-

Implementation of the
Object-Oriented Data Model
™

Hennie J. Steenhagen Peter M.G. Apers

—_

Abstract

Generally, one expects to find the solution to the growing need for
database support in non-traditional application domains in object-oriented
data models. Currently, at the University of Twente, work is being done on
the high-level object-oriented data model TM. TM is an object-oriented data
model, based on an extension of the type theory of Cardelli. TM includes
a logical formalism for constraint specification, which is an important aspect
of the data model, and the notion of predicative sets. Predicative set expres-
sions provide for a high-level, descriptive specification mechanism. Topics of
research are the theoretical foundations of TM, as well as implementation
aspects. Just as in case of relational database systems, algebraic optimization
is expected to be an important aspect of efficient implementation of the data
model. With this expectation in mind, we have defined the language ADL, an
algebraic database language based on the functional programming language
FP, designed by Backus. Like FP, ADL is a language in which programs
are functions, built up from primitive operators and functionals (higher order
functions). In this paper, the main topic is the translation of TM to ADL.
An algorithm is presented to translate (safe) TM expressions into ADL ex-
pressions. Furthermore, optimization in ADL is briefly discussed, and some
equivalence rules are given.

1.1
Introduction

Nowadays, it has been widely accepted that the relational data model
lacks certain modeling capabilities. The strength of the relational model, its
simplicity, may at the same time be considered its weakness: in many new
application domains, such as CAD/CAM and carthography, and even in the
traditional business application domain, the requirement to store all sorts of
data in tables causes inconvenience, as well as inefficiency.

Generally, one expects to find the solution to the growing need for
database support in non-traditional application domains in object-oriented
data models. Object-oriented data models provide for advanced modeling
concepts with regard to the structure of the data, as well as the operations
on it.

Though object-oriented database systems have been on the market for
several years, there still seems to be no general consensus about what con-

stitutes an object-oriented data model. Several lists with ‘necessary fea-
tures,” ‘desired features,” ‘optional features,” and the like have been published
[Atkinson et al. 89, Zdonik and Maier 90]. Moreover, little is known about
the theoretical foundations of object-oriented data models and database man-
agement systems.

Currently, at the University of Twente, work is being done on the object-
oriented data model TM [Balsters et al. 90B, Balsters and de Vreeze 91].
Foci of research are the theoretical foundations of TM as well as implemen-
tation aspects. TM is a strongly-typed, object-oriented data model sup-
porting object-oriented concepts such as classes, object identity, complex ob-
jects, and multiple inheritance of data, methods, and constraints. As in O,
[Lécluse and Richard 89], a distinction is made between objects (classes) and
values (auxiliary classes). Constraint specification is an important aspect of
the data model. In TM, it is possible to specify methods as well as constraints
on three different levels: on the object, the class extension, and the database
state level.

TM is based on the language FM, a strongly-typed, functional lan-
guage, which, in turn, is based on the type system of Cardelli [Cardelli 84].
FM, supporting subtyping and inheritance, extends the Cardelli type theory
by introducing set constructs and a logical formalism [Balsters et al. 90B].
Moreover, FM has been given a simple set-theoretical semantics
[Balsters and Fokkinga 91, Balsters and de Vreeze 91, de Vreeze 91].

Refinement of the data model TM, still based on well-defined semantics,
will take place guided by further study of user requirements in non-traditional
application domains (carthography by name). To be able to judge functional-
ity in an early stage, TM is implemented using ONTOS, the object-oriented
database management system of Ontologic [ONTOS 90]. At the same time,
research directed towards efficient implementation of TM is progressing. Be-
cause TM is a language with highly declarative language constructs, and also
because TM is to be provided with a logical query language, algebraic opti-
mization is expected to be an important aspect of efficient implementation of
TM, just as in the case of the relational model.

In this paper, the main topic is the translation of TM to the language
ADL (Algebraic Database Language). ADL is an algebraic language, based
on the functional programming language FP, which was designed by Backus,
and described in his famous Turing Award paper [Backus 78]. An impor-
tant feature of FP is the emphasis on function-level programming. In FP,
programming consists of nothing but the construction of functions from oth-

ers by means of functionals, which are higher-order functions. An important
advantage of FP is the fact that, because FP is a variable-free language, it
is possible to state clear, concise algebraic laws concerning program equiv-
alence. Clearly, equivalence rules form the basis of program transformation
and optimization.

The rest of the paper is organized as follows. In Section 2, we introduce
the data model TM by means of an example. In Section 3, we informally
present the language ADL, and in Section 4 the translation of TM to ADL is
discussed. An algorithm for the translation of (a subset of) TM expressions is
given. In Section 5 we present some equivalence rules, and finally, in Section
6, we outline future directions.

1.2
Introduction to TM

This section presents the data model TM by means of an example. It
is not the intent to treat TM in full detail, but only to present those features
that are interesting with regard to the translation of TM to ADL. For a more
detailed overview of TM we refer to [Balsters et al. 90B], or the reference
manual [Balsters et al. 90A].

In a nutshell, TM is a high-level, object-oriented data model, and as
such it has the characteristic features of object-oriented data models: classes,
object identity, complex objects, and (multiple) inheritance of data, methods,
and constraints. Besides classes (objects), TM has auxiliary classes (values).
The method specification language is essentially of a functional nature, but
TM also has a general set notion. An important new feature of TM is the
predicative set construct. TM includes a comprehensive constraint definition
facility, and for constraint specification, a logical sublanguage based on first
order predicate logic has been included.

Below we present the classical example to illustrate the main features of
the model.

