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Abstract

Frequency and duration of follow-up for breast cancer patients is still under discussion.

Currently, in the Netherlands follow-up consists of annual mammography for the first five

years after treatment and does not depend on the personal risk of developing a locoregional

recurrence or a second primary tumor. The aim of this study is to gain insight in how

to allocate resources for optimal and personalized follow-up. We formulate a discrete-time

Partially Observable Markov Decision Process (POMDP) over a finite horizon with both

discrete and continuous states, in which the size of the tumor is modeled as a continuous

state. Transition probabilities are obtained from data of the Netherlands Cancer Registry.

We show that the optimal value function of the POMDP is piecewise linear and convex

and provide an alternative representation for it. Under some reasonable conditions on the

dynamics of the POMDP, the optimal value function can be obtained from the parameters of

the underlying probability distributions only. Finally, we present results for a stratification

of the patients based on their age to show how this model can be applied in practice.

Keywords: Decision processes, medical decision making, partially observable Markov decision
process.

1 Introduction

Patients that are treated successfully for breast cancer are followed clinically for a period of
time, after their treatment, in order to detect possible reappearances of the tumor (Lu et al.,
2009). A reappearance of the initial tumor on the same site is called a Loco Regional Recurrence
(LRR), whereas a tumor independent of the initial tumor is called a second primary (SP) tumor.
Due to a high risk of distant metastases in case of an LRR, it is desirable to detect it in an
early stage (Moossdorff et al., 2014). In the Netherlands, follow-up typically consists of annual
mammograms for a period of five years (IKNL, 2017b). However, only a small part of the LRRs
are detected by mammograms (Geurts et al., 2012). The majority is detected by the patient
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between check-ups. Furthermore, due to an increasing survival and incidence rate, the number
of patients in follow-up increases and becomes more of a burden to healthcare. Although it is
known that personal characteristics of the patient, such as the patient’s age, size of the initial
tumor and type of treatment of the initial tumor, are highly correlated with the probability
of an LRR, there is no differentiation based on these factors in the current policy (Witteveen
et al., 2015). Moreover, since 2012 the national guideline for cancer advises that the follow-up
should be adjusted for several risk factors of a patient in order to personalize the follow-up as
good as possible.

These observations together give rise to the question whether it is possible to improve the
current follow-up policy and to use the available resources optimally by on the one hand avoiding
overtreatment and on the other hand detecting recurrences as early as possible. Our aim is to
construct a sequential decision model in which we can decide whether it is optimal for the
patient to test or to wait at every decision epoch. The mathematical framework we use to
model this problem is a Partially Observable Markov Decision Process (POMDP), which is a
generalization of a Markov Decision Process (MDP). In an MDP, decisions are made based on
the current state, whereas in a POMDP, decisions are made based on partial information about
the current state. For the problem that we consider, decisions are made based on mammograms
and self-detections, which only provide partial information about the actual health state of a
patient. Therefore, a POMDP is a very well suited framework for our problem(Steimle and
Denton, 2017).

In previous research we modeled the problem described by a discrete-state POMDP (Otten
et al., 2017). In this model an LRR is modeled as a two state Markov chain. In the first state
the LRR is in an early stage and the prognosis is fairly good. In the second state the LRR is
in a late stage and the prognosis is rather bad. We found this model usable for the problem
but we also found that the outcome is quite sensitive to the transition probability between an
early and a late LRR. These findings encouraged us to model the problem by a continuous-state
POMDP, in which the health-state of the patient is modeled by a continuous model, to improve
accuracy.

In (Ayer et al., 2012) a discrete-state POMDP is developed to model a slightly different
decision process: preventive screening for breast cancer. In (Ayvaci et al., 2012) the same
problem is considered but from a budgetary instead of a patient perspective and the partially
observability of the process is omitted. In (Zhang et al., 2012) the patient and budgetary
perspective are compared for a similar case, a POMDP approach for PSA screening. However, all
of the models are based on an underlying discrete-state Markov chain and therefore simplifying
the model for the health-state of a patient considerably. To the best of our knowledge there
is no literature available that applies a continuous-state model to a medical decision making
process. In (Porta et al., 2005, 2006) a continuous-state model for robot planning is developed
and some important analytical results are proved. In (Duff, 2002) some other useful results
for continuous-state POMDPs are provided. These results also lay the basis for the solution
method for the POMDP. This research provides very useful models and results for our problem.
However, necessary adjustments need to be made. In the first place, POMDPs based on medical
decision making slightly differ from the standard framework of POMDPs (Ayer et al., 2012)(the
reward depends not only on the current state and action but also on the observation). Secondly,
our model needs both a discrete component as well as a continuous component. The patient is
either healthy or not, this is a discrete component. On the other hand, the growth of a tumor
is modeled by a continuous model. The interaction between the discrete and continuous states
leads to some complications that need to be addressed.

Our contribution to this research is threefold. Firstly, we provide a more realistic model
for the described problem. Instead of modeling the health state of the patient as a finite set
of states, we model it as a continuum of states. Secondly, we proof some important results in
order to derive a solution algorithm for finding the optimal testing schedule. Thirdly, we derive

2



a simple solution algorithm for the optimal policy under some restrictions on the growth model
of the tumor.

The remainder of this paper is organized as follows. In Section 2 we state some preliminary
information on standard POMDPs and present the continuous-state POMDP model for our
specific problem. In Section 3 we derive an expression for the optimal value function. We also
provide an alternative representation of the optimal value function. This result will be used
to derive a solution method. Under some restrictions on the dynamics of the POMDP, we
then derive a simpler form of the optimal value function. In Section 4 we present the general
algorithm for solving the POMDP and an algorithm for a special case. In Section 5 we illustrate
how this model can be applied in practice. Finally, we summarize the results and conclude in
Section 6.

2 Model

In this section we state the model for the problem described. To incorporate specific aspects
of our problem we need to make some adjustments to the regular framework of POMDPs. For
clarity we first describe a standard POMDP and based on this we present the model for our
problem.

