
Formal Specifications Investigated: A
Classification and Analysis of Annotations for

Deductive Verifiers

FormaliSE

Evaluation
Artifact

2022
Accepted

Sophie Lathouwers
University of Twente

Enschede, the Netherlands

s.a.m.lathouwers@utwente.nl

Marieke Huisman
University of Twente

Enschede, the Netherlands

m.huisman@utwente.nl

ABSTRACT

Deductive verification can be used to ensure properties about all

possible behaviours of a program, even when the program is pa-

rameterised and has an unbounded state space. But to achieve this,

the user needs to specify what the desired properties are, and often

needs to guide the prover with auxiliary annotations. This paper

investigates what annotations are actually needed, and it provides a

taxonomy to categorise these annotations. In particular, we identify

several top-level categories, which are further divided into sub-

categories of annotations. This taxonomy is then used as a basis

to investigate how often particular annotation categories occur,

by inspecting over 10k lines of annotated programs. To determine

whether the results are in line with expectations, we have inter-

viewed several experts on deductive verification. Moreover, we

show how the results can be used to evaluate the effectiveness of

annotation generators. The knowledge from this analysis provides

a gateway to guide further research in improving the efficiency

of deductive verification, e.g.: it can serve as a guideline on what

categories of annotations should be generated automatically, to

evaluate the power of existing annotation generation techniques,

and to improve the teaching of deductive verification.

CCS CONCEPTS

• Theory of computation → Program specifications; Auto-

mated reasoning; Pre- and post-conditions; Invariants; • General

and reference→ Empirical studies; • Software and its engineer-

ing→ Specification languages; Formal software verification.

KEYWORDS

Taxonomy, Auto-active verification, Specifications, Annotations,

Deductive verification

ACM Reference Format:

Sophie Lathouwers and Marieke Huisman. 2022. Formal Specifications In-

vestigated: A Classification and Analysis of Annotations for Deductive

Verifiers. In International Conference on Formal Methods in Software Engi-

neering (FormaliSE’22), May 18–22, 2022, Pittsburgh, PA, USA. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3524482.3527652

FormaliSE’22, May 18–22, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9287-7/22/05.
https://doi.org/10.1145/3524482.3527652

1 INTRODUCTION

Writing correct software is notoriously difficult. Therefore, many

techniques have been developed to help with this, such as fuzzing,

model checking and static analysis. One of these techniques, deduc-

tive verification, is especially powerful to ensure software reliability

because it works for all possible executions, for unbounded param-

eters, and for an unbounded state space. Deductive verification

uses logical inference to determine whether a program adheres to

a formally defined specification [17]. It generates proof obligations

which need to be discharged either interactively (e.g. with a proof

assistant like Isabelle) or automatically (e.g. with an SMT solver like

Z3). At the end of the verification process, the deductive verifier

will either (1) report that the program adheres to the specification,

(2) report that it could not be proven correct, possibly showing

what could not be proven, or (3) the verifier can timeout.

Unfortunately, while this technique is very powerful, it needs

many specifications which can be difficult and time-consuming to

write. As a result, writing specifications acts as a bottleneck in the

deductive verification process [3, 4, 17]. An example of a program

with specifications can be seen in Listing 1. The specifications are

written in the form of annotations in the program code. The 10 lines

of code in Listing 1 already require 7 lines of annotations to prove

correctness.

Listing 1: A small program that searches for an element in

an array. Annotations (preceded by @) have been added so it
can be statically verified with OpenJML.

1 public c l a s s SearchArray {

2 / ∗@ r e q u i r e s a != n u l l ;

3 @ r e q u i r e s a . l eng th >0 ;

4 @ ensu r e s \ r e s u l t >=0 ==> a [\ r e s u l t]== elem ;

5 @ ensu r e s \ r e s u l t ==−1 ==> (\ f o r a l l i n t i ;

0<= i && i <a . l e ng t h ; a [i] ! = elem) ; ∗ /

6 public s t a t i c int s e a r ch (in t [] a , in t elem) {

7 in t i = 0 ;

8 / ∗@ l o o p _ i n v a r i a n t 0<= i ;

9 @ l o o p _ i n v a r i a n t i <=a . l e ng t h ;

10 @ l o o p _ i n v a r i a n t (\ f o r a l l i n t j ; 0<= j &&

j < i ; a [j] ! = elem) ; ∗ /

11 while (i <a . l e ng t h) {

12 i f (a [i]== elem) { return i ; }

13 i ++ ;

14 }

15 return −1;

16 }

17 }

69

IEEE/ACM 10th International Conference on Formal Methods in Software Engineering

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/

FormaliSE’22, May 18–22, 2022, Pittsburgh, PA, USA Sophie Lathouwers and Marieke Huisman

To improve the deductive verification process, we need to allevi-

ate the specification writing burden on the user. Many researchers

therefore suggest to look into the automatic generation of anno-

tations [13, 16, 18, 20, 27]. But before we can effectively generate

annotations, we need to improve our understanding of what anno-

tations we should generate. Specifically, we need to know:

• What annotations are used?

• What is the role of these annotations? (e.g. do they describe

the behaviour of the program or are they used to help the

underlying solvers?)

• How frequently do these annotations occur?

This information can be used in many ways to improve the deduc-

tive verification process, for example:

• Guide research into annotation generation, e.g. by focusing

on the most common annotations.

• Evaluate existing annotation generation techniques.

• Guide teaching deductive verification based on the common

annotations amongst tools.

• Evaluate the current state of the art for deductive verification,

e.g. it can be used to investigate what common features of a

language are lacking support in the verifiers.

While there has been some related work that analyses specifica-

tions [10, 12, 28], these focus mostly on lightweight specification

approaches such as debugging. We present the first analysis of all

annotations that users need to write to statically verify a program.

We focus on deductive verification with automatic discharging

of proof obligations, also known as auto-active verification [23]. In

auto-active verification the user is only required to write specifi-

cations in the form of annotations in the program code, the rest

of the verification process is automatic. We have chosen to focus

on auto-active verification because the annotation writing process

seems easier to (partly) automate than the user interaction required

by interactive theorem provers.

This paper investigates which annotations exist and how often

these are used by auto-active verifiers. We have set up a taxonomy

which categorises annotations and provides an overview of the

different types of annotations that are used. This taxonomy is based

on input from verification experts and literature. Moreover, to gain

insight into what auto-active verifiers need for proving correctness

of programs, we categorised the annotations of a large data set of

verified programs using the taxonomy. Afterwards, we have con-

ducted interviews with verification experts to determine whether

our results are in line with their beliefs. Additionally, we show how

the results can be used to evaluate the impact of existing annotation

generators.

To make this work feasible, the scope of this research has been

limited to verifiers for Java programs that use preconditions, post-

conditions and loop invariants to write annotations. Based on these

criteria, we included examples from the following verifiers: KeY [1],

Krakatoa [24], OpenJML [8], VerCors [5] and Verifast [19].

In summary, the contributions of this research are:

• A taxonomy for categorising annotations of auto-active ver-

ifiers for Java programs.