1.2.1 Example

Consider the following TM specification, modeling a database of per-
sons, employees, managers, secretaries, and departments. (Explanation will
follow in subsequent sections.)

begin specification

Class Person with extension Persons

attributes
name ¢ string
address : Address
birthdate : Date
sex ¢ string
spouse : Person

object constraints

p1 : sex = "M" or sex = "F"
object methods

update

move (in newaddress:Address) =

self except (address = newaddress)
retrieval

age (out int) =
system_date.year - birthdate.year
end Class Person

Class Employee ISA Person with extension Employees
attributes
salary : int
object methods
update
raise_salary (in amount:int) =

self except (salary = salary + amount)
object constraints

e; : salary > 30,000 and salary < 80,000
end Class Employee

Class Manager ISA Employee with extension Managers
object constraints
m1 : salary > 60,000
end Class Manager

Class Secretary ISA Employee with extension Secretaries
end Class Secretary

Class Department with extension Departments
attributes
name ¢ string

address : Address
employees : PEmployee
object methods
retrieval
manager (out Manager) =
unique in {m:Manager |m sin self.employees}
class methods
retrieval
emps_living _elsewhere (out PEmployee) =
unnest (collect {e in d.employees |e.address.city #
d.address.city} for d in self)
object constraints
de; : sum (collect e.salary for e in self.employees) < 800,000
des : count {m:Manager |m sin self.employees} = 1
end Class Department

AuxClass Date
type
{day:int ,month:int,year:int)
object constraints
dai; : 1 < day and day < 31
daz : 1 < month and month < 12
daz : month in {2,4,6,9,11} implies day # 31
das : month = 2 implies day < 29
das : month = 2 implies
(year mod 4 # 0 or
(year mod 100 = 0 and year mod 400 # 0) implies day # 29)
end AuxClass Date

AuxClass Address
type
(street:string,zipcode:string,city:string)
end AuxClass Address

Database specification
system_date : Date
database constraints
db: : forall m:Manager (forall s:Secretary
(not exists e:Employee (m isa e and s isa e)))
end specification

1.2.2 Conceptual schema

A conceptual schema in TM consists of a collection of class and auxiliary
class definitions and a database specification. In the class definitions, the
structure of, the constraints holding for, and the operations on the entities
of the universe of discourse are specified. In our example, entities of interest
are persons, employees (which of course are persons), managers, secretaries
(being employees), and departments. Auziliary class definitions are useful to
specify complex, dependent entity types. Dependent entities do not exist on
their own, but are part of other entities. Dates and addresses are examples of
dependent entities.

In the database specification, database attributes, database constraints,
and database methods are specified. Database attributes are useful to store
general database state information, such as the system date, or date of last
change. Database constraints are useful to express constraints holding be-
tween classes. An example of a database constraint is constraint db;, stating
that a manager cannot be a secretary, and vice versa, i.e., the classes Manager
and Secretary are disjoint. Database methods operate on the database as a
whole, regarding the database as a record of classes, and are in fact transac-
tions.

1.2.3 Classes

A class is denoted by its class name. Classes may have several super-
classes, specified by the ISA clause, and the attributes, object constraints,
and methods of the superclasses are inherited by the subclass. Inheritance in
TM is based on an extension of Cardelli’s subtyping relation. Class extensions
are explicitely named (though there cannot be more than one).

Structurally class extensions are sets of records, and the names and
domains of the record fields (attributes) are specified in the attributes clause.
The attributes clause may be omitted in case one or more superclasses are
defined. Notice the class Secretary, for which no attributes (nor methods
nor constraints) are defined.

In TM domains are either basic domains or composite domains. Basic
domains are basic types such as int, real, bool, string (and possibly
others), class names, and auxiliary class names. Composite domains are record
({-)) and variant (or union) ([-]) domains, and set (P-) and list (L-) domains.
The following are examples of domains.

int
Employee

(strnr:string, zipcode:string, city:string)
[home_address:(strnr:string, city:string), pobox:string]
PEmployee

(dept :Dept, emps:LEmployee)

The domain
[home address:(strnr:string, city:string), pobox:string]

is an example of a variant domain: a mail address may be either a home
address or a postoffice box.

The domains of the attributes of classes may be arbitrarily complex.
Also recursive attribute domain specifications are allowed.

In TM, it is possible to specify constraints on three different levels: on
the level of objects, on the level of class extensions, and on the level of database
states [Balsters et al. 90B]. Constraints are labeled predicates. Object con-
straints should hold for each individual object in a class, class constraints
should hold for each class extension, and database constraints (specified in
the database specification) should hold for each database extension. Unlike
object constraints, class constraints are not inherited by subclasses. In gen-
eral, class constraints do not necessarily hold for subclasses. Consider for
example a constraint on the class Person, stating that the percentage of fe-
male persons must lie between 40 and 60. Certainly in the Netherlands, this
constraint does not hold for the subclass Employee.

The methods specified in a class definition are update or retrieval meth-
ods. A further distinction has been made between object and class methods.
Subject of object methods are the individual members of a class, whereas in
class methods sets of class members are the subject. Method definitions are
of the form:

<method name> (in <variable-domain list> out <domain>) =
<method body>

The variable-domain list determines the names and domains of the formal in-
put parameters. For retrieval methods the domain of the result of the method
has to be specified. For update methods the domain of the result is known
(the domain of self), so it may be omitted. The method body of a retrieval
method and a class update method may be an arbitrary TM expression (to
be described below); in object update methods, the self except construct is
used to update attribute values. In the example some update and retrieval
methods have been specified.

Besides classes, TM has auxiliary classes. Auxiliary classes differ from
classes in that auxiliary classes do not have an extension, and instead of an
attribute list a type is specified. Unlike auxiliary class names, class names may
not occur in type specifications, and type specifications may not be recursive.
As mentioned already, auxiliary classes are useful to specify complex depen-
dent values (such as addresses and dates) with accompanying constraints and
methods.

1.2.4 Expressions

TM expressions include the following: the special expression self, con-
stants, variables, parenthesized expressions, and expressions having local defi-
nitions, defined with a where clause. For each composite domain there exists
a collection of domain-specific language constructs to build up expressions of
that domain (record, variant, set, and list expressions). Furthermore, TM has
an if-then-else construct, arithmetical expressions, and aggregate expressions.
Important types of expressions are the iteration expressions, for iterating over
sets and lists, and predicates. And of course method calls belong to the ex-
pression language. Some of these expressions will be described in more detail
below.

