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Abstract
The increase in the number of structural applications of composite materials, especially in the aerospace and automotive 
industries, has led to a demand for robust models to simulate composite forming processes. The mechanical behaviour of 
composite materials during forming is relatively complex due to their fibre-matrix composition. Many research studies have 
been conducted in the past 25-plus years into experimental methods for the characterization of the mechanical behaviours 
that are exhibited by textile-reinforced composite material systems during forming and into the development of material 
models to be used in computer codes for forming simulations. These studies have been presented and discussed in the ESA-
FORM conferences since 1997 and especially in the 'Composite Forming Processes' mini-symposium launched in 2001. This 
article presents a survey of the research carried out in this context. Mechanical characterization tests specific to composite 
forming are presented as well as recent analysis techniques such as digital image correlation and X-ray tomography. Three-
dimensional mechanical behaviour laws, in particular hypo- and hyperelastic, have been developed and extended to second 
gradient models. Specific shell approaches have been presented and their application to wrinkling analysis. Resin flow and 
permeability analysis is another area of research in composite forming processes which are discussed in this article. Research 
on certain processes is also presented, in particular thermoforming of thermoplastic composites, wet compression moulding, 
pultrusion, automated fibre placement and three-dimensional printing. This comprehensive review of the works of multiple 
research groups is a recognition of the breadth and depth of efforts that have been invested into the understanding of the 
manufacturability of textile-reinforced composite materials.
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Introduction

When the mechanical characteristics/mass ratio is important, 
composite materials have become the material of choice. 
The transportation industry has been steadily increasing the 
penetration of composites to reap the benefits of reduced 
fuel costs and increased range of operation. For example, in 
civil aviation, the two most recent long-range aircraft, the 
Airbus A350 and the Boeing 787, have made extensive use 
of composites in the airframe. The manufacture of compos-
ite parts frequently requires forming operations, and these 
forming processes can be challenging when considering the 
very particular mechanical behaviors of a given composite 
material system during its deformation.

Since 2001, the "composite forming process" mini-sym-
posium of the annual ESAFORM conference has brought 
together researchers from across Europe and around the 
world to present their work and discuss the analysis and sim-
ulation of composite forming. More than 500 presentations 
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in 20 conference proceedings have been realized through this 
international collaboration. This symposium has been a sig-
nificant venue for the sharing of innovations and collabora-
tions on this very important scientific and technical topic. 
The purpose of this article is to present an overall summary 
of the main topics that have been addressed at these annual 
ESAFORM conferences and to highlight some of the pro-
gress that has been made during these two decades. The main 
composite manufacturing processes that have been presented 
at these conferences are considered in the present paper.

The analysis and modeling of the deformation behaviors 
of composite textile reinforcements and prepregs can be per-
formed at one or more of three scales: (1) at the fibre scale 
(microscopic), (2) at the yarn scale (mesoscopic) and/or (3) 
at the whole preform scale (macroscopic). The models and 
simulations presented in this paper are done at the macro-
scopic scale which is the most widely used for composite 
forming analyses of whole structural parts.

The fibrous composition of the textile reinforcements and 
prepregs leads to a very specific mechanical behavior dur-
ing shaping. In-plane shear, i.e. trellising, is the mode of 
deformation for a woven textile to conform double-curvature 
geometries. Its study constitutes an important topic of the 
field. From an experimental point of view, the analysis of 
in-plane shear uses mainly two tests: the "picture frame 
test" and the "bias extension test" which are specific to tex-
tile reinforcements. A benchmark has been initiated in the 
framework of the ESAFORM conferences and carried out by 
seven international research teams. The bending stiffness of 
textile reinforcements is much lower than that of continuous 
materials due to the relative sliding of the fibres. Thus, the 
standard bending theories of solids do not apply. Specific 
tests for textile bending needed to be developed and evalu-
ated. The compaction behavior of a fibrous reinforcement 
is important because this deformation makes it possible to 
evacuate the voids during the impregnation and consolida-
tion phases and to fix the fibre content of the preform. Opti-
cal methods have been extensively developed over the last 
twenty years to analyze the geometry and deformation of 
composites during forming. In particular, digital image cor-
relation allows analysis of flat or non-planar surfaces and 
X-ray tomography gives the geometry inside the fibrous 
reinforcements. The specificities of the mechanical behav-
ior of non-crimp fabrics which are interesting for industrial 
applications, such a wind turbine blades, are another textile 
architecture that is a subject of research and likewise in need 
of using the aforementioned methods to characterize their 
mechanical behaviors.

Three-dimensional behavior laws must be written in 
the framework of geometric nonlinearities with strong 
anisotropy in a reference frame of that evolves with the 
deformation. Hypoelastic and hyperelastic laws have been 
proposed for textile reinforcements. The laws written in 

the Cauchy framework are not always sufficient and sec-
ond gradient laws have been proposed. Textile composites 
reinforcements are generally thin and forming simulations 
use finite element shells. These are very specific consid-
ering the bending behavior with low stiffness and does 
not follow the classical models. Compaction is an impor-
tant aspect, and developments are currently in progress 
for solid-shell finite elements which model this transverse 
compression. Wrinkling during draping is one of the main 
defects that can develop during this process. Their simu-
lation is an element that makes it possible to determine 
the processing conditions to avoid them. Thermoforming 
of thermoplastic prepregs provides a rapid manufacturing 
process for composite parts. In this case, the modeling 
must consider the thermo-mechanical coupling and the 
viscous character of the mechanical behavior.

In Liquid Composite Molding (LCM), the resin is 
injected into a preform. The analysis and simulation of this 
injection is a wide field of research. In particular, the deter-
mination of the permeability of the textile preform, which 
represents its ability to allow the resin flow, is the subject 
of numerous studies and has given rise to several interna-
tional benchmarks. The analysis, modeling and simulation 
of the different aspects of LCM processes and in particular 
of the mold flow are the subject of numerous works.

In addition to LCM processes and thermoforming of 
prepregs, other composite manufacturing processes are 
emerging. Automated fibre placement and robotic layup 
are widely used in the aerospace industry. To produce 
complex shaped parts without using a mold, additive 
manufacturing is an emerging technology for the manu-
facture of fibre-reinforced composite parts. Pultrusion is 
an efficient but complex process that produces composite 
profiles with a constant cross-section.

Section 2 ‘Materials characterization’ of this paper 
presents the specificities of the main deformation modes 
of composite textile reinforcements in particular in-plane 
shear, bending and compaction and also the mechanical 
behavior of Non-Crimp Fabrics (NCF) and the techniques 
of analysis by digital image correlation and micro-com-
puted tomography. Section 3 ‘Constitutive models for 
composite forming’ deals with three-dimensional consti-
tutive models adapted to textile reinforcements. The simu-
lation of composite reinforcement forming processes is 
discussed in Section 4 ‘Composite reinforcements forming 
simulation’. The simulation of continuous fibre-reinforced 
thermoplastics thermoforming is also analysed in this sec-
tion. Section 5 ‘Resin infusion, permeability’ concerns the 
injection of the resin into the fibrous reinforcements and 
the analysis of the permeability. In Section 6, ‘Alternative 
manufacturing processes’ processes such as automated 
fibre placement, three-dimensional printing, wet compres-
sion moulding and pultrusion are discussed.
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Materials characterization

Materials characterization: In‑plane shear

Composite forming and in‑plane shear

Draping a textile composite reinforcement or prepreg over 
a double-curvature surface requires membrane deformation 
of the reinforcement. As the fibers are quasi-inextensible in 
a textile reinforcement, a textile conforms to the surface by 
in-plane shear deformation (Fig. 1a), i.e. trellising of the 
tows. The angles required for forming can become large, 
and there is a forming limit, known as the locking angle, as 
a function of the textile achitecture. In the case of thermo-
set or thermoplastic prepregs, the matrix is present but is 
soft enough during forming so that the prepreg can deform. 
Because in-plane shear is the primary mode of deforma-
tion during draping, it has been extensively studied, and 
in particular at the ESAFORM conferences. Lindberg [1], 
Grosberg [2] and Kawabata [3] carried out the first works 
concerning in-plane shear in the sixties/seventies. Studies 
concerning the in-plane shear behaviour of textile reinforce-
ments have become numerous with the development of mod-
eling of composite forming [4, 5].