• An analysis, based on the taxonomy, of annotations used by

five auto-active verifiers (KeY, Krakatoa, OpenJML, VerCors

and Verifast).

• A data set of annotations from verified Java programs cate-

gorised according to the taxonomy: https://doi.org/10.4121/

16545714

• An evaluation of the impact of seven existing annotation

generators on the overall verification process, based on the

taxonomy and analysis.

2 DETERMINING CATEGORIES FOR THE
TAXONOMY

To set up a taxonomy, we need to look for possible categories into

which the data can be divided. This section describes our method

for finding the categories for the taxonomy described in Section 3.

We have used open card sorting to determine initial categories for

this taxonomy. In open card sorting, a participant is given multiple

cards and is asked to sort these cards into groups that make sense

to him/her and label each category [30]. This gives insight into

what users think are similar cards. By using open card sorting, we

consider the views of other researchers and avoid a personal bias

in chosen categories. Moreover, card sorting requires little time per

participant and is easy and inexpensive to set up.

The process of making the cards is explained in Section 2.1.

Section 2.2 explains how we have set up our online card sort exper-

iment, and presents the results of the card sort.

2.1 Making cards

We wanted to use existing annotations for the cards. Therefore, we

started by choosing verifiers from which we could gather annota-

tion samples. We have used the following selection criteria. The

tool:

• can verify Java programs

• supports auto-active verification

• can still be used successfully (so we can reproduce the veri-

fication results)

• uses pre-/postcondition structure to write annotations

The final set of tools that are used for this study are:KeY1, Krakatoa2,

OpenJML3, VerCors4, and, Verifast 5. KeY and Krakatoa can be used

with and without significant user interaction. For this research

we only considered programs that can be verified without any

significant user interaction (i.e. user only needs to press a button).

Next, we extracted the annotations from 10 randomly selected

verified examples per tool. It is recommended to have at most 30-50

cards for an open card sort to avoid participant fatigue. Therefore,

from the randomly selected examples, we selected annotations with

the most commonly used constructs such as preconditions, postcon-

ditions, loop invariants and predicates. For each of these constructs,

we made sure to add several cards to ensure that participants could

form groups. This resulted in 30 cards.

In our card sorting, each card consists of one annotation and a

corresponding description of the annotation to ensure a common

understanding as recommended by [32] (see Figure 1 for an example

1v2.6.3 with CVC3 (v2.4.1) as a backend solver.
2v2.41 with Alt-Ergo (v1.30), CVC3 (v2.4.1) and Z3 (v4.3.2) as backend solvers.
3v0.8.46-20200505 with Z3 (v3.4.3) as a backend solver.
4commit 0aa6a9a, https://github.com/utwente-fmt/vercors/tree/0aa6a9a
5v19.12.06-17-g996506d

70

Formal Specifications Investigated: A Classification and Analysis of Annotations for Deductive Verifiers FormaliSE’22, May 18–22, 2022, Pittsburgh, PA, USA

of a card). For the descriptions we were careful to vary wording to

avoid obvious patterns for the participants.

Figure 1: Example of a card used for card sorting in this study.

2.2 Card sorting

Six people have participated in our open card sorting. The partic-

ipants had varying degrees of experience with auto-active verifi-

cation, some have verified small examples whereas others have

done large case studies with such tools. The verifiers that they had

experience with included Frama-C, KeY, Nagini, OpenJML, VerCors

and Verifast. In our case it is not necessary to have a large amount

of participants because it is used as a brainstorming exercise, not

to gather statistically significant data.

Participants were given all 30 cards that they needed to sort into

categories using a drag-and-drop approach (see Figure 2). The cards

were presented in a random order to avoid any bias that might be

introduced by the participants seeing the cards in the same order.

Figure 2: Participant’s view during card sorting. The partici-

pant can drag and drop the cards from the left sidebar into

the bigger area on the right to sort them into groups.

2.2.1 Card sorting results. Next, we analysed the results of the

card sort. If participants had a group with a similar title and similar

cards, then these groups were merged, since such groups indicate

that these users have a similar understanding of these annotations.

Participants suggested the following categories:

(1) Functional specifications

(2) Functional correctness

(3) Verification-only specifications

(4) Proof assistance

(5) (Pre)state (or assumptions)

(6) Assumptions

(7) Behavioural specifiers

(8) Code

(9) Modelling

(10) Permissions

(11) Predicates

(12) Ghost state

(13) Other ghost stuff

(14) Exceptions

(15) Non-null

(16) Equal

(17) Arrays and iteration

(18) Does not fit in other groups

Due to the limitation of using 30 cards per study, whereas there

are many different types of annotations (either in complexity, pur-

pose or underlying logic), one may notice that some of the final

categories in the taxonomy (see Section 3) have not been suggested

by participants. Instead, the list of suggested categories has been

used as a starting point for the taxonomy.

2.3 From card sorting results to taxonomy
categories

We decided to use the following proposed top-level categories, be-

cause they all give a high-level description of what an annotation is

used for. For each category we mention its relation to the suggested

categories as mentioned in the previous section.

• Proof assistance (suggested as 4, also includes 6, 12, 13)

• Permissions (suggested as 10)

• Behavioural specification (suggested as 1 and 2)

• Functions (includes 11)

• Usability keywords (includes 7)

• Tool-specific specification (18)

Most of the other proposed categories were more detailed cat-

egories, therefore they have been included as subcategories. For

example, the exceptions, equal and non-null have been included as

subcategories of “Behavioural specifications" because they describe

specific classes of behavioural specifications. Assumptions, Ghost

state and Other ghost stuff have been included as subcategories

of “Proof assistance" because they are all approaches that are used

to provide extra information to the underlying solver. Arrays and

iteration has not been included in the taxonomy because we de-

cided to use categories that describe the purpose of an annotation

whereas this category takes a data structure approach. However,

the taxonomy includes several “Complexity" questions, such as

“Does the annotation use quantifiers?" which can be used to gain

some insight into the data structure that an annotation is about.

Other things that were considered when choosing subcategories

for the taxonomy include:

• Frame conditions, which are annotations that state that a

variable’s value does not change, are “rarely written by devel-

opers in practice" [28] but are a promising case for annotation

generation.

• Reasoning about termination typically requires additional

annotations such as loop variants.

• We have separated functional specifications according to

whether they are expressed as a “bound check" (<, >, <=, >=)
or a “value check" (==, ! =, suggested as equal).

71

FormaliSE’22, May 18–22, 2022, Pittsburgh, PA, USA Sophie Lathouwers and Marieke Huisman

• “Value check" has been split into more subcategories as it

contained many different annotations. These subcategories

have been chosen based on what kind of variables are com-

pared: whether they refer to a previous state of the program,

whether they compare a variable to a hardcoded number, etc.

“Bound check" has been split into subcategories as well.

3 TAXONOMY

In this section we present the taxonomy for auto-active verification

annotations. As mentioned above, each annotation is categorised

into one of the following top-level categories:

• Proof assistance: Annotations necessary to help the underly-

ing solver to verify the program. It typically requires signifi-

cant insight from the user to write such annotations.

