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Abstract. The establishment of a medical diagnosis is an incremental process highly
fraught with uncertainty. At each step of this painstaking process, it may be beneficial
to be able to quantify the uncertainty linked to the diagnosis and steadily update
the uncertainty estimation using available sources of information, for example user
feedback, as they become available. Using the example of medical data in general and
EEG data in particular, we show what types of evidence can affect discrete variables
such as a medical diagnosis and build a simple and computationally efficient evidence
combination model based on the Dempster-Shafer theory.

Keywords: uncertain databases; incremental decision-making processes; evidence com-
bination; user feedback; Dempster-Shafer evidence theory

1. Introduction

Reaching an accurate diagnosis as soon as possible is key to treating patients’
ailments effectively. The case of teenager Rory Staunton who died of sepsis a
few days after having been diagnosed with a benign flu at the ER and sent back
home illustrates how critical it is to reach a timely accurate diagnosis (Dwyer;
2012b).

Though quite extreme, Rory Staunton’s case is not an isolated case of misdiag-
nosis and is just one particularly striking example of the many errors of diagnosis
that occur in the healthcare system. In fact, the prevalence of misdiagnoses is
estimated to be up to 15% in most areas of medicine (Eta S. Berner; 2008) and a
study of physician-reported diagnosis errors (Schiff et al.; 2009) finds that 28% of
the misdiagnoses are major (i.e resulting in death, permanent disability, or near
life-threatening event) and 41% moderate (i.e resulting in short-term morbidity,
increased length of stay, higher level of care or invasive procedure). Even common
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conditions such as pneumonia, asthma or breast cancer are routinely being mis-
diagnosed especially when the presenting symptoms are atypical (Kostopoulou
et al.; 2008; Singh et al.; 2013). Missed diagnoses alone account for 40,000 to
80,000 preventable deaths annually in the US (Leape et al.; 2002).

Not only is reaching a correct diagnosis quite a challenge but the process leading
to a reliable diagnosis is often rather lengthy as it may involve many patient
consultations and referrals to other clinicians as well as various tests and scans.
The study of physician-reported errors of diagnosis cited earlier (Schiff et al.;
2009) also finds that 32% of the cases are due to clinician assessment errors.
This figure coupled with the misdiagnosis prevalence figure suggests that the
misdiagnosis problem is far from being an individual clinician’s problem but
rather a systemic problem. Or in the words of (Leape; 2000):

“Errors are rarely due to personal failings, inadequacies, and carelessness. Rather, they result
from defects in the design and conditions of medical work that lead careful, competent, caring
physicians and nurses to make mistakes that are often no different from the simple mistakes
people make every day, but which can have devastating consequences for patients. Errors result
from faulty systems not from faulty people, so it is the systems that must be fixed.”

And since “to err is human”, systems must be designed in such a way as to make
errors hard to commit or to quote the Institute of Medicine landmark report on
medical errors (Kohn et al.; 2000), “Human beings, in all lines of work, make
errors. Errors can be prevented by designing systems that make it hard for people
to do the wrong thing and easy for people to do the right thing”.

As such, instead of focusing on assigning blame to physicians/nurses, which does
little to fix systemic problems and only ensures that preventable errors are made
again and again, it would be more beneficial to try and identify the factors that
contribute to making it difficult to reach a correct diagnosis in a timely fashion
or that lead to erroneous/delayed diagnoses. Some of these factors include the
following:

1. Only finite resources can be allocated to the diagnosis process. Even with the
best of intentions, a doctor can only devote a limited amount of time and
energy to each patient under his/her care. Furthermore, to decrease costs
and minimize patient discomfort, the number of tests performed to reach a
diagnosis needs to be kept as low as possible. There is also only a fixed (small)
number of specialists and doctors are encouraged to make as few referrals as
possible. And obviously, even with the best will in the world, doctors, being
human, have only a limited amount of memory and knowledge to draw on to
make diagnoses.

2. The diagnosis process is highly dependent on the accuracy of the initial diag-

nosis hypothesis.
The patient is at best an unreliable source of information: he/she may give
vague information or omit crucial clues that he/she feels are not significant.
Moreover, patient history, which may shed a different light on some non-
specific presenting symptoms, is usually fragmented and scattered across dif-
ferent healthcare institutions that don’t necessarily share information between
themselves. Therefore, the first patient consultation only provides incomplete
and highly noisy information on which the clinician needs to rely to form
his/her initial hypothesis and order the relevant tests and/or referrals required
to unearth further relevant diagnostic clues and evidence.

3. Finding the right clues and evidence for a diagnosis is comparable to searching
for a needle in a haystack. Patient consultations/referrals and medical tests
generate a huge amount of data that may or may not contain the needed
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diagnostic clues (depending on whether the right hypotheses were tested for)
and is mostly irrelevant for the diagnosis task at hand. There is at the same
time too much and too little data available.

4. Medical knowledge is fragmented. Due to the sheer amount of medical knowl-
edge accumulated through time, no single clinician can know all there is to
know inevitably leading to a spread of expertise and knowledge between clin-
icians.

5. The diagnosis process is fragmented. The patient often has to consult several
doctors and undergo several tests. This is a direct consequence of the fragmen-
tation of knowledge and expertise driven by the massive amount of medical
knowledge available.

As a result of these factors, the potential of communication breakdowns between
healthcare agents and crucial information being lost in the process increases as
does the likelihood of clinicians falling back on potentially harmful cognitive
biases.

Rory Staunton’s case (Dwyer; 2012a,b) is a case in point of how a breakdown
in communication between healthcare agents can result in erroneous diagnosis
and inadequate care. In Rory’s case, because critical blood tests’ results had not
been communicated to the clinicians in charge and important observations by
the pediatrician had gone missing from the charts, each of the parties involved
in Rory’s care had only access to fragments of information on his condition, each
of which could be construed to result from something other than sepsis. Taken in
conjunction, all of Rory’s symptoms and tests pointed clearly to sepsis but the
flu diagnosis was not outlandish given the information available to the first ER
practitioner at the time of diagnosis. This case perfectly exemplifies the situation
described in the tale of the blind men and the elephant:! While the conclusions of
the blind men might have been right individually, taken as a whole, they missed
the target completely.

Rory’s case also illustrates another source of diagnostic failure: cognitive biases
(Segal; 2007; Groopman; 2007; Croskerry; 2003). Two biases were in play in
Rory’s case: representativeness bias and premature closure. The representative-
ness bias is the tendency for a clinician to look for prototypical manifestations
of a condition, thus rejecting the possibility of a particular condition if the pre-
senting symptoms are atypical or if the patient is not part of the stereotypical
population in which the condition occurs. In Rory’s case, the possibility of sepsis
was not considered because sepsis rarely occurs in teenagers. Premature closure
is the tendency for a clinician to decide on a diagnosis to the exclusion of others
too soon in the process and before it has been fully verified by tests for exam-
ple. In Rory’s case, there was no indication that the attending clinicians had
considered another diagnosis than flu. Cognitive biases are essentially reasoning
shortcuts and heuristics that come into play when doctors try to cope with time
and resources constraints. Cognitive biases are necessary and time-saving but
may result in wrong, missed or delayed diagnoses.

In addition to the representativeness and premature closure biases, a few more

I The story, which has several versions (see http://en.wikipedia.org/wiki/Blind_men_and_an_elephant),
basically goes like this: some blind men or men in a dark room touch different parts of an
elephant trying to figure out what they are touching. Depending on which part they touch
(trunk, leg ,etc.), they come to completely different conclusions.
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biases may become problematic if applied indiscriminately: zebra retreat, avail-
ability and confirmation biases and diagnosis momentum. A clinician usually fol-
lows the well-known maxim ”If you hear hoofbeats, think horses, not zebras?”,
i.e. a clinician tends to only consider the most common diagnoses that fit the
symptoms exhibited by the patient. Failing to consider a zebra even when likely
based on the clinical findings is called zebra retreat. Taken as a whole, zebras are
not so uncommon: 8% of the US population (ie about 25 million) are estimated

to be affected by one of the approximately 7000 zebras.

The confirmation bias can be especially harmful when associated with premature
closure: it is the tendency for a clinician to look for the evidence, even not present,
that supports his/her preferred diagnosis and dismiss the existing evidence that
disproves it. The confirmation bias can cause the clinician and patient to go on a
wild-goose chase and delay the diagnosis especially if it intervenes while forming
the initial diagnosis hypothesis since the whole process hinges on that initial
hypothesis.

The availability bias and diagnosis momentum may be consequences of the frag-
mentation of expertise. The availability bias is the tendency of a clinician to reach
for the most easily recalled diagnosis that fits the clinical findings, whether the
clinician recalls that diagnosis because he has more expertise on it or because
he has recently encountered it. Diagnosis momentum is the fact for a diagnosis
to stick in particular because it keeps being passed on by all the agents and in-
termediaries involved in the diagnosis process. Diagnosis momentum also makes
reaching a correct diagnosis during the initial patient consultation critical.

We contend that, to obviate or at least mitigate the aforementioned factors
leading to misdiagnosis, different forms of computer-support could be used to
assist clinicians in their decision-making task. One form of computer-support is
(semi-)automatic interpretation of tests and scans, such as the semi-automated
EEG interpretation performed by (Lodder; 2014; Cloostermans et al.; 2009).
A different form of computer-support, which is the focus of this paper, is ev-
idence combination. We view medical diagnosis primarily as an incremental
process where at each point in time, there is an intermediary diagnosis based
on ‘what is known so far’: symptoms and clinical evidence from consultations,
tests/measurements/scans, interpretations thereof by experts, second opinions/feedback
of experts on other experts’ interpretations/conclusions, etc. Each interpretation,
opinion, or feedback is a piece of evidence that is combined to produce a well-
weighted intermediary diagnosis.

