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Abstract 
 Reconfigurable many-core processors have many advantages over conventionally designed devices, such as 
low power consumption and very high flexibility. For an increasing number of safety-critical applications, these 
processors must have an ultra high dependability. This paper discusses the design and verification of an 
infrastructural IP, the Dependability Manager, which takes care of most essential dependability issues. Several 
additional innovative approaches with regard to dependability have been incorporated, like the NoC, wrapper 
and Network Interface design.  The Dependability Manager design has been verified on an FPGA and is being 
processed in UMC CMOS technology as part of a many-core processor. 
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 1   Introduction 
The advances in digital processors are often related to 
many-core processors, using more (dual, quad etc.) 
than one processor IP in a processor SoC. In order to 
cope with the huge data communication requirements 
between these cores, the cores are often 
interconnected by a Network-on-Chip (NoC). If the 
cores are identical, they are often referred to as 
“tiles”. 

On the other hand, these highly complex SoCs are 
increasingly used in safety-critical applications, like 
in the automotive, medical and military arena. This 
demands ultra dependable processor SoCs [1]. 
Because there are many tasks to be performed to 
accomplish this goal, the design of a dedicated 
Dependability Manager (DM) is considered nowadays 
to be a promising approach. As the DM is not related 
to a functional task of the SoC, it is referred to as an 
Infrastructural IP (IIP). This paper deals with the 
design and verification of a DM for a Reconfigurable 
Fabric Device (RFD) as being developed within the 
European CRISP1 project. 

The paper is organised in the following way:  

First, the global architecture of the RFD is briefly 
discussed. It shows a very high regularity in terms of 
the tiles, interconnected by a NoC. The tile is a 
reconfigurable pipelined Xentium processor core from 
Recore Systems and associated local memories. This 
high regularity provides a clue with regard to the 
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Reconfigurable ICs for Stream Processing (CRISP) project (ICT-
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periodic structural testing of these tiles, which is the 
starting point of our dependability approach. Repair is 
accomplished via run-time mapping of remaining 
fault-free reconfigurable Xentiums on the application. 

Next, the environment of the DM in the SoC is 
explained in more detail, including Network 
Interfaces (NI), Xentium tile and DM wrappers and 
the NoC.  

The central part of the paper discusses the functional 
blocks in the DM and their interaction, being the test-
pattern generator (TPG), the test-response evaluator 
(TRE) and the controller (FSM). Simulation results, 
as well as FPGA hardware tests, are shown. Finally, 
some conclusions are provided. 

2   The Dependable Reconfigurable 
Fabric Device 
For many applications, like e.g. beam-forming, a 
flexibility of the functionality of the processing 
elements in real time in a SoC is an advantage to cope 
with changing requirements of the application due to 
actual circumstances. A possible set-up of such a SoC 
is shown in Figure 1. It consists of many 
reconfigurable processing tiles, being a Xentium 
processor core and its local associated memories, 
interconnected by a high performance (wormhole) 
NoC. The configuration for the individual tiles is 
taken care of by a General Purpose Device (GPD), 
which can be on-chip (e.g. ARM9-based IP) or off-
chip. As the RFD is meant to be used for safety-
critical applications, the dependability has to be very 
high. The high degree of regularity, as well as the 
NoC communication provides new innovative ways to 
guarantee dependability. 



 
Figure 1:  Basic setup of a Reconfigurable Fabric 
Device (RFD) including 64 Xentium tiles [2]. 

In our case, two attributes [1] are of key importance: 

- on-chip detection of stuck-at faults in the tiles and 
NoC occurring during its life-time, relating to 
reliability (0,9783,  15 years), and subsequent repair 

- fast recovery time (10ms), being the time from the 
occurrence of a fault up to repair and re-initialization, 
resulting in a very high availability  

The central point of focus in this paper is the left 
bottom IIP in Figure 1, the Dependability Manager [1, 
2]. It receives its commands from the GPD, which 
includes a dependability API, over the NoC. As first 
step, the NoC is functionally tested by the GPD. 
Basically, the hardware TPG generates test-patterns 
for the Xentium core which are distributed over three 
Xentium cores via the NoC, chosen by the GPD. 
Subsequently, the three test responses are send to the 
TRE via the NoC which compares the results, and 
flags in case of a fault. In the latter case, the GPD 
starts a run-time remapping operation (software), 
thereby omitting faulty tiles and/or NoC segments. 