• Permissions: Annotations used to describe access to certain

variables, e.g. if a function may read from a certain variable

or write to it.

• Behavioural specification: Annotations that describes the be-

haviour of the program.

• Functions: Annotations that can be used as functions in other

annotations. This includes function definitions, predicate

definitions (functions with a specific return type) or predi-

cate usages in preconditions/postconditions/etc. This does

not include the (un)folding of predicates or other function

usages.

• Usability keywords: Annotations that make it easier to write

a specification.

• Tool-specific specifications: Annotations specific to one of the

tools.

In the rest of this section, we will discuss each of the above

mentioned categories and their subcategories in detail. We also

observed that there are annotation generators that cannot generate

more complicated annotations such as annotations with quantifiers.

To be able to evaluate these tools in more detail, it is important to

know about the complexity of annotations. Therefore, we propose a

set of questions about the complexity of an annotation in Section 3.7.

3.1 Proof assistance

Proof assistance annotations are used to provide extra informa-

tion to the underlying solver. Each proof assistance annotation is

classified according to the following subcategorisation:

• Assumption

• Axiom

• Ghost code

– Definition of ghost variable

– Setting/modifying the value of a ghost variable

– Passing or receiving a ghost parameter

– Other ghost code

• Lemma

• (Un)folding of a predicate

These subcategories have been chosen based on the suggested

categories Assumptions, Ghost state, Other ghost stuff during the

card sort. In addition, we also considered existing features in KeY,

Krakatoa, OpenJML, VerCors, and Verifast.

An example of a proof assistance annotation is axiom max_is_ge:

\forall integer x y; max(x,y) >= x && max(x,y) >= y;.

This would be classified as Proof assistance→ Axiom.

3.2 Permissions

Examples of “Permissions" are statements such as assignable var,

requires Perm(x, write) or var |-> _. These annotations de-

scribe whether a method may read from or write to a variable.

Many of the permission annotations can be found in examples from

VerCors and Verifast because these tools use separation logic. Each

permission annotation is further categorised according to their

position in the program:

• Method: Used for annotations about a whole method, such

as the annotations with the keywords assignable, assigns,

accessible, pure, modifiable, and modifies.

• Precondition

• Postcondition

• Loop invariant

• Tool-specific: For positions that are specific to the technique

of one tool.

It is important to note that permissions will be categorised as a

predicate, instead of a permission, if they are used in a predicate.

This is because predicates cannot be split into smaller equivalent

chunks.

An example of a permission annotation is requires (\forall*

int i; 0<=i && i<a.length; Perm(a[i], write));. This

annotation would be categorised as Permissions→ Precondition.

3.3 Behavioural specifications

Annotations about the behaviour of a program are classified in two

ways. Firstly, the position in the code where they are found, and

secondly the behaviour that they describe.

3.3.1 Position in code. The following positions have been included:

• Assertion/refute

• Precondition

• Postcondition

• Exceptional postcondition

• Loop invariant

• (Class) invariant

• Method (this includes annotations about amethod as awhole).

3.3.2 Behaviour. Next, each annotation is classified according to

the behaviour that it describes as follows:

• Termination (gives information about the termination of the

code block)

– Loops (gives information about the termination of a loop).

– Methods (gives information about the termination of a

method).

• Functional (gives information about the value of variables)

– Bound check (when variables are compared with >, >=,

<=, or <.)

∗ Specific value (when a variable is compared to a hard-

coded number, e.g. a > 0)

∗ Related to other variable (when a variable is compared

to another variable, e.g. a > b)

72

Formal Specifications Investigated: A Classification and Analysis of Annotations for Deductive Verifiers FormaliSE’22, May 18–22, 2022, Pittsburgh, PA, USA

∗ Related to previous state (when a variable is compared

to its value in a previous state, e.g. a > \old(a))

– Value check (when variables are compared with == or !=).

∗ Specific value

∗ Related to other variable

∗ Related to previous state

∗ Null check (when a variable is compared to null, e.g.

a != null)

∗ Frame condition (when a variable’s value stays the same,

e.g. a == \old(a))

∗ Boolean check (when a boolean function is called or a

comparison to a boolean is made)

∗ Class check (when a variable’s class is compared, indi-

cated with instanceof or a.getClass() == B.class)

∗ Default (no comparison with a variable, condition is

either true or false).

An example of a behavioural specification is signals_only

NullPointerException (equivalent to signals (Exception e)

e instanceof NullPointerException). It checks whether the

thrown exception is of the specified type NullPointerException.

Therefore, this annotation would be categorised as Behavioural spec-

ification→ Exceptional postcondition & Functional→ value check

→ class check.

3.4 Functions

“Functions" is used for annotations that can be used as functions

in other annotations. This does not include proof assistance anno-

tations that can be written as a function such as axioms. It is used

for function definitions, predicate definitions (which are function

definitions with a specific return type) and predicate usages. Func-

tion usages are included in the “behavioural specification" category.

Function annotations are categorised as follows:

• Predicate (indicated with the predicate keyword in Kraka-

toa and Verifast, and with the resource type in VerCors)

– Definition of a predicate

– Usage of a predicate

∗ Precondition

∗ Postcondition

∗ Loop invariant

∗ Assertion

• Function definitions (any function definition that is not a

predicate definition)

An example of a predicate definition is predicate valid_id(

File child;) = [_]child.fileID |->_;. This would be clas-

sified as Function→ Predicate→Definition of a predicate. This predi-

cate can be used in a postcondition (ensures [f]valid_id(this);)

which would be classified as Function → Predicate → Usage of a

predicate→ Postcondition. A function definition can be something

like int max(int x,int y) = x > y ? x : y;which returns the

maximum of two integers. This is classified as Function→ Function

definition.

3.5 Usability keywords

“Usability keywords" are used for annotations that make it easier

for the user to express certain constraints or specifications. These

annotations do not describe functional properties of the program,

i.e. they do not state anything about the value of variables. This cat-

egory includes keywords such as behaviour, normal_behaviour,

exceptional_behaviour, also, helper and nullable. These are

keywords that may affect the verification, though most programs

can be rewritten to express the same behaviour without these key-

words.

For example, behaviour indicates a specification case. While

they improve readability for users, they are not required and a

specification with behaviour keywords can be rewritten into one

without them.

3.6 Tool-specific

This category is used for annotations that do not fit into the general

taxonomy as described above. Typically, these are statements that

are used by one specific tool. We have encountered the following

annotations in this category:

• History and Future related annotations (from the VerCors

tool)

• leak, init_class(), truncating, produce_lemma_function_pointer_c

produce_call_below_perm_(), fixpoints and inductive data

types (from the Verifast tool)

• \inv, represents clauses (from the KeY tool)

• model variables and an old clause used for abbreviation of

a specification case (from OpenJML)

• logic statements without definitions (from Krakatoa)

This category can be further extended in the future if other tool-

specific annotations are encountered.

3.7 Complexity

Finally, we propose a set of questions about the complexity of

an annotation. This can be used to evaluate existing annotation

generators as well as for the teaching of auto-active verification.

For example, if quantifiers are used very often, then this will be

an important topic to cover. We will answer each of the following

questions for an annotation:

• Does it include quantifiers?

