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ABSTRACT

Canopy chlorophyll content (CCC) is an essential ecophysio-
logical variable for photosynthetic functioning. Remote sensing
of CCC is vital for a wide range of ecological and agricultural
applications. The objectives of this study were to explore
simple and robust algorithms for spectral assessment of CCC.
Hyperspectral datasets for six vegetation types (rice, wheat,
corn, soybean, sugar beet and natural grass) acquired in four
locations (Japan, France, Italy and USA) were analysed. To
explore the best predictive model, spectral index approaches
using the entire wavebands and multivariable regression
approaches were employed. The comprehensive analysis
elucidated the accuracy, linearity, sensitivity and applicability
of various spectral models. Multivariable regression models
usingmanywavebands proved inferior in applicability to differ-
ent datasets. A simple model using the ratio spectral index
(RSI; R815, R704) with the reflectance at 815 and 704nm
showed the highest accuracy and applicability. Simulation anal-
ysis using a physically based reflectance model suggested the
biophysical soundness of the results. The model would work
as a robust algorithm for canopy-chlorophyll-metre and/or
remote sensing of CCC in ecosystem and regional scales. The
predictive-ability maps using hyperspectral data allow not only
evaluation of the relative significance of wavebands in various
sensors but also selection of the optimal wavelengths and effec-
tive bandwidths.
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INTRODUCTION

Systematic monitoring, diagnostics and predictions of photo-
synthetic productivity are essential for plant and environmental
sciences as well as agricultural applications (Roy et al. 2001;
IPCC 2014;Way&Long 2015). Leaf chlorophyll concentration
(LCC) and/or green leaf area index (LAI) have been used in

various photosynthesis studies (Nobel 2005). The greenness
of crop leaves has been used for fertilizer management owing
to the proportional relationship of LCC with nitrogen content
(Ferwerda et al. 2005; Houlès et al. 2007; Rorie et al. 2011;
Inoue et al. 2012). The significant contribution of nitrogen to
photosynthesis can be explained by the high nitrogen content
in the photosynthetic apparatus (Sinclair & Sinclair & Horie
1989). In rice leaves, for example, 75–85% of the total nitro-
gen is included in chloroplast throughout the growing period
(Morita 1978).

However, in situ measurement of both LCC and LAI
values representative of a canopy is not only an easy task
but also prone to uncertainty (Jonckheere et al. 2004; Parry
et al. 2014). Quantification of LAI is affected by the threshold
between green and non-green elements, but it is unclear
(Jonckheere et al. 2004). More essentially, the canopy-scale
productivity is driven by the total photosynthetically active
radiation (APAR) absorbed by all chlorophyll pigments that
are distributed in 3D within a canopy (De Pury & Farquhar
1997). These facts suggest that accurate spatial assessment
of canopy chlorophyll content (CCC) by remote sensing is
vital for a wide range of ecophysiological and agricultural
applications.

Several spectral indices have been proposed specifically for
the assessment of chlorophyll content on leaf or canopy scales
(e.g. Broge & Leblanc 2000; Daughtry et al. 2000; Dash &
Curran 2004; Gitelson et al. 2005; Delegido et al. 2008; le Maire
et al. 2008). However, the optimal model specifications and
their general applicability remain unclear because predictive
performances of spectral models are affected by scales, species
and various confounding factors. Accordingly, preceding stud-
ies have strongly suggested a comprehensive analysis based
on diverse canopy-scale datasets to explore accurate and
robust models (Richardson et al. 2002; Delegido et al. 2008; le
Maire et al. 2008).

Here, our close international collaborations have enabled
such a comprehensive analysis based on high-quality
hyperspectral datasets for different types of vegetation ac-
quired by various sensors at diverse locations. The objectives
of this study were to explore accurate and robust algorithmsCorrespondence: Y. Inoue, e-mail: yinoue@affrc.go.jp
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for remote sensing of CCC and to elucidate the predictive abil-
ity and relative advantage/limitations of various spectral
models from the aspects of predictive accuracy, robustness, ap-
plicability and simplicity.

