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Abstract

Energy and energy exchange govern interactions in the physical world.
By explicitly considering the energy and power in a robotic system,
many control and design problems become easier or more insightful than
in a purely signal-based view. We show the application of these energy
considerations to robotics; starting from the fundamental aspects, but,
most importantly, continuing to the practical application to robotic
systems. Using the theory of Port-Hamiltonian Systems as a fundamental
basis, we show examples concerning energy measurement, passivity and
safety. Control by interconnection covers the shaping and directing of
energy inside the controller algorithms, to achieve desired behaviour in
a power-consistent manner. This idea of control over the energy flows
is extended to the physical domain. In their mathematical description
and analysis, the boundary between controller and robot disappears
and everything is an interconnected system, driven by energy exchange
between its parts.
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1
Introduction

The physical world is governed by energy.
From the kinetic energy in a speeding car to the first law of thermo-
dynamics, energy is the lingua franca in all physical domains. It is a
coordinate-independent description of the energetic state of a system.

Interactions are almost exclusively1 characterised by energy
exchange.
From a battery, through an electric motor—via the magnetic fields—to
the mechanical system of a robot: the power or exchanged energy can be
traced across all these physical domains. While a car speeds up because
the engine applies a torque on the wheels through a set of transmissions,
this effort is really a means of pouring energy from the petrol or battery
into the kinetic energy of the car as a moving mass.

Many applications in robotics are concerned with energy: the amount
of kinetic energy in the robot (e.g. for safety issues), a periodic motion—
oscillation—with a certain amplitude (i.e. total energy), energy-efficiency
objectives, and storing and releasing energy in springs for explosive
motions are some examples.

1Certain interactions, like ideal constraints, can influence motion without energy
exchange.
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142 Introduction

By not solely considering signals, but rather the energy in robotic
systems explicitly, more insight can be gained, control problems may
become easier and a “feel” for the actual physical processes emerges.
This energy-based perspective need not focus on only the control system,
nor only on the description of the physical robot. We present a holistic,
energy-based view of robotic systems: Energy in Robotics. To achieve
this holistic view, we shall address the following topics:

1. Energy-based formulation of physical systems: Port-Hamiltonian
System theory.

2. Passivity and stability in robotic systems.

3. Measurement and control of energy flowing through actuators.

4. Energy-based controller design: energy shaping and energy routing
in the controller.

5. Energy-based system design: shaping the energy flows in a physical
robotic system.

The use of energy in robotics is broader than just these topics: there
are for example energy-based navigation methods; and in control theory
there is a strong link between Lyapunov’s stability theorem and energy.
The focus of this paper is on the cyber-physical interaction: the study and
control of energy flows between the physical system and the controller.

1.1 Port-Hamiltonian systems

Hamiltonian mechanics is a theory of classical mechanics similar to
Lagrangian mechanics. The classical canonical formulation is described
by a set of equations governing the Hamiltonian:

dp

dt = −∂H
∂q

(1.1)

dq

dt = +∂H
∂p

H = T + V.
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H is the Hamiltonian, the sum of kinetic T and potential energy V ,
i.e. the total internal energy of the system; q and p are the generalised
coordinates and momenta, respectively. A generalised coordinate is e.g.
a position, or charge displacement in the electrical domain. Mechanical
momentum is e.g. p = mv; in the electrical domain it is the state
variable of a inductor, the magnetic flux.
Hamiltonian mechanics are suitable for energy-based modelling and
control: the total energy H is expressed explicitly in the equations.

Example 1.1. A simple example of a physical system described with
Hamiltonian mechanics is the mass-spring oscillator. The position q

is the spring deflection; momentum p is the momentum of the mass,
p = m · v. With kinetic energy T = p2/(2m) (mass m) and potential
energy V = q2/(2C) (C is the compliance of the spring, the inverse of
its stiffness) the dynamic equations become:

H = p2

2m + q2

2C (1.2)

dp
dt = − q

C

dq
dt = p

m
.

Of course, in the equation for p we recognise ṗ = F , Newton’s second
law; in this case mv̇ = Kq. The equation for q is the obvious q̇ =
v. 〈example end〉

This example shows that energy is explicitly modelled: when solving
the equations one will see the energy flow between T and V . In this
closed system without friction, the total energy H is conserved.

In robotics, however, there is always interaction: between mechanical
parts, across domains through transducers, and with the environment.
For this interaction, the sub-systems must be interconnected. This
interconnection can be described by so-called power ports: interfaces
that transfer energy between elements, domains, systems. A power
port is always a pair of variables whose pairing characterises the power
exchange, e.g. force and velocity or voltage and current.
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In port-Hamiltonian systems theory, a common representation is the
causal Poisson framework representation, which is an input-state-output
representation. In this representation, all the states like q and p are
collected in a single state vector which may even be a combination of
generalised moments and displacements and indicated as x:

ẋ =
[
J(x)−R(x)

]∂H
∂x

(x) + g(x)u x ∈ X , u ∈ Rm (1.3)

y = g>(x)∂H
∂x

(x), y ∈ Rm

where J(x) = −J>(x), R(x) = R>(x) ≥ 0. J is an internal interconnec-
tion matrix; R is a resistive structure. g represents the interconnection,
and therefore effect, of the port variables on the state variables—and
vice versa.
The matrix J is a power-continuous interconnection by its skew-
symmetry, whereas R models pure resistive losses of the system, as can
be seen by taking the time derivative of the Hamiltonian:

Ḣ(x) = ∂H
∂x

>
(x) · ẋ (1.4)

= ∂H
∂x

>
(x)
[
J(x)−R(x)

]∂H
∂x

(x) + ∂H
∂x

>
(x) · g(x)u

= −∂H
∂x

>
(x)R(x)∂H

∂x
(x) + y>u,

which is the power supplied through the port y>u, minus the power
lost to friction, quadratic on R(x).

Example 1.2. Consider the mass-spring-damper system in Figure 1.1:
it does not have an external interaction port, so g(x) ≡ 0, hence the
Hamiltonian should change only with the quadratic R(x) term of (1.4).

The state vector comprises p and q as in Example 1.1; the damping
force Fb = b · v = b · p/m is modelled in the R matrix.

H(x) = p2

2m + q2

2C (1.5)
(
ṗ

q̇

)
=
[(

0 −1
1 0

)
−
(
b 0
0 0

)](
p/m

q/C

)
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Figure 1.1: A mass-spring-damper system. (Example 1.2)
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Figure 1.2: Simulation of the mass-spring-damper system of Figure 1.1. Energy
flows back and forth between the spring and mass, and is dissipated in the damper.
(Example 1.2)

Figure 1.2 shows a simulation of this example system, with C =
1 m N−1, b = 0.1 N s m−1, m = 1 kg, x(0) = (0 1 m)>. Especially
the plot of the energy shows how the Hamiltonian (EM +EC) decreases
with the energy dissipated in the damper, as expected from (1.4).
(EM and EC are the first and second term of the Hamiltonian of (1.5);
ER is the energy dissipated by the damper, given by

∫
Fbv dt =∫

bv2 dt.) 〈example end〉
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Example 1.3. An example of a system with an external port is the
sliding mass, with an actuator applying a force on it, as in Figure 1.3.
The only state is the momentum p. Choosing F as the input determines
g(x) = 1 and the dynamic equations are:

H(x) = p2

2m (1.6)

ẋ = ṗ =
[
(0)− (b)

] · p
m

+ (1)F

y = (1)> p
m
.

The choice for F as input has made y = p/m = v, such that the product
of input and output is power and this is indeed a power port.

M

b

F

Figure 1.3: A mass sliding on a surface with friction, with a port to the environment:
the actuator force. (Example 1.3)

Simulation results of this system (with m = 1 kg, b =
0.5 N s m−1, F = 0.5 N1(t− 1)) are shown in Figure 1.4. The difference
between the power injected by the actuator (PF = v · F ) and the power
lost in friction (PR = bv2), shaded in the middle graph, is exactly equal
to the time derivative of the Hamiltonian, ĖM = PM. 〈example end〉

Finally, the port of the Port-Hamiltonian System is an interface: the
system can be connected to other systems through this power port. The
interconnection between two or more PHS is described by a Dirac struc-
ture, which is a power-continuous coupling of the port variables. In fact,
the mass-spring-damper of Example 1.2 can be viewed—and modelled—
as three PHS, one for each element, interconnected by a Dirac structure,
as in Figure 1.5. The interconnection of Port-Hamiltonian Systems is
again a Port-Hamiltonian System, with a Hamiltonian that is the sum
of the two systems’ Hamiltonians and a new internal interconnection
matrix J that incorporates the (old, external) Dirac structure.
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Figure 1.4: Simulation of the sliding mass in Figure 1.3. The difference between
the power supplied through the port, PF, and the power lost to friction, PR, is equal
to the time derivative of the Hamiltonian EM. (Example 1.3)
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Figure 1.5: A Dirac structure is a power-continuous interconnection between
Port-Hamiltonian Systems. This figure shows the system of Figure 1.1 as three
interconnected elements, or systems.

An excellent introductory overview of Port-Hamiltonian Systems
Theory can be found in van der Schaft and Jeltsema (2014).



2
Energy in controlled physical systems

2.1 Passivity

Willems (1972) introduced the concept of dissipative dynamical systems
as follows. Consider a dynamical system Σ with state x, input u and
output y and a real-valued function w(u, y) called the supply rate. If a
non-negative storage function S(x) can be found such that:

S(x0) +
∫ t1

t0
w(u(t), y(t)) dt ≥ S(x1) (2.1)

then the system is said to be dissipative.
The supply rate and storage function can be arbitrarily chosen in

principle. However, when describing the dynamics of physical systems
using Port-Hamiltonian Systems Theory, a natural choice arises: the
actual “stored” internal energy H(x) for S(x) and the energy exchanged
through the external port as supply rate; w(u, y) = y>u and S(x) =
H(x). As seen before in (1.4):

Ḣ(x) = y>u− ∂H
∂x

>
(x) R(x) ∂H

∂x
(x). (2.2)

This can be recognised as the differential form of (2.1): since R = R> ≥
0, the square term on the RHS is ≥ 0. The storage function is the energy

148



2.1. Passivity 149

present in the system and the supply rate y>u is the power transferred
to the system through its port.

Physical systems for which the inequality holds are passive systems.
If R = 0, i.e. there is no dissipation1, then equality holds in (2.2) and
the system is said to be conservative or lossless.

We refer to van der Schaft (2017) for a unified and in-depth treatment
of passivity and L2-gain theory; dissipative systems; nonlinear stability;
and other related subjects. In this section we look at the implications
of passivity for robot control systems.