• Does it include nested quantifiers?

• Does it include implications?

• Does it include a double implication?

• Does it include an inline if-statement?

• Does it include non-linear math (division, multiplication,

modulo, etc.)?

• Does it include \old? (or uses patterns to bind the value in

the precondition to a variable name in Verifast)

• Does it include \result? (or the Verifast equivalent result

keyword)

• Does it include built-in language or verifier constructs? (e.g.

.length to get the length of an array or |seq| to get the

length of a sequence in VerCors)

• Does it include other method/function/axiom/lemma calls?

This is not an exhaustive list of statements that describe the

complexity of an annotation. We have chosen these because we

think that they are useful to evaluate the effectiveness of annotation

generators.

73

FormaliSE’22, May 18–22, 2022, Pittsburgh, PA, USA Sophie Lathouwers and Marieke Huisman

Table 1: The steps that have been taken to verify a program

per tool.

Tool Steps taken to verify a program

KeY java -jar key.jar, then load [file.java] and

for each contract target click “Start/stop auto-

mated search proof" until all proof goals have

been proven.

Krakatoa krakatoa [file.java] then apply the “Auto

level 0" strategy to “All goals".

OpenJML java -jar openjml.jar -esc -progress

[file.java]

VerCors vct –silicon [file.java]. The

–check-history flag was also used for

LFQHist.java and NoSendAfterRead.java.

Verifast ./bin/vfide [file.java] then press the “Ver-

ify" button. The -disable_overflow_check flag

was used for Contrib.java and client.java as

in Verifast’s own test suite.

4 ANALYSIS OF ANNOTATIONS IN JAVA
PROGRAMS

In the previous sections we have shown how we set up a taxonomy

for annotations used by auto-active verifiers. In this section we

explain how we have used the taxonomy to classify a large set of

verified Java programs.

4.1 Methodology

4.1.1 Choosing samples. For the analysis we have used the same

randomly selected programs as for card sorting. These programs

were randomly selected from the examples that were publicly avail-

able for each tool. For card sorting only 30 annotations were used,

whereas we use all 1511 annotations in this analysis. We only in-

cluded samples that are written in Java and can be verified auto-

matically with KeY, Krakatoa, OpenJML, VerCors or Verifast.

Many of the randomly selected samples are relatively small pro-

grams. Therefore, to get a more representative data set, we have

also included a larger case study for each tool except OpenJML. We

have not included a case study for OpenJML since existing case

studies are not publicly available. The following case studies have

been included:

• KeY: a simplified implementation of a keyserver [9]

• Krakatoa: a genetic algorithm [7]

• VerCors: a red-black tree data structure [2]

• Verifast: Java Card API [25]

All of the random samples and the case studies were verified

with the corresponding tool. Table 1 shows the steps that were

taken to verify each sample.

4.1.2 Data cleaning. After selecting samples, the annotations in

the chosen files needed to be extracted. We only extracted verifiable

annotations. If only a part of the file could be verified automatically,

then only those annotations have been included.

Next, the annotations were desugared, i.e. removing syntactic

sugar, which resulted in smaller statements that are logically equiv-

alent for most of the verifiers6. The annotations were desugared

according to the rules described in Table 2. Similar rules to the ones

for preconditions (annotations that start with requires) apply to

postconditions, loop invariants and assertions.

After each annotation was manually extracted and desugared, it

was categorised according to the taxonomy (as presented in Section

3). For quantified statements the quantified part is categorised, not

the ranges of the quantified variable. If an annotation still contained

multiple logical statements after the data cleaning, e.g. 𝑎 | |𝑏, then
this statement is classified for 𝑎 and for 𝑏. If 𝑎 and 𝑏 are classified
the same, then this results in one categorisation. Otherwise, the

annotation receives multiple categorisations.

For example, loop_invariant x > 0 ==> height > 0; con-

tains the logical statements x > 0 and height > 0. Both of these are

categorised as Functional→ Bound check→ Specific value. There-

fore, the statement is also categorised as Functional→ Bound check

→ Specific value. However, invariant my_inv: balance >= 0

&& balance <= MAX_BALANCE;would be categorised as Functional

→ Bound check→ Specific value and Functional→ Bound check→

Related to other variable.

4.2 Results

Next, we report how often the annotation types of the taxonomy

occur in our data set. Specifically, we report on the usage of the

top-level categories and the subcategories of the two most common

top-level categories namely behavioural subcategories and proof

assistance subcategories. Moreover, we report on the complexity

of annotations as this is a special category in the taxonomy. The

data set, including the categorised annotations, is freely available at

https://doi.org/10.4121/16545714 for inspecting additional details

or for the reader’s further research interests.

In addition, we also report a 95% confidence interval (CI) for the

annotation types that are mentioned. The 95% CI indicates how

many of that annotation type (in percentages) can be expected in a

Java program that is verified with either KeY, Krakatoa, OpenJML,

VerCors or Verifast. It can be interpreted as follows: If one were to

repeat our experiment multiple times, then 95% of the calculated

confidence intervals (which would differ each time) would encom-

pass the true mean, namely the percentage that indicates how often

that annotation type occurs in a Java file that has been verified with

one of the five verifiers.

The 95% CIs have been calculated based on the annotations per

program (50 samples + 4 case studies). Each case study has been

included as one data point, so we can reasonably assume that all

programs are mutually independent. To calculate the CIs, we use a

t-distribution to calculate the expected mean because we have an

unknown population mean and variance.

The complete data set consists of 10k+ lines, of which 3k+ code,

almost 5k lines of annotation, 1k empty lines and 1,5k comment

lines. From this we have extracted 4610 (desugared) annotations.

This means that, on average, 1,34 annotations per line of code are

written. Note that this looks at the number of annotations instead

6All verifiers except Verifast support multiple pre-/postconditions per method. These
are equivalent to the conjunction of the multiple statements.

74

Formal Specifications Investigated: A Classification and Analysis of Annotations for Deductive Verifiers FormaliSE’22, May 18–22, 2022, Pittsburgh, PA, USA

Table 2: This table shows the rules that were applied to split annotations into smaller logically equivalent annotations. The

left column shows the original annotation and right column shows how this annotation has been split. &*& and ** denote the
separating conjunction [26].

Original annotation Split into

requires a && b requires a and requires b

requires a &*& b or requires a ** b requires a and requires b

requires (\forall int i; ..<i && i<...; a &&

b);

requires (\forall int i; ..<i && i<...; a); and requires

(\forall int i; ..<i && i<...; b);

a<b<c a<b and b<c

PointsTo(var, p, val) Perm(var, p) and var == val

context a requires a and ensures a

context_everywhere a loop_invariant a for each loop in the method, requires a and

ensures a

assignable a, b assignable a and assignable b

a => b && c a => b and a => c

(a ? b : c) (at top-level) a => b and !a => c

\unfolding pred() in a ** b \unfolding pred() in a and \unfolding pred() in b

of the number of annotation lines because one line can include

multiple annotations and annotations can occupy multiple lines.

