
Towards Autonomous Pipeline Inspection with Hierarchical
Reinforcement Learning

Nicolò Botteghi1, Luuk Grefte1, Mannes Poel1, Beril Sirmacek2, Christoph Brune1,
Edwin Dertien1, and Stefano Stramigioli1

Abstract— Inspection and maintenance are two crucial as-
pects of industrial pipeline plants. While robotics has made
tremendous progress in the mechanic design of in-pipe inspec-
tion robots, the autonomous control of such robots is still a
big open challenge due to the high number of actuators and
the complex manoeuvres required. To address this problem,
we investigate the usage of Deep Reinforcement Learning for
achieving autonomous navigation of in-pipe robots in pipeline
networks with complex topologies. Moreover, we introduce
a hierarchical policy decomposition based on Hierarchical
Reinforcement Learning to learn robust high-level navigation
skills. We show that the hierarchical structure introduced in the
policy is fundamental for solving the navigation task through
pipes and necessary for achieving navigation performances
superior to human-level control. A video of our experiments
can be found at: https://youtu.be/uyjSHulpGoI.

I. INTRODUCTION

Pipelines networks are the fulcrum of the oil and gas
industries and of gas and water mains. These pipes must
be periodically inspected to guarantee the safety and proper
functioning of the plants. However, inspection is usually
a long, expensive and tedious procedure that requires the
shut-down of the whole plant and, in the specific case of
industrial pipelines, the removal of the insulation around the
pipes. With metal pipes, the inspection is currently performed
from the outside using ultrasonic or magnetic probes that
measure the wall thickness. Unfortunately, these inspection
methods provide limited information about the state of pipes
due to very low resolution and noisy data and require the
removal of the insulation. Currently, Pipeline Inspection
Gauges, or PIGs, are used to inspect the pipelines from
the inside. However, while PIGs do not require a full shut
down of the plant, they cannot be used to inspect networks
with complex topologies, e.g. sharp corners, T-junctions and
vertical sections.

In the last two decades, inspection robotics has focused
on designing new robotic prototypes for in-pipe inspection.
However, especially in the case of small diameter pipes, the
mechatronics of these robots is complex, costly and with
low operability [1]. While the design of these in-pipe robots
has quickly progressed, many steps have yet to be taken to
navigate and inspect complex pipes autonomously. In-pipe
inspection robots operate in highly constrained environments,
with limited sensing equipment, without or with limited

1Nicolò Botteghi is with Faculty of Electrical Engineering, Mathematics
and Computer Science, University of Twente, Enschede, The Netherlands
n.botteghi@utwente.nl

2Beril Sirmacek with the Department of Computer Science, Jönköping
University, Jönköping, Sweden

knowledge of the pipeline-network structures beforehand and
unpredictable situations due to the contact dynamics and
slippage as different fluids and media can be present in the
pipes during the inspection. Furthermore, these robots are
often composed of multiple joints, and multiple actuators
have to be simultaneously controlled, making the design
of an autonomous, robust and adaptable navigation system
challenging.

Reinforcement Learning [2], or RL, has proven to be a
valuable solution for many robotics challenges and tasks
such as mobile robot navigation, dexterous manipulation
through robotic arms, and bipedal robot locomotion [3].
However, when the task requires the execution of a sequence
of complex skills on a long temporal horizon, Reinforcement
Learning algorithms tend to struggle [4]. Hierarchical Rein-
forcement Learning, or HRL, takes advantage of the hier-
archical policy decomposition to exploit underlying problem
structures and simplify the learning of complex tasks. The hi-
erarchical decomposition can be either defined by using prior
knowledge [5], [6], [7], [8], or can be automatically learned
during training [4], [9], [10]. While the latter category of
algorithm does not require expert knowledge for defining
the hierarchy, the autonomous discovery of the options often
leads to sub-optimal policies if additional regularizers are not
used during the learning phase [7], [10].

We propose a Hierarchical Reinforcement Learning frame-
work for autonomous navigation of multi-actuated, complex
robots for in-pipe inspection. This is shown in Figure 1.
In particular, we focus on the pipe inspection robot called
PIRATE [11], but the approach can be easily adapted to many
different snake-like pipe inspection robots. The framework
combines expert knowledge for determining the hierarchy
of the policies with simple auxiliary reward functions for
ensuring the optimal behaviour of the sub-policies. To the
best of the authors’ knowledge, this is the first time a
robust and flexible control solution employing Reinforcement
Learning for the autonomous navigation of snake-like pipe
inspection robots with a clamping mechanism is presented.
In this paper, we aim at addressing the following research
questions:

1) What is a good hierarchy for learning robust and
generalizable policies for the pipeline inspection robot
PIRATE?

