
From Nested-Loop to Join Queries in OODB

Hennie J. Steenhagen Peter M.G. Apers Henk M. Blanken Rolf A. de By
Department of Computer Science, University of Twente

PO Box 217, 7500 AE Enschede, The Netherlands
{hennie,apers,blanken,deby}Qcs.utwente.nl

Abstract

Most declarative SQL-like query languages for
object-oriented database systems (OOSQL)
are orthogonal languages allowing for arbi-
trary nesting of expressions in the select-,
from-, and where-clause. Expressions in the
from-clause may be base tables as well as set-
valued attributes. In this paper, we propose a
general strategy for the optimization of nested
OOSQL queries. As in the relational model,
the translation/optimization goal is to move
from tuple- to set-oriented query processing.
Therefore, OOSQL is translated into the al-
gebraic language ADL, and by means of alge-
braic rewriting nested queries are transformed
into join queries as far as possible. Three opti-
mization options are described, and a strategy
to assign priorities to options is proposed.

1 Introduction

To support technical applications like CAD/CAM,
GIS etc, relational technology has its shortcomings.
In these areas, the popularity of object-oriented tech-
nology is growing. First, from the field of program-
ming languages, persistent programming languages
like Gemstone [Bretl et al. 891 came, later followed by
object-oriented database system such as 02 [BaDK92]
and HP OpenODB P;yng91]. The historical back-
ground is still visible in the sense that too little

Permirrion to copy without fee 011 or part of thir material i6
gnanted provided that the copier are not made or dtitributed for
direct wmmenzial advantage, the VLDB wpyrisht notice and
the title of the publication and ik date appenr, and notice i6
given that copying i6 by permirrion of the Very Large Data Bare
Endowment. To copy otherwire, or to republtrh, require6 a fee
and/or special permirrion from the Endowment.
Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

attention has been paid to ad hoc query facilities
and database design tools. A number of propos-
als for declarative query languages for extended NF2
and object-oriented data models has appeared, e.g.
[PiAn86, BaCD92, Catt93]. We will use-the term
OOSQL for the various proposals of SQL-like lan-
guages for OODB. In this paper, we concentrate on
efficient support for ad hoc queries formulated in a
declarative query language.

An OOSQL query facility is inherently more com-
plex than one for SQL, because nesting is allowed in
all clauses, i.e. in the select-, from-, and where-
clause. Expressions in the from-clause, the query
block operands, may be base tables as well as set-
valued attributes. Also, the predicates that are used
in the where-clause are more complex, because com-
parisons between set-valued attributes, or set-valued
attributes and base table expressions are allowed. An
example is the test whether two parts have an overlap
in their sets of subparts.

Due to the complexity of OOSQL, the dominant
strategy to handle nesting is to execute it by means of
nested-loop processing, leaving no room for optimiza-
tion. We distinguish between two types of nesting:
nesting required to iterate over base tables and nest-
ing required to iterate over set-valued attributes. Ide-
ally, nesting over base tables should be translated to
some kind of join so that a choice can be made between
various efficient join implementations. Of course, this
problem already occurred in SQL [Kim82]. In general,
nested SQL queries can be translated to a join in the
relational algebra to get a better execution than the
nested-loop execution. However, not all SQL queries
can be translated to a join due to loss of dangling tu-
ples in the join, a phenomenon known as the COUNT-
bug. In [StAB94] we have shown that the COUNT-bug
is only a special case of a more general problem occur-
ring in nested OOSQL queries.

The main focus of our research is to translate
OOSQL queries to an extended relational algebra for
complex objects, called ADL, to allow for an efficient

618

execution. In this paper, we deal with the problem
of trying to translate nested OOSQL queries to join
queries in ADL, taking advantage of efficient imple-
mentations of join operators. We present a general ap-
proach for handling nesting in the where-clause, the
from-, as well aa in the select-clause; the discussion
concentrates on nesting in the where-clause, though,

In the (extended) NF’, as well as in the object-
oriented literature, little work has been reported con-
cerning efficient translation of SQL-like query lan-
guages into algebraic languages. For the NF2 model, a
translation of a calculus into an NFs algebra has been
presented in [HoKS88], however, little attention has
been paid to efficiency. Work has been done on the
implementation of the extended NF2 query language
HDBL of the AIM project [SLPWSS, SiiLiSO]; to our
knowledge HDBL has not been translated into an al-
gebra. In [ClMo93], a proposal for the optimization of
nested OzSQL queries has been made. OzSQL is trans-
lated into an extension of the GOM algebra [KeMo93],
and examples of optimization of nested algebra queries
are given.

The organization of this paper is as follows. In Sec-
tion 2 nesting in the various clauses of the select state-
ment is introduced by means of examples, together
with an example schema of an OODB. In Section 3
an algebra for complex objects called ADL is shown
with a general translation of OOSQL queries to ADL
queries. Section 4 addresses the problem of optimizing
ADL queries. Three alternatives are discussed. Two
of them, rewriting into relational join queries and the
introduction of new operators are considered in Sec-
tion 5 and Section 6. The paper ends in discussing
future work.

2 Example

In this section, we give a simple example schema of
the supplier-part database in OOSQL, together with
some example queries.

Class Supplier with extension SUPPLIER,
attributes

sname : string,
partslrupplied : { Part }

end Supplier

Class Part with extension PART
attributes

pname : string,
price : int,
color : string

end Part

Class Delivery with extension DELIVERY
attributes

supplier : Supplier,

supply : { (part : Part, quantity : int) },
date : date

end Delivery

The schema only shows the structural properties of
the entities stored in the database; method and con-
straint definitions have been left out. Brackets () and
{ } denote the tuple and set type constructor, respec-
tively. Analogous to relational convention, we call the
class extensions base tables.

Below we give example queries for nesting in the
various clauses. With regard to the where-clause, one
example is given for nesting over a base table, and
another for nesting over a set-valued attribute.

Example Query 1 Nesting in the select-clause is used
to produce set-valued attributes in a complex object.