4.2.1 Top-level categories. An overview of how often the differ-

ent top-level type annotations occur can be found in Table 3. The

percentages are given in terms of the total number of annotations

used by that tool in our data set, e.g. 11,2% of all annotations used

by the KeY verifier are used for proof assistance.

We can conclude that behavioural specifications make up the

largest part of annotations for all tools. For a Java program, that

has been verified with one of the analysed tools, we can expect

47%-62% of the annotations to be behavioural specifications. Proof

assistance annotations are expected to account for 9%-22% of all

annotations.

4.2.2 Position of predicates, behavioural and permission annotations.

Predicates (definitions and usages), behavioural and permission

annotations have also been categorised according to their position

in the code. Next, we have a look at the most common positions

for these annotations (see Table 4). We can conclude that these

annotations are expected to be found most often in preconditions

(16%-22%), postconditions (18%-27%) and loop invariants (14%-28%).

However, exceptional postconditions are expected to occur very

little (0%-2%). Method annotations are most commonly used in

programs verified with Key, Krakatoa and OpenJML. Verifast and

VerCors rarely use method annotations.

4.2.3 Behavioural specifications. 7 Next, we discuss the usage of

(subcategories of) behavioural specifications. Functional specifica-

tions (43%-58%) are significantly more common than annotations

about the termination (1%-6%) of a code block. This is to be expected

because many auto-active verifiers assume that a program termi-

nates. The most common functional specifications are bound checks

where a variable is compared to either a specific value (9%-17%),

bound checks where a variable is compared to another variable

7The results for these subcategories are not presented in separate tables. Instead, they
can be inspected in more detail in the published data set [21].

(7%-15%) or value checks where a variable is compared to another

variable (7%-14%).

4.2.4 Proof assistance. 7 In a Java program that has been verified

with one of the five analysed tools, the most commonly expected

proof assistance annotations are ghost code (2%-11%) and predicate

(un)folds (2%-7%). KeY, Krakatoa and OpenJML examples never

use predicate (un)folding in our data set. Therefore, we can expect

the predicate (un)folds to make up a larger part of annotations for

VerCors and Verifast examples than indicated by the CI.

4.2.5 Complexity. 7 Aside from the type of annotations that are

used, we are also interested in the complexity of the annotation.

For this we looked into the questions mentioned in Section 3.7 such

as whether the annotation uses quantifiers or implications.

The constructs that we can expect most often in annotations of a

verified Java program are built-ins (16%-31%), quantifiers (8%-18%)

and calls to other methods/lemmas/etc. (5%-14%). This indicates

that it is important for annotation generation techniques to consider

calls to other methods, lemmas, etc. as well as the usage of built-in

constructs of Java or the verifier. Moreover, techniques that do not

support quantifiers are expected to be unable to generate 8%-18%

of the required annotations for a Java program.

4.3 Reflecting on the results

To reflect on the results from Section 4.2, we have interviewed six

experts to learn about the annotations that they use for deductive

verification. We asked questions about the types of annotations that

they use, which annotations they used the most and the least, and

we asked for their reaction on our results presented in Section 4.2.

We used the interviews to determine whether our results confirm

existing beliefs or whether some findings are unexpected.

We have interviewed David Cok, Bart Jacobs, Jean-Christophe

Fillîatre, Mattias Ulbrich, Nikolai Kosmatov and Wolfgang Ahrendt.

They have experience with different verifiers including Frama-C,

KeY, OpenJML, Verifast and Why3. The type of programs that they

typically verify span a wide range, including distributed programs,

concurrent programs, examples used in education, data structures,

75

FormaliSE’22, May 18–22, 2022, Pittsburgh, PA, USA Sophie Lathouwers and Marieke Huisman

Table 3: Overview of how often the top-level taxonomy types occur in the data set.

KeY Krakatoa OpenJML VerCors Verifast Mean 95% CI

Proof assistance 11,2% 5,5% 7,0% 24,9% 29,7% 23,7% 9-22%

Permissions 15,5% 10,8% 5,6% 10,8% 10,2% 10,8% 9-17%

Behavioural 60,0% 61,8% 78,2% 46,8% 23,5% 41,1% 47-62%

Functions 0% 18,8% 0% 16,4% 37,6% 22,7% 5-15%

Usability keywords 11,7% 2,5% 6,3% 0% 0% 1,3% 2-8%

Tool-specific 1,6% 0,6% 2,8% 2,0% 1,2% 1,6% 1-4%

Table 4: Overview of the positions of behavioural, predicates (definitions and usages) and permission annotations in the code.

KeY Krakatoa OpenJML VerCors Verifast Mean 95% CI

Method 13,1% 10,8% 5,6% 0,1% 0,7% 2,3% 4-9%

Assertion 0% 11,1% 0% 2,7% 2,8% 3,0% 1-4%

(Class) invariant 8,3% 1,5% 0,7% 0% 0% 0,8% 1-3%

Loop invariant 16,5% 31,7% 43,7% 11,0% 17,0% 16,2% 14-28%

Preconditions 15,7% 14,2% 16,9% 25,3% 21,5% 22,1% 16-22%

Postconditions 21,3% 17,8% 14,8% 29,3% 23,4% 25,2% 18-27%

Exceptional postconditions 0,5% 0,3% 2,1% 0% 0% 0,1% 0-2%

Predicate definitions 0,0% 3,1% 0% 1,5% 3,6% 2,2% 1-5%

complex algorithms, security related programs and industrial case

studies.

4.3.1 Discrepancies. First, we will discuss three points that inter-

viewees pointed out that were not reflected by the data.

Two interviewees mentioned that (class) invariants are annota-

tions that they use often. This is not reflected by our results where

(class) invariants are expected to make up only between 1-3% of all

annotations. One of the reasons for this discrepancy is that VerCors

and Verifast do not use invariants. As a result, the expected number

of invariants is on average lower than one might expect for tools

that do support invariants. One expert also mentioned that the use

of invariants depends on the program that you are verifying. It is

possible that our data set happens to include mostly samples that

did not use invariants. This may be because we included more small

verified programs as opposed to case studies.

An interviewee mentioned that the expected amount of ghost

code seemed high (2-11%). If you use ghost code, then you likely

have multiple ghost code statements. So either you use no ghost

code, or you probably have multiple ghost code statements. This

would also explain the large expected range, whereas other proof

assistance annotations tend to have a confidence interval range of

around 4% or lower.

Several experts pointed out that the required annotations highly

depend on the program that you are verifying. While this is true,

this research aims to show what annotations a user would need to

write on average to verify a Java program with one of the tools.

4.3.2 Confirmed by data. Some specific points in the data that

were confirmed by multiple interviewees include:

• Preconditions, postconditions and loop invariants are used

a lot.

• Exceptional postconditions are used rarely.

• Assumptions and axioms occur little.

• Termination-related annotations are used rarely.

• A typical loop invariant is 0 < i < N. Our results show

that bound checks where a variable is compared to a specific

value (0 < i) and to another variable (i < N) are indeed one

of the most commonly expected functional specifications.

