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ABSTRACT: 
 
Structural disaster damage detection and characterisation is one of the oldest remote sensing challenges, and the utility of virtually 
every type of active and passive sensor deployed on various air- and spaceborne platforms has been assessed. The proliferation and 
growing sophistication of UAV in recent years has opened up many new opportunities for damage mapping, due to the high spatial 
resolution, the resulting stereo images and derivatives, and the flexibility of the platform. We have addressed the problem in the 
context of two European research projects, RECONASS and INACHUS. In this paper we synthesize and evaluate the progress of 6 
years of research focused on advanced image analysis that was driven by progress in computer vision, photogrammetry and machine 
learning, but also by constraints imposed by the needs of first responder and other civil protection end users. The projects focused on 
damage to individual buildings caused by seismic activity but also explosions, and our work centred on the processing of 3D point 
cloud information acquired from stereo imagery. Initially focusing on the development of both supervised and unsupervised damage 
detection methods built on advanced texture features and basic classifiers such as Support Vector Machine and Random Forest, the 
work moved on to the use of deep learning. In particular the coupling of image-derived features and 3D point cloud information in a 
Convolutional Neural Network (CNN) proved successful in detecting also subtle damage features. In addition to the detection of 
standard rubble and debris, CNN-based methods were developed to detect typical façade damage indicators, such as cracks and 
spalling, including with a focus on multi-temporal and multi-scale feature fusion. We further developed a processing pipeline and 
mobile app to facilitate near-real time damage mapping. The solutions were tested in a number of pilot experiments and evaluated by 
a variety of stakeholders. 
 
 

1. INTRODUCTION 

1.1 Structural damage mapping with remote sensing 

The first documented systematic post-disaster damage 
assessment attempt with remote sensing technology dates back 
to 1906, when earthquake-affected San Francisco was mapped 
with a 20 kg kite-borne camera (O’Rourke et al. 2006). This 
makes it one of the oldest applications in this domain, but also 
one of the few that continues to elude robust operational 
solutions. Since the early pioneering days nearly every type of 
active and passive sensor has been mounted on airborne 
platforms that range from tethered to autonomous or piloted, as 
well as satellites operating in different orbital or network 
constellations, to attempt increasingly automated damage 
detection (Dong and Shan 2013, Kerle 2015). However, despite 
more than a century of research and tremendous technological 
developments, operational image-based damage mapping, such 
as through the International Charter “Space and Major 
Disasters” or the Copernicus Emergency Management Service 
(EMS), continues to be a largely manual exercise (e.g., Belabid 
et al. 2019, Novikov et al. 2018).  
Charter and EMS activations center on a particularly 
challenging  type of damage mapping. The first maps are 
expected to be available within hours after image acquisition, 
while the particular damage pattern and its recognition is 
subject to a number of variables. Building types, configurations 
and construction materials differ, and recognizable damage 
indicators are strongly dependent on hazard type. Image type, in 
terms of spectral characteristics, incident angle and 
environmental conditions such as haze or cloud cover, further 
challenge the development of generic and widely applicable 

damage detection algorithms. Satellite-based damage mapping 
has the additional disadvantage that damage that may be quite 
variably expressed on each of the building’s facades, its roof, as 
well as its interior, is largely reduced to a single dimension, the 
roof. Damage detection in reality is then supported by use of 
proxies, such as evidence of nearby debris or damage clues 
associated with particular shadow signatures (Kerle and 
Hoffman 2013). There have been some notable successes in 
satellite-based damage mapping, in particular related to cases 
where radar data have an advantage, in particular 
interferometric (Lu et al. 2018) and polarimetric synthetic 
aperture radar (Li et al. 2018). Methods to process optical data 
using advanced machine learning algorithms, including deep 
learning, have recently started to emerge (e.g., Sublime and 
Kalinicheva 2019), though still tend to focus on disaster-related 
changes rather than specific building-level damage mapping. 
While automated satellite-based damage mapping has shown 
limited progress, the proliferation and rapidly growing maturity 
of unmanned aerial vehicles (UAV/drones) has created vast 
new prospects for rapid and detailed damage assessment. The 
work reported on here directly built on earlier experiences with 
the airborne Pictometry system that yields similar oblique, 
overlapping and multi-perspective imagery, while being less 
flexible and economical. Those images have been 
photogrammetrically processed (Grenzdorffer et al. 2008), and 
also used for structural damage assessment (Gerke and Kerle 
2011a, b). In 2013 we began working on two European-funded 
projects that focused on detailed damage mapping with UAV, 
and which are introduced below. 
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1.2 The RECONASS and INACHUS projects 