Select the names of the suppliers together with the names
of the red parts supplied:

select (sname = ksname,
pnames = select p.pname

fkom p in s.partsdupplied
where pcolor = “red”)

from s in SUPPLIER

Example Query 2 Nesting in the from-clause denotes
query composition, that for example may occur aa the re-
suit of expanding views or named intermediate tables.
Select all deliveries that concern supplier s1 with date Jan-
uary 1, 1994:

select d
from d in (select e

from e in DELIVERY
where e.supplier.sname = “~1”)

where d.date = 940101

Nesting in the Corn-clause is a type of nesting
that does not pose problems with respect to tram&+
tion/optimization; it can be removed easily.

Example Query S Nesting in the where-clause is used
for restrictions.

1. Select the names of the suppliers supplying all parts
supplied by supplier 81:

select s.sname
from s in SUPPLIER
where s.parts-supplied 2 select t.partslrupplied

from t in SUPPLIER
where t.sname = “~1”

2. Select all deliveries that include red parts.

select d
from d in DELIVERY
where exists x in (select s

from s in d.supply
where s.part.color = “red”)

619

In the first query, the operand of the inner sfw-block is
the base table SUPPLIER: in the second the operand is
the set-valued attribute supply. In the first, we have a
set comparison between blocks, in the second a quantifier
expression.

One important difference between SQL and OOSQL
is that OOSQL is an otiogonal language. The ex-
pressions in the from- and select-clause of OOSQL
may be arbitrary, also containing other select-fiom-
where (siiv) expressions (subqueries), provided they
are correctly typed. Predicates may also be built up
from arbitrary expressions including quantifiers forall
and exists and set comparison operators. The focus
of this paper is a general strategy for dealing with
nested OOSQL queries with nesting in the select- or
where-clause. (Nesting in the from-clause is han-
dled easily.) The discussion in subsequent sections will
be centered around nested queries with nesting in the
where-clause, however, techniques presented apply to
nested queries with nesting in the select-clause as well.

Following the relational line of work, the goal in
translation and optimization of OOSQL is to move
from tuple- to set-oriented query processing. Our ap-
proach, as in [ClMo93], is to translate nested OOSQL
queries into nested algebraic expressions, and then to
try to rewrite nested algebraic expressions into join ex-
pressions. In the following section, we briefly present
the algebraic language ADL.

3 The Complex Object Algebra ADL

The language ADL is a typed algebra for complex ob-
jects in the style of the NF2 algebra of [ScSc86], allow-
ing for nesting of expressions. Among the constructors
supported are the tuple (()) and set ({ }) type con-
structor; the basic type oid is used to represent object
identity.

Roughly, the algebraic operators of the language
ADL are the standard set (comparison) operators and
multiple union (flatten), extended Cartesian product
(in which operand tuples are concatenated) and divi-
sion, the map operator (Y, selection u, projection z,
the renaming operator p, and the restructuring opera-
tors nest (v) and unnest (11). The map operator, well-
known from functional languages and appearing under
many different names in the literature, is used to ap-
ply a function to every element of a set. The function
applied may be arbitrarily complex, so that the effect
of a map operation may vary from a simple projection
to the production of complex results. Furthermore, a
number of join operators is supported: the regular join
w, the semijoin o(, and the antijoin D. The semijoin
(a regular join followed by the projection on the left-
hand join operand attributes) is a join operator that
is useful in processing socalled tree queries [Kamb85].

The antijoin is defined as a semijoin followed by a set
difference of the left-hand join operand and the semi-
join result. The antijoin operator is less well-known
than the semijoin operator; it can be employed to ef-
ficiently process tree queries involving universal quan-
tification. In selections and joins arbitrarily complex
predicates can be used, including predicates contain-
ing quantifiers. Of course aggregate functions are part
of the language too. Below, we give the semantics of
some of the ADL operators used in this paper. For
presentation purposes, a simplified notation is used; it
is assumed no attribute naming conflicts occur. The
operator o is used to denote tuple concatenation. The
schema function SCH, when applied to a table expres-
sion, delivers the top level attribute names.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

(Flatten) U(e) = {z 1 z E X A X E e}

(‘Puple subscription)
ebl, an]=(m=e.al ,..., an=e.a,)

(l’uple “update”)
Let soz(e) = {al,. . . , a,, bl,. . . , b,}, then:
e except (01 = el , ,..., a,=e,,cl=el,..., h=ei) =
(al = el,. . . , a,, = e,, bl = e.bl,. . . ,b, = e.bm,cl =
f-4,h =e;)

The except operator may update existing tuple
fields (ai = ei), leaving the remaining as they are
(bi = e.bi), and may also extend the tuple with some
new fields (c(= e:).

(Map, or function application)
4~ : f(x)164 = {f(x) I x E e.l
(Selection) a[x : p(x)](e) = {x E e 1 p(x)}

(Projection) ?loI ,..., 4s(e) = {+I,. . . ,On] I 2 E e)
(Unnest) Let soH(e) = {a, bl,. . . , b,,,}, then:
pa(e) = {x’ o x[bl,. . . , bm] I x ~\e h x’ E x.a}

(Nest) Let scH(e) = {al,. . . ,a,,,bl,. . . ,bm}, let
A=al,..., a,,andletB=br ,..., b,,then:
VA+(e) = {x[B] o (a = x) 1 x E e A

X = {x’[A] I x’ E e A x’[B] = x[B]}}

(Cartesian product)
el x ez = {XI o x2 1 XI E el A xz E ez}

(Regular join)
el s1,sa:La) ea =

{XI 0 xs 1 XI E el A xz E ea A P(XI,XZ)}

(Semijoin)
el

=l,%:P mm) 7
e2 =

{XI 1 XI E el A 3s~ E ez l p(z1,za))

(Antijoin)
el sl,aa:~sl.sa) e2 =

{XI 1 XI E el A Bxz E e2 .P(XI,XZ)}

620

ADL operators that allow for nesting, the so-called it-
eTatoTs, are the map, select, and join operators, and
also quantifiers. Iterators are operators having func-
tions (lambda expressions Xz.e, denoted as z : e) as
parameters; within the function body other operators
may occur. Note that the parameter of join opera-
tors (the join predicate) is a function having two ar-
guments; the function (denoted as zi,z2 : p) is writ-
ten as a subscript to the join operator symbol. In
the evaluation of joins, variables 21 and z2 are iter-
ated over operands ei and ez respectively, and tuples
are included in the result depending on the value of
P(%, 22).