2.1.1 Passivity as a must

Many robots are controlled in a non-passive way, for example through
PID joint controllers or non-passive state feedback. This leads to good
performance, and generally stability can be proven for the free-standing
robot. However, as soon as the robot interacts with its environment,
things become different—especially if it is an unknown environment. In
that case, it turns out that a passively-controlled robot is a necessary
condition for stability, as shown in the following theorem, first presented
in (Camlibel et al., 2015, Ch 3).

Theorem 2.1. Given any non-passive system Σ with input-output pair
(u, y), then there always exists a passive system Σ̃ that, when connected
to Σ, will give rise to unbounded behaviour of the interconnection of Σ
and Σ̃.

Proof. Take the Hamiltonian of Σ as storage function and the natural
supply rate y>u. By the definition of passivity, (2.1), non-passiveness
of Σ implies that ∃ ū(t) such that the integral of the supply rate is
unbounded, which means we can extract infinite energy from the system.
Indicate with ȳ(t) the output corresponding to the input ū(t). This
means that we can define the extracted energy function Ho(t) as:

Ho(t) =
∫ t

0
ū(s) · ȳ(s) ds. (2.3)

1Properly speaking, energy cannot be dissipated for the first principle of ther-
modynamics, but what is meant here is what is called free energy and this means
irreversible transformation of energy to heat.



150 Energy in controlled physical systems

By construction, limt→∞Ho(t) = ∞. This implies that due to the
continuity of Ho(t), ∃ a bounded Hmin := mintHo(t)

We will now constructively define a passive system Σ̃ that will
generate the input ū(t) as its output ỹ:

ẋ = n(t)ũ (2.4)

ỹ = n(t)∂H̃
∂x

, (2.5)

with H̃(x) = 1
2x

2 and n(t) = ū(t)
∂ H̃
∂x

. It is easy to see that this system is

passive (even conservative) with storage function H̃(x). By initialising
x(0) =

√
2Hmin + ε for any ε > 0, it can be seen that by construction

∂H̃
∂x (t) > 0 ∀t > 0. Therefore, it is always possible to calculate n(t). By
setting as interconnection ũ = y and u = ỹ (= ū), we by construction
have that

lim
t→∞

H0(x) = lim
t→∞

H̃(x) =∞⇒ x→∞, (2.6)

which proves divergence of the coupled system (and thus instability for
any equilibrium), due to its diverging state x.

It is worth thinking about this relatively simple proof for a while,
because the implications of the theorem are far-reaching. The
theorem applies to any (linear and non-linear) system. This means
that, if a controlled robot is not passive, it is possible to construct an
environment—possibly by a second controlled robot— that is passive,
but when connected to the original robot would result in an energetically
unbounded system.2

A corollary to the above: if a controlled system is passive, it is
guaranteed to be stable. This is a strong argument to create a passive
behaviour for any robot that will potentially interact with an unknown
environment, in order to ensure bounded and safe behaviour.

One way to obtain this stability and safety guarantee is by using an
energy monitor, a supervisor that keeps the energy injected by actuators
in check. A different, model-independent way is presented in §2.3.

2Although the constructed system might not be encountered in practice, the
theorem clearly shows that from a control perspective, passivity is indeed a necessary
condition.
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Robot

HR

Motorω
τ

Figure 2.1: A robot as a Port-Hamiltonian System connected to its actuator through
a power port. The rate of change of its Hamiltonian HR is the supplied power, τ · ω.

2.2 Energy and distributed architectures

If a robotic system is seen as a Port-Hamiltonian System, then an
actuator interacts with it through a port. In the case of an electric motor,
the port variables are torque τ and rotational velocity ω, Figure 2.1.
Not regarding internal losses and interaction with an environment, the
change of the robot’s internal energy, ḢR, is the supplied power, τ · ω.

2.2.1 Measuring energy

In order to measure the energy supplied to the robot, one could mea-
sure the electrical power going into the motor. However, an—often
large—part of that energy is directly converted into heat, rather than
mechanical energy. Instead, it is possible to directly and precisely mea-
sure the supplied mechanical energy ∆E between two times t0 and t1
(2.7).

Electrical motors are usually current-controlled, at least in an inner
loop, meaning that their torque τ is precisely known if the motor
constantKm is known (2.8). Moreover, most digital control systems use a
zero-order-hold (ZOH) for their outputs during a sample period. Suppose
that t0 and t1 are two consecutive instants in which the sampling of
the position of the actuated joint takes place. At the same time the
new set-point of a current, and therefore a torque, takes place and it
will be held constant (ZOH) until the next sampling instant. In this
way, the current is kept constant over the integration period (2.9) and
the energy injected by the actuator can be measured exactly (2.10). In
this last equation, q(ti) is a position measurement of the motor at a
sampled time instant.
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∆E =
∫ t1

t0
τ(t) · ω(t) dt supply rate (2.7)

=
∫ t1

t0
Kmi(t) · ω(t) dt motor constant (2.8)

= Kmi(t0)
∫ t1

t0
ω(t) dt ZOH (2.9)

= Kmi(t0) · (q(t1)− q(t0)) . (2.10)

It is important to realise that this is indeed the exact amount of
injected energy, not an estimate. It can be measured if two conditions
are met:

1. A zero-order hold is used for the current or motor torque.

2. A position sensor is collocated with the motor.

Note that there are no conditions on the sample time. This method of
passive sampling was first introduced in Stramigioli et al. (2002). Later,
in Stramigioli et al. (2005), the sampled energy was sent as an “energy
packet” through discrete-time scattering between two haptic devices,
ensuring a passive interconnection regardless of communication delays
or losses.

If there is uncertainty in the measurement of i or q, that uncertainty
will carry to ∆E. Specifically, in the case of angular encoders with a
resolution of ∆q, the maximum error of the measurement ∆Ê is known:

q(ti) ∈
[
q̂(ti)−

∆q
2 , q̂(ti) + ∆q

2

)
⇒ |∆Ê −∆E| < Kmi(t0)∆q. (2.11)

In this equation, q̂ is the quantised measurement of q.

Example 2.1. Consider the system in Figure 2.2: a mass can be lifted
by an electric motor, through a gearbox and pulley. The motor current
is set by a PID controller. This system is simulated, where the setpoint
is a cycloid (smooth step) from 0 m to 0.5 m for the mass, executed
between 1 s and 3 s. See Table 2.1 for all parameters of the simulation.
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PID ZOH

sample

setpoint

Ê

+

q̂

−

î M

q

Figure 2.2: A mass that can be lifted by a current-controlled motor. A discrete-time
PID controller tries to follow a cycloid setpoint from 0 m to 0.5 m between 1 s and
3 s. The energy injected by the motor is measured exactly by the block Ê.

Parameter Value Description

Km 0.04 N m A−1 Motor constant
Jm 1× 10−8 kg m2 Motor inertia
R 4× 10−7 N s rad−1 Viscous motor friction
n 30 Gear reduction ratio
rp 0.02 m Pulley radius
M 1 kg Mass
KP 1.5× 10−4 PID proportional gain
τD 0.4 s PID derivative time constant
τI 5 s PID integral time constant

Table 2.1: Parameters used in the simulation of Figure 2.2.

The energy measurement block Ê implements the result of (2.10) as
follows, where î and q̂ indicate the discrete-time variables, as labelled
in Figure 2.2.

procedure Initialisation
E ← 0
qprev ← 0
iprev ← 0

end procedure
procedure Update
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E ← E +Km · iprev · (q̂ − qprev)
iprev ← î

qprev ← q̂

end procedure
The result of the simulation with various sample frequencies fs

for the discrete-time part is shown in Figure 2.3. While the controller
performance clearly deteriorates for very low sampling frequencies, the
energy measurement is actually always exactly equal to true injected
energy.
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Figure 2.3: Simulation of a PID-controlled mass that is lifted to 0.5 m. The energy
is measured exactly, according to (2.10). Most of the injected energy E goes into
potential energy of the mass Epot, but some is lost to friction. While moving, the
mass has some kinetic energy Ekin. Note that for low sample frequency the controller
loses performance, but the energy is still measured exactly.

〈example end〉

Example 2.2. When the position measurement is quantised, for example
by an encoder with limited counts per revolution (cpr), the energy
bounds calculation from (2.11) can be implemented as follows:

procedure Initialisation
Emin ← 0
Emax ← 0
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qprev ← 0
iprev ← 0

end procedure
procedure Update

qdiff ← q̂ − qprev
if qdiff > 0 then

Emin ← Emin +Kmiprev (qdiff − 0.5∆q)
Emax ← Emax +Kmiprev (qdiff + 0.5∆q)

else
Emin ← Emin +Kmiprev (qdiff + 0.5∆q)
Emax ← Emax +Kmiprev (qdiff − 0.5∆q)

end if
iprev ← î

qprev ← q̂

end procedure
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Figure 2.4: Simulation of Figure 2.2, but now with a quantised motor position
measurement. Using (2.11), exact bounds on E are calculated. Note that even with
only 1 count per revolution (cpr) and low sample frequency, the bounds remain quite
close to the actual energy.
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In the simulation, the position measurement is quantised by trunca-
tion:

q̂ = q − (q mod ∆q); ∆q = 2π
cpr . (2.12)

The two simulations in Figure 2.4 show that the true injected energy
always lies between the calculated bounds. Considering the second
experiment, with a sample frequency of only 10 Hz and an encoder with
only one count per revolution, this is remarkable indeed.

A potential problem with the method does become apparent from
these figures: the bounds are widening as time passes, because theo-
retically the motors could always be jittering back and forth within a
single encoder step in the worst possible way, continuously extracting
energy from or injecting energy into the system. In practice, the encoder
resolution will be much higher than in the example and this problem
mitigated tremendously. Additionally, an external energy observer might
be added to compensate for the drift of these bounds. However, the
guarantee that the true energy lies strictly within the bounds would
be lost. Alternatively, a worst case approach could be used in order to
ensure that the energy injected in the system will be overestimated, as
in Secchi et al. (2003). 〈example end〉

We have carried out experiments with a simple 1-DoF robot arm,
measuring the energy according to (2.11). When the motor is controlled
with a proportional position controller, it behaves as a virtual spring
with stiffness KP (the proportional gain). The “virtual energy” that is
inside this virtual spring is given by

EC = KPe
2, (2.13)

where e is the position error, or indeed the virtual spring state. This
energy should match exactly with the energy that is extracted from the
system, i.e. EC = −Ê. As Figure 2.5 shows, when manually pushing
the arm away from its setpoint, the internal controller energy is exactly
equal to the measured energy.
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Figure 2.5: Experiment with P-controller on a 1-DoF robot arm. The virtual energy
present in the controller, EC = KPe

2, is exactly equal to the sampled energy Ê.