RECONASS (Reconstruction and Recovery Planning: Rapid 
and Continuously Updated Construction Damage, and Related 
Needs Assessment; www.reconass.eu) and INACHUS 
(Technological and Methodological Solutions for Integrated 
Wide Area Situation Awareness and Survivor Localisation to 
Support Search and Rescue Teams; www.inachus.eu) are 
research projects funded through the 7th Framework of the 
European Union, and which ran with some overlap from 2013 
until the end of 2018. The focus of RECONASS was to create a 
system for monitoring and damage assessment for individual 
high-value buildings, based on a range of internally installed 
sensors that included accelerometers, inclinometers and position 
tags, with data getting processed in a finite element structural 
stability model to determine damages caused by seismic activity 
or by either interior or exterior explosions. The contribution of 
our group focused on UAV-based 3D reconstruction of the 
building exterior and detailed damage mapping, to patch data 
gaps caused by failed sensor nodes, as well as to validate model 
outputs. The progressively developed methods were tested in a 
series of experiments, culminating in a pilot where a 3-story 
reinforced concrete building was first subjected to an explosion 
of 400 kg TNT placed about 10 m away, and later by a 12 kg 
charge detonated within the structure itself. End users, 
including the German Technisches Hilfswerk (THW), were 
present to assess the utility of the system. 
The purpose of INACHUS was to assist disaster response and 
urban search & rescue forces by providing early and 
increasingly detailed information on damage hotspots and the 
likely location of survivors. Broadly, this was achieved by a 
methodology that commenced with a wide-area assessment and 
scenario-based synthetic damage modelling, and then focused 
on identified hotspots with a range of instruments, including 
different UAV, ground-based and portable radar instruments to 
detect trapped survivors, as well as a robot to penetrate a 
damaged structure. Our focus was on scene reconstruction and 
damage mapping based on optical imagery from a low-cost 
UAV. Another partner, the French remote sensing lab ONERA, 
also deployed various larger UAV that carried different laser 
sensors, in part with proprietary solutions. The major pilots 
were assessed by a group of end users. More information about 
the projects can be found on the websites listed above. 
  

2. UAV-BASED DAMAGE MAPPING 

2.1 Texture and segmentation-based approaches 

The earliest attempts to use UAV data in RECONASS were 
based on segmentation- and texture-based analysis of mono-
temporal imagery. Fernandez Galarreta et al. (2015) processed 
multi-perspective UAV imagery of an 2012 Emilia Romagna 
(Italy) earthquake site into detailed 3D models. Those were 
analysed for geometric damage indicators such as slanted walls 
or deformed roofs, as well as presence of debris piles (Figure 
1). In addition object-based image analysis (OBIA) was carried 
out on the images to extract damage features such as cracks or 
holes, but also identification of those damages intersecting with 
apparent load-carrying structural elements. In recognition of the 
diversity and ambiguity of the observed damage patterns the 
work did not aim at automatic damage classification, except in 
cases where the 3D model clearly showed complete collapse 
(D5 on the European Macroseismic Scale 1998, EMS-98; 
Grünthal 1998). For all other cases the geometric and image-
derived information was combined to produce a detailed 
damage score per façade, and in turn per building. 

Figure 1. Damages identified from UAV-derived point clouds 
and from OBIA processing. (a) inclination in walls, (b) 
openings (turquois), cracks (magenta) and damage crossing 
beams, (c) and (d) detailed point cloud and segment orientation 
angles (adapted from Fernandez Galarreta et al. 2015) 
 