2) What are the benefits of such a hierarchical decompo-
sition of the policy?

3) How do the learned policies compare to human-expert
control?

ar
X

iv
:2

10
7.

03
68

5v
1 

 [
cs

.R
O

] 
 8

 J
ul

 2
02

1

https://youtu.be/uyjSHulpGoI


Environment

atot

Agent

rt

Sub-policy

Action

Reward

Observation

Master Policy Sub-policy

Sub-policy

Fig. 1. Proposed Hierarchical Reinforcement Learning architecture for the autonomous navigation of the PIRATE robot.

The paper is organized as follows: Section II presents the
theoretical background and Section IV briefly surveys the
state of art of in-pipe inspection robotics. Then Section V
explains the methodology followed in this research, followed
by Section VI showing the experimental design. Section
VII presents and discusses the results of the experiments.
Eventually, Section VIII concludes the paper.

II. BACKGROUND

A. Reinforcement Learning

Reinforcement Learning [2] is the Machine Learning
branch dealing with the problem of optimal sequential
decision-making. In the Reinforcement Learning framework,
an agent tries to learn the optimal behavior for solving
a given problem by interacting with an unknown environ-
ment. The interaction can be formally studied by means of
Markov Decision Processes, or MDPs. An MDP is a tuple
〈S,A,T,R〉 where S corresponds to the set of states,A to the
set of actions, T : S ×A −→ [0, 1] to the transition function
determining the evolution of the states and R : S ×A −→ R
is the reward function. The goal of a Reinforcement Learning
agent is the maximisation of the total cumulative reward∑T
t=0 λ

trt, where rt is the scalar reward obtained for taking
the action at in the state st at time step t, and λ ∈ [0, 1] is the
discount factor weighting the importance of future rewards.

1) Proximal Policy optimisation: Proximal Policy optimi-
sation, or PPO, [12] is an actor-critic policy gradient method
that improves Trust Region Policy optimisation algorithm, or
TRPO, [13], by relaxing its hard constraints. PPO replaces
such constraints of TRPO by using loss functions for training
the policy neural network. We use the variant of PPO with
the clipped objective function, shown in Equation (1), for
its popularity, but the proposed framework is not strictly
dependent on it.

Lclip(θ) = E[min(ζt(θ)Ât, clip(ζt(θ), 1− ε, 1 + ε)Ât] (1)

where ζt(θ) =
πθ(at|st)
πθold(at|st) corresponds to the probability ra-

tio of the current policy and the old policy, Ât the estimation
of the advantage function, ε is the clipping coefficient and θ
the parameters’ vector of the policy.

B. Hierarchical Reinforcement Learning

Hierarchical Reinforcement Learning algorithms aim at
exploiting the structure of the problems by learning
hierarchically-structured policies, efficiently solving complex
tasks, and improving the generalization of the learned be-
haviors. In this context, the MDP model is often extended
to Semi-Markov Decision Process, or SMDP, model [14] to
take into account the temporal dimension introduced by the
abstract actions. A SMDP is a tuple 〈S,Aa,B,T,R〉 where
S is the set of states, Aa is the set of abstract actions, B
is the set of all possible duration of the abstract actions,
T : S × Aa × B −→ [0, 1] is the transition function and
R : S ×Aa × B −→ R is the reward function.

III. RELATED WORK

Exploiting structures and hierarchies is one of the most
important challenges for scaling RL algorithms to more com-
plex real-world problems. A famous Hierarchical Reinforce-
ment Learning approach is the so-called Option framework
[5], [15]. Options are temporally extended abstract actions
corresponding to the set of skills the agent need to learn in
order to solve tasks. In this framework, above the options,
we always find a high-level policy, learning to select the
best option for the given context. Options can be either hand-
crafted based on prior knowledge, as in [6], [7], [8], or can be
automatically learned during training, as in the option-critic
framework proposed by [10]. In the latter case, however,
regularization, e.g. entropy maximisation, has to be often
employed to prevent the learning of sub-optimal options.

A different approach is followed by HIRO [4], and FuN
[9], where the high-level policy does not select anymore



which abstract action to actuate, but, instead, determines
abstract goals for the low-level policies. Similar to the
option framework, the abstract goals are chosen with a lower
frequency than the actions chosen by the low-level policies.

In our work, we want to exploit the high amount of prior
knowledge we have about the robot’s mechanics and motion
and about the navigation task in the structured pipeline
networks. Therefore we find the option framework the most
suitable for this scenario.

IV. AUTONOMOUS PIPELINE INSPECTION
ROBOTS

In the last two decades, many innovative and different
designs of in-pipe inspection robots have been proposed.
According to [16], most of these robots use wheels for
locomotion, have modular and snake-like bodies, and clamp
inside the pipes. These three elements, when combined,
allow the maximum flexibility of usage in different pipeline
structures with vertical sections, junctions and corners.