2.3 Energy budgets

From the stability-passivity criterion in §2.1.1, it is clear that in some
cases—robots interacting with unknown environments—it is indispens-
able for stability to have a strictly passive control system. In other cases,
it may still be advisable to limit the amount of energy that can be
injected into the robot by the actuators: considering that damage and
injury strongly correlate with energy transfer, limited energy greatly
enhances the safety of a robotic system.

This can be done with energy observers that make use of knowledge
of the system, for example by limiting the velocity or force of the motors,
as in Tadele et al. (2014). However, with the exact energy measurement
scheme, it is possible to limit the energy that actually enters the system,
which is a safety measure that is completely independent from the system
model (and thus from modelling errors). The first work introducing this
concept can be found in Duindam and Stramigioli (2004).

The controller can be given an energy budget that is put into a
virtual energy tank. The energy flowing through the actuators, measured
using (2.10), has to come from this tank: ∆E is subtracted from the
initial budget. In case the actuators extract energy from the system,
for example when they slow down a mass, the energy flows back into
the tank (since ∆E of (2.10) is negative). When the tank is empty,
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the controller is no longer allowed to inject additional energy into the
system: then the controller is guaranteed to be passive. See Figure 2.6
for a figure illustrating the concept.

Controller Actuator Robotu
τ
ω

Energy

Controller Actuator RobotXu u∗
τ
ω

Energy

Figure 2.6: Actuators can inject unlimited amounts of energy into the system if
no special care is taken. For safety, passivity and stability, the robot system can be
equipped with a virtual energy tank from which all energy that goes into the system
must come. Any controller can be augmented with this safety/passivity layer. The
“X” block modulates the actuator signal as described in Figure 2.7.

Active Empty

F = Fcontrol
or

v = vcontrol

If F · v ≥ 0:
F = 0 or v = 0

If F · v < 0:
F = Fcontrol

or
v = vcontrol

tank empty
E <= 0

E > 0
energy available

Figure 2.7: A Finite State Machine implementation that, given the current energy
tank level E, prevents further energy injection if the tank is empty.

Since the power flowing into the robot is given by F · v (or τ · ω),
preventing the injection of more energy is achieved by forcing either
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the force or the velocity to zero. (Note that a control action that would
cause energy extraction can still be allowed.) See Figure 2.7 for a Finite
State Machine implementation of the energy tank.
Example 2.3. Consider the system depicted in Figure 2.8: a mass is
lifted by a pulley, driven by an electric motor. The motor command is a
constant torque resulting in a force on the mass greater than its weight,
so the bucket is lifted. This action injects much (potential) energy into
the system. By implementing the energy-sampling algorithm of (2.10)
and the FSM of Figure 2.7, the amount of injected energy is limited:
the actuator is given an energy budget of 5 J; the mass of 1 kg is lifted
until this energy has been used up, after which the mass is held steady.
The experiment and corresponding simulation are shown in Figure 2.9.

M

m

Figure 2.8: A motor M that lifts a mass m by means of a pulley.

Around t = 6.5 s, the mass is pulled down manually, which—acting
against the holding torque—injects energy back into the virtual tank,
allowing the controller to resume normal operation until the energy is
used up again.

Note that the mass does not quite reach its expected height of
h = 5 J/(1 kg ·9.8 m s−2) ≈ 0.5 m due to friction in the gearbox between
motor and pulley. Dissipation can be a serious problem in passivity-
based control, but as shown in Theorem 2.1, non-passive control may
cause serious stability and safety problems. 〈example end〉
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Figure 2.9: Lift experiment and simulation: the mass is lifted by a constant torque,
with the energy tank algorithms in place. Around t = 6.5 s, the mass is pulled down
manually.

With the energy tank and an energy budget, the controller is guar-
anteed to be passive, regardless of the control algorithms. To see this,
take the integral form of the dissipation inequality (2.1):

S(x0) +
∫ t1

t0
w(u(t), y(t))dt ≥ S(x1). (2.14)

With S(x0) the initial energy in the tank and supply rate w = τ · ω, it
is clear that the energy left in the tank at time t1, S(x1), is the initial
energy S(x0) minus the injected energy, satisfying the (in)equality.

Hence, with a passive mechanical system driven by this passivated
controller, the overall system is also guaranteed to be passive and thus
stable (energetically bounded, Theorem 2.1). It is important to realise
that the control modulation technique of Example 2.3 probably leads to
a discontinuous control signal, which may be undesirable. Furthermore,
strict passivity in systems with lots of friction may lead to unacceptable
performance loss in other areas, such as position accuracy or settling
time. In these cases, a supervising energy observer may be used to inject
extra energy in the system in a controlled fashion.



3
Control by interconnection

In classical control theory, the inputs and outputs of the controller and
plant are treated as signals. A sensor in the plant gives feedback to the
controller (y); the output of the controller is an input to the plant (u)
(Figure 3.1). The dimensions of u and y do not necessarily match in a
Multi-Input, Multi-Output (MIMO) control system.

C Py∗
+ u y

−

Figure 3.1: A classical control system treats the inputs and outputs of plants and
controller as signals.

This method of control does not lend itself well for energy-based
robotics: if the sensors are not necessarily collocated with the actuators,
it is impossible to measure or influence the exchanged energy as in §2.2.
(The first requirement for exact energy measurement was collocated
sensors and actuators.) Moreover, it is often hard to give a physical
interpretation of a signal-based control law, which makes the controller
itself sometimes difficult to understand.

161
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From Figure 2.1 it is clear that all actuators in a robotic system
actually exchange energy and physical quantities in a bi-directional
way: in the case of electrical motors, electrical power is converted to
mechanical power and exchanged with the system. This bi-directional
flow of energy and physical variables can be extended to the control
system: with this paradigm, the controller is no longer a signal-processor
with separate inputs and outputs, but is a (Port Hamiltonian) system
connected to the robot via power ports, as shown on the left in Figure 3.2.

In reality, the actuators sit between the controller and the plant. Or,
drawing the boundary somewhere else, the actuators may be considered
part of the plant, too, and the electrical circuit (current amplifiers)
sit between controller algorithm and mechanical plant. In any case,
the actuators are connected to a power source and have losses, so the
drawing on the right in Figure 3.2 is more accurate. However, with
proper considerations as described in the previous section, §2.2, the
actuator does become a power-continuous “transparent” connection
between controller and plant.

C P C actuator P

source

R

u
y

u

y

Figure 3.2: The controller is a (Port-Hamiltonian) system connected to the robot
via power ports (left). In real robotic systems, the actuators sit between the controller
and mechanical system, but can be made “transparent” with the energy sampling
method presented earlier.

With both the controller and plant described as a Port-Hamiltonian
System, physical interpretation can be given to both of them. And,
because the interconnection of two PHSs is again a PHS, this approach is
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inherently modular.1 Most importantly, because the connection between
controller and plant is power-continuous, there is direct control over
the energy in the system. Passivity or energy-budgeted control are now
inherent in the controller design. This approach of control is called
control by interconnection; see Stramigioli et al. (1998), for likely the
first real example in this context; and Ortega et al. (2001) and Ortega
et al. (2008) for an in-depth mathematical treatment. In this section,
we will consider the application to robotics.

3.1 Impedance control

Impedance control was introduced by Hogan (1985) as an approach to
manipulation, after realising that force or position control is inadequate
for real interaction tasks:

“Because of dynamic interaction [with the environment],
the manipulator may no longer be treated . . . as an isolated
system. Strategies directed toward the control [of] position,
velocity or force will be inadequate as they are insufficient
to control the mechanical work exchanged between the ma-
nipulator and its environment.”

In his three-part paper series, Hogan argues that most environments
behave like an admittance—mass-like—so that the controller must
behave as an impedance. Often, the controller (actuator) is directly
connected to the robot’s mass, an admittance, so even without regarding
the environment, the controller should be an impedance. This means
that a controller is defined by its port behaviour, by the relation between
force and velocity. The impedance versus admittance is a “causality”
argument, which regards the robot’s velocity as an input to the controller
and, consequently, the output of the controller is a force. It does not in
principle say anything about how this relation should be implemented.

In the examples of Hogan, a second order behaviour has been used
as an example of such a control strategy. By shaping the second-order

1The Port-Controlled Hamiltonian Systems structure is not strictly necessary: it
is the power-continuous interconnection that is vital; passivity properties can always
be restored with the energy tank approach.
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behaviour, the compliance, damping and the felt inertia—also called
driving-point inertia—may be changed. Often, this specific implementa-
tion and choice has been considered in literature as “The impedance
control approach,” instead of the much more general causality and
port-behaviour argument mentioned before. A characteristic example of
this debate was published in Volpe and Khosla (1995) and the reaction
by Won et al. (1997).

A simpler implementation of impedance control not trying to change
the driving point inertia is compliance control. In this approach, a
mechanical impedance can be a combination of a spring and a damper,
so with x the end-effector position and v its velocity, the control force
is determined by:

Fimp = −K · (x− x0)− b · v, (3.1)

where x0 is the end-effector position at zero potential energy and K, b
are the controller parameters: stiffness and damping coefficients, respec-
tively. Since the two behaviours that are implemented—the spring and
damper—are both physical systems, it is straightforward to describe
(3.1) as a Port-Hamiltonian System, and recognise that the combina-
tion (Fimp, v) is a power port interconnection between the PHS of the
controller and that of the physical robot, as depicted in Figure 3.3. The
PHS equations of the controller are now:

H(x) = K

2 (x− x0)2 (3.2)

ẋ = (0)∂H
∂x

(x) + (1) · v

F = (1)∂H
∂x

(x) + bv.

(The term bv is a direct feed-through from input to output.) The power-
continuous interconnection is characterised by the Dirac structure or
network structure between the robot (R) and controller (C) as

FR = −FC, vC = vR. (3.3)

The power-continuity of this interconnection can be shown by consider-
ing the power flowing through both ports:

PR = FRvR = −FCvR = −FCvC = −PC. (3.4)
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Robot
u
y

Figure 3.3: Port-Hamiltonian interpretation of the impedance control strategy: the
port variables u and y are the controller force and velocity, respectively.

The sum of PR and PC is zero and the network structure is indeed a
proper Dirac structure. It is actually possible to expand the intercon-
nection of this controller PHS with the robot as a mass into the same
system as Figure 1.5, where the mass I is “physical” and the spring
and friction are “virtual”, implemented in the controller.

A last important issue which should be considered is the fact that
the interconnection is defined via port variables, which are force and
velocities in the mechanical domain. By implementing the compliance,
the position of the robot is used instead. A proper formulation to
understand how to handle this issue is proposed in Stramigioli et al.
(1998).

