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Abstract—Hospitals often set protocols based on well defined
standards to maintain quality of patient reports. To ensure that
the clinicians conform to the protocols, quality assurance of these
reports is needed. Patient reports are currently written in free-
text format, which complicates the task of quality assurance.
In this paper, we present a machine learning based natural
language processing system for automatic quality assurance of
radiology reports on breast cancer. This is achieved in three
steps: we i) identify the top level structure of the report, ii)
check whether the information under each section corresponds
to the section heading, iii) convert the free-text detailed findings
in the report to a semi-structured format. Top level structure
and content of report were predicted with an F; score of (.97
and 0.94 respectively using Support Vector Machine (SVM). For
automatic structuring, our proposed hierarchical Conditional
Random Field (CRF) outperformed the baseline CRF with an F;
score of 0.78 vs 0.71. The third step generates a semi-structured
XML format of the free-text report, which helps to easily visualize
the conformance of the findings to the protocols. This format also
allows easy extraction of specific information for other purposes
such as search, evaluation and research.

Index Terms—Quality Assurance, Automatic Structuring, Ra-
diology Reports, Conditional Random Field

I. INTRODUCTION

Medical reports are essential for communicating the findings
of imaging procedures with referring physicians, who further
treat the patients by considering these reports. Thus, medical
reports are very important for diagnosis of diseases, which
brings forward the need of their quality assurance.

To maintain the quality of reports, hospitals often set
well-defined protocols for reporting. For example, for breast
cancer radiology reporting, hospitals generally use the “Breast
Imaging-Reporting And Data System” (BI-RADS) [1], which
is a classification system proposed by American College of
Radiology (ACR), to represent the malignancy risk of breast
cancer of the patient. It was implemented to standardize re-
porting and quality control for mammography. The BI-RADS
lexicon provides specific terms to be used to describe findings.
Along with that, it also describes the desired report structure,
for example, a report should contain breast composition and
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a clear description of findings. The rate of compliance with
these reporting standards can be used for quality assurance
and also to further measure clinical performance [2].
Conformance to reporting standards can be seen as a part
of assessing report clarity, organization, and accuracy [3], [4].
Quality assurance is currently mainly a manual process. Peer
review is used to assess report quality, mainly geared towards
accuracy of reports [5]. Yang et al. [6] used psychometric
assessment to measure report quality and analyzed parame-
ters like report preparation, organization, readability. Making
quality assurance systems automatic would reduce workload
of radiologists and make the process more efficient. To the best
of our knowledge, no system exists to automate this process.
Quality assurance is complicated due to the fact that report-
ing is done in free-text, narrative format. The inaccessibility
of narrative structure for computers makes it hard to analyze
if all the necessary information are present in the report.
Structured reporting templates can be introduced to force the
radiologists to stick to the reporting standards and improve
the quality of reports [7], [8]. However, a study [9] shows
that this type of system resulted in lower quality reports, as
it restricts the style and format of writing. Another method
can be automatic structuring of free-text reports after they
have been written, without additional technical burden on the
radiologists. Thus, the radiologists can concentrate more on
the task of interpreting images rather than structure of writing,
which helps in maintaining accuracy of the report content.
Thus, in this work, we follow the post-structuring paradigm.
We present an approach for automatic structuring of radiology
reports for quality assurance using machine learning. We
define quality of the report by how well the reports conform to
the reporting standards as set by ACR BIRADS. Concretely,
we (i) identify the top-level structure from the reports (hence-
forth, referred to as heading identification), (ii) verify if the
report contents are placed under the correct top-level headings
(referred to as content identification), and, (iii) automatically
convert the free-text report findings to a structured format for
making the task of comparison to well-defined protocols easier



(referred to as automatic structuring). For visualization and
further use, we generate a semi-structured XML format for the
automatic structuring (Table I). We focus on Dutch radiology
reports on breast cancer; for automatic structuring we focus
on findings from mammography imaging modality.

In the remainder of this paper, we first review structured
reporting initiatives and application of natural language pro-
cessing to radiology reports (Section II). Section III describes
the dataset. Our approach to heading and content identifica-
tion, and automatic structuring is detailed in Section IV. We
describe our experimental setup in Section V followed by
experimental results in Section VI. We discuss the implication
of our results and some future work in Section VIIL.

