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We analyze a simple local search heuristic for the facility location problem using
the notion of perturbation resilience: an instance is γ-perturbation resilient if all
costs can be perturbed by a factor of γ without changing the optimal solution.

We prove that local search for FLP succeeds in finding the optimal solution for
γ-perturbation resilient instances for γ ≥ 3, and we show that this is tight.
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1 Introduction

The uncapacitated facility location problem (FLP) is a classical optimization problem: given a
set of customers and a set of locations, the goal is to open facilities at a subset of the locations
in order to serve all customers in the cheapest possible way. The FLP is NP-hard and even hard
to approximate [7], but in practice, it seems to be much less difficult to solve than indicated
by its worst-case complexity [8].

Of particular importance to solve such problems in practice are local search heuristics: they
are often simple and easy to implement, yet show a remarkable performance in practice, al-
though their worst-case behavior is usually poor. In order to get a better understanding of
the performance of local search heuristics for the FLP, we apply the notion of perturbation
resilience [2] to a simple local search strategy for the FLP.

1.1 Facility location problem

In this paper, we consider the uncapacitated, metric facility location problem (FLP):

Instances: a finite set F of locations, a finite set D of customers, facility costs fi ≥ 0 for all
i ∈ F , and service costs cij ≥ 0 for all i ∈ F and j ∈ D. The service costs are metric,
i.e., cij ≤ ci′j + ci′j′ + cij′ for all i, i′ ∈ F, j, j′ ∈ D.

Solutions: a solution (X,σ) for an instance (F,D, f, c) of the FLP consists of a nonempty set
of open facilities X ⊆ F and a customer assignment σ : D → X to open facilities.

1



Objective function and goal: The cost of a solution is c(X,σ) =
∑

i∈X fi +
∑

j∈D cσ(j)j . The
goal is to minimize c(X,σ).

This variant is called uncapacitated since all facilities can handle an arbitrary number of
customers and it is called metric because the service costs satisfy an extension of the triangle
inequality. For the discussion of other variants, we refer to two surveys [11, 10].

An optimal solution of an FLP instance is denoted as (X?, σ?). The costs of a solution (X,σ)
can be split into two parts: the facility costs cF (X) =

∑
i∈X fi and service costs cS(X,σ) =∑

j∈D cσ(j)j . Additionally, given an instance of the FLP and a set of open facilities X, it is easy
to compute an optimal corresponding customer assignment σ: σ(j) = argmini∈X cij , breaking
ties arbitrarily. Thus, the customer assignment is often dropped in the cost notations, which
implies that an optimal assignment is used.

The FLP cannot be approximated in polynomial time with a factor smaller than 1.463 unless
NP ⊆ DTime(nO(log logn)) [7]. On the other hand, there are approximation algorithms that
guarantee a solution within a factor 1.5 of the optimal solution [6], and there is a randomized
1.488 approximation algorithm [9].

Local search heuristics are a popular way to solve optimization problems. They often show
very poor performance in theoretical studies, but are often very powerful in practice.

We consider the following simple local search heuristic for the FLP: starting with an initial
solution, we can obtain a new solution Y from our current solution X by

• removing one facility of X, or

• adding one new facility to X, or

• replacing one facility in X by a new one.

A solution is a local minimum with respect to this neighborhood if we cannot find a cheaper
solution by applying any of these rules once. Since we are only concerned with the existence
of non-global, local minima in this paper, a specification how the initial solution is computed
or which step is chosen in case of multiple possibilities is not needed.

1.2 Perturbation resilience

Attacking the discrepancy between theoretical intractability and practical solvability has gained
significant attention in the last couple of years. By either applying probabilistic input models or
identifying properties that seem to make problems easier, one tries to find rigorous explanations
why certain problems are easy in practice yet difficult in the worst case.

In particular in the area of clustering problems, properties have been identified that – if
satisfied by the instance at hand – allow for efficient algorithms to solve or approximate the
clustering problem [2, 3, 5, 4]. Given the close relationship between clustering on the one hand
and FLP on the other hand, it seems natural to transfer these notions also to the FLP.