1.1. Contribution

The model presented in this paper

1. provides a combined diagnosis constructed from all known evidence and opin-
ions known so far at a point in time,

2. is based on Dempster-Shafer theory,

3. allows the inclusion of evidence that stems from the processing of historic

2 Zebra is the medical slang for rare or surprising diagnosis. For exam-
ples of zebras, see the Medical Mysteries column in the Washington Post:
http://www.washingtonpost.com/linksets/medical-mysteries/2010/07/06/ABELr7D_linkset.html.
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Fig. 1. Normal EEGs in different contexts
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Fig. 2. EEG of a toothbrush artifact

evidence found in electronic patient records and usually not or insufficiently
considered with the help of computers,

4. is open to including the outputs of computer-based interpretation tools as
evidence,

5. allows a clinician to take into account more alternatives so as to notify him/her
of rare diseases becoming sufficiently likely to warrant consideration,

6. can incorporate meta-evidence, i.e., feedback from one clinician on the diag-
nosis of another, and

7. protects him/her against ill-advised cognitive biases (Segal; 2007; Groopman;
2007; Croskerry; 2003; Graber et al.; 2002)

1.2. Examples

To illustrate the potential of computer-support through evidence combination
with these properties, consider the following two examples.

Example 1: Toothbrush case

A suspicious sequence is detected in the EEG recording of an ICU patient (see
Figure 2). Several clinicians debate but they can’t agree on a diagnosis based on
this sequence: opinions are split between epilepsy and artifact. A few clinicians
(2%) think it is something else, i.e., unknown. Subsequently, the video recorded
simultaneously with the suspicious EEG sequence is reviewed. It shows without
a doubt that the sequence is actually an artifact due to the patient brushing his
teeth. Figure 3 shows a timeline of events for the toothbrush case.



6 G. Berrada et al

Fig. 3. Chronology of events for the toothbrush case

Example 2: Hemochromatosis case

This example is a real case reported in a Washington Post article in the Medical
Mysteries section (see (Boodman; 2011)).

After an initial set of seemingly unrelated complaints and symptoms (blurry
and rapidly decreasing vision, increased sleepiness, fatigue, high blood sugar
level leading to a diabetes type I diagnosis), the patient lands in the ER with
symptoms such as severe confusion and disorientation, internal bleeding and liver
cirrhosis. Tests rule out the possibility of an infection or of hepatitis C and the
ER doctors conclude that the symptoms exhibited by the patient result from a
combination of diabetes type I and severe alcoholism (some symptoms being seen
as signs of alcohol withdrawal). However, both the patient and his family deny
the alcoholism especially since he hadn’t drunk any alcohol in the two weeks
before the ER visit as a result of fatigue. Moreover, some tests, undisclosed by
the ER personnel to the patient at that point, show an alcohol level of 0g/L and
extremely high blood iron levels.

Unconvinced by the diagnosis given at the ER, the patient, with the help of
a pathologist friend, researches possible explanations for the complaints that
landed him in the ER. Hemochromatosis, a disease found while perusing a medi-
cal textbook,® appears a very likely possibility to him and after some tests (level
of iron in the blood and genetic test), the hemochromatosis diagnosis is defini-
tively confirmed. Figure 4 shows a timeline of events for the hemochromatosis
case.

These examples illustrate several things. First, medical tests and scans inter-
pretation such as, for instance, EEG interpretation, are inherently uncertain.
As (Niedermeyer and Silva; 1999) puts it: “there is an element of science and
an element of art in a good EEG interpretation” (p.167). The uncertainty of
the interpretation can stem from the massive amount of data whose perusal is
required to make a conclusion. For instance, the interpretation of a routine 20-
minute EEG, usually done visually by a trained neurologist, requires the perusal
of large amounts of data® that contain age-dependent, context-dependent and

3 genetic disease that causes the body to absorb and store excessive amounts iron, resulting

in organ damage

4 at least 109 A4 sheets of paper (1 sec of EEG being represented by at least 25mm on paper
taken in landscape format) following the guidelines of the American Clinical Neurophysiology
Society (American Clinical Neurophysiology Society; 2006).
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Fig. 4. Chronology of events for the hemochromatosis case

non-specific patterns. Uncertainty can also stem from the fact data patterns have
no standard definition making the interpretation process not reproducible. For
instance, a study by (Webber et al.; 1993) showed that, even when done by one
single clinician at two different points in time, markings on EEG recordings for
patterns such as epileptiform discharges may not be identical.

Computer-based interpretation tools may help make the data interpretation pro-
cess more reproducible. Crucially, interpretation tools, while producing uncertain
results, provide a quantification of the result uncertainty as opposed to visual
inspection by humans for which the uncertainty estimation is tricky. This means
that it can effectively be included in the evidence combination. (Semi)-automated
interpretation tools could also provide cognitive aids and exploitable markings to
clinicians, thus reducing their workload and their reliance on memory and freeing
up enough time for them to focus properly on hard cases only. This would not
only make the diagnosis process faster but also less prone to errors due to mis-
taken cognitive biases (Croskerry; 2003). And while not substitutes for clinician
input, computer-based interpretation tools show good accuracy: a study trying
to predict cancer outcomes based on applying machine-learning algorithms on
electronic administrative records finds such algorithms at least as accurate as a
panel of 5 expert clinicians (Gupta et al.; 2014).

Second, crucial clues or evidence may be ‘hidden’ in the vast amounts of avail-
able data, eg the blood iron levels in the hemochromatosis case. As computers
are able to process a larger amount of data than humans possibly can and faster
than they do, computer-based data pre-processing may assist the clinician in un-
covering clues and evidence hidden in mountains of data even in cases when the
clinician does not even suspect that there is something to find and point to zebras
when they become likely due to multiple clues occuring together. For example,
in the hemochromatosis case, software matching clinical findings with possible
diagnoses may have highlighted the conjunction of high iron blood levels, no
alcohol in the blood, diabetes and cirrhosis and pointed out that the hemochro-
matosis diagnosis became likely with those findings and should be explored. This
would effectively result in forcing clinicians to consider several alternatives thus
reducing the incidence and impact of premature closure. Note that this does re-
quire the data be available in digital format, which is not as straightforward as it
may seem. According to (Manyika et al.; 2011), 30% of data in medical records,
laboratory, and surgery reports, is not digitized. And 90% of the data generated
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by healthcare providers is discarded, for example, almost all video recordings
from surgery.

Third, often unexpected circumstances may mislead a clinician during the deci-
sion making process. Even when known with hindsight, it is hard to correctly
trace back the process and properly reconsider the then known evidence. For
example, it may transpire, after several EEGs have been recorded, that a set
of electrodes used for one or more EEGs were faulty, which would mean that
the diagnoses in which these EEGs were involved may need to be reconsidered.
By storing data provenance, i.e., derivation lineage that represent which diag-
nosis is derived from what evidence taken from what data, the clinicians can
be supported with batch-wise reconsideration of their diagnoses. And clinicians
may only need to be notified if the unexpected event changes their diagnosis
significantly.

Fourth, each step in the diagnosis process and all evidence leading to it should
be accessible for review. In our example, the initial epilepsy diagnosis could be
reviewed by several clinicians and modified significantly because of the video evi-
dence. As such, a review of the EEG and its accompanying video helped override
a faulty initial conclusion resulting from incomplete evidence and get to the cor-
rect conclusion. Computer-based evidence combination can assist the clinicians
in properly incorporating new evidence as well as meta-evidence (feedback) in
the overall diagnosis thus insuring that available data is used to make a decision.

The remainder of this paper is organized as follows. The medical diagnosis exam-
ples of Section 1.2 serve as running examples for further supporting our claims for
evidence combination as well as for categorizing evidence into types (Section 2).
We then give some background on the Dempster-Shafer theory underlying our
model in Section 3. In Section 4, we explain how to represent evidence and
the uncertainty inherent to it using the Dempster-Shafer framework. We then
proceed to present our evidence combination model (Section 5) and validate it
analytically (Section 7). We show how our model can be used in practice by work-
ing out the running examples as well as an important theoretical example from
literature in detail (Section 6). Finally, Section 8 discusses how the model can
be implemented by storing evidence in a probabilistic database which naturally
supports uncertainty in data and maintaining lineage.

2. Categorization of evidence types for evidence
combination

The examples given in Section 1.2 highlight the fact that the diagnosis process is
an incremental process. New evidence modifies the state of knowledge: every step
in Figures 3 and 4 introduces one or more pieces of evidence. By evidence, we
mean the interpretation of a lab result or any other medical test or scan but not
the raw data itself. What we call evidence is the new diagnosis that the clinician
forms based on raw medical data (eg lab results or scans). The number of pieces
of evidence is generally limited since clinicians tend to and need to focus on a
limited set of alternatives. Note that computer-based interpretations of medical
tests (eg lab tests and scans) and/or presenting symptoms are also considered
to be evidence since they are an interpretation of raw medical data.

We distinguish three main types of evidence:
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1. Evidence on already considered alternatives.
2. Evidence that introduces a new alternative.
3. Meta-evidence: Evidence on the reliability of other pieces of evidence.

The first type of evidence assigns a likelihood either to one or more existing
alternatives or to part of one or more existing alternatives (e.g., new evidence
supporting epilepsy while previously only evidence supporting both epilepsy and
artifact existed). Special cases of this type of evidence include corroboration and
rejection, i.e., positive or negative feedback from one clinician on the diagno-
sis of another. In our model, these are represented by a likelihood of 1 and 0,
respectively, assigned to one particular alternative.

The second type of evidence occurs when new evidence, that may or may not
support one or more previous conclusions, also points to a diagnosis hypothesis
not previously considered. An example of this type of evidence occurs in in the
hemochromatosis case when hemochromatosis becomes a possible diagnosis aside
from the combination of diabetes and alcoholism diagnosed at the ER.

An example of the third type of evidence is the genetic test and blood test in
the hemochromatosis case: the tests invalidated the ER conclusions, i.e., reduced
their reliability. Another example is the video evidence, in the toothbrush case,
that confirmed the suspicion of artifact in the toothbrush case and lead to the
rejection of the epilepsy diagnosis.

Evidence has several characteristics, on top of having a type (as explained earlier
in the section). These characteristics can be summarized as follows:

— Evidence is uncertain and depends, for example, on the reliability of its source.
We therefore attribute a confidence score ¢ to each piece of evidence to quantify
its reliability. If no knowledge on source reliability is available, one needs to
assume, by default, that all sources of evidence are equally reliable.

