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Abstract 

Most declarative SQL-like query languages for 
object-oriented database systems (OOSQL) 
are orthogonal languages allowing for arbi- 
trary nesting of expressions in the select-, 
from-, and where-clause. Expressions in the 
from-clause may be base tables as well as set- 
valued attributes. In this paper, we propose a 
general strategy for the optimization of nested 
OOSQL queries. As in the relational model, 
the translation/optimization goal is to move 
from tuple- to set-oriented query processing. 
Therefore, OOSQL is translated into the al- 
gebraic language ADL, and by means of alge- 
braic rewriting nested queries are transformed 
into join queries as far as possible. Three opti- 
mization options are described, and a strategy 
to assign priorities to options is proposed. 

1 Introduction 

To support technical applications like CAD/CAM, 
GIS etc, relational technology has its shortcomings. 
In these areas, the popularity of object-oriented tech- 
nology is growing. First, from the field of program- 
ming languages, persistent programming languages 
like Gemstone [Bretl et al. 891 came, later followed by 
object-oriented database system such as 02 [BaDK92] 
and HP OpenODB P;yng91]. The historical back- 
ground is still visible in the sense that too little 
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attention has been paid to ad hoc query facilities 
and database design tools. A number of propos- 
als for declarative query languages for extended NF2 
and object-oriented data models has appeared, e.g. 
[PiAn86, BaCD92, Catt93]. We will use-the term 
OOSQL for the various proposals of SQL-like lan- 
guages for OODB. In this paper, we concentrate on 
efficient support for ad hoc queries formulated in a 
declarative query language. 

An OOSQL query facility is inherently more com- 
plex than one for SQL, because nesting is allowed in 
all clauses, i.e. in the select-, from-, and where- 
clause. Expressions in the from-clause, the query 
block operands, may be base tables as well as set- 
valued attributes. Also, the predicates that are used 
in the where-clause are more complex, because com- 
parisons between set-valued attributes, or set-valued 
attributes and base table expressions are allowed. An 
example is the test whether two parts have an overlap 
in their sets of subparts. 

Due to the complexity of OOSQL, the dominant 
strategy to handle nesting is to execute it by means of 
nested-loop processing, leaving no room for optimiza- 
tion. We distinguish between two types of nesting: 
nesting required to iterate over base tables and nest- 
ing required to iterate over set-valued attributes. Ide- 
ally, nesting over base tables should be translated to 
some kind of join so that a choice can be made between 
various efficient join implementations. Of course, this 
problem already occurred in SQL [Kim82]. In general, 
nested SQL queries can be translated to a join in the 
relational algebra to get a better execution than the 
nested-loop execution. However, not all SQL queries 
can be translated to a join due to loss of dangling tu- 
ples in the join, a phenomenon known as the COUNT- 
bug. In [StAB94] we have shown that the COUNT-bug 
is only a special case of a more general problem occur- 
ring in nested OOSQL queries. 

The main focus of our research is to translate 
OOSQL queries to an extended relational algebra for 
complex objects, called ADL, to allow for an efficient 
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execution. In this paper, we deal with the problem 
of trying to translate nested OOSQL queries to join 
queries in ADL, taking advantage of efficient imple- 
mentations of join operators. We present a general ap- 
proach for handling nesting in the where-clause, the 
from-, as well aa in the select-clause; the discussion 
concentrates on nesting in the where-clause, though, 

In the (extended) NF’, as well as in the object- 
oriented literature, little work has been reported con- 
cerning efficient translation of SQL-like query lan- 
guages into algebraic languages. For the NF2 model, a 
translation of a calculus into an NFs algebra has been 
presented in [HoKS88], however, little attention has 
been paid to efficiency. Work has been done on the 
implementation of the extended NF2 query language 
HDBL of the AIM project [SLPWSS, SiiLiSO]; to our 
knowledge HDBL has not been translated into an al- 
gebra. In [ClMo93], a proposal for the optimization of 
nested OzSQL queries has been made. OzSQL is trans- 
lated into an extension of the GOM algebra [KeMo93], 
and examples of optimization of nested algebra queries 
are given. 

The organization of this paper is as follows. In Sec- 
tion 2 nesting in the various clauses of the select state- 
ment is introduced by means of examples, together 
with an example schema of an OODB. In Section 3 
an algebra for complex objects called ADL is shown 
with a general translation of OOSQL queries to ADL 
queries. Section 4 addresses the problem of optimizing 
ADL queries. Three alternatives are discussed. Two 
of them, rewriting into relational join queries and the 
introduction of new operators are considered in Sec- 
tion 5 and Section 6. The paper ends in discussing 
future work. 

2 Example 

In this section, we give a simple example schema of 
the supplier-part database in OOSQL, together with 
some example queries. 

Class Supplier with extension SUPPLIER, 
attributes 

sname : string, 
partslrupplied : { Part } 

end Supplier 

Class Part with extension PART 
attributes 

pname : string, 
price : int, 
color : string 

end Part 

Class Delivery with extension DELIVERY 
attributes 

supplier : Supplier, 

supply : { (part : Part, quantity : int) }, 
date : date 

end Delivery 

The schema only shows the structural properties of 
the entities stored in the database; method and con- 
straint definitions have been left out. Brackets ( ) and 
{ } denote the tuple and set type constructor, respec- 
tively. Analogous to relational convention, we call the 
class extensions base tables. 

Below we give example queries for nesting in the 
various clauses. With regard to the where-clause, one 
example is given for nesting over a base table, and 
another for nesting over a set-valued attribute. 

Example Query 1 Nesting in the select-clause is used 
to produce set-valued attributes in a complex object. 