MATERIALS AND METHODS

Datasets

Datasets for six types of vegetation (rice, wheat, corn, soy-
bean, sugar beet and natural grass) were analysed in this
study. The datasets were obtained independently in four
locations, that is Japan, France, USA and Italy during a
1990–2012 period (Table 1). These vegetation canopies
include high variability in size and shape of leaves as well
as in canopy geometry. All spectral data were obtained by
using calibrated hyperspectral sensors of comparable specifi-
cations based on normal measuring configurations for acquisi-
tion of representative canopy reflectance signatures
(Thenkabail et al. 2011).

Among the six datasets, the rice canopy dataset was used for
exploring the new spectralmodels because the advanced sensor
specifications (e.g. spectral resolution, dynamic range and sen-
sitivity), direct determination of CCC and high canopy homo-
geneity favoured this exploratory analysis. The other datasets
were used for comprehensive validation studies. Accordingly,
the rice dataset is explained in detail in the succeeding texts
while the basic information on the other datasets is summarized
in Table 1 with reference documents for details.

Dataset for model exploration

The rice dataset was obtained in the experimental fields of
National Institute for Agro-Environmental Studies (NIAES;
Tsukuba, Japan) in 2009. A rice variety (Oryza sativa L. japon-
ica, variety: Koshihikari) was grown in 10 of 10× 10m experi-
mental plots. A bundle of four seedlings (hill) of about 15 cm
long were transplanted at a spacing of 30× 15 cm. In addition
to the standard level of nitrogen application (10gm-2), four dif-
ferent N levels (2, 6, 14 and 16gm-2) were applied to induce a
wide range of LAI and CCC.

Four times during the vegetative and reproductive growth
stages (26 June, 14 July, 21 July and 3 August), plant height,
stem density, leaf area, dry biomass, water content and chloro-
phyll content were determined for each plot. Five hills per plot
were sampled randomly for destructive measurements and
chemical analysis in the laboratory. The plant growth within
each nitrogen treatment was uniform (Coefficient of Variance
(CV) for plant height was 2–5%) throughout the season. LAI
was determined by using optical area metre (LI-3100C, Li-
Cor, Lincoln, NE, USA) after careful removal of senescent leaf
parts. The water content of each part was determined after des-
iccation in an oven at 70°C for 48h. The chlorophyll pigments
were extracted with 90% acetone from all leaves detached
from an intermediate hill in each plot, and the concentra-
tion per dry weight was determined by absorption spectros-
copy using a spectrophotometer (UV-1600GLP, Shimadzu,
Kyoto, Japan). CCC was then obtained by multiplying the Ta
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leaf chlorophyll (Ca+Cb) concentration by the biomass of
green leaves per m2 in the canopy (Morita 1978).
Canopy reflectance spectra were obtained under clear-sky

conditions around midday (10:00–13:00 Local Standard Time
(LST)) using a portable spectroradiometer (FieldSpec-Pro,
ASD, Boulder, CO, USA). The spectral range of the sensor
was 350–2500nm. The spectral resolution was 3nm for the
350–1000nm wavelength region and 10nm for the 1000–
2500nm wavelength region. The field of view of the sensor was
25°. Reflectance measurements were taken at a nadir-looking
angle from 2m above the canopy. More than 30 spectra were
taken for each plot to derive the representative reflectance spec-
tra. Spectral reflectance was calibrated by using a standard white
reference Spectralon (Labsphere, North Sutton, NH, USA).
Additionally, hyperspectral reflectance data of 75 soils from

the large collection throughout Japan by NIAES were
obtained using the same instrument under the controlled labo-
ratory environment. The soils had a variety of colours and
carbon contents ranging from 0.16 to 19.8%.