Self. When used in object constraints or object methods, self denotes the
object at hand, when used in class constraints or class methods, self denotes
the class extension.

Record expressions. A record expression is either an explicit record con-
struction (such as (name="Jones",age=37,salary=50,000)), a field selec-
tion (dot notation), or a record overwriting (used in object update methods).
An example of a record overwriting is the expression self except (address
= newaddress) (the body of the object update method move of the class
Person), and the result is a record with the address field modified.

Set expressions. Set expressions are either enumerated set expressions, set
expressions obtained through set operaters (union, intersect, minus), or
predicative set expressions. An example of a predicative set expression is
the following expression, delivering the set of employees not living in the city
where the department d is located:

{e in d.employees |e.address.city # d.address.city}

In fact, this expression is an abbreviation of the expression:

{e:Employee|e in d.employees and
e.address.city # d.address.city}

Note that predicative set expressions, when evaluated, have set values as a
result, so predicative set expressions may, as any other expression, be used as
part of other expressions.

List expressions. List expressions are either enumerated list expressions, or
expressions built up by the operators head, tail, and concat.

Tteration expressions. Iteration expressions include expressions for selectively
collecting or replacing elements of sets or lists, and for nesting and unnesting
sets. Nesting is comparable to SQL’s GROUP BY operation; unnesting a
set of sets results in the union of those sets. We take the following collect
expression, which contains a nested collect expression, as an example of an
iteration expression:

collect (collect e

for e in d.employees

iff e.address.city # d.address.city)
for d in self

This expression determines, for each department d, the set of employees not
living in the city where d is located. The general format of a collect expression
is:

collect <result expression>
for <variable> in <operand expression>
iff <predicate>

The meaning of the collect expression is as follows. The operand ex-
pression is evaluated, a variable is iterated over the resulting set or list, for
each value of the variable it is determined whether the predicate holds, if so,
the result expression is evaluated, and this value is included into the resulting
set or list. The result expression and the predicate are optional. If the result
expression is missing, the set or list elements are included in the result unal-
tered; if the predicate is missing, the result expression is evaluated for each
element of the operand.

Predicates. Predicates, always of type bool, are expressions built up by com-
parison operators, connectives and, or, implies, and equiv, negation not,

and quantifiers forall and exists. An example of a predicate is the database
constraint concerning secretaries and managers:

forall m:Manager (forall s:Secretary
(not exists e:Employee (misa e and s isa e)))

stating that the classes Manager and Secretary are disjoint.

Some special comparison operators are isa, comparing objects of distinct
types, such that one is a subtype of the other (equality modulo the subtype
relation), ~ for shallow equality (where = denotes deep equality), in and
subset for element of and subset, and sin and ssubset for element of and
subset modulo the subtype relation.

1.3
Introduction to ADL

ADL is an algebraic language for complex objects. The language is based
on the functional programming language FP, designed by Backus [Backus 78].
Independently, Beeri and Kornatzky took a similar approach [Beeri and Kor-
natzky 90]. ADL and the language defined in [Beeri and Kornatzky 90] have
very much in common. The main difference is that in [Beeri and Kornatzky
90] an abstract definition of the notion of data collection is used. Instead
of having, for example, set, list, and array constructors, an abstract type
‘constructor’ is defined. However, a distinction is made between constructors
that are permutable (e.g., the set constructor), constructors that eliminate
duplicates (e.g., the set constructor), and constructors that eliminate nulls.

ADL is a typed language consisting of three layers:

e data objects — basic data objects (basic constants or persistent object
names) and composite data objects (built up from other data objects
by applying data constructors),

e operators — functions operating on data objects, delivering data objects,
and

e functionals — higher order functions, having functions or data objects
as parameters and delivering functions.

At present, ADL does not have subtyping nor parametric polymorphism.

1.3.1 Data objects

The data types of ADL are basic types or composite types. Basic types
are int, real, bool, string, and oid, composite types are set types ({-}),
list types ([-]), labeled tuple types (<->) and ordered tuple types ((-)), and
variant types (<| - |>). Types can be arbitrarily nested. The data objects of
ADL are either:

¢ basic data objects: basic constants and persistent object names

e composite data objects: data objects built up from other data objects
by applying data constructors.

Let ¢ denote basic constants, let v denote persistent variable names, and let
a denote labels, then data objects o are given by the following syntax rule:

ouz=c|v|{o,...,0}]|[o,...,0]|<a=o0,...,a=0>|(o,...,0)|<|a=0|>
Examples of data objects are the following.
3, true, {1,2,3}, 0, ("Doe", 25), <name="Doe", age=25>, Employees

We often refer to data objects as objects. Notice, however, that in ADL the
term ‘object’ does not have the usual object-oriented connotation ‘member of
a class,’ but instead stands for a value.

1.3.2 Operators

In the FP style of programming operators have only one argument. Mul-
tiple arguments are collected in sequences (the sequence constructor is the only
data type constructor in FP). In ADL, we use ordered tuples for this purpose.

Operators are functions from data objects to data objects. For each
data type a collection of useful operators is defined. Overloading is applied
as much as possible, but we do not allow mixing of set and list type operands
(e.g- appending a list to a set) for reasons of clarity.

ADL supports the following constructors as operators: the (unary) set
constructor {-}, the (unary) list constructor [-], the labeled tuple constructor
< ai,...,an, > (where ay,...,a, are labels), and the variant constructor
<|a|> (a alabel).

Important operators are selectors a (a a label), to select labeled tuple
fields, and s1,s2,... (si for i € INT), to select ordered tuple fields.

Furthermore, we have operators id (identity operator), : (prefix an ele-
ment to a list or insert an element into a set), + (set union, list append and
tuple concatenation), - (set difference and list subtraction), int (set and list

intersection), prod (Cartesian product of sets or lists), hd and t1 (list head
and tail), flat (union of set of sets and append of list of lists), el (taking
the element from a singleton set), mkset (converting a list to a set) and uniq
(removing duplicates from a list). In case of list operators, the order of the
operands is preserved in obvious ways.