Based on these interviews, our results seem to be in line with the

expectations of professionals. The most important thing to keep in

mind, is that the confidence interval may give a skewed view in

case some annotations are only used by a subset of the tools. This is

especially important for tool builders who target a specific verifier.

4.4 Using the results

Many annotation generators are evaluated to show how well they

work on a subset of annotations instead of the impact on the overall

process. Based on our results, we can evaluate the impact of these

tools on the overall verification process without needing to do an

extensive evaluation for each tool separately. In this section we

show how to use the results of Section 4.2 to achieve this.

We have selected seven tools that generate annotations and

identified the types of annotations that they infer. We identified

in which taxonomy category the annotations belong. If there was

no category that exactly matches the type of annotations that are

inferred, then we selected a category that included all possible

annotations that could be inferred. Next, we estimated their impact

based on the taxonomy category and the corresponding confidence

intervals (see Section 4.2). The results are presented in Table 5.

As an example, we discuss one tool, DynaMate, to show how

to interpret the results. DynaMate generates loop invariants. The

corresponding taxonomy category is the “Loop invariant" position

76

Formal Specifications Investigated: A Classification and Analysis of Annotations for Deductive Verifiers FormaliSE’22, May 18–22, 2022, Pittsburgh, PA, USA

Table 5: An evaluation of the impact of annotation generators on the overall verification process. Based on the type of

annotations that the tool generates, we find a corresponding category in the taxonomy and the expected impact based on the

results of this research (see Section 4.2).

Tool name Type of annotations inferred Corresponding taxonomy category Estimated maxi-

mum impact

C2S [33] Preconditions, normal postconditions and

exceptional postconditions

Preconditions

(Normal) postconditions

Exceptional postconditions

16-22%

18-27%

0-2%

DynaMate [15] Loop invariants Loop invariants 14-28%

Sample [11] Permission pre- and postconditions for array

programs

Permissions (all subcategories included) 9-17%

ShaPE [6] Recursive shape predicates Functions→ Predicates→ Definition of a

predicate

0-5%

SLING [22] Preconditions, postconditions and loop

invariants for heap-manipulating programs

Preconditions

Postconditions

Loop invariants

16-22%

18-27%

14-28%

Strongarm [29] Postconditions Postconditions 18-27%

Verifast [31] Auto open/close statements, lemma

applications, postconditions and loop

invariants

Open/close predicates

Lemmas

Loop invariants

Postconditions

0-3%

0-4%

14-28%

18-27%

category for behavioural specifications, predicate usages and per-

missions (see Table 4). Loop invariants are expected to make up

between 14-28% of all required annotations. Therefore, DynaMate

is expected to be able to generate at most 14-28% of all required

annotations.

Based on Table 5, we can identify areas that would be interesting

for future research:

• Proof assistance: Only a few proof assistance annotations

can be generated right now (lemmas and opening/closing

of predicates) even though they are expected to make up a

significant (9-22%) part of all required annotations.

• Usability keywords: It is important to generate annotations

that are easy to understand for the user so the user can still

check whether they express the desired behaviour. The anno-

tation generators from Table 5 do not generate annotations

that use keywords such as behaviour.

• Permissions: Of the mentioned tools, only one tool generates

permissions. Since permissions are expected to account for

9-17% of all required annotations, it would be worthwhile to

further investigate the inference of permission annotations.

5 DISCUSSION

In this section, we discuss some limitations of the card sorting,

taxonomy and the analysis of annotations in Java programs, as

discussed in this paper.

The scope of this research has been limited to Java programs.

Therefore, our conclusions do not necessarily reflect what auto-

active verifiers for other languages would need. For example, it

could be that a verifier for a dynamically-typed language would

need information about the type of a variable. In such cases, the

taxonomy can be extended to include new types of specifications.

Note that we publish the data set of all analysed annotations [21]

to make it easy to extend the analysis to include other verifiers.

For the card sorting and analysis, we selected samples that had

already been verified with the chosen tools. Another way to choose

samples would have been to take a set of programs and write anno-

tations so that each tool could verify the same programs. One could

then try to choose a set of programs that would form a represen-

tative set of Java programs. However, different tools use different

techniques and support different parts of the Java language, making

it difficult and time consuming to verify several programs for each

tool. By choosing examples from the tools themselves, we avoid

this problem, while still reflecting the most commonly used anno-

tations. As a result, some programming constructs that are difficult

to verify, such as inheritance and exceptions, are underrepresented

in our sample set. This means that our chosen samples are not a

representative set for real-world Java code. Instead, the samples

reflect what the verifiers are currently (at least) capable of verifying.

The card sorting participants all have experience with VerCors.

The proposed taxonomy can therefore be biased towards VerCors.

To minimise the impact of this bias, we were careful to avoid any

categories in the taxonomy that would only apply to VerCors. It

inspired us to create the category called “Tool-specific".

Some of the annotations were categorised twice. Therefore, some

of the numbers in the analysis might not seem to add up, e.g. the Ver-

ifast case study had 24,81% functional specifications, of which 3,00%

bound checks and 21,98% value checks. This is caused by 2 annota-

tions that are categorised as both bound checks and value checks.

These annotations used ||which cannot be split into smaller equiv-

alent statements. As explained, such an annotation receivesmultiple

categorisations, one for each type of statement that occurs. This im-

pacts only a small part of the data set and the results still accurately

reflect how often each subtype occurs.

77

FormaliSE’22, May 18–22, 2022, Pittsburgh, PA, USA Sophie Lathouwers and Marieke Huisman

Finally, we assume that the annotations are aminimal set needed

to prove correctness. We did not try to minimise the written an-

notations and we did not check whether the specifications are

complete. Therefore, depending on what you want to prove, it

could be that more annotations are needed. Related to this, we

also note that the Krakatoa case study had 3 goals that could not

be proven automatically. These included the statements \result

<= attackStrength_logic(intensity), System.out != null

and \forall i; 0 <= 0 && i <array_index; states[i] !=

this. These unproven proof obligations have been mentioned in

[7]. We have still included the case study as it was the only avail-

able Krakatoa case study that we could find and the majority could

be proven. To be able to prove these statements, one would likely

need additional annotations. We did not remove these unproven

statements in case the proofs for other annotations depend on these.

As this affects only a small part of the data set, we can still derive

meaningful results such as the most common types of annotations.

6 RELATEDWORK

Several researchers have analysed how specifications are used. How-

ever, most focus on specifications used for lightweight approaches

such as debugging, instead of auto-active verification.

For example, Estler et al. [12] have analysed contracts which are

expressed as executable assertions in the form of pre-/postconditions

and class invariants. They evaluated which contract elements are

used most often and how contracts change over time. Unlike Es-

tler et al. our research takes a more detailed look at specifications

that are used for auto-active verification. Like us, Estler et al. have

measured how often \old is used in postconditions (2%-3%) as well

as null checks and quantification. In our data set, the number of

annotations using \old for a verified Java program is a lot higher

(4%-10%). This difference may arise from the fact that Estler et al.

only include postconditions whereas we investigate all annotations

which include \old.

Schiller et al. [28] studied the usage of Microsoft Code Contracts,

specifically preconditions, postconditions and invariants. Only 1

of the 4 projects analysed by Schiller et al. uses static checking.