The work of Fernandez Galarreta et al. demonstrated the 
significance of geometric information, in particular of openings. 
Vetrivel et al. (2015a) advanced the work by developing a 
method to isolate individual buildings from a detailed image-
derived point cloud covering a neighbourhood of Mirabello 
(Italy) comprising nearly 100 buildings. Each of those was then 
subjected to a search for openings attributable to seismic 
damage, such as partial roof collapses or holes in the façades. 
The gaps were identified based on the Gabor wavelets as well 
as a histogram of gradient (HoG) orientation features. Two 
basic machine learning algorithms, Support Vector Machine 
(SVM) and Random Forest, were used to identify damaged 
regions based on the radiometric descriptors, with a success rate 
of approximately 95%. However, in particular the segmentation 
of point clouds is frequently hindered by artefacts and data 
gaps. Therefore, we also developed an approach to project 
initial point cloud-derived 3D segments into image space, with 
a segmentation using both geometric and radiometric features 
yielding more accurate and complete building segments 
(Vetrivel et al. 2015b). Given that video-data are often the first 
acquired dataset of a disaster scene, be it by the police or news 
media, we also showed how also lower-quality video data can 
be analysed for damage with computer vision and segmentation 
methods (Cusicanqui et al. 2018). 
Both early studies described above only used post-disaster 
imagery. However, even during the few years of our research 
projects the availability of high resolution pre-event reference 
imagery grew rapidly. This led to additional methodological 
developments that built on the segmentation- and texture-based 
damage detection described above, extending them into a multi-
temporal framework. In Vetrivel et al. (2016a) we used pre- and 
post-earthquake data of L’Aquila (Italy), and focused on the 
identification of 3D segments missing in the post-disaster data 
as an indicator of damage. We tested both voxel- and segment-
based approaches, finally settling on a composite segmentation 
method that subjects an integrated pre- and post-event point 
cloud to plane-based segmentation. While the work successfully 
advanced the damage identification to a robust change detection 
framework, the damage mapping itself remained a binary 
assessment. This mirrors a broader development. Early efforts 
at damage assessment frequently used satellite imagery to 
identify damaged areas more generally, while airborne data 
were used to detect specific damage features, usually debris 
piles (e.g., Mitomi et al. 2000). Later works increasingly 
attempted to map different damage levels on the EMS-98 scale 
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(e.g., Corbane et al. 2011, Dubois and Lepage 2014, Yamazaki 
et al. 2005). However, it became increasingly clear that 
especially lower damage levels, negligible, moderate and 
substantial (D1-D3, respectively), tend to be very hard to 
identify in imagery, hence lower grades were aggregated, 
continuously moving towards the binary classification system 
of damaged vs. undamaged again. 
 
2.2 Advanced classifiers and hand-crafted features 

Vetrivel et al. (2015a) had shown the utility of  HoG and Gabor 
filters in damage detection. However, those demonstrated 
limitations in the classification of complex scenes, and of global 
feature representations on general. The latter cause problems 
when scene and image characteristics vary, which is typically 
the case between different disaster areas or in multi-temporal 
assessments. Therefore, the work described in Vetrivel et al. 
(2016b) moved towards descriptors that are more generalizable 
and invariant to image characteristics. The method was built on 
the Visual Bag of Words approach and focused on the detection 
of rubble, debris piles and severe spalling. The method 
performed well on individual UAV and also Pictometry data 
sets of Mirabello (Italy) and Port-au-Prince (Haiti), 
respectively, but also on a dataset that combined the two 
airborne datasets with transverse street-level images. The 
limitation of the method is that it is grid-based and can only 
identify general damage patches, i.e. grid cells affected by one 
or more of the damage types considered, while the detailed 
localisation and characterisation (size, shape, etc.) of damages 
of a specific type would be desirable. 
 
2.3 Deep learning  

Image classification used in damage mapping increasingly 
made use of machine learning, in particular SVM and Random 
Forest (Gong et al. 2016, Vetrivel et al. 2015a) or Adaboost 
(Gerke and Kerle 2011a). However, the features used were 
typically hand-crafted (such as HoG or Gabor), and emerging 
work had shown that in deep learning approaches convolutional 
neural networks (CNN) could actually learn features and their 
representation directly from the image pixel values (Szegedy et 
al. 2015). Thus the damage detection work proceeded in this 
direction, hypothesizing that image classification would benefit 
from the micropropagation of 3D point cloud features. We 
applied a multiple-kernel-learning framework on several sets of 
diverse aerial images (Vetrivel et al. 2018), and showed that 
combining the radiometric and geometric information yields 
higher classification accuracies. The processing was based on 
Simple Linear Iterative Clustering (SLIC) superpixels, meaning 
that damage was again only identified in patches, though those 
were labelled with specific prediction scores. Of particular 
significance for the disaster response and search & rescue focus 
of the projects was that the method demonstrated significant 
transferability. A model trained with a sufficient number of 
samples (e.g., trained before an actual event) performed well 
when then applied to a new disaster scene, supporting a rapid 
analysis without the need for extensive retraining.  
Disaster scenarios are frequently characterised by imperfect 
image data availability, and a rapid response effort has to make 
do with what exists. In this respect it is valuable to be able to 
incorporate images of different types and scales into the 
training model. Duarte et al. (2018b) trained a CNN with 
different types of aerial imagery to classify post-disaster 
satellite data of Port-au-Prince. Although information coming 
from the different image resolutions evidently improved the 
model and classification accuracy, the approach still failed to 