Mapping OOSQL to the algebra involves a mapping
of types and a mapping of expressions. The mapping
of types is carried out in the phase of logical database
design. Here, we assume that each class extension is
mapped to a table of (possibly complex) objects; a
field of type oid is added to represent object identity,
and class references are implemented by pointers, also
of type oid. We also assume that class hierarchies are
mapped to ADL types in some way or the other (the
algebra does not support inheritance).

With respect to translation and optimization of ez-
pressions, we take the following approach. Transla-
tion of OOSQL queries into the algebra is done in a
simple, almost one-to-one way. The algebra supports
nesting of expressions, representing tuple-oriented, or
nested-loop query processing, as well as a number of
purely algebraic set-oriented operators. In the transla-
tion phase, nested OOSQL queries are translated into
nested algebraic expressions. Following translation, in
the phase of logical optimization, nested expressions
are rewritten into set operations.

The OOSQL construct that does not have an imme-
diate algebraic equivalent is the &v-query block. In
the translation phase, an &v-query block is mapped
to an algebraic expression consisting of a selection fol-
lowed by a map:

select ei from z in es where e3
I a[~ : el](a[z : e3](e2))

where d computes the selection ee and a the “projec-
tion” ei. In the select operation, variable z is iterated
over operand es and the operand is restricted accord-
ing to the values of the where-clause predicate es; in
the map operation a, variable z is iterated over the
resulting operand subset, and for each of the tuples in
this set the select-clause expression ei is evaluated.

To conclude this section, we formulate the goal in
optimization of nested ADL queries. Operands of op-
erators nested within parameter expressions of itera-
tors may be either set-valued attributes or base ta-
ble expressions. In this paper, the goal is to trans-
form nested expressions, in which iterators having

base tables as operands occur nested within param-
eter expressions of other iterators, into join expres-
sions in which base tables occur on19 at top level.
Of course the goal of unnesting applies to correlated
subqueriesl only; uncorrelated subqueries simply are
constants, and treated as such. Assuming set-valued
attributes are stored clustered, the unnesting of ex-
pressions with nested iterators having set-valued at-
tributes as operands is not desirable. For example,
u[z : 3y E Y l p](X) with Y a base table, is trans-
formed into the semijoin operation X D(~,,,:~Y, but
u[z : 3y E 2.c 0 p](X) with c a set-valued attribute
stored with the X-tuples is left as it is. In short, the
goal in translation/optimization is to remove base ta-
bles from the parameter expressions of iterators, mov-
ing from tuple- to set-oriented query processing.

4 Optimization Of Nested Algebra
Q ueries

In this section we present a general approach to opti-
mize nested ADL queries. Three optimization options
are given, together with example queries. The section
ends with a strategy to give a priority to the options.

The example queries given below concern the
supplier-part database of which the OOSQL schema
was given in Section 2. In ADL, the types of SUP-
PLIER and PART are as follows:

SUPPLIER : { (eid : oid,
sname : string,
parts : { (pid : oid))))

PART : {(p&i : oid,
pname : string,
price : int,
color : string)}

We distinguish three ways of optimizing nested ADL
queries: (1) the unnesting of attributes by using the
unnest operator, (2) the unnesting of nested expres-
sions by transforming them into relational join queries,
and (3) using new operators that (analogous to for ex-
ample the relational join) are defined especially to en-
hance performance. Below, we discuss the options in
more detail.

Unnesting Of Attributes

If nesting is caused by iteration over a set-valued at-
tribute it is possible to unnest this attribute. De-
pending on whether the result is nested or not, the
nest operator has to be applied. The unnesting of
attributes has some disadvantages. First, nest and
unnest are each others inverse only for PNF relations
(nested relations of which the atomic attributes re-
cursively form a key) that have no empty set-valued

‘Correlated subqueries are iterator expressions that use vari-
ables from iterators in which they are nested.

621

attributes [RoKS88]. Second, first unnesting and later
nesting again will be expensive due to duplication of
attribute values and overhead caused by restructuring.
Therefore, we only use this option if the final nesting
is not required, and empty set-valued attributes cause
no problem. Consider the query:

Example Query 4 Select the identifiers of suppliers
supplying non-existing parts (violating referential in-
tegrity).

7rr&[B : 3% E &parts 0
,Zlp E PART. B = p[pid]](SUPPLIER))

The set-valued attribute parts is not needed in the
result, so the above query may be rewritten into the
antijoin query:

Note that because z is existentially quantified, the loss
of tuples with empty set-valued attribute parts causes
no problem (existential quantification over the empty
set delivers false).

Transformation into join queries

In some cases two or more consecutive levels of nesting
can be replaced by a join, antijoin, or semijoin oper-
ator, reducing the number of levels of nesting. In the
ideal case all nesting has disappeared. Query 5 below
shows such an example.

Example Query 5 Select the suppliers supplying
red parts.

a[s : 3x E s.parts l 3p E PART .
z = plpid] A p.cdor = “red”](SUPPLIER)

This query can be rewritten into the semijoin query:

SUPPLIER D< s,p:p[pid]E8.partr
u[P : p.coZm = “red”](PART)

In Section 5 this option is discussed in detail.

Using Special Operators

The relational join is not really necessary for the ex-
pressive power of the relational algebra; it was intro-
duced to allow for various efficient implementations.
The same can of course be done in an algebra for com-
plex objects. Quite often we encounter that an ef-
ficient execution of a query is prohibited if we stick
to generally-accepted operators. Therefore, we expect
that introducing new operators is really necessary to
obtain an efficient implementation. In Section 6 some
new operators are discussed. The following query can-
not be rewritten into a relational join query:

Example Query 6 Select suppliers names together
with the parts supplied.

cx[s : (sname = s.sname,partssuppl =
crlp : plpid] E s.ports](PART)](SUPPLIER)

However, using the so-called nestjoin operator -I (see
Section 6), the nested query can be rewritten into an
efficient set operation:

~sname,partrAQqd
(SUPPLIER -I

r,p:p[pid]Es.~rts;parts-auppl
PART)

Note that each of the options above can be applied
to the top level expression as well as to subexpressions
thereof. Given these options for optimization of nested
ADL queries, the rewrite strategy is as follows:

Try to rewrite to the various relational join oper-
ators (join, antijoin, or semijoin).

