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Abstract
Mathematical models and computer simulations have the great potential to substan-

tially increase our understanding of the biophysical behavior of the neuromuscular

system. This, however, requires detailed multiscale, and multiphysics models.

Once validated, such models allow systematic in silico investigations that are not

necessarily feasible within experiments and, therefore, have the ability to provide

valuable insights into the complex interrelations within the healthy system and for

pathological conditions. Most of the existing models focus on individual parts of

the neuromuscular system and do not consider the neuromuscular system as an

integrated physiological system. Hence, the aim of this advanced review is to facili-

tate the prospective development of detailed biophysical models of the entire neu-

romuscular system. For this purpose, this review is subdivided into three parts. The

first part introduces the key anatomical and physiological aspects of the healthy

neuromuscular system necessary for modeling the neuromuscular system. The sec-

ond part provides an overview on state-of-the-art modeling approaches rep-

resenting all major components of the neuromuscular system on different time and

length scales. Within the last part, a specific multiscale neuromuscular system

model is introduced. The integrated system model combines existing models of the

motor neuron pool, of the sensory system and of a multiscale model describing the

mechanical behavior of skeletal muscles. Since many sub-models are based on

strictly biophysical modeling approaches, it closely represents the underlying phys-

iological system and thus could be employed as starting point for further improve-

ments and future developments.
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1 | INTRODUCTION

The complex interplay between the neural system and the musculoskeletal system leads to movement. The muscles act hereby
as actuators transforming signals from specialized neurons (motor neurons) into mechanical force and contractile motion. The
nervous system is responsible for processing the signals from central (conscious and automatic control) and peripheral (sen-
sory) pathways to consciously control movement. In this sense, the neuromuscular system consists of a complex control sys-
tem that integrates supraspinal (descending) and sensory (afferent) inflow, and actuators (contracting skeletal muscles).

The supraspinal control comprises neural information from higher centers, that is, the motor cortex, the brain stem, cere-
bellum and the basal ganglia. These higher centers provide voluntary (conscious) movement initiated by thoughts or emotions
as a consequence of will (Krakauer & Ghez, 2000), as well as excitation patterns for sequential performance of automated
movements (Yuste, MacLean, Smith, & Lansner, 2005). The sensory controls, that is, the reflex loops, control the amount of
contraction by sensing the length and rate of change of length (contraction velocity) of muscle fibers and tendons to provide
information about the position of our body in physical space as well as tactile information about objects and environment
enclosing our body. The resulting neural drive is highly adaptable and changes due to aging, fatigue, motor skill or pain, neu-
romuscular degeneration and spinal cord injury. The actuators, that is, the muscle-tendon-complexes, are composed of a hier-
archical structure of extracellular matrix, of excitable (active) skeletal muscle cells and of tendinous structures connecting the
excitable cells to the skeleton. Body movement is the result of a cascade of molecular processes turning chemical energy, for
example, provided by the hydrolysis of adenosine triphosphate (ATP), into mechanical (contraction) and nonmechanical
(heat) work.

The overall system, the neuromuscular system, is a complex adaptive system, in which the biophysical state of individual
elements can change according to various types of tasks and conditions (physiological and pathological). There exist numer-
ous experimental studies that scrutinize the interplay between the neural drive and the corresponding motor output under dif-
ferent conditions, such as aging (Enoka et al., 2003), fatigue (Gandevia, Allen, Butler, & Taylor, 1996), motor skill
(Shadmehr, Smith, & Krakauer, 2010) or pain (Yavuz, Negro, Falla, & Farina, 2015), neuromuscular degeneration (Schmied,
Pouget, & Vedel, 1999) and spinal cord injury (Shields, 2002). To investigate the neuromuscular system, many experimental
studies link force and position control tasks to evaluate the performance of the motor system and its components, such as
motor units (De Luca & Hostage, 2010; Negro, Yavuz, & Farina, 2016), spinal cord circuits (Magalhães et al., 2015; Yavuz
et al., 2013), and the activity of descending tracts (Kristeva, Patino, & Omlor, 2007; Ushiyama et al., 2012). Despite substan-
tial amount of experimental research, there exist due to the inherent complexity and the many cross-dependencies (feedback
system) still substantial gaps in our physiological knowledge. The fact that many biophysical quantities are, from an experi-
mental or ethical point of view, difficult or even impossible to determine (in particular, in human subjects and in vivo) makes
our endeavor to gain a deeper understanding of the neuromuscular system an even harder challenge.