2.1 Preliminaries: POMDPs

A POMDP is generalization of a Markov Decision process (Åström, 1965). It describes a
decision maker’s interaction with a stochastic system of which the current state is not directly
observable. The model is described by the following elements

• S, the set of system states.
• A, the set of actions.
• O, the set of observations.
• The observation model denoted by Ka(o|s), i.e. the probability that observation o was

made given that the state was s and action a was taken.
• The underlying Markov Chain that models the transitions of the system’s state, denoted

by P (a,o)(s′|s), the probability that the next state is s′ given that the previous state was s,
action a was taken and observation o was made.

• The reward function r(s, a, o), which is the reward when the state is s, action a was taken
and observation o made.

• The belief b(s). Because the decision maker can not observe the system’s state directly, the
knowledge about the system is represented by the belief state. This is a probability distribution
over the state space based on the internal dynamics of the system, the actions taken and the
observations made. When the current state is s, action a is taken and observation o is made,
the updated belief τ is computed with a Bayesian update (Smallwood and Sondik, 1973):

τ [b, a, o](s′) =

∑

s

b(s)Ka(o|s)P (a,o)(s′|s)

∑

s

b(s)Ka(o|s)
.

The combination of an action and an observation induces an immediate reward, depending
on the current state, and a future reward, depending on the next state. The value function
describes the relation between the immediate reward, future reward and the belief state:

V a
t (b) =

∑

s

b(s)
∑

o

Ka(o|s)
[

r(s, a, o) + Vt+1(τ [b, a, o])(s)
]

.

A policy is a function that maps a belief to an action. An optimal policy is one that maximizes
the value function. This is described by the optimal value function, which gives for each belief
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Figure 1: The follow-up time line: above the line is the time (years) since initial treatment and

below the line is the number of the corresponding decision epoch.

the maximum value that the decision maker can obtain, V ∗
t (b) = maxa{V

a
t (b)}. The optimal

policy can be defined by π∗(b) = argmaxa V
∗
t (b).

At first it may seem that solving the optimal value function is intractable, because it is
defined on a continuous belief space. But, fortunately, it is proven that the optimal value
function is piece-wise linear and convex (PWLC)(Smallwood and Sondik, 1973)(Sondik, 1971).
As a result the optimal value function can be written as

V ∗
t (b) = max

k

{

∑

s

b(s)αk
t (s)

}

,

for a certain finite set {αk} of so-termed α-vectors. These α-vectors can be calculated in a
recursive way. This provides a straightforward way to obtain the optimal policy.

2.2 Model formulation

In the problem described we model the growth of tumor as a continuous process. Because the
patient can die during the process and the process terminates whenever the patient goes into
treatment, we need to modify the standard POMDP framework in order to model our problem
correctly. The problem is therefore modeled by a discrete-time continuous state POMDP over
a finite horizon, in which a decision maker aims to maximize the total expected number of
quality-adjusted life years (QALYs).

Every 6 months a decision is made whether the patient should have a mammogram or not.
Decisions are based on the patient’s personal risk of an LRR or SP and on prior test results. In
case of a positive mammogram or a self-detection an additional test, i.e. a biopsy, is performed.
We assume that the additional test is perfect, so that if this test is positive it is certain that
the patient has cancer. In this case we assume that the patient starts treatment immediately
and leaves the decision process by transitioning to one of the absorbing states. If the additional
test is negative, the process will proceed to the next decision epoch. The process also proceeds
after a negative mammogram or after a decision to wait until the next decision epoch and no
self-detection was made. For our notation we follow (Ayer et al., 2012) and (Otten et al., 2017).
The complete model and the notation used are as follows:

Decision epochs. Decisions are made twice a year and the decision process starts 6 months
after initial treatment finished, t = 1 · · ·T . The time between two subsequent decisions is
denoted by σ = 0.5 year. The decision process terminates after 10 decision epochs (see Figure
1).

Core state space. The core state space is denoted by S = {0, SLRR and SSP , 3, 4}, where
SLRR = SSP = R+. It consists of three discrete states {0, 3, 4}, 0 stands for no (detectable)
cancer, 3 for treatment of the patient and 4 stands for the death of the patient. SLRR, SSP are
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two continuous states (or better: a continuum of states) in the core state space that represent
a measure, e.g. the size of the tumor, for the state of an LRR and an SP, respectively. To see
how these different states are connected, see Figure 2. The true health state of the patient at
time t is denoted by st. We model an LRR and an SP as continuous variables to incorporate the
difference in expected remaining QALYs between earlier and later detection as good as possible.
Note that the decision maker can directly observe whether a patient is in the state ‘Treatment’
or ‘Death’ but not whether a patient is in one of the other states. We therefore call the states
{0, SLRR, SSP } partially observable and denote this subset of the core state space as SPO.

1. LRR

R+

0. No

cancer

2. SP

R+

4. Death

3. Treat-

ment

Partially Observable

Figure 2: State diagram of the underlying Markov process.

Information space. The space consisting of possible probability distributions over the state
space S is denoted by Π(S). An element π ∈ Π(S) is called an information state.

Belief space. The space of all probability distributions over the partially observable states
SPO is denoted byB(SPO). For clarity we define a belief vector b = [b(0) b(SLRR) b(SSP )], which
denotes the belief that a patient is in state 0, SLRR or SSP and belief functions bLRR(s), bSP (s)
which denote the belief that a patient’s true health state is s ∈ R+ given the patient is in the
continuous state LRR or SP respectively.

Actions. The set of possible actions at time t is At. An element of the set is denoted by
at ∈ At = {W,M}, where W stands for wait and M for mammogram. The action set is only
defined for s ∈ SPO because the decision process terminates in the other states.

Observation space. The set of possible observations, when action a is selected, is denoted
by Θa. If at = M , the possible observations are a positive mammogram (M+) or a negative
mammogram (M−). If at = W , the patient can either make a self-detection (SD+) or no
self-detection (SD−). We have ΘM = {M+,M−} and ΘW = {SD+, SD−}. When the action
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corresponding with the observation is clear from the context we will denote both SD− and M−

with − and SD+ or M+ with +.

