% in
Enschede, Espoo winter and Espoo spring datasets respec-
tively. This may be due to that RF takes the advantage of
the combination of numerous weak learners, and DenseCRF
works as a smoother to reallocate the predictions. The MLR
classifier achieves the lowest accuracy which implies that
the classification problem is nonlinear as MLR utilises a
simple linear function for prediction. Besides, the significant
difference between the performance of our framework on the
Enschede dataset and the two Espoo datasets is because that
more classes and more complex road furniture are included
in the Enschede dataset which makes the classification more
challenging.

We further generate confusion matrices of the results on
Enschede, Espoo winter and Espoo spring datasets as illus-
trated in Tables II, III, and IV respectively to evaluate the
combination of RF and DenseCRF. The F-scores of the recog-
nition of street light in all three datasets is extremely high (>
96.0%). In Espoo winter and spring datasets, our framework
achieves a high F-score of above 95.0% for the recognition
of traffic signs and other attachments and a much lower F-
score for street signs. The low score might be due to that it
is difficult for the classifier to retrieve enough representative
information since there are few training and testing street sign
samples. The same cases also arise in the recognition of traffic
lights and other signs.

There is a remarkable improvement for the recognition
F-score of traffic signs in all three datasets. The reason is
that DenseCRF is able to capture mounting patterns of traffic
signs when there are sufficient training samples. By contrast,
the recognition F-score of traffic lights in Enschede dataset
decreases significantly due to the small number of traffic lights
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in the Enschede training and testing datasets. This implies that
the mounting patterns can hardly be learned. Similar cases
occur in the recognition of street signs on the Espoo spring
dataset.

The visualisation of our results on the three datasets is
shown in Fig. 6a-c. In the Enschede dataset, most street lights
(colourised to be yellow) are well recognised. Traffic signs
and street signs (colourised to be magenta and orange) are also
decently identified (Fig. 6a). A few components are incorrectly
recognised as other objects. For instance, street lights and
traffic lights are misclassified as other objects (the bottom
middle and the bottom right subfigures in Fig. 6a). This case
of misclassification is aroused by the incorrect decomposition.
In Espoo winter (Fig. 6b) and spring datasets (Fig. 6c¢), our
framework achieves great performance. Components of classes
amongst street light, traffic signs and other attachments in
these two datasets are mostly predicted with the correct labels.
Because of the lack of training and testing samples with street
signs in these two datasets, three other objects are misclassified
as traffic signs (the bottom left and bottom right subfigures
in Fig 6¢). Besides these negative results, the high similarity
between powerline fragments and street light heads lead to
powerline segments misrecognised as street lights (the bottom
middle subfigure in Fig. 6b). These two classes are elongated,
and their principal directions are perpendicular to the principal
direction of their attached poles.

To test the reliability of our framework, we compare the
performance of our framework on Espoo winter and spring
datasets collected in two different epochs in nearly the same
area. Table II and Table III suggest that the F-scores of street
light, traffic sign and other attachments are all above 95%,
and the F-score of traffic sign is between 70% and 75%. The
consistency of the performances between these two datasets
demonstrates that our framework is capable of dealing with
different datasets composed of the same type of road furniture
with consistently good performance.

Finally, the generalisation capability of our framework is
assessed. To validate the generalisation capability of our
trained model, the model trained on the Espoo spring training
data is tested on the Espoo winter testing data with an OA
of 93.1% (Table V), and the model trained on the Espoo
winter training data is tested on the Espoo spring testing data
with an OA of 95.1% (Table VI). The high OA (> 93%)
of both tests indicate a high generalisation capability of our
framework. One exception is that the F-score of traffic sign in
the Espoo winter dataset and spring dataset is lower compared
to the result predicted by their original trained model. This is
because the point clouds of traffic signs in the Espoo spring
dataset are surrounded with stray points in the air more than
in the Espoo winter dataset, which elevate the importance of
intensity features. The much higher intensity in the Espoo
spring dataset gives rise to a much lower F-score of traffic
signs in Espoo winter testing data predicted by the Espoo
spring trained model.