II. RELATED WORK

In this section, we will discuss structuring initiatives for
radiology reporting, followed by various natural language
processing techniques applied in radiology.

A. Structured Reporting Initiatives

Accuracy, clarity, timeliness, readability, organization are
some of the important factors for good quality of radiology
reporting [3], [4]. Sistrom and Langlotz [7] identified i)
language, ii) format as two key attributes for improving the
quality of a radiology report. Standardizing the language of the
report promotes common interpretation of the reports by the
radiologists through out the world. Breast Imaging-Reporting
and Data System (BI-RADS) is a very successful attempt by
ACR at standardizing the language for breast cancer reporting
[1]. RadLex [10] is another attempt at standardizing disease
terminology, observation and radiology procedure. Structured
reporting further increases efficiency of information transfer
and referring clinicians can extract the relevant information
easily. Sistrom and Langlotz [7] clarified that structured
reporting does not mean having a point-and-click interface
for data capture, rather a simple report format that reflects
the way radiologist and referring physician sees the report
and should not impose any restriction on the radiologists.
Radiological Society of North America (RSNA) highlighted
that structured reporting would improve clinical quality and
help in addressing quality assurance [4].

Though there has been a lot of discussion about the effect
of structuring on the quality of radiology report, not much
actual assessment was done until 2005. In 2005, Sistrom and
Honeyman-Buck [11] tested information extraction from free-
text and structured reports. It was found that both the free-
text and structured report resulted in similar accuracy and
efficiency in information extraction, but a post-experimental
questionnaire expressed clinicians’ opinion in favour of struc-
tured report format. Schwartz, Panicek, Berk, Li and Hricak
[8] reported that referring clinicians and radiologists found
greater satisfaction with content and clarity in structured
reports, but the clinical usefulness did not vary significantly
between the two formats. Whereas, a study by Johnson, Chen,
Swan, Appelgate and Littenberg [9], concluded that struc-
tured reporting resulted in a decrease in report accuracy and

completeness. The subjects were asked to use commercially
available structured reporting system (SRS), a point-and-click
menu driven software, to create the structured reports and they
found it to be overly constraining and time-consuming.

To summarize, past works have shown that firstly, structured
reporting and standard language are important for quality of
report. But structured reporting should be such that it should
not impose restriction on the radiologist. Secondly, structuring
reporting can help in addressing quality assurance.

B. Natural Language Processing in Radiology

Electronic health records (EHRs), like radiology reports,
increases the use of digital content and thus generates new
challenges in the medical domain. It is not possible for humans
to analyze this huge amount of data and extract relevant
information manually, so automated strategies are needed.
There are two types of techniques used in natural language
processing for processing data: i) rule-based and ii) machine
learning-based approaches.

In rule-based approaches, rules are manually created by
experts to match a specific task. Various rule-based systems
have been used for information extraction tasks in radiology
reports on breast cancer. Nassif et al. [12] developed a rule-
based system in 2009 to extract BI-RADS related features
from a mammography study. The system was tested on 100
radiology reports manually tagged by radiologists, resulting in
a precision of 97.7% and a recall of 95.5%. Sippo et al. [13]
developed a rule-based NLP system in 2013 to extract the
BI-RADS final assessment category from radiology reports.
They tested their system on >220 reports for each type of
study — diagnostic and screening mammography, ultrasound
etc. achieving a recall of 100% and a precision of 96.6%.

Machine learning (ML) approaches can learn the patterns
from data automatically given the input text sequence and
some labeled text samples. Hidden Markov Model, Conditional
Random Field (CRF) [14] are some of the ML approaches
used for sequence labeling. Hassanpour and Langlotz [15]
compared dictionary-based (a type of rule-based) model,
Conditional Markov Model and CRFs on the task of infor-
mation extraction from chest radiology reports, finding that
ML approaches (Fi: 85.5%) performed better than rule-based
(Fy: 57.8%). Torii, Wagholikar and Liu [16] investigated the
performance of CRF taggers for extracting clinical concepts
and also tested the portability of the taggers on different
datasets. Esuli, Marcheggiani and Sebastiani [17] developed
a cascaded 2-stage Linear Chain CRF model (one CRF for
identifying entities at clause level and another one at word
level) for information extraction from breast cancer radiology
reports. The cascaded system (Fi: 0.873) outperformed their
baseline model of standard one level LC-CRF (Fi: 0.846) on
500 mammography reports.