Hence, to improve our understanding of the causality relation between neural input and motor output, one can, in addition
to the experimental studies, use mathematical models to systematically analyze the physiological system and/or to augment
missing data with in silico data. In this respect, mathematical modeling has the advantage to generate data in a controlled envi-
ronment. This is usually impossible in experiments. Furthermore, detailed biophysical mathematical modeling provides an
efficient mean to systematically analyze and reveal complex dependencies and interactions. Although there exist already some
(mainly phenomenological) models of the neuromuscular system that significantly contributed to the knowledge of neuromus-
cular physiology, for example, the works by Fuglevand, Winter, and Patla (1993) and Heckman and Binder (1991), detailed
structural and biophysical models of skeletal muscle contraction and the motor neurons innervating the skeletal muscle, that
is, the muscle control, are almost nonexistent. However, detailed biophysical models are essential for revealing the full power
of an in silico laboratory to investigate the behavior of the modeled system under normal and pathological conditions.

The aim of this advanced review is to ease the barrier of developing and utilizing detailed biophysical, multiscale models
of the healthy neuromuscular system. In this sense, we split the review into three parts. The first part (Section 2) is concerned
with key aspects of the anatomy and physiology of the neuromuscular system and thus represents the basis for developing bio-
physical models of the neuromuscular system. The second part (Section 3) provides an extensive overview of existing compu-
tational models and modeling approaches of parts of the neuromuscular system. While an integrated physiological model of
the neuromuscular system ideally would resolve all structures and phenomena presented in Section 2, the state-of-the-art
review section also includes a brief overview on the capabilities and limitations of existing modeling approaches. In the last
part (Section 4), we pick specific examples of cutting-edge models of parts of the neuromuscular system and outline how they
join together to obtain a comprehensive, biophysically based model of the neuromuscular system. The specific examples,
which can also be downloaded or are provided within the Supporting Information, can be considered as a tutorial. They are
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chosen to introduce the general concepts of biophysical models, that is, by describing the original model of Hodgkin and Hux-
ley, and how specific biophysical models can be used to model the neuromuscular system. For the integrated neuromuscular
system model, we provide detailed descriptions of the motor neuron pool model proposed by Negro & Farina (2011), the mus-
cle fiber model of Shorten, O'Callaghan, Davidson, and Soboleva (2007), the multiscale skeletal muscle model of Röhrle,
Davidson, and Pullan (2012) and a model of the muscle spindles proposed by Maltenfort and Burke (2003). The coupled neu-
romuscular system model should serve as an example how we envision the next level of systemic models of complex physio-
logical systems.

2 | ANATOMY AND PHYSIOLOGY OF THE NEUROMUSCULAR SYSTEM

2.1 | The neural system

Nerves are cord-like bundles. They are mainly made up of nerve fibers connecting the central nervous system with other parts
of the body as well as with the other nerves of the peripheral network (Kleinedler, 2008). Cortical and spinal motor neurons
control muscle contraction and, thus, movement. The spinal motor neurons are located in the ventral horn of the spinal cord,
where they receive neural information mediated by the sensory and supraspinal systems. Each spinal motor neuron (alpha
motor neuron, αMN) innervates a number of extrafusal muscle fibers and initiates contractions through a train of electrical sig-
nals called action potentials. This excitation-contraction unit consisting of one αMN and its innervated fibers is termed
motor unit.

However, αMNs are not the only lower motor neuronal system involved in motor control. The striated portion of intrafusal
muscle fibers are innervated by the so-called gamma motor neuron (γMN) or fusimotor neuron. The explicit assignment of
γMNs is to control the tension of intrafusal muscle fiber. Thus, the γMN tunes the sensitivity of muscle spindle, which are spe-
cial receptors sensing the intrafusal muscle fiber length change and therefore provide stretch feedback to the muscle. On the
other hand, γMNs does not directly contribute to muscle force generation (Michael-Titus, Revest, & Shortland, 2010). There
are two different types of γMNs that relate to fast (dynamic) and slow (static) muscle stretches (Taylor, Ellaway, Durbaba, &
Rawlinson, 2000). The γMNs are the final neural pathway that merely innervates the intrafusal muscle fibers. In addition, a
third class of spinal motor neurons, the so-called beta motoneurons (βMNs), exists that provides both intra- and extrafusal
innervation (Manuel & Zytnicki, 2011). Similar to the γMN, the βMNs have two distinct sub-classes: they control the dynamic
and static sensitivity of intrafusal fibers and innervate extrafusal fibers. In this selective skeleton-intrafusal organization, the
dynamic βMNs innervate bag1 intrafusal and slow contracting (S-type) muscle fibers while the static ones innervate the lon-
gest of the intrafusal chain fibers and fast contracting extrafusal muscle fibers (Bessou, Emonet-Denand, & Laporte, 1963;
Boyd, Gladden, McWilliam, & Ward, 1977).