Analytical methods

Spectral index approach

We applied the normalized difference spectral index (NDSI)-
map and ratio spectral index (RSI)-map approaches to explore
the optimal indices for assessment of CCC using the entire
hyperspectral data (Eqns 1 and 2; Inoue et al. 2008; Inoue
et al. 2012). The definitions of the NDSI are given by the
following equation:

NDSI x; yð Þ ¼ y–xð Þ = x þ yð Þ; (1)

where x and y are reflectance (Ri andRj) or first derivative (Di
and Dj) values at i and jnm over the whole hyperspectral re-
gions (Liu et al. 2003; Mutanga & Skidmore 2004; Schlerf
et al. 2005; Inoue et al. 2008; Inoue et al. 2012). Similarly, the
RSI is defined as follows:

RSI x; yð Þ ¼ x=y: (2)

Here, both R and D values were used for x and y,
respectively.
The NDSI and RSI maps are created as a contour map of

statistical indicator such as coefficient of determination (r2)
between the target variable and spectral indices (NSDIs or
RSIs). The reflectance (R) spectra at 2 and 3nm intervals were
derived for all available wavelength range for six datasets, and
first derivative (D) spectra were generated from these reflec-
tance spectra. For the comprehensive evaluation, 32 major
SIs from the literature (see the note for Fig. 5) were included
in a comparison of predictive ability. Note that not all of them
were necessarily designed for assessment of CCC.

Multivariable regression methods

Partial least-squares regression (PLSR) and interval partial
least-squares regression (iPLSR) were used. The PLSR is able

to reduce the multi-collinearity problem for hyperspectral data
without losing the information about the contribution of indi-
vidual wavebands. The iPLSR is an improved version of PLSR
with iterative waveband selection processes to minimize the
residual error (Norgaard et al. 2000).

The theoretical details for the PLSR are given as follows:

yi ¼ β0 þ ∑
r

k¼1
βkTik þ ei i ¼ 1; …; nð Þ (3)

Tik ¼ ∑
m

j¼1
ckjxij k ¼ 1; …; rð Þ: (4)

yi target variable (dependent variable)
xij spectral reflectance (independent variables)
m number of spectral bands
n number of samples
ei error
βk regression coefficients
Tik latent variable (LV)
r number of latent variables
ckj coefficient for LV

The set of coefficients ckj is determined so that the covari-
ance betweenTk and y is maximized. The number of latent var-
iables is determined to minimize the prediction error through
cross validation.

Physically based canopy reflectance model

The radiative transfer model PROSAIL was used to simulate
canopy reflectance spectra under various plant and soil condi-
tions. The PROSAIL model can calculate the canopy reflec-
tance as a function of seven input parameters including LCC,
leaf structural parameter, equivalent water thickness, sun
zenith angle, background reflectance, LAI and leaf angle distri-
bution (LAD) (Jacquemoud et al. 2009). Here, we simulated
the reflectance spectra by changing LAI, LCC, LAD and soil
spectra to compare the response of spectral reflectance with
the differences in canopy size, leaf chlorophyll, plant type and
soil background, respectively.

Comparative methods for assessment of model
performance

To compare the predictive ability of spectral models using
SIs, PLSR and iPLSR, we employed statistical indicators
such as r2, root mean square error (RMSE) or normalized
RMSE (NRMSE) and discrepancy of slope (DS) or nor-
malized DS (NDS). DS indicates the discrepancy of the
slope of regression line between measured and predicted
values from 1:1 line (slope=1). These indicators are
defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ ŷi � yið Þ2

n

r
(5)

ŷi predicted values
yi measured values.

