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ABSTRACT

We measure the color shifts present in colorized images from
the ADE20K dataset, when colorized by the automatic GAN-
based DeOldify model. We introduce fine-grained local and
regional bias measurements between the original and the col-
orized images, and observe many colorization effects. We
confirm a general desaturation effect, and also provide novel
observations: a shift towards the training average, a pervasive
blue shift, different color shifts among image categories, and
a manual categorization of colorization errors in three classes.

Index Terms— Image, colorization, bias, error

1. INTRODUCTION

The task of colorizing grayscale images is ambiguous, and
difficult for a fully automated process without human input.
We provide systematic measurements of color bias against the
ground truth. We focus on a widely used deep-learning col-
orizer, DeOldify [1] (also a popular Twitter bot), whose col-
orization models have generative adversarial network (GAN)
architectures and are pretrained on ImageNet [2]. To mea-
sure colorization bias objectively, we take measurements over
ADE20K [3]], a dataset different than the training dataset.

Colorizers have biases, often demonstrated with example
images, not systematic measurements. Early models were ac-
curate on landscape and home, but not on complex scenes [4)},
S]. A frequent problem is desaturation [4}16], due to loss func-
tions (inherited from standard regression) that encourage con-
servative predictions. Colorizers aiming at vibrant colors can
still fail to recover long-range color consistency [} 16l 18, [11],
make confusions between colors [7], and output sepia [9, [7,
10, [1L1]] or gray tones [12]. Some models are biased towards
frequent colors (e.g., red cars) [10]], and can confuse the con-
text or boundaries of objects (regions with fluctuations may
be colored like grassland) [10} [13} 18, [1]. When an object is
not in the GAN distribution (or GAN inversion fails) the out-
put contains unnatural or incoherent colors [14].

To validate colorization, prior work reports global statis-
tics: pixels-averaged MAE or RMSE [} 16} [15} [10]), peak
signal-to-noise ratio (PSNR) [4} 16} [11} 18, [16l [14], structural
similarity (SSIM) [11} 8 [14], per-pixel accuracy [7 [12}
10], the Fréchet inception score (FID) [14], a colorfulness
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score [14], histograms, or human preference. These metrics
cannot capture fine-grained biases, such as errors that occur
persistently in a certain region of an image category. We
thus design not only global, but also local and regional bias
metrics. We find a pronounced increase in neutral shades and
shift towards the training-average colors, a shift towards blue
(pronounced in the center of images), but also that image cat-
egories are affected differently (sky patches in nature, urban,
and industrial scenes are counterintuitively stripped of blue).
In a user study, 60% of inaccurate colorizations were found
to be plausible, with the rest colorization failures.

2. METHOD

DeOldify [1] has two colorization models, with different ar-
chitecture and training process. The artistic model creates
vibrant, colorful results, but does less well in common sce-
narios: nature scenes and portraits. The stable model is best
on nature scenes and portraits, with fewer unnatural miscol-
orations, but also less vibrancy. Both are trained on a fraction
of ImageNet [2]. We test here on all (except 5 non-RGB)
color images from the ADE20K dataset [3]. ADE20K pro-
vides 25,564 images, split into 10 categories (as in Table |1}
column # images). They are diverse in size and content, are
annotated with their semantic category, and the scenes are
tagged with objects (such as sky) and object parts.

Table 1. ADE20K image categories and % sky

Category #images % sky
Urban 7239 82.33%
Home or hotel 6117 0.72%
Nature landscape 3332 75.16%
Unclassified 2536  58.49%
Workplace 1565 1.91%
Sports and leisure 1528 41.53%
Cultural 1115 3.23%
Shopping and dining 1089 1.74%
Transportation 693 4.17%
Industrial 350 81.77%

To compare original with colorized images, we grayscale
(ITU-R 601-2 luma transform [17]]) and colorize the ADE20K
dataset. We then take bias measurements in two color spaces.
The RGB (trichromatic and additive) color space remains the



most widely supported and understood system for the charac-
terization and comparison of colors in digital images. This
uses three monochromatic primaries at standardized wave-
lengths (defined in standard CIE 1931 [18]]), and is percep-
tually non-uniform: an equal distance in the color space may
not correspond to equal differences in color. CIELAB (also
L*a*b*), defined in CIE 1976 [[18]], expresses color as three
values L* (perceptual lightness), a* (red to green) and b*
(blue to yellow). This was intended as a perceptually uniform
space: a numerical change in color corresponds to a consis-
tent perceived change in color, so Euclidean distances can be
used to compare color transformations in all directions.