— It is crucial that a concrete record of the dependencies between evidences (i.e.,
evidence provenance) be kept to ensure that pieces of evidence are properly
combined or re-considered at any time. The reason for this is that, while
evidence obviously appears in certain order during the diagnosis process, the
evidence that arises at a certain point in time may refer to other specific
pieces of evidence that arose earlier, for instance, in case of corroboration or
meta-evidence.

3. A brief introduction to the Demspter-Shafer model

The Dempster-Shafer theory is a mathematical theory of evidence and can be
viewed, in a finite discrete space, as a generalization of the traditional probability
theory where probabilities are assigned to sets and not to mutually exclusive
singletons. So, whereas, in traditional probability theory, evidence has to be
associated with only one event, the Dempster-Shafer theory makes it possible to
assign the evidence to a set of events. The Dempster-Shafer theory is therefore
useful when evidence is available for a set of possible events and not for each
possible event within the set and collapses to traditional probability theory in
the case where evidence is available for all possible events within a set.

Let © =64, ...,0N be a finite set of possible hypotheses. O is called the frame of
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discernment in the Dempster-Shafer theory. Note that, according to the Dempster-
Shafer theory, each element 6; € © where ¢ = 1,..., N doesn’t have to be
a singleton. For example, in the case of a clinician defining possible diagno-
sis with non-mutually exclusive diseases (for example migraine M, sinusitis S
and labyrinthitis L), the frame of discernement © could be defined as: © =
{@,M,S,L,MS,ML,SL, MSL} = 2{M:5.L} ' As can also be seen in the previ-
ous example, the frame of discernment is usually defined as an exclusive® and
exhaustive non-empty® set of possible alternatives.

The Dempster-Shafer theory defines three important functions on this frame of
discernment: the basic probability assignment also called mass function (other-
wise known as m), the belief function (denoted Bel) and the plausibility function
(denoted as pl).

The mass function (or basic probability assignment) m is a function that assigns
a value in [0, 1] to every subset A of © (such that UgceA = ©) and satisfies:

m(2) =0

> m(A) =1

ACO

(This means, in practice, that the sum of all basic probability assignments of
subsets of the frame of discernment © of whom some may overlap may be different
from 1 and actually higher than 1. It simply means that some evidence is counted
more than once). The basic probability assignment defined for a subset A, m(.A)
is actually the degree of belief that the variable of interest falls within interval
A. However, m(A) gives no indication as to the degree of belief that the variable
of interest falls within any of the subintervals of interval A. Additional evidence
is needed for that.

The belief and plausibility functions can be interpreted respectively as the lower
and upper bounds for probabilities, with the actual probability associated with
the considered subset of 2€ in between the belief and plausibility values for that
subset . The belief function Bel assigns a value in [0, 1] to every non-empty subset
B of © and is defined as:

Bel(B) = Y~ m(A)
ACB

The plausibility function Plassigns a value in [0, 1] to all sets A whose intersection
with the set of interest B is not empty:

PIB)= > m(A)
ANB#£Z

Both the belief and plausibility functions are non-additive, which means that
the sum of all belief values associated with values in 2© is not required to be
equal to 1 and similarly for plausibility. Furthermore, the mass function m can
be defined using the belief function with:

m(B) = Z (=1)!B=4I Bel(A)

ACB

5 in the previous example, it would mean that only one of the elements of © is the true

diagnosis
6 it contains at least the empty set @
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where |B — A] is the cardinality of the difference between sets A and B. And we
can derive plausibility from belief with: PI(B) = 1 — Bel(B) where B is the com-
plement of set B. If Bel(B) = PI(B) = m(B), then we have defined a probability
in the classical sense of the term.

An underlying assumption in the Bayesian theory is the existence of an ultimate
refinement, that is “a frame of discernment so fine that it encompasses all pos-
sible distinctions and admits no further refinement” (Shafer; 1976, p. 119). In
other words, the Bayesian theory supposes that all possible worlds are known
and defined. While such an ultimate refinement would be conceptually conve-
nient, it is also unrealistic as, in most real world applications, existing possible
worlds for the system are discovered as we go and more evidence is gathered.
In contrast, the Dempster-Shafer theory allows for ignorance, does away with
the ultimate refinement hypothesis and instead defines frame refinements and
coarsenings. According Shafer (Shafer; 1976, p.120), a frame of discernment is
defined as “a set of possibilities that one does recognize on the basis of knowledge
that one does have — or at least on the basis of distinctions that one actually
draws and assumptions that one actually makes”. In other words, the frame of
discernment reflects the state of knowledge at a given point in time so it is quite
normal, in practice, to begin by defining a coarse frame of discernment and then
refine it (that is split sets defined in the initial frame of discernment into finer
subsets) as more knowledge is accumulated. The existence of such a possibility of
refinement is what will allow us to perform user feedback that actually adds new
alternatives (see Section 5.2 for more details). For a more detailed and formal
definition of frames of discernment, frame compatibility and frame refinements
and coarsenings, we refer to chapter 6 in (Shafer; 1976).

The Dempster-Shafer theory also provides means to combine evidence obtained
from multiple sources, that provide different assessments for the frame of discern-
ment and are supposed independent from each other. One such combination rule
is the Dempster combination rule, which can be defined by (given two sources
denoted 1 and 2):

Z ml(B)mg(C’)

mia(A) = Bne=4 K when A # @&
where K = Z my (B)ms(C)
BNC=9
m12(®) = O

The denominator in Dempster’s rule is a normalization factor and has the effect
of completely ignoring conflict and attributing all probability masses associated
with conflict to the null set.

According (Zadeh; 1984), this omission of conflict may lead to some counterin-
tuitive results as in the following example (and hereafter refered to as Zadeh’s
example). A patient is seen by two physicians for troubling neurological symp-
toms. The first physician gives a diagnosis of meningitis with an associated
probability of 0.99 while admitting the possibility of a brain tumour with an
associated probability of 0.01. The second physician believes the patient has a
concussion with a probability of 0.99 or a brain tumour with a probability of
0.01. If we use the Dempster’s combination rule with the available data, we get
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m({brain tumour}) = Bel({brain tumour}) = 1. This result would imply that the
most likely diagnosis is actually the one that both physicians find extremely
unlikely.

Furthermore, the Dempster combination as well combination rules derived from
it, such as Yager’s combination rule and Zhang’s center combination rule to name
a few, suppose that all sources of evidence are equi-reliable. In our application,
we suppose this is not the case and that a reliability score w; — between 0 and
1 — is associated with each user giving feedback (how this reliability score is
determined is beyond the scope of this paper, see Section 5.3). One way of taking
into account the difference of reliability between sources of evidence would be to
use the mixing (or averaging) rule described in (Sentz and Ferson; 2002):

1 — n
mi_n(A) = W Zwimi(A) where W = Zwi
i=1

i=1

where n is the number of sources, w; the weight associated with the ¢-th source
and m; the mass function associated with the i-th source. For more details on the
Dempster-Shafer theory and the evidence combination rules, see (Shafer; 1976),
(Sentz and Ferson; 2002), (Salicone; 2007) and (UZga-Rebrovs and Kulesova;
2008).

4. Representation of uncertain evidence

Ideally, the uncertainty surrounding evidence is precisely known, but in practice
it is often incomplete, coarsely known or completely missing. Therefore, evidence
needs to be represented under various circumstances:

1. Ezact evidence likelihood values available. For example, “the EEG of the pa-
tient points to epilepsy with confidence 0.8 and to an artifact with confidence
0.2

2. Missing likelihood values For example, “the EEG of the patient shows an
epileptic seizure or an artifact.”

3. Imprecise likelihood values. For example, “the EEG of the patient shows
epilepsy with a confidence of at least 0.7.”

4. Coarse likelihood values. For example, “the EEG of the patient shows epilepsy
or an artifact with confidence 0.8 or a normal pattern with confidence 0.2”

Of particular interest for our application, are the cases where evidence likelihood
values are exactly known and where likelihood values are missing (by far the
most common case in our application). We represent piece of evidence ¢ and its
associated uncertainty with (a) a mass function m; assigning likelihood values
to several alternatives, combined with (b) a weight w; representing the reliability
of the evidence (relative to other pieces of evidence). For example,

0.8 if S = {epilepsy}
m;(9) = ¢ 0.2 if S = {artifact}
0 otherwise



Evidence combination for incremental decision-making processes 13

represents evidence that the EEG points to epilepsy with confidence 0.8 and to
an artifact with confidence 0.2. This is a case where exact likelihood values are
available: all mass is comprised in singletons, i.e., sets containing a single label.
If no likelihood values are known, the mass can be assigned to a set containing
multiple labels. For example,

mi(S) = {

represents evidence that the EEG points to epilepsy or an artifact.

Note that in the verbal expression of such evidence, one often does not mention
the possibility that it could be entirely something else. We make this explicit
in our model by introducing the explicit label ‘other’. This label represents all
other diseases or conclusions not considered (yet). This allows a likelihood to be
assigned to this label. For example,

1 if S = {epilepsy, artifact}
0 otherwise

oy J0.8 if S = {epilepsy, artifact}
ma(S) = {0.2 if S = {other}

represents the evidence that the EEG points to epilepsy or an artifact with
confidence 0.8, but that one keeps open the possibility that it could be entirely
something else with a confidence of 0.2. This conclusion can, for example, be
drawn from circumstances where one estimates that the reliability of the sources
is not perfect, but 80%. Note that with the inclusion of the explicit label other,
there is no need for an ‘otherwise’; the mass function m; representing a piece of
evidence is always complete.

In the sequel, we will consistently use the term label and symbol a for a single
interpretation, such as epilepsy or artifact, and the term alternative and symbol
A for a set of labels, such as {epilepsy, artifact}. We denote with £ the set of all
considered labels; £ = {epilepsy, artifact, other} in the example above. Therefore,
the frame of discernment is F = 2%. In the example above,

F = {0, {epilepsy}, {artifact}, {other}, {epilepsy, artifact}, {epilepsy, other},
{artifact, other}, {epilepsy, artifact, other} }

5. Evidence combination model

5.1. Core of the model: the mixing rule

In Section 3, we introduced a basic probability assignments’ combination rule,
called the mixing (or averaging) rule defined as:

1< - ;
(VAEF) mi n(A)= W ;wimi(x‘l) with W = ;ﬂh’

where n is the number of evidences, w; the weight associated with the i-th piece
of evidence, W the normalization factor being the sum of all weights, and m;
the mass function associated with the i-th piece of evidence.