Simple sensing of canopy chlorophyll content 2611
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NRMSE ¼ RMSE=mð Þ= range (6)

m mean value for each dataset
range range of NRMSE values for all spectral models

InNRMSE,RMSEwas normalized by bothmean and range
to take account of their differences in each dataset. The DS is
defined by

DS ¼ sj � 1j (7)

s slope of the regression line between measured and pre-
dicted data

NDS ¼ 1�DS=range (8)

range range of DS for all spectral models
In NDS, DS was normalized by the range only because

the slope is independent from the mean in each dataset.
Consequently, these three indicators NRMSE, NDS and r2

vary between 0 and 1 and represent the overall scattering
including bias, sensitivity (slope) and linearity of the model,

respectively (Gauch et al. 2003). In addition, another statisti-
cal indicator dr (Willmott et al. 2012) was calculated for
checking the robustness of the evaluation of model
performances.

dr ¼ 1� ∑ ŷi � yij j
2∑ yi � yj j;when∑ ŷi � yij j≤2∑ yi � yj j

¼ 2∑ yi � yj j
∑ ŷi � yij j � 1;when∑ ŷi � yij j > 2∑ yi � yj j

(9)

: predicted values yi: measured values : mean of measured
values.

RESULTS AND DISCUSSION

Predictive models derived from rice dataset

Exploring best spectral indices using NDSI-map
and RSI-map approach

Overall, the reflectance spectra showed the typical response to
green vegetation, that is a positive relationship with increasing
CCC in the near-infrared wavelength region and a negative
response in the red region. Figure 1 shows some examples of

Figure 1. Typical reflectance spectra (a) and derivative spectra (b) for rice canopies with different canopy chlorophyll contents (CCCs). Data in two
wavelength regions around 1400 and 1900 nm are eliminated because of the low incoming solar energy due to atmospheric water vapour.

2612 Y. Inoue et al.
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reflectance spectra (a) and derivative spectra (b) in rice
canopies with different levels of CCC. The range of CCC
(0.01–2.13 gm-2) and LAI (0.08–6.73m2m-2) covered nearly
maximum values in normal conditions, respectively. In the
derivative spectra, D values show obvious peaks at around
710, 1130 and 1320nm corresponding to the increasing CCC.
The shift of peak-wavelength in the red-edge region (so-called
blue-shift; e.g. Vogelmann et al. 1993; Filella & Peñuelas 1994)
was noticeable.
Several spectral indices were found to be correlated very

well with the changing CCC. Figure 2 shows the NDSI and
RSI maps (contour maps of r2 between CCC and SIs) using re-
flectance values for the 400–1100nm wavelength region. In the
NDSI map (Fig. 2a), the most significant spot (r2=0.940) was
found around the peak at NDSI (R740, R761). This significant
area was narrow (approximately 10nm) along 740nm (Ri) but

wide over 750–830nm (Rj). In the RSI map (Fig. 2b), the most
significant spot (r2=0.946) was found around the peak at RSI
(R815, R704), and the second significant spot (r2=0.940) was
at RSI (R815, R578). These results clearly indicate the critical
role of R815 for the spectral assessment of CCC and the excel-
lent predictive ability of its combination with a red-edge band
(R704) or a green band (R578). Another important finding is
that RSIs would havemore robust predictive performance than
NDSIs because the size of significant areas is much broader in
RSIs. Generally, spectral models using SIs at broader spot are
less affected by the uncertainties in wavelength calibration or
other sensor specifications such as spectral resolution or
bandwidth.

In case that derivative values (D) were applied to the NDSI
and RSI maps (Fig. 3), the most significant peak (r2=0.918) in
the NDSI map was at NDSI (D689, D755). Two most signifi-

Figure 2. A contour map of the coefficient of determination (r2)
between CCC and (a) NDSI (Ri, Rj) and (b) RSI (Ri, Rj) created for
the rice dataset. Both NDSI (Ri, Rj) and RSI (Ri, Rj) are calculated
using reflectance values Ri and Rj at thorough combinations of two
wavebands, i and j nm. The white arrows indicate the most significant
spot NDSI (R740, R761) in (a) and RSI (R815, R704) and RSI (R815,
R578) in (b).

Figure 3. A contour map of the coefficient of determination (r2)
between CCC and NDSI (Di, Dj) and RSI (Di, Dj) created for the rice
dataset. Both NDSI (Di, Dj) and RSI (Di, Dj) are calculated using first
derivative values Di and Dj at the thorough combinations of two
wavebands, i and j nm. The white arrow indicates the most significant
spot NDSI (D689, D755) in (a) and RSI (D734, D542) and RSI (D734,
D683) in (b).