In this paper, we apply the notion of perturbation resilience to the FLP. Perturbation re-
silience, introduced and applied to clustering by Awasthi et al. [2], is a degeneracy condition:
by how much can the costs be perturbed without changing the optimal solution? Intuitively,
the more the instance can be perturbed without changing the optimal solution, the easier it
should be to find the optimal solution.
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Definition 1. An instance (F,D, f ′, c′) of the non-metric FLP is a γ-perturbation of instance
(F,D, f, c) of the FLP, with γ ≥ 1, if and only if fi ≤ f ′i ≤ γfi for all i ∈ F and cij ≤ c′ij ≤ γcij
for all i ∈ F, j ∈ D. If it is clear from the context which F and D are used, a γ-perturbed
instance can also be denoted as (f ′, c′).

A γ-perturbed instance is any instance that is a γ-perturbation of some fixed FLP instance.

Note that γ-perturbed instances are not necessarily metric. This definition allows only to
increase the costs, but this is only a matter of scaling. Using the definition of γ-perturbed
instances, we can define γ-perturbation resilience for the FLP.

Definition 2. An instance (F,D, f, c) of the FLP is γ-perturbation resilient with γ ≥ 1 if and
only if all γ-perturbations (f ′, c′) of (F,D, f, c) have the same unique optimal solution (X?, σ?).

If costs of γ-perturbed instances are compared, the notation of the perturbed costs follow
from the names given to the perturbed instances. So, for example, if (f ′, c′) is a γ-perturbed
instance, then c′(X) denotes the cost of solution X in the perturbed instance.

Any γ-perturbation resilient instance of the FLP is a valid γ-perturbation of itself, so γ-
perturbation resilience implies that the original instance has the same optimal solution as any
of its perturbations. If an instance has multiple optimal solutions, it is not γ-perturbation
resilient for any γ. Furthermore, if an instance is γ-perturbation resilient, then it is also
γ′-perturbation resilient for any γ′ < γ.

1.3 Our contribution

In this paper, we prove that local search for FLP finds the optimal solution for all 3-pertur-
bation resilient instances. Furthermore, we show that this bound is tight. We admit that
3-perturbation resilience is a quite strong assumption. Nevertheless, this is a first step towards
applying recent techniques from the analysis of algorithms to the FLP in order to better
understand its practical tractability.

2 Local minima are global minima for γ ≥ 3

In this section, we show that, for γ ≥ 3, γ-perturbation resilient instances do not have local
minima except for the unique global minimum. In the next section, we show that this is tight.

The following theorem is a result for local search algorithms on any FLP instance.

Theorem 3 (Arya et al. 2004 [1]). For a given instance of the FLP, let X be a local
minimum, and let X? be an optimal solution. Then cF (X) ≤ cF (X?) + 2cS(X?) and cS(X) ≤
cF (X?) + cS(X?). Combined, this yields c(X) ≤ 3c(X?).

This theorem will be used to show that there are no local minima except for the optimal
solution for 3-perturbation resilient FLP instances (Theorem 5). To prove this, we first the
following lemma, which states the following: if there exists some γ-perturbation resilient in-
stance with a non-global local optimum, then we can remove all facilities that belong neither
to the non-global local optimum nor to the global optimum. This newly constructed instance
is still γ-perturbation resilient and both the local and global optimum are maintained.

Lemma 4. Assume a γ-perturbation resilient instance (F,D, f, c) of the FLP exists with a
local minimum (X,σ) not equal to the optimal solution (X?, σ?).