capture smaller damage features. The work also focused on 
determining the effect of multi-scale information on the CNN 
activation layers as a proxy for improved damage recognition, 
while not allowing a detailed assessment of where the 
classification improvement originated in terms of false positives 
and negatives, or specific damage types. The work proceeded 
with a focus on multi-resolution feature fusion and its effect on 
building damage classification (Duarte et al. 2018a). It showed 
that such a fusion is useful and can improve the overall 
accuracy, though it also fails to show which specific damage 
types are identified, and how well they are captured.  
Our contribution to RECONASS and INACHUS was centred 
on the use of highly detailed UAV images that provide views on 
all exterior parts of the surveyed buildings. Earlier work had 
shown how highly variable the expression of structural damage 
is in vertical and oblique data (Kerle and Hoffman 2013). The 
former essentially only considers the damage expressed in the 
roof, and in addition makes use of proxies such as debris piles 
for specific shadow configurations (for a recent review of those 
proxies see Ghaffarian et al. 2018). Significant  additional 
information is also encoded in the façade information, as 
already explained in section 2.1. However, the OBIA-based 
approach tends towards overfitting and lacks the efficiency and 
transferability of deep learning. While a focus on façades is 
appealing, their actual delineation in imagery poses its own 
challenges, especially when considering aspects such as 
occlusion or environmental effects such as shadows (Figure 2).  

Figure 2. Problems for image processing posed by shadow and 
occlusion (Duarte et al. 2017). 
 
Duarte et al. (2017) thus focused on developing an efficient 
method to extract façades that were subsequently assessed for 
damage using CNN. The approach made use of a point cloud 
calculated from vertical imagery acquired in an initial UAV 
survey. From the sparse point cloud the building form including 
its façades was hypothesised, which in turn was used to extract 
the actual façades from oblique UAV images. The patch-based 
damage classification had an overall accuracy of approximately 
80%, though the work also demonstrated the significant 
challenge of damage identification on façades, due to 
architectural complexities and associated diverse shadow 
patterns, but also occlusion (by external features such as 
vegetation, or internal ones such as balconies). 
It stands to reason that some ambiguities can be resolved by 
analysing multi-perspective data (views of a given façade from 
different angles), but also by incorporating multi-temporal data 
where available. We tested those assumptions in a CNN 
framework and concluded that a multi-temporal approach with 
3 views at each of the two epochs performed best (Duarte et al. 
in review), though also here smaller damage features eluded 
detection. 
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3. TESTS AND VALIDATON 

3.1 Pilot experiments 

Both RECONASS and INACHUS included a number of pilot 
experiments, where first individual components or sets thereof, 
and later the entire systems were tested under relatively realistic 
conditions. For the already mentioned explosion experiments in 
Sweden we acquired data using a Aibot X6 Hexacopter carrying 
a Canon D600 camera with a Voigtländer 20 mm lens. In 
addition to reference data images were acquired after both the 
exterior and the interior blasts, with a ground sampling distance 
(GSD) of approximately 1.5 cm. From those images detailed 3D 
point clouds were calculated and analysed. The data proved 
suitable to identity damage-related openings, such as infill walls 
damaged or blown-out by the blasts, as well as cracks and 
debris. Additionally, subtle façade deformations could be 
detected and quantified (Figure 3). It was also shown how a 
BIM model of the structure in 3D CityGML format could be 
automatically updated, both to visualise and catalogue detailed 
damage information. THW deployed a LEICA TM30 total 
station to survey the structure from 4 reference points, using 16 
prisms mounted on the structure. While the total station has the 
advantage that a structure can be continuously monitored for 
minute deformations – critical when rescue personnel operates 
near or within weakened structured – the UAV-derived data 
provided damage data of comparable quality, with greater 
flexibility and lower cost, including the roof that ground-based 
surveys cannot see, and potentially operated from a safer 
distance. The building was further surveyed by a Riegl VZ400 
terrestrial laser scanner, which also confirmed the high quality 
of the UAV-derived 3D models.  