Hybrid approaches combine rule-based and machine
learning-based approaches. For example, Taira, Sodrland and
Jakobovits [18] developed a automatic structuring of free-
text thoracic radiology reports using some rule-based and
some statistical and machine learning methods like maximum
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Fig. 1: Example of a breast cancer radiology report

entropy classifier. We want to develop a fully automated
system without any rule creation involved from experts, which
is why we will not follow hybrid approach.

In this work, we apply machine learning-based approaches
to avoid manual rule construction and use CRFs which have
been shown to provide high performance on sequence labeling.

ITI. CORPUS: RADIOLOGY REPORTS ON BREAST CANCER

According to BI-RADS [19], a breast cancer radiology
report should contain an indication of examination (clinical
data), a breast composition, a clear description of findings,
and a conclusion with the BI-RADS assessment category. For
our purpose of quality assurance of a report, we will consider
these things and annotate the reports accordingly.

We used a dataset of 180 Dutch radiology reports on
breast cancer from 2012 to 2017 (30 reports per year). Thus,
the dataset contains variation in reports over the years. The
reports were gathered from Hospital Group Twente (ZGT)
in The Netherlands. The reports are produced by dictation
from trainee or consultant radiologist, into an automatic speech
recognition system. These automatically generated reports are
further cross-checked with the dictation, by radiologists or
secretary. The reports were anonymized such that they do not
contain patient identity data like patient id, name, data of birth
and address. A sample report is shown in Fig. 1. The report has
3 sections, namely Clinical Data, Findings and Conclusion.
Clinical Data contains clinical history of the patient includ-
ing any existing disease or symptoms. Findings consists of
noteworthy clinical findings (abnormal, normal) observed from
imaging modalities like mammography, MRI and ultrasound.
Conclusion provides a summary of the diagnosis and follow-up
recommendations and should necessarily contain a BI-RADS
category. In the report, these sections start with a heading
describing the name of the section, for example, Klinische
gegevens (Clinical Data), Verslag (Findings) and Conclusie
(Conclusion) (see Fig. 1). Reports from 2017 and 2016 (60
reports) additionally contain a fitle. The dataset consists of
both male and female breast cancer reports; for automatic
structuring, we focus on female breast cancer reports.

For the first two sub-tasks of heading identification and
content identification, 180 reports were manually annotated
at the sentence-level by a trained expert. The reports were
split into sentences, where a sentence means start of a new
line, resulting in 1591 sentences in total. In Fig. 1, sentences
are indicated by the labels sl to s7. For the first sub-task of
heading identification, sentences were labeled as heading (e.g.
s2, s4, s6), not heading (e.g. s3, s5, s7) and title (e.g. s1). For
the second sub-task of content identification, sentences were
labeled as ftitle, clinical data (e.g. s2, s3), findings (e.g. s4, s5)
and conclusion (e.g. s6, s7). For the third sub-task of automatic
structuring, we manually extracted the mammography imaging
modality findings from the findings section of the report,
which generated 108 mammography findings. These were
manually annotated by two radiologists — a trainee (2 years of
experience) and a consultant. Out of 108 reports, 18 reports
were labeled collaboratively by both, 45 reports by the trainee
and 47 by the consultant. After labeling, these 45 reports
and 47 reports were analyzed to highlight any inter-annotator
discrepancy, which were further resolved by the annotators.

A 3-level annotation scheme at word-level was followed for
automatic structuring as shown in Fig. 2. CA-n in the diagram
will be explained in the approach (Section IV-C). At the first
level, the reports were annotated as:

e positive finding (PF): something suspicious was detected
about the lesion in the breast, which might indicate
cancer.

o negative finding (NF): nothing bad was found or absence
of specific abnormalities.

e breast composition (BC): density of the breast.

o other (O): text not belonging to the above.