To the category of modular and snake-like robots belongs
MAKRO [17], a sewer inspection robot with an articulated
body and multiple wheels. This robot, however, cannot clamp
itself in the pipes, which significantly reduces the range of
its usage. Another example is the robot proposed in [18] for
inspection of urban gas pipelines. The robot has complicated
mechanics with many joints and wheels, and it can clamp
inside the pipe, allowing travelling even vertical sections. In
[19] a bio-inspired snake robot is designed and presented.
However, while the control principle is introduced, no actual
test in complex pipes is shown. Eventually, the PipeTron [20]
and the PIRATE [11] are snake-like robots with wheel-based
locomotion and the ability to clamp inside the pipes. These
features allow these two robots to be very flexible in terms
of the range of use and functionalities.

Differently from the previously cited works, KANTARO
[21] employs wheels for locomotion. Its body is simple,
allowing easier movements through junctions and reductions
of the pipe diameters. The motion of this robot is, however,
limited to planar pipeline networks without vertical sections.
A similar design is used in [1] with the addition of a traction
system for improving locomotion.

While the designs of these robots have greatly progressed
in the past year, autonomous inspection is still a big open
challenge [17]. Especially for the complex snake-like robots
with clamping mechanisms, the control and navigation are
very complicated, and no fully autonomous and robust so-
lutions for navigating complex pipeline networks with sharp
corners and vertical sections are yet present.

A. PIRATE Robot

The PIRATE robot [11] is designed to travel through
pipes having different diameters, vertical sections and sharp
corners. The PIRATE robot has six actuated joints J1,...,6
and six actuated wheels w1,...,6, as shown in Figure 2. The
robot is composed of two (inverted) V-shape sections (w1,2,3

and w4,5,6) that allow its clamping inside the pipes. Each
joint and wheel can be either controlled through position or

Fig. 2. Schematic drawing of the PIRATE robot. wi indicates
the ith-wheels, Ji the ith-joints and V the vision sensor.
Figure reproduced and adapted from [11].

velocity set-points fed to low-level (PID) controllers running
on embedded boards. The robot is equipped with absolute
encoders for measuring the joints and wheels’ rotation and
with inertial measurement units (IMU) for measuring accel-
eration and orientation. Moreover, the robot perception is
enhanced with cameras for visual inspection and with Light
Detection and Ranging (LiDAR) sensors for navigation.

V. METHODOLOGY

A. Reinforcement Learning for the PIRATE Robot

1) The Action Space: The action space A ∈ R12 is chosen
to be continuous to be able to execute smoother and more
advanced manoeuvres. For this reason, the Reinforcement
Learning algorithm chosen is PPO, similarly to [8]. Each
wheel w1,...,6 and each clamping joint J1,2,4,5 are controlled
using velocity commands, while the rotational joint J3 and
the vision-sensor joint J6 are controlled using position com-
mands, as shown in Table I. Our experiments have found
beneficial the position control of the rotation joint J3 and the
vision-sensor joint J6 for achieving more accurate motion.
These two joints are critical for the orientation procedure of
the robot with respect to corners1, and for their detection,
respectively.

Control Mode velocity position
Action space J1,2,4,5, w1,...,6 J3, J6

TABLE I. Control modes for the PPO policy, velocity corre-
sponds to the velocity control of the actuators, while position
to the position control.

2) The State Space: We compare and analyse two alterna-
tive state spaces: the kinematic and the visual. The kinematic
state-set includes all the kinematic information such as the
positions qJ1,...,6 , orientations oJ1,...,6 and velocities vJ1,...,6
of the joints in the space, the positions pw1,...,6

and velocities
vw1,...,6 of the wheels in the space, and the previous actions
taken at−1. The visual state-set extends the kinematic one
with external perception, i.e. 3D depth images id.

It is worth mentioning that the absolute positions, ori-
entations of the robot in the space can be estimated, for
example, by means of any Simultaneous Localization and
Mapping algorithm [22]. However, for the sake of simplicity,
we assume to have a good estimate available. Moreover,

1Due to its mechanics, the PIRATE robot requires a specific relative
orientation with respect to the pipe corners in order to navigate through
it.



wheels and joints relative positions and velocities can be
measured using the onboard sensors (encoders and IMUs).

3) The Reward Function: For a generic inspection task,
the goal is to inspect as much of the pipeline as possible.
Thus the reward function that the agent tries to maximise is
proportional to the forward distance travelled by the robot.
The reward function is shown in Equation (2).