3.1.1 Port behaviour and interaction

It is important to realise a subtle but fundamental issue which is often
not regarded in the literature. Force control and position control are
not always well-posed problems, considering that the force or position
of the end effector of the robot is a consequence of both the controller—
which we can influence—and of the environment—which we cannot
influence. To clarify the issue: it is impossible to apply a desired force
if no environment is touched, or to position an end-effector behind a
rigid wall.

On the other hand, it is always possible and well-defined to achieve
the dynamics of (3.1) and controlling K, x0 and b, independently of
whether we move in free air or touch a very stiff wall. It therefore
makes sense to control the behaviour (K,x0, b): this is possible in all
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interaction situations, unlike when trying to control signals like force or
position (Stramigioli et al. (2002)). This issue will be treated in more
detail hereafter.

3.1.2 Stability of impedance control

An important note on stability and passivity with impedance control:
as drawn and analysed here, the reference position x0 is assumed to
be constant. The virtual spring and damper are connected to a fixed
world, the controller PHS is a passive physical system, hence the total
system is guaranteed to be stable at the energetic minimum.

Often, however, x0 is a time-dependent reference trajectory. In this
case, although the controller seems to be a passive dynamical system,
it is in fact in general not passive and therefore no guarantees can be
given on stability. This is because the controller PHS has a second input
v0 (ẋ0), through which energy can be injected into the spring-damper
and subsequently into the robot.

3.1.3 Comparison to position and force control

Position control Control strategies that aim for a position error e→ 0
as t→∞ are applicable to robotic manipulators that do not touch a
(rigid) environment—whose setpoint does at least not move into the solid
environment—and are thus very different from impedance-controlled
robots. However, there is a large overlap as well: a PD-controller is
identical to a spring-damper impedance controller where KP and KD
(the proportional and derivative gain) are equal to K and b of (3.1).

The distinction lies in the control objective: an impedance controller
aims to implement a certain stiffness and damping, whereas in position
control the gains are usually maximised to reach a minimal position
error. In the case of integrating action, the position controller loses all
direct equivalence with impedance control. The equivalence could be
regained by varying the rest position of the spring as derived below
in (3.5)—but as remarked before, varying x0 generally injects energy,
hence passivity is lost.
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FPI = Ke+KI

∫
edt e = xs − x (3.5)

Fimp,K = K(x0 − x) x0 := xs + KI
K

∫
(xs − x)dt

= K

(
xs + KI

K

∫
(xs − x) dt− x

)

= Ke+KI

∫
edt.

Force control In interaction tasks, one can also control the force
applied to the environment. The main drawback is that force control
is only possible if there is contact between the manipulator and the
environment. (If not touching anything, there is nothing to apply a force
on.) In some cases there is an equivalence between force control and
impedance control: if the manipulator does not move—for instance with
an infinitely stiff environment—then ẋ = 0 in (3.2) and F is constant;
Volpe and Khosla (1995). However, there is again a clear distinction:
impedance control determines the dynamic interaction behaviour of
the manipulator and the observed equivalence only holds in some very
specific cases; Won et al. (1997).

Impedance control In specific situations there can be an equivalence
to some form of position control; and in other cases to some form of
force control. However, impedance control is more general in that it
determines the port-behaviour at the interaction port between robot
and environment. That behaviour is always independent of the specific
environment and can be controlled independently from it.

Example 3.1. Implementing the spring-damper impedance control of
Figure 3.3 in practice leads to two difficulties:

1. Real motors are usually equipped with position sensors, not ve-
locity sensors, so implementing the damper requires some form of
velocity observer.

2. The actuator limits may cause the actual control force u to deviate
from the desired force.
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Figure 3.4: Damping injection by extending the regular spring-damper impedance
controller with an extra mass and (nonlinear) spring. They solve the problems of
velocity observation and actuator saturation.

Both these issues can be solved in an elegant way by extending
the controller with an extra (virtual) spring and mass, as shown in
Figure 3.4 and introduced in Stramigioli (1996); Ortega et al. (1994).

1. If the coupling spring is sufficiently stiff and the virtual mass
sufficiently small, that is to say,

kcoupling � kcontrol; m� M, (3.6)

then vm ≈ vM. Because the virtual mass m is simulated, its
velocity is known; and to calculate the control force u, only the
displacement of M needs to be known—which is measured by a
position sensor.

2. The coupling spring is piecewise linear, flattening at the maximum
actuator force Fmax:

Fcoupling =





Fmax kcouplingxcoupling ≥ Fmax

−Fmax kcouplingxcoupling ≤ −Fmax

kcouplingxcoupling elsewhere.
(3.7)

This way, the force calculated by the impedance controller can
always be met by the actuator and the control system behaves as
expected.

〈example end〉
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3.2 Energy shaping

The impedance control law of (3.1) implements a spring pulling the
end-effector to the virtual position x0. Another way to look at this
is that the energy function of the PHS of this same controller, (3.2),
implements a potential energy function quadratic in x, with a minimum
at x0.

This idea, energy shaping, can be applied in a more general way.
The method is well-known in the literature; here we look at it from a
Port-Hamiltonian System point of view. Consider a robot mechanism
described by

M(q)q̈ + C(q, q̇)q̇ + ∂V (q)
∂q

= τ, (3.8)

where q are the joint positions and τ the applied joint torques; M its
inertia matrix; C describes the Coriolis and centrifugal forces; and V
the potential energy.

In this fully-actuated collocated control system, it is possible to
construct the control force τ from the derivative of some controller
potential energy Vc:

M(q)q̈ + C(q, q̇)q̇ + ∂V (q)
∂q

= −∂Vc(q)
∂q

, (3.9)

such that the closed-loop dynamics become

M(q)q̈ + C(q, q̇)q̇ + ∂ (V (q) + Vc(q))
∂q

= 0. (3.10)

In other words, the robot behaves as a mechanism with a new potential
energy V + Vc. If V (q) is known, it can even be fully compensated by
setting Vc = −V +V ′c and the robot given an arbitrary desired potential
energy V ′c with its minimum at a desired q0.

From a Port-Hamiltonian System point of view, the controller is
interconnected to the robot’s power port (q̇, τ). The controller’s PHS-
equations become:

H(x) = −V (x) + V ′c (x) (3.11)
ẋ = u

y = ∂H
∂x

(x)
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with the Dirac structure (u = q̇, τ = −y). These interconnected systems
are again a PHS with total energy

Htot(q, x) = (V (q)− V (x)) + Vc(x) + q̇>M(q)q̇. (3.12)

Due to the interconnection, x = q and so Vc can be designed such that
its minimum is at the desired equilibrium q0.

If there is no or insufficient damping present in the robot, this may
be added, e.g. by a damping matrix B(q) ≥ 0 adding a damping force
B(q)q̇ to τ of (3.8). It is implemented as a direct feed-through term like
in (3.2), by adding a term B(x)u to the output expression of (3.11).
This damping injection dissipates (free) energy, reducing H(x) to its
minimum of Htot(q0, q0) sooner, as shown by the dissipation relation of
(1.4):

Ḣtot(q, x) = −q̇>B(x)q̇. (3.13)

3.2.1 Remarks on energy shaping

• In the example above, we have made x equal to q by setting g(x),
the input/state/output mapping of (1.3), equal to 1. Instead,
g(x) can be used for a coordinate transformation to shape the
potential energy in some other coordinate system, e.g. Cartesian
end-effector coordinates.

• In the case of underactuated robots, the potential energy may not
be fully reshaped. In that case, V (q) − V (x) in (3.12) does not
disappear—still, the system converges to the minimum of Htot.
Closely related to this is the issue of state detectability: if some
state variables of the plant are undetectable, it is impossible to
shape the energy related to those coordinates.

• In general, there might not be a direct one-to-one connection
between the full plant state x and the controller state q as assumed
in the example. A method to obtain a connection between x and
q is to generate Casimir functions for the connection (Stramigioli
et al. (1998)). Casimirs are conserved quantities of q and x that
can be used in Lyapunov candidates to find a stabilising control
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law. We refer to Cervera et al. (2007) and van der Schaft and
Jeltsema (2014) for more on this topic.

• Energy shaping is a form of passivity-based-control: the controller
is a passive Port-Hamiltonian System, so it can inject only a finite
amount of energy, namely H(x(0))−minH(x). This means it is
impossible to steer the system to a state in which it dissipates
energy, e.g. to a constant nonzero velocity with friction loss. In
the presence of dissipation—that is to say, in all relevant practical
cases—it is therefore only possible to reach a state (q, q̇) = (q0, 0).
In position control, this is exactly the goal, so this dissipation
obstacle is of no concern. However, it should be noted that this
energy shaping is actually only potential energy shaping. If some
kind of (periodic) motion is the control objective, also the kinetic
energy must be controlled, which is addressed in the next section.

3.3 Energy routing

The concept of controlling the energy of a robotic system can be taken
further. Before, the (potential) energy of the controller was shaped,
thereby shaping the energy of the interconnected system. In this section,
we will investigate how to directly influence the power flows between
the controller and system(s).

By energy routing we refer to all control methods that do not influ-
ence the energy content of the system. That is, the total Hamiltonian
of the interconnected system is constant; the control algorithms only
direct the energy flow. The energy flows are determined by the inter-
connection of the systems—e.g. of the controller and robot—so energy
routing takes place in the interconnection structure: by modulating the
Dirac structure or the internal interconnection J , whilst keeping their
skew-symmetry intact.

In this section, we will give various examples of energy routing.
For further applications, we refer to existing work in Duindam and
Stramigioli (2004); Sanchez-Squella et al. (2010); Franken et al. (2009);
Duindam et al. (2009).
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3.3.1 Modulated buffer

First, we introduce the concept of a modulated buffer, which is a
passive controller structure that can be regarded as a force actuator
with limited energy budget. The structure of the modulated buffer is
drawn in Figure 3.5: the input-state-output g of the Port-Hamiltonian
System is modulated, which is equivalent to a modulated transformer
element connected to a buffer, also shown in the figure. In the following
theorem, the system is taken to be one-dimensional (u, y and q all
in R1). However, the proof can be easily extended to an n-dimensional
force actuator.

H(q) = q2/2 g port (u, y)

C MTF
g

port (u, y)

g · q = y

u

q

q̇ = g · u

Figure 3.5: Buffer with modulated input-state-output map (top); in bond graph
expression (bottom) a C-type storage with modulated transformer MTF.

Note that the output y of this modulated buffer will form the input
to the system it is connected to; the buffer’s input u is the system’s
output.

Theorem 3.1. Consider a Port-Hamiltonian System with Hamiltonian
H(q) = q2/2 and scalar state-port map g as drawn in Figure 3.5. g is a
pure modulation input and can be modulated such that the output of
this PHS is an arbitrary force. The Port-Hamiltonian System is passive
and the energy it can inject is bounded by H(q0).