After this first level of annotation, the PF were further anno-
tated into second level classes — mass (MS), calcification (C),
architectural distortion (AD), associated features (AF) and
asymmetry (AS). At the third level, mass was further annotated
as location (L), size (SI), margin (MA), density (DE), AF and
shape (SH). Calcification was further annotated as morphology
(MO), distribution (DI), SI, L and AF. Similar third level
annotation was done with AD, AF and AS. The same scheme
of second and third level annotation was followed for NF,
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Fig. 2: 3-level annotation scheme for automatic structuring of mammography findings
(Hierarchical Conditional Random Field Model A (Section IV-C2))

though they have different combination of classes (as shown
in Fig. 2). BC does not have any further levels of annotation.
Thus, complete label (global) of a token is a concatenation of
the labels at the 3 levels, resulting in 39 different labels. Our
dataset only had data for 34 labels. Our model can also be
applied to findings from other imaging modalities but it needs
to be trained on manually labeled data for those modalities.
Due to absence of labeled data from other modalities, we only
performed automatic structuring of mammography findings.

IV. APPROACH

In this section, we describe our approach for the three
sub-goals — heading identification, content identification, and
automatic structuring of findings from mammography study.

A. Heading Identification

a) Feature extraction: Reports were separated into sen-
tences as explained in Section III. The sentences were
separated into word-level tokens using regular expression
\b\w\w—+\b, which means tokens with at least 2 alphanumeric
characters. Punctuations are always ignored and treated as
token separator. For example, a sentence like “Mammografie
to,v, 12/08/2016: Mamma compositiebeeld C” will generate
{mammografie, 12, 08, 2016, mamma, compositiebeeld} as
tokens. Only unigrams were taken as tokens and converted to
lowercase. The maximum document frequency was set such
that the terms occurring in more than 60% of the documents
will be ignored. Increasing the maximum document frequency
did not improve the performance, so most probably high
frequency non-informative words were removed.

Word List feature: A vocabulary was built using the unique
words generated after preprocessing. Each sentence is repre-
sented by a term vector, where TF-IDF score is used for the
tokens present in the sentence and a zero for absent tokens.

The length of the sentence and the symbol at the end of
sentence were also tested as features but they did not improve
performance and were not considered further.

b) Classifiers: Heading identification is a multiclass clas-
sification problem, where the sentences are to be classified into
one of the following classes: heading, not heading and title.
We trained a Multinomial Naive Bayes (NB), a linear Support
Vector Machine (SVM) and a Random Forest (RF) classifier !.
For NB, Laplace smoothing was used. SVM was trained using
stochastic gradient descent and L2 loss. We used a maximum
tree depth of 10 and bootstrap sampling for RF classifier.

B. Content Identification

Content identification is a multiclass classification problem,
where the sentences are to be classified into title, clinical data,
findings and conclusion. We followed the same approach as
explained in Section IV-A.

C. Automatic Structuring

Our goal is to convert the free-text mammography findings
into a semi-structured XML format. An example of this is
shown in Table I, where the first column shows a free-text
mammography finding report and the second column shows
the semi-structured XML version. Let X be a mammography
finding, consisting of a sequence of tokens, Xx=(x1,Z2,..2¢,..,Zx)
and the task is to determine a corresponding sequence of labels
y= (Y1,Y2,--Yt,---Yn) for x. This task can be seen as sequence
labeling, which is a task of predicting the most probable label
for each of the tokens in the sequence. In this task, the context
of the token, which means labels of immediately preceding or
following tokens, is taken into account for label prediction. To
achieve our goal, we used a Linear-Chain Conditional Random
Field (LC-CRF)? [14], a supervised classification algorithm for
sequence labeling. In our models, LC-CRF considers the label
y;—1 of the immediately preceding token z;_; for predicting
the label y; of the current token x;.

IClassifiers were built using Python scikit-learn package
2We have used scikit-learn Python package, sklearn-crfsuite, implementa-
tion of LC-CRF



TABLE I: Example of structuring of free-text mammography finding

Free-text Report Structured Report

Mammografie t,0,V, 22/09/2016:
Mamma compositiebeeld C, Geen
wijziging in de verdeling van het
mammaklierweefsel, Hierin beiderzijds

(O)Geen wijziging in
(negative_finding)

geen haardvormige laesies, Geen

distorsies, geen stellate  laesies,

geen massa’s, bekende verkalking (positive.finding)
links, Geen clusters kalk, geen it

maligniteitskenmerken, (/calcification) (/

(negative_finding)
(calcification) Geen

(report) {O)Mammografie t,0,v, 12/08/2016:(/0)
(breast_composition)Mamma compositiebeeld C,{/breast_composition)