We assume that a database actually contains both the individual pieces of evi-
dence with all associated information as well as an aggregation of the evidence
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obtained from [ previous sources. So, if we want to combine a new piece of evi-
dence my; 41 with the [ previous evidences, the total number of sources of evidence
combined is n = [ + 1. Also, the introduction of a new weight w;1; updates the
normalization factor W/ = W + w;y1. We apply the mixing rule as follows:

1 n
(VA€ F) min(d) =1 > wim;(A)
i=1
L
= W(Z w;mi(A) + wipimy1(A)) since n=1+1
i=1

l
1 1
= — (W= wim;(A) + wir1mi11(A))
w! w pt

W
= Wmdb(A) +
where mg,(A) is the basic probability assignment associated with alternative A
in the database, m, (A) is the basic probability assignment associated with alter-
native A by the user providing the new evidence and w,, the weight representing
the reliability of this evidence.

Observe here that m,, representing the new combined diagnosis of all n =1+ 1
evidences, can be calculated incrementally in terms of mg,, m,, and w,. Also,
defined in this way, the combination rule is trivially associative and commutative
as well as idempotent.

5.2. Basic operations of the model

We model all types of evidence with three atomic operations. We present the
third atomic operation in two separate cases: in practice there are two different
types of evidence that can be handled with one atomic operation, i.e., 3a and 3b
are formally the same operation.

1 Adding a (weighted) basic probability assignment m,, with weight w, due to
a new piece of evidence.

2 Updating the weights associated with one or more previously given evidences
J C[1l..n].

3a Refining the frame of discernment by splitting a known label a into multiple
more refined ones.

3b Refining the frame of discernment by adding a new label for something pre-
viously not considered.

The notations used in this section can be found in Table 1. Section 5.2.5 describes
how to determine which atomic operation to use.

As explained earlier, we assume that the database also contains the mass function
meiq Tepresenting the combined diagnosis of all n previous evidences. Through
the atomic operations formulas derived below, we aim to recalculate a new com-
bined mass function incrementally, i.e., to define m,¢,, in terms of m;q and the
basic probability assignment m,, (A) associated with the new evidence.
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Notation Meaning

a existing label, e.g., epilepsy.
A existing alternative, e.g., {epilepsy, artifact}.
n number of evidence sources prior to new evidence being added.
My new evidence represented as a basic probability assignment. dom(m,) = F
Mold stored combined basic probability assignment derived from mq,...,mn
prior to new evidence
Mnew combined basic probability assignment after taking new evidence into account
Wy weight associated with my,
w normalization factor prior to new evidence being added, W = >"" | w;.
w' normalization factor after taking new evidence into account W/ = W + wy,.
J C [1..n] set of indices corresponding to evidence sources for which the weights
must be updated because of new evidence
w new weight due to new evidence (j € J)
L set of all considered labels
F frame of discernment, i.e, set of all considered alternatives, F = 2£

Table 1. List of notations

5.2.1. Adding a (weighted) basic probability assignment

This operation is used when evidence is added without any change in the weights
associated with previous evidence sources. The number of sources with the ad-
dition of new evidence becomes n + 1. The new normalization factor is W' =
W + w,. Applying the mixing rule gives us:

(VAEF) Mpew(4) = %(Z wim;i(A) + wymy(A))
i=1

w
= Wmold(A) +

5.2.2. Updating weights

This operation is used when new evidence leads to updating one or more weights
w; associated with previously given evidence with a new weight w; (e.g., de-
creasing the weight associated with a previous evidence because the source of
evidence has been discovered to be less reliable than previously thought, or al-
together canceling a piece of evidence with setting w; =0).

The new normalization factor can be defined as
/ !
L S
jgJ jed
!
WY Y
jeJ jeJ

jeJ
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We denote the latter normalization correction term with Wa = Z (w) —wj).
JEW

According to the mixing rule, we have:

(VAEF) moa(A) = % > wim;(A)
=1

1 1
=W > wimy(A) + W > wimy(A)
j¢J jed
The updated basic probability assignment for alternative A is obtained by using
the mixing rule as follows:

(VAeF)

Mew(A) = %(Z wym;(A) + Y wim;(A))

j¢J jeJ

W/mnew (A) = Z W;m ; (A) + Z w;mJ (A)
igJ ies

= wym;(A) + > wimi(A)+ Y wym;(A) = > wym;(A)

J¢J JjeJ jeJ jeJ

= wimy(A) + Y wymy(A) + > wimy(A) = > wim;(A)

i¢T jer jer jes
= Wmeia(A) + Z(w} —wj)m;(A)
jer

w 1
Miew(4) = gzmota(A) + 72 > (W) — wj)m;(A)
JjEJ

Updating the weights basically consists of canceling the terms in which the
weights to be updated appear and then adding the newly weighted basic prob-
ability assignments. A full incremental calculation is not possible in this case,
but one needs to revisit all evidences in the database for which the weight is
updated. Usually, this remains rather limited.

5.2.3. Refining the frame of discernment: splitting a label

The label epilepsy actually represents a set of epileptic syndromes that differ
by the specific features that are present. For example, benign rolandic epilepsy,
childhood absence epilepsy, and juvenile myoclonic epilepsy are all particular
cases of epilepsy. Suppose that in a diagnostic process, there have only been
pieces of evidence where a confidence is assigned to alternatives that include the
label epilepsy, but that a new piece of evidence points to, say, childhood absence
epilepsy, or juvenile myoclonic epilepsy, how can we properly represent this new
evidence and combine it with the existing ones?

Talking about measurement results, (Salicone; 2007, p.38) says:

When measurement results are considered, the basic probability number m(A) can be inter-

preted as the degree of belief that the measurement result falls within interval A; but m(A)
does not provide any further evidence in support to the belief that the measurement result
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belongs to any of the various subintervals of A. This means that, if there is some additional
evidence supporting the claim that the measurement result falls within a subinterval of A, say
B C A, it must be expressed by another value m(B).

The labels used in our model are very similar to concepts in description logic
(Nardia and Brachman; 2002). A classic example of a description logic definition
is Person = Male LI Female. It defines the concept of a person to be equivalent to
either a male or a female. Important to note, is that this definition also states
that the union of all possible males in the past, present, and future, and all
possible females in the past, present, and future, will ezactly give one the set of
all possible persons in the past, present, and future. In other words, this definition
truly refines the concept Person into two sub-concepts (it doesn’t state that Male
and Female are disjoint though).

We also apply this technique of refining concepts to our labels. Here we call it
splitting a label. We may define

epilepsy =benign rolandic epilepsy LI childhood absence epilepsy
U juvenile myoclonic epilepsy U other epileptic syndromes

Note that the inclusion of a label other epileptic syndromes is necessary, because
otherwise the equivalence doesn’t hold. For brevity, we use the shorthands bre,
cae, jme and oes in the sequel.

We can use this equivalence of concepts for refining our frame of discernment in a
non-interfering manner: by replacing epilepsy with the four sub labels. Formally,

L' =(L\{epilepsy}) U {bre, cae, jme, oes}
F =2

Furthermore, we need to adapt all existing pieces of evidence to the new frame of
discernment. This is done by similarly replacing epilepsy in all pieces of evidence,
i.e., whenever a mass function contains an alternative A = {epilepsy, ...}, we
replace A by {bre, cae,jme,oes,...}. Assigned confidences and weights remain
unchanged.

Observe that the old frame of discernment F is compatible with the new one
F', because it is a proper refinement. Analogously, the thus constructed mass
functions are proper refinements as well.

Typically, this atomic operation is triggered by the occurrence of evidence for
a sub-label of an existing label. The operation of splitting the label hence is
something to be carried out before the actual adding of the new evidence. It in a
sense makes the frame of discernment and all existing evidence compatible with
the refined nature of the new evidence. The new evidence is subsequently added
using the atomic operation of Section 5.2.1.

Generically speaking, the atomic operation of splitting a label a into sub-labels
a1, ..., 0y, is defined with the following steps:

1. Define the equivalence a = aq U ... U a,,.

2. Let (VA € F) refine(A) = {;A\{a}) Udar, - vam} ifac A

otherwise

3. Refine the frame of discernment £’ = refine(L); F' = 25

4. For every i € [1..n], we define a refined mass function m’ = refine(m) as
m/(A") =m(A) if 3A € dom(m) : A’ = refine(A)

0 otherwise

(VA" € F) {
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New evidence

Changes reliability
of other evidences?

Contains Operation (2)

new label?

. Sublabel of
Operation (1) existing label?

Operation (3b Operation (3a)
+ Operation (1) + Operation (1)

Fig. 5. Decision tree for combining atomic operations to handle all types of evidence

(Note that we have overloaded refine to work both on alternatives as well as
mass functions).

5.2.4. Refining the frame of discernment: adding a new label

When a clinician makes a diagnosis, (s)he not only makes a diagnosis, but ef-
fectively excludes all other possible diagnoses. In this diagnosis, (s)he implicitly
assignes a zero confidence to alternative {other}. The existence of the other label
makes the frame of discernment as well as all mass functions exhaustive.

It is the existence of the other label, however, that makes it possible to apparently
“expand” the frame of discernment and add a new label a. For example, adding
the hemochromatosis alternative after a diagnosis of diabetes combined with
alcoholism has been reached in the hemochromatosis example. Because any new
unknown label is already included in the other label, we can split it into a and
a new other’ by defining other = a L other’ and applying the atomic operation of
Section 5.2.3. Therefore, adding a new label is only a special case of refining the
frame of discernment by splitting a label.

5.2.5. Deciding on which atomic operations to use

In Section 5.2, we introduced the atomic operations that are used to model the
addition of new evidence. We here provide a decision tree that illustrates how
the atomic operations need to be combined to handle all types of evidence.