We systematically take three types of color bias measure-
ments: global, local, and regional, between the original and
the colorized images. Global color bias measurements show
the bias in RGB and CIELAB channel values, treating equally
all pixels in all test images. The method for this is shown in
Fig.[I] schematically: the overall distributions of channel val-
ues, taken independently per channel, are compared across all
images, and we report the channel shifts A. This may show,
for example, that the pixels in colorized images have high
blue-channel values more frequently than the original images.
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Fig. 1. Global color bias (method; similar for CIELAB)

Local color bias measurements are instead fine-grained.
Their aim is to show a two-dimensional color shift between
the colorized and the original, on average both for the entire
dataset, and per image category. To achieve this, since the
ADE20K images are diverse in size, each image, regardless
of aspect ratio and resolution, is size-normalized into an ag-
gregated 64x64 image. (This was chosen because it is smaller
than the smallest original image size in the dataset.) To avoid
confusion between the pixels in the original image and the
normalized pixels, we call the latter “cells”. The color in each
cell is the average color of the original pixels. For both RGB
and CIELAB, we measure the average color shift per cell.
The methodological pipeline for this is shown in Fig. 2]

‘We also take a second local bias measurement, which tests
the hypothesis whether the colorization strips away some of
the vibrant colors and replaces them with dull, muddy shades.
For this, we first calculate, per cell in the normalized image
size, the average color of the training dataset (2% of Ima-

Original

Size

Y Normalisation Average 1 64
To L*a*b* (64x64 er cell
4’@"’ ) ==

64
Subtract
Size

Y

== Normalisation Tﬁ Average
- (64x64)

Colorized

Subtract

Fig. 2. Local color bias: color shift (method)

geNet). We call this the “mud” image. The cells in the mud
image need not contain the exact same color. Then, per in-
dividual image and per cell, we measure the color distance
to the mud color of that cell, and report whether, on average,
this distance becomes smaller across colorized images. The
methodological pipeline is shown in Fig.[3] Since this mea-
surement relies on Euclidean distances between colors, we
only perform it in the perceptually uniform CIELAB space.
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Fig. 3. Local color bias: distance to mud (method)

Regional color bias measurements are based on the local
color shift measurements, but are done separately for specific
special regions within the image, such as the center, or the
top third. These special regions are image patches defined
by popular composition rules in photography [19]], such as
the rule to fill the center of the frame with a subject, the rule
of thirds which defines 3 equal vertical or horizontal patches
and their intersection, and the golden-rule grid, which does
the same in the ratio 1:0.618:1. They are applied as masks to
the local color shift results, to draw regional conclusions.

3. RESULTS

We present the measurements, and insights gained from them.
All are for DeOldify artistic, unless otherwise specified.
Global color bias. We show RGB and CIELAB channel
shifts A in Fig.[d A positive A means a more frequent occur-
rence of that channel value in the colorized images. (Max-
imum channel values—R, G, B near 255, L*, a*, b* near
100—are rarely present in the data [12], leading to extreme
or noisy shifts at those bounds.) We observe a shift in the



distribution of B channel values: an increased frequency in
mid-to-high blue components among colorized images. This
is also present, but is much less significant, for the R, G, and
L* channels. On the other hand, the shifts in the distributions
of the a* and b* channels show a pronounced increase in fre-
quency for neutral shades (between green and red for a*, and
blue and yellow for b*), and thus a pronounced decrease in
frequency for saturated colors. Many a* channel values with
an absolute value over 25 disappear from the distribution. In
summary, we observe global bias towards neutral shades,
and global bias towards mid-to-high-range blues.
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Fig. 4. Global color bias: channel A (positive means higher
frequency in colorized images)

Local color bias: color shift. We show per-cell aver-
age channel shifts (across the entire dataset) for the R, G, and
B (top) and L*, a*, and b* channels (bottom), in Fig. ﬂ A
positive per-cell shift means a higher average value in the
colorized images. While we had previously (in Fig. @) ob-
served similar global shifts between the red and green chan-
nels, the local measurements now show that these color shifts
have a different spatial distribution: the colorization process
red-shifts slightly the periphery (but not the center), but green-
shifts slightly the bottom two thirds of the images. The latter
is explained by the more frequent occurrence of natural land-
scapes at the bottom of the images, with these areas further
shifted to green in colorization. The former implies that the
(sometimes colorful) objects in the center of the original im-
ages are stripped of some of their red, with the opposite oc-
curring for the image background.