Aggregate operators supported are min, max, cnt, sum, and avg. Other
operators included in the language are sort, for sorting a set or list, and
nest and unnest, for both sets and lists of tuples, defined as in the nested
relational model. Some of these operators have an extra parameter indicating
the (possibly nested) attribute on which the operation has to take place.

Furthermore, we have arithmetical operators, comparison operators
<, <=, =, =>, > (= also defined for objects of type oid), Boolean connectives
or and and, and negation not.

1.3.3 Functionals

A functional is a higher order function: a function having functions and
objects as parameters and delivering a function as result. Unlike operators,
functionals have various arities. Roughly, functionals can be divided into two
groups: the non-iteration functionals, and the iteration functionals.

Non-iteration functionals are functionals employed for control or con-
struction. Iteration functionals are functionals mapping functions to elements
of aggregate objects such as sets and lists. Iteration functionals correspond
to the loop constructs from imperative programming languages.

Definitions are given below. In the definitions, : denotes function appli-
cation. Notice, however, that : may also denote the prefix operator.

Non-iteration functionals

Constant. If o is an object, then C[o]:z = o. For example, C[1]:z = 1,
where z is an arbitrary object. This functional is useful to replace constants
by functions.

Composition. Sequencing of functions is accomplished by function compo-
sition:

(fog)iz=f:(g9:2)
Condition. The condition functional is a ternary functional:

f:x ifp:x
g:x otherwise

@%ﬁme{

Construction. By means of construction it is possible to apply several func-
tions to one object:

(fi, s fa)iz=(fr:2,-.., fni)
{fi,-- s fotiz={fr:2,..., fu:z}
[fla"'afn]:z: [fl:z,---;fn:m]

Product. The product functional is used to distribute functions over a tuple
of objects:

(fi X+ x fa) (21, 2n) = (f1:21,. ., friTn)

The product functional can be expressed by means of construction and selector
functions:

(fix--xfn)=(frosl,...,fro0sn)

and is included in the language to avoid excessive use of selector functions.

Iteration functionals

Map. The functional map applies a function to every element of a set or
list. For example, for a list:

map(p]:[] =[]
map[f]:[z1,.-.,Zn] = [fi21,..., fi24]

Restrict. The functional res applies a predicate (a function having a Boolean
result) to every element of a set or list and includes into the result those
elements for which the predicate holds. For example, for a list:

el =l H(res[p]:[D i
z1: (res|p|:|z2,...,Zn if przy

reslpl:les, - an] = { res[p]:[z2,. .., Zx] otherwise

Generate. The functional gen is a combination of the functionals res
and map. The parameters of the functional gen are a predicate and a function.
To each element of the operand set or list the function is applied, and then it is
checked whether the predicate holds for the result of the function application.
If so, the result of the function application is included in the result. The func-
tional adds no power to the language, but it is included to be able to apply a
function and a predicate to a set or list in succession, without having to create
intermediate results (pipelining of operations [Beeri and Kornatzky 90]). For
example, for a list:

INote this : denotes the prefix operator, prefixing an element to a list (used in infix
notation).

genlp, f1:[1 =] 1 |
genl[p’f]]:[xl""’a’n]:{(f:xl): (gen[p, f]:[z2,...,2n]) if p:(fiz1)

gen[p, fl:[z2,- .., Zn] otherwise

Accumulate. The functional accumulate is a very powerful functional,
which is also known as fold [Turner 85], or insert [Backus 78]. For lists, two
different versions of the functional (right and left associative) exist:

accrfop, 2] :[€1,...,2n] = x1 0p (2 0p (--- (Bn 0P 2) - --))
acclfop, z]:[1,- .-, Tn] = ((-+- ((2 op x1) 0p 23) - -)op T7)

and, if applied to the empty list:

accrfop, z]:[] =
acclfop, 2]:[] =

Note op is used in infix notation. The functional accumulate is also defined
for sets, but then is it required, for the semantics to be well-defined, that the
operator op is commutative and associative, because sets are unordered. The
two versions of accumulate for lists then coincide (acc).

Forall and forsome. The forall functional tests whether a predicate holds
for all elements of a set or list. For example, for a list:

allfp]:[] = true
) _ [all[p]:[z,...,xn] ifprzy
allfp]:[z1,. .., 20] = { false otherwise

The forsome functional tests whether a predicate holds for at least one element

of a set or list. For example, for a list:
some[p]:[] = false
_ | true if pray
some[p]:[z1, ., 2n] = { some[p]:[z2,...,2,] otherwise

As is well-known from functional programming, many operators, and all other
iteration functionals can be expressed in terms of acc(1/r). This fact may be
useful in generalizing equivalence rules and proofs. For lists, some examples
using accr are given below.

flat = accrf+,[]]
cnt = accr[+o(1 x id), 0]
sum = accr[+,0]

map[f] = accr[: o f x id),[]]
res[p] = accr[+o((p — [J;C[[1]) x 1d),[]]

allfp] = accr[(p o s1 — s2;C[false]), true]

1.3.4 Expressions

ADL expressions are of the form f:o, where f is a function, composed
of functionals and operators, and o is an object.

1.4
Translation of TM to ADL

Mapping one typed language to another involves a mapping of types (or
classes) and a mapping of expressions. In Section 4.1 we discuss the mapping
of TM class definitions to ADL, in Section 4.2 we discuss the mapping of
expressions. An example translation will be given in Section 4.3.

1.4.1 Translation of classes

Before we are in the position to discuss translation of TM expressions
into ADL expressions, we have to decide how to translate the following (re-
lated) issues.

o Classes.

Auxiliary classes.
Object identity.

e Domains.

e Transparent references (see below).

Inheritance of data, constraints, and methods.

Constraints and methods.