R(st, at) = dt − dt−1 (2)

where dt corresponds to the absolute position of the robot
at time-step t and dt−1 to the position at time-step t − 1
with respect to the origin of the chosen reference frame.
This reward function encourages the agent to drive the robot
forward in the pipeline.

B. Hierarchical RL and Policy Decomposition

Fig. 3. Hierarchical decomposition of the policies.

While the task of learning to navigate might be easy for
differential-drive mobile robots, for complex multi-actuated
robots in constraint environments, this is not the case. In
particular, moving through a straight section or a corner of
the pipeline networks requires complicated coordination of
actuators over long sequences of atomic actions. However,
the high-level control is relatively straightforward, and all
pipe inspection robots share the same needs of either trav-
elling through straight pipes or moving through corners and
junctions. We can exploit such a structure by hierarchically
decomposing the Reinforcement Learning policy into a Mas-
ter policy and three sub-policies.

1) Master Policy and Sub-Policies: We introduce a two-
level hierarchical policy architecture, inspired by the Option
framework [5], where the Master policy chooses which of the
three sub-policies to deploy to maximise the reward function,
in Equation (2). Each sub-policy corresponds to a specific
skill the agent requires to navigate through the pipeline
networks, namely clamping and driving, and entering and
exiting a corner, as shown in Figure 3.

The Clamp Drive sub-policy is responsible for clamping
the robot in the pipes and drive through straight sections. Due
to the robot’s mechanics, driving and clamping are dependent
actions, and the robot cannot travel any pipe without first
clamping its body in it. The Enter Turn sub-policy is in

charge of driving the first V-shape of the robot through the
corner, while Exit Turn completes the turning procedure and
clamps the robot in the new pipe segment, as shown in Figure
4. The turning procedure is the most challenging to learn.
Thus we split this task into two different skills.

(a) Enter Turn

(b) Exit Turn

Fig. 4. Motion of the PIRATE robot through a corner.

The Master policy tries to learn to choose the correct
abstract action, or skill, for the circumstance. This policy
receives observation only when a specific sub-policy has
finished its execution, i.e. after 30 time-steps or when an
early stopping condition is met (e.g. when the goal is
reached) in our case. Because the Master policy picks action
with a lower frequency than the sub-policies, it is even more
important that such policy receives good observations from
the environment. Otherwise, it is not able to choose the best
sub-policy to enable. For example, if the depth camera is
pointing at the ceiling or the bottom of the pipe, and no
clear view of the pipe is present, the Master policy has no
way to know if the robot is close to a corner and what is
its orientation. However, the hierarchical decomposition of
the task allows us to define auxiliary reward functions for
each of the sub-policies that can speed up the learning of
the skills and consequently of the task. This is discussed in
Section V-B.2.

Another advantage of the policy decomposition is the
possibility to constrain the action spaces of each sub-policy.
This decomposition, again, allows learning better policies
more efficiently. The choice of the different action spaces is
shown in Table II. While the Clamp Drive policy keeps the
action space defined in Table I, while the Enter Turn and Exit
Turn disable the front-wheels rotation and back-wheel rota-
tion respectively. These wheels are not needed for moving
through corners and junctions. Moreover, the control mode
of joints is switched to position control, except for joints J1
and J5 respectively2, for more accurate manoeuvring.

This choice of hierarchy is driven by the nature of the

2The joints J1 and J5 need to hold the clamping of their V-shapes of the
robot, and in our experiments, we have discovered velocity control mode
optimal for such task.



Control Mode velocity position N/A
Clamp Drive J1,2,4,5, w1,...,6 J3, J6 -
Enter Turn J1, w1,2,3 J2,...,6 w4,5,6

Exit Turn J5, , w4,5,6 J1,2,3,4,6 w1,2,3

TABLE II. Action space and control modes for the different
sub-policies. velocity corresponds to velocity control of the
actuators, position to position control and N/A if the actuator
is not used by the sub-policy.

task, the robot’s knowledge, and the topology of the pipeline
networks. However, it can be easily adapted to different
pipe inspection robots, given the similarities of tasks and
mechanics of such robots. The three sub-policies define three
different high-level skills the agent has to learn to navigate
any pipe. In general, one could think of lower-level sets
of skills, such as, for example, two independent clamping
and unclamping policies for the V-shapes or one policy for
actuating all the wheels independently of the joints. However,
this would be detrimental to the overall performance. Due to
the robot mechanics, most of the low-level atomic skills are
dependent on each other, e.g. if both V-shapes are clamped,
the PIRATE robot cannot actuate the joint J3. Thus the
Master policy would need to learn an even more complex
sequence of commands. Moreover, with a finer discretisation
of the skills, the Master policy task would become more
complex as it is harder to distinguish which skill to use
in each state. The proposed hierarchy trades off the task-
complexity for the Master policy and the sub-policy.