Proof. The PHS-formulation of this controller system is given by

H(q) = q2

2 (3.14)

q̇ = g · u
y = g · q.
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With modulation
g = F

q
(3.15)

the output y of the controller is

y = g · q = F, (3.16)

an arbitrary force, as long as q 6= 0. The energy change due to g is
∂H/∂g = 0, so g is a purely modulating input.

Any energy injected into a system that is interconnected to the
controller by

usystem = y; u = −ysystem (3.17)
is extracted from the Hamiltonian of the controller:

Psystem = usystem · ysystem = −yu = −dH
dt . (3.18)

When q = 0, the Hamiltonian becomes 0 too and the controller can
no longer deliver a force that would decrease H, i.e. the controller can
no longer inject energy into the interconnected system. Therefore, the
maximum energy this PHS-controller can inject is given by H(q0), the
initial energy in the controller.

This modulated-buffer approach may seem like a simple but useless
trick: any control output is possible, as long as there is enough energy
inside the buffer. If the buffer is empty, the controller stops working.
However, this approach allows to turn any control algorithm into a
passive controller, giving important dissipativity and stability guar-
antees. Similar to the energy-tank approach, the integral dissipation
inequality of (2.1) is satisfied with S(x0) equal to H(q0) and w = y>u.
Any nonlinear feedback problem can be easily formulated with this
approach, where the result is guaranteed to be passive. In Stramigioli
and Dijk (2008), this method is used to create globally attractive, energy
conservative limit cycle oscillations.

3.3.2 Energy level control

Considering the importance of energy in physical systems, sometimes it
may be desirable to control the actual energy level in a robotic system,
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rather than a velocity, force or position. Consider for example a system
that must execute a periodic motion along its natural dynamics, e.g.
an oscillation: the energy level directly determines the amplitude and
velocity of the system. Control of the energy present in the system is a
robust and coordinate-independent way of keeping the motion on this
specific (geodesic) path, with a certain desired amplitude.

Example 3.2. Consider the simple mass-spring system of Figure 3.6.
A controller interacts with the system through a force/velocity port
and its goal will be to maintain a certain amplitude of oscillation xs.

1

Im

C1
k

MTF
g

C C
Fcontrol

v

m

1
k Fcontrol

Figure 3.6: Mass-spring system with force controller, aiming to keep the energy level
constant. Left: Ideal Physical Model representation; right: bond graph representation.

The PHS equations for the system are familiar:

H(x) = p2

2m + k
2x

2
m (3.19)

(
ṗ

ẋm

)
=
[
0 −1
1 0

]
∂H
∂x

(x) +
(

1
0

)
Fcontrol

v =
(
1 0

) ∂H
∂x

(x),
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where the state vector x should not be confused with xm, the mass po-
sition. The suggestion for a passive controller structure is the following:

Hc(q) = q2

2C (3.20)

q̇ = g · u
y = g · qC ,

which is the modulated storage element of Theorem 3.1, but now with
a capacity C. In Figure 3.6, the controller is shown as a bond graph
representation of the storage element C and a modulating transformer
as the port-state map g. (While the bond graph formulation is not necessary
for Port-Hamiltonian System theory, this example shows how well the two
relate, since bond graphs are an explicit graphical representation of the various
storage elements, ports and Dirac structures. We shall address bond graphs
in this work no further, but refer to Paynter (1960) and Breedveld (2008).)
With the interconnection u = −v, Fcontrol = y the power injected by the
controller, Pc, can be calculated (3.21). However, v is known—it is the
input to the controller—and hence Pc can be controlled, by choosing g
as follows:

Pc = yv =
(
gq

C

)
v ⇒ g :=

( C
qv

)
Pc. (3.21)

Finally, by choosing Pc depending on the “energy error” Ẽ, the controller
will inject or extract energy as needed:

Pc = −λ2 Ẽ; Ẽ = H(x)− k
2x

2
s . (3.22)

H(x) can be calculated from the measured v; λ is a free control parameter
that determines the rate of convergence.

This control law regulates the energy level of the system with
exponential convergence, resulting in the desired oscillation amplitude
of xs. The stability and convergence proof is given in Appendix A.

〈example end〉

3.3.3 Irreversible transduction

The dissipation matrix R in Port-Hamiltonian Systems (1.3) is usually
associated with energy loss. From a mathematical point of view, this is
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correct: the Hamiltonian decreases with the energy dissipated through
R. Physically, however, energy is not lost; instead, dissipation means
(irreversible) transduction to an entropy flow: it is converted to heat. A
model for this irreversible transduction is a resistive element with two
ports, the “RS” model: one mechanical with port variables (F, v) and one
thermodynamical with port variables (T,dS), where T is the absolute
temperature and dS the entropy flow. The constitutive relations are as
follows:

F = −Rv; dS = Rv2

T
. (3.23)

It is easy to check that the mechanical power Fv = −Rv2 is always
negative and equal to the power flowing out of the thermodynamical
port.

The relevance for energy-based control is that this is a power-
continuous element that allows energy to flow only in one direction. The
ports do not necessarily have to be mechanical and thermodynamical:
the port-behaviour can be used inside a controller to direct (kinetic)
energy from one element to another.
Example 3.3. Consider two masses interconnected by a controller that
behaves as an RS-like irreversible transduction element. Because the
masses require a force input, the “thermodynamic” port relation of
(3.23) has to be rearranged to output a force:

F1 = −Rv1; F2 = Rv2
1

v2
, (3.24)

which is still a power-continuous interconnection. The closed-loop equa-
tions are:

H(x) = p2
1

2m1
+ p2

2
2m2

(3.25)

ẋ =
(

0 −R v1
v2

R v1
v2

0

)
∂H
∂x

(x), (3.26)

with the two masses’ momenta as the state vector. From (3.24), we
would usually find “−R” in the upper-left position of the matrix in
(3.26), but the upper-right term gives the same result:

−Rv1
v2

∂H
∂p2

= −Rv1
v2

p2
m2

= −Rv1
v2
v2 = −Rv1. (3.27)
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Figure 3.7: Simulation of two masses interconnected by a power-continuous con-
troller that creates irreversible transduction from mass 1 to mass 2. For mass 1, the
controller behaves as a friction, but all “dissipated” energy is diverted to mass 2. (Ei

is the kinetic energy of mass i.)

Now, however, the matrix is skew-symmetric and thus the system is
lossless—because the damping energy is not dissipated, but directed to
the other mass.

Figure 3.7 shows a simulation of this example, with m1 = m2 = 1 kg,
R = 0.5 N s m−1 and x(0) = (1 0)>kg m s−1. Mass 1 is slowed down by
the friction of R, but the dissipated energy is injected into mass 2. The
total energy remains constant. 〈example end〉

3.3.4 Kinetic energy routing

The concept of irreversible transduction can be generalised further,
to achieve arbitrary energy routing in the controller. A gyrator is a
power-continuous Dirac structure that connects two Port-Hamiltonian
Systems as follows:

(
u1
u2

)
=
[

0 r

−r 0

](
y1
y2

)
, (3.28)
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with r the gyration ratio. It is easy to verify that the connection is
power-continuous, but more importantly, the power flow through the
interconnection is modulated by r.

Theorem 3.2. Given two Port-Hamiltonian Systems Σ1 and Σ2 with
power ports (u1, y1) and (u2, y2) that are interconnected by a gyrator
with gyration ratio r. If the gyrator is modulated according to

r = 1
y2y1

· rP , (3.29)

then the energy flow from Σ2 to Σ1 is equal to rP , as long as y1 6= 0
and y2 6= 0. This interconnection is power-continuous and rP is a pure
modulation to passively direct the energy flow between the two systems.

Proof. With the gyrating Dirac structure behaving according to (3.28),
the power flows into Σ1 and Σ2, P1 and P2, are:

P1 = y1u1 = y1ry2; P2 = y2u2 = −y2ry1. (3.30)

P1 = −P2, so the interconnection is power-continuous. With the gyration
ratio given by (3.29), P1 is:

P1 = y1u1 = y1ry2 = y1
1

y2y1
rP y2 = rP . (3.31)

Corollary 3.3. If the gyration ratio is instead set according to (3.32),
the ratio is always well-defined—even if y1 = 0 or y2 = 0. However,
for y1 = 0 or y2 = 0, still no energy transfer takes place; and while
the direction of power flow is still controlled by rP , the rate of energy
exchange depends on y1 and y2 (3.33).

r = y1y2rP (3.32)

P1 = y1u1 = y1ry2 = y1(y1y2)rP y2 = (y2
1y

2
2)rP . (3.33)

In practice, the condition that y1 6= 0 and y2 6= 0 is rather restrictive
and the alternative gyration ratio does not allow output-independent
control over the rate of energy exchange. However, as is shown in the
following example, there is a way to get around the restriction, with
little deviation between rP and the actual energy flow.
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Example 3.4. Consider a simple example of two masses connected to a
control system that implements the energy routing of Theorem 3.2, illus-
trated in Figure 3.8. The inputs ui represent a force; the corresponding
outputs yi the masses’ velocities.

D

gyrator

Σ1

m=1 kg

Σ2

m=2 kg

sin

rP

u1
y1

u2
y2

Figure 3.8: Two masses connected by a gyrating controller that can route kinetic
energy. The “sin” block generates a sinusoidal energy flow setpoint.
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Figure 3.9: Implementation of the kinetic energy router of example Example 3.4.
Because of the adapted gyration ratio (3.34), when v1 or v2 gets close to 0, the actual
power flow P1 deviates from rP .
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In order to allow situations where y1 = v1 = 0 and y2 = v2 = 0, the
gyrator ratio of (3.29) is adapted to:

r = y1y2
(y2

2 + ε)(y2
1 + ε)rP (3.34)

where ε > 0 is some small number. For large values of y1 and y2—that
is, y2

i � ε—the gyration ratio will be approximately equal to (3.29).
When yi = 0, it remains well-defined.

The system of Figure 3.8 is simulated with an initial velocity of
v1 = 1.1 m s−1 and rP is a sine wave of amplitude 0.2 W and period
10 s. ε is set to 0.001. Figure 3.9 shows the results: except for when
v1 ≈ 0 or v2 ≈ 0, the actual energy flow to Σ1 is equal to the setpoint
rP . The energy plot in the middle shows that the complete system is
power-continuous, as was expected. 〈example end〉

The previous example considered two simple systems Σ1 and Σ2.
However, the concept of energy routing can be applied to much more
complex systems. For example, the two ports do not have to be the
velocity of two separate masses. It can also be the two velocity compo-
nents of a mass moving in 2-D, or even those velocities in a transformed
coordinate system, such that v1 corresponds to the mass’s velocity
in a desired direction and v2 the velocity perpendicular to that. By
modulating rP , all kinetic energy2 can be routed from the “unwanted”
direction to the desired direction, thereby steering the mass along a
certain trajectory—without using external energy. In Duindam and
Stramigioli (2004), this method is used to create passive limit cycles.