Select the names of the suppliers together with the names 
of the red parts supplied: 

select (sname = ksname, 
pnames = select p.pname 

fkom p in s.partsdupplied 
where pcolor = “red”) 

from s in SUPPLIER 

Example Query 2 Nesting in the from-clause denotes 
query composition, that for example may occur aa the re- 
suit of expanding views or named intermediate tables. 
Select all deliveries that concern supplier s1 with date Jan- 
uary 1, 1994: 

select d 
from d in (select e 

from e in DELIVERY 
where e.supplier.sname = “~1”) 

where d.date = 940101 

Nesting in the Corn-clause is a type of nesting 
that does not pose problems with respect to tram&+ 
tion/optimization; it can be removed easily. 

Example Query S Nesting in the where-clause is used 
for restrictions. 

1. Select the names of the suppliers supplying all parts 
supplied by supplier 81: 

select s.sname 
from s in SUPPLIER 
where s.parts-supplied 2 select t.partslrupplied 

from t in SUPPLIER 
where t.sname = “~1” 

2. Select all deliveries that include red parts. 

select d 
from d in DELIVERY 
where exists x in (select s 

from s in d.supply 
where s.part.color = “red”) 
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In the first query, the operand of the inner sfw-block is 
the base table SUPPLIER: in the second the operand is 
the set-valued attribute supply. In the first, we have a 
set comparison between blocks, in the second a quantifier 
expression. 

One important difference between SQL and OOSQL 
is that OOSQL is an otiogonal language. The ex- 
pressions in the from- and select-clause of OOSQL 
may be arbitrary, also containing other select-fiom- 
where (siiv) expressions (subqueries), provided they 
are correctly typed. Predicates may also be built up 
from arbitrary expressions including quantifiers forall 
and exists and set comparison operators. The focus 
of this paper is a general strategy for dealing with 
nested OOSQL queries with nesting in the select- or 
where-clause. (Nesting in the from-clause is han- 
dled easily.) The discussion in subsequent sections will 
be centered around nested queries with nesting in the 
where-clause, however, techniques presented apply to 
nested queries with nesting in the select-clause as well. 

Following the relational line of work, the goal in 
translation and optimization of OOSQL is to move 
from tuple- to set-oriented query processing. Our ap- 
proach, as in [ClMo93], is to translate nested OOSQL 
queries into nested algebraic expressions, and then to 
try to rewrite nested algebraic expressions into join ex- 
pressions. In the following section, we briefly present 
the algebraic language ADL. 

3 The Complex Object Algebra ADL 

The language ADL is a typed algebra for complex ob- 
jects in the style of the NF2 algebra of [ScSc86], allow- 
ing for nesting of expressions. Among the constructors 
supported are the tuple (( )) and set ({ }) type con- 
structor; the basic type oid is used to represent object 
identity. 

Roughly, the algebraic operators of the language 
ADL are the standard set (comparison) operators and 
multiple union (flatten), extended Cartesian product 
(in which operand tuples are concatenated) and divi- 
sion, the map operator (Y, selection u, projection z, 
the renaming operator p, and the restructuring opera- 
tors nest (v) and unnest (11). The map operator, well- 
known from functional languages and appearing under 
many different names in the literature, is used to ap- 
ply a function to every element of a set. The function 
applied may be arbitrarily complex, so that the effect 
of a map operation may vary from a simple projection 
to the production of complex results. Furthermore, a 
number of join operators is supported: the regular join 
w, the semijoin o(, and the antijoin D. The semijoin 
(a regular join followed by the projection on the left- 
hand join operand attributes) is a join operator that 
is useful in processing socalled tree queries [Kamb85]. 

The antijoin is defined as a semijoin followed by a set 
difference of the left-hand join operand and the semi- 
join result. The antijoin operator is less well-known 
than the semijoin operator; it can be employed to ef- 
ficiently process tree queries involving universal quan- 
tification. In selections and joins arbitrarily complex 
predicates can be used, including predicates contain- 
ing quantifiers. Of course aggregate functions are part 
of the language too. Below, we give the semantics of 
some of the ADL operators used in this paper. For 
presentation purposes, a simplified notation is used; it 
is assumed no attribute naming conflicts occur. The 
operator o is used to denote tuple concatenation. The 
schema function SCH, when applied to a table expres- 
sion, delivers the top level attribute names. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

(Flatten) U(e) = {z 1 z E X A X E e} 

(‘Puple subscription) 
ebl, . . . . an]=(m=e.al ,..., an=e.a,) 

(l’uple “update”) 
Let soz(e) = {al,. . . , a,, bl,. . . , b,}, then: 
e except (01 = el , ,..., a,=e,,cl=el,..., h=ei) = 
(al = el,. . . , a,, = e,, bl = e.bl,. . . ,b, = e.bm,cl = 
f-4, . . ..h =e;) 

The except operator may update existing tuple 
fields (ai = ei), leaving the remaining as they are 
(bi = e.bi), and may also extend the tuple with some 
new fields (c( = e:). 