Observation probabilities. The probability of making at time t observation o when deci-
sion a was taken while in state s, is denoted by Ka

t (o|s). These probabilities are completely
determined by the specificity of a mammogram, the fraction of healthy patients having a neg-
ative mammogram and the sensitivity of a mammogram, the fraction of patients with cancer
having a positive mammogram. For example, KM

t (M−|s = ‘No cancer’) is the probability of
having a negative mammogram when the true health state of the patient is ‘No cancer’, this
is the specificity of a mammogram. We denote the specificity of a mammogram by spect(M)
and of self-detection by spect(SD). Similarly, the sensitivity of a mammogram is denoted by
senst(s,M) and of self-detection senst(s, SD). Note that, unlike specificity, the sensitivity of a
test depends on the true health state of the patient. The observation probabilities are:

KM
t (M−|s = 0) = spect(M)

KM
t (M+|s = 0) = 1− spect(M)

KW
t (SD−|s = 0) = spect(SD)

KW
t (SD+|s = 0) = 1− spect(SD)

KM
t (M+|s) = senst(s,M) s ∈ SPO

KM
t (M−|s) = 1− senst(s,M) s ∈ SPO

KW
t (SD+|s) = senst(s, SD) s ∈ SPO

KW
t (SD−|s) = 1− senst(s, SD) s ∈ SPO

.

Core state transitions. The distribution function of the transition at time t, when the

current state is s, action a was taken and observation o made, is denoted by P
(a,o)
t (·|s). Because

the state space contains both discrete and continuous states, these probability distributions can
be discrete, continuous or a mixture of both. Since transitions within the partially observable
state space are only possible from the discrete state 0 to the cancer states and not vice versa,
it is only in this state that a mixture of a discrete and a continuous probability distribution
occurs. In state 0 the transitions are as follows: with probability pCt , C = LRR,SP , the
patient gets cancer and transitions to the corresponding continuous state and with probability
1 − pLRR

t − pSPt the patient stays in state 0. When transitioning to the continuous state the
outcome is a continuous random variable. This is also the case for transitions within the
continuous states. So the growth of the tumor in state 0 is 0 with probability 1− pLRR

t − pSPt
and X with probability pCt , where X is a continuous random variable with probability density
function fC

t (x|0). The growth in state s ∈ SLRR, SSP is X ′, where X ′ is a continuous random
variable with probability density function fC

t (x|s), C = LRR,SP .

Updated belief space. The belief at time t+ 1, when the belief about patient’s true health
state at time t was b, action a was taken and observation o was made, is denoted by τ [b, a, o].
In particular, τ [b, a, o](s) = Pt+1(s|b, a, o) for s = 0 and τ [b, a, o](s) = ft+1(s|b, a, o) for s 6= 0.
With slight abuse of notation (we denote b(0)Ka

t (o|0) as
∫

S
b(s)Ka

t (o|s)ds for S = 0) we can
denote the updated belief state as:

τ [b, a, o](s′) =











∑
S∈SPO

∫
S
b(s)Ka

t (o|s)Pt(s′|s)ds∑
S∈SPO

∫
S
b(s)Ka

t (o|s)ds
if o = M−, SD−,

Pt(s
′|0) if , o = M+, SD+.

(1)
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Rewards. The expected number of QALYs between two decision epochs, when the true health
state of the patient is s, action a is taken and observation o is made, is denoted by rt(s, a, o).
To factor in the probability that a patient dies between two decisions we use the half-cycle
correction method (Sonnenberg and Back, 1993). In this method, it is assumed that if the
patient dies between two decision epochs half of the cycle length σ is accrued to the expected
number of QALYs. From this, QALYs are subtracted for the disutility of a possible mammogram
or biopsy. If the patient is in one of the cancer states (s ∈ SLRR ∪SSP ) and observes a positive
mammogram or makes a self-detection, then she is rewarded a lump-sum reward of Rt(s). This
is the life expectancy of the patient given that her true health state is s. So, no QALYs are
rewarded over the next decision epoch when a true positive mammogram or self-detection is
observed, i.e. rt(s,M,M+) = rt(s,W, SD+) = 0. The reward in the treatment and death states
are zero.

Let the expected reward between times t and t + 1, if the true health state is s and the
action chosen is a, be denoted by rt(s, a) =

∑

o∈Θa
Ka

t (o|s)rt(s, a, o).
Let rT (s) denote the total expected remaining QALYs at time T when the patient’s true

health state is s at time T .
Let pd(s) denote the probability that a patient dies between two decision epochs when the

true health state is s, and let disM , disB be the disutility experienced when undergoing a
mammogram and a biopsy, respectively. The rewards for t = 1, · · · , T − 1 are:

rt(s,W, SD−) = pd(s) · 0.5σ + (1− pd(s)) · σ s ∈ SPO

rt(0,W, SD+) = pd(s) · 0.5σ + (1− pd(s)) · σ − disB

rt(s,M,M−) = pd(s) · 0.5σ + (1− pd(s)) · σ − disM s ∈ SPO

rt(0,M,M+) = pd(s) · 0.5σ + (1− pd(s)) · σ − disM − disB

r(s, ·, ·) = 0 otherwise. (2)

3 Optimal value function

In this section we derive an expression for the optimal value function of the POMDP described
in the previous section. Furthermore, we provide an alternative representation of the optimal
value function, which we use to construct an algorithm to determine the optimal actions.

The optimal value function is denoted by V ∗
t (π), the maximum expected number of QALYs

a patient can obtain when the information state is π ∈ Π(S) at time t. Whenever we consider
the belief state, we will denote it by V ∗

t (b). Our goal is to derive an expression for the optimal
value function in every belief state. We will do this by deriving the optimality equations, which
recursively connect the optimal value function at different decision epochs. The decision process
terminates whenever the patient moves to one of the treatments states. V ∗

t (π) can be expressed
as:

V ∗
t (π) =















Rt(3) π(3) = 1,
Rt(4) π(4) = 1,
V ∗
t (b) ∃s ∈ SPO s.t. π(s) > 0

0 otherwise .