5.3. Deciding on a weighting method

The setting of weights is not the purpose of this paper. However, some ways
to set the weights include defining rules to set weights (e.g., “clinician A is
twice as reliable as clinician B” or “video-based evidence supersedes EEG-based
evidence”) or deducing the weights by, for example, evaluating experts or sources
of evidence through a set of calibrating questions for which the answer is known.
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The mixing rule is a generalization of the averaging of probability distributions
((Sentz and Ferson; 2002)) also known as linear opinion pool. The linear opin-
ion pool is widely used as a way to combine expert opinions in a probabilistic
framework and several ways to set the weights in the linear opinion pool have
been studied ((Cooke and Goossens; 2008; Ouchi; 2004; O’Hagan et al.; 2006;
Rougier et al.; 2013)). Similar strategies can be applied to set the weights for the
mixing rule as well. One such strategy is the performance-based Cooke “classi-
cal” method . Cooke argues that using equal weights for all experts leads to a
suboptimal solution as it doesn’t evaluate the quality of each expert’s opinion.
Cooke suggests assigning the weight base on the performance of experts on an
elicitation exercise based on “seeding variables”, the “seeding variables” being
quantities from the same area as the uncertain quantity of interest for which the
true value is known to the one administering the exercise and not the experts.
The experts may be asked to choose the probability bin in which they think the
“seeding variable” they are given falls. Two scores are deduced from the experts
performance: a calibration score which is the likelihood that the expert’s answer
corresponds to the known answer and an information/informativeness score that
measures how concentrated the distribution given by expert is. Those two scores
are then combined into a weight assigned to the expert. An expert that is “highly
reliable” scores high on both calibration and informativeness.

Another way of determining appropriate weights is through data mining. At
the end of a diagnostic and treatment process, the correct diagnosis is known.
All evidence given in the process can then be evaluated based on its degree of
correctness. By accumulating these evaluations for pieces of evidence given by
a certain expert or a certain evidence source, one can determine an appropriate
reliability score. Over time, one could determine a set of weights that is based
on how accurate experts and sources actually are on average.

5.4. Rationale for using Dempster-Shafer framework instead of
Bayesian framework

The Bayesian theory is a special case of the Dempster-Shafer evidence theory
according to (Shafer; 1976, Chp.1), with the Bayesian belief functions a subset
of the Demspter-Shafer belief functions. The Dempster-Shafer theory is shown
in (Hoffman and Murphy; 1993) to be more suited in cases of missing priors
and ignorance. (Shafer; 1976) tries to show through an example (Example 1.6,
chapter 1, pages 23—-24) that applying the Bayesian theory to cases of complete
ignorance could lead to counter-intuitive results. In the example given by Shafer,
the question is to know whether or not there is life around the star Sirius. And
though some scientists may have evidence on this question, Shafer takes the
point of view of the majority of people who profess complete ignorance on the
subject and that

0 ifA#£O
Bel(A):{1 ifAi@

where © = {6;,05}, with 6; denoting the possibility that there is life on Sirius
and 0 denoting the possibility that there is no life on Sirius.

He then considers a more refined set of possibilities 2 = (7, (2, (3 where (7 is the
possibility that there is life on Sirius, (o the possibility that there are planets
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around Sirius but no life, and (3 the possibility that there are not even planets
around Sirius. The original frame of discernment © and the refined set €2 are
related in that

6 =C and 02 = {(2, (3}

which means that

0 ifA#£Q
Bel(A){l ifAiQ

So translating complete ignorance in the Dempster-Shafer framework is straight-
forward. Shafer goes on to try and show that it is difficult to specify consis-
tent degrees of belief over © and ) in the Bayesian framework when repre-
senting complete ignorance. Complete ignorance on © may be represented by
Bel({61}) = Bel({62}) = 3. On €, however, according to him, complete igno-
rance would mean that Bel({(1}) + Bel({(2}) + Bel({¢s}) = 1, hence Bel({(1}) =
Bel({G2}) = Bel({Ga}) = 1.

This yields

2

Bel{G}) =5 and Bel({Ge,GoD) = 3

These results are inconsistent with the ones found on © since {6;} and {¢;} have
the same meaning as well as {#2} and {(s, (5}. However, this line of reasoning is
flawed. In fact, instead of considering the three possible events {(1, (2, (3}, one
should consider four events. Let event A be ”There is life on Sirius” and B the
event "There are planets around Sirius”. A and B are independent. Based on
A and B, there are four events on 2 instead of three: a = AA B, b= A A —B,
c=-AAN-B,d=-ANB.
If P(B) = « then we know
1 1 1 1

P(a) = 7 and P(b) = 5(1 —a) and P(c) = 5(1 —a) and P(d)= e
Since {a,b} = 6; and {c,d} = 605, the solution obtained through the Bayesian
method is still consistent and equivalent to the Dempster-Shafer solution. So
when working with equivalent formulations, the solutions reached in both the
Dempster-Shafer framework and the Bayesian framework are similar. However,
the Bayesian framework calls for making assumptions (independence of A and
B) and finding out some variables’ values (P(B)) to reach a solution, when no
assumptions or additional variable values besides what is already known are
needed to reach a solution in the Dempster-Shafer framework. Reaching a solu-
tion in the Bayesian framework when no independence assumption can be made
is more difficult.
(Hoffman and Murphy; 1993) compare the use of the Bayesian theory and Dempster-
Shafer theory to combine evidence from sensors. They conclude
“Both methods for dealing with uncertainty yield similar results if based on equivalent for-
mulations. [...][W]e believe that Bayesian theory is best suited to applications where there
is no need to represent ignorance, where conditioning is easy to extract through probabilistic
representation, and prior odds are available. Dempster-Shafer theory is a more natural repre-
sentation for situations where uncertainty cannot be assigned probabilistically to a proposition

or its complement and when conditioning effects are either impractical to measure separately
from the event itself or a simple propositional refinement, and prior odds are not relevant.”
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In practice, in our case study (the diagnosis process) in particular, ignorance
is frequent. And rare are the cases where strong assumptions such as variable
independence can be made. Our case study — the diagnosic process— is therefore
best represented in the Dempster-Shafer framework rather than the Bayesian
framework, since ignorance is a mainstay of the diagnosis process.

Though there have been many studies that show how to successfully model meta-
evidence by using Bayesian or Markov networks (de Campos et al.; 2003; Xin
and Jin; 2004), we think such models may be unsuitable for our application,
because

— the case where new evidence leads to the addition of a new alternative can-
not be represented with such networks, because such evidence is not easily
represented in a graph

— it would be counter-productive to use two different models (Bayesian/Markov
for positive or negative feedback and another model for other types of evidence
such as the addition of a new alternative), when we can use one model (based
on Dempster-Shafer theory) for all types of evidence.

5.5. Mixing rule versus Dempster combination rule

We use the mixing rule above in our model rather than combination rules such as
Dempster’s combination rule, Yager’s combination rule or Zhang’s combination
rule, because it allows the combination of evidence coming from sources that
may not be equally reliable.

Furthermore, as explained in (Florea et al.; 2009), the classic Dempster combi-
nation rule assumes the following:

— the list of alternatives contained in the frame of discernment is an exclusive
and exhaustive list of hypotheses,

— all the sources of evidence combined are independent and provide independent
evidence, and

— all sources of evidence are homogeneous i.e. equally reliable

All three conditions required for the proper application of the Dempster combina-
tion rule do not hold for the medical diagnosis process. The sources’ independence
cannot be guaranteed as clinicians(sources) may consult each other while trying
to come up with a diagnosis. The sources are not necessarily equally reliable, for
instance, in our running toothbrush example, the video-based feedback is more
reliable than the EEG interpretation. And finally, the frame of discernment may
not necessarily be exhaustive as new alternatives may crop up during the diag-
nostic process (e.g., the hemochromatosis alternative was considered after the
ER-visit by the patient and his pathology-friend in the hemochromatosis case).

6. Using the feedback model: some examples

In this section, we illustrate the usage of our model in practice by applying it
to the two examples introduced in Section 1.2 and to Zadeh’s canonical example
(introduced in Section 3).
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6.1. First example: the toothbrush case

Here we apply our model to the toothbrush example from Section 1.2. The
chronology of events in this case can be found in Figure 3. After the start of
EEG monitoring, the appearance of a strange EEG pattern was observed. This
alone does not carry any evidence that points to a possible diagnosis.

Then several clinicians debate the issue, but they do not arrive at a consen-
sus. They are split between epilepsy and artifact. Besides that there are a few
clinicians (2%) that think it is something else altogether, i.e., not epilepsy nor
artifact. The new evidence resulting from the debate can be represented with
the mass function below.

L ={epilepsy, artifact, other; }
w1 =1
0.98 if A = {epilepsy, artifact}
mi1(A) =¢0.02 if A= {other;}
0 ifA=9

The next piece of evidence is watching the video which clearly points to a diag-
nosis of artifact. We may treat this evidence in two ways. It could be seen as new
evidence which is much much more reliable than the other two, for example, with
a weight of we = 100. Or, we may interpret the evidence as including the meta-
evidence that earlier diagnoses are completely bogus, because they assumed a
normal eyes closed EEG, while in fact the patient was brushing his teeth. Let us
work out the former treatment.

L ={epilepsy, artifact, other; }
we =100

1 if A = {artifact}

_ )0 if A= {epilepsy}
ma(4) = 0 if A= {other;}
0 ifA=0

According to the mixing rule, we can now determine a combined diagnosis.

L ={epilepsy, artifact, other; }
Wi, =101

0 if A = {epilepsy}
0.990099 if A = {artifact}

mia(A) =< 0.009703 if A = {epilepsy, artifact}
0.000198 if A = {other; }
0 ifA=0o

Because of the occurrence of singular alternatives {epilepsy} and {artifact} as well
as a combined alternative {epilepsy, artifact}, the situation is not immediately
clear. Here, the notions of belief and plausibility help to obtain a lower and
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upper bound:

Bel({artifact})

Z mlg(A)

AC({artifact}
= mq2(D) + miz({artifact}) = 0.990099
Pl({artifact}) = Z miz(A)
An{artifact} #&
= myo({artifact}) + mia({epilepsy, artifact}) = 0.999802
> mu(4)
AC {epilepsy}
= mi2(@) + miz2({epilepsy}) = 0
Pi({epilepsy}) = Z miz(A)
An{epilepsy} #&
= my2({epilepsy}) + mi2({epilepsy, artifact}) = 0.009703

Bel({epilepsy})

In other words, the likelihood of an artifact lies somewhere between 0.99099
and 0.999802. There is still some plausibility remaining for an epilepsy diagnosis
originating from the debate, but it is very small because of the low relative
reliability in comparison with the video evidence.