The colorization also on average blue-shifts almost ev-
ery cell of the images, with double the shift amplitude of the
green. The most pronounced shift is in the center of the im-
ages. This implies that the blue shift is not a further deepening
of the sky blue; it is instead a pervasive effect throughout the
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Fig. 5. Local color bias: average channel shift for R, G, and
B (top) and L*, a*, and b* (bottom), over the entire dataset
(positive means higher average value in colorized images)
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Fig. 6. Local color bias: b* (blue) channel shift is not uni-
form per image category (urban, nature, and industrial scenes
have top regions shifted away from blue)

images. This is seen in both the B and b* channels: the same
blue shift manifests as a positive shift in the B channel, but
a negative one (away from yellow and towards blue) in b*.
We then verify that this blue shift is not uniform across im-
age categories: Fig. [6] shows the breakdown of the b* chan-
nel per image category, for three of the largest categories.
(All categories not shown behave like Work, except Nature,
which is like Urban.) While 7 out of 10 image categories are
almost uniformly blue-shifted, urban, nature, and industrial
scenes have their top regions colorized with a shift away from
blue. Since these are the image categories with the most sky
(present in 75+% of the images, from Table [I), this means
that the colorizer strips blue from patches of sky.

The average Euclidean distance across cells in CIELAB
(between colorized and original images) also varies per image
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Fig. 7. Local color bias: (left) mud; (center) difference in
distance to mud; (right) average S (saturation) channel shift
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Fig. 8. Regional color bias: examples of most inaccurate colorizations (original image at the top)

category. With lower average distance meaning more accurate
colorization, the top are: urban (average distance 1.885), un-
classified (2.146), and nature (2.234). The bottom are: work
(4.128), shopping (4.143), and cultural (4.331).

Local color bias: distance to mud. The mud image (the
average color of the training dataset) is shown in Fig. [7] (left).
It contains a gradient between cell 1 (RGB 131, 128, 119)
and cell 2 (RGB 126, 111, 95). Using this image as a base-
line of comparison, we then observe (in Fig. [7] center) that
the distance image-to-mud decreases for the artistic model,
on average, after colorization: a negative difference in the fig-
ure means that the distance is lower on colorized images. The
result is very similar for the stable model, but with an even
higher amplitude (reaching -10). This confirms our hypoth-
esis and insights in the related work [4} (6, [12] that the col-
orization strips away some of the colors, and shifts the col-
ors towards the training average. This is also confirmed
by a supplementary measurement of the average shift in the
S channel from the HSV color space (shown in Fig. [7] right,
where the range of channel values is [0, 100]). The colorized
images are almost uniformly and heavily desaturated on
average, in comparison to the originals.

Regional color bias. For each region defined by the rule
of thirds and the golden ratio, we extract (1) the top n im-
ages by the absolute color shift in each region, and (2) the top
n images by the relative color shift between the region and
the rest of the image. The latter allows to capture examples
where a region is colorized very differently from the remain-
ing image. Fig. [8]shows examples of both. In (a) and (b), the
colorization of the dominant object failed, either in absolute
or relative terms: (a) the flower was colorized like its leaves,
and (b) an object of characteristic color that a human would
guess correctly was not colorized. In (c)-(e), the colorization
is muted, but plausible. In all, there is overall desaturation.

Manual categorization of errors. Finally, we add a user
studyﬂ we selected the top 400 images by (1) the average and
standard deviation in color shifts between original and col-
orized, and (2) regional color shifts of the relative type. After
removing duplicate images in this set, the rest were manually
categorised by the type of failure observed in colorization. A
minority of the failure modes were not clear-cut. Only 5% of
the images completely failed to colorize and were essentially
grayscale. In 23% of the cases, one dominant object failed
to colorize (examples include (a)-(b) in Fig.[8). However, in
the majority (60%) of the cases, the results were judged still
plausible (examples include (c)-(e) in Fig. E[), and akin to a
“mood change” in the image.

4. DISCUSSION AND CONCLUSIONS

We presented insights on the color shifts in images colorized
by the GAN-based DeOldify model. We introduced local
and regional bias measurements between the original and the
colorized datasets, and obtained quantitative and qualitative
results showing many colorization effects. We observe de-
saturation (confirming prior knowledge [4) [6] [12]), but also
provide novel observations: a shift towards the training av-
erage, a pervasive blue shift, different shifts among image
categories, and a manual classification of the errors. This
study has limitations: the measurements included only the
two public colorizers available with DeOldify, and only one
image dataset—but we conclude that pervasive biases remain
present in advanced colorization models. Our results may
guide the development of automated Al colorizers, which
could, for example, use semantic input to resolve some of the
regional color shifts per image category.

IWe provide more image examples at https://github.com/
WeersProductions/colorization-bias,
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