The muscle fibers themselves are embedded within a matrix of extracellular connective tissue. Each muscle fiber is a long,
cylindrical, biological cell. For each joint within a musculoskeletal systems, there exist more skeletal muscles that influence
the joint motion than degrees of freedom of the respective joint, that is, the system exhibits muscle redundancy. Moreover,
since skeletal muscle can only contract, joint movement is achieved through the interplay between agonist and antagonist mus-
cles. The resulting final multidirectional joint torque is therefore the output of a firm neural association between multiple mus-
cle, where supraspinal centers control the sequential activity of the muscles acting on the joint. Within the muscular tissue,
there exist sensory receptors, for example, muscle spindles and Golgi tendon organs, translating the muscle's state into neural
signals, which are carried back along afferent fibers to the central nervous system. Each muscle transmits its current state to
the motor neuron pool of their synergistic and antagonistic muscles via sensory afferent signals.

Figure 1 illustrates the concept of motor units and neural inflow to αMNs from some of the sensory afferent and sup-
raspinal tracks.

2.1.1 | Action potentials

One of the main triggers of electro-physiological processes are action potentials (APs). If the membrane, which is relatively
impermeable to Na+-ions in its resting state, becomes due to a stimulus more permeable to Na+-ions, a strong Na+-ion influx
occurs. The resulting difference between the membrane potential and the equilibrium potential of Na+ drives the current,
which is particularly strong if Na+ is far away from its equilibrium potential. The process of changing the membrane potential
to restore Na+ equilibrium is called depolarisation. If the membrane potential exceeds a certain threshold value (approximately
−55 mV), that is, the depolarisation is strong enough, voltage-gated ion-channels open and result in a large inward flux of
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Na+-ions and an outward flux of K+-ions. Due to the dominating Na+-flux, the membrane potential changes towards the equi-
librium potential of Na+ resulting in an inversion of the membrane voltage. As a consequence, the raised membrane voltage
causes the voltage-gated Na+-channels to close. The K+ outward flux, which is still ongoing, repolarizes the membrane poten-
tial and the potential changes again towards the equilibrium potential of K+ (repolarisation). After the membrane potential is
repolarized, the voltage-gated K+-channels close and the resting membrane potential is restored. This short (2–5 ms) event, in
which the electrical potential of the cell is inverted and restored again, is known as action potential (AP). Figure 2 shows the
typical trace of one AP.

In neurons, a short-lasting drop in the membrane potential below the resting membrane potential occurs at the end of the
repolarization process. This drop is called afterhyperpolarisation. The afterhyperpolarisation potential (AHP) inhibits the
development of subsequent APs by increasing the amount of stimulus required to reach the threshold value for AP generation.
Note, the actual concentrations of Na+ and K+ hardly change throughout the AP. As a consequence, a cell can fire many thou-
sands of APs without actively pumping Na+ out of the cell or K+ into it. This is important, since neurons transmit information
only through the AP discharge frequency, and not through the magnitude of the AP, which is similar for each discharge.
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FIGURE 1 The neuromuscular pathway of movement: The figure illustrates the simplified flow of neuromuscular interaction with its three
essential components: (a) neural drive comprises projection from supraspinal centers (solid lines), afferent feedbacks (dashed lines) from two
exemplary proprioceptive sensory cells, that is, muscle spindle and Golgi tendon organs (Golgi TO) on spinal motor neurons (αMN) and gamma
motor neurons (γMNs). The scheme includes ascending branches of sensory afferents which contribute primary somatosensory cortex (orange shade
on the brain figure). (b) The excitation-contraction part shows excitation of extrafusal and intrafusal muscle fibers by αMN and γMNs, respectively.
(c) The multidirectional joint torque is depicted as a resultant of the neuromuscular interaction
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In excitable cells, APs are used in general to transmit signals between different parts of the cell. The mechanism is as fol-
lows. The currents flowing locally into the cell while the AP spread out along the length of the cell. This yields a depo-
larisation of the potential of adjacent patches of the cell membrane. If the depolarisation is strong enough, voltage-gated Na+-
channels open, and the AP is reproduced in this neighboring patch. Subsequent reproductions of the AP on successive patches
result in a wave-like propagation of the AP along the membrane of an excitable cell. The propagation of AP is unidirectional
since the voltage-gated Na+-channels fall, after closing, for a short period of time into an inactive state. This defines the abso-
lute refractory period. Moreover, the patch of the axon, which has been depolarized, exhibits a higher concentration of Na+.
Naturally, the Na+ would diffuse away from the initial stimulation area towards areas with lower Na+ concentration. These
are the two main principles defining the AP dynamics of unilateral AP propagation.

The velocity, at which APs propagate along an axon, depends on physical conditions, for example, temperature, as well as
structure, that is, the inactivation duration of the voltage-activated channels, the axon diameter and the presence and extent of
myelination. In neurons, for example, AP propagation speeds between 0.1 and 100 m/s have been reported (cf. Hursh, 1939;
Kandel, Schwartz, Jessell, et al., 2000). In muscles fibers, Loeb, Pratt, Chanaud, and Richmond (1987) or Lieber and Fridén
(2000) report APs propagation speeds of 2–10 m/s. The much faster AP propagation speeds in neurons result from an insulat-
ing myelination that is wrapped around the nerve fibers.