If the above is not possible, try to flatten set-
valued attributes; if the nesting phase can be
skipped, this may be a strategy worthwhile con-
sidering.

If the above is not possible, try to rewrite to one
of the newly defined operators, because they were
introduced to get a better performance compared
to nested-loop processing.

If none of the above works, leave the query as it
is, which means that it is executed by means of
nested loops.

The options “rewriting into relational join queries”
and “using special operators” are discussed in more
detail in the following two sections.

5 Rewriting Into Flat Relational Alge-
bra

In the previous section, we have discussed some op
tions for processing nested ADL queries. In this
section, we investigate one of them-the rewriting
of nested expressions into join expressions without
unnesting set-valued attributes. The discussion con-
centrates on rewriting nested select (u) expressions,
the algebraic equivalent of nested OOSQL queries
with nesting in the where-clause. However, rewriting
nested expressions into join expressions is a strategy
that can be applied to nesting in the map operator as
well; the section is concluded by briefly discussing an
example of this type of nesting.

622

5.1 General Query Format

In this section, we discuss transformation of nested
OOSQL queries with nesting in the where-clause in
the presence of set-valued attributes. Nesting in the
where-clause is an important (and only) type of nest-
ing allowed in the flat relational model; in complex
object models it is considered equally important. The
goal here, as in [Kim82], is to rewrite nested queries
into join queries without unnesting set-valued at-
tributes, so that instead of performing a naive nested-
loop execution, the optimizer may choose from a num-
ber of different join processing strategies.

The general format of a two-block OOSQL query
with nesting in the where-clause is the following:

select F(x)
from 2 in X
where P(x, Y’)

with Y’ = select G(x, y)
fiomyinY
where 4(x, v)

(The with construct, enabling local definitions, is used
here for reasons of convenience.) In Section 3, we have
given the equivalence rule for translating the sfw-block
into the algebra:

select el from z in es where es
E a[z : el](a[x : es](e2))

so the algebraic equivalent of an &v-expression is a
selection rr followed by a general function application
a to compute the “projection”. The map operator a
is needed to compute arbitrarily structured results, as
opposed to standard projections in the flat relational
model.

The general format of the two-block &v-expression
with nesting in the where-clause as shown above is:

a[z : F(x)](a[x : P(x, Y’)](X))
with Y’ = 4/ : G(x, dlk+ : Qb, dl(Y))

For simplicity, the functions F and G are assumed to
be identity, so we have the format:

V[Z : P(z, Y’)](X) with Y’ = u[g : Q(z, v)](Y)

The query above is a nested query involving nested it-
eration over a base table: the outer selection predicate
contains a subquery, which is a selection on base ta-
ble Y. We want to transform this nested query into a
join query, i.e. a query having no subqueries with base
table operands.

5.2 Set Comparison Operations

To illustrate our ideas, at first we concentrate on
two-block nested expressions with set comparison op
erations between query blocks. We investigate two

unnesting techniques: unnesting by rewriting into
quantifier expressions, and unnesting by grouping,
a technique well-known from the relational model
[Kim82].

In Section 5.2.1, we show that, in some cases,
queries having set comparison operators between
query blocks can be transformed into join queries by
rewriting the set comparison operator into a quan-
tifier expression. However, in other cases, rewriting
into quantifiers has a negative effect on performance;
other solutions have to be sought. The results of Sec-
tion 5.2.1 are generalized to a rewrite heuristic for
transforming two-block select queries with arbitrary
quantifier expressions between blocks.

To the queries that cannot be unnested by rewriting
into quantifier expressions, we apply the methods of
[Kim82, GaWo87] for unnesting relational queries with
aggregate functions between blocks. We show that the
methods of [Kim82, GaWo87] are general techniques
for transforming nested queries into join queries, how-
ever, to be of good use in complex models, they have to
be adapted. We will do so by defining a new algebraic
operator, the nestjoin operator, in Section 6.

We now continue by describing the query format
of interest in this section. Assume that predicate P
involves some set comparison operation relating at-
tribute c of the outer operand X and the set Y’, the
subquery result. More formally, the query format is:

g[z : x.c 19 Y’](X) with Y’ = u[y : Q(x,y)](Y)

with 19 E {E,c,~,= ,>, >, 3). Note that the type of
attribute c varies with the comparison operator used;
the type may be atomic (E), or an arbitrary set type.
If the operator used is 3, c has a set-of-set type.

5.2.1 Unnesting By Rewriting Into Quantifier
Expressions

In this section we show that translating set comparison
operators into quantifier expressions offers possibili-
ties to unnest nested queries. In [CeGo85], presenting
a translation from SQL to the relational algebra, set
comparison operators are dealt with by rewriting them
into quantifier expressions in a preprocessing phase.
Nested relational queries with quantifiers are easily
translated into relational algebra operations. Existen-
tial quantification is mapped to a projection on a join
(or product); universal quantification is handled by
means of the division operator [Codd72].