2) Auxiliary Reward Functions for the Sub-Policies: To
specialise the sub-policy and to quickly learn the skills, we
define a clamping reward that promotes clamping. This is
particularly useful in the Clamp Drive policy. Additionally,
we employ a depth-camera reward for promoting the proper
orientation of the depth camera in the direction of the pipe
axis to obtain more and better information about the pipe
network.

VI. EXPERIMENTAL DESIGN

A. Autonomous Navigation in Pipeline Networks

The goal of the experiments is to learn an optimal nav-
igation policy for manoeuvring the PIRATE robot in an
unknown a priori pipeline network. In this work, we focus
on the navigation problem in pipeline networks composed of
straight sections and 90° bends with different smoothness,
either 1D and 2D3. We assume that the agent does not
know the position of the end-point of the inspection mission,
but it can detect it once the robot reaches it. This scenario
represents a generic inspection mission. The robot has to
autonomously navigate until a problem, e.g. a crack or
corrosion in the pipe wall and a consequent reduction of
the wall thickness, is found.

We train and test the agents in a static pipeline, i.e.
the pipeline is not changing over training nor testing. In
a dynamic pipeline, i.e. the pipeline network is randomly

3Pipe corners are classified by indicating the smoothness of the corner
with respect to the diameter of the pipe D

changing configuration in each training episode. The possible
changes occurring in the pipeline are changes in the direction
of the corners and relative distance among them.

B. Simulation Environment

We test the approach in the simulation environment V-
REP [23] using a model of the PIRATE robot. V-REP
allows for realistic physical simulations and allows learning
transferrable policies to real robots [24]. Bullet physical
engine [25] is used. Moreover, the Ray framework and
the RLlib library [26] are used for developing the HRL
framework. OpenAI Gym [27] support is available in RLlib,
and this is used to build the RL environment. OpenAI Gym
provides a framework to build a custom RL environment.
RLlib communicates with V-REP by using PyRep [28].
Furthermore, RLlib uses the TensorFlow library for building
neural network models. The PPO implementation of RLlib
is used for training the agents.

C. State Space and Neural Network Architectures

We first study the effect of the two different state-sets,
introduced in Section V-A, on the performances of a single
PPO agent, with action space defined in Table I, when trained
on a static and a dynamic pipe configuration.

1) Network Architecture: In the case of the kinematic
state-set, the policy and the value function networks share
a single fully connected layer of dimension 128 with tanh
activation. The features are then fed to two identical branches
composed of two fully connected layers of dimensions 128
and 64, respectively, with tanh activations. The output layer
for the policy network has the dimension of the action space,
while it has dimension 1 for the value function network.

When the visual state-set is employed, the depth images
are initially separated from the kinematic information of the
state vector and pre-processed by two convolutional layers,
with 5 and 10 filters, respectively, of size 5 × 5, and stride
2, and by a fully-connected layer. These features, extracted
from the depth images, are then concatenated to the other
elements of the state vector and fed to the same architecture
used by the kinematic state-set. A similar architecture is
successfully employed in [24].

In the case of the visual state-set, we also study the use
of a recurrent architecture, adding a single LSTM layer to
the visual architecture, after the concatenation of the features
from the depth images and the other components of the state
vector.

D. RL vs HRL

To assess the value of the hierarchical policy architecture,
we compare the single PPO agent with the HRL agent trained
proposed hierarchical approach on both static and dynamic
pipeline networks using the visual observation group.

1) Training Regime of the HRL Method: We test two
different training approaches for the HRL architecture: si-
multaneous optimisation of the four policies and independent
optimisation of the policies. In simultaneous optimisation,
the Master policy and the sub-policies are optimised at



(a) (b)

Fig. 5. Cumulative reward during training of the PPO policy with different observation groups in the case of static
environment (Figure 5a) and dynamic (Figure 5b). The solid line represents the average cumulative reward, while the

shaded area its standard deviation.

the same time in the same environment. In contrast, in
the independent optimisation procedure, the sub-policies are
first trained in specialised environments4 and, only once
optimised, the master policy is trained.

VII. RESULTS AND DISCUSSIONS

A. Different Observation Groups

We first present the results obtained with the single PPO
agent (SRL) with the two different observation groups in
the static and dynamic environments. For each observation
group, four independent experiments are performed, and the
results are shown in Figure 5.