(Map, or function application) 
4~ : f(x)164 = {f(x) I x E e.l 
(Selection) a[x : p(x)](e) = {x E e 1 p(x)} 

(Projection) ?loI ,..., 4s(e) = {+I,. . . ,On] I 2 E e) 
(Unnest) Let soH(e) = {a, bl,. . . , b,,,}, then: 
pa(e) = {x’ o x[bl,. . . , bm] I x ~\e h x’ E x.a} 

(Nest) Let scH(e) = {al,. . . ,a,,,bl,. . . ,bm}, let 
A=al,..., a,,andletB=br ,..., b,,then: 
VA+(e) = {x[B] o (a = x) 1 x E e A 

X = {x’[A] I x’ E e A x’[B] = x[B]}} 

(Cartesian product) 
el x ez = {XI o x2 1 XI E el A xz E ez} 

(Regular join) 
el s1,sa:La) ea = 

{XI 0 xs 1 XI E el A xz E ea A P(XI,XZ)} 

(Semijoin) 
el 

=l,%:P mm) 7 
e2 = 

{XI 1 XI E el A 3s~ E ez l p(z1,za)) 

(Antijoin) 
el sl,aa:~sl.sa) e2 = 

{XI 1 XI E el A Bxz E e2 .P(XI,XZ)} 
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ADL operators that allow for nesting, the so-called it- 
eTatoTs, are the map, select, and join operators, and 
also quantifiers. Iterators are operators having func- 
tions (lambda expressions Xz.e, denoted as z : e) as 
parameters; within the function body other operators 
may occur. Note that the parameter of join opera- 
tors (the join predicate) is a function having two ar- 
guments; the function (denoted as zi,z2 : p) is writ- 
ten as a subscript to the join operator symbol. In 
the evaluation of joins, variables 21 and z2 are iter- 
ated over operands ei and ez respectively, and tuples 
are included in the result depending on the value of 
P(%, 22). 

Mapping OOSQL to the algebra involves a mapping 
of types and a mapping of expressions. The mapping 
of types is carried out in the phase of logical database 
design. Here, we assume that each class extension is 
mapped to a table of (possibly complex) objects; a 
field of type oid is added to represent object identity, 
and class references are implemented by pointers, also 
of type oid. We also assume that class hierarchies are 
mapped to ADL types in some way or the other (the 
algebra does not support inheritance). 

With respect to translation and optimization of ez- 
pressions, we take the following approach. Transla- 
tion of OOSQL queries into the algebra is done in a 
simple, almost one-to-one way. The algebra supports 
nesting of expressions, representing tuple-oriented, or 
nested-loop query processing, as well as a number of 
purely algebraic set-oriented operators. In the transla- 
tion phase, nested OOSQL queries are translated into 
nested algebraic expressions. Following translation, in 
the phase of logical optimization, nested expressions 
are rewritten into set operations. 

The OOSQL construct that does not have an imme- 
diate algebraic equivalent is the &v-query block. In 
the translation phase, an &v-query block is mapped 
to an algebraic expression consisting of a selection fol- 
lowed by a map: 

select ei from z in es where e3 
I a[~ : el](a[z : e3](e2)) 

where d computes the selection ee and a the “projec- 
tion” ei. In the select operation, variable z is iterated 
over operand es and the operand is restricted accord- 
ing to the values of the where-clause predicate es; in 
the map operation a, variable z is iterated over the 
resulting operand subset, and for each of the tuples in 
this set the select-clause expression ei is evaluated. 

To conclude this section, we formulate the goal in 
optimization of nested ADL queries. Operands of op- 
erators nested within parameter expressions of itera- 
tors may be either set-valued attributes or base ta- 
ble expressions. In this paper, the goal is to trans- 
form nested expressions, in which iterators having 

base tables as operands occur nested within param- 
eter expressions of other iterators, into join expres- 
sions in which base tables occur on19 at top level. 
Of course the goal of unnesting applies to correlated 
subqueriesl only; uncorrelated subqueries simply are 
constants, and treated as such. Assuming set-valued 
attributes are stored clustered, the unnesting of ex- 
pressions with nested iterators having set-valued at- 
tributes as operands is not desirable. For example, 
u[z : 3y E Y l p](X) with Y a base table, is trans- 
formed into the semijoin operation X D(~,,,:~Y, but 
u[z : 3y E 2.c 0 p](X) with c a set-valued attribute 
stored with the X-tuples is left as it is. In short, the 
goal in translation/optimization is to remove base ta- 
bles from the parameter expressions of iterators, mov- 
ing from tuple- to set-oriented query processing. 

4 Optimization Of Nested Algebra 
Q ueries 

In this section we present a general approach to opti- 
mize nested ADL queries. Three optimization options 
are given, together with example queries. The section 
ends with a strategy to give a priority to the options. 

The example queries given below concern the 
supplier-part database of which the OOSQL schema 
was given in Section 2. In ADL, the types of SUP- 
PLIER and PART are as follows: 

SUPPLIER : { (eid : oid, 
sname : string, 
parts : { (pid : oid)))) 

PART : {(p&i : oid, 
pname : string, 
price : int, 
color : string)} 

We distinguish three ways of optimizing nested ADL 
queries: (1) the unnesting of attributes by using the 
unnest operator, (2) the unnesting of nested expres- 
sions by transforming them into relational join queries, 
and (3) using new operators that (analogous to for ex- 
ample the relational join) are defined especially to en- 
hance performance. Below, we discuss the options in 
more detail. 

Unnesting Of Attributes 

If nesting is caused by iteration over a set-valued at- 
tribute it is possible to unnest this attribute. De- 
pending on whether the result is nested or not, the 
nest operator has to be applied. The unnesting of 
attributes has some disadvantages. First, nest and 
unnest are each others inverse only for PNF relations 
(nested relations of which the atomic attributes re- 
cursively form a key) that have no empty set-valued 

‘Correlated subqueries are iterator expressions that use vari- 
ables from iterators in which they are nested. 
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attributes [RoKS88]. Second, first unnesting and later 
nesting again will be expensive due to duplication of 
attribute values and overhead caused by restructuring. 
Therefore, we only use this option if the final nesting 
is not required, and empty set-valued attributes cause 
no problem. Consider the query: 

Example Query 4 Select the identifiers of suppliers 
supplying non-existing parts (violating referential in- 
tegrity). 