Simple sensing of canopy chlorophyll content 2613
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cant peaks in RSI maps were found at RSI (D734, D542)
(r2=0.948) and RSI (D734, D683) (r2=0.945), respectively.
These results confirm the important role of red-edge and green
wavebands as reported by many papers (e.g. Vogelmann et al.
1993; Gitelson et al. 2005). However, the useful spots were
much narrower in both NDSIs and RSIs than those using re-
flectance values (Fig. 2). Therefore, these indices strongly re-
quire high spectral resolution and high accuracy of
wavelength position, which would be one of the critical con-
straints for wider applicability (Lee et al. 2008).

Multivariable regression models using hyperspectra

Figure 4 shows the comparison of measured CCC with pre-
dicted values by iPLSR using reflectance (R) and derivative
(D) spectra. The iPLSR using D was better than that using R.
In the iPLSR model using reflectance spectra, wavebands

around the red-edge wavelength regions (720–820nm) were
selected to compose seven latent variables. For the iPLSR
model using derivative spectra, 10 wavebands in blue, green
and red-edge regions were selected for seven latent variables.
These wavelength regions are closely related to the chlorophyll
pigment and green biomass. The statistical indicators r2 (0.947
and 0.954) andRMSE (0.115 and 0.106) for the cross-validation
suggest the excellent performance of iPLSR models. It is inter-
esting that the predictive ability of iPLSR model was superior
to PLSR model even though PLSR uses much larger number
of wavebands (233). These results confirmed the limited appli-
cability of PLSR, which has been recognized in laboratory
chemometry (Grossman et al. 1996) and in field applications
(Inoue et al. 2012).

Comparison of spectral models

The predictive ability of selected spectral models is compared
in Fig. 5. Both iPLSR models using reflectance and derivative
spectra were ranked first and second. The index models using
RSI (D734, D542) and RSI (R815, R704) were ranked third
and fourth, respectively. It is remarkable that the RSI (R815,
R704) using only two narrow wavebands has predictive ability
comparable with the better-ranked models using larger num-
ber of wavebands. Overall, previous indices proposed for
CCC using red-edge and green wavebands, such as VOG-3,
GMI-2, CIred-edge, CIgreen andMTCI, proved to have moderate
to excellent predictive ability. The λrep model using the red-
edge position had extremely high RMSE, but it was attribut-
able to a few extreme points beyond the range of red-edge.
This may suggest that λrep would not be able to cover a suffi-
cient range of CCC. Generally, spectral models proposed for
leaf-scale variables (e.g. MCARI, PRI and SIPI) did not show
good predictive ability for assessment of CCC as suggested in
preceding studies (le Maire et al. 2008).

Comprehensive validation of the predictive
performance of spectral models using independent
datasets

Comparison of selected spectral models

The applicability of the 40 spectral models to the different
datasets is depicted by the position in the x–y space of line-
arity (r2) versus overall error (RMSE) (Fig. A1). The posi-
tions of the four top-ranked models reveal the superior
performance of the RSI (R815, R704). Clearly, iPLSR
models are not always excellent when applied to different
datasets. This may be attributable to the over-fitting of the
calibration dataset. Their performance was poor, especially
in different plant types (soybean and sugar beet). The appli-
cability to the natural grass dataset was relatively low in all
models (Fig. A1f).

The predictive performance of all spectral models was com-
pared using the average values of linearity (r2), normalized
overall error (NRMSE) and normalized discrepancy of sensi-
tivity (NDS) for the six datasets (Fig. A2). The linearity (r2)

Figure 4. Predictive ability of iPLS models derived from the
reflectance spectra (a) and first derivative spectra (b) in rice canopies.
Statistical indicators are for cross validation. Number of latent variables
was seven in both models.