3   The Dependability Manager in the 
RFD SoC  
Because the DM communicates via the NoC with the 
Xentium tiles as well as the GPD, special measures 
have to be taken care of. An important condition of 
our approach is the fault-free behaviour of the NoC. 
This is taken care of via software running on the 
GPD, which basically verifies the functional 
behaviour of the NoC; this will not be further 
discussed in this paper.  In the first paragraph, the 
environment of the DM in relation with the tiles is 
discussed, while in the second paragraph the NI is 
dealt with in more detail. 

3.1 Environment of the Dependability 
Manager 
Figure 2 shows the most essential parts in the 
communication between the DM and the Xentium 

tiles. The NoC is a dedicated design of the packet-
switched wormhole type, capable of multi-casting and 
running at 200 MHz. The multi-casting is required for 
providing the test-vectors at multiple Xentium 
locations. The NoC has routers at each crossing, 
determining the actual routing of the packet. More 
detailed information can be found in references [3, 4]. 

Each scan-based Xentium core has a specially 
designed wrapper, which is used during normal SoC 
final testing as well as during its life-time for 
accomplishing the dependability scenario. The 
associated Xentium memories are locally BISTed, and 
finally OR-ed with the final scan-result (OK-NOK). 
The design of the wrappers will be subject of another 
paper. The Xentium network interface (NI) has been 
designed by Recore Systems and will not be treated 
here either. 

 The Dependability Manager Network Interface (DM-
NI), shown in the left-hand IIP has been specially 
designed for this purpose, and is discussed in detail in 
the next paragraph. The TPG can generate 32-bit test 
vectors on demand, which are subsequently multicast 
to three chosen Xentium tiles. The control part (FSM) 
also sets the Xentium wrappers for the dependability 
scenario. The test responses are routed via two 
channels to the TRE being a result of bandwidth 
requirements. The DM can be configured by the GPD 
via the NoC and a Multi-Channel Port (MCP) in the 
case the GPD is off-chip. 

Figure 2: Essential parts of the DM communication 

in the RFD. The DM wrappers have been omitted. 

3.2   Network Interface of the DM 
As shown in Figure 2, the network interface (DM-NI) 
is an essential part of the DM-IIP. It takes care of the 
bidirectional communication between the TPG, TRE 
and FSM on one side, and the NoC at the other side. 

The basic scheme of the DM-NI, divided in a sending 
and receiving part, is shown in Figure 3. From the In 
links, data arrives from the NoC, while from the Out 
links data departs to the NoC. Because of our 



bandwidth requirements, two virtual channel handlers 
are required of 4 virtual channels each. 

 
Figure 3: Simplified scheme of the DM network 
interface. 

The data from the three Xentium (X) tile responses, 
for instance, are buffered in the response handlers, 
and then separated in Xentium response scan data and 
memory BIST data via the Xentium wrapper status. 
This data is subsequently handled by the TRE. In the 
case the GPD is activating the DM via the NoC, this 
configuration data is routed towards the DM 
configuration input. In the lower right part of the NI 
(Figure 3), the generated test-vectors of the TPG 
(data) are loaded in the flit generator.  In the 
succeeding multiplexer, the chosen Xentium tiles or 
their internal addresses are chosen and finally multi-

casted over the NoC via the Send arbiter. 

Figure 4 shows a Modelsim simulation to illustrate 
the communication in the NI. For the sake of 
simplicity, only a part will be discussed. Box “a” 
consists of the In links and Out links. Box “b”, 
includes the DM configuration and status. The three 
Xentium responses and the white line TPG data is 
shown in box “c”. The last box “d” shows NI data and 
control lines. In (1), Figure 4, the GPD addresses the 
NI via the NoC. As a result, the NoC Out link and 
connection is being configured (2), as well as the DM 
(3). In (4) and (5), the Xentium wrappers and 
Xentiums are configured for testing first and their 
status read subsequently. Responses are shown in (6). 
In (7), the commands for test-vector generation (TPG) 
are given in the DM, which starts in (8). This TPG 
data is subsequently put on the NoC in (9). In the next 
paragraph, the DM parts will be discussed in more 
detail. 
 