7rr&[B : 3% E &parts 0 
,Zlp E PART. B = p[pid]](SUPPLIER)) 

The set-valued attribute parts is not needed in the 
result, so the above query may be rewritten into the 
antijoin query: 

Note that because z is existentially quantified, the loss 
of tuples with empty set-valued attribute parts causes 
no problem (existential quantification over the empty 
set delivers false). 

Transformation into join queries 

In some cases two or more consecutive levels of nesting 
can be replaced by a join, antijoin, or semijoin oper- 
ator, reducing the number of levels of nesting. In the 
ideal case all nesting has disappeared. Query 5 below 
shows such an example. 

Example Query 5 Select the suppliers supplying 
red parts. 

a[s : 3x E s.parts l 3p E PART . 
z = plpid] A p.cdor = “red”](SUPPLIER) 

This query can be rewritten into the semijoin query: 

SUPPLIER D< s,p:p[pid]E8.partr 
u[P : p.coZm = “red”](PART) 

In Section 5 this option is discussed in detail. 

Using Special Operators 

The relational join is not really necessary for the ex- 
pressive power of the relational algebra; it was intro- 
duced to allow for various efficient implementations. 
The same can of course be done in an algebra for com- 
plex objects. Quite often we encounter that an ef- 
ficient execution of a query is prohibited if we stick 
to generally-accepted operators. Therefore, we expect 
that introducing new operators is really necessary to 
obtain an efficient implementation. In Section 6 some 
new operators are discussed. The following query can- 
not be rewritten into a relational join query: 

Example Query 6 Select suppliers names together 
with the parts supplied. 

cx[s : (sname = s.sname,partssuppl = 
crlp : plpid] E s.ports](PART)](SUPPLIER) 

However, using the so-called nestjoin operator -I (see 
Section 6), the nested query can be rewritten into an 
efficient set operation: 

~sname,partrAQqd 
(SUPPLIER -I 

r,p:p[pid]Es.~rts;parts-auppl 
PART) 

Note that each of the options above can be applied 
to the top level expression as well as to subexpressions 
thereof. Given these options for optimization of nested 
ADL queries, the rewrite strategy is as follows: 

Try to rewrite to the various relational join oper- 
ators (join, antijoin, or semijoin). 

If the above is not possible, try to flatten set- 
valued attributes; if the nesting phase can be 
skipped, this may be a strategy worthwhile con- 
sidering. 

If the above is not possible, try to rewrite to one 
of the newly defined operators, because they were 
introduced to get a better performance compared 
to nested-loop processing. 

If none of the above works, leave the query as it 
is, which means that it is executed by means of 
nested loops. 

The options “rewriting into relational join queries” 
and “using special operators” are discussed in more 
detail in the following two sections. 

5 Rewriting Into Flat Relational Alge- 
bra 

In the previous section, we have discussed some op 
tions for processing nested ADL queries. In this 
section, we investigate one of them-the rewriting 
of nested expressions into join expressions without 
unnesting set-valued attributes. The discussion con- 
centrates on rewriting nested select (u) expressions, 
the algebraic equivalent of nested OOSQL queries 
with nesting in the where-clause. However, rewriting 
nested expressions into join expressions is a strategy 
that can be applied to nesting in the map operator as 
well; the section is concluded by briefly discussing an 
example of this type of nesting. 
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5.1 General Query Format 

In this section, we discuss transformation of nested 
OOSQL queries with nesting in the where-clause in 
the presence of set-valued attributes. Nesting in the 
where-clause is an important (and only) type of nest- 
ing allowed in the flat relational model; in complex 
object models it is considered equally important. The 
goal here, as in [Kim82], is to rewrite nested queries 
into join queries without unnesting set-valued at- 
tributes, so that instead of performing a naive nested- 
loop execution, the optimizer may choose from a num- 
ber of different join processing strategies. 

The general format of a two-block OOSQL query 
with nesting in the where-clause is the following: 

select F(x) 
from 2 in X 
where P(x, Y’) 

with Y’ = select G(x, y) 
fiomyinY 
where 4(x, v) 

(The with construct, enabling local definitions, is used 
here for reasons of convenience.) In Section 3, we have 
given the equivalence rule for translating the sfw-block 
into the algebra: 

select el from z in es where es 
E a[z : el](a[x : es](e2)) 

so the algebraic equivalent of an &v-expression is a 
selection rr followed by a general function application 
a to compute the “projection”. The map operator a 
is needed to compute arbitrarily structured results, as 
opposed to standard projections in the flat relational 
model. 

The general format of the two-block &v-expression 
with nesting in the where-clause as shown above is: 

a[z : F(x)](a[x : P(x, Y’)](X)) 
with Y’ = 4/ : G(x, dlk+ : Qb, dl(Y)) 

For simplicity, the functions F and G are assumed to 
be identity, so we have the format: 

V[Z : P(z, Y’)](X) with Y’ = u[g : Q(z, v)](Y) 

The query above is a nested query involving nested it- 
eration over a base table: the outer selection predicate 
contains a subquery, which is a selection on base ta- 
ble Y. We want to transform this nested query into a 
join query, i.e. a query having no subqueries with base 
table operands. 

5.2 Set Comparison Operations 

To illustrate our ideas, at first we concentrate on 
two-block nested expressions with set comparison op 
erations between query blocks. We investigate two 

unnesting techniques: unnesting by rewriting into 
quantifier expressions, and unnesting by grouping, 
a technique well-known from the relational model 
[Kim82]. 