Figure 3. UAV-derived point clouds of reinforced concrete 
structure with brick in-fill walls subjected to exterior and 
interior detonations. Openings, cracks and debris piles were 
automatically detected, and also subtle deformation in the 
façades were detected.  
 
For INACHUS pilot experiments were conducted at 4 different 
sites in France and Germany, and included buildings in the 
process of being demolished, as well as an urban search & 
rescue training site (Training Base Weeze in Germany). In 
response to criticism by end users in RECONASS as to the high 
cost of the Aibot UAV (ca. 40,000 Euro), in INACHUS we 
used low-cost DJI drones (Phantom 4 and Mavic Pro). 
Following the research directions described in section 2.3, the 
work focused less on simple scene reconstruction, but on 
integration with other spatial data, as well as advanced data 
analysis, including with CNN. For each of the pilots the 
building in question was also surveyed by ONERA using 
different UAV-borne laser scanners, as well as with a terrestrial 
laser scanner, to detect the respective strengths of the individual 
systems. The initial experiments with UAV-based laser 

scanners failed. First a Riegl VZ-1000 instrument (weight of 
about 10 kg) was deployed on a Yamaha RMAX helicopter 
(weight > 60 kg), though the acquired data suffered from 
artefacts and were not useful. Also data acquired with a 
Velodyne HDL32 (weight of only 1.3 kg) deployed on a 
VARIO BENZIN helicopter (weight just under 10 kg) proved 
unusable for damage detection, owing to the very unstable 
platform. For the final pilot a high quality Riegl VUX-1 was 
mounted on a stable DJI Matrice 600 hexacopter platform. The 
data were excellent, though the combined system is also very 
costly and requires expert knowledge for flight planning and 
executing, as well as data processing. We limited our mapping 
to the optical data acquired with the built-in cameras of the 
Phantom 4 and Mavic Pro (costs of < 2000 Euro), and advanced 
along the computer vision and machine learning trajectory 
described above. The 3D data obtained from the optical 
imagery was of comparable quality to the VUX-1 data while 
also providing native colour information, better spatial detail, 
and full coverage also of façades (Figure 4). The expectation 
that the airborne laser data would patch the one principal 
weakness of photogrammetry, the inability to map dark interior 
spaces through openings, was also not met. The data on 
openings and connected interior spaces were primarily 
delivered from the tripod-mounted ground-based laser scanner, 
though here the limited flexibility and occlusion by the 
building’s structural elements also prevented a complete 
mapping of openings.  

Figure 4. Point cloud representation of an INACHUS pilot 
structure in Lyon, France, calculated from optical imagery 
acquired with a low-cost commercial drone (Phantom 4, DJI), 
showing damage detected through machine learning (red). 
 
While commercial UAV by DJI and other makers have clearly 
reached high levels of cost-benefit, stability and reliability, 
most are also not designed to be survey-grade instruments 
working in real time. For rapid search & rescue support it is 
vital to provide usable information quickly. For that reason we 
also developed a procedure to process the data with minimal 
delay. The Mavic Pro allows images to be streamed during 
flight, which means that we built a procedure that (i) downloads 
images right after acquisition, (ii) builds a progressively 
extended 3D model of the scene using established structure 
from motion (SfM) methods, (iii) applies the machine learning 
algorithm to detect damage, and (iv) orthorectified the images 
using the 3D model. By the time the UAV lands after a 
maximum flight duration of about 25 minutes all processing is 
done and the damage map available. We built a smart phone 
app that allows this procedure to be executed together with a 
standard laptop (Figure 5). Details about the app and data 
processing workflow can be found in Nex et al., (2019). 
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Figure 5. Work flow of the app developed for real-time damage mapping. Images are streamed to a laptop computer and processed 
immediately after acquisition. A CNN-based damage detection algorithm is applied, and a progressively built 3D model is used to 
orthorectify them. By the time the UAV lands an orthomosaic displaying the damage is finished. 
 