Note that if we had known from the debate which proportion of the clinicians
supported the epilepsy diagnosis and which proportian the artifact diagnosis, m,
would have distinguished the two cases as singular alternatives with the propor-
tion as confidence (provided that we assume all clinicians participating in the
debate carry the same weight). Alternatively, one could also include the opinion
of each clinician participating in the debate as a separate piece of evidence. The
mixing rule would produce a similar combined result.

6.2. Second example: the hemochromatosis case

Here is how we abbreviate the names of the diseases used in this example: dia-
betes as diab, alcoholism as alc, hemochromatosis as hemo, hepatitis C as hepC
and infection as inf.

A few days before the patient lands in the ER, a first diagnosis of diabetes type I
is made. Our frame of discernment at this point contains labels diab and other;.

L ={diab, other; }

w1 =1
1 if A= {diab}
ml(A) =<0 ifA= {otherl}
0 ifA=g

The patient lands in the ER and some hypotheses are first considered: hepatitis
C or infection. This corresponds to a refinement of the frame of discernment to
include both hepatitis C and infection, i.e., other; = hepCLlIinfLIothery,. We need
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to adapt m; to the refined frame of discernment.

L' ={diab, hepC, inf, othery}

wi =1
1 if A = {diab}
my(A) =40 if A= {hepC,inf,othery}
0 fA=o

The initial consideration of hepatitis C or infection as opposed to diabetes given
at the ER can be interpreted as full confidence in hepatitis C or infection. Let us
suppose this interpretation is considered more reliable than the initial diabetes
evidence, say twice as reliable.

L' ={diab, hepC, inf, othery }
W =2
1 if A = {hepC,inf}
ma(A) =<0 if A= {diab,othery}
0 ifA=o

Applying the mixing rule gives the following combined diagnosis.

L' ={diab, hepC, inf, othery }

Wiz =3
i if A= {diab}
0 if A = {diab,others}
mi2(A) =4 2 if A= {hepC,inf}
0 if A= {hepC,inf, othery}
0 ifA=go

Both the hepatitis C and infection are quickly ruled out at the ER by means of
tests and the diagnosis retained is that of diabetes combined with severe alco-
holism. Ruling out the initial ER diagnosis can be achieved by updating its weight
wy to why = 0. The alternative “diabetes combined with severe alcoholism” is a
subconcept of diabetes. Therefore, we need to apply operation 3a of Section 5.2.3
to split the label for diabetes: diab = diab_alc Ll diab_no_alc. We update m/ again
(we omit may, because its weight is wy = 0, hence it doesn’t count anymore)

L' ={diab_alc, diab_no_alc, hepC, inf, othery }
wi =1
1 if A = {diab_alc,diab_no_alc}

my(A) =<0 if A= {hepC,inf,others}
0 fA=o

Because of the additional tests, we may consider the new evidence more reliable
to a degree of wz = 4. The evidence of retaining the diagnosis of diabetes but
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combined with alcoholism can be represented as

L£" ={diab_alc, diab_no_alc, hepC, inf, othery }
w3 =4
1 if A= {diab_alc}
ms3(A) =< 0 if A= {diab_no_alc, hepC,inf,othery}
0 ifA=o

However, after research by the patient and a pathologist friend, a different ex-
planation of the symptoms comes to the scene: hemochromatosis. After several
tests, this diagnosis is confirmed. This turn of events first calls for yet another
expansion of the frame of discernment: othero = hemo U others. Moreover, the
positive testing for hemochromatosis should not be seen as a case of just some
more evidence to add to the mix, but rather as evidence that overrules all previ-
ous evidence. We therefore set all weights wy, = we = w3 = 0. The only remaining
evidence that counts, is:

L ={diab_alc, diab_no_alc, hepC, inf, hemo, others }
Wy =1
1 if A= {hemo}
ma(A) =< 0 if A= {diab_alc,diab_no_alc, hepC,inf, others}
0 ifA=go

6.3. Evidence combination model applied to Zadeh’s
counterexample

Zadeh’s example (introduced in (Zadeh; 1984) and explained in Section 3) has
become the canonical example to show that the classic Dempster-Shafer evidence
combination rule is not suitable for combining highly conflicting pieces of evi-
dence. Haenni, however, contends that the apparent counter-intuitive result of
the example is due to poor modelling of the problem. While the criticism lev-
eled by (Haenni; 2005) may be founded, we show how our evidence combination
model makes the modelling of Zadeh’s example very simple and leads to a logical
result.

In Zadeh’s example, we have 2 sources of evidence, two clinicians giving conclu-
sions, denoted as clinicians ¢; and ¢z, and 3 alternatives (meningitis abbreviated
with men, brain tumor abbreviated with tumor and concussion abbreviated with
conc). The diagnosis of clinician ¢; is

L ={men, tumor, conc, other}
W, =1
0.99 if A= {men}
0.01 if A= {tumor}
0 if A = {conc,other}
0 fA=90

me, (A) =

We have m, ({conc}) = 0 as there is no evidence for the concussion alternative
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at this point. The conclusions drawn by clinician ¢; point to a different direction.

L ={men, tumor, conc, other}
We, =1
0.99 if A= {conc}
0.01 if A= {tumor}
0 if A = {men,other}
0 HfA=0o

Mme,(A) =

Applying the mixing rule gives us the following:

0.495 if A = {men}
0.01 if A= {tumor}

mia(A) = 0.495 if A = {conc}

0 if A = {men,other}
0 if A = {conc, other}
0 ifA=0

The brain tumor alternative is, as expected, extremely unlikely. And since both
clinicians (supposed equally reliable) give it the same likelihood, the final basic
probability assignment associated with it, m({tumor}) = 0.01 is not wholly unex-
pected. That both the concussion and meningitis alternatives are equally likely
after both clinicians’ conclusions also makes sense, since at this point, there is no
way to say that one alternative is more likely than the other. There is no reason
to trust one clinician more than the other. Note that, in our modeling of Zadeh’s
example, the frame of discernment is still {men, tumor, conc} as in (Zadeh; 1984)
and not one of the more complex frames of discernment used in (Haenni; 2005).

7. Analytical validation

In this section, we analytically validate the evidence representation and combi-
nation model. We formulate several correctness, monotonicity, and convergence
properties and prove them. An experimental validation, i.e., a user study that
shows that the model improve the decision quality in diagnostic processes, is
beyond the scope of this paper.

7.1. Validation of correctness properties
7.1.1. The mixing rule produces a mass function

To prove

The intention of the mixing rule is to combine several mass functions into a
combined mass function that represents the combined evidence. Therefore, the
result of the mixing rule should be a proper mass function:

> man(A) =1

AeF
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Proof
Since all m; are mass functions, m;(@) = 0 (i € [1..n]). Therefore,

1 n 1 n
mi.n(9) = szimi(g) = szio =0
i=1 =1

The other requirement is that the sum of masses of all alternatives should be 1.

Soma) = 3 S wmi4) = o 3> wimi(4)

AeF AeF i=1 AeF i=1
1 n 1 n
- T ) = 3w
i=1 AcF i=1 AeF

1 — 1
= 7Zwi.1 - —W =1
W W

7.1.2. Agreement between evidence of varying reliability

To prove

If several pieces of evidence agree with each other, their weights should not be
relevant. In other words, let all mass functions m; (i € [1..n]) be equal, i.e.,
Vi € [1.n] : m; = m. Then m;_, should be equal to m irrespective of the
individual weights w;.

Proof

(VAeF) min(A) = %Zwimi(A) = %Zwim(A)
1 1
= —m(A)Zwi = Wm(A)W = m(A)

Therefore, Vi € [1.n] :mj=m = mi ,=m
7.1.3. Weights are relative

To prove

Weights are intended to be relative, i.e., if two evidences m; and msy are given,
then it should not matter for m; o whether w; = 1 and wy = 3, or that w; =5
and wy = 15. In other words, if all weights w; are updated with the same factor
f # 0 using operation 2 (Section 5.2.2), the same m; _, is produced by the mixing
rule.

Proof
Let J = [L.n], w; = fw; (j € J). First observe that W' = 3%  w} =
Z?:l fw; = fW.

According to operation 2

(VA e F)
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Myew(A) W/mold(A) + = Z(w] w;)m;(A)
jeg
W 1
= —mua(A) + — ) (fw; —w;)m;(A)
fW fW ]EE; J J J
1 n
—Mold(A) + w;(f —1)m;(A)
FMold Jili ;
Fmaa(4) + 3 (F = 1) 3 wymy (4
j=1
= %mold(A) + %mold(A)
= maat) (77
= mold(A) <1+ch1)
= moia(A)
7.1.4. Re@nement of the frame of discernment does not modify existing
evidence
To prove

The refinement of the frame of discernment (operations 3a and 3b of Sections 5.2.3
and 5.2.4) is a three-step procedure which updates all existing mass functions.
Let us denote the refinement of a mass function with refine and the mixing rule
with miz. Since it is only a refinement of a label, the mass function resulting
from the mixing rule should be equal to a direct refinement of the combined
evidence. In other words

refine(my. ) = miz(refine(my), ..., refine(my,))

Proof
refine(m;) produces a m/ in the following way:

! N : . !
(VA € F) m/(A") =m(A4) if JA 6' dom(m) : A" = refine(A)
0 otherwise
 [A\{a}) U{ar,...,an,} facA
where (VA € F) refine(A) = {A otherwise
Note that VA’ € F’, this A’ either has a corresponding A € F or not. In the for-
mer case, the corresponding A is the inverse refinement, i.e., A = (A"\{a1,...,a,})U

{a}. In this case, VA € F Vi € [1..n] : m;(A) = m}(A’). In the second case where
Ja; € A" but {a1,...,an} € A, mi(A") =0.
Applying the mixing rule

(VA" € F')

my (A" = %Zwireﬁne(mi)(/l')
i=1
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_ w2 wim(A) if 3A € dom(m;) : A’ = refine(A)
o w0 otherwise

_ Jmia(A) if 3A € dom(m) : A" = refine(A)
0 otherwise

= refine(my.,)(A")

7.2. Validation of monotonicity properties
7.2.1. Support for an alternative should increase its confidence

To prove

If new evidence (operation 1 from Section 5.2.1) positively supports an alterna-
tive A, i.e, my(A) > meia(A), then the confidence in A should increase irrespec-
tive of the weight w,, i.e., Mpew(A) > Mo (A).