Classes may be mapped to ADL object types in many different ways
(possibly depending on performance characteristics). Class attributes may be
distributed over several ADL object types, different classes may be brought
together into one ADL object type, etc. Being the most obvious choice, in
this paper we decide to map each TM class to one persistent object type in
ADL. As a class extension structurally is a set of records, the corresponding
persistent object in ADL is a set of labeled tuples.

Awuziliary classes have no extension; when used in object attribute defini-
tions, an auxiliary class name is replaced by its (translated) type specification.

Object identity is implemented by means of object identifiers of type oid.
Occurrences of class names in object attribute definitions are replaced by the
type oid.

Mapping of basic or composite domains is straightforward: the collec-
tion of basic types of TM is a subset of the collection of basic types of ADL,
and the collection of type (domain) constructors of both languages is identical.
As an example we translate the following TM specification.

begin specification
AuxClass Date
type
(day:int ,month:int ,year:int)

end AuxClass Date

Class Person with extension Persons

attributes
name : string
birthdate : Date
spouse : Person

end Class Person

end specification

In ADL this is:

type Date = <day:int, month:int, year:int>

type Person = <name:string,
birthdate:<day:int, month:int, year:int>,
spouse:oid>

object Persons : {Person}=1{

In TM, relationships between classes are modeled by the use of class names
in attribute domain specifications. By means of the dot notation we have
direct access to objects being ‘referenced’ in attribute domain specifications,
i.e. references are transparent. For example, in the TM specification above
the name of the spouse of some person p is obtained with the expression
p.spouse.name. Because class names are replaced by the type oid, ‘derefer-
encing’ must take place whenever attributes, of which the domain specification
contains a class name (one or more), are accessed. In ADL this operation im-
plies a ‘join’ between the two objects representing the class extensions.

Also inheritance of data can be mapped in many different ways. The
mapping of inheritance of data in TM to ADL is comparable to the mapping
of the EER concept of generalization to the relational model. The same
options, as for example described in [Elmasri and Navathe 89], are applicable
in this case. For example, one way to model inheritance of data on the ADL
level is to include the attribute set of the superclass in the attribute set of the
subclass(es), meaning that objects belonging to the superclass are distributed
over several ADL persistent objects. Another way to model inheritance of
data is to leave the attribute sets of sub- and superclasses as they are, and
to use oid equality to implement the sub-superclass relationship. This means
that attribute values of objects belonging to the superclass are distributed
over several ADL persistent objects.

The specific choice of translation of inheritance of data of course influ-
ences the translation of constraints and methods. Translation of constraints
and methods results in expressions f:¢, where ¢, besides objects, also contains
formal parameter names (the expression self is treated as a formal parameter
name). When a method call or a constraint evaluation takes place, the actual
parameters are substituted for the formal parameter names.

1.4.2 Translation of TM expressions

In this section we will give the outline of an algorithm to translate a
subset of (safe) TM expressions to ADL expressions. In doing so, we assume
there is no inheritance, and no class names occur in attribute specifications.
Translation of inheritance and transparent references presents no fundamental
problems, but this way we can concentrate on the translation algorithm itself,
without having to take into consideration unnecessary details. Before giv-
ing the translation algorithm, we first discuss some general issues concerning
safety and the translation of predicative set expressions.

General considerations
Safety

TM is a language with highly declarative language constructs. Predica-
tive set expressions for instance are in general descriptive, not constructive: it
is stated what the result of a query is, not how it should be obtained. In con-
trast, ADL is essentially a procedural language. ADL expressions represent a
specific algorithm to find the answer to a query.

The declarative nature of TM causes problems with respect to termina-
tion, and even computability. For example, evaluation of the simple expression

{x:int |x > 0} will be non-terminating (if it even will get started comput-
ing). The expression {x:real|0 < x < 1} not only represents an infinite
set, but also a set containing non-computable numbers. On the other hand,
ADL expressions always represent finite and computable sets or lists.

To solve this problem we need a notion of safety: TM variables are
allowed to range over finite sets only. A variable is safe if it ranges over a
finite set; an expression is safe if the variables occurring in it are safe. Some
examples of safe expressions are the following. Let ¢ be a constant, e a safe
set expression, and p a safe predicate.

{x:int|x = ¢ }

{x:int |x in e and p(x)}

{x:int |exists vine (x = v.a)}

{x:int |exists vine (x = v.a and p(v))}

v.a and p(x))}

{x:int |exists v in e (x
{x:int |0 < x < 10}
{x:int|0 < x < 10 and xmod 2 = 0 }

NS o e

The notion of safety is needed whenever in TM a clause of the form
<variable>:<domain> is allowed, i.e. in predicative set expressions and quan-
tified predicates. In [de By 91] a formal notion of safety is defined for a similar
language. In the sequel, we assume all TM expressions to be translated are
safe.

Predicative set expressions

Translation of most TM constructs and operators in itself is rather
simple, because many TM constructs have ADL counterparts. Translation of
the predicative set construct, however, is not so obvious, due to its possible
highly descriptive nature. (Above all, predicative set expressions must be safe,
as explained before.)

Considering the expressions listed above, each set is constructed differ-
ently. Evaluation of a predicative set expression almost always implies iterat-
ing over some set (the first expression being an exception to this rule). The set
over which the iteration takes place either has already been constructed (the
set e in expressions 2, 3, 4, and 5), or yet has to be constructed (expressions 6
and 7). For expression 6, the evaluation strategy may be to draw consecutive
values from the domain of the positive integers, while the predicate holds. For
expression 7, the strategy might be to do the same, but to stop when both

literals are false, and only to include those integers for which the conjunction
is true. For the expressions 2, 3, 4, and 5, evaluation may come down to fil-
tering an existing set (2), applying a function to an existing set (3), or both:
filtering before application (4), or application before filtering (5).

There seems to be no general evaluation strategy for predicative sets; the
choice of a specific strategy strongly depends on the form of the predicate. It is
not clear yet, how, in general, predicative set expressions should be translated.