For example, from the relational model we know
that a set membership predicate can be translated into
an existential subquery that is easily translated into a
(semi)join operation. Let q G &(x, y), then:

623

Table 1: Rewriting Set Comparison Operations

set comparison operation quantifier expression
2.c E Y’ = 3yEY’my=x.c
x.c c Y’ - x.c E Y’ A 2.c 2 Y’

z (Vz E 2.c. 3y E Y’ 0 2 = y) A ()yar E Y’ 0 9 E 2.c)
x.c c Y’ I vsEx.c~3yEY’~z=y
x.c = Y’ P 2.c c Y’ A x.c > Y’

= (vsEx.co3yEY’~z=y)A(VyEY’oyEz.c)
x.c > Y’ = VyEY’eyEx.c
2.c 3 Y’ z 2.c > Y’ A x.c g Y’

E (v~‘yY’~yEx.c)A(~zEz.c~3yEYoz=y)
2.c 3 Y’ s 3zEax.z=Y

Rewriting Example 1 SET MEMBERSHIP

u[x : x.c E o[f/ : q](Y)](X)
I u[x : 39 E u[y : q](Y) 0 y = z.c](X)
P a(x:iiyEYoy=x.cAq](X)

E XK s,y:y=s.chq Y

First the operator E is rewritten into an existential
quantification. Next, the select operation is removed
from the operand (the range expression) of the exis-
tential quantifier, providing the possibility to trans-
late the existential subquery into a semijoin operation
in the last rewrite step. In this last step the actual
unnesting is performed; the preceding rewrite steps are
necessary to transform the input expression into the
format suitable for unnesting. The equivalence rules
for unnesting quantifier expressions nested within se-
lect operators are the following.

Rule 1 UNNESTING QUANTIFIER EXPRESSIONS Let
X and Y be table expressions, and let 2 not be free in
Y, then:

1. a[z : 3y E Y .p](X) G x D(o,y:pY

2. u[x :,& E Y o&X) E x Dz,y:p Y

A nested query with existential quantification is trans-
lated into a semijoin operation; negated existential (i.e.
universal) quantification is dealt with by means of the
antijoin operator.

The same method, rewriting set comparison oper-
ators by means of quantifiers, can be applied in com-
plex object models as well. Again, let q E &(z, y),
and consider the following example dealing with the
set inclusion operator:

Rewriting Example 2 SET INCLUSION

u[x : u[y : q](Y) c x.c](X)
E u[x : vy E u[p : q](Y) l y E x.c](Y)](X)
E u[x:/Q/Eu[y:q](Y).y$?x.c](X)
E u[x:&/EY.qAy$!x.c](X)

EX D Y s,y:qAyfza.e

Table 2: Rewriting Predicates

R
Pb, Y’)] quantifier expression
Y’ = 0 By E Y’ 0 true

count(Y’) = 0 j!lg E Y’ 0 true

x.cnY’ = 0 &jEY’*yEx.c
VlEX.C~Z>Y’ j$lEY’~3zEx.c*y$zz

In the example above, the same procedure as in
Rewriting Example 1 is followed (rewriting into quan-
tification, transformation of the range expression, and
unnesting). In addition, the universal quantifier is
transformed into a negated existential quantifier by
pushing through negation to enable transformation
into the antijoin operation.

All set comparison operators can be rewritten into
quantifier expressions, as shown in Table 1. In the ta-
ble, in all cases except for the last we have expanded
operators until quantification(s) over Y’ take(s) place.
We see that expanding operators E and _> leads to
a (negated) existential quantifier expression that is
suited for unnesting by applying Rule 1; expansion of
the other operators leads to a multiple subquery ex-
pression, that cannot be mmested that way. Note that
negation of the set comparison operation does not in-
fluence the possibilities for unnesting. Negating the
operator negates the quantifier expression; antijoins
are used instead of semijoins and vice versa.

So far, we restricted our discussion to two-block
nested queries with predicates of the form x.c 8 Y’,
with 0 a set comparison operator. In Table 2, we show
some more examples of predicates that can be rewrit-
ten into (negated) existential quantification, the form
suitable for transformation in relational join expres-
sions. To determine exactly which types of predicates
can be rewritten is a topic of future research.

624

Rewrite Heuristic

From the discussion above, an important rewrite
heuristic for nested expressions with predicates con-
sisting of arbitrary quantifier expressions can be de-
rived. Difficulties with unnesting arise whenever sub-
queries with base tables as operands are nested within
iterators with set-valued attributes as operands, and
the order of nesting cannot be changed. Consider the
last expression of Table 2. We have:

Rewriting Example 3 EXCHANGING QUANTIFIERS

VzEx.cee>Y’
3 VtEx.c@vjJEY’eyE%
3 v$/‘yY’~v%Ex*C*yE%
3 $lyEY’e3eEx.cey$?fz

By expanding the comparison operator and exchang-
ing universal quantifiers, the predicate is put in a form
suitable for unnesting according to Rule 1. The gen-
eral rewrite heuristic is formulated as follows. Let P
be a quantifier expression in Prenex Normal Form:

in which the range expressions ei are either base ta-
bles or set-valued attributes. To enable unnesting of
(sub)expressions, the goal is to move quantification
over base tables to the left of the quantifier expression.
This goal may be achieved by exchanging universal or
existential quantifiers.

5.2.2 Unnesting By Grouping

Another way to deal with set comparison operators
is to use grouping. In [Kim82, GaWo87], grouping
is used in transforming nested queries with aggregate
functions between query blocks. As we will see, the
method of [GaWo87] in fact represents a general way
of treating nested queries that can be applied in com-
plex object models as wells. However, in some cases
the results achieved are not correct due to the loss of
dangling tuples in the relational join operation.

In (Kim82, GaWo87], methods for unnesting queries
with aggregate functions between query blocks of the
form 4~ : P(x, w7(49 : 465 vW)MX) me we-
sented. Below, we apply the method of [GaWo87] to
nested queries with set comparators between blocks.

Consider the following nested query, an example of
which is given in Figure 1.

u[x : 2.c 5 a[y : x.0 = pdj(Y)](X)

Applying the transformation technique of [GaWo87] to
the expression above, we have, in our own formalism:

lThe method of [Kim821 can be applied only when the cor-
relation predicate (or join predicate) ie equality.

result

u[x : 2.c c u[g : x.a = $f.a](Y)](X) I

Figure 1: Nesting Involving Set-Valued Attribute

The nested query is transformed into a flat join query
consisting of (1) a join to evaluate the inner query
block predicate, (2) a nest operation for grouping, (3)
a selection for evaluating P, the predicate between
blocks, and (4) a final projection. Example tables X
and Y and the intermediate results of the join, nest,
and project/select operation are shown in Figure 2.