4    The  Dependability  Manager   in 
Detail 
This paragraph will provide detailed information on 
the Dependability Manager.  As Figure 5 shows, it 
consists of three main blocks, the Test Pattern 
Generator (TPG), the Test-Response Evaluator 
(TRE), and the local controller based on finite state 
machines (FSM). For completeness it is noted that the 
embedded memories, which are part of the Xentium 
tiles, are locally BISTed. Hence no TPG or TRE is 
required for this purpose. The parts only concern the 
Xentium cores. The combined network interface (NI) 
has been previously described. First, the TPG is 

 
Figure 4: Communication via de NI between NoC and TPG, TRE and FSM. 



discussed, next the TRE and finally the FSM. The 
paragraph will also include actual hardware tests, 
besides Modelsim simulations. 

 
Figure 5: Detailed structure of the Dependability 
Manager. 

4.1    The Test-Pattern Generator (TPG) 
The TPG is an essential part of our dependability 
concept [3]. If a stuck-at fault is not found in a scan-
based Xentium core, by a periodic structural-based 
test, it will be labelled correct for use in the 
application. The fault coverage is hence the obvious 
parameter for the dependability efficiency. In order to 
build a generic TPG, a compiler was built which 
accepts deterministic test-vectors and automatically 
generates the VHDL code of the hardware 
implementation as close as possible to generate these 
deterministic vectors. First, the compiler is briefly 
discussed, then its verification by means of Modelsim 
simulation. Although not shown here, an actual circuit 
simulation confirmed its unique characteristics in a 
90nm CMOS process [6].  

As the architecture, and hence logic-gate level 
implementation, of the Xentium core was 
continuously developing in time, a very flexible and 

fast implementation path of the TPG had to be 
implemented. As a result, a TPG compiler was 
developed, in the style of DBIST [3]. Of course a 
chosen architecture is the basis of the TPG, with a 
number of changeable parameters. An example is 
shown in Figure 6. It consists of a programmable 
Fibonacci LFSR, seeding hardware, and a phase 
shifter [5]. Bit-flipping is an advanced module of the 
compiler. The deterministic patterns are currently 
determined by Synopsys’ TetraMAX from the 
VHDL-synthesized Xentium. It has 32 scan-chains of 
length 413. Scan-chain ordering in the layout phase 
has been taken into account. The result is a 
synthesizable VHDL code for the TPG, having the 
unique feature to pause and resume scan-test vectors 
depending on the NoC traffic load almost 
instantaneously. This will be detailed in another 
publication. To show the correct operation of the 
generated VHDL code, Figure 7 shows the Modelsim 
simulation of the generation of four test vectors [5]. 

The parameters used are the test-pattern length of 413 
(scan flip-flops). Although only four scan patterns are 
shown, actually 1002 patterns are generated. 
Pause/resume options have not been used in this 
example. Of particular interest are the last two 
signals, being the generated scan-test (sc) output 
followed by the generated primary inputs (pi). The 
two scan vectors (412) and (413) are the last, 
followed by zeros only. Next the PIs are provided; 
note they were all zero when the scan vectors were 
generated. In slot (419), the LFSR is initialized and 
during the next clock cycle the first seed is loaded in 
the LFSR. Then, the first scan test vector is generated 
(1), and the next (2). 

Via automatic comparison of TetraMAX outputs and 
the TPG result vectors it was verified that they are 
identical. Many other interesting experiments were 
carried out, relating the TPG to used Silicon area, 
power dissipation and number of vectors, 
pause/resume cycles and TetraMAX care-bit 
distribution; however, they will not be discussed here.
    