(3)

We denote the maximum total expected QALYs a patient can obtain, when at time t in belief
state b and choosing action a, by V a

t (b):

V ∗
t (b) = max

a
{V a

t (b)} t = 1 · · ·T − 1, with
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V a
t (b) = b(0)Ka

t (−|0)

[

rt(0, a,−) + (1− pLRR
t − pSPt )V ∗

t+1(τ [b, a,−])

+
∑

C∈{LRR,SP}

pCt

∫

SC

fC
t (s|0)V ∗

t+1(τ [b, a,−])ds

]

+
∑

C∈{LRR,SP}

(

∫

SC

bC(s)K
a
t (−|s)

[

rt(s, a,−)

+

∫

SC

fC
t (s′|s)V ∗

t+1(τ [b, a,−])ds′

]

ds

)

+ b(0)Ka
t (+|0)

[

rt(0, a,+) + (1− pLRR
t − pSPt )V ∗

t+1(τ [b, a,+])

+
∑

C∈{LRR,SP}

pCt

∫

SC

fC
t (s|0)V ∗

t+1(τ [b, a,+])ds

]

+
∑

C∈{LRR,SP}

∫

SC

bC(s)K
a
t (+|s)Rt(s)ds

V a
T (b) = b(0)rT (0) +

∑

C∈{LRR,SP}

∫

SC

bC(s)rT (s)ds. (4)

We can simplify the optimality equations by moving the parts that do not depend on s

outside the integral and by noting that
∫

S
ft(x

′|x)dx′ = 1.

V ∗
t (b) =max

a

{

b(0)Ka
t (−|0)

[

rt(0, a,−) + V ∗
t+1(τ [b, a,−])

]

+
∑

C∈{LRR,SP}

∫

SC

bC(s)K
a
t (−|s)

[

rt(s, a,−) + V ∗
t+1(τ [b, a,−])

]

ds

+ b(0)Ka
t (+|0)

[

rt(0, a,+) + V ∗
t+1(τ [b, a,+])

]

+
∑

C∈{LRR,SP}

∫

SC

bC(s)K
a
t (+|s)Rt(s)ds

}

t = 1 · · ·T − 1,

V ∗
T (b) =b(0)rT (0) +

∑

C∈{LRR,SP}

∫

SC

bC(s)rT (s)ds. (5)

The optimal value function at time t = T can be interpreted as the weighted average of the
immediate reward given a certain belief about the patient’s true health state.

3.1 Alternative representation of the optimal value function

The key idea of value iteration, one of the most widely used methods for solving Markov
decision processes, is to relate the optimal value function V ∗ at time t to V ∗ at time t + 1
(Puterman, 1994). Because the belief state is in fact a probability space over the core state
space, the optimal value function is defined on an infinite dimensional vector space B(SPO).
This prevents us from iterating over all possible belief states to determine the optimal value
function directly. However, the optimal value function is piecewise linear and convex (PWLC)
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and can, therefore be represented as the maximum over a set of finite dimensional vectors. This
result is formalized in the following theorem.

Theorem 3.1 The optimal value function V ∗
t (b) is piece-wise linear and convex, and can thus

be written as

V ∗
t (b) = max

k







b(0)αk,t
0 (0) +

∑

C∈{LRR,SP}

∫

SC

bC(s)α
k,t
C (s)ds







, (6)

for some set of functions αk,t
C (s), C ∈ {0, LRR, SP}, k = 1, 2, · · · . The term α-function is used

to refer to such a function.

The proof goes by induction and is very similar to that of the discrete case, proven by
(Smallwood and Sondik, 1973), and to that of the continuous case, proven by (Porta et al.,
2004), and is therefore omitted.

We can now write the optimal value function in terms of the α-functions.

Proposition 3.1 The following representation of the optimal value function is equivalent to

the optimal value function given in (4).

V ∗
t (b) = max

a

{

b(0)Ka
t (−|0)

[

rt(0, a,−) + (1− pLRR
t − pSPt )α

i(b,a,−),t+1
0 (0)

+
∑

C∈{LRR,SP}

pCt

∫

SC

fC
t (s|0)α

i(b,a,−),t+1
C (s)ds

]

+
∑

C∈{LRR,SP}

∫

SC

bC(s)K
a
t (−|s)

[

rt(s, a,−)

+

∫

SC

fC
t (s′|s)α

i(b,a,−),t+1
C (s′)ds′

]

ds

+ b(0)Ka
t (+|0)

[

rt(0, a,+) +max
k

(

(1− pLRR
t − pSPt )αk

t+1(0)

+
∑

C∈{LRR,SP}

pCt

∫

SC

fC
t (s|0)αk,t+1

C (s)ds

)]

+
∑

C∈{LRR,SP}

∫

SC

bC(s)K
a
t (+|s)Rt(s)ds

}

, (7)

where

i(b, a, o) = argmax
k

{

b(0)Ka
t (−|0)(1− pLRR

t − pSPt )αk,t+1
0 (0)

+
∑

C∈{LRR,SP}

∫

SC

[

b(0)Ka
t (−|0)fC

t (s′|0)

+

∫

SC

bC(s)K
a
t (−|s)fC

t (s′|s)ds

]

α
k,t+1
C (s′)ds′

}

. (8)

9



Proof. First, we derive an equivalent representation of V ∗
t+1(τ [b, a, o]) in terms of the α-

functions. Substituting the expression for τ [b, a, o] from (1) into (6) gives:

V ∗
t+1(τ [b, a, o]) =

(9)

=



































































maxk

{

b(0)Ka
t (−|0)(1−pLRR

t −pSP
t )

b(0)Ka
t (−|0)+

∑

C∈{LRR,SP}

∫

SC

bC(s)Ka
t (−|s)ds

α
k,t+1
0 (0)

+
∑

C∈{LRR,SP}

∫

SC

b(0)Ka
t (−|0)fC

t (s′|0)+
∫

SC

bC(s)Ka
t (−|s)fC

t (s′|s)ds

b(0)Ka
t (−|0)+

∑

C∈{LRR,SP}

∫

SC

bC(s)Ka
t (−|s)ds

α
k,t+1
C (s′)ds′

}

if o = −

maxk

{

(1− pLRR
t − pSPt )αk,t+1

0 (0) +
∑

C∈{LRR,SP}

pCt
∫

SC

fC
t (s|0)αk,t

C (s)ds

}

if o = +.