2614 Y. Inoue et al.
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was highest in RSI (R815, R704) and second in CIred-edge,
which utilizes the ratio of R840~870nm and R720~730nm.
The difference of the linearity was relatively minor among
the majority of models using the red-edge wavelengths
(700~ 750nm). The effect of using more than two wavebands
was not clear. The overall scattering error (NRMSE) was
smallest in VOG-3 using four wavebands (R715, R720, R734
and R747) within the red-edge region. The second best was
the RSI (R815, R704), and the third was CIred-edge. The SIs
were developed specifically to detect leaf-scale variables such
as PRI, andMCARI had relatively large error. TheNDS (from
1:1 line) was smallest in CIred-edge2, which utilizes the ratio of

R750~800nm and R695~740nm. The RSI (R815, R704)
was the second, andVOG-3 was the third. The large variability
of NDS for the majority of models using only the red-edge
wavelengths suggests their instability because of the high sensi-
tivity to the position of selected wavebands within the narrow
region. The applicability of iPLSR models proved poor in all
statistical indicators (NRMSE, r2 and NDS). This would be at-
tributable not only to the multi-collinearity issue but also to
higher necessity for accurate absolute reflectance. Another in-
dex dr for evaluation of model performance showed close neg-
ative relationships with mean-absolute error (MAE), RMSE
and DS and a close positive relationship with r2. Accordingly,

Figure 5. Comparison of predictive ability of spectral models for assessment of CCC in rice. Spectral models are derived from the analysis of rice
dataset. Numbers in graph indicate the relative ranking. Spectralmodels with● are newmodels explored in this study. R andDdenote reflectance and
first derivative values, respectively. * indicates the major indices reported in the literature; 1) Vogelmann et al. 1993; 2) Gitelson &Merzlyak 1997; 3)
Gitelson&Merzlyak 1997; 4) Zarco-Tejada et al. 2001; 5) Gupta et al. 2003; 6) Peñuelas et al. 1995; 7) Rouse et al. 1974; 8) Huete 1988; 9)Gitelson et al.
2005; 10) Gitelson et al. 2003; 11) Sims&Gamon 2002; 12) Gitelson et al. 2006; 13)Daughtry et al. 2000; 14) Dash&Curran 2004; 15)Huete et al. 2002;
16) Jongschaap & Booij 2004; 17) Lee et al. 2008; 18) Inoue et al. 2012; 19) Wang et al. 2003.
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the ranking of models by drwas similar to those by other statis-
tical indicators.

Finally, the overall model performance was compared by
using the mean of the three statistical indicators (r2,
1-NRMSE and 1-NDS) in Fig. 6. The model using RSI (R815,
R704) was best followed by VOG-3 and ZM. Accordingly,
the new spectral model using RSI (R815, R704) would be most

promising in the aspects of linearity, robustness, sensitivity and
applicability. The RSI (R815, R704) is also superior in simplic-
ity to other more complex models that utilize larger number of
wavebands. Figure 7 shows the scatter plots between predicted
andmeasured CCC in all six datasets for the best model, that is
RSI (R815, R704). A systematic difference of slope for the
dataset of natural grass is observed commonly in all scatter
plots, which might be explained in part by the differences in
LAI measuring method and the complexity of ecosystems. An-
other systematic bias observed for the higher range of wheat
data was obvious especially in VOG-3 (Fig. A3a) and ZM
(Fig. A3b). In these models, the use of wavelengths only within
the red-edge region might have lowered the applicability to
wider conditions. Consequently, the spectral model CCCsp

using the RSI (R815, R704) proved to be most suitable for as-
sessment of CCC;

CCCsp g m-2land
� � ¼ 0:325 RSI R815;R704ð Þ - 0:358: (10)

This equation can be rearranged to be 0.325 [RSI (R815,
R704) �1] �0.033, which implies the proportionality of [RSI
(R815, R704) �1] to CCC. This proportionality supports the
assumptions by Gitelson et al. (2005) proposed for develop-
ment of spectral indices. These results suggest that the CCCsp

model would be applicable to various types of vegetation with-
out modification.