(mass)Hierin (location)beiderzijds(/location) geen haardvormige laesies(/mass)
(architectural_distortion)Geen distorsies, (/architectural_distortion)
(mass)geen (margin)stellate(margin) laesies, geen massa’s, (/mass) (/negative_finding)

(calcification)bekende verkalking (location)links(/location)

(morphology ) microkalk, (/morphology) (/calcification) ( /negative_finding)
(O) geen maligniteitskenmerken(/O) (/report)

de verdeling van het mammaklierweefsel,(/O)

positive_finding)

(distribution) clusters ( /distribution)

a) Data Preprocessing: Each report from the dataset of
108 mammography findings was split at punctuations {,().?:-
} (retaining them as tokens after splitting) and space, to
generate tokens, x, which were transformed according to the
IOB tagging scheme [20]. Here, B means beginning of an
entity, I means inside (also including end) of an entity and
O means not an entity. For example, as shown in Table I,
“Mamma compositiebeeld C,” labeled as breast_composition
was transformed to [(mamma, B-breast_composition), (com-
positiebeeld, I-breast_composition), (C, I-breast_composition),
(‘, , I-breast_composition)], where each entry stands for (to-
ken, label IOB scheme). Each digit was replaced by #NUM for
the purpose of reducing the vocabulary size without removing
any important information.

b) Feature Extraction: Each extracted token, x, is repre-
sented by a feature vector x; for LC-CREF, including linguistic
features of the current token, z;, and also features of the
previous token, z;_;, and the next token, x;y;. A feature
vector x; consists of the following 10 features for x; and the
same 10 features for x;_; and z;4; (a total of 30 features):

e The token x; itself in lowercase, its suffixes (last 2 and
3 characters) and the word stem.

o Features indicating if x; starts with a capital letter, is
uppercase, is a Dutch stop word or is punctuation. The
part-of-speech (POS) tag of z; and its prefix (first 2
characters).

PFICIL

links

clusters microkalk

(a)

Fig. 3: Graphical representation of a) baseline CRF model and
x;+1={links geen clusters microkalk}

Below, we describe the 3 models for automatic structuring:

1) Baseline Model: As baseline, we used one LC-CRF clas-
sifier, as described at the starting of Section IV-C, to predict
the complete label (concatenation of labels at the 3 levels)
of a token and as input to the classifier, we used the feature
vectors described in Feature Extraction (Section IV-Cb). For
example, the LC-CREF classifier will predict the tokens clusters
and microkalk as NF/C/DI and NF/C/MO respectively (see
Table I). The graphical representation of this model is shown
in Fig. 3a. Here, x;_1, X;, X;+1 are feature vectors of the
tokens in a sequence and their corresponding labels are y;_1,
Yts Ye+1, shown as NF/C/O, NF/C/DI, NF/C/MO. The lines
indicate dependency on feature vectors X;_i, X, X¢y+1 and
preceding label y;_1 for prediction of the label y;. Thus, in
this model, only one classifier is used to predict 34 labels.

2) Hierarchical CRF: We built a model using a three-level
hierarchy of LC-CRF classifiers, called Model A, as shown
in Fig. 2. The model has 13 LC-CRF classifiers and all the
classifiers perform token-level prediction. One classifier (CA-
1) is at level 1 for classifying the tokens into the first level
classes. At level 2, there are 2 classifiers — one (CA-2) for
further classifying the tokens predicted as positive finding by
CA-1, another (CA-3) for negative finding tokens. At level 3,
there are 10 classifiers for further classification of tokens into
third level classes. For example, the tokens classified as PF
by CA-1 at level 1 and as MS by CA-2 at level 2, will be

clusters
(b)

b) hierarchical CRF model, for input feature vectors X;_o to

microkalk
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Fig. 4: Hierarchical Conditional Random Field Model B