While the visual state set is sufficient for completing
the task5 of navigating a 3-junctions pipe in the static
environment, see Figure 5a, it is not enough in the dynamic
case in which the three junctions randomly change position
and orientation each training episode, as shown in Figure
5b. The agent observing the depth images outperforms the
one relying only on the kinematic information. Thus, we can
conclude that it is not possible to learn a policy that drives
the robot through the pipes by only looking at the kinematic
information. Moreover, in the dynamic case, the kinematic
state-set generates catastrophic forgetting, as shown in Figure
5b, where the performances of the policy start decreasing
the more the training goes on. Surprisingly, in the dynamic
environment with only three junctions, even the visual state-
set does not allow sufficient policy improvements to reach the
end of the pipe. The single PPO agent cannot learn a robust
policy to deal with a random pipe-network configuration.
Eventually, the visual policy with LSTM does not improve
the performances either in the static case or in the dynamic
one. By including information on the positions and velocities

4For example, a specialised environment for the Clamp Drive sub-policy
is composed of only straight pipes.

5Considering the length of the pipes, a cumulative reward value above
35 means that the task is solved.

of all the wheels and joints and depth information about
the pipe network, the state vector already contains all the
information needed to determine the state of the environment
and, consequently, choose the best actions.

B. Comparison of the RL and HRL Performances

We now present the results obtained using the HRL frame-
work proposed in Section V-B in a dynamic 5-junctions pipe
network. In particular, we compare HRL with pre-training
of the sub-policies in different and specialised environments
(HRL VISUAL) with the joint optimisation of all the policies
(HRL SIMUL), as described in Section VI-D.1, and the
single PPO (SRL VISUAL). The visual state-set is used
by all the agents. The average cumulative rewards obtained
during training in the 5-junctions dynamic environment are
shown in Figure 6a. Again, four independent experiments
are performed for each curve in the plot. Both HRL agents
outperform PPO, but while HRL VISUAL consistently solves
the task, HRL SIMUL struggles to achieve the same perfor-
mance. The independent training of the sub-policies has a
positive influence on the overall performances of the HRL-
agent.

After the training phase, the performances of the agents
are evaluated in unseen a priori environments. In Figure
6b, we show the evaluation in a challenging and randomly
generated pipeline with five junctions. We report in Table III
the distance travelled in meters by the different agents.

The single PPO agent (SRL VISUAL) can steer the robot
only through the first corner and cannot advance more. The
second corner requires the use of the rotation joint (J3) to
orient the front V-shape of the robot in the correct direction,
but the PPO agent struggles to learn that. The proper re-
orientation of the front is found one of the critical and
most challenging manoeuvres for advancing through the
pipe corners. The HRL agents perform better than PPO,
but while the HRL with pre-training (HRL VISUAL) can



(a)

(b)

Fig. 6. Comparison of HRL with sub-policy pre-training (red), HRL with joint optimisation of the sub-policies (blue) and
single PPO agent (green). The training results are shown in Figure 6a where the average reward (solid line) and the

standard deviation (shaded area) are presented. The evaluation pipeline network is shown in Figure 6b.

steer the robot through all the five junctions, the HRL
with simultaneous optimisation (HRL SIMUL) cannot make
the robot escaping the fourth corner. The fourth corner
requires great precision and robustness for each sub-policy,
as it requires the re-orientation of the front modules of
the robot while travelling upside down. This manoeuvre is
more challenging to achieve when jointly training all the
policies together. Again the policy with LSTM does not
seem to improve the performance compared to the non-
recurrent policy. A video of our experiments can be found
at: https://youtu.be/H9IxZ1NYga4.

C. Comparison with Human Control

The PIRATE robot can be driven through the pipes by a
human operator [11], but only in the case of transparent pipes
that allow the operator to see the robot constantly. However,
this operation is not practical in real scenarios when the
operators can only rely on onboard sensors to control the
robot.

To show the benefits of the use of Reinforcement Learn-
ing for controlling such pipe inspection robots, we try to
manually control the robot in the same task of navigating
through the pipe in Figure 6b. For fairness of comparison,
the operator cannot see through the pipes and can rely
on the same action space of the RL agents (Table I) and
the information contained in the visual state-set, i.e. depth-
camera images and kinematic information.

When relying only on depth-camera images and kinematic
information, a human struggles to complete the 5-junctions
task, in Figure 6b, even after many trials. In Table III
we record the best trails. It is worth mentioning that a
human operator may eventually solve the task for a fixed
pipeline configuration. However, in the general inspection
settings, the pipe configuration can change depending on the
inspection task and can be even more complex. Thus, the

human control of the robot does not seem a viable solution
in this context.

Method Dist. traveled (m)
SRL VISUAL 2.02
HRL SIMUL 4.83

HRL VISUAL 6.60∗

HUMAN 4.88

TABLE III. Distance travelled in meters by different ap-
proaches in the evaluation environment in Figure 6b. Only
the HRL with pre-trained sub-policies (HRL VISUAL) com-
pletes the task.