The differences in propagation speed are also due to the different functions of the APs. In neurons, APs transmit signals
between different parts of the body, while in muscle fibers, the AP triggers cellular processes within the cell, for example, cal-
cium release from the sarcoplasmic reticulum, which eventually leads to force generation.

2.1.2 | Motor neurons

The αMNs are specialized neurons innervating extrafusal muscle fibers. The cell body (or soma) of an αMN is located in the
ventral horn of spinal cord, which is part of the central nervous system (Kandel et al., 2000). There, an αMN receives signals
from other neurons, such as those of the motor cortex of the brain. Depending on the received signals, the αMN generates
action potentials, which are transmitted along the αMN's axon (nerve fiber) to the muscle. At its end, the axon branches pro-
fusely, with each end linking to a muscle fiber. When the AP arrives at the neuromuscular junction, the AP propagates along
the muscle fiber and commences the contraction chain in the muscle fiber. The αMNs have large and highly myelinated axons
resulting in relatively high conduction velocities, which range between 30 and 60 m/s (Kakuda, Nagaoka, & Tanaka, 1992).

As stated above, the entity of an αMN and all the muscle fibers innervated by that αMN is called motor unit (MU). The MU
is considered the functional unit of a skeletal muscle, since its αMN stimulates all muscle fibers belonging to the MU co-jointly,
and therefore all these fibers contract in response to the stimulation simultaneously. Depending on the size of a muscle and the
task assigned to it, the number of its MUs ranges from about one hundred to several thousand. In the human tibialis anterior
(TA) muscle, about 300,000 muscle fibers are innervated by approximately 450 αMNs (Buchthal & Schmalbruch, 1980).

All muscle fibers associated with a motor unit are not concentrated in one part of the muscle, but distributes over (a part
of) the muscle's cross-sectional area and interdigitates with other muscle fibers stemming from other motor units. The number
of fibers within a motor unit can vary even within a single muscle from 10 s to 1000 s. For instance, in the human TA muscle,
the number of fibers per motor unit ranges from 50 to 12,000 (Heckman & Enoka, 2004). Moreover, the human TA muscle,
as all other muscles, consists of many small and few large MUs, such that the average innervation number (the ratio of the
total number of muscle fibers and the number of MUs in a muscle) is about 600 (Feinstein, Lindegård, Nyman, & Wohlfart,
1955). The combination of many parallel-arranged MUs and the wide range in innervation number allows a single muscle to
exert a huge spectrum of outputs, ranging from precise movements to large forces. This spectrum of outputs is controlled by
the coordinated action of the MUs.

The αMNs innervating a muscle are usually clustered into an elongated motor nucleus often placed within the ventral horn
of the spinal cord and potentially extending over one to four spinal cord segments (Kandel et al., 2000). The αMNs receive
synaptic input from various sources, such as from the motor cortex via the corticospinal pathway, the brain stem and other des-
cending pathways, as well as from afferent neurons, neighboring motor nuclei, spinal cord interneurons and recurrent path-
ways. These signals affect the neuron's membrane potential, which is described in detail in the next section.

2.1.3 | Synapses, excitatory and inhibitory postsynaptic potentials

Synapses are connections between cells, at which signals are transmitted from a neuron to another cell, which does not neces-
sarily have to be a neuron. The following description of synapses is restricted to chemical synapses, which are present in the
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neuromuscular system, and occur either between neurons or between αMNs and muscle fibers. Besides chemical synapses,
electrical and immunological synapses exist in the human body.

Signals are exclusively transmitted from a signal-passing, presynaptic neuron to a signal-receiving, postsynaptic cell. The
information is always passed unidirectionally. At the synapse, both the presynaptic and postsynaptic cells contain specialized
structures that enable signal transmission. In the presynaptic cell, the synaptic bouton (axon terminal) contains neurotransmit-
ters enclosed in synaptic vesicles. When an AP, which propagates along the membrane of the presynaptic cell, reaches the
synapse, the membrane depolarisation causes Ca2+-channels to open. The resulting inward flux of Ca2+-ions increases the
Ca2+-concentration in the cell immediately, since the intracellular Ca2+-concentration is kept at a very low level during the
resting state. The rise in intracellular Ca2+-concentration causes a release of neurotransmitter into the narrow space between
the presynaptic and postsynaptic cells called synaptic cleft. The neurotransmitter binds to receptors embedded in the mem-
brane of the postsynaptic cell, which either open ligand-gated ion channels (in both neurons and muscle fibers) or activate
intracellular signaling pathways (only in neurons).