4.2    The Test-Response Evaluator (TRE) 
The evaluation of the response test vectors from the 
Xentium tile resulting from the TPG is also handled 

Figure 6: Example architecture of the TPG. 



within the Dependability Manager IIP. The fact that 
many Xentium tiles are present, enables the use of 
comparison between (3) Xentium cores, assuming that 
identical faults will not occur at 3 locations 
simultaneously [4, 7].  This greatly reduces the area 
required otherwise for evaluation. The basic design of 
the TRE is essentially a 3-input 32-bits comparator, 
preceded by three buffer FIFOs and a crossbar and a 
dedicated controller unit; it has already been 
published in reference [4]. However at that stage, the 
TRE was still considered a separate IIP, requiring its 
own network interface (NI). As a consequence, the 
TRE has been adapted later on, simulated in 
QuestaSim, implemented on a Xilinx Virtex4 board 
and subsequently tested. The simulation results of the 
new TRE are shown and explained in Figure 8. 

In the first 3 signals (black boxed at top left), the 
clock and resets are shown. After that (first arrow top 
left), the 32-bit results from the Xentium(s) are shown 
serially.  In the middle arrow labelled “a”, a fault has 
been introduced/injected. This results in the arrow 
labelled ’b’ (signal full_pass) indicating that an error 

has occurred during comparison, and hence a 
Xentium core failed. The arrow labelled ‘c’ indicates 
that the buffers in the TRE are full, and hence no new 
data can be read in. The bottom signal 
“full_fail_pointer” using the bidirectional arrow 
indicates during which test vector the comparison 
noticed a difference. The simulations showed that the 
circuit could operate beyond the required 200 MHz. 

4.3    The Control Part of the DM (FSM) 
  The DM accepts commands from the 
dependability software running on the GPD (Figure 
2), via the DM configuration register. The DM can 
carry out tests as specified, e.g. which tiles are 
involved, and update the register to report the test 
results to the GPD. The internal control in the DM is 
carried out via a finite state machine (FSM), which 
was designed using the StateCAD software of Xilinx.  

The design was extensively verified by simulation for 
several dependability and debugging scenarios, 
including emulating faults in the Xentium core. 

Figure 7: Four test vectors generated from compiler implementation. 

Figure 8: Simulation of the TRE functionality. 



4.4  Hardware Test Verification of the DM 
The complete DM, being the TPG, TRE, FSM and 
the NI was synthesised and implemented on a Xilinx 
Virtex 4 board for carrying out hardware tests. The 
total space required was 13%. Synopsys synthesis 
resulted in around 78k equivalent logic gates. For 
DM hardware test evaluation purposes, a RS232 data 
communication between FPGA and a PC was used in 
combination with a developed GUI in Visual Basic. 
A maximum test frequency of 212 MHz was used. 
As example, Figure 9 shows the GUI of the set-up to 
test the TRE part which includes some test results. 
The status block refers to failures in buffers (full) or 
the data streams (Xentium test responses). The 
control block provides TPG options, where data fault 
responses can be automatically generated. Most 
interesting is the communication viewer. It shows the 
three 32-bit data streams, the control commands 
(yellow/grey boxes) and the measured responses 
from the TRE (Virtex-4). The first result shows a 
fault in the first data stream, while the second occurs 
in the third data stream. It illustrates the correct 
operation of the TRE [8]. 

 
Figure 9: The TRE part hardware verification by 
means of an FPGA [8]. 

After completing the full verification on FPGA, the 
next step will be the processing in an UMC CMOS 
process. The current chip layout shows a total Silicon 
area of 0.24mm2 for the DM in 90nm technology. 
 

4.5    Debugging  and  Dependability  of 
the DM 
The DM is equipped with scan-cells, wrappers and 
dedicated pins for test and debug. During production 
test, the DM is scan tested in a conventional way. For 
prototype evaluation, 21 pins are available for direct-
pin debugging, in which case the DM is considered as 
stand-alone IIP. In the current version of the DM, no 
additional means have been incorporated to increase 
the hardware dependability of the IIP itself. However, 

it is possible to include fault-tolerant comparators and 
TPG hardware. During its lifetime, the current DM 
can be internally tested periodically; means have been 
included to take over its function in the case of 
failure, by software or external hardware. In both 
cases, however, at the cost of a significantly decreased 
(especially in the software approach) availability. 

5   Conclusions  
In this paper we have discussed the design and 
verification of an infrastructural IP, the Dependability 
Manager (DM). It is the essential part for enhancing 
the dependability of our many-cores Reconfigurable 
Fabric (RFD). It can be controlled with an internal or 
external General Purpose Device via a Network-on-
Chip. 
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