D. Transferring the Policies to the Real Robot

Because the experiments are conducted in simulated envi-
ronments, the transfer of the learned policies to the real robot
is an important aspect that has to be further investigated in
future work.

The proposed HRL framework has proven to be robust
against perturbations of the observations, e.g. additive noise
on sensory readings, and can generalize to different and un-
trained pipe configurations. Moreover, while earlier research
showed that policies, learned in virtual environments, relying
on RGB images, are troublesome to transfer to the real-world
[29], in our experiments, the agents only use a depth camera
to perceive the environment and onboard sensory readings
(encoders and IMUs) to obtain information of the robot’s
kinematic. Eventually, the agents’ actions are position and
velocity set-points for the robot’s actuators. These set-points
are then fed to low-level controllers that are in charge of
tracking such reference values. By avoiding direct torque
control of the actuators and by assuming well-tuned low-
level controllers with similar performances to the one present
on the actual robot, the difference in the dynamics between
simulation and real-world is mitigated [3].

https://youtu.be/H9IxZ1NYga4


VIII. CONCLUSIONS

We presented a two-layers HRL framework for au-
tonomous navigation of the snake-like pipe inspection robot
PIRATE in pipeline networks with different topologies. We
showed that the proposed hierarchical decomposition of the
policies is necessary for solving the navigation problem
of such robots in pipes with multiple junctions and with
random configurations. The hierarchical decomposition al-
lows learning a robust set of skills, and it is crucial for
the generalization of the policy to unseen a priori pipeline
networks. Moreover, with the proposed decomposition, the
Master policy can learn different inspection missions if
retrained with a different reward function and without the
need of retraining the sub-policies. Eventually, when the
sub-policies are pre-trained separately in specialised envi-
ronments, the hierarchical framework outperforms human-
controlled operations.

APPENDIX

A. Hyperparameters Tuning

Three independent grid-search experiments are performed
to find a good set of hyperparameters. This is shown in Table
IV.

Experiment 1
Learning rate

[1e-4,1e-5*,1e-6]
Experiment 2

Clip, Lambda, Entropy-coefficient
[0.1,0.2*], [0.99*,0.95] , [0.005*,0.01]

Experiment 3
Train-batch-size, Mini-batch-size

[500,1000*,2000], [300*,100]

TABLE IV. Hyperparameters ranges used in the grid search
experiments. * indicates the value used in the experiments
presented in the paper.

ACKNOWLEDGMENT

Nicolò Botteghi has received funding from Smart Tooling.
Smart Tooling is an Interreg Flanders-Netherlands project
sponsored by the European Union focused on automation
in the process industry: making maintenance safer, cheaper,
cleaner, and more efficient by developing new robot proto-
types and tools.

REFERENCES

[1] Abdellatif, Mohamed, et al. ”Mechatronics design of an autonomous
pipe-inspection robot.” MATEC Web of Conferences, EDP Sciences,
2018.

[2] Sutton, Richard S., and Andrew G. Barto. Reinforcement Learning:
An introduction. MIT press, 2018.

[3] Kober, Jens, J. Andrew Bagnell, and Jan Peters. ”Reinforcement
Learning in robotics: A survey.” The International Journal of Robotics
Research, 2013.

[4] Nachum, Ofir, et al. ”Data-efficient Hierarchical Reinforcement Learn-
ing.” arXiv preprint arXiv:1805.08296, 2018.

[5] Sutton, Richard S., Doina Precup, and Satinder Singh. ”Between
MDPs and semi-MDPs: A framework for temporal abstraction in
Reinforcement Learning.” Artificial intelligence, 1999.

[6] Heess, Nicolas, et al. ”Learning and transfer of modulated locomotor
controllers.” arXiv preprint arXiv:1610.05182, 2016.

[7] Florensa, Carlos, Yan Duan, and Pieter Abbeel. ”Stochastic neural
networks for Hierarchical Reinforcement Learning.” arXiv preprint
arXiv:1704.03012, 2017.

[8] Frans, Kevin, et al. ”Meta learning shared hierarchies.” arXiv preprint
arXiv:1710.09767, 2017.

[9] Vezhnevets, Alexander Sasha, et al. ”Feudal networks for Hierarchi-
cal Reinforcement Learning.” International Conference on Machine
Learning. PMLR, 2017.

[10] Bacon, Pierre-Luc, Jean Harb, and Doina Precup. ”The option-critic
architecture.” Proceedings of the AAAI Conference on Artificial
Intelligence, 2017.

[11] Dertien, Edwin, Stefano Stramigioli, and Kees Pulles. ”Development
of an inspection robot for small diameter gas distribution mains.” 2011
IEEE International Conference on Robotics and Automation. IEEE,
2011.