(10)

The denominators do not depend on s′ and k, hence they can be moved outside the integral
over s′ and the maximum over k. Also, by changing the order of integration and substituting
i(b, a, o) from (8), we obtain the following:

V ∗
t+1(τ [b, a, o]) = (11)

=















































































1
b(0)Ka

t (−|0)+
∑

C∈{LRR,SP}

∫

SC

b(S)Ka
t (−|s)ds

×maxk

{

b(0)Ka
t (−|0)(1− pLRR

t − pSPt )αk,t+1
0 (0)

+
∑

C∈{LRR,SP}

∫

SC

[

b(0)Ka
t (−|0)fC

t (s′|0)

+
∫

SC bC(s)K
a
t (−|s)fC

t (s′|s)ds

]

α
k,t+1
C (s′)ds′

}

if o = −,

maxk

{

(1− pLRR
t − pSPt )αk,t+1

0 (0)

+
∑

C∈{LRR,SP}

pCt
∫

SC

fC
t (s|0)αk,t

C (s)ds

}

if o = +.

(12)

=















































































b(0)Ka
t (−|0)(1−pLRR

t −pSP
t )α

i(b,a,o),t+1
0 (0)

b(0)Ka
t (−|0)+

∑

C∈{LRR,SP}

∫

SC

bC(s)Ka
t (−|s)ds

+

b(0)Ka
t (−|0)

∑

C∈{LRR,SP}

pCt
∫

SC

fC
t (s′|0)α

i(b,a,o),t+1
C

(s′)ds′

b(0)Ka
t (−|0)+

∑

C∈{LRR,SP}

∫

SC

bC(s)Ka
t (−|s)ds

+

∑

C∈{LRR,SP}

pCt
∫

SC

bC(s)Ka
t (−|s)

∫
SC fC

t (s′|0)α
i(b,a,o),t+1
C

(s′)ds′ds

b(0)Ka
t (−|0)+

∑

C∈{LRR,SP}

∫

SC

b(S)Ka
t (−|s)ds

if o = −,

maxk

{

(1− pLRR
t − pSPt )αk,t+1

0 (0)

+
∑

C∈{LRR,SP}

pCt
∫

SC

fC
t (s|0)αk,t

C (s)ds

}

if o = +.

(13)

Rewriting the expression for the optimal value function (5) gives:
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V ∗
t (b) =max

a

{

b(0)Ka
t (−|0)

[

rt(0, a,−) + V ∗
t+1(τ [b, a,−])

]

+
∑

C∈{LRR,SP}

∫

SC

bC(s)K
a
t (−|s)

[

rt(s, a,−) + V ∗
t+1(τ [b, a,−])

]

ds

+ b(0)Ka
t (+|0)

[

rt(0, a,+) + V ∗
t+1(τ [b, a,+])

]

+
∑

C∈{LRR,SP}

∫

SC

bC(s)K
a
t (+|s)Rt(s)ds

}

= max
a

{

b(0)Ka
t (−|0)rt(0, a,−) +

∑

C∈{LRR,SP}

∫

SC

bC(s)K
a
t (−|s)rt(s, a,−)ds

+

[

b(0)Ka
t (−|0) +

∑

C∈{LRR,SP}

∫

SC

bC(s)K
a
t (−|s)ds

]

V ∗
t+1(τ [b, a,−])

+ b(0)Ka
t (+|0)rt(0, a,+) +

∑

C∈{LRR,SP}

∫

SC

bC(s)K
a
t (+|s)Rt(s)ds

+ b(0)Ka
t (+|0)V ∗

t+1(τ [b, a,+])

}

. (14)

Finally, by substituting the expression derived for V ∗
t+1(τ [b, a, o]) (13) in the rewritten expression

for V ∗
t (b) (14) we have:

11



V ∗
t (b) = max

a

{

b(0)Ka
t (−|0)rt(0, a,−) +

∑

C∈{LRR,SP}

∫

SC

bC(s)K
a
t (−|s)rt(s, a,−)ds

+

[

b(0)Ka
t (−|0) +

∑

C∈{LRR,SP}

∫

SC

bC(s)K
a
t (−|s)ds

]

(15)

×

[

b(0)Ka
t (−|0)(1− pLRR

t − pSPt )α
i(b,a,o),t+1
0 (0)

b(0)Ka
t (−|0) +

∑

C∈{LRR,SP}

∫

SC bC(s)Ka
t (−|s)ds

+
b(0)Ka

t (−|0)
∑

C∈{LRR,SP} p
C
t

∫

SC fC
t (s′|0)α

i(b,a,o),t+1
C (s′)ds′

b(0)Ka
t (−|0) +

∑

C∈{LRR,SP}

∫

SC bC(s)Ka
t (−|s)ds

+

∑

C∈{LRR,SP}

∫

SC bC(s)K
a
t (−|s)

∫

SC fC
t (s′|s)α

i(b,a,o),t+1
C (s′)ds′ds

b(0)Ka
t (−|0) +

∑

C∈{LRR,SP}

∫

SC bC(s)Ka
t (−|s)ds

]

+ b(0)Ka
t (+|0)rt(0, a,+) +

∑

C∈{LRR,SP}

∫

SC

bC(s)K
a
t (+|s)Rt(s)ds

+ b(0)Ka
t (+|0)max

k

{

(1− pLRR
t − pSPt )αk,t+1

0 (0)

+
∑

C∈{LRR,SP}

pCt

∫

SC

fC
t (s|0)αk,t

C (s)ds

}

}

= max
a

{

b(0)Ka
t (−|0)rt(0, a,−) +

∑

C∈{LRR,SP}

∫

SC

bC(s)K
a
t (−|s)rt(s, a,−)ds

+

[

b(0)Ka
t (−|0)(1− pLRR

t − pSPt )α
i(b,a,o),t+1
0 (0)

+ b(0)Ka
t (−|0)

∑

C∈{LRR,SP}

pCt

∫

SC

fC
t (s′|0)α

i(b,a,o),t+1
C (s′)ds′

+
∑

C∈{LRR,SP}

∫

SC

bC(s)K
a
t (−|s)

∫

SC

fC
t (s′|s)α

i(b,a,o),t+1
C (s′)ds′ds

]

+ b(0)Ka
t (+|0)rt(0, a,+) +

∑

C∈{LRR,SP}

∫

SC

bC(s)K
a
t (+|s)Rt(s)ds

+ b(0)Ka
t (+|0)max

k

{

(1− pLRR
t − pSPt )αk,t+1

0 (0)

+
∑

C∈{LRR,SP}

pCt

∫

SC

fC
t (s|0)αk,t

C (s)ds

}

}

. (16)

By rearranging the terms and by factorization of the last expression we obtain the desired result.
�

By combining Theorem 3.1 and Proposition 3.1 an explicit expression of the α-functions can be
derived. The algorithm that will be used utilizes this representation for solving the POMDP.