Assuming, first, that the presynaptic cell is an αMN, and the postsynaptic cell is a muscle fiber, the neurotransmitter is ace-
tylcholine (ACh), and the synapse is called neuromuscular junction. The neuromuscular junction is a huge synapse, and an
AP discharged by the presynaptic αMN always causes an AP in the postsynaptic muscle fiber. Excluded are pathological
cases, which are not within the scope of this review. Due to this one-to-one relation between αMN APs and muscle APs, the
term motor unit action potential (MUAP) is commonly used. Following the release of ACh from the αMN at the neuromuscu-
lar junction, the ACh molecules bind to ACh receptor channels in the cell membrane of the muscle fiber, which, in response,
become permeable to Na+-ions and K+-ions. Due to the fact that Na+-ions have in the nonactivated muscle fiber state a higher
electrochemical driving force than K+-ions, Na+-ions are the main driver for inducing an end plate potential. Hence, the
inward current carried by positive-charged Na+-ions develops causing a depolarisation of the membrane potential, and an AP
is generated at the muscle fiber membrane. The muscle AP propagates along the length of the muscle fiber, from the neuro-
muscular junction towards the ends of the fiber.

If the presynaptic and postsynaptic cells are neurons, the situation is more complex. First, it is assumed that the input is an
ionotropic signal. In this case, the neurotransmitter-binding receptors open ligand-gated channels. Depending on the released
neurotransmitter and the type of activated ion channel, the resulting change in the postsynaptic potential is excitatory or inhibi-
tory. If the opened channel is, for example, a Na+-channel, the resulting inward flux of Na+-ions will depolarize the membrane
of the postsynaptic neuron, that is, an excitatory postsynaptic potential (EPSP) is generated. In general, the amplitude of the
EPSP resulting from a single presynaptic AP is not sufficient to exceed the threshold potential, however, postsynaptic
potentials can overlap and sum up, both in space (from different nearby synapses) and time (subsequent signals at the same
synapse). The most common excitatory neurotransmitter in αMNs is glutamate. In contrast, if the activated channel is a
K+-channel, an outward flux of K+-ions will hyperpolarize the postsynaptic neuron's membrane, and an inhibitory post-
synaptic potential (IPSP) is generated. The most common inhibitory neurotransmitters are γ-aminobutyric acid (GABA)
and glycine (Kandel et al., 2000).

If the input, however, is neuromodulatory, the neurotransmitter-binding receptors will activate intracellular signaling path-
ways to control the state of excitability of the postsynaptic neuron. This is often realized through persistent inward currents
that raise or lower the membrane potential relative to the previous resting membrane potential, and can last for hours. The rest-
ing membrane potential in αMNs should therefore not be considered as a static quantity, but rather as one that is constantly
adjusted through neuromodulatory input to αMNs (Heckman & Enoka, 2012).

2.1.4 | Mechanisms of recruitment and rate coding

The term motor unit pool refers to all MUs in a muscle. Analogously, the term motor neuron pool denotes the entity of the
neurons that subserve a single muscle. The size (axonal diameter) and consequently the electrical properties of αMNs vary
across an αMN pool. Typically, an αMN pool consists of many small, low-threshold αMNs and much less large, high-
threshold αMNs (Powers & Binder, 1985). Note that the size of the αMN is proportional to the size of its corresponding MU,
that is, small αMNs innervate small MUs consisting of few fibers, while large αMNs innervate large MUs consisting of many
fibers (Heckman & Enoka, 2012).

The αMN pool is subject to signals of different sources, viz. cortical input, afferent signals, for example, from muscle spin-
dles, and signals from interneurons and Renshaw cells. Motor neurons integrate all the excitatory and inhibitory signals that
they receive from presynaptic neurons. This causes changes in their membrane potential. Once the input is large enough such
that the αMN exceeds its threshold potential, an AP is discharged. The fact that a neuron either discharges an AP or not, but
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nothing in between, is known as all-or-none principle and results from the existence of a threshold potential, that is, if and
only if the threshold potential is exceeded, then the neuron will discharge an AP. It is not completely understood how the
αMN pool in the central nervous system operates as an ensemble to control the force that is exerted by a skeletal muscle. In
general, to vary this force, the central nervous system has two mechanisms: (i) recruitment, that is, altering the number of
active MUs, and (ii) rate coding, that is, changing the frequency of electrical impulses driving the MUs. It is generally
accepted that MUs follow an orderly recruitment according to Henneman's size principle (Henneman, Somjen, & Carpenter,
1965a, 1965b), that is, from the smallest MU (the smallest αMN innervating the fewest muscle fibers) to the largest MU (the
largest αMN innervating the largest motor unit). This principle can be simply represented by conformation of Ohm's law.
However, there is some evidence that the size principle might not be the only principle applied. In some cases, for example, a
differential distribution of synaptic inputs can ether revert or abolish recruitment order enforced by size principle (Miles &
Türker, 1986) for biomechanical efficiency (Butler & Gandevia, 2008).

An increased synaptic input to the αMN pool will not only result in an increase of the number of recruited MUs, but it will
also increase the discharge rate of all MUs that have already been recruited. Following this, the small, low-threshold MUs
always discharge APs at a higher frequency than larger, higher-threshold MUs independent of the synaptic input to the αMN
pool. This property is known as onion skin property in De Luca and Hostage (2010), De Luca, LeFever, McCue, and Xenakis
(1982b).