B. Discussion
We further investigate the advantages of RF-DenseCRF.
As illustrated in Section IV-B, the RF-DenseCRF outperforms
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TABLE 11
THE CONFUSION MATRIX OF RESULTS IN THE ENSCHEDE DATASET

Class Street light ~ Trafficsign  Streetsign Traffic light Other signs  Other attachments Correctness
Street light 148 0 0 2 0 0 98.7%
Traffic sign 0 73 13 1 11 1 73.7%
Street sign 0 5 42 0 1 0 87.5%
Traffic light 0 1 0 14 6 3 58.3%
Other signs 0 4 0 1 13 5 56.5%
Other attachments 1 3 1 5 8 81 81.8%
Completeness 99.3% 84.9% 75.0% 60.9% 33.3% 90.0%

F-score 99.0% 78.9% 80.8% 59.6% 41.9% 85.7%

F-score of previous work 99.0% 64.7% 76.6% 70.8% 40.0% 86.1%

TABLE III TABLE V

THE CONFUSION MATRIX OF RESULTS IN THE ESPOO WINTER DATASET

Street  Traffic Street Other
Class . . . Correctness

light  sign sign attachments
Street light 91 0 0 4 95.8%
Traffic sign 0 108 1 2 97.3%
Street sign 0 1 4 1 66.7%
Other 0
attachments 1 3 0 146 97.3%
Completeness  98.9% 96.4% 80.0% 95.4%
F-score 97.3% 96.8% 72.7% 96.3%
Fescore of 96.2% 90.7% 61.5% 94.8%
previous work

TABLE IV

THE CONFUSION MATRIX OF RESULTS IN THE ESPOO SPRING DATASET

Class Street T_rafﬁc S'treet Other Correctness
light  sign sign attachments

Street light 114 0 0 2 98.3%
Traffic sign 0 129 4 0 97.0%
Street sign 0 0 12 3 80.0%
Stg;:;ments 7 6 1 212 93.8%
Completeness  94.2% 95.6% 70.6% 97.7%

F-score 96.2% 96.3% 75.0% 95.7%

F-score of 95.6% 934%  81.3% 96.0%

previous work

the other methods. Random forest is an ensemble learning
classifier consisting of numerous weak learners, where each
learner behaves as an empirically defined rule latently con-
tained in our hand-crafted features. For instance, to enable
drivers to easily catch sight of traffic information, street
signs should not be mounted too high or too low. It is easy
for a weak learner in RF to capture this type of mounting

THE ESPOO SPRING TRAINED MODEL (RF-DENSECRF) ON THE ESPOO
WINTER TESTING DATA

Class Street T‘rafﬁc Sitreet Other Correctness
light  sign sign attachments
Street light 92 0 0 4 95.8%
Traffic sign 0 93 0 2 97.9%
Street sign 0 4 5 0 55.6%
Stg;rlmems 15 0 147 90.7%
Completeness  100% 83.0% 100% 96.1% 93.1%(0A)
F-score 97.9% 89.9% 71.4% 93.3%
TABLE VI

THE ESPOO WINTER TRAINED MODEL (RF-DENSECRF) ON THE
ESPOO SPRING TESTING DATA

Street Traffic Street Other

Class light  sign sign attachments Correctness
Street light 112 1 0 2 97.4%
Traffic sign 1 130 5 3 93.5%
Street sign 0 0 12 0 100.0%
?tgs}rlments 4 0 212 94.6%
Completeness  92.6% 96.3% 70.6% 97.7% 95.1% (OA)
F-score 94.9% 94.9% 82.8% 96.1%

pattern. In contrast, the other classifiers heavily rely on hyper-
plane construction or distributions (e.g., Gaussian), which
are not prominent amongst our designed features. Even the
infinite-dimensional feature space by the kernel trick in SVM
is not sufficient to describe mounting patterns of road furniture.
Therefore, RF outperforms the other methods by making better
use of our designed features. In the meantime, DenseCRF
can help to find patterns between different components, and
improve the performance by learning such patterns with the
pairwise potentials. For example, neighbouring street lights
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(b)

Fig. 6. The visualisation of instance-aware semantic segmentation of road furniture in (a) Enschede dataset, (b) Espoo winter dataset and (c) Espoo spring
dataset.

are usually mounted with a fixed distance. And DenseCRF is testing samples, it is rather challenging for DenseCRF to
capable of capturing this contextual consistency information. improve the classification of components, or the performance
However, when there is only a small number of training or may even go down.
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TABLE VII
THE 12 MOST IMPORTANT FEATURES, RANKED BY FEATURE IMPORTANCE