Experimental tests: Picture frame test and bias extension 
test

Two main tests have been developed to analyse the in-
plane shear behaviour of textiles. The picture frame test 
is composed of four rigid and articulated bars of equal 

length (Fig. 1b), i.e. a four-bar linkage. When the initially 
square geometry becomes a lozenge, i.e. diamond shape, 
the specimen inside the frame is assumed to be subjected to 
a pure and uniform in-plane shear (at least in theory). This 
assumption also requires no slippage between the warp and 
weft yarns. The bias-extension test is a tensile test that is 
performed on a rectangular specimen where the yarns are 
initially oriented at ± 45° (Fig. 1c). During the 2000s, many 
studies have been carried out on the analysis of these tests, 
in particular the determination of the equations relating the 
forces on the machine to the shear stresses in the specimen 
[6–10] and in Digital Image Correlation for the characteri-
zation of the strain field and assessment of its homogeneity 
(see Section 2.5 on Digital Image Correlation (DIC)).

Both the picture frame and bias-extension tests have the 
objective to characterize the in-plane shear behaviour of a 
textile reinforcement; however, they are technically differ-
ent and present some test-specific benefits and challenges. 
The picture frame test is kinematically highly constrained. 
All the edges of the specimen are blocked on the frame, and 
care must be taken to avoid tensions in the fibers which can 
disturb the test. In the bias-extension test, the fibers have at 
least one free end, which avoids parasitic tensions; however, 
the shear kinematics rely on assumptions, in particular the 
non-slip of the warp and weft yarns. For some reinforce-
ments, this assumption can be difficult to verify. Studies have 
been made to compare these two tests [6, 11, 12].

Shear tests at high temperature

The forming of thermoset and thermoplastic prepregs are 
performed at elevated temperature. In the case of thermoset 

Fig. 1   (a) In-plane shear in 
forming [28], (b) Picture frame 
test [29], (c) Bias-extension 
test [28]

Shear angle = 45°

(a)

(b) (c)
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prepregs, forming takes place before curing. In the case of 
thermoplastic prepregs, forming occurs at a temperature 
above the melting point. The shear properties are typically 
temperature-dependent, and thus these properties must be 
determined for all temperatures that can occur during ther-
moforming. In-plane shear tests are performed at different 
temperatures in thermal chambers [4, 6, 11, 13–15]. These 
tests can be challenging in particular the need to achieve 
homogeneity of the temperature. In-plane shear tests can be 
performed at different speeds to measure the influence of 
strain rate. The effect of the strain rate has been observed by 
some to be less important than the effect of the temperature 
[13].

Influence of the tensions in the yarns

In-plane shear stiffness is increased when a textile reinforce-
ment is subjected to tension. Studies have analysed this phe-
nomenon [7, 12, 16–18] and have shown that the influence 
of these tensions is important, especially with regard to the 
development of wrinkles [19]. An advantage of the bias-
extension test is that the yarns have at least one free end and 
are subjected to insignificant low tensions during the test. To 
analyse the tension-shear coupling, a biaxial bias-extension 
test was developed [20], and modifications of the picture 
frame tests, coupled with tension [21–23].

The locking angle and its limitations

During a picture frame test, wrinkles appear from an angle 
called "shear locking angle" [24–26]. This angle is used by 
some simulation approaches of draping processes as a limit 
above which wrinkling of the textile reinforcement appears. 
As shear angles become large, in-plane shear stiffness 
increases and this is indeed a factor favourable to the devel-
opment of wrinkles. However, the development of wrinkles 
involves all the stresses and stiffnesses, and it is difficult to 
conclude whether wrinkles occur with the plane shear angle 
only. Very large shear angles (> 60°) have been measured 
when using a high binder pressure without wrinkles appear-
ing [19, 27].

A benchmark on in‑plane shear behavior of woven fabrics

To bring together the results obtained by different teams on 
in-plane shear behaviour, a benchmark was launched at the 
initiative of Jian Cao and Julie Chen [9, 30]. It gave rise to 
presentations and discussions at the 2001 NSF Composite 
Sheet Forming workshop and at the ESAFORM conferences 
from 2004 to 2007. Three different commingled fiberglass-
polypropylene woven fabrics (donated by Vetrotex Saint-
Gobain) were provided to the seven research groups: North-
western University in the USA, University of Massachusetts 

Lowell in the USA, University of Twente in the Netherlands, 
University of Nottingham in UK, Katholieke Universiteit 
Leuven in Belgium, Hong Kong University of Science and 
Technology in Hong Kong, and Institut National des Sci-
ences Appliquées of Lyon in France. The experimental tests 
were carried out with the picture frame test and the bias-
extension test. The geometry of the different devices, the 
procedures used by the different teams and results were ana-
lysed, and rules of good practice were established. A major 
issue was to synthesize the relationships to determine the 
shear force versus shear angle.

Bending of composite reinforcements

Textile composite reinforcements and prepregs have a low 
bending stiffness due to their fibrous composition. Mem-
brane approaches have been proposed to simulate their 
deformation [31–34]. Nevertheless, it has been shown that 
the bending stiffness plays a role in this deformation, in par-
ticular with respect to the development of wrinkles during 
forming and the shape of these wrinkles [35–38]. Conse-
quently, it is necessary to account for bending in the simula-
tion of draping processes. The analysis of textile bending is 
complex because it cannot be modeled by standard bending 
approaches. In the case of classical continuous materials, 
e.g. metals, the standard plate and shell theories of Kirch-
hoff and Mindlin have been developed. In these theories, 
the membrane and bending stiffnesses are interdependent 
and the bending stiffness is given by the tension stiffness 
and the thickness. This approach is not applicable to fibrous 
reinforcements and would lead to a very overestimated bend-
ing stiffness. It can be seen in Fig. 2a that the material nor-
mals are not perpendicular to the mean surface in the case 
of a textile reinforcement contrary to the case of a classical 
material which follows the Kirchhoff theory (Fig. 2b). The 
slippage between the fibres of a textile is the cause of the 
low bending stiffness. This property plays a major role in the 
draping of reinforced textile composites. The tension and 
bending stiffnesses are coupled in the case of Kirchhoff's 
theory, but they are often assumed to be "decoupled" for 
fibrous materials [39, 40].

Experimental analyses of textile reinforcement bending 
property

Because the bending behavior of textile reinforcements 
cannot be deduced from the tensile behavior as is done 
for monolithic materials, experimental characterization 
of the bending behavior is necessary. Different methods 
have been proposed for this experimental characteriza-
tion. Pierce's method [41] uses the cantilever bending of 
a textile specimen subjected to its own weight (Fig. 3a). 
The deflection of the fabric can be used to calculate the 
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bending stiffness. If the stiffness is assumed to be constant, 
it is sufficient to measure the length of the reinforcement 
necessary for its extremity to come into contact with a 
plane of fixed inclination (41.5° according to the norm) to 
determine this stiffness [42]. On the other hand, an optical 
measurement of the deformed midline makes it possible to 
calculate the curvature at any point of the specimen, and 
thus, to identify the possibly nonlinear moment–curvature 
relationship [43–45]. The Kawabata bending test (KES-
F2), imposes the curvature of a specimen whose two ends 
are clamped in the system (Fig. 3b) [46, 47]. This system 
allows to set the loading speed and to perform loading 
cycles. Other devices have been developed on the same 
principle and used for viscoelasticity analyses [48, 49]. 
Three-point bending, which is widely used for other mate-
rials, is also used for textile reinforcements and prepregs 
provided that their bending stiffness is sufficiently high 
[50, 51]. The different setups can be used to test the bend-
ing properties as a function of temperature [36, 48, 52–54]. 

Prepregs are very sensitive to temperature, and care must 
be taken with respect to initiating cure of the matrix mate-
rial during the characterization experiment.