2.2 | Skeletal muscle

Muscles turn the neural signals into force. Hereby, one can consider muscles as molecular motors that convert chemical
energy into force. As an biological tissue, muscle is classified in three main groups, that is, cardiac, smooth and skeletal mus-
cles, and is constructed by a highly hierarchical structure. The smallest contractile unit of a muscle cell is called sarcomere.
Contracting sarcomeres generate in a muscle a pulling force. In skeletal muscle, many in-series connected sarcomeres form a
myofribril, whereas bundles of myofibrils form a skeletal muscle fiber. The muscle fibers are embedded within an extracellular
matrix such that the exerted force can be transferred to the joint via the passive collagenous structure and the tendon(s). The
musculotendinous structure manifests viscoelastic behavior.

2.2.1 | Skeletal muscle architecture

Skeletal muscles are composed of muscle fibers that are mechanically coupled to each other by a network of extracellular con-
nective tissue. The extracellular connective tissue is mainly composed of collagen and elastin, and it is hierarchically orga-
nized in different structures called endomysium, perimysium, and epimysium. The endomysium is a dense sheath of collagen
fibers that envelops each muscle fiber and is connected to the basement membrane, which is part of the muscle fiber's cell
membrane. The perimysium divides the muscle into bundles of fibers, called fascicles. Its tough and relative thick structure
keeps the individual fibers together and provides the pathway for the major blood vessels and nerves running through the mus-
cle. The muscle as a whole is coated by the epimysium, which is a particularly tough woven network of thick collagen fibers.
The epimysium separates muscles from each other and is connected to the perimysium, cf. Figure 3.

The connective tissue serves several functions. Besides holding the fibers together and giving the muscle its shape, it con-
tains blood vessels and nerves. Furthermore, the connective tissue resists excessive stretching of the muscle and distributes
forces to minimize damage to the muscle fibers. The elasticity of the elastin and the wavy collagen bundles enable the muscle
belly to regain its shape when external forces are removed. Furthermore, the extracellular connective tissue plays a key role in
the force transmission from the muscle fibers to the tendons, for example, Huijing (1999, 2003), Monti, Roy, Hodgson, and
Edgerton (1999), Street (1983), Street and Ramsey (1965), Yucesoy, Koopman, Baan, Grootenboer, and Huijing (2003),
Yucesoy, Koopman, Huijing, and Grootenboer (2002).

Although all skeletal muscles are made up of the same components, viz. muscle fibers and extracellular connective tissue,
they come in different forms and sizes depending on their specific task. The muscles in the human body range from very
small, consisting of only a few hundred muscle fibers, to very large, consisting of more than a million fibers. The direction of
the muscle fibers is characterized by the underlying fascicle direction. Depending on the arrangement of their fascicles, mus-
cles are classified in distinct forms. In parallel-fibred muscles, for example, the fascicles run from tendon to tendon and are
aligned with the muscle's force-generating axis. If the directions of the fascicles form an angle to the muscle's line of action,
the muscle is called pennate, and the fascicles attach to aponeuroses, which run along each side of the muscle. Pennate mus-
cles can exhibit larger forces than parallel-fibred muscles of the same volume due to their higher effective or physiological
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cross-sectional area (PCSA), that is, the cross-sectional area perpendicular to the fascicle direction. However, the pennation
angle decreases the amount a muscle can shorten, as well as its contraction velocity. Furthermore, in large mammalian skeletal
muscles, muscle fibers might not span the entire length of the fascicle. They might be arranged in series or terminate
intrafascicularly (Heron & Richmond, 1993; Loeb et al., 1987; Richmond, MacGillis, & Scott, 1985; Young, Paul, Rodda,
Duxson, & Sheard, 2000).

2.2.2 | The structure of a skeletal muscle fiber

Muscle fibers itself are long, cylindrical-shaped cells with a diameter of approximately 50–80 μm. The most prominent struc-
tures within the muscle fibers are the myofibrils, which are parallel-aligned, rod-shaped units that are made up of repeating
sections called sarcomeres.

The sarcomere, or more precise the half-sarcomere, is the basic contractile unit of a muscle fiber. It contains thick fila-
ments, which consist primarily of the protein myosin, and thin filaments, which consist primarily of the protein actin. The
thick filaments are cross-connected by a fine, filamentous structure at one end of the half-sarcomere, the so-called M-disc.
The thick filament's other end is connected to titin filaments, which are fine and very elastic macromolecule linking the thick
filament to structure at the other end of the half-sarcomere, the so-called Z-disc, see Figure 4. It is believed that the titin fila-
ments act as a molecular spring and keeps the thick filament in its position. A hexagonal lattice of thin filaments surrounds
each thick filament. The thick and thin filaments interact via cross-bridges (XBs), that is, myosin molecular heads, which can
attach to a neighboring thin filament. The length of a sarcomere is about 2 μm.