The other projects have specifications that are used by lightweight

techniques such as debugging and runtime error detection. They

found a large number of nullness (e.g. a != null) contracts (22%-

33% of inferred specifications and 55%-69% of developer written

specifications) whereas this is expected to only make up between

1,83%-4,77% of annotations in a verified Java program according

to our research. However, Schiller et al. compare what is written

by developers to what is inferred by the Daikon invariant detector,

whereas our research looks at all annotations used by an auto-active

verifier.

Dietrich et al. [10] have performed an empirical study of tech-

niques and tools for lightweight contract checking in Java. Similar

to Estler et al., they investigated contracts used as lightweight spec-

ifications, as well as how they change over time. And, similar to

the study by Schiller et al, they focused on preconditions, postcon-

ditions and class invariants. While they did categorise annotations,

we present a more detailed categorisation in this work. Moreover,

we focus on annotations for auto-active verification as opposed to

lightweight contract checking.

Unlike the approaches mentioned above, Furia et al. [14] have

looked at programs that have been verified with deductive veri-

fication. They analysed loop invariant patterns that are used in

several algorithms, and used this to present a classification for loop

invariants. Our research presents a continuation of their work by

presenting a classification for all annotations for auto-active veri-

fiers. Furia et al. have classified loop invariants based on their role

and the transformation that yields the invariant from the postcon-

dition. We, however, categorise annotations independently of their

context.

7 CONCLUSION AND FUTUREWORK

This paper presents the first detailed taxonomy for categorising all

annotations used by auto-active verifiers for Java programs. Based

on this taxonomy, we have published and extensively analysed a

data set of annotations from verified Java programs. In this analysis

we have included five different auto-active verifiers, KeY, Krakatoa,

OpenJML, VerCors and Verifast. We have included both smaller pro-

grams and larger case studies. The analysis shows what annotations

can be expected in verified Java programs. For example, annotations

that describe the behaviour of the program are expected to make up

47%-62% of all annotations of a verified Java program. Furthermore,

approximately 8%-18% of required annotations for a Java program

are expected to include a quantifier. Based on interviews, we con-

clude that the results seem to be in line with the expectations of

experts. These results are an invaluable resource to evaluate the

impact of annotation generators, as we have shown in Section 4.4.

Moreover, it gives insight into the current state of the art of auto-

active verifiers, such as which annotations are most frequently used

and are therefore important to teach to new verification engineers.

In future work, the data set can be expanded with examples from

other verifiers, e.g. Dafny, to see whether the results are similar.

Moreover, the taxonomy can be extended for other languages.

ACKNOWLEDGMENTS

We are very grateful for the experts that participated in the inter-

views: Wolfgang Ahrendt, David Cok, Jean-Christophe Filliâtre,

Bart Jacobs, Nikolai Kosmatov and Mattias Ulbrich. This research

was supported by the NWO VICI 639.023.710 Mercedes project.

REFERENCES
[1] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H.

Schmitt, and Mattias Ulbrich (Eds.). 2016. Deductive Software Verification - The
KeY Book - From Theory to Practice. Lecture Notes in Computer Science, Vol. 10001.
Springer. https://doi.org/10.1007/978-3-319-49812-6 Tool website: https://www.
key-project.org/.

[2] Lukas Armborst and Marieke Huisman. 2021. Permission-Based Verification of
Red-Black Trees and Their Merging. In 9th IEEE/ACM International Conference
on Formal Methods in Software Engineering, FormaliSE@ICSE 2021, Madrid, Spain,
May 17-21, 2021. IEEE, 111–123. https://doi.org/10.1109/FormaliSE52586.2021.
00017

[3] Christoph Baumann, Bernhard Beckert, Holger Blasum, and Thorsten Bormer.
2012. Lessons Learned From Microkernel Verification – Specification is the New
Bottleneck. In Proceedings Seventh Conference on Systems Software Verification,
SSV 2012, Sydney, Australia, 28-30 November 2012 (EPTCS, Vol. 102), Franck Cassez,
Ralf Huuck, Gerwin Klein, and Bastian Schlich (Eds.). 18–32. https://doi.org/10.
4204/EPTCS.102.4

[4] Bernhard Beckert and Reiner Hähnle. 2014. Reasoning and Verification: State
of the Art and Current Trends. IEEE Intell. Syst. 29, 1 (2014), 20–29. https:
//doi.org/10.1109/MIS.2014.3

[5] Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn. 2017. The
VerCors Tool Set: Verification of Parallel and Concurrent Software. In Integrated

78

Formal Specifications Investigated: A Classification and Analysis of Annotations for Deductive Verifiers FormaliSE’22, May 18–22, 2022, Pittsburgh, PA, USA

Formal Methods - 13th International Conference, IFM 2017, Turin, Italy, September
20-22, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10510). Springer,
102–110. https://doi.org/10.1007/978-3-319-66845-1_7 Code: https://github.com/
utwente-fmt/vercors/, commit: 0aa6a9a5fba5279f69e8f8ccce5173a70b558ed3.

[6] Jan H. Boockmann and Gerald Lüttgen. 2020. Learning Data Structure Shapes
from Memory Graphs. In LPAR 2020: 23rd International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, Alicante, Spain, May 22-27,
2020 (EPiC Series in Computing, Vol. 73). EasyChair, 151–168. https://easychair.
org/publications/paper/mkjl

[7] Dmitry Brizhinev and Rajeev Goré. 2018. A case study in formal verification of a
Java program. https://arxiv.org/abs/1809.03162.

[8] David R. Cok. 2011. OpenJML: JML for Java 7 by Extending OpenJDK. In
NASA Formal Methods - Third International Symposium, NFM 2011, Pasadena, CA,
USA, April 18-20, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 6617).
Springer, 472–479. https://doi.org/10.1007/978-3-642-20398-5_35 Tool website:
https://www.openjml.org/.

[9] Stijn de Gouw, Mattias Ulbrich, and Alexander Weigl. 2020. verifythis-ltc-2020.
https://github.com/KeYProject/verifythis-ltc-2020.