[12] Schulman, John, et al. ”Proximal policy optimisation algorithms.”
arXiv preprint arXiv:1707.06347, 2017.

[13] Schulman, John, et al. ”Trust region policy optimisation.” International
conference on machine learning. PMLR, 2015.

[14] Ronald A.. Howard. Dynamic Probabilistic Systems:@ Semi-Markov
and decision processes. J. Wiley, 1971.

[15] Stolle, Martin, and Doina Precup. ”Learning options in Reinforcement
Learning.” International Symposium on abstraction, reformulation, and
approximation. Springer, 2002.

[16] Mills, George H., Andrew E. Jackson, and Robert C. Richardson.
”Advances in the inspection of unpiggable pipelines.” Robotics, 2017.

[17] Rome, Erich, et al. ”Towards autonomous sewer robots: the MAKRO
project.” Urban Water, 1999.

[18] Choi, H. R., and S. M. Ryew. ”Robotic system with active steering ca-
pability for internal inspection of urban gas pipelines.” Mechatronics,
2002.

[19] Selvarajan, Anojan, et al. ”Design and development of a snake-robot
for pipeline inspection.” 2019 IEEE Student Conference on Research
and Development (SCOReD). IEEE, 2019.

[20] Debenest, Paulo, Michele Guarnieri, and Shigeo Hirose. ”PipeTron
series-Robots for pipe inspection.” Proceedings of the 2014 3rd
international conference on applied robotics for the power industry.
IEEE, 2014.

[21] Nassiraei, Amir AF, et al. ”Concept and design of a fully autonomous
sewer pipe inspection mobile robot” kantaro”.” Proceedings 2007
IEEE International Conference on Robotics and Automation. IEEE,
2007.

[22] Thrun, Sebastian. ”Probabilistic robotics.” Communications of the
ACM, 2002.

[23] Rohmer, Eric, Surya PN Singh, and Marc Freese. ”V-REP: A versatile
and scalable robot simulation framework.” 2013 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. IEEE, 2013.

[24] James, Stephen, Andrew J. Davison, and Edward Johns. ”Transferring
end-to-end visuomotor control from simulation to real world for a
multi-stage task.” Conference on Robot Learning. PMLR, 2017.

[25] Erickson, Zackory, et al. ”Assistive gym: A physics simulation frame-
work for assistive robotics.” 2020 IEEE International Conference on
Robotics and Automation. IEEE, 2020.

[26] Moritz, Philipp, et al. ”Ray: A distributed framework for emerging
AI applications.” 13th USENIX Symposium on Operating Systems
Design and Implementation, 2018.

[27] Brockman, Greg, et al. ”Openai gym.” arXiv preprint
arXiv:1606.01540 (2016).

[28] James, Stephen, Marc Freese, and Andrew J. Davison. ”Pyrep: Bring-
ing v-rep to deep robot learning.” arXiv preprint arXiv:1906.11176,
2019.

[29] Matas, Jan, Stephen James, and Andrew J. Davison. ”Sim-to-real Rein-
forcement Learning for deformable object manipulation.” Conference
on Robot Learning. PMLR, 2018.

http://arxiv.org/abs/1805.08296
http://arxiv.org/abs/1610.05182
http://arxiv.org/abs/1704.03012
http://arxiv.org/abs/1710.09767
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1906.11176

	I INTRODUCTION
	II BACKGROUND
	II-A Reinforcement Learning
	II-A.1 Proximal Policy optimisation

	II-B Hierarchical Reinforcement Learning

	III RELATED WORK
	IV AUTONOMOUS PIPELINE INSPECTION ROBOTS
	IV-A PIRATE Robot

	V METHODOLOGY
	V-A Reinforcement Learning for the PIRATE Robot
	V-A.1 The Action Space
	V-A.2 The State Space
	V-A.3 The Reward Function

	V-B Hierarchical RL and Policy Decomposition
	V-B.1 Master Policy and Sub-Policies
	V-B.2 Auxiliary Reward Functions for the Sub-Policies


	VI Experimental Design
	VI-A Autonomous Navigation in Pipeline Networks
	VI-B Simulation Environment
	VI-C State Space and Neural Network Architectures
	VI-C.1 Network Architecture

	VI-D RL vs HRL
	VI-D.1 Training Regime of the HRL Method


	VII RESULTS AND DISCUSSIONS
	VII-A Different Observation Groups
	VII-B Comparison of the RL and HRL Performances
	VII-C Comparison with Human Control
	VII-D Transferring the Policies to the Real Robot

	VIII CONCLUSIONS
	VIII-A Hyperparameters Tuning

	References