Proof

Since W/ = W + w, and weights are positive, we know that 0 < % < 1 and
0<% <L

w Wy,
mnew(A) = Wmold(A) + Wmu(A)

w Wy,

> Wmold(A) + Wmold(A)
W + w,

= Maa(A) <W’ )

= Moa(A)

7.2.2. Increase in weight for evidence supporting an alternative should
increase its confidence

To prove

If a weight is increased (operation 2 from Section 5.2.2) for evidence that posi-
tively supports an alternative A, i.e, w} > w; for some j € [1..n] and m;(A) >
mo1a(A), then the confidence in A should increase, i.e., Mypew (A) > moia(A). Let
J={j}

Proof

e (A) = %moldm) + Wi S (] — wy)my(A)
jedJ
= W () + e (4)

w’ w'
w
> Wmold(A) because wj > w; Amj;(A) >0AW' >0

> mya(A) because W' > W
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7.3. Validation of convergence properties

7.8.1. Continuous positive or negative evidence cancels out initial
uncertainty

To prove

Suppose we have an initial uncertain evidence, i.e., 0 < mj(A) < 1 for some
alternative A (hence also for one or more other alternatives in dom(mq)). If
we were to give continuous positive evidence on that alternative, ie., Vi > 1 :
m;(A) = 1, then the initial uncertainty for that alternative cancels out, i.e.,
lim,, oo M1 n(A) = 1. Analogously, continuous negative evidence on that alter-
native will also cancel out the uncertainty but towards 0, i.e., if Vi > 1 : m;(A) =,
then lim,, oo my.n(A) = 0. Let W, =Y | w;.

Proof

According to operation 1 (Section 5.2.1)

. 1l
(VAeF) lim my ,(A) = nh_)rr;CWnZwimi(A)

n—oo ;
i=1

.1 .
= Jm w. (wlml(A) + ;wimi(/l)>

n

. 1 -
= nh_)H;o Wn (wlml (A) + ; wi>

. 1
= lim A (wimy (A) + (Wp, — wy))

n—oo n
- wymy(A) | Wy, —wy
= Jm ( W, W,
=04+1=1

Because in the limit of n — oo the term w;m;(A) remains constant, while
lim,, oo W,, = 00 and lim,, s % =1.

For the continuous negative evidence case, we get

n—oo

. S
VAeF) lim my ,(4) = nlggoWn;wimi(A)

1 -
= nh_)I?[;<> Wn (wlml (A) + ; wW;M; (A))

. 1
= lim W (wimy(A) +0)

n— 00 n
wimy (A)

n

= lim

n—oo

=0

Because in the limit of n — oo the term w;m;(A) remains constant, while
lim,, o0 W,, = 00.
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7.8.2. Random pick

To prove

Suppose we have some frame of discernment F and we continuously give random
evidence with the same weight, then we expect the combined evidence to even
out, i.e., evaluate each possible diagnosis as equally likely. We focus on the fol-
lowing form of giving random evidence. We pick a label a randomly and provide
new evidence

m(A)_{l if A={a}

0 otherwise

Proof

Note that we only give evidence on singular alternatives {a}. Therefore, m;(A) =
0 for non-singular alternatives, hence m;_,,(A) = 0 as well. Let k be the number
of singular alternatives, i.e., k = |£|. Let J, = {i € [1.n] | m;({a}) = 1}.
According to operation 1 (Section 5.2.1)

(Vacr) limm ,({a}) = lim V;L;wimi({a})

n—oo
= Jim =D mi({a))

i€Jg

because we pick a randomly out of & possibilities, hence |.J,| = % when n — oo.

8. Storing evidence with lineage and versioning in a
probabilistic database

8.1. Probabilistic databases

In general, a DBMS is a robust and safe place for storing, querying and manip-
ulating important data. Medical data, in particular the EEGs in this paper, as
well as the pieces of evidence collected during the diagnosis process would benefit
from residing in a database. We argue that probabilistic database technology is
well suited to store medical data and associated evidence because of its native
handling of uncertainty.

There are several representation systems for uncertain data. The ULDB model
(Uncertainty-Lineage Databases) is an extension of the classic RDBMS model
where data uncertainty and lineage are stored alongside the data itself (Benjel-
loun et al.; 2006, 2008; Widom; 2009). This model, as well as several others in
the database community such as MayBMS (Antova et al.; 2009, 2008), is based
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on possible worlds semantics. An important application domain for probabilistic
databases is data integration (Magnani and Montesi; 2010), because the explicit
treatment of the uncertainty surrounding (integrated) data is an important tech-
nique for achieving better data quality (van Keulen; 2012).

While the ULDB-model has been shown to be adequate for storing aleatory un-
certainty, its quantification of uncertainty in terms of probabilities doesn’t allow
it to store data with epistemic uncertainty. Examples of epistemic uncertainty
are missing confidence values and imprecisely or coarsely defined confidence val-
ues. (Agrawal and Widom; 2010) introduces a generalization of the ULDB-model
in which confidence values are taken to be basic probability assignments as in-
troduced by the Dempster-Shafer theory. The generalized model still follows the
possible worlds semantics. Since, in practice, medical data, in particular medical
diagnosis, is rarely defined in terms of precise probabilities, we believe that the
generalized ULDB model introduced in (Agrawal and Widom; 2010) is suitable
for storing evidence data in compliance with the model described in this paper.

Being able to incorporate meta-evidence, i.e., evidence that says something about
earlier evidence, such as invalidating it or reducing its reliability, is useful and
reflects the true evolution of a diagnosis during the diagnosis determination pro-
cess. The importance of meta-evidence has been confirmed in other domains.
Several feedback models have been proposed. (de Campos et al.; 2003; Xin and
Jin; 2004) use Bayesian networks to implement relevance feedback. (de Keijzer
and van Keulen; 2007) and (van Keulen and de Keijzer; 2009) show how user
feedback (positive and negative feedback) can be used to improve the quality of
data within their proposed probabilistic XML data integration framework (based
on the possible worlds semantics). It is important to observe that these models
are based on classic probability theory and are restricted to positive and negative
feedback. Feedback that introduces a new alternative, which is a frequent type
of feedback as shown in Section 5, is not supported. Moreover, epistemic uncer-
tainty cannot be properly represented. Therefore, we consider that such models,
although supporting meta-evidence in the form of feedback, are unsuitable for
our purpose of supporting the incremental diagnostic process.

8.2. Motivating example

A feature commonly supported in probabilistic databases is lineage or data prove-
nance. By lineage or data provenance, we mean meta-data on which piece of data
was derived from which other pieces of data.

Figure 6 illustrates the importance of lineage for a medical diagnosis support
system. Suppose a clinician has two patients: patient p; and patient po. Patient p;
is initially diagnosed with d; based on evidence e; and subsequently his diagnosis
was revised to do based on evidence ey. At this point, the clinician seeking to
diagnose patient ps notices similarities between patient p; and patient ps’s cases
and reaches a first diagnosis (d) for patient py by comparison with patient p;’s
current diagnosis (dz). This comparison is in essence a piece of evidence as well
(e3). Patient po’s diagnosis is subsequently revised (dj and df) based on evidences
e4 and e5. At one point in time, new evidence eg leads to a new diagnosis d3
for patient p;. Given that patient po’s diagnosis was derived from patient p;’s
diagnosis, it is important to trace back these derivations for determining how
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> [4id ©
Qc?’ RS Qc?
. b@ . b’Q) 4 @Q}

> d d d
U kQJ ° patient pq

Fig. 6. Motivation

the new evidence leading to dg affects patient ps’s diagnosis. Lineage is needed
in the database to be able to do this retracing.

Furthermore, for auditing and quality assurance purposes as well as for rolling
back wrong modifications (e.g., faulty evidence due to material problems dis-
torting test results or fraudulent behavior by a clinician), it is important to be
able to review all modifications to pieces of evidence. Operations 2, 3a, and 3b
all modify the evidence data in the databases. Standard versioning support is
sufficient to allow the retracing not only of derivation chains, but also of all
modifications that happened during a diagnostic process.

8.3. Data representation

All the data gathered throughout the diagnostic process corresponding to the
example described above can be stored with the table structure outlined in Fig-
ure 2. The data structure separates lineage (which tuples are derived from which
other tuples), evidence versions (for example, updating weights or splitting la-
bels gives rise to new versions of evidence tuples), and a current diagnosis per
patient (in essence data derived from the evidence table). Note that we focus on
lineage and versioning, hence have not added tables and attributes for storing
data from measurements, tests, EEGs and other types of evidence. These can be
added in a straightforward manner.

We have chosen the generalized ULDB-model as described in (Agrawal and
Widom; 2010) as a database model. While the generalized uncertain database
model preserves the concepts of alternatives, z-tuples and lineage, it substitutes
the probabilities assigned to each alternative with a basic probability assignment
(bpa). This allows us to store a whole mass function in the bpa attribute. We
refer to (Agrawal and Widom; 2010) for the representation of the other cases
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Table Attribute Description
diagnosis Current diagnosis as combined bpa

pid patient identifier

totweight total weight

bpa combined basic probability assignment
evidence Current versions of pieces of evidence

pid patient identifier

evid evidence identifier

version evidence version identifier

weight weight (reliability score)

bpa basic probability assignment
evidence_version  Versions of pieces of evidence (all but current)

pid patient identifier

evid evidence identifier

version evidence version identifier

weight weight (reliability score)

bpa basic probability assignment
lineage Provenance relationships

from Tuple identifier

to Tuple identifier of tuple where from is derived from

type Lineage type (e.g., new-version-of, new-diagnosis)

explanation description

Table 2. Data representation for diagnosis derivation storage based on lineage and versioning.

(coarse confidence values and imprecise confidence values). In everything that
follows, we will not consider ‘maybe’ annotations although they can in theory
exist in a generalized uncertain database model. Note that our model is not really
specific to a relational database and may be used with few alterations with other
types of databases, most notably XML databases (van Keulen and de Keijzer;
2009).