[10] Jens Dietrich, David J. Pearce, Kamil Jezek, and Premek Brada. 2017. Contracts
in the Wild: A Study of Java Programs. In 31st European Conference on Object-
Oriented Programming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain (LIPIcs,
Vol. 74). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 9:1–9:29. https:
//doi.org/10.4230/LIPIcs.ECOOP.2017.9

[11] Jérôme Dohrau, Alexander J. Summers, Caterina Urban, Severin Münger, and
Peter Müller. 2018. Permission Inference for Array Programs. In Computer
Aided Verification - 30th International Conference, CAV 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,
Part II (Lecture Notes in Computer Science, Vol. 10982). Springer, 55–74. https:
//doi.org/10.1007/978-3-319-96142-2_7

[12] H.-Christian Estler, Carlo A. Furia, Martin Nordio, Marco Piccioni, and Bertrand
Meyer. 2014. Contracts in Practice. In FM 2014: Formal Methods - 19th International
Symposium, Singapore, May 12-16, 2014. Proceedings (Lecture Notes in Computer
Science, Vol. 8442). Springer, 230–246. https://doi.org/10.1007/978-3-319-06410-
9_17

[13] Jean-Christophe Filliâtre and Claude Marché. 2007. TheWhy/Krakatoa/Caduceus
Platform for Deductive Program Verification. In Computer Aided Verification, 19th
International Conference, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings
(Lecture Notes in Computer Science, Vol. 4590). Springer, 173–177. https://doi.org/
10.1007/978-3-540-73368-3_21

[14] Carlo A. Furia, Bertrand Meyer, and Sergey Velder. 2014. Loop invariants: Analy-
sis, classification, and examples. ACM Compututing Surveys (CSUR) 46, 3 (2014),
34:1–34:51. https://doi.org/10.1145/2506375

[15] Juan Pablo Galeotti, Carlo A. Furia, Eva May, Gordon Fraser, and Andreas Zeller.
2014. DynaMate: Dynamically Inferring Loop Invariants for Automatic Full
Functional Verification. In Hardware and Software: Verification and Testing - 10th
International Haifa Verification Conference, HVC 2014, Haifa, Israel, November
18-20, 2014. Proceedings (Lecture Notes in Computer Science, Vol. 8855). Springer,
48–53. https://doi.org/10.1007/978-3-319-13338-6_4

[16] Dilian Gurov, Christian Lidström, Mattias Nyberg, and Jonas Westman. 2017.
Deductive Functional Verification of Safety-Critical Embedded C-Code: An Expe-
rience Report. In Critical Systems: Formal Methods and Automated Verification -
Joint 22nd InternationalWorkshop on FormalMethods for Industrial Critical Systems
- and - 17th International Workshop on Automated Verification of Critical Systems,
FMICS-AVoCS 2017, Turin, Italy, September 18-20, 2017, Proceedings (Lecture Notes
in Computer Science, Vol. 10471). Springer, 3–18. https://doi.org/10.1007/978-3-
319-67113-0_1

[17] Reiner Hähnle and Marieke Huisman. 2019. Deductive Software Verification:
From Pen-and-Paper Proofs to Industrial Tools. In Computing and Software
Science - State of the Art and Perspectives. Lecture Notes in Computer Science,
Vol. 10000. Springer, 345–373. https://doi.org/10.1007/978-3-319-91908-9_18

[18] Marieke Huisman and Raúl E. Monti. 2020. On the Industrial Application of
Critical Software Verification with VerCors. In Leveraging Applications of Formal
Methods, Verification and Validation: Applications - 9th International Symposium
on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October
20-30, 2020, Proceedings, Part III (Lecture Notes in Computer Science, Vol. 12478).
Springer, 273–292. https://doi.org/10.1007/978-3-030-61467-6_18

[19] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx,
and Frank Piessens. 2011. VeriFast: A Powerful, Sound, Predictable, Fast Verifier
for C and Java. In NASA Formal Methods - Third International Symposium, NFM
2011, Pasadena, CA, USA, April 18-20, 2011. Proceedings (Lecture Notes in Computer
Science, Vol. 6617). Springer, 41–55. https://doi.org/10.1007/978-3-642-20398-5_4
Code: https://github.com/verifast/verifast.

[20] Alexander Knüppel, Thomas Thüm, Carsten Pardylla, and Ina Schaefer. 2018.
Experience Report on Formally Verifying Parts of OpenJDK’s API with KeY.
In Proceedings 4th Workshop on Formal Integrated Development Environment, F-
IDE@FLoC 2018, Oxford, England, 14 July 2018 (EPTCS, Vol. 284). 53–70. https:
//doi.org/10.4204/EPTCS.284.5

[21] Sophie Lathouwers and Marieke Huisman. 2022. Database of Annotations for
Deductive Verifiers. https://doi.org/10.4121/16545714 Accessed on: 28 March
2022.

[22] Ton Chanh Le, Guolong Zheng, and ThanhVu Nguyen. 2019. SLING: using
dynamic analysis to infer program invariants in separation logic. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. ACM, 788–801.
https://doi.org/10.1145/3314221.3314634

[23] K. Rustan M. Leino and Michał Moskal. 2010. Usable auto-active verification. In
Usable Verification Workshop. Citeseer. http://fm.csl.sri.com/UV10/

[24] Claude Marché, Christine Paulin-Mohring, and Xavier Urbain. 2004. The
KRAKATOA tool for certificationof JAVA/JAVACARD programs annotated in
JML. Journal of Logic and Algebraic Programming 58, 1-2 (2004), 89–106.
https://doi.org/10.1016/j.jlap.2003.07.006 Tool website: http://krakatoa.lri.fr/.

[25] Pieter Philippaerts, Frédéric Vogels, Jan Smans, Bart Jacobs, and Frank Piessens.
2011. The Belgian Electronic Identity Card: a Verification Case Study. In Pro-
ceedings of the International Workshop Automated Verification of Critical Systems
(AVOCS’11), Vol. 46. https://doi.org/10.14279/tuj.eceasst.46.682

[26] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data
Structures. In 17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22-
25 July 2002, Copenhagen, Denmark, Proceedings. IEEE Computer Society, 55–74.
https://doi.org/10.1109/LICS.2002.1029817

[27] Christoph Scheben. 2014. Program-level Specification and Deductive Verification
of Security Properties. Ph. D. Dissertation. Karlsruhe Institute of Technology.
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000046878

[28] Todd W. Schiller, Kellen Donohue, Forrest Coward, and Michael D. Ernst. 2014.
Case studies and tools for contract specifications. In 36th International Conference
on Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014. ACM,
596–607. https://doi.org/10.1145/2568225.2568285

[29] John L. Singleton, Gary T. Leavens, Hridesh Rajan, and David R. Cok. 2019.
Inferring Concise Specifications of APIs. (2019). arXiv:1905.06847 http://arxiv.
org/abs/1905.06847

[30] Donna Spencer. 2009. Card sorting: Designing usable categories. Rosenfeld Media.
[31] Frédéric Vogels, Bart Jacobs, Frank Piessens, and Jan Smans. 2011. Annotation In-

ference for Separation Logic Based Verifiers. In Formal Techniques for Distributed
Systems - Joint 13th IFIP WG 6.1 International Conference, FMOODS 2011, and 31st
IFIP WG 6.1 International Conference, FORTE 2011, Reykjavik, Iceland, June 6-9,
2011. Proceedings (Lecture Notes in Computer Science, Vol. 6722). Springer, 319–333.
https://doi.org/10.1007/978-3-642-21461-5_21

[32] Jed R. Wood and Larry E. Wood. 2008. Card Sorting: Current Practices and
Beyond. Journal of Usability Studies 4, 1 (Nov. 2008), 1–6.

[33] Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang,
Shiqing Ma, Lin Tan, and Xiangyu Zhang. 2020. C2S: translating natural language
comments to formal program specifications. In ESEC/FSE ’20: 28th ACM Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Virtual Event, USA, November 8-13, 2020. ACM, 25–37.
https://doi.org/10.1145/3368089.3409716

79