Corollary 3.1 Let α
l∗(b)
t denote the optimizing α-function for belief state b. Then the α-

functions can be expressed as:
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α
l∗(b),t
0 (0) = Ka

t (−|0)

[

rt(0, a,−) + (1− pLRR
t − pSPt )α

i(b,a,−),t+1
0 (0)

+
∑

C∈{LRR,SP}

pCt

∫

SC

fC
t (s′|0)α

i(b,a,−),t+1
C (s′)ds′

]

+Ka
t (+|0)

[

rt(0, a,+) +max
k

{

(1− pLRR
t − pSPt )αk,t+1

0 (0)

∑

C∈{LRR,SP}

pCt

∫

SC

fC
t (s|0)αk,t

C (s)ds

}]

α
l∗(b),t
C (s) = Ka

t (−|s)

[

rt(s, a,−) +

∫

SC

fC
t (s′|s)α

i(b,a,−),t+1
C (s′)ds′

]

+Ka
t (+|s)Rt(s), (17)

where

l∗(b) = argmax
k







b(0)αk
0(0) +

∑

C∈{LRR,SP}

∫

SC

b(s)αk
C(s)ds







. (18)

The function α
l∗(b)
t denotes the maximum expected number of QALYs a patient can attain,

following the optimal policy.

3.2 Special case: exponentially distributed transitions

As can be seen in the results of the previous section, the expressions for the α-functions are rather
complicated. In general, there is no guarantee that we can calculate the optimal value function
explicitly without using numerical approximation methods. However, under some reasonable
conditions on the transitions, observations and rewards we can prove that the α-functions, and
thereby the optimal value function, can be obtained explicitly. This result is presented in the
following proposition and corollary.

Proposition 3.2 If the transitions are exponentially distributed and the rewards and observa-

tion probabilities are described by exponential functions, then

α
i,t
C (s) =

5
∑

k=1

β
k,t
C e−γ

k,t
C

s C ∈ {LRR,SP}, (19)

for all i and t = 0 . . . T − 1 and certain parameters β and γ.

Proof. If the transitions are exponentially distributed and the rewards and observation prob-
abilities are described by exponential functions, they can be written as:

fC
t (x|s) = λe−λ1(x−s) x > s

Ka
t (+|s) = 1− κte

−κ1
t s

Ka
t (−|s) = 1−Ka

t (+|s)

= κte
−κ1

t s

Rt(s) = ρte
−ρ1t s

pdt (s) = 1− pdt e
−ν1s.

13



Substituting the expression for pdt (s) into the expression for the rewards (2) gives

r(s, a, o) = pdt (s)0.5σ + (1− pdt (s))σ − µa
o

= ν̃te
−ν1t s − µ̃a

o .

For t = T we have

αi
T (s) = RT (s)

= ρte
−ρ1t s,

which is of the desired form. Now suppose that α
i,t+1
C (s) =

∑5
k=1 β

k,t+1
C e−γ

k,t+1
C

s for C ∈
{LRR,SP} and a certain t+ 1, then we have by Corollary 3.1

α
i,t
C (s) = Ka

t (−|s)

[

rt(s, a,−) +

∫

SC

fC
t (s′|s)αi,t+1

C (s′)ds′
]

+Ka
t (+|s)Rt(s)

= κte
−κ1

t s

[

νe−ν1s − µa
o +

∫ ∞

0
λe−λ1(x−s)

5
∑

k=1

β
k,t+1
C e−γ

k,t+1
C

xdx

]

+
(

1− κte
−κ1

t s
)

ρte
−ρ1t s

= κtνe
−(κ1

t+ν1)s − µa
oκte

−κ1
t s + ρte

−ρ1t s − κtρte
−(κ1

t+ρ1t )s

+

[ 5
∑

k=1

β
k,t+1
C

λ1 + γ
k,t+1
C

]

κtλe
−(κ1

t−λ1)s

which is also of the desired form. By induction we conclude that the proposition holds. �

Remark. The proposition only holds if the parameters for the transition probability density
functions (λ) are constants, so they do not depend on s or depend on s trough an exponential
relation. Furthermore, instead of proving the proposition for the optimal α-function αl∗(b),t we
prove it for an arbitrary α-function. The reason for this is that this simplifies the proof some-
what and that when we solve the problem, we first generate all α-functions before determining
the optimal one (see Section 4).

With this closed form for the α-functions in the continuous states we can readily derive an
expression for the values of the α-functions in the discrete state S = {0}.

Corollary 3.2 If the transitions are exponentially distributed and the rewards and observation

probabilities are described by exponential functions, then

α
i,t
0 (0) = β

k,t
0 α

i,t+1
0 (0) + γ

k,t
0 (20)

(21)

for all i and t = 0 . . . T − 1 and certain parameters β and γ.
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Proof. By Corollary 3.1 α
l∗(b),t
0 (0) is given by

α
l∗(b),t
0 (0) = Ka

t (−|0)

[

rt(0, a,−) + (1− pLRR
t − pSPt )α

i(b,a,−),t+1
0 (0)

+
∑

C∈{LRR,SP}

pCt

∫

SC

fC
t (s′|0)α

i(b,a,−),t+1
C (s′)ds′

]

+Ka
t (+|0)

[

rt(0, a,+) +max
k

{

(1− pLRR
t − pSPt )αk,t+1

0 (0)

∑

C∈{LRR,SP}

pCt

∫

SC

fC
t (s|0)αk,t

C (s)ds

}]

.

Once again, since we do not need an explicit expression for the optimal α-function α
l∗(b),t
0 (0)

but instead for an arbitrary α-function, we can leave out the maximum over k and the index
i(b, a, o). This gives a simpler expression for αi,t

0 (0):

α
i,t
0 (0) =

∑

o

Ka
t (o|0)

[

rt(0, a, o) + (1− pLRR
t − pSPt )αi,t+1

0 (0)

+
∑

C∈{LRR,SP}

pCt

∫

SC

fC
t (s′|0)αi,t+1

C (s′)ds′
]

= (1− pLRR
t − pSPt )αi,t+1

0 (0) +
∑

C∈{LRR,SP}

pCt

∫

SC

fC
t (s′|0)αi,t+1

C (s′)ds′

∑

o

Ka
t (o|0)rt(0, a, o)

= (1− pLRR
t − pSPt )αi,t+1

0 (0) +
∑

C∈{LRR,SP}

pCt λ

5
∑

k=1

β
k,t+1
C

λ1 + γ
k,t+1
C

+ νt − κtµ
a
− − (1− κt)µ

a
+

= β
k,t
0 α

i,t+1
0 (0) + γ

k,t
0 .