2.2.3 | The function of a skeletal muscle fiber

A major contribution of our knowledge about skeletal muscle contraction is based on the observation that skeletal muscle
fibers exhibit a periodic microstructure, leading to the formulation of the sliding filament theory (Hanson & Huxley, 1953;

FIGURE 3 Structure of a skeletal muscle. Original image© by
OpenStax Anatomy and Physiology
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filament FIGURE 4 Structure of a sarcomere. On the left side, an image of
a sarcomere is shown, while the right side shows the schematic
structure of a sarcomere including thick, thin, and titin filaments as well
as the Z-discs and M-disc (Figure modified from Sameerb at
http://en.wikipedia.org/ with permission)
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Huxley & Hanson, 1954) and the observation the thin filaments and the thick filaments can form cross-links, leading to the
formulation of the cross-bridge theory (Huxley, 1957; Huxley, 1958; Huxley, 1969; Huxley, 1974).

In summary, the myosin heads of the thick filaments can attach to specialized binding sites on the thin filament (modulated
by Ca2+ ions as an second messenger, cf. Section 2.2.5) and form cross-links known as cross-bridges (XBs). After attachment,
the catalytic domain of the myosin head (S1 domain) can undergo a conformational change known as the power stroke and
which is responsible for active force production and contraction. Finally, the myosin head detaches from the thin filament and
the XB returns to the initial detached state. The repeated process of attachment, power-stroke and detachment is known as
cross-bridge cycle and is driven by ATP hydrolysis. If the length of the sarcomere is not constrained, the power stroke will
result in a relative motion between the thin and the thick filaments and thus leading to muscle contraction. In contrast, during
isometric conditions, that is, the length of the sarcomere remains constant despite potential external influences, the power
stroke is leading to an displacement of the myosin heads molecular spring (S2 domain) and thus results in active force produc-
tion. Macroscopically, this behavior can be observed by means of the force-velocity relation (cf. Figure 5), that is, the faster
the fiber shortens, the less force it can exert (Hill, 1938). During lengthening contractions, the generated force exceeds the iso-
metric force, cf. Figure 5.

Furthermore, the maximum isometric force a sarcomere can exert depends on the number of possible XB connections
between the thick and thin filaments, which is primarily governed by the regions of overlap between the thick and thin fila-
ments, that is, by the length of the sarcomere (Gordon, Huxley, & Julian, 1966). Figure 6 shows the experimentally deter-
mined force-sarcomere length relation of Gordon et al. (Gordon et al., 1966). While the classical geometrical filament overlap
model is capable to explain the isometric active force production for most sarcomere lengths, it underestimates the active mus-
cle force at very short sarcomere lengths (Ramsey & Street, 1940). More recently, Rode, Siebert, Tomakin, and Blackman
(2016) proposed that the isometric active force production at very short sarcomere lengths could be explained by sliding of
the thick myosin filaments through the Z-disks, leading to different filament overlap configurations.

The discovery of titin in the mid/late 1970s (Maruyama, 1976; Maruyama et al., 1977; Wang, McClure, & Tu, 1979) was
the next major contribution to the current understanding of skeletal muscle fibers function. It is generally accepted that titin
contributes to the passive forces of a skeletal muscle fiber and thus stabilize the sarcomeres (Funatsu, Higuchi, & Ishiwata,
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FIGURE 5 Normalized active force-length relationship derived
from the geometrical overlap of the thin and the thick filaments
(cf. Gordon et al., 1966). The gray color highlights the working range of
most of the sarcomeres

FIGURE 6 The influence of the contraction velocity on the force
generation of a skeletal muscle
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1990; Leonard & Herzog, 2010; Linke et al., 2002; Maruyama, 1976). While for a long period the active behavior of skeletal
muscle fibers was entirely attributed to calcium modulated actin-myosin interactions, more recently it was proposed that titin
is an adaptive spring (Labeit et al., 2003; Leonard, DuVall, & Herzog, 2010; Nishikawa et al., 2012; Noble, 1992; Rode,
Siebert, & Blickhan, 2009), modulated by the muscle activation, that is, the intracellular calcium concentration. The activation
modulated mechanical behavior of titin can explain phenomena like residual force enhancement (Abbott & Aubert, 1952;
Edman, Elzinga, & Noble, 1978; Edman, Elzinga, & Noble, 1982; Herzog, Lee, & Rassier, 2006; Herzog & Leonard, 2002)
and potentially optimize the metabolic costs of eccentric muscle contraction. The exact physiological behavior of titin is, how-
ever, still subject of current research (for a review see Herzog (2018)).