In Folkertsma et al. (2014), the gyrating controller is connected to
the stiffness-changing ports of two springs (K̇, x2/2), adapting their
stiffness in a power-continuous way to achieve synchronisation between
two oscillators by routing energy between the springs.

2Full energy transfer does require the systems, or at least the “source” system, to
be zero-state-detectable.



4
Control by physical interconnection

In control by interconnection, the control algorithm has the dynamics
of a Port-Hamiltonian System that could represent a physical system,
e.g. the virtual springs and masses of Example 3.1. Similarly, in Li and
Horowitz (1999), controllers are designed as passive systems with a
physical interpretation of a flywheel or a spring: a direct virtual analogue
of a physical element. At the same time, the physical system can be
represented as a PHS. The interconnection of the controller and system
is again a Port-Hamiltonian System, which raises the question: what
distinguishes the controller from the physical system? The answer is:
conceptually and mathematically, nothing at all.

This means that the boundary between system and controller is a
fluid, shifting boundary that is frozen only at the moment of implemen-
tation, when the interface between computer and physical system is
decided. And even then, one might argue that part of the control effort
is carried out by the system dynamics, or part of the system dynamics
are simulated in the controller. In the previous section, we have studied
control by interconnection, where the controller was represented by
a Port-Hamiltonian System, which gives a physical interpretation to
the control algorithms. In this section, we shall consider the physical
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system’s PHS-representation in the light of the control objectives. We
call this “Control by physical interconnection,” where desired behaviour
previously achieved by the controller is now achieved by the physical
system itself.

4.1 Physical compliance

Electric motors have many benefits when used in robotic systems:
high availability in a broad range, easy electrical interconnection to
the control system, integrated position encoders, a large selection of
gearboxes, precise torque control, easy integration in rotational joints,
et cetera. However, there is also a major drawback: electric motors are
very efficient in a high speed/ low torque region, whereas many robotic
systems usually operate in low speed/high torque regions.

An electric motor’s efficiency is mostly determined by its motor
constant Km and its electrical resistance Re, for a given required torque
output. In low speed regions, mechanical losses are negligible and the
electrical loss is computed as:

Pe,loss = i2Re =
(
τ

Km

)2
Re = τ2

S
. (4.1)

S is the “motor steepness” and defined as K2
m/Re. Clearly, a higher

motor steepness results in lower power loss. In motor fabrication, there
is a tradeoff between size, weight and motor steepness: to increase S,
the resistance must be low (thick wires), or the motor constant high
(long wires, large motor diameter, high magnetic fields). For research
on the analysis and improvement of electric motor efficiency, we refer
to Seok et al. (2015) and Dresscher (2016).

In practice, the motor with lowest losses may be picked, but there
is still no way around the fact that for zero speed and nonzero torque—
which is the desired equilibrium in e.g. position control—the motor
efficiency becomes zero:

ηmotor = Pmechanical
Ploss

= ωτ

Pe
=

ω=0,τ 6=0

0
τ2/S

. (4.2)
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4.1.1 Physical storage elements

Much of the work that electric motors do in robotic applications is
conservative, for example when moving a robot arm up and down in
a gravity field. Indeed, if for stability or safety reasons the controller
is strictly passive, as argued in §2.1.1, the net mechanical work of the
motor is 0. Therefore, much if not all of the work that the motor does
could be done by a passive physical storage element: by a spring or by
an inertia. (Indeed, in Li and Horowitz (1999), controllers are exactly a
virtual spring or flywheel.)

A flywheel stores kinetic energy, determined by its state, the mo-
mentum p:

Eflywheel(p) = p2

2J , (4.3)

which is in value equal to the kinetic co-energy E∗:1

E∗flywheel(ω) = Jω2

2 . (4.4)

J is the flywheel’s moment of inertia. While flywheels are used in
automotive industry (Lukic et al. (2008)), for example to make stops
and starts of buses more efficient, they are not so suitable for robotics
applications. This is because they store and release their energy typically
at high speeds, which is exactly the region in which electric motors are
quite efficient, and in which robotic systems typically do not operate.2

Springs, on the other hand, store potential energy, determined by
the state q:

Espring(q) = Kq2

2 (4.5)
or potential co-energy

E∗spring(F ) = F 2

2K , (4.6)

where K is the spring stiffness. Because the spring can store and release
energy at low or even zero velocity, it is very suitable for application in

1The co-energy is a function of ω, the port variable that is a thermo-dynamical
intensive variable, rather than a function of (the extensive variable) p.

2As electrical energy storage, they are very suitable: through the gyrating mo-
tor/dynamo, the flywheel behaves as a capacitor-like storage element as seen from
the electrical side.
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robotics, where it can assist electric motors in regions where the motor
efficiency is very low. Furthermore, this energy is stored in a physical
deformation in the mechanical domain, at zero velocity. Therefore, the
energy is not lost to friction over time, as may be the case in a flywheel.

Equations (4.3) and (4.5) give the internal energy of the storage
elements, i.e. the Hamiltonian. The elements may be interconnected to
a robotic system through a fixed or variable gearbox—the latter will
modulate their output in a similar way to the virtual modulated buffer
of §3.3.1. A spring with a modulated output is one way of achieving
variable stiffness; see §4.2. Also with a fixed interconnection, the addition
of springs can have energetic benefits, as shown in the next two sections.

4.1.2 Parallel spring configuration

When the spring is connected in parallel to the motor, their torques are
added:

τtot = τmotor + τspring = τmotor +K(q − q0). (4.7)
The spring is characterised by two parameters: the spring stiffnessK and
its rest length q0. The spring can be dimensioned to supply quasi-static
torque, for example for passive gravity compensation. In that case, a
low K combined with high q0 leads to a nearly constant output torque,
greatly lowering the static torque on the motor and thereby reducing
electrical energy loss. In more dynamic applications, especially when
the motion executed by the robot is periodic, an optimal spring can
even deliver a large part of the required torque during the trajectory.
In Hunt et al. (2016) and Wanders et al. (2015), parallel stiffness is
applied in energy-efficient hopping robots. The use of balancing springs
has been also extensively and elegantly treated in Herder (1998).

Example 4.1. Consider the simple 2-DoF robot arm in Figure 4.1,
consisting of two rotational joints with joint angle qi and joint torque τi.
Its end-effector follows an elliptical trajectory according to (4.8) in the
(x, y)-plane, so there is no gravity interaction. The system parameters
can be found in Table 4.1.

psetpoint =
(

0.5 + 0.8 cos(πt)
1.2 + 0.3 sin(πt)

)
m. (4.8)
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x

y

q2

q1

Figure 4.1: A simple pick-and-place 2-DoF robot arm whose end-effector moves
along an elliptical trajectory.

Parameter Value Description

L 1 m Link length
m 1 kg Link mass

Km 0.04 N m A−1 Motor constant
Re 1 Ω Motor electrical resistance
n 1:33 Gear reduction ratio
K 30 N m−1 Impedance controller stiffness
D 3 N s m−1 Impedance controller damping

k1 15 N m rad−1 Optimal stiffness joint 1
q0,1 0.5 rad Optimal rest length joint 1
k2 2.6 N m rad−1 Optimal stiffness joint 2
q0,2 1.95 rad Optimal rest length joint 2

Table 4.1: Parameters of the 2-DoF pick-and-place robot arm with parallel springs.

The controller used in this example is a virtual prismatic spring
and damper between the end-effector and the setpoint, with parameters
according to Table 4.1:

(
τ1
τ2

)
= J>(q) · (K(psetpoint − pee) +D(ṗsetpoint − ṗee)) . (4.9)
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J(q) is the Jacobian map from joint velocity q̇ to end-effector velocity
ṗee, and so J>(q) is the dual map from end-effector force to joint torque.
The performance of this controller will be rather poor, with no feed-
forward torque for acceleration, but the end-effector does follow the
trajectory well enough to show the effect of parallel springs.

A simple linear spring is added to both joints, according to (4.7).
The motor torque is set to

τmotor,i = τi −Ki(qi − q0,i) (4.10)

such that the total torque applied on the joint is always τi.
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Figure 4.2: Simulation of the pick-and-place robot arm that executes a periodic
trajectory. The power plotted is the electrical power loss i2Re; dashed in dark is
the average power loss. Adding a parallel spring greatly reduces this loss, especially
for the first joint. The motor torque is lowered by the spring torque, seen in the
bottom-right.

With a spring stiffness of ki = 0, i.e. without a parallel spring, both
joints’ motors show peaks in power loss of up to 200 W (Figure 4.2). The
average power loss for the two motors is 50 W and 28 W, respectively.
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From the joint-space plots of both motors, it can already be seen
that especially motor 1 delivers a torque that is largely proportional
to its rotation, which means that a linear parallel spring could supply
most of the work. An numerical optimisation on parameters ki and q0,i
that minimises the objective function (4.11) gives two optimal parallel
springs as listed in Table 4.1.

J =
∫ T

0
(Pe,1 + Pe,2) dt. (4.11)

From the plots on the right hand side of Figure 4.2 it is clear that the
springs significantly reduce the energy loss: for motor 2 from 28 W to
22 W, a moderate improvement, but for motor 1 from 50 W to 7 W.
Overall, this means the energy loss is reduced by 63 %. Moreover, the
maximum torque delivered by the motors has been lowered, which allows
for lighter and smaller motors to be used.

In Plooij and Wisse (2012), the use of nonlinear parallel springs
is investigated on a realistic pick-and-place 2-DoF robot arm,
where real-world experiments show an efficiency improvement of
20 %. 〈example end〉

In Folkertsma et al. (2012) it was shown that the inclusion of parallel
springs in the MITCheetah quadruped robot would lead to a reduction
in power consumption by over 50 %. Hunt et al. (2016) have obtained
very efficient resonance-based kangaroo-like walking robots by applying
parallel springs.

4.1.3 Serial spring configuration

One way to make the motor operate in a more efficient region is by
including a large gear reduction. While this solves the problem of low
speed, high torque applications, it comes with two major drawbacks:
first, gearboxes with high ratios often have a rather low efficiency; sec-
ond, the reflected motor inertia is scaled by n2, which may lead to
inefficient power transfer (through bad inertia matching), low band-
width and bad interaction behaviour. Indeed, the motor can become
practically nonbackdriveable, which makes impedance or even torque
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control infeasible. Even if the motor is backdriveable, the friction be-
haviour of a gearbox is typically nonlinear, which makes precise torque
control difficult.