Here, the second equation follows from the fact that Ka
t (+|s) +Ka

t (−|s) = 1. �

4 Algorithm

In this section we use the results from the previous section to construct an algorithm that
generates the α-functions iteratively. Furthermore, we provide an algorithm that can obtain
the α-functions efficiently for the special case mentioned in Section 3.2.

The general algorithm is based on the fact that the optimal value function V ∗ is PWLC. The
algorithm was first stated by (Smallwood and Sondik, 1973) and later (Monahan, 1982) and
(Lovejoy, 1991) simplified and adjusted it. All these algorithms where developed for discrete-
state POMDPs. Because we modeled our problem as a continuous-state POMDP some modi-
fications are needed but the main principles of the work cited remain valid for our case. The
algorithm generates all possible α-functions using equation (17), deletes the non-optimal α-
functions and uses the remaining α-functions and the expression of V ∗

t (b) in Theorem 3.1 to
construct the optimal value function. The complete algorithm is stated below.

Algorithm. α-functions algorithm
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1. Initialize. α
1,T
C (s) = rT (s), for all C ∈ {0, LRR, SP} s ∈ SC , AT = {α1

C} and t = T − 1

2. Generate. Generate At = {α1,t
C , α

2,t
C · · · }C∈{0,LRR,SP} (by (22), see below) and mark all

α-functions.

3. Eagle’s reduction.

(a) Select a marked α-function α
i,t
C . If none exists go to step 4. Otherwise,

(b) unmark the selected α-function and if there exists an α
j,t
C such that αi,t

C (s) ≤ α
i,t
C (s)

for all s ∈ SC delete the selected α-function. Go to step 3(a).

4. Time update. If t > 1, then t = t− 1 and go to step 2, otherwise stop.

We now describe step 2 from the algorithm in more detail. Let

At+1 = {α1,t+1
C , α

2,t+1
C , · · · }C={0,LRR,SP}

denote the set of α-functions at time t+ 1. Now instead of determining the optimal α-function
αl∗(b)t by equation (17) we generate the α-function for every combination of an action and an

α
i,t+1
C , let this be denoted by α

(a,i),t
C . So we have

At =
{

α
(W,i),t
C , α

(M,i),t
C

}i=1···|At+1|

C∈{0,LRR,SP}
,

with

α
(a,i),t
0 (0) =

∑

o

Ka
t (o|0)

[

rt(0, a, o) + (1− pLRR
t − pSPt )αi,t+1

0 (0)

+
∑

C∈{LRR,SP}

pCt

∫

SC

fC
t (s′|0)αi,t+1

C (s′)ds′
]

α
(a,i),t
C (s) = Ka

t (−|s)

[

rt(s, a,−) +

∫

SC

fC
t (s′|s)αi,t+1

C (s′)ds′
]

+Ka
t (+|s)Rt(s), C ∈ {LRR,SP}. (22)

When all the α-functions are generated for every decision epoch and the (completely) dom-
inated ones are deleted, the optimal value function follows directly from the representation in
Theorem 3.1. Furthermore, since every α-function has an action associated with it (22), the
optimal action is easy to determine.

4.1 Exponential transitions

We now use the special structure of the α-functions in the exponential case, recalling Proposition
3.2 and Corollary 3.2, to determine the parameters that describe the α-functions.

For clarity we restate the expressions for the transition probability density functions and
the expressions for the rewards, observation probabilities and probability of death, for which
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we now explicitly mention where they depend on:

fC
t (x|s) = λCe−λC,1(x−s), x > s,

Ka
t (+|s) = 1− κCt e

−κ
C,1
t s

Ka
t (−|s) = 1−Ka

t (+|s)

= κCt e
−κ

C,1
t s

Rt(s) = ρCt e
−ρ

C,1
t s

pdt (s) = 1− p
C,d
t e−νC,1s

r(s, a, o) = νCt e
−ν

C,1
t s − µC,a

o .

The algorithm to determine the parameters of the optimal value function in the exponential
case is stated in the following pseudo-code:

Algorithm. α-functions algorithm in the exponential case.

1. Initialize. α
1,T
C (s) = rT (s) = ρT e

−ρ1
T
s, define βT

0 (1) = ρ0T , γ
T
0 (1) = ρ

0,1
T , β1,T

C (1) = ρCT ,

γ
1,T
C (1) = ρ

C,1
T , for C ∈ {LRR,SP}, AT = {α1}, i = 1 and t = T − 1.

2. Generate.

for j = 1 to |At+1|

for a = W,M

βt
0(a, i) = (1− pLRR

t − pSPt )

γt0(a, i) =
∑

C∈{LRR,SP}

pCt λ
C

5
∑

k=1

β
k,t+1
C

λC,1 + γ
k,t+1
C

+ νCt − κCt µ
C,a
− − (1− κCt )µ

C,a
+

β
k,t
C (a, i) =































κCt ν k = 1

−µ
C,a
o κCt k = 2

ρCt k = 3
−κCt ρ

C
t k = 4

[

∑5
k=1

β
k,t+1
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γ
k,t
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










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




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
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κ
C,1
t + νC,1 k = 1

κ
C,1
t k = 2

ρ
C,1
t k = 3

κ
C,1
t + ρ

C,1
t k = 4

κ
C,1
t − λC,1 k = 5

end

end

3. Time update. If t > 1, then t = t− 1 and go to step 2, otherwise stop.
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5 Case study

To illustrate how the model can be applied in practice, we present the optimal follow-up plan
for a stratification of the patients based on their age. We limit ourselves to the case in which the
transitions within the continuous states (i.e. the growth model for the tumors) are exponentially
distributed and where the observation probabilities, probability of death and the rewards are
described by exponential relations (see Section 3.2). We first describe the parameters that are
needed for the model and then the results.