Consideration of bending properties in numerical 
simulations of composite forming

The tests presented in Section 2.2.1 allow the determination 
of the effective bending stiffness of textile reinforcements; 
however, the implementation of these properties into the 
deformation simulations is not a simple task. The classical 
shell finite elements based on Kirchhoff or Mindlin theories 
couple the membrane and bending properties, but this cou-
pling does not apply to textile reinforcements. To accom-
modate the measured bending stiffnesses, it is necessary to 
set up an approach that decouples the bending and tension 
stiffnesses. This aspect is presented in Section 4.1 (Shells) 
and in [39, 40, 56].

Fig. 2   a Bending of a fibrous material. b Bending of a classical continuous material [55]

Fig. 3   a Peirce flexometer [41], 
b Kawabata bending test—
KES-FB2 [47]
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Transverse compression

Compression (compaction) of a fibrous reinforcement is an 
inherent part of the composites forming process due to the 
nature of bundles of fibres comprising the tows or yarns, 
where a yarn is a twisted bundle of fibres. It serves two 
purposes. First, the applied pressure promotes evacuation 
of voids during the preform impregnation and consolida-
tion phase of production. Second, the preform compaction 
creates a fibre-volume fraction in the final cured composite, 
which provides the desired mechanical properties of the part. 
The phenomenon of the preform compaction in the compos-
ite processing differs from the phenomena of compaction in 
textile technology mainly by the level of the applied pres-
sure. The latter is related to the fabric handling and deals 
with pressure up to ~ 1 kPa (see (2008)). In the compos-
ites processing, the pressure ranges from ~ 0.1 MPa (1 bar, 
vacuum pressure) to ~ 1 MPa (autoclave) up to ~ 10 MPa 
(compression moulding).

The main question which should be answered by the 
experimental or modelling description of the preform 
compaction is: “What is the pressure needed to reach the 
required fibre volume fraction (or the given thickness)?”, 
or: “What is the fibre volume fraction created by the given 
pressure?”. The former is relevant for processes in a closed 
mould (RTM, compression moulding), the latter for open 
mould processing (vacuum infusion, autoclave processing, 
thermoforming).

The compaction behaviour of composite reinforcements 
has been studied extensively in 1990s – 2010s, see, for 
example [57–59] and is well understood. A typical pressure 
vs. thickness diagram has two regions: the first (low pres-
sure) is controlled by change of the fibre crimp, and the low 
compression resistance is given by low bending stiffness of 
the fibres; in the second (high pressure, from ~ 0.05 MPa) the 
fibres come close together, the number of contacts between 
them increases dramatically, there is no more freedom for 
the fibres to bend, and the resistance to compression is more 
defined by high Hertzian contact forces than by bending of 
the fibres. Different textile and non-woven materials were 
investigated, including 3D textiles [60], and nano-engi-
neered textiles [61, 62]. Descriptive and predictive models 
for the pressure – thickness relation are proposed [63–67]. 
Apart from the dry compaction, the wet compaction and 
viscoelasticity of the (pre)-impregnated preforms has been 
studied [68, 69].

In 2019, a benchmark study of fibrous reinforcement 
compressibility was started. The benchmark studied two 
types of glass-fibre fabrics (woven and NCF), with 26 par-
ticipating labs, both in dry and wet compaction [70]. The 
benchmark has revealed a high variability of the compres-
sion test. For the data from all participants, coefficients of 
variation of maximum recorded pressure for a fixed final 

preform thickness were up to 50%. Three main sources of 
variability were identified: thickness measurement, approach 
to compliance correction and parallelism, and specimen 
saturation in wet compression tests. Figure 4 illustrates a 
typical compression test configuration and the obtained com-
pression curves.

Stemming from the benchmark, research of new aspects 
of the preform compression have started: development of 
reference specimens for the compression test [71], machine 
compliance during the test [72], viscoelasticity during com-
paction [73]. The second benchmark, which aims at nor-
malisation of the measurements, is expected to start in 2021 
– 2022.

Specific deformability of stitched NCF

Non-crimp fabrics (NCF), which can include “multi-axial 
multi-ply warp-knitted preforms”, are special among textile 
composite reinforcements because of their lack of wavi-
ness that is seen in a woven textile. The fibres in NCFs are 
arranged in unidirectional plies and are essentially straight, 
with small distortions created by the stitching (Fig. 5). These 
distortions are sites for the development of resin-rich zones 
near the stitching sites, which play an important role in 
impregnation of the fabric. Deformability of NCFs, hence 
their behavior in forming, is strongly affected by the stitch-
ing, which creates low extensible connections, limiting shear 
and tension compliance in certain directions [74]. Most pop-
ular carbon fibre NCFs, used in automotive and aeronautic 
industries are multiaxial. The reinforcement for wind turbine 
blades is primarily unidirectional glass fibre NCFs in com-
bination with ± 45° cross-ply NCFS for torsional stiffness. 
The book [75] gives an overview of the NCF-related work 
in 1990s and 2000s. Since then, the research in NCF internal 
structure and formability was focused on in-depth investi-
gation of the two effects mentioned above: fibre distortion 
in the plies and the effect of the stitching on deformability 
and drape. This research was particularly intense during the 
2015–2021 period.

The internal structure on NCFs is being studied under 
high-resolution, high-fidelity instruments such as scanning 
electron microscopy [76] and micro-CT [77–79]. For unidi-
rectional glass NCFs, this work resulted in reliable charac-
terization of the fibre waviness, which influences mechanical 
performance [80–83]. Multi-scale, multi-step description of 
the orientation variability was applied to multi-axial NCFs 
[84].

A continued work on the deformability characterization 
[85–92] creates a comprehensive database to be used in the 
forming simulations. This work also includes specific prob-
lems as fabric-tool friction characterization [93], localiza-
tion of transverse tension [86], superposition of transverse 
tension and shear [94], difficulties in assessing the strain 
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fields via DIC, caused by the fabric surface distortion [95], 
compaction characterization [96], forming of NCF compos-
ites with continuous NCFs [97]. The special attention is on 
wrinkling and other local defects of draping [98–101] and its 
predictability during forming on part level [102]. Deform-
ability of thermoplastic NCF sheets was studied in near-
processing conditions in temperature and strain rate [103].

In the testing for formability, apart from the research tech-
niques, automated, industrial-lab-suited devices appear: a 
Drape-test device, which was applied to investigations of NCF 

formability [104], robot-based optical measurement [105], as 
well as quality assessment methods for the draping [106, 107].

Understanding of the draping mechanics of NCFs has led 
to industrial developments: a draping unit, for balancing fab-
ric tension and consolidating continuously across the layup 
width, accounting for shearing of the previously laid fabric 
[108], automated draping methods for layup of NCFs for 
wind turbine blades [109], flexible clamping methods [110], 
design of the stitching based on the draping requirements 
[111], identification of the forming limits for NCFs [112].

Fig. 4   Compaction tests of textile reinforcements: (a) a typical test configuration [72], (b) thickness – time and compression stress – thickness 
diagrams of the test [70]

Fig. 5   Internal structure of car-
bon fibre/epoxy NCF composite 
laminates: quasi-isotropic [90°/-
45°/45°/0°]s (left) and cross-ply 
[90°/ 0°]8 [75, 77]
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Digital image correlation and micro‑computed 
tomography

Since the first applications of Digital Image Correlation 
(DIC) to study full-field strain fields in dry textiles, notably 
appeared first in ESAFORM Proceedings [113–117] and 
then published in journals [118–121], DIC has since become 
a common method for extensometry during mechanical tests 
on dry textiles and for measuring reinforcement local strains 
during draping. For the former (mechanical testing) DIC was 
used for picture frame, bias-extension and bi-axial tension 
[12, 15, 85, 118, 122, 123] to name a few. For the latter, 
3D DIC provides strain fields of the draped reinforcements, 
allowing identification of regions with a dangerously high 
shear or local yarn-level defects [56, 94, 124–128], Fig. 6. 
The literature which reports the results of mechanical tests 
and draping of dry reinforcements using DIC is too extensive 
to cover it here. However, the choice of DIC parameters for 
dry textiles tests is still more an art than a precise science, 
and a benchmark exercise could be a good way towards nor-
malisation of such measurements.