In Section 5.2.1, we show that, in some cases, 
queries having set comparison operators between 
query blocks can be transformed into join queries by 
rewriting the set comparison operator into a quan- 
tifier expression. However, in other cases, rewriting 
into quantifiers has a negative effect on performance; 
other solutions have to be sought. The results of Sec- 
tion 5.2.1 are generalized to a rewrite heuristic for 
transforming two-block select queries with arbitrary 
quantifier expressions between blocks. 

To the queries that cannot be unnested by rewriting 
into quantifier expressions, we apply the methods of 
[Kim82, GaWo87] for unnesting relational queries with 
aggregate functions between blocks. We show that the 
methods of [Kim82, GaWo87] are general techniques 
for transforming nested queries into join queries, how- 
ever, to be of good use in complex models, they have to 
be adapted. We will do so by defining a new algebraic 
operator, the nestjoin operator, in Section 6. 

We now continue by describing the query format 
of interest in this section. Assume that predicate P 
involves some set comparison operation relating at- 
tribute c of the outer operand X and the set Y’, the 
subquery result. More formally, the query format is: 

g[z : x.c 19 Y’](X) with Y’ = u[y : Q(x,y)](Y) 

with 19 E {E,c,~,= ,>, >, 3). Note that the type of 
attribute c varies with the comparison operator used; 
the type may be atomic (E), or an arbitrary set type. 
If the operator used is 3, c has a set-of-set type. 

5.2.1 Unnesting By Rewriting Into Quantifier 
Expressions 

In this section we show that translating set comparison 
operators into quantifier expressions offers possibili- 
ties to unnest nested queries. In [CeGo85], presenting 
a translation from SQL to the relational algebra, set 
comparison operators are dealt with by rewriting them 
into quantifier expressions in a preprocessing phase. 
Nested relational queries with quantifiers are easily 
translated into relational algebra operations. Existen- 
tial quantification is mapped to a projection on a join 
(or product); universal quantification is handled by 
means of the division operator [Codd72]. 

For example, from the relational model we know 
that a set membership predicate can be translated into 
an existential subquery that is easily translated into a 
(semi)join operation. Let q G &(x, y), then: 
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Table 1: Rewriting Set Comparison Operations 

set comparison operation quantifier expression 
2.c E Y’ = 3yEY’my=x.c 
x.c c Y’ - x.c E Y’ A 2.c 2 Y’ 

z (Vz E 2.c. 3y E Y’ 0 2 = y) A ()yar E Y’ 0 9 E 2.c) 
x.c c Y’ I vsEx.c~3yEY’~z=y 
x.c = Y’ P 2.c c Y’ A x.c > Y’ 

= (vsEx.co3yEY’~z=y)A(VyEY’oyEz.c) 
x.c > Y’ = VyEY’eyEx.c 
2.c 3 Y’ z 2.c > Y’ A x.c g Y’ 

E (v~‘yY’~yEx.c)A(~zEz.c~3yEYoz=y) 
2.c 3 Y’ s 3zEax.z=Y 

Rewriting Example 1 SET MEMBERSHIP 

u[x : x.c E o[f/ : q](Y)](X) 
I u[x : 39 E u[y : q](Y) 0 y = z.c](X) 
P a(x:iiyEYoy=x.cAq](X) 

E XK s,y:y=s.chq Y 

First the operator E is rewritten into an existential 
quantification. Next, the select operation is removed 
from the operand (the range expression) of the exis- 
tential quantifier, providing the possibility to trans- 
late the existential subquery into a semijoin operation 
in the last rewrite step. In this last step the actual 
unnesting is performed; the preceding rewrite steps are 
necessary to transform the input expression into the 
format suitable for unnesting. The equivalence rules 
for unnesting quantifier expressions nested within se- 
lect operators are the following. 

Rule 1 UNNESTING QUANTIFIER EXPRESSIONS Let 
X and Y be table expressions, and let 2 not be free in 
Y, then: 

1. a[z : 3y E Y .p](X) G x D(o,y:pY 

2. u[x :,& E Y o&X) E x Dz,y:p Y 

A nested query with existential quantification is trans- 
lated into a semijoin operation; negated existential (i.e. 
universal) quantification is dealt with by means of the 
antijoin operator. 

The same method, rewriting set comparison oper- 
ators by means of quantifiers, can be applied in com- 
plex object models as well. Again, let q E &(z, y), 
and consider the following example dealing with the 
set inclusion operator: 

Rewriting Example 2 SET INCLUSION 

u[x : u[y : q](Y) c x.c](X) 
E u[x : vy E u[p : q](Y) l y E x.c](Y)](X) 
E u[x:/Q/Eu[y:q](Y).y$?x.c](X) 
E u[x:&/EY.qAy$!x.c](X) 

EX D Y s,y:qAyfza.e 

Table 2: Rewriting Predicates 

R 
Pb, Y’) ] quantifier expression 
Y’ = 0 By E Y’ 0 true 

count(Y’) = 0 j!lg E Y’ 0 true 

x.cnY’ = 0 &jEY’*yEx.c 
VlEX.C~Z>Y’ j$lEY’~3zEx.c*y$zz 

In the example above, the same procedure as in 
Rewriting Example 1 is followed (rewriting into quan- 
tification, transformation of the range expression, and 
unnesting). In addition, the universal quantifier is 
transformed into a negated existential quantifier by 
pushing through negation to enable transformation 
into the antijoin operation. 