sent to CA-4 classifier to further get classified as either L, SI,
MA, DE, SH or AF. The complete predicted label for each
token is the concatenation of its predicted classes at the three
levels. The graphical representation of this model is shown in
Fig. 3b. For example, for given feature vectors x; and x;; of
the tokens clusters and microkalk respectively and for given
classes at the same-level of the immediately preceding token,
the first level class predictions for both the tokens are NF.
The feature vector of these tokens are sent to NF classifier,
CA-3, for second level prediction, where they get classified as
C. Consequently, they are sent to the calcification classifier,
CA-10, where they get classified as MO and DI respectively.
Labels at each level are combined resulting in NF/C/DI and
NF/C/MO labels for the two tokens. The undirected lines are
dependency lines and directed lines are flow between the 3
levels (y, w, z). There is no dependency line between the
first two columns at the second level (w) as links goes to
PF and geen to NF classifier and two different classifiers are
independent of each other’s feature vectors and predicted class.

3) Hierarchical CRF with Combined Classes: As can be
seen in Fig. 2, every classifier at level 3, predicts location
as one of its classes. All the location classes describe similar
tokens like rechts, links, beide mamma. Thus, we build one
classifier for the similar classes instead of having different
classifiers. This will provide us with more training data for
a classifier. Fig. 4 shows the modified model with combined
classes having 9 classifiers. Henceforth, this is referred to as
Model B and all classifiers in this model are referred to as CB-
n(n=1,...,9). We can see instead of having 11 classifiers
that predict location (CA-n, n = 3,...,13) in Model A,
we have only one classifier CB-5 in Model B. Analogously,
classifiers were aggregated for MA, MO, DI, AF and SI. All
the classifiers use LC-CRF and perform token-level prediction.
When classifying a token, classifiers might contradict each
other. Consider for example NF/MS: CB-5 and CB-6 are
the two classifiers predicting location, margin or other for
the same token. If the predictions are location by CB-5 and
other by CB-6, then location is selected (no contradiction).
Similarly, if both classifiers predict other, then the resulting
class is other (no contradiction). If the predicted class is

location by CB-5 and size by CB-6 (contradiction), then the
class with the highest a-posteriori probability is selected.

V. EXPERIMENTAL SETUP

We used the Fj score to evaluate the performance of a
classifier on predicting different classes. The Fj score of a
class is the harmonic mean of precision and recall of that
class and is defined as

B 2T P
" 2TP+FP+FN

with TP being the number of true positives, FP - false positives
and FN - false negatives. As our problem is a multiclass prob-
lem, the TP, FN, FP of a class are calculated according to one-
vs-rest binary classification, where the class in consideration
is positive and all other classes are negative.

We also measured F} score of the models on the entire
test set using micro-averaged and weighted macro-averaged
Fy (F' and FM). F!* was computed by calculating the TP as
sum over the TP of all the classes (same for FN, FP). FlM was
calculated by computing the I scores of each class separately
and then averaging it. As, averaging gives equal weight to all
the classes, the fact that our classes have unequal number of
instances, is not taken into account. Thus, we used weighted
averaging for FM. FM and F}' gave similar results, so we
only report F}M scores in the rest of the paper.

We evaluated our classifiers at 3 levels: i) token-level (TL),
ii) partial phrase-level (PP), and iii) complete phrase-level
(CP). At the token-level, we consider all the token labels in
the dataset to calculate the TP, TN, FP, FN scores of a class.
At the partial phrase-level and the complete phrase-level, we
measure how well the classifier is performing in identifying
multi-token phrases. A complete match requires all the tokens
of the phrase to be correctly labeled. We consider a match
with Dice’s coefficient greater than 0.65 as a partial match. For
similarity calculation, we take the phrase from the ground truth
and match with the corresponding predicted labels. Phrase-
level scores are important from the radiologists’ point of view.
They care about how well their phrases are matching. Table
IIIa shows 6 tokens, with their token-level labels (B-PF, I-PF

=




TABLE II: Heading and content identification and automatic structuring performance in terms of Fj scores