We note that, as with relational queries involving
the COUNT function, in the join query some kind of
bug occurs, due to the loss of dangling tuples in the
join; in analogy with the phrase “COUNT bug”, we
call this bug the “Complex Object bug”. In the ex-
ample, the tuple (a = 2,c = 0) in X is not matched
by any of the tuples y E Y, so the subquery result
is empty. In the join, this tuple is lost; in the nested
query, the expression 0 S 0 evaluates to true, so the
tuple has to be included.

Now consider a variant of the query above, in which
s is changed into 2:

u[x : x.c > u[g : X.0 = g.dj(Y)](X)

Here as well, applying the same unnesting technique
yields a Complex Object bug. All tuples x E X for
which it holds that the subquery Y’ is equal to the
empty set should be included into the result, but are
lost in the join.

In Table 3, we have listed the set comparison
operations under consideration, together with the
value of the predicate for subqueries delivering empty
sets (a question mark meaning run-time dependence).
Negated predicates are treated in the same way.

We have the following result.

l The relational transformation technique of
[GaWo87] for unnesting nested queries having ag-
gregate functions between query blocks, using
grouping, may be applied to nested complex ob-
ject queries involving set comparison operators
between query blocks as well. However, in some
cases the loss of dangling outer operand tuples in
the join causes incorrect results.

625

a
dCe

1 1 1

k4l

1 2
2
3 2 3

d e
1 1

El

1 2
1 3
3 3

a
dce

EEI

11 1 1
1 2

Figure 2: The Complex Object Bug

5.3 Nesting In The Map Operator

Table 3: Set Comparison Operators And Bugs

n P~.Y') I ptx.O

2.c c Y’ false
2.c c Y’ ?
2.c = Y’ ?
2.c > Y’ true

x.c 3 Y’ ?

2.c 3 Y’ ?

l The value of the expression P(z,Y’), with the
empty set substituted for Y’, determines whether
or not dangling tuples should be included into the
result. Whenever P(z,0) can be reduced stati-
cally to true/false, all/none of the dangling tu-
ples z E X must be included into the result; when-
ever this value is undetermined at compile time, it
is run-time dependent whether or not dangling tu-
ples x E X should be included (cf. the predicate
XX = count(Y’)). In other words, the unnest-
ing technique used here is guaranteed to deliver
correct results only if P(x, 0) can be statically re-
duced to false.

If not for the occurrence of bugs, the techniques
of [Kim82, GaWo87] can be applied to nested queries
with arbitrary predicates between blocks. One way
to solve the COUNT bug in the relational model is
to employ the outerjoin operator [GaWo87]. In using
the outerjoin, NULL values are used to represent the
empty set. This method may be applied in a slightly
adapted way in complex object models as well. An-
other way to solve the COUNT bug is to use a binary
aggregation operator [OOMa37, Naka90). In Section 6,
we discuss a new operator for unnesting nested queries
that is based on the idea underlying binary aggrega-
tion, but separates predicate evaluation from join and
grouping.

To conclude, we give another example of the strategy
of rewriting nested expressions into relational join ex-
pressions, but now concerning nesting in the map op-
erator (i.e. in the select-clause). The following equiv-
alence rule can be used to transform a nested map
operation into a join query:

Rule 2 NESTING IN THE MAP OPERATOR

U(a[x : a[!/ : xoy](4y : P])(y)](x) = x wz,y:p y

The nested map operation on the left hand side creates
a set of sets that is flattened immediately afterwards;
the same result is achieved by the right hand join ex-
pression.

Briefly summarizing this section, we have seen that
(1) rewriting predicates into quantifier expressions
may enable the transformation of nested expressions
involving set-valued attributes into relational join ex-
pressions, (2) unnesting by grouping is a transforma-
tion technique that is generally applicable, if not for
the occurrence of bugs. In the next section, we show
how to avoid the occurrence of bugs by using the
nestjoin operator; the general transformation strategy
then is to transform nested queries into nestjoin ex-
pressions, but to use relational join operators when-
ever possible.

6 New Algebraic Operators

In this section, we give three examples of new algebraic
operators that are well-suited for efficient implementa-
tion of nested OOSQL queries. Generally speaking, it
is worthwhile to define new logical algebra operators
whenever there can be found new access algorithms
(or physical algebra operators [Grae93]) that are an
improvement over nested-loop query processing. For
example, the join can be implemented as an index
nested-loop join, a sort-merge join, a hash join, etc.

626

In this section, we give some examples of operators
that might be of use for improving performance in 00
query processing. The first operator to be discussed
is the nestjoin operator, defined in [StAB94] for the
processing of nested queries requiring grouping. The
second operation to be discussed is the PNHL algo-
rithm of [DeLa92], useful for materializing set-valued
attributes, and the third is the materialize operator of
[BlMG93].

6.1 The Nestjoin Operator-Grouping Dur-
ing Join

In the previous section we have shown that unnesting
by using grouping is a transformation strategy gener-
ally applicable, if not for the occurrence of bugs due
to the loss of dangling tuples in the join. In [StAB94],
we have defined an operator that combines grouping
and join without losing dangling left operand tuples:
the nestjoin operator. The nestjoin operator is to be
used for the unnesting of nested queries that cannot
be rewritten into flat relational join operations.

The nestjoin operator, denoted by the symbol -i, is
a simple modification of the join operator. Instead of
producing the concatenation of every pair of matching
tuples, each left operand tuple is concatenated with
the set of matching right operand tuples. To imple-
ment the nestjoin, common join implementation meth-
ods like the sort-merge join, or the hash join can be
adapted. The definition of the nestjoin is as follows.

Definition 1 THE NESTJOIN OPERATOR (SIMPLE)

el z1,z2:p~1 z2).ae2 = (~1 0 (a = X> I 21 E el A

X = {xi I 22 E e2 ~24~1,~~))) (a 4 ScH(ed)

Variables zi and 2s are iterated over operands er and
es, respectively. Each left operand tuple xi E ei is
concatenated with the unary tuple (o = X), in which
the set X contains those right hand operand tuples
zs E es for which the predicate p(xl,x2) holds. An
example of the nestjoin operation is given in Figure 3,
where relations X and Y are equijoined on the second
attribute.