All set comparison operators can be rewritten into 
quantifier expressions, as shown in Table 1. In the ta- 
ble, in all cases except for the last we have expanded 
operators until quantification(s) over Y’ take(s) place. 
We see that expanding operators E and _> leads to 
a (negated) existential quantifier expression that is 
suited for unnesting by applying Rule 1; expansion of 
the other operators leads to a multiple subquery ex- 
pression, that cannot be mmested that way. Note that 
negation of the set comparison operation does not in- 
fluence the possibilities for unnesting. Negating the 
operator negates the quantifier expression; antijoins 
are used instead of semijoins and vice versa. 

So far, we restricted our discussion to two-block 
nested queries with predicates of the form x.c 8 Y’, 
with 0 a set comparison operator. In Table 2, we show 
some more examples of predicates that can be rewrit- 
ten into (negated) existential quantification, the form 
suitable for transformation in relational join expres- 
sions. To determine exactly which types of predicates 
can be rewritten is a topic of future research. 
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Rewrite Heuristic 

From the discussion above, an important rewrite 
heuristic for nested expressions with predicates con- 
sisting of arbitrary quantifier expressions can be de- 
rived. Difficulties with unnesting arise whenever sub- 
queries with base tables as operands are nested within 
iterators with set-valued attributes as operands, and 
the order of nesting cannot be changed. Consider the 
last expression of Table 2. We have: 

Rewriting Example 3 EXCHANGING QUANTIFIERS 

VzEx.cee>Y’ 
3 VtEx.c@vjJEY’eyE% 
3 v$/‘yY’~v%Ex*C*yE% 
3 $lyEY’e3eEx.cey$?fz 

By expanding the comparison operator and exchang- 
ing universal quantifiers, the predicate is put in a form 
suitable for unnesting according to Rule 1. The gen- 
eral rewrite heuristic is formulated as follows. Let P 
be a quantifier expression in Prenex Normal Form: 

in which the range expressions ei are either base ta- 
bles or set-valued attributes. To enable unnesting of 
(sub)expressions, the goal is to move quantification 
over base tables to the left of the quantifier expression. 
This goal may be achieved by exchanging universal or 
existential quantifiers. 

5.2.2 Unnesting By Grouping 

Another way to deal with set comparison operators 
is to use grouping. In [Kim82, GaWo87], grouping 
is used in transforming nested queries with aggregate 
functions between query blocks. As we will see, the 
method of [GaWo87] in fact represents a general way 
of treating nested queries that can be applied in com- 
plex object models as wells. However, in some cases 
the results achieved are not correct due to the loss of 
dangling tuples in the relational join operation. 

In (Kim82, GaWo87], methods for unnesting queries 
with aggregate functions between query blocks of the 
form 4~ : P(x, w7(49 : 465 vW)MX) me we- 
sented. Below, we apply the method of [GaWo87] to 
nested queries with set comparators between blocks. 

Consider the following nested query, an example of 
which is given in Figure 1. 

u[x : 2.c 5 a[y : x.0 = pdj(Y)](X) 

Applying the transformation technique of [GaWo87] to 
the expression above, we have, in our own formalism: 

lThe method of [Kim821 can be applied only when the cor- 
relation predicate (or join predicate) ie equality. 

result 

u[x : 2.c c u[g : x.a = $f.a](Y)](X) I 

Figure 1: Nesting Involving Set-Valued Attribute 

The nested query is transformed into a flat join query 
consisting of (1) a join to evaluate the inner query 
block predicate, (2) a nest operation for grouping, (3) 
a selection for evaluating P, the predicate between 
blocks, and (4) a final projection. Example tables X 
and Y and the intermediate results of the join, nest, 
and project/select operation are shown in Figure 2. 

We note that, as with relational queries involving 
the COUNT function, in the join query some kind of 
bug occurs, due to the loss of dangling tuples in the 
join; in analogy with the phrase “COUNT bug”, we 
call this bug the “Complex Object bug”. In the ex- 
ample, the tuple (a = 2,c = 0) in X is not matched 
by any of the tuples y E Y, so the subquery result 
is empty. In the join, this tuple is lost; in the nested 
query, the expression 0 S 0 evaluates to true, so the 
tuple has to be included. 

Now consider a variant of the query above, in which 
s is changed into 2: 

u[x : x.c > u[g : X.0 = g.dj(Y)](X) 

Here as well, applying the same unnesting technique 
yields a Complex Object bug. All tuples x E X for 
which it holds that the subquery Y’ is equal to the 
empty set should be included into the result, but are 
lost in the join. 

In Table 3, we have listed the set comparison 
operations under consideration, together with the 
value of the predicate for subqueries delivering empty 
sets (a question mark meaning run-time dependence). 
Negated predicates are treated in the same way. 

We have the following result. 

l The relational transformation technique of 
[GaWo87] for unnesting nested queries having ag- 
gregate functions between query blocks, using 
grouping, may be applied to nested complex ob- 
ject queries involving set comparison operators 
between query blocks as well. However, in some 
cases the loss of dangling outer operand tuples in 
the join causes incorrect results. 
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Figure 2: The Complex Object Bug 

5.3 Nesting In The Map Operator 

Table 3: Set Comparison Operators And Bugs 

n P~.Y') I ptx.O 

2.c c Y’ false 
2.c c Y’ ? 
2.c = Y’ ? 
2.c > Y’ true 

x.c 3 Y’ ? 

2.c 3 Y’ ? 

l The value of the expression P(z,Y’), with the 
empty set substituted for Y’, determines whether 
or not dangling tuples should be included into the 
result. Whenever P(z,0) can be reduced stati- 
cally to true/false, all/none of the dangling tu- 
ples z E X must be included into the result; when- 
ever this value is undetermined at compile time, it 
is run-time dependent whether or not dangling tu- 
ples x E X should be included (cf. the predicate 
XX = count(Y’)). In other words, the unnest- 
ing technique used here is guaranteed to deliver 
correct results only if P(x, 0) can be statically re- 
duced to false. 