 
3.2 Validation 

At every pilot different end users were present and underwent a 
detailed assessment protocol of every tool produced and tested. 
At the final INACHUS pilot that took place in Roquebillière, 
France, in November 2018 a total of 25 end users from 8 
countries participated, representing USAR teams and other civil 
protection organisations. They followed individual 
demonstrations of all technical tools developed, and graded 
them. Of all hard- and software or procedure solutions 
developed in INACHUS, the 3D mapping and damage detection 
with light-weight commercial UAV scored highest (overall 4.5 
out of 5). The high score does not so much represent a high 
level of technical sophistication, but rather the simplicity, both 
in terms of off-the-shelf hardware and an automated flight 
planning and damage mapping routine. The end users especially 
liked the simple, low-cost approach that provided accurate and 
useful information in near-real time, without the need for a 
highly specialised operator.  
 
3.3 Limitations 

The end user assessment also revealed limitations of the 
developed damage mapping solution. Legal restrictions of 
drone deployment continue to pose challenges, though 
problems are less severe for lighter platforms, and in addition 
first responder and civil protection organisations tend to operate 
under different legal frameworks. A clear disadvantage of small 
multicopter UAV platforms is their comparatively small 
operating range and flight duration. The limited spatial scope of 
RECONASS and INACHUS matched their abilities well, but 
damage assessment over larger affected areas requires different 
solutions. Off-the-shelf UAV come equipped with high quality 
optical cameras, though the computer vision processing to 
generate 3D point clouds fails for dark image patches such as 
shadow or smaller building openings. For this reason openings 
and possible survival spaces in the pilot structures could not be 
mapped, and here active sensors have a clear advantage. 
Commercial UAV also tend to be closed and largely proprietary 
systems, meaning that it is not easily possible, if at all, to 
exchange or add sensors, or to install processing units such as a 
DJI Manifold or NVIDIA Jetson TX2 to push more autonomy 
in onboard image processing or dynamic flight path adjustment 
onto the drone. 
 

4. OUTLOOK AND NEW DEVELOPMENTS 

4.1 Next steps in damage mapping 

Despite the progress that new platforms such as UAV and better 
image processing, in particular 3D reconstruction through 
advanced computer vision and deep learning, have generated, a 
range of challenges remains: (i) for all the sophistication of 
machine leaning approaches to recognise patterns and features, 
the specific effect of certain training labels remains unclear, 
challenging effort to optimise the training efficiency for specific 
damage features. Also, solutions developed to date still tend to 
be area/grid-based, highlighting damage in general, but not 
specific features. Work such as by Duarte et al. (2018b) also 
tends to focus on improving the overall classification accuracy, 
or on activation layers. From a user perspective more clarity in 
how a classifier perform in terms of reduced false positives or 
negatives is needed instead. (ii) traditional (vertical) damage 
was limited to information of the roof, supported by debris 
evidence and useful shadow signatures. The ability to map 
every surface plane of a building has generated a wealth of 
additional damage information. However, a disconnect remains 
between identifying a damage feature such as a crack or 
opening and its meaning and significance from a structural 
integrity or building function perspective. Damage indicators do 
not add up linearly to a per-building score, and the typical 
absence of information from the building’s interior, but also an 
incomplete picture caused by occlusion, continue to pose a 
significant methodological challenge. (iii) in Duarte et al. 
(2017) we showed how data from an initial coarse vertical 
survey can be used to guide a more local assessment. Such a 
multi-scale approach needs to be better automated, with a UAV 
carrying out real-time coarse mapping until a damage candidate 
building is detected, which is then mapped in more detail. This 
needs to include a real-time assessment of the 3D reconstruction 
achieved, coupled with an autonomous decision as to whether 
acquire additional imagery, and from which position. (iv) in 
recent years there has been a surge in research on UAV-based 
indoor mapping, both with single platforms and swarms. Most 
make use of visual SLAM to map their GPS-denied 
environment (e.g., Bavle et al. 2018, Trujillo et al. 2018), or 
focusing on continuity mapping when transiting between 
outdoor and indoor places (Zhang et al. 2015). Others have 
experimented with localizing via sensors such as ultrasound 
(Paredes et al. 2018). (v) while damage assessment remains a 
relevant and timely research issues, in the age of aging 
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infrastructure efforts have been spreading towards UAV-
supported maintenance. This implies a number of challenges. 
Infrastructure is diverse and includes complicated indoor spaces 
such as chimneys (Quenzel et al. 2019), but also roads, tunnels 
and bridges. Solutions are emerging to carry out day-to-day 
monitoring to detect defects or signs of decay, but also damage 
after a disaster event or accident (e.g., Schweizer et al. 2018). 
Such works increasingly extends into another emerging line of 
development, (vi) blending UAV-based abilities with robotics 
and mechatronics solutions. Here UAV are not only used to 
map and mode infrastructure spaces, but also to carry actuator 
arms to place sensors for in-situ measurements (Jimenez-Cano 
et al. 2017, Sanchez-Cuevas et al. 2019), or to carry our limited 
repairs. 
 