Then an instance (F ′, D′, f ′, c′) of the FLP exists with the following properties:
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• the instance (F ′, D′, f ′, c′) is γ-perturbation resilient, and

• the instance (F ′, D′, f ′, c′) has a local minimum (X ′, σ′) not equal to the optimal solution
(X ′?, σ′?), and

• F ′ = X ′ ∪X ′?, and

• f ′i = 0 for all i ∈ X ′ ∩X ′?, and

• for all j ∈ D′, we have σ′(j) /∈ X ′ ∩X ′? or σ′?(j) /∈ X ′ ∩X ′?.

Proof. Take any such instance (F,D, f, c). We transform this instance to a new instance
(F ′, D′, f ′, c′) using the following steps. We apply each step until its conditions are satisfied
for all local minima X 6= X?, possibly applying earlier steps again in the process if their
conditions are not valid any more after applying a later step. Thus, at the beginning of every
step, the conditions of all previous steps are satisfied.

Step 1: Condition to satisfy: F = X ∪ X?. Drop all facilities not in X or X?, i.e., F ′ =
X ∪ X?. All customer assignments of σ and σ? remain valid and the costs c(X) and c(X?)
are unchanged. Thus, the resulting instance (F ′, D, f, c) is still γ-perturbation resilient with
optimal solution X?. Because all subsets of F ′ also are a subset of F , X 6= X? is still a local
minimum. After doing this, the conditions of step 1 are satisfied.

Step 2: Condition to satisfy: fi = 0 for all i ∈ X ∩ X?. Change the facility costs to the
following:

f̃i =

{
0 if i ∈ X ∩X?, and

fi otherwise.

Note that the resulting instance (F,D, f̃ , c) still has X as a local minimum, since the cost of
adding a facility to X is identical, compared to instance (F,D, f, c), and the cost of dropping or
swapping a facility from X is the equal or higher, as compared to instance (F,D, f, c). To show
that the instance (F,D, f̃ , c) is γ-perturbation resilient with optimal solution X?, consider all
nonempty sets of open facilities Y ⊆ F and customer assignments σ′ in all perturbations of
costs f ′i and c′ij and equivalent perturbations of f̃i and cij :

c′(X?, σ?) = c′F (X?) + c′S(X?, σ?)

=
∑

i∈X?\X

f ′i +
∑

i∈X∩X?

f ′i + c′S(X?, σ?) = c̃′(X?, σ?) +
∑

i∈X∩X?

f ′i ,

c′(Y, σ′) = c′F (Y ) + c′S(Y, σ′)

=
∑

i∈Y \(X∩X?)

f ′i +
∑

i∈Y ∩X∩X?

f ′i + c′S(Y, σ′)

= c̃′(Y, σ′) +
∑

i∈Y ∩X∩X?

f ′i .

This implies that

c̃′(X?, σ?) +
∑

i∈X∩X?

f ′i ≤ c̃′(Y, σ′) +
∑

i∈Y ∩X∩X?

f ′i ,

c̃′(X?, σ?) +
∑

i∈(X∩X?)\Y

f ′i ≤ c̃′(Y, σ′), and

c̃′(X?, σ?) ≤ c̃′(Y, σ′).
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So the instance (F,D, f̃ , c) is indeed still γ-perturbation resilient. This satisfies the condi-
tions for step 2.

Step 3. Condition to satisfy: for all j ∈ D, (σ(j) /∈ X ∩ X? or σ?(j) /∈ X ∩ X?) must be
true. Choose an arbitrary j ∈ D with σ(j) ∈ X ∩X? and σ?(j) ∈ X ∩X?. By the definition
of γ-perturbation resilience, j cannot be assigned to any other facility in X? in all of the γ-
perturbed costs c′. Thus cσ?(j)j < γcij for all i ∈ X? \ {σ?(j)}. Also, because F = X ∩X? and
X is a local minimum, cσ(j)j ≤ cij for i ∈ F \X? = X \X?. Thus, the assignment σ(j) = σ?(j)
is the best possible assignment in F .