Although few studies were concerned about the bandwidths
for SIs (e.g. Gitelson et al. 2005; Inoue et al. 2008), our results
(Fig. 2) suggest that bandwidths would also be critical for high
predictive ability and robustness. For the CCCsp model, 5 nm
for R704 and 10nm for R815, respectively would be optimal
to achieve the highest predictive ability. However, the model
would still have relatively high performance even with wider
bandwidths such as 10 and 30nm, respectively.

Multivariable regression methods (e.g. PLSR) and ma-
chine learning methods (e.g. support vector machine and

Figure 6. Comparison of overall performance of spectral models for
assessment of CCC. The synoptic indicator is the average of r2 (1 ~ 0)
and normalized values of 1-NRMSE (0 ~ 1) and 1-NDS (0 ~ 1). Spectral
models with● are explored in this study and those with * are proposed
in the past. Numbers in graphs indicate the relative ranking in model
performance.

Figure 7. Scatter plot of predicted and measured CCC values for the
best model in Fig. 6, RSI (R815, R704). Model and model parameters
determined for the rice datasets were applied to all six vegetation
types. The r2 and RMSE values are for the combined dataset.
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artificial neural network) can be applied to hyperspectral
data (Hansen & Schjoerring 2003; Ali et al. 2015). However,
applicability of multivariable regression models to different
sensors and/or different types of vegetation proved unstable.

Accuracy and applicability of data-driven models by ma-
chine learning methods are highly dependent on the size
and quality of the training datasets (Doktor et al. 2014; Ali
et al. 2015). Accordingly, the SI method has some unique

Figure 8. Reflectance spectra simulated by a physically based canopy reflectance mode PROSAIL under a wide range of plant and soil conditions,
that is different leaf angle distribution (a), LCC (b), LAI (c) and soil colour and water content (d).
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advantages in simplicity, interpretability, robustness and ap-
plicability compared with these methods. Additionally, the
SI contour-map approach using hyperspectral data has an-
other advantage that SI maps can provide clear overview
for selecting optimal wavebands and bandwidths for various
sensors.

Investigating the biophysical soundness of the
experimental results using a canopy reflectance
model

Figure 8a depicts the effects of difference in plant types (spher-
ical, planophile, erectophile and plagiophile) on reflectance un-
der fixed LCC, LAI and soil background. Surprisingly, the
effect of plant type (LAD) is minimal at around 704nm
whereas the other wavebands including R815nm are highly af-
fected by plant types. This implies that the applicability of the
CCCsp model would be constrained by vegetation types. How-
ever, this simulation also suggests that the difference of canopy
geometry can be adjusted by changing the single coefficient be-
cause of the insensitivity of R704. The predictive ability of the
model in individual types can be improved by optimizing the
parameters in Eqn 10.

Interestingly, the reflectance in near-infrared region is nearly
insensitive to the change of LCC at constant LAI (3) whereas
the green to red-edge regions are moderately sensitive to
LCC (Fig. 8b). The effects of increasing LAI is negative in vis-
ible regions and positive in near-infrared regions whileminimal
at around 740 nm (Fig. 8c). Accordingly, spectral models
using near-infrared bands with the band in the region from
green to the left side of red-edge would be most significant
when seasonal data for a single plant type are used. Because
the response of R704 and R815 to LAI is consistent in in-
verse directions, these two bands would have an effective
role for quantification of CCC under changing LAI. The ef-
fect of different soil backgrounds is minor at around 704 nm
whereas it is relatively large in near-infrared region includ-
ing 815 nm (Fig. 8d). Therefore, the diversity of soils in our
datasets from different locations would be another reason
why the model using R704 and R815 was superior in this
comparative analysis.