Micro-computed X-ray tomography (µCT) is applied for 
studies of textile internal structure since 2000s [129–132]. 
In the last decade it has become a widely used technique, 
applied to glass, carbon and natural fibre reinforcements 

of different textile architecture [131, 133–137]. Figure 6b 
shows an example of µCT image of a 3D woven reinforce-
ment. Recent reviews [138, 139] can serve as an entry to 
the field.

The attainable resolution of µCT images is down to 
1 µm and lower, with the image size of few centimetres. 
This level of detail makes it possible to obtain good qual-
ity images of textile unit cells and effective segmentation 
of the image for the reconstruction of the yarn volumes 
and paths, with subsequent transformation into a finite ele-
ments (FE) model [135, 140–142].

µCT has been used for validation of the predictions of 
details of the reinforcement deformation on the yarns level 
[131, 143] and detailed studies of the deformed 3D rein-
forcement architecture [136].

Apart from FE modelling, a µCT image allows quan-
tification, which gives general characterisation of uncer-
tainties of the fibrous structure [144], as fibre and yarn 
misalignments and deviations of the yarn paths [145, 146]. 
Such quantification does not necessarily use resources-
intensive image segmentation, which requires high image 
resolution: it can use, for example, structure tensor meth-
ods [147], which are fast, effective and well-compared 
with the high-fidelity segmentation [148].

Fig. 6   a DIC-registered distributions of the shear angle on the surface of a 3D woven fabric, draped over tetrahedron and double-dome moulds 
[127]; b micro-CT of a 3D woven fabric [133]

39   Page 8 of 30 International Journal of Material Forming (2022) 15: 39



1 3

Constitutive models for composite forming

Simulations of the deformation of textile reinforcements 
can be performed at the micro-, meso- or macro-scale. The 
description of the internal structure of the fibrous rein-
forcement is more detailed at the micro-scale and, to some 
extent, at the meso-scale than what can be derived at the 
macro-scale. However, to perform simulations of the form-
ing process on either the micro- or meso-scale is relatively 
expensive in computational resources and time. As a result, 
draping simulations of textile reinforcements are typically 
performed at the macroscopic scale for numerical efficiency 
[149]. At this scale, the constitutive law used in the mod-
eling must reflect the main specificities of the mechanical 
behavior of fibrous reinforcements. That is, it will be neces-
sary to consider the anisotropy of the behavior in the warp 
and weft frame which evolves during the transformation 
because of the in-plane shear. The constitutive model must 
be written in the framework of geometrical nonlinearities 
considering large displacements and large shear angles. It 
must account for the quasi-inextensibility of the fibres and 
for the in-plane shear behavior, which is strongly nonlinear 
(Section 2.1). The constitutive model in large deformations 
can be hypoelastic (law in rates), elastic or hyperelastic (the 
stresses derive from a strain energy potential).

Hypoelastic models

The explicit dynamics framework that is generally used, in 
particular in commercial software, computes a stress incre-
ment from a strain increment at each time step and is natu-
rally adapted to a hypoelastic approach [150–152]. So-called 

"non-orthogonal" constitutive models have been proposed 
for the membrane behavior of woven reinforcements [152, 
153] and NCFs [154]. At a given moment of the deforma-
tion, these laws use the current position of the warp and weft 
yarns to express elastic tensile and in-plane shear behaviors. 
As the main hypoelastic laws use orthogonal rotating frames, 
an approach proposed in [55, 155, 156] uses two orthogonal 
frames based on the respective directions of the warp yarns 
and weft yarns (Fig. 7a).

Hyperelastic models

In hyperelastic models, strain energy potentials are defined 
to describe the nonlinear behavior of textile composite rein-
forcements or prepregs. For an initially orthotropic material 
with two preferred directions (warp and weft) and one direc-
tion through the thickness, the potentials depend on invari-
ants of the deformations and these directions [157, 158]. A 
set of equivalent invariants but concerning each deformation 
mode can be used to define potentials specific to each defor-
mation mode [159–162]. These hyperelastic approaches are 
both based on solid foundations and allow, by the choice of 
the potentials, to define specific and efficient models for a 
given textile reinforcement. This approach is extended to the 
hyper-viscoelasticity [163–167]. The potentials correspond-
ing to each deformation mode are generally assumed to be 
decoupled, but some studies propose models with coupling 
[168].

Second gradient approaches

The continuum models introduced in Section 3.1 and 3.2 
are models of Cauchy. These models are based on the first 

Fig. 7   a Fibre frames for a 
hypoelastic approach [156]. b 
Simulation of the bias-extension 
test with a first gradient model, 
c with a second gradient model 
[170]
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gradient of displacements. It has been shown that these 
models have some limitations in the case of fibrous rein-
forcements [169, 170]. For example, the simulation, using 
3D elements and a hyperelastic model, of the three-point 
bending of a thick reinforcement shown in Fig. 2a leads to 
parts outside the supports that are not sufficiently raised. 
The simulation of a bias-extension test by a first gradient 
model (Fig. 7b) gives a deformation without a transition 
layer between the different shear zones [169]. In addition, 
parasitic wrinkles can appear in simulations with 3D ele-
ments and a hyperelastic model [171]. These difficulties 
arise from the inability of a first gradient model to capture 
the very low transverse shear (given the fibrous composition) 
and simultaneously to account for the bending stiffness of 
each fibre [170]. To overcome this difficulty, hyperelastic 
second gradient models have been introduced. In addition 
to the potentials based on the displacement gradients, terms 
based on their second gradient, i.e. on the strain gradients, 
have been introduced for the shear strain energy potentials 
[169, 172–175]. The problems highlighted when a Cauchy 
model is used are solved by this second gradient approach. 
For example, Fig. 7c shows that in the simulation of a bias-
extension test, the transition zones are well described. An 
alternative to the introduction of second gradient terms in 
the strain energy potential, is to add to the first gradient 
potentials, a strain energy related to the curvature of the 
fibres. This curvature calculation can be done using the posi-
tion of neighboring elements which is more efficient than the 
second gradient calculation. The efficiency of this approach 
is shown in [170, 171]. This approach has been extended to 
account for the bending stiffness in the finite element plane 
of shells [176]. This in-plane stiffness is not considered in 
standard shell elements.

Composite reinforcements forming 
simulation

The manufacturing processes of composites are numerous 
and often complex. Simulation of the processes avoids long 
and expensive developments by trial and error. The simula-
tion of the forming of continuous fiber dry preforms and 
prepregs is the subject of this section. The simulation of 
resin injection on fibrous reinforcements is discussed in 
Section 5.

Shells and solid shells—Macroscopic approaches 
accounting for membrane and bending behaviour

Forming simulations of dry textiles and prepreg materials 
require the characterization and modelling of their mechani-
cal behaviour. Early approaches utilised a membrane hypoth-
esis, neglecting the material bending stiffness [32, 177–181]. 

It has been shown, however, that the formation of wrinkles 
and other forming effects requires the consideration of the 
reinforcement’s bending stiffness [35, 39, 56], which has 
to be considered decoupled from the membrane behaviour 
[35, 54, 125, 182]. Therefore, conventional shell theories 
are not applicable and superimposed membrane and shell 
elements [40, 54, 94] or dedicated shell formulations [167, 
182–184] are often used. The shell element approaches for 
macroscopic forming simulations can be divided in two cate-
gories, semi-discrete approaches and continuous approaches.

Under the category of semi-discrete approaches, a class 
of three-noded shell elements have been developed based 
on the work of Hamila and Boisse [183]. This category rep-
resents an intermediate approach between mesoscopic and 
continuous approaches. It is based on a decomposition of an 
element into unit cells according to the main deformation 
mechanisms during forming. The internal virtual work is 
accordingly separated into a tension, a shear and a bending 
part [36, 125, 183, 185]. These approaches were applied to 
various kinds of reinforcements like woven textiles [125, 
186, 187], unbalanced fabrics [35], biaxial NCF [188], 
and thermoplastic prepregs [36, 185]. The model has been 
extended by Steer et al. [176] to account for in-plane bending 
in woven fabrics.