A restricted form of a predicative set expression which is easily translated
is {v:D|v in e and p}, where D is a domain, e a set expression, and p a
predicate. This may be abbreviated to {v in e|p}; its translation in ADL is
an expression involving the restrict functional (see Section 4.2.2). Translation
of predicative set expressions in general is a topic of further research.

Algorithm

We present the following simplified syntax for a subset of TM expres-
sions. Among other things, variant and list expressions are not included for
simplicity. Let v denote variables, ¢ constants, a labels, and e expressions.

e = be]ie

be == v | c|self]|
(a=e,...a=¢€)|ea|
{e,...,e}|
if etheneelsee |
unop(e) | e binop e

ie ::= collect [e] for v in e [iff €] |
{vine]|e}

unop ::= not | count | ...

binop :===|+|—|/|+*|and | or | union | ...

Translation of a TM expression e (which is a constraint specification
or a method body) proceeds bottom-up: subexpressions are translated first.
Each subexpression of e is translated into an applicative expression f:t, where
f is a function and ¢ contains formal parameter names, class extension names,
and iteration variables. Iteration variables are the bound variable names used

in iteration expressions, predicative set expressions, and quantified predicates.
The expression self, which denotes an object (in object constraints or object
method bodies), or a class extension (in class constraints or class method
bodies), is treated as a formal parameter name. In the translation algorithm,
formal parameter names, class extension names, and iteration variables are
just called variables, or variable names. Ultimately, the expression e is trans-
lated into an applicative expression f:t, where ¢t no longer contains iteration
variables. Iteration variables are eliminated in the translation process.

We have the following translation for the expressions given in the syntax
above.

Variables. Assuming identical name spaces, variables v (formal parameter
names, class extension names, and iteration variables) are replaced by id:w.
The function id is necessary because, as explained above, every subexpression
is translated in an applicative expression f:¢.

Constants. If a constant ¢ occurs in a collect or predicative set expression
iterating over variable v then c is replaced by C[c]:v; if not, then c is replaced
by C[c] : self. Because every subexpression is translated in an applicative
expression, the constant functional is given an artificial argument (the most
obvious one in the context).

Self. The expression self is treated as a formal parameter name (a vari-
able), so it is translated as id:self.

Record construction. Let e = (a1 = e1,...an, = e,) be a record construc-
tion, and let f;: 0; be the translation of the expressions e; for ¢ within the
range. The translation of e is then

<a1a---aan>°(f1 x"'xfn):(ola---aon)

Field selection. If f:o is the translation of the expression e, then the transla-
tion of a field selection e.a, where a is an attribute name, is (a o f):o.

Set enumeration. Let e = {e1,...,e,} be an enumerated set expression,
and let f;:o0; be the translation of the expressions e; for ¢ within the range.
The translation of e is then

{fiosl,...,fnosn}:(01,---,0n)

The conditional. Let f;:o0; be the translation of the expression e; for 1 < < 3,
then the translation of the expression if e; then e; else ej is

(f1 08l = fyo082; f3083):(01,02,03)

Unary operations. If u is some unary operator, and f:o0 is the translation of
the expression e, then the translation of the expression u(e) is u' o f: 0, where
u' is the ADL version of the operator u.

Binary operations. If b is some binary operator, and f; : o; is the transla-
tion of the expression e; for 1 < i < 2, then the translation of the expression
e1 besis b o(f1 X f2):(o01,02), where b’ is the ADL version of the operator b.

The collect expression. Let e be the expression collect e; for v in ey iff e3,
where es is a set expression, and let

f1:01 be the translation of the result expression ey,
f2:02 be the translation of the operand expression e,
f3:03 be the translation of the predicate e3.

Now, whenever a free variable name w occurs in 0 or og, this variable is
used in every step of the evaluation of the collect expression. By forming
the product of the set {w} and the operand object (tuples (w,v) for each v
in the operand object), and applying the translated collect function f; and
predicate f3 to this product, using appropriate selector functions, we achieve
a ‘materialization’ of iteration over a set or list with a free variable w. Of
course 01 or o3 may contain several free variables.

So, let V' be the set of variable names occurring in 0; or in o3. Let FV
be the set V' \ {v}, the set of free variable names occurring in o; or in 03. Now
two cases are distinguished: F'V is not empty (free variables in 0y or o3, so a
product has to be formed) or FV is empty (no free variables in 0; or o3; no
product has to be formed).

1. FV # 0. Let n be the cardinality of FV. Define a function sel :
FV — {s1,...,s(n + 1)}, with sel(z) € {s1,...,sn}, if z € FV, and
sel(v) = s(n + 1). The function sel binds each variable to a unique
selector. Let o be the ordered tuple (z1,...,%,,02), where z; = z if
sel(z) = si for 1 < i < n. The tuple o collects all variable names used
in the expressions 01, 02, and o03. Replace each £ € V by sel(z) in the
expressions 0; and o3, and let the results be g; and g3. In the expressions

01 and o3, the variable names are replaced by selector functions, so that,
instead of objects, we now have functions. Finally, the result of the
translation of e is:

map[f1 0 g1] o res[fz o gs] oprodo ({} x --- x {} xf2):0
~————

n times

As explained, first tuples (wy, . . . , wy, v) are formed for each free variable
w; and each element v of the operand object, then a restriction on the
product takes place, and finally the result is delivered by mapping fi09:
to the restricted product.

2. FV = 0. Replace each z € V (V = {v}) by id in the expressions o;
and o3, resulting in g; and g3. The expressions 0; and o3 cannot simply
be omitted, because they may contain multiple occurrences of v. The
result of translation of e is:

map[fi 0 g1] o res[fs o gs] o f2:02

If the result expression e; or the iff clause are missing, the translation can be
easily adapted. If the result expression is missing, i.e.,
e = collect for v in e; iff e3, we omit the map functional; if the iff clause is
missing, we omit the restrict functional. If both optional clauses are missing,
then the collect expression is equivalent to the operand expression.

Predicative set expressions. Let e be the expression {v in eq | e2}, and let

f1:01 be the translation of the operand expression e;,
f2:09 be the translation of the predicate es.