8.4. Data generated for the motivating example

In what follows, we explain how lineage and versioning come into play when
new evidence is gathered by showing how the tables are filled for the example
outlined in Figure 6.

Step 1: Evidence ¢; for patient 1 (p;) and initial diagnosis d;

Before patient p; is first diagnosed, some piece of evidence e; is gathered and on
the basis of ey, a first diagnosis for patient p; is formed: diagnosis d;. The result-
ing database is depicted in Figure 7. Information about evidence e; is added to
table evidence and information about diagnosis d; to table diagnosis. Since e;
is the most recent evidence available about patient p;’s condition, information
about e; does not need to be copied into table evidence _version at this point.
Table lineage stores the provenance of diagnosis d;. It consists of one relation-
ship (arrow l) representing the fact that diagnosis d; was based on version 1
of evidence e;. This is represented in the table lineage with from and to fields
containing a tuple identification of the form table.pid.evid optionally followed by
an evidence version.

Step 2: New evidence e; on patient p; leading to new diagnosis ds
New evidence ey is gathered on patient p;’s condition and on the basis of es,
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diagnosis [D]

pid totweight bpa

[P1 w1 dif<

~
evidence [E] .
1
pid evid version ~ weight bpa
‘Pl €1 1 w m q/
evidence_version [V]
pid evid version  weight bpa ‘
lineage
from to type explanation

‘ll E.pi.e.l D.py

evidence First diagnosis p; ‘

Fig. 7. Table contents after step 1: Evidence e; for patient p; and initial diagnosis d;

diagnosis [D]

pid totweight bpa

[p1 wiFuw dof=

J N
evidence [E] .
1
pid evid version ~ weight bpa ||| ©2
‘pl ey 1 w1 mlr/
[p1 €2 1 w2 maH
evidence_version [V]
pid evid version  weight bpa ‘
lineage
from to type explanation

‘ll E‘pl.el.l D.pl

evidence  First diagnosis p; ‘

‘ la  E.pie.l D.p

evidence Second diagnosis p; ‘

Fig. 8. Table contents after step 2: New evidence es on patient p; leading to new diagnosis d2

diagnosis d; is revised to become diagnosis ds. The resulting database is depicted
in Figure 8. At this point, there are two pieces of evidence and the current
diagnosis ds is the combination of the bpa’s m; and my associated with evidences

e and eo, respectively.

Step 3: Initial diagnosis d| for patient p; obtained by comparison with
diagnosis d, for patient p;

When patient po presents him/herself for diagnosis, the clinician notices similar-
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diagnosis [D]

pid totweight bpa

‘])1 w1 + wo d "’z N
[p2 w3 dij<

evidence [E] 1A

pid evid version weight bpa }
3

\ p1 e1 1 wy m1[/

P1 €2 1 [ mo)

| 0

[p2 es 1 w3 Mg

evidence_version [V]

pid evid version weight bpa

lineage

from to type explanation

‘h E.pi.e.l D.p evidence First diagnosis py ‘

‘ la E.presl D.py evidence Second diagnosis ps ‘

‘ ls  E.pesl D.p, evidence First diagnosis ps ‘

‘14 E.ps.e3.1  E.prez.l  similarity Evidence by similarity‘

Fig. 9. Table contents after step 3: Initial diagnosis d} for patient p2 obtained by comparison
with diagnosis dg for patient p;.

ities between patient p; and patient po’s conditions (evidence e3) and establishes
diagnosis d) for patient py by comparison with diagnosis dy of patient 1. The
resulting database is depicted in Figure 9. The ‘evidence by similarity’ gives rise
to lineage l4 of another type similarity.

Step 4: New evidence ¢4 and e5 for patient p,

The diagnosis for patient p is revised successively into diagnosis d and d when
new pieces of evidence ey followed by e5 are gathered. Suppose for illustration
purposes that evidence e5 shows that the interpretation of evidence ey4 is incorrect
and should be discarded analogous to the video showing the toothbrush activity
causing the artifact in our running example. The resulting database is depicted
in Figure 10. The discarding of evidence e4 gives rise to lineage [7 of yet another
type version: the evidence is cancelled out by updating weight w4 and set it to
wjy = 0. This creates a new version of the tuple.

Step 5: New evidence e on patient p;

Finally, new evidence eg is obtained for patient p;. This not only leads to a revised
diagnosis for patient p1, but also for patient ps, since evidence es depends on the
case of patient p; by means of similarity. The resulting database is depicted in
Figure 11. Lineage 4 points to the fact that evidence es needs to be revised. We
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diagnosis [D]

pid totweight bpa

‘ p1 w1y + wa d ‘F N

‘ P2 w3+ wj + ws (1’3§ A

evidence [E] i Iy

pid evid version weight bpa I

‘])1 €1 1 w1 mlr 1;’6

‘ D1 €2 1 wo mQFj

[Pz €3 1 w3 MafF——’

‘ D2 €4 2 wy =0 m4)::<

[p2 es 1 ws myl
evidence_version [V] r

pid evid version weight bpa

‘ D2 €4 1 Wy m4ﬁy

lineage
from to type explanation

‘ by E.pi.e1.1 D.p evidence First diagnosis p; ‘

‘ la E.pi.e.l D.p evidence Second diagnosis ps ‘

‘ l3 E.ps.e3.1 D.ps evidence First diagnosis py ‘

‘ ly E.ps.e3.1 E.presl  similarity Evidence by similarity‘

‘ l5 E.ps.e4.2 D.p; evidence Second diagnosis po ‘

‘ ls E.ps.es5.1 D.ps evidence Third diagnosis ps ‘

‘ Iz E.ps.eq.2 Vipa.eq.l version Cancellation of ey ‘

Fig. 10. Table contents after step 4: New evidence e4 and e5 for patient ps.

create a new version for this evidence and update its bpa to mj accordingly. This
revision is probably a manual action, i.e., the clinician receives a warning from
the system that the interpretation of e3 needs to be revised, because it depends
on similarity with a patient whose diagnosis has changed.

8.5. Conclusion

In this Section, we have shown how to store and manage evidence and diagnosis
in a probabilistic database with support for lineage and versioning. Based on an
elaborate example where the diagnosis of one patient depends on the similarity
with another patient, we show how versioning and lineage data is gathered and
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‘ l E.pi.e.l D.p evidence First diagnosis p; ‘
‘ Iy E.pr.es.l D.p; evidence Second diagnosis ps ‘
‘ l3 E.ps.e3.1 D.ps evidence First diagnosis ps ‘
‘ ly E.ps.e3.1 E.pre2l  similarity Evidence by similarity‘
ls E.ps.eq.2 D.p; evidence Second diagnosis py ‘
‘ lg E.ps.e5.1 D.pa evidence Third diagnosis ps ‘
‘ l7 E.ps.eq.2 Vipa.eq.1 version Cancellation of ey ‘
‘ ls E.ps.e6.1 D.p evidence Third diagnosis p; ‘
‘ ly E.ps.e3.2 V.pa.e3.1 version Update of mg ‘

Fig. 11. Table contents after step 5: New evidence eg on patient pj.
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used. Versioning is rather straightforward: whenever a tuple needs updating ei-

ther because of a new weight or bpa, it is copied to the evidence_version table

and its version number is increased, thus enabling one to retrace all historic ver-

sions of the tuple. Lineage can be stored with an additional table holding data

on different types of dependencies between tuples. We distinguished three:

1. evidence: lineage from a combined diagnosis to its underlying pieces of evi-
dence.

2. similarity: lineage from a piece of evidence to another indicating that the
evidence was obtained by similarity with another patient’s condition.

3. version: lineage from a piece of evidence to its previous version.

Note that there are many variations possible on the table structure proposed in

this section.

9. Conclusion

In this paper, we propose an evidence combination model targeted at medical
diagnostic processes that (a) is based on Dempster-Shafer theory, (b) provides a
combined diagnosis constructed from all known evidence and opinions known so
far at a point in time, (c) allows refinement of considered alternatives as well as
addition of new alternatives during the diagnostic process, and (d) supports the
inclusion of meta-evidence, i.e., feedback from one clinician on the diagnosis of
another or evidence that reduces or nullifies the reliability of an earlier diagnosis.
Furthermore, it can handle situations where confidence values are either missing
(by far the most frequent case in practice), or coarsely or imprecisely defined. In
other words, it tackles both aleatory and epistemic uncertainty.

The model itself is based on evidence being represented by mass functions, a
mixing rule based on a normalized weighted average, and 3 atomic operations:
adding new evidence, updating weights, and refining the considered alternatives
by either splitting a label or adding new alternatives. The model has been vali-
dated analytically by proving several correctness, monotonicity, and convergence
properties. We also discussed how the model can be implemented with proba-
bilistic database technology. We have illustrated the model with two running
examples: 1. the toothbrush case where an initial disagreement between clini-
cians was settled by a later viewing of a video recording which proved that the
abnormal EEG segment was the result of the patient brushing his teeth. 2. the
hemochromatosis case where a repeated diagnosis for diabetes which didn’t even
really match all symptoms was only rather late turned to a diagnosis for an
initially not considered rare condition called hemochromatosis.

In the introduction, we pointed out the fact that the evidence combination model
was a first step into the process of building a system to support the medical di-
agnosis process. The goal of the diagnosis support system is to increase the
chances for an early correct diagnosis. An important building block is an auto-
matic component (for instance, a rule-based, similarity search-based or machine
learning-based component) that, given the often disregarded patient history in
his/her dossier and all the clues at hand, outputs a longer list of likely enough to
be considered alternatives — be they rare conditions (“zebras”) or common ones.
Rare conditions may enter the scene is multiple clues can be found that correlate
with the rare condition and which are unlikely to occur together without the con-
dition. Such an automatic diagnosis can be mixed with the other evidences using
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the model in this paper. In this way, it can early on bring history-based evidence
and rare conditions worthy of consideration to the attention of the clinician in
an unobtrusive way, so that correct diagnoses and treatments are deduced faster
in complex and ambiguous situations. Overlooking “zebras” is less likely and at
least will occur in shorter periods of time.
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