Let c̃ denote the costs in instance (F,D′, f, c).
The new instance (F,D′, f, c) is created by removing customer j, i.e., D′ = D \ {j}. As a

result, X still is a local minimum in (F,D′, f, c):

• Dropping a facility i ∈ X (if |X| > 2); If i = σ(j), then fi = 0 because σ(j) ∈ X ∩X∗.
Thus, c̃(X \ {i}) ≥ c̃(X). If i 6= σ(j), then customer j is not connected to facility i, so
c̃(X)− c̃(X \{i}) = c(X)−c(X \{i}) ≥ 0. Hence, dropping facility i ∈ X does not result
in a better solution.

• Adding a facility i ∈ F \X; Removing customer j does not change the cost of adding a
facility, since σ?(j) = σ(j) and cσ(j)j ≤ cij : c̃(X)− c̃(X ∪ {i}) = c(X)− c(X ∪ {i}) ≥ 0.
Thus, adding facility i ∈ F \X does not result in a better solution.

• Swapping an open facility i ∈ X with closed facility i′ ∈ F \ X; If i 6= σ(j), the same
reasoning as in adding a facility holds. If i = σ(j), fi = 0 and this swap is not better
than just adding facility i′, which did not improve the cost either. Thus, swapping open
facility i ∈ X with closed facility i′ ∈ F \X does not result in a better solution.

To show that the new instance is γ-perturbation resilient with optimal solution (X?, σ?),
consider all Y ⊆ F and γ-perturbations (f ′, c′). Let Y ′ = Y ∪(X∩X?) with optimal assignment
(i.e., σ′(x) = argmini∈Y ′ c

′
ix) and note that c′(Y ′) ≤ c′(Y ) since f ′i = 0 for all i ∈ X ∩X?, even

in the new instance (F,D, f ′, c′). Let c̃′ denote the costs in instance (F,D′, f ′, c′). Thus:

c′(X?, σ?) = c′F (X?) + c′S(X?, σ?)

= c′F (X?) + c′σ?(j)j +
∑
x∈D′

c′σ?(x)x = c̃′(X?) + c′σ?(j)j , (1)

c′(Y ′, σ′) = c′F (Y ′) + c′S(Y ′, σ′)

= c′F (Y ′) + c′σ′(j)j +
∑
x∈D′

c′σ′(x)x = c̃′(Y ′, σ) + c′σ′(j)j . (2)

Note that c′σ′(j)j ≤ c
′
σ?(j)j , because σ?(j) ∈ Y ′. This together with (1) and (2) imply

c̃′(X?, σ?) + c′σ?(j)j ≤ c̃
′(Y ′, σ′) + c′σ′(j)j and

c̃′(X?, σ?) ≤ c̃′(Y ′, σ′) ≤ c̃′(Y ),

so even after removal of customer j, the instance (F,D′, f, c) is γ-perturbation resilient with
optimal solution X?. After doing this a couple of times, the condition for step 3 is satisfied.

After step 3, all conditions required for the lemma are satisfied. Note that all steps make the
instance smaller in some way (less facilities, less facilities with nonzero cost, less customers),
so this process terminates eventually.
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This lemma can be interpreted as removing complications from the instance, except those
which are necessary for either γ-perturbation resilience or the existence of the local minimum
X. The following theorem uses Lemma 4 to show that any local minimum of 3-perturbation
resilient FLP instances always is the global minimum.

Theorem 5. All local minima (X,σ) of a γ-perturbation resilient instance (F,D, f, c) of the
FLP with γ ≥ 3 are equal to the optimal solution (X?, σ?) of the instance.

Proof. We assume the contrary and use Lemma 4 to get an instance (F,D, f, c) with F =
X ∪X?, fi = 0 for i ∈ X ∩X? and, for all j ∈ D, (σ(j) /∈ X ∩X? or σ?(j) /∈ X ∩X?). Here
(X?, σ?) is the optimal solution and (X,σ) 6= (X?, σ?) the local minimum.

We perturb the costs as follows:

f ′i =


3cij0 if i ∈ X ∩X?, and

3fi if i ∈ X? \X, and

fi otherwise, and

c′ij =

{
3cij if σ?(j) = i, and

cij otherwise.