Continuous shell approaches model the membrane and 
the bending behaviour by separate constitutive equations, 
which are then combined within one shell formulation. 
Döbrich et al. [39] proposed a shell-integrated method for 
membrane-bending decoupling based on laminate theory 
for biaxial NCF. This approach was later extended by Hüb-
ner et al. [189] for 3D-woven fabrics. Dörr et al. [167, 190] 
developed a three-node Discrete Kirchhoff Triangle (DKT) 
shell element formulation to model the viscoelastic mem-
brane and bending behaviour of thermoplastic UD-tapes. 
Liang et al. [184] and Bai et al. [191, 192] proposed shell 
elements based on Ahmad’s approach [193] to model the 
bending behaviour of fibrous media. The hypotheses of 
Kirchoff and Mindlin are not applied. The virtual work of 
the internal forces is modified so that the inextensibility of 
the fibres is assumed and the slip between the fibres is pos-
sible. This approach allows simulations of fibre reinforce-
ment deformation where the material normal agrees with 
the experiment [192].

Three-dimensional continuous approaches are required 
to consider effects in the transverse direction, such as com-
paction or consolidation. This three-dimensional continuous 
approach can be achieved either by shell elements with addi-
tional degrees of freedom in the thickness direction or by 
solid or (locking-reduced) solid-shell elements. Soulat et al. 
[182] developed a shell element with a degree of freedom 
for thickness variations. The formulation avoided locking by 
uncoupling bending and pinching, resulting in a good agree-
ment with reconsolidation experiments. Chen et al. [195] 
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proposed a similarly extended shell element for woven com-
posite forming, considering tensile, in-plane shear, bending 
and compressive behaviour. They studied the influence of 
shear and bending stiffness on the occurrence of wrinkling. 
In the case of 3D elements, conventional solid elements are 
unsuitable for the forming simulation of thin textiles due 
to numerical locking effects. To alleviate locking, so-called 
solid-shell elements use techniques like selective reduced-
integration or modifications to the strain field and have a 
“shell-like” behaviour for high aspect ratios [194]. Xiong 
et al. [196] proposed a prismatic solid-shell element with 
an additional degree of freedom in the element’s centre for 
an improved calculation of transverse normal stresses, in 
combination with a discrete Kirchhoff assumption of zero 
transverse shear strains. The element has successfully been 
applied to the thermoforming of thermoplastic prepregs 
and its consolidation to remove voids. Schäfer et al. [194] 
showed numerical studies of hemisphere forming tests to 
highlight the advantages of a hexahedral solid-shell elements 
for the forming of continuous reinforcements, see Fig. 8. The 
approach was extended by a membrane-bending-decoupling 
to study the influence on wrinkling [197].

Wrinkling during Composite Forming

Among the defects that can occur during the forming of 
composites, wrinkling is one of the most severe. One of the 
major objectives of the simulation of composite forming 
processes is to determine the conditions that avoid wrin-
kles [35, 99, 180, 198–203]. Wrinkling can occur during the 
forming of thin metal parts [204, 205]. For fibrous reinforce-
ments, these wrinkles are even more frequent because the 

fibrous composition of the textile reinforcements makes it 
possible for fibres to slide between each other and the bend-
ing stiffness is greatly reduced.

Influence of the Bending Stiffness

Textile reinforcements in composites usually have a small 
thickness and can be modeled by shells. The bending stiff-
ness is small given the fibrous composition of the reinforce-
ments. Membrane approaches, without bending stiffness, 
have been used to simulate the draping of textile fabrics [34, 
100]. When membrane elements are used for draping simu-
lation, wrinkles may appear. These wrinkles are nevertheless 
too small compared to reality due to the lack of bending 
stiffness of the membranes (Fig. 9a) [35]. Considering the 
bending stiffness, in addition to the tension and transverse 
shear stiffness, leads to a deformed shape with larger wrin-
kles in good agreement with reality (Fig. 9b).

Overall, tensile, in-plane shear and bending stiffnesses 
play a role in the appearance and development of wrinkles. 
The tensile stiffness is important and leads to a quasi-inex-
tensibility in the direction of the fibres. The in-plane shear 
angle required to achieve a double-curved shape is often the 
cause of wrinkling. The size of the wrinkles is determined 
by the bending stiffness. Figure 9c shows the wrinkles cre-
ated by the compression of a rectangular textile reinforce-
ment in the fibre direction in the case of bending stiffnesses 
of 10, 5 and 1 Nmm−1 (from top to bottom). The influence of 
bending stiffness during a thermoforming of a thermoplas-
tic prepreg is analyzed in [36] and confirms the results of 
Fig. 9c with a decrease in bending stiffness with increasing 
temperature.

Fig. 8   Hemisphere test | Results for a remaining tool stroke Δu of 7.0 mm, 3.5 mm and 0.0 mm for a conventional shell (S4R), a solid-shell and 
different commercially available solid elements (C3D8, C3D8R and C3D8R-Enh) [194].
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Beyond the Shear Locking Angle

Forming of textile reinforcements on double-curved surfaces 
is made possible by the low in-plane shear stiffness of the 
textiles. However, as the shear angle increases, the warp and 
weft yarns move into contact and the in-plane shear stiff-
ness increases. For a certain shear angle, called the ‘Shear 
Locking Angle’, this increase leads to the onset of wrinkles. 
These wrinkles are clearly visible in a picture frame test [6, 
24]. This angle is often considered as a property of the tex-
tile and as a value that should not be exceeded during form-
ing to avoid wrinkles [25, 26, 206]. However, the appear-
ance and development of wrinkles is a global phenomenon 
that involves all the stresses in the textile reinforcement. 
The determination of the appearance and development of 
wrinkles requires the simulation of the forming process that 
accounts for all of the characteristics of the textile reinforce-
ment and the loads during the process. It has been shown 
in some forming cases that the tensions due to the blank 
holders can enable forming without wrinkles when the shear 
angles are much higher than the shear locking angle [27, 35].

Wrinkling in Multi‑layered Composites Forming

When forming a stack of textile reinforcement layers, the 
development of wrinkling is much more likely to occur when 
the plies have different directions [207–210]. The deforma-
tions of plies of different orientations are most likely not 
going to be the same. This difference in deformations leads 
to significant slippage between the layers. The resulting fric-
tion loads lead to compression zones that create wrinkles 
[207]. These folds can be significant, and thus, the form-
ing of multi-layered composites can be challenging to avoid 
wrinkling. It has been shown that the friction between the 
plies plays a major role. When simulations of multiply drap-
ing are performed with a friction coefficient equal to zero 
between the layers, the wrinkles do not appear.

Thermoforming of thermoplastic composites

Continuous fibre-reinforced thermoplastics show great 
potential for large-volume low-cost production of structural 
components due to low cycle times, material efficiency, 

Fig. 9   Simulation of draping on 
a cylindrical punch. a Tensile 
and in-plane shear stiffnesses. 
b Tensile, in-plane shear and 
bending stiffnesses. [207] c 
Compression in the yarn direc-
tion of a woven reinforcement 
with different bending stiff-
nesses [35]
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and recyclability [211, 212]. Thermoforming processes 
and related forming defects such as wrinkling are strongly 
influenced by several processing parameters, e.g., geometry, 
stacking sequence, tool and initial laminate temperature, 
press profile, and laminate gripping [213–217]. A virtual 
analysis and validation of the manufacturability and an opti-
misation of the involved processing parameters is enabled 
by macro-scale FE thermoforming simulation, considering 
material behaviour and processing conditions by constitu-
tive equations and boundary conditions [149]. Moreover, 
local fibre orientations and forming defects are predictable 
by a FE forming simulation. The accurate predictions of 
the forming simulations increase the ability of downstream 
simulation approaches for their in-service predictions [218, 
219]. Due to the growing demand from industry, commer-
cial codes for macroscale FE thermoforming simulation are 
available and under continuous development [220], such as 
PAM-FORM [216] and AniForm [54, 221]. LS-DYNA is 
widely accepted within the US auto industry, and Dassault 
Systèmes is constantly working to evolve the capabilities 
of Abaqus where software packages like SimuDrape offer 
forming-specific add-ons for Abaqus, based e.g. on [94, 166, 
190].