SEA

motor gearbox

1 : n

D

C

Plant

Figure 4.3: A Series Elastic Actuator allows the motor to operate in a more
efficient region, but more importantly, it allows for precise force control and physical,
reversible energy storage. The Dirac structure is such that τgearbox = τout = τspring
and consequently ωspring = ωgearbox − ωout.

The solution to most of these problems is to connect a spring in series
with the motor, resulting in a Series Elastic Actuator, as introduced
by Pratt and Williamson (1995). A Port-Hamiltonian representation
is show in Figure 4.3. Because the output torque is determined purely
by the spring state and stiffness, according to (4.12), force control is
transformed into an (easier) position control problem.

τout = K · (qout − qmotor/n). (4.12)

If the gear reduction ratio is sufficiently high, such that the motor is
practically nonbackdriveable, any static holding torque—that is to say,
τ̇out = 0 and q̇out = 0—can be sustained with zero power draw by the
motor.

Another benefit of SEA is that the (large, reflected) motor inertia
is decoupled from the output. Therefore any impacts on the robot, for
example ground contact events in a walking robot, are absorbed by the
spring. On the one hand this makes the robot safer and lowers energy
loss; on the other hand there is less strain on the gearbox and motor.

However, the decoupling between motor and output also mean that
the achievable bandwidth is much lower. This is most easily seen by
considering the classical transfer function from motor torque τM to load
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angle θL for the simplified system of Figure 4.4:

JLs
2ΘL = K(ΘM −ΘL) (4.13)

JMs
2ΘM = −K(ΘM −ΘL) + TM (4.14)

ΘL = K

(JMs2 +K)(JLs2 +K)−K2TM (4.15)

= 1
(JLJMs2/K + (JM + JL)) s2TM. (4.16)

For K → ∞, the transfer function reduces to 1
(JM+JL)s2 , i.e. a direct-

drive. With a low K, however—which is whence the SEA derives
its benefits—extra low-pass behaviour is introduced by the term
JLJMs

2/K.

M JM JL
K

Figure 4.4: A simplified SEA model with a spring between motor and load inertia.
The bandwidth of this system is—depending on K—much lower than a direct-drive
actuation.

4.2 Variable stiffness

From the previous section it is clear that adding physical storage el-
ements, especially in the form of springs, can be very beneficial for
energy-efficiency, precise torque control, impact absorption, et cetera.
However, the optimal stiffness very much depends on the application.

In the case of parallel elastic actuation, a spring that is used to
compensate gravity in a robot arm only counteracts the robot’s weight in
a specific configuration, or at best in a limited range of arm positions. In
series elastic actuation, there is a trade-off between desiring a low spring
stiffness for more precise force control and better impact absorption,
versus a higher stiffness for more precise position control and higher
bandwidth.
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In highly dynamic applications, such as running legged robots, or
robot arms executing fast, periodic motions, the spring stiffness should
be tuned to the robot inertia and the desired period of the motion.

It follows that the spring stiffness can be optimised for a certain
situation, trajectory, or application; but once the robot deviates from
this nominal behaviour, a different stiffness would be optimal. With a
variable stiffness, the stiffness can be tuned so it is optimal in every
situation (Visser et al. (2011b)). Therefore, the concept of actuators
with an adaptable stiffness, called Variable Stiffness Actuators or VSAs,
has received much attention recently. We refer to Ham et al. (2009);
Vanderborght et al. (2009, 2013); Wolf et al. (2016) for extensive reviews
of the state-of-the-art in VSAs.

A VSA has a physical spring and a means to change the stiffness felt
at the output of the actuator. To distinguish VSAs from Variable Spring
Mechanisms, they are also understood to have an actuator capable of
injecting energy into the system. The output port of the VSA is given
by the power pair (τout, ṙ), with τout the torque at the output and r
the output displacement. Because the spring is most often in a serial
configuration, the VSA’s output is the torque. The apparent output
stiffness is a local property defined as

kout = δτout
δr

. (4.17)

Example 4.2. In its simplest form, a VSA can be represented by a
linear spring with mechanical control port “p1”, a stiffness-changing
control port “p2” and an interaction or output port (τout, ṙ). The Port-
Hamiltonian System of this VSA is given by

H(x) = k

2s
2 (4.18)

ẋ =
(
ṡ

k̇

)
= (0)∂H

∂x
(x) +

(
1 0 1
0 1 0

)

q̇1
q̇2
ṙ




y =



τ1
τ2
τout


 =




1 0
0 1
1 0



(
ks

s2/2

)
,
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where the state x = (s, k)> consists of both the spring’s strain s and
its stiffness k. The interaction ports are (τ1, q̇1), which may inject
mechanical power into the spring; (τ2, q̇2), the stiffness-changing port;
and (τout, ṙ), the output port.

Note that the input-state-output map g need not be constant as
in this example; nor have the two control ports to be decoupled—the
choice is made in this example such that port 1 only injects mechanical
energy, through the direct coupling from q̇1 to ṡ; and port 2 only changes
the stiffness, through k̇ = q̇2.

From these PHS equations it is apparent that changing the stiffness
is not “free”: there is an energy cost from the power injected at port 2,

P2 = τ2q̇2 = g>2
∂H
∂x

(x)q̇2 = s2

2 k̇. (4.19)

Only when the spring is unloaded there is no energy cost associated
with changing k. (This can be a drawback, but also be exploited; see
Folkertsma et al. (2014).)

It is of course possible to control q̇1 and q̇2 in such a way that the
internal energy of the VSA is not changed, as long as the output does
not move (ṙ = 0):

P1 = −P2 ⇒ ksq̇1 = −s
2

2 q̇2 ⇒ q̇1 = −s2 q̇2. (4.20)

If a real VSA can be constructed or controlled in such a way that the
energy cost associated with changing the stiffness is always 0, we call
that VSA energy-efficient. 〈example end〉

A VSA generally has two motors, because the output force of the
spring has two degrees of freedom, r0 and k. The two motors can be
configured in two ways (Wolf et al. (2016)):

1. an antagonistic motor setup, as in Figure 4.5b;

2. an independent motor setup, as in Figure 4.5c.

The stiffness can be varied by means of three methods:

1. variation of the spring preload, as in Figure 4.5b;
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M JM JL
K

(a) The actual physical stiffness of the compliant element may be
changed.

M1

M2

stiffening springs output

(b) An antagonistic motor setup
with stiffening (non-linear) springs
results in an output stiffness de-
pending on the preload.

M1

M2

JM
JL

r

(c) A mechanism, usually a
variable gear ratio between
spring and output, can change
the apparent output stiffness
of the spring.

Figure 4.5: Three ways of achieving a variable-stiffness series elastic element in a
Variable Stiffness Actuator (VSA).

2. variation of the transmission ratio between spring and output
(Figure 4.5c);

3. influence of the spring’s physical properties (Figure 4.5a).

These stiffness-changing methods can all be combined with either of
the motor configurations; Figure 4.5 shows three of the six possible
combinations. We will focus on the configurations of Figure 4.5c and
4.5b, because they are used often and are interesting from an energy
perspective.

4.2.1 Antagonistic stiffening springs

The VSA configuration of Figure 4.5b features two antagonistic motors,
connected to the output pulley by nonlinear, stiffening springs. The
motor positions are denoted by qi, output position by r and spring
states by si. In spite of what the drawing suggests, both motors are
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connected such that a positive qi means a compression of the spring.
The power-conjugate torques of each port are τi for the motors and τout
for the output link.

It is known that to obtain a linear output stiffness, the spring force
must be quadratic:

τi = −kisi|si| = −kis2
i , (4.21)

where the simplification can be made because in an antagonistic spring
set-up the springs are always loaded in extension, i.e., si > 0.

The apparent output stiffness and the energy storage of the actuator
can be studied in the Port-Hamiltonian formulation of this system. The
state vector is x = (s1, s2)> and the system has three power ports:
(τ1, q̇1), (τ2, q̇2) and (τout, ṙ).

H(x) = k

3
(
(s1)3 + (s2)3

)

(
ṡ1
ṡ2

)
= (0)∂H

∂x
(x) +

(
−1 0 −1
0 −1 1

)

q̇1
q̇2
ṙ






τ1
τ2
τout


 =



−1 0
0 −1
−1 1



(
k(s1)2

k(s2)2

)
. (4.22)

The apparent output stiffness is given by

kout = ∂τout
∂r

= g>r
∂2H(x)
∂x2 gr, (4.23)

where gr denotes the third column of g, the mapping from ṙ to ṡ. The
stiffness is found to be

kout =
(
−1 1

)(2ks1 0
0 2ks2

)(
−1
0

)
= 2k(s1 + s2). (4.24)

If the system starts at rest with qi = r = si = 0, then s1 = −q1 − r and
s2 = −q2 + r, and the stiffness expressed in motor positions is

kout = −2k(q1 + q2). (4.25)

From si > 0 follows that (q1 + q2) < 0 and thus this output stiffness is
always positive and linearly dependent on the total pretension q1 + q2.
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The equilibrium position r0 of the output is given by

τout|r=r0 = 0⇒ k(−q1 − r0)2 = k(−q2 + r0)2 ⇒ r0 = q2 − q1
2 , (4.26)

which is the average differential motor position: a simple linear coor-
dinate transformation on q1 and q2 to their sum and difference gives
direct control inputs for kout and r0.

While the derivations show that an easily controllable VSA can be
realised in this way, it is also apparent that there is always a load on
the motor, even if τout = 0, due to the preload on the springs:

τi = −k(si)2 =
r=r0

k

(
−1

2(q1 + q2)
)2

= k

(
−1

2

(
−kout2k

))2
= k2

out
16k .

(4.27)
Considering the significant electrical energy loss in motors, energy-
efficiency-wise this is not an ideal situation. Furthermore, not all energy
stored in the springs can be used by the system: the output can extract
energy until the minimum of H for r, i.e. until

∂H
∂r

= g>r
∂H
∂x

(x) = 0⇒ k(s1)2 = k(s2)2 ⇒ r = r0. (4.28)

However, in the equilibrium position r = r0 there is still energy in the
actuator, namely

H|r=r0 = 2k
3

(
−q1 + q2

2

)3
= 2k

3

(
kout
4k

)3
. (4.29)

Due to strain or stress limits caused by the mechanism or physical
properties of the springs, there is a maximum to the energy that can be
stored in each spring. This means that the higher the output stiffness,
the less energy storage is available to the system coupled to the actuator:

Havailable = Hmax −Hr=r0 . (4.30)

4.2.2 Variable transmission

The variable-transmission VSA as shown in Figure 4.5c is promising
from an energy perspective, because the output is coupled directly to
the spring, as is the main motor M1. This means that all of the energy
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storage capacity of the spring can be used; the system truly behaves
as a series elastic actuator with variables spring stiffness. Furthermore,
the stiffness changing mechanism for M2 can be designed such that it is
completely decoupled from the spring, input and output, such that the
stiffness can be changed using minimal—theoretically even 0—energy.