If not for the occurrence of bugs, the techniques 
of [Kim82, GaWo87] can be applied to nested queries 
with arbitrary predicates between blocks. One way 
to solve the COUNT bug in the relational model is 
to employ the outerjoin operator [GaWo87]. In using 
the outerjoin, NULL values are used to represent the 
empty set. This method may be applied in a slightly 
adapted way in complex object models as well. An- 
other way to solve the COUNT bug is to use a binary 
aggregation operator [OOMa37, Naka90). In Section 6, 
we discuss a new operator for unnesting nested queries 
that is based on the idea underlying binary aggrega- 
tion, but separates predicate evaluation from join and 
grouping. 

To conclude, we give another example of the strategy 
of rewriting nested expressions into relational join ex- 
pressions, but now concerning nesting in the map op- 
erator (i.e. in the select-clause). The following equiv- 
alence rule can be used to transform a nested map 
operation into a join query: 

Rule 2 NESTING IN THE MAP OPERATOR 

U(a[x : a[!/ : xoy](4y : P])(y)](x) = x wz,y:p y 

The nested map operation on the left hand side creates 
a set of sets that is flattened immediately afterwards; 
the same result is achieved by the right hand join ex- 
pression. 

Briefly summarizing this section, we have seen that 
(1) rewriting predicates into quantifier expressions 
may enable the transformation of nested expressions 
involving set-valued attributes into relational join ex- 
pressions, (2) unnesting by grouping is a transforma- 
tion technique that is generally applicable, if not for 
the occurrence of bugs. In the next section, we show 
how to avoid the occurrence of bugs by using the 
nestjoin operator; the general transformation strategy 
then is to transform nested queries into nestjoin ex- 
pressions, but to use relational join operators when- 
ever possible. 

6 New Algebraic Operators 

In this section, we give three examples of new algebraic 
operators that are well-suited for efficient implementa- 
tion of nested OOSQL queries. Generally speaking, it 
is worthwhile to define new logical algebra operators 
whenever there can be found new access algorithms 
(or physical algebra operators [Grae93]) that are an 
improvement over nested-loop query processing. For 
example, the join can be implemented as an index 
nested-loop join, a sort-merge join, a hash join, etc. 
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In this section, we give some examples of operators 
that might be of use for improving performance in 00 
query processing. The first operator to be discussed 
is the nestjoin operator, defined in [StAB94] for the 
processing of nested queries requiring grouping. The 
second operation to be discussed is the PNHL algo- 
rithm of [DeLa92], useful for materializing set-valued 
attributes, and the third is the materialize operator of 
[BlMG93]. 

6.1 The Nestjoin Operator-Grouping Dur- 
ing Join 

In the previous section we have shown that unnesting 
by using grouping is a transformation strategy gener- 
ally applicable, if not for the occurrence of bugs due 
to the loss of dangling tuples in the join. In [StAB94], 
we have defined an operator that combines grouping 
and join without losing dangling left operand tuples: 
the nestjoin operator. The nestjoin operator is to be 
used for the unnesting of nested queries that cannot 
be rewritten into flat relational join operations. 

The nestjoin operator, denoted by the symbol -i, is 
a simple modification of the join operator. Instead of 
producing the concatenation of every pair of matching 
tuples, each left operand tuple is concatenated with 
the set of matching right operand tuples. To imple- 
ment the nestjoin, common join implementation meth- 
ods like the sort-merge join, or the hash join can be 
adapted. The definition of the nestjoin is as follows. 

Definition 1 THE NESTJOIN OPERATOR (SIMPLE) 

el z1,z2:p~1 z2).ae2 = (~1 0 (a = X> I 21 E el A 

X = {xi I 22 E e2 ~24~1,~~))) (a 4 ScH(ed) 

Variables zi and 2s are iterated over operands er and 
es, respectively. Each left operand tuple xi E ei is 
concatenated with the unary tuple (o = X), in which 
the set X contains those right hand operand tuples 
zs E es for which the predicate p(xl,x2) holds. An 
example of the nestjoin operation is given in Figure 3, 
where relations X and Y are equijoined on the second 
attribute. 

The nestjoin operator as defined above can be used 
for the transformation of two-block select expressions 
with arbitrary predicates between blocks. The simpli- 
fied version of the two-block select query: 

C+C : P(z, Y’)](X)) with Y’ = o[y : &(z, y)](Y) 

is transformed into the nestjoin expression: 

xX(+ : P’IW -L,y:Q(q/);yr Y)> 

In the nestjoin operation, for each tuple x E X the set 
of tuples y E Y is restricted according to predicate Q. 

Y 

aim 

result 

a b c d 
1 1 
2 1 
3 3 

x -(s,y:e.b=y.d;y, y 

Figure 3: Nestjoin Example 

In the selection, the nestjoin result is restricted accord- 
ing to predicate P’. Predicate P has to be adapted by 
substituting z[X] (nestjoin tuple I projected on its X 
attributes) and z.ys (the subquery result as attribute 
of nestjoin tuples Z) for x and Y’, respectively, i.e. 
P’ = P(x, Y’)[x[X]/x, ~.yd/Y’]. A projection on the 
attribute values of X completes the computation. 