(a) Heading identification

(b) Content identification

(c) Automatic structuring

#Instances
#Instances Classes NB SVM | RF
Classes NB SVM | RF (S ) Conciusion 089 092 0390 gslzntences) Measures Baseline | Model A | Model B #(I,}ls:(aell:csﬁs
ge‘l“i'{“g 5 g'zg 8'32 8'3? Sg? Clinical Data_| 0.86 | 0.94 | 0.70 | 405 FM (all) 0.71 0.78 0.78 4230
Ti(:le e 097 1098 T 099 60 Tide 0.89 [ 099 [ 091 | 60 FM(wlo 0) 0.67 0.73 0.74 2813
Ave (FP1) 1097 | 097 | 0.92 | 1501 Findings 088 | 094 | 082 | 678 FM(w/0<10&0) | 0.70 0.76 0.76 2649
1 : : : Avg (FT) 0.88 | 0.94 | 0.81 | 1556

etc). A PF phrase starts at the B-PF and ends at the last I-
PF. For the NF phrase, the Dice’s coefficient is calculated as
2%2/(3+3) = 0.66 > 0.65, resulting in a partial match. For
each class, we calculate the number of partial matches called
partial phrase accuracy (PP-Acc); how well the partial phrases
match by averaging the Dice’s coefficient for each match (PP-
Sim); the number of complete matches (CP-Acc); and the F}
scores for token-level matches (TL F?).

For heading and content identification, we evaluated NB,
SVM and RF models, using 5-fold cross validation on 180
reports. For automatic structuring, we built three different LC-
CRF models: the baseline model, Model A and Model B.
We evaluated our models using 4-fold cross validation on
108 mammography findings. For automatic structuring, we
evaluated the models on different combinations of classes
(Table Ilc). ‘All’ means evaluation on all the 34 classes. ‘w/o
O’ means all the classes except the other (O) class at the
first level (33 classes). ‘w/0<10&0O’ means classes excluding
O class and classes with instances<<10. All codes associated

with this paper are available as open source?.

VI. RESULTS

In this section, we describe the results of heading and
content identification and automatic structuring.

A. Heading and Content Identification

Table I1a shows that classes headings and not headings were
identified with an F} score of 0.96 and 0.98 respectively both
by SVM and NB. For these classes, SVM and NB performed
better than RF but for title, RF performed better. Table IIb
shows that the SVM performed better for predicting the classes
conclusion, clinical data, title and findings with an F} score
of 0.92, 0.94, 0.99 and 0.94 respectively.

B. Automatic Structuring

Table IIc compares the performance of our baseline model
to the hierarchical Models A and B. Both, Model A and B
(FM=0.78) outperformed the baseline model (F=0.71). No

3https://www.dropbox.com/sh/y4czin4llue2t6w/AACqHR cC2pxg0zzg42Tu
PtQna?dl=0

difference in performance was observed between Model A and
B. Without the not important other (O) class, the Model B has
FlM = 0.74. On further removing classes with instances<10,
the FM score improves from 0.74 to 0.76 for Model B. This
means that the classes having instances<<10 were not predicted
well enough. If we would have at least 10 instances for each
class, then the FlM score could be expected to be around 0.76.

Table IIIb shows the performance of the classifier (CA-1
and CB-1) at the first level in predicting breast composition,
negative finding, positive finding. BC (TL Fi= 0.94) and NF
(TL Fy= 0.95) were identified better than PF (TL Fi= 0.87).
This is because PF contains varied vocabulary for describing
an abnormality, while NF contains specific terms like no
presence of mass, calcification. BC is also described using
specific terms like “mamma compositiebeeld”. Token-level
measure is always higher than complete phrase-level measure.
PP-Acc is at least as good as CP-Acc. All the partial phrase
matches in BC and PF are complete matches except for NF.
But even for NF, the partial phrases have similarity of 0.99
(PP-Sim) with the ground truth.

Table IV shows the performance obtained for the some of
the global classes. Overall, it can be seen that NF sub-classes
were predicted better than PF sub-classes, as most of the
NF sub-classes are described using specific tokens. Generally,
Model A and B predicted PF sub-classes better than baseline.
BC, NF/AF/O, NF/C/DI, NF/MS/MA and NF/C/MO were pre-
dicted very well in all the models. Some classes were predicted
better in baseline — NF/MS/O, NF/MS/MA and PF/C/O. This
indicates that for these classes, the neighbouring global classes
of the baseline model may be informative during prediction.
Also, multi-level prediction increased the number of false
positives for a class, specially for classes with greater number
of instances. The effect of aggregated classifiers in model B
can be seen in NF/C/DI, NF/C/MO, PF/C/L, PE/MS/L and
PF/C/SI. As the aggregated classifiers were trained on all L,
DI, MO and SI in the dataset, it resulted in better prediction
of third level classes like L, SI, even with few instances (14
tokens of PF/C/SI). But aggregating classifiers also resulted
in loss of information about the context, which is reflected