Rank Featurf: :
Enschede Espoo winter ~ Espoo spring

1 RHyy RH,, Iy

2 RH,; Gy RApp

3 RApp e, I,

4 Gr ey Gy

5 RApy RApy RH:y

6 E; Gr RApy

7 Ep RAyp Ep

8 Gw RH¢y RH.y

9 Iy Iy Gy

10 E, E.p G

11 e RAyy e,

12 G, Gy E;

Then we explore the importance of our designed features.
The importance of the unary and contextual features empiri-
cally designed based on the mounting rules of road furniture
is calculated by the Gini index following [60] as shown
in Table VII. Contextual features {RH, RA} are the three
most important features during the training of the Enschede
dataset. This is because contextual features are prominent
for differentiating components. For instance, it is difficult
to distinguish street light and traffic light only by using a
unary feature, but much easier to distinguish them by using
the contextual feature RApp. The median intensity Iy in
the training of the Enschede dataset and the Espoo winter
dataset is not as important as in the training of Espoo spring
dataset. I is designed for recognising traffic-functionality
signs and other attachments. In the training of the Enschede
dataset, eigenvalue features (E and e>) are already enough to
differentiate most of them. Compared to the Enschede dataset
and Espoo winter dataset collected with good quality, there
are stray points in the Espoo spring dataset, which makes
the eigenvalue features unreliable. Therefore, Ij; takes over
the role of eigenvalue features for differentiating traffic signs
and other components. This is also the reason why eigenvalue
features are more important in the training of the Espoo winter
dataset than in the training of the Espoo spring dataset.

C. Ablation Study

To validate the effectiveness of the DenseCRF, we carry
out an ablation study and compare our research to the other
work [10] as illustrated in Fig. 7. Our framework outper-
forms [10], which significantly advances the instance-aware
segmentation of road furniture in MLS data. The ablation study
is performed between RF and RF-DenseCRF. As shown in
Fig. 7, the contextual consistency in DenseCRF improves the
performance of the RF method.

In addition, the computation cost is recorded with the
training and testing period (Table VIII). All the training and
inference time is less than 7s with our framework, which indi-
cates the high efficiency of our framework. The configuration
of our computation platform is Intel i7-8700k (6-core), 64G

COMPARATIVE STUDY
100%

>
9]
© 90%
>
o
Q
<< 80%
‘©
o 70%
>
o
60%
ENSCHEDE ESPOO WINTER ESPOO SPRING
—&—RF —{— RF-DenseCRF  —&— The other work

Fig. 7. The performance comparison amongst RF, RF-DenseCRF and [10].

TABLE VIII
THE COMPUTATION TIME OF OUR FRAMEWORK

Computation RF RF DenseCRF  DenseCRF
time (ms) training testing training testing
Enschede 81.6 19.1 5972.4 12.0

Espoo winter 66.4 14.8 2211.8 9.2

Espoo spring 54.4 19.5 2416.8 11.5

RAM and Nvidia RTX 2070 video card. The pairwise and
kernel parameters of our DenseCRF model are automatically
learned in the training process.

V. CONCLUSION

A novel framework for automatic recognition of road furni-
ture is proposed in this paper which constructs a classification
module combining a simple classifier and DenseCRF, and the
state-of-the-art performance is thus achieved for the instance-
aware semantic segmentation of road furniture in mobile
scanning data. New contextual features are designed and incor-
porated into the previous features for the calculation of unary
potentials used in DenseCRF to learn the mounting patterns
of pieces of road furniture. Meanwhile, pairwise potentials
are calculated and used in DenseCRF to preserve contextual
consistency between components of road furniture.

Our framework performs well on three datasets in Enschede
and Espoo test sites which are in two different countries.
By using DenseCRE, we elevate the accuracy of the Enschede
dataset from 81.0% to 83.7% and the accuracy of Espoo winter
and spring datasets from >92% to >95% compared to our
previous work [2]. Besides, combinations of six different
classifiers with and without DenseCRF are carefully evalu-
ated, and RF-DenseCRF performs the best. By our designed
framework, we can robustly interpret road furniture with
both semantic label and instance information based on their
functionalities.

Furthermore, only small differences exist in the performance
of our framework between the two epochs (winter and spring)
in Espoo, which proves that our designed framework is
generic, reliable, and robust. Our framework thus shows great
potential for creating 3D high-definition (HD) maps, which
are crucial for autonomous driving and urban road inventory.
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In the future work, we will combine point clouds and
images to deal with the segmentation of urban roadside
objects. Currently, mobile laser scanning point clouds can
only provide the information of structural features and single-
channel intensity. Our algorithm is therefore restrained by the
limited information which is not sufficient for a more detailed
road furniture interpretation. For instance, it is difficult to
recognise the speed limit in a sign by merely using point
clouds. Instead, combining with the information provided by
images, we believe that a better interpretation of road furniture
can be achieved.
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