The nestjoin operator as defined above can be used
for the transformation of two-block select expressions
with arbitrary predicates between blocks. The simpli-
fied version of the two-block select query:

C+C : P(z, Y’)](X)) with Y’ = o[y : &(z, y)](Y)

is transformed into the nestjoin expression:

xX(+ : P’IW -L,y:Q(q/);yr Y)>

In the nestjoin operation, for each tuple x E X the set
of tuples y E Y is restricted according to predicate Q.

Y

aim

result

a b c d
1 1
2 1
3 3

x -(s,y:e.b=y.d;y, y

Figure 3: Nestjoin Example

In the selection, the nestjoin result is restricted accord-
ing to predicate P’. Predicate P has to be adapted by
substituting z[X] (nestjoin tuple I projected on its X
attributes) and z.ys (the subquery result as attribute
of nestjoin tuples Z) for x and Y’, respectively, i.e.
P’ = P(x, Y’)[x[X]/x, ~.yd/Y’]. A projection on the
attribute values of X completes the computation.

The nestjoin operation can be used to process
queries with nesting in the select- or where-clause.
Queries having subqueries in the select-clause often
denote nested results, so processing by means of the
nest join operation will be appropriate. The general
format of a query with nesting in the select-clause is:

select F(z, Y’)
with Y’ = select G(z, y)

from y in Y
where Qb, Y)

fiomzinX
where P(z)

Assume function G and predicate P are identity, then
in the algebra we have:

cr[x : F(x, Y’)](X)) with Y’ = o[y : &(x, y)](Y)

which is equivalent to:

a[% : qv -(+,y:Q(2,y);yr y>
in which function F is adapted by performing the nec-
essary substitutions:

F’ G F(x,Y’)[z[X]/x, z.ys/Y’]

Above, we have given a simplified definition of the
nestjoin operator. For the transformation of general
nested queries with deeper nesting levels, the nestjoin
needs as an extra parameter a function to be applied
to the right hand operand tuples [StAB94].

6.2 Materializing Set-Valued Attributes

Below, we describe two proposals for the material-
ization of (set-valued) attributes, in complex object
models an operation presumed to occur frequently. In
the first proposal of [DeLa92], an algorithm was given
without defining a corresponding logical algebra oper-
ator; in [BlMG93], both a logical and a corresponding
physical algebra operation are described.

627

The PNHL Algorithm

Below, we describe the algorithm of [DeLa92] for effi-
ciently processing a nested expression in which a set-
valued attribute is joined with a base table. This al-
gorithm can be considered as a new physical algebra
operation. Though the correspondence between logi-
cal and physical algebra operators usually is not one-
to-one [Grae93], the question is whether it is useful to
define new logical operators for algorithms such as that
of [DeLa92]. The following query expresses a nested
natural join (*) operation:

a[Z : z except (pads = z.pTts*z,v:z.pid=v.pid
PART)] (SUPPLIER)

In [DeLa92], a hash-based algorithm called Partitioned
Nested-Hashed-Loops (PNHL) algorithm for comput-
ing this type of join operation is described and perfor-
mance measures are reported. The algorithm builds
a hash table for those segments of operand PART
that fit into main memory and then probes operand
SUPPLIER against each segment of the hash ta-
ble, thus building partial results. Partial results are
merged in the second phase of the algorithm. Com-
pared to the unnest-join-nest processing method, the
algorithm achieves better performance. Comparing
the PNHL algorithm with traditional hash join, we
see that in the PNHL algorithm, only the flat table
can be the build table (the inner operand PART in
the example), whereas in relational hash join usually
the smaller operand is chosen as build table.

The Materialize Operator

In object-oriented database systems the concepts of
object identity and path expressions play an impor-
tant role. Object identifiers can be implemented ei-
ther as physical or as logical pointers. Implementing
object-identifiers as physical pointers opens the way
to new join implementation methods (pointer-based
joins, [ShCaSO]).

Also, object identifiers can be usefully employed to
implement path expressions, i.e. the user-defined rela-
tionships or links between object classes. In [BlMG93],
path expressions are represented by the operator mate-
rialize. Materialize is defined as a new logical algebra
operator, with the purpose to explicitly indicate the
use of inter-object references, i.e. to indicate where
path expressions are used and where therefore alge-
braic transformations can be applied. The operator is
implemented by an access algorithm called assembly,
a generalization of the concept of a pointer-based join.

7 Conclusion And Future Work

As in relational systems supporting SQL, in 00
data models supporting an SQL-like query language

(OOSQL), optimization of nested queries is an impor-
tant issue. A naive way to handle nested queries is by
nested-loop processing (tuple-oriented query process-
ing), however, it is better to transform nested queries
into join queries, because join queries can be imple-
mented in many different ways (set-oriented query pro-
cessing) .

In this paper, we have presented a general approach
to optimization of nested OOSQL queries. In OOSQL,
nesting may occur in the where-, from-, and select-
clause. An additional complication in complex object
models is the support for iteration over set-valued at-
tributes. The goal is to transform nested OOSQL
queries having correlated subqueries with base table
expressions as operands into join queries in which base
tables occur only at top level. First, we try to rewrite
nested expressions into relational join operations. Sec-
ond, we consider whether the unnesting of set-valued
attributes is a possible (for theoretical reasons) and a
worthwhile (for reasons of performance) optimization
option. Third, if the previous steps do not give the re
sult wanted, we use new operators especially defined to
improve performance. Finally, if none of the previous
steps work, we resort to nested-loop processing.

We have shown that transformation of nested
OOSQL queries dealing with set-valued attributes into
relational join queries is not always possible. In many
cases, the unnesting of nested OOSQL queries re-
quires some form of grouping in the unnested, or join
query. Relational transformation techniques for nested
queries requiring grouping (nested queries with aggre-
gate functions between blocks) do not always give cor-
rect results; to improve matters we have defined a new
operator called the nestjoin operator.