The nestjoin operation can be used to process 
queries with nesting in the select- or where-clause. 
Queries having subqueries in the select-clause often 
denote nested results, so processing by means of the 
nest join operation will be appropriate. The general 
format of a query with nesting in the select-clause is: 

select F(z, Y’) 
with Y’ = select G(z, y) 

from y in Y 
where Qb, Y) 

fiomzinX 
where P(z) 

Assume function G and predicate P are identity, then 
in the algebra we have: 

cr[x : F(x, Y’)](X)) with Y’ = o[y : &(x, y)](Y) 

which is equivalent to: 

a[% : qv -(+,y:Q(2,y);yr y> 
in which function F is adapted by performing the nec- 
essary substitutions: 

F’ G F(x,Y’)[z[X]/x, z.ys/Y’] 

Above, we have given a simplified definition of the 
nestjoin operator. For the transformation of general 
nested queries with deeper nesting levels, the nestjoin 
needs as an extra parameter a function to be applied 
to the right hand operand tuples [StAB94]. 

6.2 Materializing Set-Valued Attributes 

Below, we describe two proposals for the material- 
ization of (set-valued) attributes, in complex object 
models an operation presumed to occur frequently. In 
the first proposal of [DeLa92], an algorithm was given 
without defining a corresponding logical algebra oper- 
ator; in [BlMG93], both a logical and a corresponding 
physical algebra operation are described. 
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The PNHL Algorithm 

Below, we describe the algorithm of [DeLa92] for effi- 
ciently processing a nested expression in which a set- 
valued attribute is joined with a base table. This al- 
gorithm can be considered as a new physical algebra 
operation. Though the correspondence between logi- 
cal and physical algebra operators usually is not one- 
to-one [Grae93], the question is whether it is useful to 
define new logical operators for algorithms such as that 
of [DeLa92]. The following query expresses a nested 
natural join (*) operation: 

a[Z : z except (pads = z.pTts*z,v:z.pid=v.pid 
PART)] (SUPPLIER) 

In [DeLa92], a hash-based algorithm called Partitioned 
Nested-Hashed-Loops (PNHL) algorithm for comput- 
ing this type of join operation is described and perfor- 
mance measures are reported. The algorithm builds 
a hash table for those segments of operand PART 
that fit into main memory and then probes operand 
SUPPLIER against each segment of the hash ta- 
ble, thus building partial results. Partial results are 
merged in the second phase of the algorithm. Com- 
pared to the unnest-join-nest processing method, the 
algorithm achieves better performance. Comparing 
the PNHL algorithm with traditional hash join, we 
see that in the PNHL algorithm, only the flat table 
can be the build table (the inner operand PART in 
the example), whereas in relational hash join usually 
the smaller operand is chosen as build table. 

The Materialize Operator 

In object-oriented database systems the concepts of 
object identity and path expressions play an impor- 
tant role. Object identifiers can be implemented ei- 
ther as physical or as logical pointers. Implementing 
object-identifiers as physical pointers opens the way 
to new join implementation methods (pointer-based 
joins, [ShCaSO]). 

Also, object identifiers can be usefully employed to 
implement path expressions, i.e. the user-defined rela- 
tionships or links between object classes. In [BlMG93], 
path expressions are represented by the operator mate- 
rialize. Materialize is defined as a new logical algebra 
operator, with the purpose to explicitly indicate the 
use of inter-object references, i.e. to indicate where 
path expressions are used and where therefore alge- 
braic transformations can be applied. The operator is 
implemented by an access algorithm called assembly, 
a generalization of the concept of a pointer-based join. 

7 Conclusion And Future Work 

As in relational systems supporting SQL, in 00 
data models supporting an SQL-like query language 

(OOSQL), optimization of nested queries is an impor- 
tant issue. A naive way to handle nested queries is by 
nested-loop processing (tuple-oriented query process- 
ing), however, it is better to transform nested queries 
into join queries, because join queries can be imple- 
mented in many different ways (set-oriented query pro- 
cessing) . 

In this paper, we have presented a general approach 
to optimization of nested OOSQL queries. In OOSQL, 
nesting may occur in the where-, from-, and select- 
clause. An additional complication in complex object 
models is the support for iteration over set-valued at- 
tributes. The goal is to transform nested OOSQL 
queries having correlated subqueries with base table 
expressions as operands into join queries in which base 
tables occur only at top level. First, we try to rewrite 
nested expressions into relational join operations. Sec- 
ond, we consider whether the unnesting of set-valued 
attributes is a possible (for theoretical reasons) and a 
worthwhile (for reasons of performance) optimization 
option. Third, if the previous steps do not give the re 
sult wanted, we use new operators especially defined to 
improve performance. Finally, if none of the previous 
steps work, we resort to nested-loop processing. 

We have shown that transformation of nested 
OOSQL queries dealing with set-valued attributes into 
relational join queries is not always possible. In many 
cases, the unnesting of nested OOSQL queries re- 
quires some form of grouping in the unnested, or join 
query. Relational transformation techniques for nested 
queries requiring grouping (nested queries with aggre- 
gate functions between blocks) do not always give cor- 
rect results; to improve matters we have defined a new 
operator called the nestjoin operator. 

Future work concerns a number of issues. First, 
we need a precise characterization of nested queries 
requiring grouping or not. Second, for those queries 
that do require grouping, new implementation tech- 
niques have to be investigated. Third, new features 
characteristic of 00 data models, like object identity 
and path expressions, provide new opportunities to im- 
prove performance. At the logical as well as the phys- 
ical algebra level new operators may be defined and 
implemented. Finally, the ultimate goal of course is a 
general (syntax-driven) translation/optimization algo- 
rithm for arbitrary nested OOSQL queries, including 
queries with multiple subqueries and multiple nesting 
levels. 
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