We shall analyse a 1-DoF VSA with a variable transmission by
studying properties of the Dirac structure that defines the interconnec-
tion between the motors, internal states and output. In Visser et al.
(2011a), the analysis is done for n-DoF VSAs and used to design an
energy-efficient Variable Stiffness Actuator.

DM1

M2

C

output
q̇1
τ1

q̇2 τ2

ṡ τs

ṙ
τout

Figure 4.6: Port-Hamiltonian representation of the variable-transmission type VSA.
There is only one storage element, the spring, but the Dirac structure has an internal
degree of freedom, q, that represents the variable transmission between spring and
output.

The drawing in Figure 4.6 defines all the port variables of the
VSA. Their interconnection is determined by the Dirac structure D,
which may depend on the output position r and some internal degree
of freedom of the mechanism, q that may in turn depend on qi or
s. A matrix representation of the Dirac structure is given in (4.31).
Each αi may be αi(q, r). The lower-right part of the matrix is filled
with zeros, because that part describes a gyrating effect between the
mechanical ports, which is impossible. The matrix is skew-symmetric
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so the interconnection is power-continuous.



ṡ

τ1
τ2
τout


 =




0 α1 α2 αr
−α1 0 0 0
−α2 0 0 0
−αr 0 0 0







τs
q̇1
q̇2
ṙ


 . (4.31)

With this interconnection matrix, the PHS equations of the system
with state x = (s, q)> and external ports for M1, M2 and the output
are:

H = k

2s
2 (4.32)

(
ṡ

q̇

)
= (0)∂H

∂x
(x) +

(
α1 α2 αr
β1 β2 βr

)

q̇1
q̇2
ṙ






τ1
τ2
τout


 =



α1 β1
α2 β2
αr βr



∂H
∂x

(x),

where βi determines the mapping of inputs to the internal configuration
of the VSA.

In order to separate the functions of M1 and M2 into a pure power
source and pure stiffness changing motor, respectively, q̇2 must be
decoupled from ṡ (α2 = 0) and q̇ must only depend on q̇2 (β1 = βr = 0).
If the mechanism can be constructed in such a way, the result is a
perfectly energy-efficient VSA with the following properties.

The apparent output stiffness around a certain position r = r̄ is
found by

kout(q, r = r̄) = g>r
∂2H
∂x2 gr = (α3(q, r̄))2k (4.33)

and thus the output stiffness can be changed if the mechanism is such
that α3 depends on q, i.e., such that the transmission ratio between
output and spring is variable; q̇ = β2q̇2. The energy cost associated with
a stiffness change is

P2 = τ2q̇2 = g2
∂H
∂x

(x)q̇2 =
(
0 β2

)(ks
0

)
q̇2 = 0. (4.34)

Finally, the equilibrium position of the output r0 when τout = 0 depends
on α1 and α3, but is determined by M1.
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4.3 Morphological computation

The concept of control by physical interconnection can be taken further
by pushing the boundary between control and system even farther
towards the physical system. The “computation” that is traditionally
carried out by a computer running control algorithms is mostly—or
even completely—executed in the controlled system. This sharing of
control of the robot between “traditional” control and the morphology
of the robot itself is called morphological computation, introduced by
Pfeifer et al. (2007).

In general, morphology may refer to only the shape of the mechanical
system, in which case there is only kinematic morphological computation.
A famous example of this is the Strandbeest Jansen (2016), which
contains a mechanism that converts a continuous rotating motion into
a walking leg motion. This and similar mechanisms were analysed in
Sitharam and Wang (2014). While a well-designed kinematic morphology
results in kinematic morphological computation, it is “merely” good
mechanism design and not novel. (Mechanisms designed by Pafnuty
Chebyshev in the 19th century are still widely used in locomotion.)

On the other hand, morphology may also refer to the dynamic
properties of the robot, such as mass distribution and compliance. This
leads to dynamical morphological computation, which not only simplified
control but can also lead to high energy efficiency. After all, whereas
in traditional control theory the dynamics of a system are cancelled
out as much as possible, to steer the system’s states to a desired point
or along a desired trajectory, in dynamic morphological computation
the inherent dynamics of the system are the desired dynamics, so the
natural behaviour of the system already follows the desired trajectories.
Successful examples of dynamic morphological computation may be
found in Poulakakis (2006) or Iida et al. (2005), quadrupedal robots
with almost-passive locomotion behaviour.

One possible approach to morphological computation is biomimetic
morphological computation, where “proper” morphology is observed in
nature and translated to morphological concepts for robots, as in Full
and Koditschek (1999). (Parts of) the field of Soft Robotics may also be
considered as morphological computation; see Kim et al. (2013). At the
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same time, an attempt is made at a proper theoretical foundation for
morphological computation, viz. Hauser et al. (2011) and Füchslin et al.
(2012).

In dynamic morphological computation, Port-Hamiltonian System
theory and energy-based robotics can make an important contribu-
tion. After all, morphological computation is concerned with properly
interconnected physical storage elements (masses, springs). In Port-
Hamiltonian System theory, those storage elements and their intercon-
nection are explicitly modelled by their energy functions and the Dirac
structure or internal interconnection matrix (J). Therefore, modelling
the combination of system and controller as interconnected PHSs gives
direct insight into the dynamic morphology. Furthermore, the distinction
between “controller” and “system” completely disappears, since both
are described, modelled and designed as a PHS. And if the system’s
inherent, natural dynamics exhibit desired behaviour, the control system
merely needs to inject energy to keep the motion going and compensate
for e.g. friction losses, and possibly stabilise the oscillations.

The energy-based modelling and control approach is a perfect match
for designing, analysing and understanding morphological computation.
The application of Port-Hamiltonian System theory and energy-based
robotics to the field of morphological computation was first studied
in Folkertsma et al. (2015), where a fully elastic spine was shown to
generate locomotion in a quadruped, with control limited to energy
injection through the 1-DoF legs.



5
Conclusion

Robots, like all physical systems, are governed by energy. Interaction of
the actuators with the mechanical system of the robot, and interaction
of the robot with the environment, is characterised by energy exchange.
Describing systems and controllers in an energy-based way gives direct
insight into these energy flows in the physical system. In this work, we
have shown how energy-based theories and tools can be applied to the
field of robotics.

We have used the Port-Hamiltonian System theory to model the
robot with energy at the centre. We have shown methods to measure
and control energy flows in practical systems. Energy-based thinking can
also be used for controller design: whether in control by interconnection,
where the control algorithms are “virtual physical systems” in Port-
Hamiltonian fashion; or in control by physical interconnection, where
the mechanical design of the robot is based on the desired energetic
behaviour.

This energy-based view of the mechanical system, actuators and
control algorithms dissolves the traditional boundaries between them:
it is irrelevant whether a behaviour is the result of a physical process,
or of a virtual process. It is a holistic, energy-based view of the robot.
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The focus of this work has been on cyber-physical interaction: on
the flow of energy between the physical robot and the virtual controller.
In places, we have made the connection to classical control theory: the
(energy-based) impedance control equivalence of PD control (§3.1.3);
energy shaping methods (§3.2); Port-Hamiltonian System analysis of
Variable Stiffness Actuators (§4.2); but also augmenting arbitrary con-
trol and actuation systems with energy awareness or energy budgets
(§2.3). Once the total Hamiltonian is known, Lyapunov’s method can
be used for finding stabilising energy-based control laws (§A).

An important application of “Energy in Robotics” that was not
studied is the use of energy in navigation. Potential-field based methods,
for example, construct virtual energy fields that create barriers around
objects (object avoidance) or make the robot “flow” naturally towards a
destination (navigation). This is in essence also a form of energy shaping.
Furthermore, we have restricted ourselves to simple examples with
straightforward control implementations and clear simulation examples.
This clarity has hopefully piqued interest in applying energy-based
method to robotics: different examples, real-life applications and more
complex results can be found in the references.
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A
Energy control: proof

The mass-spring system with force actuator, described in (3.19), is
interconnected with the passive controller of the form (3.20). If g is
chosen as derived in (3.21)–(3.22), the system is exponentially stable at
desired energy level Es = k

2x
2
s .

Proof. The closed-loop dynamics of the interconnected system are the
following:

Htot(x) = p2

2m + k
2x

2
m + q2

2C (A.1)


ṗ

ẋm
q̇


 =




0 −1 g

1 0 0
−g 0 0






p/m

kxm
q/C


 ,

with g chosen as

g := −λ2
C
qv

(E − Es); E := p2

2m + k
2x

2
m. (A.2)

Note that there are two issues with this proposed control law, namely:
v = 0 or q = 0. The latter case corresponds to an empty energy buffer
in the controller, which must be avoided—if more energy needs to be
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injected to reach Es than is available, it will of course never reach Es.
On the contrary, the first case happens often during the oscillations. In
practice, g should be set to some constant, e.g. 0 or 1, whenever v = 0
(or v < ε, some small threshold).

Energy-like functions are often chosen as Lyapunov candidate func-
tions. In this case, we can use the actual energy error E − Es:

V := 1
2(E − Es)2, (A.3)

which is radially unbounded and has a single minimum 0 at E = Es.
The time derivative of V is derived in (A.4)–(A.9) below. To obtain
(A.6), the system dynamics of (A.1) are used; in (A.7) the control law
was used and p/m substituted for v, again from the system dynamics.

dV
dt = (E − Es)

( d
dtE

)
(A.4)

= (E − Es)
(
p

m ṗ+ kxmẋm
)

(A.5)

= (E − Es)
(
p

m(−kxm + gq/C) + kxm(p/m)
)

(A.6)

= (E − Es)
(
pq

mC

(
−λ2

C
qv

(E − Es)
))

(A.7)

= (E − Es)
(
−λ2 (E − Es)

)
(A.8)

= −λV. (A.9)

This derivation shows that V̇ is strictly negative when V 6= 0, except
when p = 0: then g is set to some constant and (A.6) will be 0. From
LaSalle’s invariance principle, the final trajectories of the system will all
lie in the set

{
x(t)|V̇ (x) = 0

}
, which is the union of {x(t)|V (x) = 0}

and {x(t)|p = 0}. The first set is the trajectory where E = Es; the
second set is only an invariant set when p = 0 ∧ ṗ = 0, i.e. it contains
only the trivial trajectory xm(t) = 0.

It can be concluded that V decreases exponentially fast with λ and
hence the system is globally exponentially stable at E = Es, if there is
sufficient energy in the control buffer such that q > 0∀t.
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