TABLE III: Token level and phrase level measures

(a) Tokens and phrases

(b) Token and phrase level scores

bekende  verkalking links geen clusters microkalk Classes TL F,; PP-Acc CP-Acc PP-Sim #Tokens #Phrases
true B-PF I-PF I-PF B-NF I-NF I-NF
predicted | B-PF I-PE L-PF o B-NF I-NF BC 0.94 0.93 0.93 1.00 622 99
true [ PF phrase [ 1 NF phrase | NF 0.95 0.97 0.91 0.99 1101 118
predicted ‘ PF complete phrase match ‘ ‘ NF partial phrase match ‘ PF 0.87 0.87 0.87 1.00 1090 87




TABLE IV: F} measures of global classes for the 3 models of automatic structuring

Models BC NF/AF/O | NF/C/O | NF/C/DI | NF/C/MO | NF/MS/O | NF/MS/MA | PF/C/O | PF/C/SI | PF/C/L | PF/MS/L | PF/MS/MA | PF/C/AF | PF/AS/O
Baseline 0.89 | 0.96 0.81 0.98 0.95 0.93 1.00 0.45 0.00 0.50 0.30 0.53 0.00 0.00
Model A 0.94 | 0.96 0.76 0.98 091 0.88 0.96 0.37 0.00 0.44 0.40 0.72 0.18 0.58
Model B 0.94 | 0.96 0.81 0.99 0.97 0.89 0.97 0.37 0.22 0.60 0.47 0.70 0.00 0.56
#Instances | 622 | 397 148 54 56 210 35 138 14 68 139 59 33 172

TABLE V: Error propagation through classifiers at the 3 levels

Measures | Level2_A | Level2_B | Level3_A | Level3_B
AFM 0.05 0.04 0.17 0.16
#Instances | 2191 2191 2093 2093

through slightly lower performance in Model B for classes
PF/MS/MA, PF/C/AF and PF/AS/O. Aggregating AF classifier
(CB-8) did not help in predicting any third level AF classes
in PF due to not much similarity in their descriptions.

Table V gives an indication of error propagation through
the classifiers at the 3 levels for Model A and B. AFM at a
level indicate the difference in F{¥ of that level of classifiers
on predicted classes when given true classes from previous
level and when given predicted classes from previous level.
This can be interpreted as error made by the classifiers at the
previous level. Error made by level 1 (AFM at level 2) is
not much significant as compared to error by level 2 (AFM
at level 3) as the latter is a combination of errors from both
level 1 and level 2 classifiers, while the former only considers
error from level 1.

VII. CONCLUSION AND FUTURE WORK

We have addressed three tasks for the purpose of quality
assurance of radiology reports: heading identification, con-
tent identification and automatic structuring using BI-RADS
standard. Heading and content were identified with an F{¥
score of 0.97 and 0.94 respectively using SVM. For automatic
structuring, hierarchical CRF (FM= 0.78) performed better
than baseline CRF (F} 1M =(0.71), while Model A and B did not
show any significant difference.

From the point of view of quality assurance, heading
and content contribute to identification of the presence of
indication of examination, findings and conclusion. A post-
processing step can be performed to check if the content
corresponds to the correct heading. Automatic structuring is
used to check the presence of clear description of findings.
According to BI-RADS, findings should contain mass, cal-
cification, asymmetry, architectural distortion and associated
features. Our model structures the findings automatically into
these concepts, further generating a semi-structured XML
format. This provides a platform to check the presence of
important concepts. Another important information that must
be present in reports is breast composition. Our model predicts
breast composition with Fj= 0.94.

As future work, the presence and quality of BI-RADS cate-
gory can be evaluated. Based on findings, BI-RADS category
can be predicted to check how well it was assigned. More
reports can be labeled to get more training data. Development
of a prototype and actual trial in clinical practice can be done.

The approach taken in this research can also be extended to
reports for other conditions, written in other languages.
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