Parameter Source

Probability of death (CBS, 2017)

State transitions in SPO (IKNL, 2017a),(Witteveen et al., 2015)

Disutility of a mammogram (Mandelblatt et al., 2002)

Disutility of a biopsy (Velanovich, 1995)

Specificity and sensitivity of mammography (Kolb et al., 2002)

Specificity and sensitivity of self-detection ibid.

Survival rates (IKNL, 2017a)

Life expectancy (CBS, 2017)

Table 1: Sources of model parameters.

5.1 Parameters

As stated before, our aim is to determine the optimal follow-up scheme for a patient based on
the personal risk of recurrence. For this we need, in addition to the derived model, parameters
based on the characteristics of the patient. In this section we elaborate on the parameters we
need and their sources (see table 1).

Based on the age we can estimate the probability that a patient will die between decision
epochs. We obtain these probabilities from (CBS, 2017). If the age of patients in a certain
group differs we use the probability of death for the average age, e.g. when the age in a group
is between 40 and 50 we use the probability of death of a 45 year old woman.

The state transition probabilities between the discrete and the continuous states, i.e. the
probability that a patient gets a second primary tumor or a locoregional recurrence between two
decision epochs, are obtained from the Netherlands Cancer Registry (NCR) (based on data from
women first diagnosed with early breast cancer between 2003 and 2006 in all Dutch hospitals
(n = 37, 230))(IKNL, 2017a; Witteveen et al., 2015). The estimates for the transitions within
the continuous states (i.e. the grow rates of a second primary tumor and of a locoregional
recurrence) are also obtained from (IKNL, 2017a).

Estimations of the disutility associated with mammography vary between 0.5 and 1.5 days
(Mandelblatt et al., 2002). We estimate it at 1 day. For biopsies the estimations of disutility
vary between 2 and 4 weeks (Velanovich, 1995), in our model we estimate it at 3 weeks. We
assume that the mentioned disutilities do not depend on the age of the patient. We use (Kolb
et al., 2002) to obtain the specificity and sensitivity of both mammography and self-detection.

The rewards that a patient receives upon leaving the decision process, either by detection
of cancer or at the end of the follow-up phase are based on the healthy life expectancy. We
use the healthy life expectancy at the beginning and at the end of the follow-up to derive
a linear expression for the life expectancy of a healthy patient at each decision epoch. The
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expected remaining life years for patients in the different cancer states, i.e. the lump-sum and
end rewards, are modeled to be exponentially decreasing with the growth of the tumor. These
exponential relations are based on the 10-year survival rates for the different groups, which are
also obtained from (IKNL, 2017a).

Age <50

Age 60-69

Age 50-59

Age ≥ 70

Figure 3: Probability of a LRR (blue) and a SP (red) and the optimal policy for different age

categories. W stands for wait, M stands for mammogram.

5.2 Results

Since the optimal policy will vary for different categories of patients, we present the results for
four basic categories. These categories serve as an illustration and since age is known to be of
great influence on the risk of a LRR we choose this factor as an illustration. The reader should
bear in mind that the model can be applied to much more specified categories of patients.

The patients in the first category are upto 50 years old, in the second category 50-59 years
old, in the third category 60-69 years old and in the fourth category 70 years old and above.

Since the probability of getting cancer is small (≈ 0.01) and the specificity of both mam-
mography and self-detection is high (≈ 0.99), the majority (approximately 85%) of patients will
never have a positive mammogram or a self-detection. We therefore present the optimal policy
for a patient that never has a positive mammogram or a self-detection. The optimal policies for
these patients, for each of the four categories, are given in Figure 3. The bar charts represent
the probability of cancer in every interval. This probability is divided in the probability of a
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LRR (in blue) and of a SP (in red). On top of the probabilities the optimal action at each
decision epoch is given.

We see that it is optimal to intensify the screening when the probability of an LRR peaks and
just after that. Also, as the age of the patient increases, the optimal number of mammograms
decreases. This is because the probability of a recurrence is lower for older patients and the
remaining life expectancy is lower, so there is less to gain by early detection.

6 Conclusions & discussion

Currently, follow-up for breast cancer patients consists of annual mammography for five years.
Even though previous research shows that the probability of recurrence is highly correlated
with the personal characteristics of a patient, follow-up is not differentiated. Follow-up tailored
to the individual case is suggested by the national guidelines but without implementation in
practice. In earlier research this sort of problems were modeled by discrete-state POMDPs
(Ayer et al., 2012) (Otten et al., 2017). Because of limitations, discussed earlier, we model
the problem as a continuous-state POMDP. For this POMDP we derive an expression for the
optimal value function. For this optimal value function we proof an alternative representation
described by the α-functions. From this alternative description an iterative scheme can be
deduced to obtain the optimal value function for every belief state at every decision epoch.
In general, the solution algorithm for the optimal value function can only be carried out with
numerical methods. We proof that under some restrictions on the dynamics of the underlying
Markov chain, we can calculate the optimal value function exactly. In particular, we assume the
transition probabilities to be exponentially distributed and that the rewards are described by an
exponential function. Similar results may be derived for various specific transition probability
distributions, depending on the context of the problem.

As an illustration of how this model can be used in practice, we determine the optimal
policy for groups of patients. Because the age of the patients is known to be of large influence
on the risk of a recurrence we make a stratification of the patients based on their age. The
outcome suggests that it is optimal to test the patient more often just after the peak of risk of
a recurrence and to reduce the number of tests when the age increases. For the oldest group of
patients it seems optimal to not test at all.

Compared to the discrete model (Otten et al., 2017) there are some differences and some
similarities. As with the discrete model the results suggest that it is optimal to reduce the
number of mammograms as the age of the patient increases. Both models also suggest that the
testing should be intensified just after the peak in the probability of a recurrence. The optimal
number of mammograms differs, especially for the eldest group of patients.

In our model, the time between decision epochs is fixed. A possibility for future research
would be to model the problem as a continuous time POMDP where decision can take place at
any time, or with variable time lengths between decision epochs.

A large limitation of our study is that the estimates for some of the model parameters
are quite inexact and that the outcomes are rather sensitive for these parameters; this is in
particular the case for the growth model of the LRR and SP tumors. Therefore, further study
is needed before the model can be used in practice.
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