Early thermoforming simulation approaches have used 
homogenisation methods to account for the evolution of the 
microstructure, by coupling micro-scale unit cell model-
ling to the macro-scale, to predict the macroscopic form-
ing behaviour [222]. Unit cell modelling is, however, usu-
ally applied only to virtual material characterisation [223, 
224], while macroscopic approaches are preferred for 

thermoforming simulation, under the premise to model the 
evolution of the microstructure in a homogenised manner. 
Thus, recent thermoforming studies focus on macroscopic 
approaches.

Experimental characterisations show a distinct rate-
dependency of membrane [216, 225–227] and bending 
behaviour [40, 51, 228]. Consequently, the membrane behav-
iour of organosheets has been modelled rate-dependent, e.g., 
through a nonlinear Voigt-Kelvin approach [221], nonlinear 
hypoelastic approach [229], and Prony series [164]. Dörr 
et al. [40, 167] compared a nonlinear Voigt-Kelvin and a 
generalised Maxwell approach to predict the bending and 
the membrane behaviour of UD tapes. Due to the larger 
number of model parameters, the generalised Maxwell ele-
ment showed better agreement with the nonlinear curves 
from experiments. Several other isothermal approaches 
are available [230, 231]. However, processing experiments 
reveal a distinct temperature-dependency [232, 233]. Thus, 
coupled thermomechanical approaches with temperature-
dependent shear and bending have been developed to capture 
the influence of the transient temperature on the deforma-
tion behaviour [229, 234]. A significant modification of the 
temperature field can be observed during thermoforming. 
Thus, Guzman-Maldonado et al. [225] developed a ther-
momechanical approach based on alternating thermal and 
mechanical simulations. At lower temperatures, the onset of 
crystallisation may induce a significant increase in mechani-
cal stiffness [233]. Therefore, Dörr et al. [190, 235] devel-
oped a coupled thermomechanical approach, considering 
the phase transition from the molten to the solid material 

Fig. 10   Thermomechanical 
forming simulation of an ortho-
tropic layup ([0;90]2 s): Local 
distribution of Temperature � 
and relative crystallinity X at 
different remaining tool strokes 
Δz [190]
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state through crystallisation for semi-crystalline thermo-
plastics, see Fig. 10. Herein, a modified Nakamura-Ziabicki 
model is capable to reproduce the crystallization kinetics 
for the wide range of cooling rates during thermoforming 
[236]. The contact behaviour between adjacent plies in 
thermoplastic composites should be modelled as a function 
of both slip-rate and transversal pressure [221]. For ther-
momechanical approaches, the dependence on temperature 
is additionally considered [190]. An investigation of ani-
sotropic inter-ply slip revealed no significant influence of 
the direction-dependent contact properties on the forming 
results [237].

Resin infusion, permeability

Permeability

The permeability of a fibrous preform is defined by its 
internal structure. Therefore, permeability will change as 
there are changes in the internal structure. Compaction will 
increase the fibre volume fraction and shear will reduce the 
spacing between adjacent tows/yarns. Both of these defor-
mation modes will decrease the ability of the resin to flow 
through the part during forming, and hence decrease the 
effective permeability.

Local permeability is affected by compaction of the pre-
form, which directly changes the fibre volume fraction. The 
in-plane permeability phenomenon was studied experimen-
tally in coupled compression-permeability experiments [59, 
238] and directly during infusion involving progressive pre-
form compression [239]. Theoretical treatment of the flow/
deformation coupling can be found in [240, 241]. The link 
between compression of the preform and its out-of-plane 
permeability was studied in [238, 242, 243]; a method of 

continuous permeability measurement of a preform during 
compaction was proposed in [244–246].

Shear affects the local permeability principle values: first, 
because of change of fibre volume fraction of the sheared 
preform, and also because of change of the details of the 
internal structure of the fabric. The first cause, change of 
fibre volume fraction, is much stronger than the second. 
A simplified estimation of the preform permeability after 
shear can be done using Kozeny-Carman-type equation 
with the constants evaluated based on the non-sheared con-
figuration [247–249]. Apart from the change of principal 
values, the rotation of the permeability must be considered 
[250]. Permeability of sheared fabrics has been extensively 
studied experimentally for different types of reinforcement 
[251–255], including a coupled influence of compaction 
and shear [256] and effect of shear on dual flow [257]. It 
was simulated on unit cell models of deformed fabrics [248, 
258].

Estimations of the local permeability are coupled with 
forming simulations, leading to simulations of the part 
impregnation, which accounts for the local preform structure 
changes (Fig. 11) [218, 259–262].

The resin flow during the preform impregnation can lead 
to deformations and distortions of the fibres, as studied by 
[263, 264].

The permeability research in the last decade was largely 
shaped by the continuing International Benchmarks. The 
International Permeability Benchmarks I, II and III on 
1D and 2D (radial) permeability measurement methods 
[265–267] has led to development of an ISO standard for 
these measurements (this is an ongoing work to be finished 
in 2022). This work is accompanied by benchmarks on 
through-the-thickness permeability [241], compressibility 
of the preforms [70] and virtual permeability [268].

Fig.11   Impregnation of a double-dome mould: (a) experiment; (b) simulation ignoring and (c) simulation accounting for the permeability 
change caused by the preform deformation [262]
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Resin Infusion

Liquid Composite Molding (LCM) is a class of composite 
manufacturing processes in which a mold cavity containing 
a reinforcing preform is injected with liquid thermoset resin 
to fill the empty spaces (pores) between the fibres. LCM pro-
cesses are versatile and attractive for many industries, such 
as aerospace, automotive, marine, and civil industries, due 
to the high volume, the high performance, and the manufac-
turing of low-cost of polymer composites [269–271]. LCM 
encompasses several processing options, which can be broadly 
classified into main groups: (1) matched mold (or rigid mold) 
processes, such as Resin Transfer Molding (RTM), Compres-
sion RTM and Injection Compression Molding, and (2) single-
sided mold processes, like Vacuum Assisted Resin Transfer 
Molding (VARTM), Resin infusion (RI), Seemann’s Compos-
ite Resin Infusion Molding Process (SCRIMP). Despite the 
rapid advances in LCM technologies for producing advanced 
composite parts during the last decade, at present, several 
unresolved issues persist with respect to process automation, 
preforming, tooling, mold flow analysis, and resin chemistry. 
In this regard, significant advancements have been achieved 
in process modeling and simulation activities [272]. Resin 
flow through the reinforcement preform is equated to the flow 
within a porous medium, where the pores between the fibres 
form interconnected channels. The flow, hence, is described 
using Darcy’s law, which lumps the ease of flow within these 
channels into a parameter called permeability that character-
izes the mobility of the resin through the fibrous porous media 
[273–275]. Textile permeability, which is an anisotropic and 
nonhomogeneous property per se, also has a dual-scale nature, 
being characterized by micron-sized pores that can be indi-
viduated within each tow (intra-tow porosity) and millimeter-
sized pores between the tows (inter-tow porosity) [276–278]. 
This inhomogeneity makes it challenging to develop the defini-
tion of a reliable model to predict the resin flow behavior. Two 
methodologies have been investigated to resolve this problem. 
The first one involves the addition of a sink term in a mes-
oscale simulation to determine the effective properties of the 
porous medium and their constitutive equations, and coupling 
the mesoscopic and macroscopic governing equations [279, 
280]. The evaluation of the sink term, which strictly depends 
on the type, size, and architecture of fabric reinforcement, has 
been addressed by proposing numerical expression for sim-
plified geometries [276, 281–285] or deriving a formulation 
considering the actual shape of fabric and tows and the varia-
tion in processing conditions by running mesoscopic simula-
tion [279, 286]. The latter involves assessing simultaneously 
the macro-flow and the micro-flow [284, 287] by using an 
analytical description [288], semi-empirical expression[289, 
290], and numerical tools [277, 278]. Numerical simulation 
allows one to achieve relevant benefits in the design of the 
infusion process strategies; however, online monitoring and 