Let V be the set of variable names occurring in 0. Let F'V be the set
V' \ {v}, the set of free variable names occurring in 0;. Again, two cases are
distinguished.

1. FV # (. Let n be the cardinality of FV. Define the function sel as
above. Replace each ¢ € V by sel(z) in the expression o;. Let the
result be go. Let o be the ordered tuple (z1,..., 2y, 01), where z; = z if
sel(z) = si for 1 <14 < m. The result of the translation now is:

map[s(n + 1)] o res[fz 0 ga] o prodo ({} x --- x {} xf1):0

n times

Whenever a predicative set expression is a subexpression, and its trans-
lation involves a product (that is, free variables occur), then the final
result is achieved by a ‘projection’ on the product.

2. FV = (. Replace in the expression os each z € V (V = {v}) by id,
resulting in go. The result is:

res[fz 0 ga] o f1:01

As mentioned before, this form of predicative set expressions is a severely
restricted form.

1.4.3 Example translation

To illustrate the algorithm we present the translation of the body of
the class retrieval method emps_living elsewhere, which was defined in the
example specification given in Section 2.1. The result of the method is the
set of employees who do not live in the same city as they work in.

In this example, the field selection d.employees occurs. Because each
class is mapped to one persistent object type, and class names in attribute do-
main definitions are replaced by oid’s, in the translation to ADL a dereference,
or ‘join,” should be inserted. However, for reasons of simplicity, in this case
we translate the expression d.employees to the expression employeesoid:d,
without dereferencing, and we assume the selector employees delivers the
desired result immediately.

In the translation below, translated subexpressions of intermediate forms
have been underlined.

The initial expression is:

unnest (
collect {e in d.employees|
e.address.city # d.address.city}
for d in self)

The subexpressions of the nested predicative set expression are translated
first. Before translating the entire predicate, the subexpressions of the binary
operation are translated.

unnest (
collect {e in employeesoid:d |

addresso cityoid:e # addressocityoid:d }
for d in self)

Translation of the binary operation is easy:

unnest (
collect {e in employeeso id:d |
o(address o cityoid X addressocityoid):(e,d) }
for d in self)

We see that the expression o, = (e,d) has a free variable d, so the first of
the two options given above applies. We define sel(d) = s1, sel(e) = s2, and
substitute:

unnest (
collect map[s2]o
res[# o(address o city o id x address o city o id) o (s2,s1)]o
prodo ({} x employees o id):(d,d)
for d in id:self)

For each department, the product is formed of the singleton set containing
the department, and the set of employees working for the department. A
projection on the desired employee-field follows the restriction on the product.
Translation of the collect expression is simple: no free variables occur in 07 =
(d,d), so the second option applies. The ADL version of the unnest operator
is flat.

flat o map[map[s2]o
res[# o(address o city o id x address o city o id) o (s2,s1)]o
prodo ({} x employees o id) o (id, id)] o id:self

The expression above can, by using algebraic rewrite rules (see Section 5), be
simplified to:

flat o map[map[s2] o res[# o(address o city X address o city)]o
prodo ({}, employees)]:self

The meaning of the result expression is as follows. For each department,
the product is formed of the set of employees working for the department,
and the singleton set containing the department. Then, for each tuple in
the product (for each employee-department pair), it is checked whether the
city the employee lives in is different from the city where the department is
located. If so, the tuple is included in the result. After that, a field selection
has to take place: we are not interested in the product tuples generated, but
we only want the employee part (the second field). The final step consists of
flattening the result (for each department a set of employees is delivered).

1.5
Optimization in ADL

Algebraic optimization involves the rewriting of an algebraic expression
into a semantically equivalent (but syntactically different) expression, which
can be evaluated at lower (or even minimal) cost. The rewrite process, being
a difficult search problem, must be guided by a set of powerful heuristic rules.
In this section, we will present some ADL equivalence rules, which may be
useful in the rewriting process.

In [Backus 78] and [Beeri and Kornatzky 90] many examples of useful
equivalence rules have been given already. However, in [Beeri and Kornatzky
90] rules are classified by the kinds of operators or functionals occurring in
the rule. Here we will try to classify some rules by their intended purpose.

Heuristic optimization rules well-known from relational algebra opti-
mization, such as:

e perform selections and projections as soon as possible,

e perform as many operations as possible during one access (grouping of
operations),

e of a cascade of projections perform only the last one,
are just ‘instantiations’ of the more general optimization goals:

e reduce sizes of intermediate results,
e generate as few intermediate results as possible,

e avoid useless computations.

For these three optimization goals, which are generally valid, and possibly
others, we have to find ADL analogues. In addition, we need a collection of
equivalence rules that do not so much serve some specific optimization goal,
but that are needed in the rewrite process.

Reduce sizes of intermediate results

Pushing restriction. The following equivalence rules are examples of the well-
known selection rule, prescribing to perform selections as soon as possible.
(Notice that, in general, equivalence rules must be read from left to right to
achieve the desired effect.)

¢ Distributing restriction over binary operators is one example of the se-
lection rule. For op € {+,-,int}, we have:

res[p] o op = op o (res[p] x res[p])

e For pushing a restriction beyond a product we have several rules:

res[po g] o prodo (hy, he) = prodo (res[p] o hy, h2)
ifq o (hla hz) = hl

res[po g] o prod o (hq, he) = prodo (hy,res[p] o hs)
ifq [¢] (hl, hz) = h2

If a restriction follows a product operation, and the restriction predicate
only involves one product field, then the restriction can be performed
before the product is taken. Typically this is the case when the function
q is a selector function.