Future work concerns a number of issues. First,
we need a precise characterization of nested queries
requiring grouping or not. Second, for those queries
that do require grouping, new implementation tech-
niques have to be investigated. Third, new features
characteristic of 00 data models, like object identity
and path expressions, provide new opportunities to im-
prove performance. At the logical as well as the phys-
ical algebra level new operators may be defined and
implemented. Finally, the ultimate goal of course is a
general (syntax-driven) translation/optimization algo-
rithm for arbitrary nested OOSQL queries, including
queries with multiple subqueries and multiple nesting
levels.

References

[BaCD92] Bancilhon, F., S. Cluet, and C. Delobel,
A Query Language for 02, in Building an Object-
Oriented Database System-The Storg of 02, eds.
F. Bancilhon, C. Delobel, and P. Kannelakis, Mor-

628

gan Kaufmann Publishers, San Mateo, California,
1992.

[BaDK92] Bancilhon, F., C. Delobel, and P. Kan-
nelakis (eds.), Building an Object-Oriented Database
System-The Story of 02, Morgan Kaufmann Pub-
lishers, San Mateo, California, 1992.

[BlMG93] Blakeley, J.A., W.J. McKenna, and G.
Graefe, “Experiences Building the Open OODB Op-
timizer” Proceedings ACM SIGMOD, 1993.

[Bretl et al. 891 Bretl, R. et al., “The Gemstone
Database Management System,” in Object-Oriented
Concepts, Databases, and Applications, eds. W.
Kim and F.H. Lochovsky, Addison-Wesley, Read-
ing, MA, 1989.

[Catt93] R.G.G. Cattell, ed., The Object Database
Standard: ODMG-99, Morgan Kaufman Publishers,
San Mateo, California, 1993.

[CeGo85] Ceri, S. and G. Gottlob, “Translating SQL
into Relational Algebra: Optimization, Semantics,
and Equivalence of SQL Queries,” IEEE tinsac-
tions on Software Engineering, 11(4), April 1985.

[ClMo93] Cluet, S. and G. Moerkotte, “Nested
Queries in Object Bases,” Proceedings Fourth Inter-
national Workshop on Database Prognzmming lan-
guages, New York, Sept. 1993.

[Codd72] Codd, E.F., “Relational Completeness of
Data Base Sublanguages,” In Data Base Systems,
ed. R. Rustin, Prentice Hall, 1972.

[DeLa92] Desphande, V. and P.-A. Larson, “The De-
sign and Implementation of a Parallel Join Al-
gorithm for Nested Relations on Shared-Memory
Multiprocessors,” Proceedings IEEE Conference on
Data Engineering, pp. 68-77, Tempe, Arizona,
February 1992.

[GaWo87] Ganski, R.A. and A.K.T. Wong, “Opti-
mization of Nested SQL Queries Revisited,” Pro-
ceedings ACM SIGMOD, 1987.

[Grae93] Graefe, G., “Query Evaluation Techniques
for Large Databases,” ACM Computing Surveys,
25(2), pp. 73-170, June 1993.

[Kamb85] Kambyashi, Y., “Cyclic Query Processing,”
in Query Processing in Database Systems, eds. W.
Kim, D.S. Reiner, and D.S. Batory, Springer Verlag,
pp. 62-78, 1985.

[KeMo93] Kemper, A. and G. Moerkotte, “Query
Optimization in Object Bases : Exploiting Rela
tional Techniques,” in Qzlery Processing for Ad-
vanced Database Systems, eds. J.-C. Freytag, D.

Maier, and G. Vossen, Morgan Kaufman Publish-
ers, San Mateo, California, 1993.

[Kim821 Kim, W., “On Optimizing an SQL-like
Nested Query,” ACM TODS, 7(3), pp. 443-469,
September 1982.

[LyngSl] Lyngbaek, P., “From Relational Databases
to Objects and Beyond,” in Advances in Data Man-
agement, eds. P. Sadanandan, T.M. Vijayaraman,
McGraw-Hill Publishing Company Ltd, 1991.

[NakaSO] Nakano, R. “ Translation with Optimization
from Relational Calculus to Relational Algebra Hav-
ing Aggregate Functions,” ACM TODS, 15(4), pp.
518-557, December 1990.

[OOMa87] Ozsoyoglu, G., Z.M. Ozsoyoglu, and V.
Matos, “Extending Relational Algebra and Rela-
tional Calculus with Set-Valued Attributes and Ag-
gregate Functions,” ACM TODS, 12(4), pp. 566-
592, December 1987.

[PiAn86] Pistor, P. and F. Andersen, “Designing a
Generalized NF’ Model with an SQL-Type Lan-
guage Interface,” Proceedings VLDB, Kyoto, Au-
gust 1986.

@oKS88] Roth, M.A., H.F. Korth, and A. Silber-
schatz, “Extended Algebra and Calculus for Nested
Relational Databases,” ACM TODS, 13(4), pp. 389-
417, December 1988.

[SLPW89] Saake, G., V. Linneman, P. Pistor, and L.
Wegner, “Sorting, Grouping and Duplicate Elimi-
nation in the Advanced Information Management
Prototype,” Proceedings VLDB, Amsterdam, 1989.

[ScSc86] Schek, H.-J. and M.H. Scholl, “The Rela-
tional Model with Relation-Valued Attributes,” In-
formation Systems, 11(2), pp. 137-147, 1986.

[ShCaSO] Shekita, E.J. and M.J. Carey, “A Perfor-
mance Evaluation of Pointer-Based Joins,” Proceed-
ings ACM SIGMOD, pp. 300-311, Atlantic City,
May 1990.

[StAB94] Steenhagen, H.J., P.G.M. Apers, and H.M.
Blanken, “Optimization of Nested Queries in a
Complex Object Model,” Proceedings EDBT, Cam-
bridge, March 1994.

[SiiLiSO] Siidkamp, N. and V. Linnemann, “Elimina
tion of Views and Redundant Variables in an SQL-
like Database Language for extended NF’ Struc-
tures,” Proceedings VLDB, Brisbane, 1990.

629

View publication statsView publication stats

https://www.researchgate.net/publication/328942953