control of the resin flow and the curing process are still para-
mount [291]. Indeed, unexpected phenomena during infusion 
could result in incomplete or nonuniform wetting of the rein-
forcement, the presence of dry spots and a poor-quality fibre-
matrix interface, fibres washing. Each of these defects will 
have detrimental effects on the mechanical properties of the 
final part [292–294]. The capability to detect and to correct 
flow anomalies is critical to a producing high-quality products 
[295]. Different approaches and sensing devices have been 
proposed to monitor the resin flow; however, a definitive solu-
tion is still yet to be developed. Visual observation by using 
high-resolution cameras in the case of transparent tooling was 
proposed by Nielsen and Pitchumani [296] and further devel-
oped in automation processing [297]. Tracking and controlling 
the resin flow through the preform by using pressure sensors 
embedded in the mold was investigated by Di Fratta et al. 
[298, 299]. Embedded dielectric sensors were tested by [279, 
288, 300] who also claimed low-cost efficiency, sensitivity, 
and reliability, together with a minimally invasive technique 
in comparison to other sensor devices. Thermocouples have 
been used to detect the temperature history of the resin, to 
evaluate the degree of 02, and to assess the position of the 
flow-front by looking at the temperature difference between 
resin and mold; however, limited results have been obtained 
with metallic molds [301, 302]. Ultrasonic sensors are able 
to detect the arrival of the resin and evaluate the curing pro-
gress by measuring the variations in velocity and attenuation 
of sound waves [301, 303, 304]. However, some concerns have 
arisen on the measurement reliability of transducers in indus-
trial operative conditions [305]. Fibre optic sensors represent 
a noninvasive tool to monitor the manufacturing process: vari-
ations in the refractive index of the light beam can be related 
to the advancing flow or temperature variations during the 
cure and the material transitions (gel point, glass transition) 
[306–309]. Their low weight and limited dimensions, on the 
order of the single fibres, allow them to be embedded within 
the dry preform without detrimental effect on the structural 
integrity of the composite part. Resistive sensors consisting 
of a pair of parallel conductive wires or punctual probes have 
been successfully used to detect the arrival and curing of the 
resin by measuring the voltage and variation in conductance of 
the reference electrical circuit [304, 310, 311]. Issues related 
to the sensor calibration, to being invasive and to the con-
cern that can be used only once have limited wide acceptance 
into composite manufacturing. Conductive wires arranged in 
a grid of line sensors and embedded within the dry perform 
were proposed by Fink et al. [312, 313] thereby developing the 
SMARTweave sensor system. The possibility of using conduc-
tive fibres (i.e. carbon fibres) as sensing elements reduces the 
impact of embedded sensors on the in-service integrity and 
performance of composite parts [314, 315]. X-ray methodol-
ogy has recently been proposed to visualize the flow pattern 
and the saturation of the fibre reinforcement [316–318].
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Alternative manufacturing processes

Automated fibre placement—Three‑dimensional 
printing

With the introduction and the growing of the concept of 
Industry 4.0, the fibre-reinforced polymer composite indus-
try is increasing demand for automation on one hand to 
improve the manufacturing efficiency, while on the other 
hand production flexibility as the market requires custom-
ized products, with specific physical and mechanical proper-
ties and complex shapes. These two conflicting needs have 
pushed the scientific community towards the definition of 
suitable solutions combining process quality, versatility, and 
efficiency. Robotic automated processes and three-dimen-
sional printing of continuous-fibre reinforcements are the 
most reliable responses to these industrial necessities [319]. 
Both of these classes of processes are based on an additive 
approach.

Among the robotic/automated processes, the automated 
fibre placement, automated tape laying and robotic layup are 
the most relevant manufacturing techniques [320]. These 
techniques are able to produce high-quality components and 
are widely adopted by the aeronautic industry [321]. Auto-
mated fibre placement is inspired by the filament winding 
process and consists of the oriented deposition and com-
paction of pre-impregnated bands of narrow width (up to 
15 mm), to form multilayer laminates of complex shapes 
[322]. The equipment consists of a deposition head capa-
ble to start, stop and control the tow flow, to compact the 
deposited materials, and to cut the filament [323]. The head 
is mounted on a handling system with at least six degrees of 
freedom, which make the process capable to manufacture 
complex shaped surfaces [324]. Automated tape laying is 
based on the same principle of the automatic fibre place-
ment. In the case of tape laying, the deposited bands of pre-
impregnated fibres can be up to 300-mm wide. The large 
bands and the high average velocity of the a tape-placement 
system achieve remarkable deposition rates [325]. On the 
other hand, automated tape laying cannot produce double 
curvature surfaces and is limited in the manufacturing of 
small-sized details [325]. Robotic layup consists in the 
replacement of the human intervention in the operations 
of fibre reinforcement placement and orientation [326]. 
In this case, the manufacturing system consists of anthro-
pomorphic robotic arms equipped with multifunction end 
effectors capable to pick, place, compact and handle dry 
or pre-impregnated textiles, achieving complex shape and 
minimizing the presence of defects, such as wrinkles or mis-
orientation [108]. In all of the aforementioned cases, the 
composite material is deposited or shaped with the support 
of a mold.

Three-dimensional printing is a widespread additive tech-
nique to produce complex shaped elements without the pres-
ence of a mold. It is widely applied to process conventional 
materials, such as polymers. Recently, this technique is 
being applied to multiphase polymeric based systems [327]. 
In this context, it is necessary to make a distinction between 
discontinuous fibre- or particle-reinforced polymers and 
continuous fibre reinforced polymers. In the case of discon-
tinuous reinforcement systems, the dispersed phase consists 
typically of short fibres, powders or carbon nanotubes. The 
phases are combined offline during the filament preparation 
[328]. The most popular technique to 3D-print continuous-
fibre reinforced polymers is fused deposition modeling. In 
this case, the impregnation can be achieved offline using pre-
impregnated filaments online and then combining polymeric 
filament and continuous-fibre filament in the extruding 
head [329, 330]. Continuous fibre 3D-printed components 
are characterized by high anisotropy due to the possibility 
to orient the fibrous reinforcement as a function of spatial 
location. A recent advancement of this technique is for 4D 
printing, in which smart materials (stimuli-responsive, time-
dependent, or self-evolving materials) are involved [331].

Wet compression moulding (WCM)

WCM is a closed-mould process with simultaneous drap-
ing (forming) and mould-filling (infiltration), which offers 
strong potential for large-scale production of continuous-
fibre reinforced plastics. It has been broadly deployed in 
the automotive industry within the last ten years, e.g., for 
structural parts within the car bodies of the BMW i3 and 
i8 [332, 333]. The key challenge for processing and model-
ling is the simultaneous multi-physical process with mutual 
dependency between forming and infiltration [334–338]. 
Simultaneous infiltration and short infiltration paths allow 
for relatively low cavity pressures compared to conventional 
RTM processing [335].

Large deformations during moulding require modelling of 
textile deformation mechanisms such as membrane, bending 
and contact behaviours. Comparable to thermoplastic UD 
tapes or organo sheets, material behaviour is affected by the 
current infiltration state during modelling [336, 338]. Addi-
tionally, fluid redistribution inside the mould requires con-
sidering shear-dependent, viscoelastic compaction behav-
iour [68, 339] as part of a three-dimensional formulation 
for the draping model [191, 340–342]. In contrast to VARI 
[343] or RTM injection [288, 344], mould-filling needs to 
be modelled simultaneously, not sequentially [345] Like 
other LCM processes, infiltration and flow-front progression 
are modelled assuming porous media through-flow [346]. 
Thereby, deformation of the porous medium is considered 
via local fibre-volume-content (FVC) and fibre orienta-
tion (anisotropic flow progression) [247, 254] modelling 
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of deformation and infiltration requires a mutual coupling 
between an explicitly solved draping model (large interface 
slip) and a commonly implicitly solved fluid model based 
on a Stokes, or Darcy flow [343]. The absence of a distinct 
interface between forming and fluid domains impedes cou-
pling with external codes or the application of CEL meth-
ods [347–349]. One solution for a monolithic coupling of 
draping and infiltration undergoing large strains has been 
presented by Poppe et al. [342, 345]. Here, a Darcy-based 
formulation for the fluid model based on an explicit time 
integration schema is superimposed to an explicitly for-
mulated FE draping model, see Fig. 12. However, further 
enhancements regarding curing [350] and multi-phase flows 
[351] are required for accurate WCM modelling.