Consequently, these simulation results suggest that the
waveband selection for SI models in this study was reasonable.
Interestingly, the specific wavelength of chlorophyll absorption
around 650nm was not necessarily selected for CCC assess-
ment in canopy scales whereas it is prerequisite for leaf-scale
chlorophyll metre such as SPAD-502 (Konica Minolta, Tokyo,
Japan) (Inada 1985). Nevertheless, for more realistic canopy-
scale simulations, the strong interactions between LAD, LCC
and LAI would have to be incorporated into canopy reflec-
tance model via the combination with plant growth model
(Olioso et al. 2005; Baret et al. 2007).

Confounding factors and applications

The physical accuracy and consistency of spectral signatures
are affected by sensor quality (sensitivity and dynamic range),

measuring configurations (sun and viewing angles, distance)
and atmospheric conditions (aerosol and water vapour)
(Verhoef & Bach 2012). Accordingly, acquisition of accurate
top-of-the-canopy reflectance is essential for precise assess-
ment of CCC. Nevertheless, note that the semi-empirical
models using simple SIs are affected by such factors, although
the disturbance by atmospheric and/or measuring conditions
can be reduced to some extent through normalization (Huete
1988; Myneni & Asrar 1994; Bachmann et al. 2015).

The CCC is not only the essential ecophysiological variable
for photosynthetic productivity but also closely related to the
other physiological and structural status. Therefore, the CCC
model would be useful to infer directly or indirectly the biotic
and abiotic stresses such as nitrogen (Inoue et al. 2012), light
absorptivity and light use efficiency (Gamon et al. 1997; Inoue
et al. 2008), biomass (Kawamura et al. 2010), diseases (Apan
et al. 2004), and water deficit (Ceccato et al. 2002).

CONCLUSIONS

This comprehensive study revealed the relative advantages and
disadvantages of the majority of spectral models for remote
estimation of CCC in the aspects of accuracy, linearity, sensitiv-
ity, robustness, simplicity and versatility.

An SI-based model using RSI (R815, R704), that is the ratio
of reflectance values at 815 and 704nm, was found to be
superior to all other models in overall predictive ability of
CCC. The soundness of the model (CCCsp) was supported by
simulation analyses using a physically based reflectance model
under various canopy conditions including plant types (canopy
geometry), LCC, LAI and soil background. The PLSR and
iPLSRmodels usingmuch larger number of wavebands proved
to be inferior to the index-based models, especially in versatil-
ity. The CCCsp would be used as a simple and robust algorithm
for the canopy scale chlorophyll-metre and/or remote sensing
of CCC in ecosystem and regional scales.

Geospatial and timely assessment of CCC is vital for a wide
range of agricultural and ecological applications such as diag-
nostics for precision farming, ecosystem health and carbon
cycle sciences. Upcoming hyperspectral satellite sensors such
as EnMAP and HyspIRI would provide great opportunities
for spectral assessment of ecophysiological variables (Staenz
& Held 2012). The NDSI-map and RSI-map methods proved
useful for overall evaluation of the relative significance of
wavelengths as well as for selecting the optimal wavebands
and effective bandwidth. Our analytical approaches and results
as well as the new models would provide useful information
and insights for the assessment of ecophysiological functioning
of terrestrial vegetation.
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APPENDIX

Figure A1. Applicability of 40 spectral models determined for rice dataset to the other plant species as indicated by coefficient of determination (r2)
and root mean square error (RMSE). The best four spectral models in Fig. 5 obtained for the rice dataset are indicated by symbols with number.
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Figure A2. Predictive ability of spectral indices based on the average values of coefficient of determination (r2), NRMSE and NDS. This graph
compares the mean values for six different datasets (rice, wheat, corn, soybean, sugar beet and natural grass). Spectral models with● are explored in
this study, and those with * are proposed in the past. Numbers in graphs indicate the relative ranking.
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Figure A3. Scatter plot of predictedandmeasuredCCCvalues for the
second and third best models in Fig. 6, VOG-3 and ZM. Model and
model parameters determined for the rice datasets are applied to all six
vegetation types.The r2 andRMSEvalues are for the combineddataset.
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