In the following rule the restriction predicate involves both fields of the
product:

resfand o (p; X p2)] o prod = prod o (res[p1] x res[p2])

Pushing a restriction beyond an application is possible if the application
does not affect the predicate domain, for instance when a projection
is applied to some set of tuples, and this projection is followed by a
restriction involving one of the tuple fields preserved.

res[p o g] o map[f] = map[f] cres[poq]if go f =g¢q

Pushing application. Pushing a map down the operator tree (or graph) is
especially profitable when selector functions are mapped (projections) or when
map is pushed beyond a product.

map[f o h] o prod o (g1, g2) = map[f] o g1
if ho (g1,92) = g1 and g1, g> deliver sets and
g2 delivers a non-empty set
map[f o h] o prodo (g1, g2) = map[f] o g2
if ho (g1,92) = g» and g1, g> deliver sets and
g1 delivers a non-empty set

map[(f1 X fa)] o prod = prod o (map[fi] x map[fa])

Generate as few intermediate results as possible

Grouping (or pipelining, [Beeri and Kornatzky 90]) avoids the genera-
tion of intermediate results by applying several operations during one access.
The following rules express grouping:

map[f] o map[g] = map[f o g]

res[p] o res[q] = res[ando(p, q)]

res([p] o map[f] = genp, f]

map[f] o res[p] = accr[+o(p — []o f;C[[]]),[]]

In the last expression the parameter function of the functional accr appends
the singleton list [f:z] to the result if p:z is true, otherwise the empty list is
appended.

Avoid useless computations

Some rather simple examples of this rule are the following:

foid=idof=f

elo{}=id

map[flo{}={}o f

map[(s1, s2)] o prod = prod

ho(s2,s1) o (f,g) = ho (g, f) if h is commutative

(fux--xfn)ol(g---,9) =(f1,--,fn)oyg
——

n times

Sio(fla"'afn)Efi

1.6
Future work

With respect to the translation of TM to ADL, one of the problems to
be addressed in the future concerns the formalization of the notion of safety in
TM. Another problem is the translation of predicative set expressions. The
work done in [Partsch 90] concerning the development of (efficient) programs
from formal problem specifications may be of help in solving this problem.

The actual optimization by rewritingin ADL is a major topic of research.
The following subproblems may be distinguished.

e Definition of a cost model, possibly incorporating different access rou-
tines.

e Definition of a suitable set of rewrite rules. Because ADL has many
operators and functionals, a large set of equivalence rules can be written
down. The task is to define a minimal set of useful equivalence, or
rewrite rules.

e Definition of a rewrite algorithm (algebraic optimizer). As is well-
known, even for the relational model algebraic optimization represents
a difficult search problem, and construction of an algebraic optimizer is
a hard task [Freytag 87, Graefe and DeWitt 87]. Because ADL is a rich
language, the problem even gets harder.

Bibliography

[Atkinson et al. 89] Atkinson, M., Bancilhon F., DeWitt D., Dittrich K.,
Maier D., and Zdonik S. “The Object-Oriented Database System Mani-
festo.” In Proc. 1st DOOD, 1989.

[Backus 78] Backus, J. “Can Programming Be Liberated from the von Neu-
man Style? A Functional Style and its Algebra of Programs.” Commu-
nications of the ACM, 21 (8), 1978, pp. 613-641.

[Balsters et al. 90A] Balsters, H., de By R.A., and de Vreeze C.C. “The TM
Manual version 1.2.” Manuscript, University of Twente, Enschede, 1990.

[Balsters et al. 90B] Balsters, H., de By R.A., and Zicari R. “Sets and Con-
straints in an Object-Oriented Data Model.” Memoranda Informatica
90-75, University of Twente, Enschede, 1990.

[Balsters and Fokkinga 91] Balsters, H. and Fokkinga M.M. “Subtyping can
have a Simple Semantics.” To appear in TCS 87, 1991.

[Balsters and de Vreeze 91] Balsters, H. and de Vreeze C.C. “A Semantics of
Object-Oriented Sets.” In Proc. 3rd International Workshop on Database
Programming Languages” , Nafplion, Greece, 1991.

[Beeri and Kornatzky 90] Beeri, C. and Kornatzky Y. “Algebraic Optimiza-
tion of Object-Oriented Query Languages.” In Proc. 3rd ICDT , LNCS
470, Springer-Verlag, 1990.

[de By 91] de By, R.A. “The Integration of Specification Aspects in Database
Design.” Ph.D. Thesis, University of Twente, Enschede, 1991.

[Cardelli 84] Cardelli, L. “A Semantics of Multiple Inheritance.” In Semantics
of Data Types, (Kahn G., MacQueen D.B., and Plotkin G. eds.), LNCS
173, Springer-Verlag, 1984, pp. 51-67.

31

[Elmasri and Navathe 89] Elmasri, R. and Navathe S.B. Fundamentals of
Database Systems. Benjamin/Cummings Publishing Company Inc., 1989.

[Freytag 87] Freytag, J.C. “A Rule-Based View of Query Optimization.” In
Proc. ACM SIGMOD, 1987, pp. 173-180.

[Graefe and DeWitt 87] Graefe, G. and DeWitt D.J. “The EXODUS Opti-
mizer Generator.” In Proc. ACM SIGMOD, 1987, pp. 160-172

[Lécluse and Richard 89] Lécluse, C. and Richard P. “The O, Database Pro-
gramming Language.” In Proc. 15th VLDB, Amsterdam, 1989.

[ONTOS 90] “ONTOS Object Database Developer’s Guide.” Ontologic Inc.,
Burlington, 1990.

[Partsch 90] Partsch, H.A. Specification and Transformation of Programs —
A Formal Approach to Software Development. Springer-Verlag, 1990.

[Turner 85] Turner, D.A. “Miranda: A Non-Strict Functional Language with
Polymorphic Types.” In Proc. IFIP International Conference on Func-
tional Programming Languages and Computer Architecture, LNCS 201,
Springer-Verlag 201, 1985.

[de Vreeze 91] de Vreeze, C.C. “Formalization of Inheritance of Methods in an
Object-Oriented Data Model.” Memoranda Informatica 90-76, University
of Twente, Enschede, 1991.

[Zdonik and Maier 90] Zdonik, S.B. and Maier D., eds. Readings in Object-
Oriented Database Systems. Morgan Kaufmann Publishers, 1990.