Process defect: Flow‑induced fibre displacements

Fluid injection into the completely-closed (RTM) or partly-
closed mould (CRTM) imposes drag forces on the porous 
medium [352, 353], which can lead to undesired deforma-
tion and process defects. Extensively studied for HP-RTM 
injection, fibre washout and flow-induced fibre-displacement 
(FiFD) are the two most common defects [354, 355]. While 
fibre washout relates to the mesoscopic effect of individual 
rovings being washed out of the textile by high drag forces, 
FiFD addresses a macroscopic local or global fibre displace-
ment within the stack during infiltration [356]. Modelling 
requires a strong Fluide Structure interaction (FSI) between 
material deformation and fluid pressure distribution, often 
achieved using Terzaghi’s effective stress approach [357]. 
Recently, Hautefeuille et al. [264, 358] demonstrated the 

high relevance of FiFD for WCM. They demonstrated that 
the large fibre slip significantly affects the FVC and the 
resulting pressure distribution. Thus, an accurate prediction 
of WCM processing forces relies on simultaneous model-
ling deformation and infiltration. Poppe et al. [359] show 
that the viscous compaction forces within a porous medium 
become predictable when a strong FSI is introduced to a 
suitable WCM process model. Moreover, local deformation 
depends on the applied contact formulation, as infiltrated 
regions require a hydrodynamic contact formulation. Further 
work focuses on superficial fluid and coupled-interface flows 
[352] as FiFD is often caused by a mix of superficial- and 
porous-media through-flow.

Pultrusion

Pultrusion is a continuous manufacturing process adopted 
to produce constant cross-section profiles in fiber reinforced 
polymer composites. The pultrusion process was designed 
and patented starting from the half of the twentieth cen-
tury. The initial target of the process was the production 
of low performance components, such as fishing rods and 
lightweight shafts [360]. During the following decades, the 
performances of the pultruded composites have been dra-
matically improved through the usage of evolved reinforcing 
architectures and the better knowledge of the polymeriza-
tion reaction. Nowadays, pultrusion process is adopted to 
produce beams and columns widely employed as structural 
elements in civil buildings, structural supports and decks for 
bridges, marine piles and constructions, rebars, blades for 

Fig. 12   Process phases and 
relevant physical mechanisms 
in Wet Compression Moulding 
[342]
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wind-turbines, structural elements in aircrafts, automotive, 
and ships [269, 361–364].

Conventional pultrusion is mainly adopted to process 
thermoset based composites. It consists in forcing the 
advancement of the fibers through a resin open bath, and 
then through a heated mold which shapes the composite 
and activate the cure reaction. Even if most of the industrial 
pultrusion processes involves thermoset resin systems, start-
ing from ‘80 s, fiber reinforced thermoplastics have been 
pultruded as well [365, 366]. Typically, in this case, prepreg 
tows are employed, to avoid the online impregnation which 
is more problematic due to the high viscosity of the ther-
moplastics [367].

The most common variant of the conventional process for 
fiber reinforced thermosets is the injection pultrusion, whose 
schematic view is represented in Fig. 13a. This pultrusion 
variant was first introduced in the early ‘90 s [368–370]. It 
avoids the potentially dangerous direct contact between the 
resin and the surrounding working environment. Indeed, the 

resin is injected through the dry fiber inside a converging 
chamber bolted at the die entrance [371, 372].

The process is influenced by different aspects, such as 
the composition of the resin system or the inhomogeneous 
distribution of the reinforcing fibers [373, 374]. Several 
challenging aspects are related to the process planning and 
control. Fast curing is the main target in pultrusion. Nev-
ertheless, the resin must be catalyzed in such a way to be 
almost unreactive at room temperature and fully polymer-
ize during the die crossing time. The polymerization of 
thermosetting systems is a highly exothermal process. 
Faster reactions determine higher heat flow generations 
per unit of resin mass, which in turn imply higher thermal 
loads [375]. The physic state of the resin system is respon-
sible for the interaction between the die cavity walls and 
the advancing processed materials, and, therefore, for the 
arising of loads resistant to the pulling forces [376–378].

The thermochemical modeling of pultrusion played a 
key role in the process development since it allowed the 

Fig. 13   a Schematic view of 
an injection pultrusion line 
[399]; b schematic view of the 
physical interconnections in the 
integrated modeling injection 
pultrusion
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production designer to simulate and predict the capacity 
of the process to achieve a satisfactory polymerization 
and to avoid process-related issues such as fast curing or 
non-homogeneous curing, resin volume shrinkage, thermal 
expansion/contractions. These effects give place to unde-
sired shape distortions, internal tensions, and crack defects 
[379–382]. In the late ‘80 s the thermochemical models 
proposed were based on one dimensional steady-state 
heat-transfer [383]. In the successive decades, scientists 
and researchers developed more sophisticated methods 
based on two dimensional and three-dimensional heat-
transfer, thanks to the increase in the computing power 
available [384, 385].

Resin flow is another key-aspect in pultrusion. The resin 
system, while it is in liquid state, flows through the dry fib-
ers and fills the space between them excluding the presence 
of air. The temperature increase due to the proximity to the 
heating plates determines a marked decrease of the resin 
viscosity, promoting in turn the impregnation of the fibrous 
reinforcement. On the other hand, the thermal energy trig-
gers the cure reaction, which determines a sharp gel-glass 
transition of the resin. Therefore, a satisfactory impregnation 
of the fibrous reinforcement must be achieved before the 
polymerization onset [386].

As well as in the case of the thermochemical behavior, the 
first computed fluid dynamic models of pultrusion appeared 
in literature at the end of the ‘80 s [387]. The effectiveness 
of the model mostly depends on the good evaluation of the 
resin rheology, which in turn depends on its thermochemical 
state [388]. During the following years, some authors devel-
oped two-dimensional models of the resin flow in injection 
pultrusion [389, 390]. Also in this case, the improvement of 
the computational tools allowed the researchers to develop 
reliable three-dimensional flow models considering also the 
presence of a secondary phase, such as air [386].

In this context, in which the behaviors are interconnected 
and influence each other as described in Fig. 13b, modeling 
and predicting the pultrusion process performances play a 
key role [392–396]. The process parameters, namely the 
platen heating temperatures and the pulling speed, must be 
carefully ruled and optimized to mitigate the temperature 
peaks and avoid excessively fast reactions [391, 397–400].

Summary and future outlook

The development of textile-reinforced polymer-matrix 
composite materials in particular in aerospace and automo-
tive industry has led to many research efforts in the field of 
composite forming. This field of research is wide because 
the composite processes are numerous, complex and often 
new. The physics of deformation during forming is relatively 
complicated due to the mechanical behaviours of the textile 

reinforcements and their interaction with the liquid matrix. 
It has been shown in this article that significant advances 
have been made in this field in the last 25-plus years. The 
group of researchers in the field of composite forming is 
very active within the ESAFORM association. A large 
part of the research teams in the field took part in the mini-
symposium "Composite Forming Processes" and contrib-
uted in the discussions in this area. However, the forming 
processes of composites are numerous and complex, and 
many advances remain to be made so that the phenomena 
involved during forming are well understood and accurately 
modeled. This mini-symposium should be a privileged place 
to define the directions of future research and also what is 
needed to increase the adoption speed of models developed 
here by industry and what areas would require communities 
to work together. There is considerable research to be con-
ducted to ensure that numerical simulation codes for com-
posite forming processes can be used routinely in the design 
for manufacturability.
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