This is a valid γ-perturbation. Because the instance (F,D, f, c) is γ-perturbation resilient, the
following holds:

c′(X?, σ?) = c′F (X?) + c′S(X?, σ?)

=
∑

i∈X?\X

3fi +
∑
j∈D

3cσ?(j)j (by choice of f ′i and c′ij)

= 3c(X?, σ?),

c′(X,σ) = cF (X) + cS(X,σ)

=
∑

i∈X\X?

fi +
∑
j∈D

cσ(j)j , (by the properties of (F,D, f, c), f ′i and c′ij)

= c(X,σ),

so 3c(X?, σ?) < c(X,σ).
By Theorem 3, c(X,σ) ≤ 3c(X?, σ?), so 3c(X?) < 3c(X?) which is a contradiction. Thus,

for γ-perturbation resilient instances of the FLP with γ ≥ 3, no local minima exist except for
the global optimum.

3 Non-global local minima for γ < 3

Now we show that Theorem 5 is tight: For every ε > 0, there is a (3− ε)-perturbation resilient
instance that possesses a local optimum that is no global optimum.

Theorem 6. There exist γ-perturbation resilient instances of the FLP for all γ < 3 with local
minima X 6= X?.
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Figure 1: Example used in Theorem 6 (indirect service costs not shown)

Proof. The following example, inspired by Arya et al. [1], proves the theorem (see also Figure 1).
Choose a k ∈ N, whose value will be specified later on. Let

F = {0f , 1f , . . . , (k − 1)f , kf , ξf},
D = {0d, . . . , kd},

fi =

{
2k if i = ξf , and
1
k otherwise, and

cij =


1 if i = ξf , and

1 if i = kf , j = kd for some k, and

3 otherwise.

In the optimal solutionX? = {0f , . . . , kf}, all k+1 facilities of costs 1/k are opened. Together
with the service costs of 1 per client, this yields c(X?, σ?) = (k + 1)(1 + 1

k ). This instance is
3k

(k+1)(1+1/k) -perturbation resilient, as we will show by comparing all solutions X 6= X? with

X? for all γ-perturbations (F,D, f ′, c′). By letting k go to infinity, the perturbation resilience
gets arbitrarily close to 3.

We consider two cases: ξf ∈ X and ξf /∈ X. For the first case, assume ξf ∈ X. If this is the
case, then c(X,σ) ≥ 3k + 1. Thus, c′(X?, σ?) ≤ 3k < 3k + 1 ≤ c′(X,σ), which completes the
first case.

The second case is when ξf /∈ X. Without loss of generality, let X = {0f , . . . , (|X| − 1)f}.
Since c′if id < 3 ≤ c′i′id for i ∈ {0, . . . |X| − 1}, i′ ∈ F \ {if}, all customers {0d, . . . , (|X| − 1)d}
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are assigned to the same facility in both X? and X, i.e., σ?(id) = σ(id) = if . For the other
customers jd with j ∈ {|X|, . . . , k}, we look at the following quantity:

−f ′jf + c′σ(jd)jd − c
′
σ?(jd)jd

≥ − 3

(k + 1)(1 + 1
k )

+ 3− 3k

(k + 1)(1 + 1
k )

=
3

k + 1
> 0.

Using this quantity, we can bound the difference between c′(X?, σ?) and c′(X,σ):

c′(X,σ)− c′(X?, σ?) =
k∑

j=|X|

c′σ(jd)jd − c
′
σ?(jd)jd

− f ′jf > 0,

so c′(X?, σ?) < c′(X,σ), completing the second case.
For both cases it holds that c′(X?, σ?) < c′(X,σ), for all solutions X 6= X?, so instance

(F,D, f, c) is 3k
(k+1)(1+1/k) -perturbation resilient. Also, X = {ξf} 6= X? is a local minimum,

completing the proof.
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