4.2 Project continuation  

Since 2018 we have been working on H2020 project 
PANOPTIS (Development of a Decision Support System for 
increasing the Resilience of Transportation Infrastructure 
based on combined use of terrestrial and airborne sensors and 
advanced modelling tools; www.panoptis.eu). It focuses on 
developing a framework to make road infrastructure more 
resilient given present environmental hazards and climate 
change. Our work focuses on road surface and road corridor 
damage assessment to detect gradual signs of wear and decay, 
as well as the ability to respond rapidly to a disaster situation. 
We focus on the of emerging hybrid UAV platforms (here a 
DeltaQuad from vertical Solutions) that allows both corridor 
mapping of a fixed-wing platform and hovering for detailed 
mapping, and a Jetson TX2 will be used to advance data 
processing on the drone itself. CNN-based methods are again 
applied for the damage feature detection.  
In September 2019 we will start project INGENIOUS (The 
First Responder of the Future: a Next Generation Integrated 
Toolkit for Collaborative Response, increasing protection and 
augmenting operational capacity; www.ingenious-first-
responders.eu). Here we will focus on the use of drone swarms 
for indoor mapping to support first responders unknown and 
potentially dark, smoke-filled and hazardous indoor settings. 
The work will be done together with robotics partners and 
involve UAV platforms of different sizes and with different 
sensor load and ability, with focus on collaboration and 
optimization.  
 

5. CONCLUSIONS 

Structural damage mapping with remote sensing has been a 
continuous research problem for decades, and for rapid 
operational disaster response, such as through the Charter or 
Copernicus EMS, reliable automated methods continue to be 
lacking. The substantial progress that has been made in the last 
decade resulted primarily in rapid developments in UAV 
technology, computer vision, and in advanced image data 
processing with machine learning, in particular deep learning 
with CNN. This paper primarily focused on research 
achievements made in the context of two European-funded 
projects, RECONASS and INACHUS, though has also 
reviewed significant developments made by other groups during 
this time. 
The paper has shown how image-derived 3D point clouds allow 
a highly detailed and accurate scene reconstruction, and how 
the coupling of the geometric information with the original 
image information allows very advanced feature recognition. 
Classifier training is also starting to overcome the challenge of 
in particular CNN-based methods requiring millions of training 

samples. The development of unsupervised CNN approaches 
(such as Auto-encoders) or Generative Adversarial Networks 
(GAN) could represent a step forward in this direction. Newer 
approaches are improving the efficiency, but also the 
transferability of classifiers, critical to be able to respond 
quickly to a disaster event. Comprehensive tests with first 
responders and urban search & rescue personnel showed that in 
particular solutions with light-weight off-the-shelf drones strike 
a very good compromise of high information quality and ready 
usability. 
Developments continue at a rapid pace, with significant 
research efforts now being focused on UAV-based mapping in 
indoor settings, on UAVs also being equipped with mechatronic 
abilities to allow the deployment of additional sensors or to 
carry out repairs, though also newer networks allow more 
sophisticated and robust deep learning solutions. Nevertheless, 
more effort is needed to understand better the actual meaning 
and significance of specific damage evidence. In addition, UAV 
needed to become more autonomous to increase the efficiency 
of damage mapping operations. Finally, progress in the 
processing of UAV-based imagery, in particular through 
advanced machine learning, must eventually lead to fully 
automated and accurate damage mapping with optical satellite 
imagery.  
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