2.2.4 | Passive behavior of skeletal muscle tissue

The mechanical behavior of skeletal muscle tissue in which the tissue is not excited, that is, not active, is termed a skeletal
muscle's passive mechanical behavior. It reflects the aggregated mechanical behavior of nonexcited skeletal muscle fiber and
the extracellular matrix. Passive muscle tissue exhibits transversely isotropic material behavior (Morrow, Haut Donahue,
Odegard, & Kaufman, 2010; Nie, Cheng, Chen, & Weerasooriya, 2011; Takaza, Moerman, Gindre, Lyons, & Simms, 2013).
The response of the passive muscle tissue is attributed to both the extracellular connective tissue and the myofilaments, espe-
cially titin, within the sarcomeres of the muscle fibers (Prado et al., 2005). While it is often assumed that muscle tissue is
stiffer in fiber direction, for example, Morrow et al. (2010), Takaza et al. (2013), Böl, Kruse, Ehret, Leichsenring, and Siebert
(2012), and Nie et al. (2011) report a more compliant material behavior in the fiber direction compared to the cross-fiber direc-
tions. Furthermore, passive muscle tissue exhibits slightly viscoelastic behavior (Bosboom et al., 2001; Hoyt, Kneezel,
Castaneda, & Parker, 2008; Levin & Wyman, 1927; Van Loocke, Lyons, & Simms, 2008; Van Loocke, Simms, & Lyons,
2009). Furthermore, due to its high content of water, it is commonly considered to behave incompressible within the physio-
logical range (Böl, Ehret, Leichsenring, Weichert, & Kruse, 2014; Gindre, Takaza, Moerman, & Simms, 2013; Takaza et al.,
2013; Van Loocke, Lyons, & Simms, 2006).

2.2.5 | Excitation-contraction coupling

The complex signaling pathway leading from electrical excitation of a muscle fiber to its contraction is known as
excitation-contraction coupling (MacIntosh, Gardiner, & McComas, 2006; Sandow, 1952). The AP of the neuron is trans-
mitted to the muscle fiber at the neuromuscular junction. Starting from there, the AP propagates along the length of the
muscle fiber. The propagating signal triggers the release of calcium ions from an intracellular calcium storage called sarco-
plasmic reticulum (SR). The released calcium binds, amongst others, to the troponin-tropomyosin regulatory unit, enabling
XB cycling (cf. Section 2.2.3), that is, active force production and contraction. The excitation-contraction coupling in skel-
etal muscle fibers, together with the most prominent structures of the muscle fiber, is schematically represented in
Figure 7.

In detail, the AP, generated at the neuromuscular junction, not only propagates along the length of a muscle fiber, but it is
also conducted from the surface to the interior of the fiber by numerous, channel-like invaginations of the sarcolemma called
T-tubules. Embedded in the membrane of the T-tubules are dihydropyridine receptor (DHPR) channels that are sensitive to
changes in the membrane potential. The DHPR channels are mechanically linked via protein structures to the ryanodine recep-
tors (RyR) in the membrane of the SR. The SR is an extensive network of channels in the muscle fibers that stores large
amounts of calcium (Ca2+). The RyR is a Ca2+-channel consisting of four subunits. An AP entering the T-tubules activates
the DHPR channels, which will then induce the opening of the RyR in the membrane of the SR. When the RyR opens, large
amounts of Ca2+ will leave the SR and enter the cytosol, following their concentration gradient, since the free concentration
of Ca2+ in the cytosol is kept at a very low level in the resting state. The Ca2+-ions play a key role in muscle contraction
(Melzer, Herrmann-Frank, & Lüttgau, 1995). Once released into the cytosol, Ca2+ binds to troponin C, which is part of the
troponin-tropomyosin regulatory unit. The binding of two Ca2+ ions to troponin C yields a conformational change in the tro-
ponin molecule that removes the blocking tropomyosin from the thin filaments. This enables the formation of a XB connection
between the thick and thin filaments in the sarcomeres (for a detailed review on the molecular regulation of muscle activity
see Gordon, Homsher, and Regnier (2000)), leading to XB cycling (cf. Section 2.2.3).
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2.3 | The motor unit

After introducing the neural physiology, the skeletal muscle anatomy and the function of individual muscle fibers, this
section focuses on the key functional aspects of whole skeletal muscles that are relevant with respect to modeling the neuro-
muscular system. Most importantly, since electrical activation from one muscle fiber to adjacent ones is not observed in skele-
tal muscle, each fiber must have its own neuromuscular junction. While it is generally assumed that each fiber is innervated
by exactly one αMN, there is some electro-physiological evidence that a few doubly innervated fibers (fibers with multiple
motor endplates and polyneuronal innervation) also exist (Lateva, McGill, & Johanson, 2002; McGill & Lateva, 2011). Fur-
thermore, while all muscle fibers belonging to one MU have similar properties, the contractile and metabolic properties of dif-
ferent motor units vary heavily.

2.3.1 | Properties of motor units

The differences observed in the contractile and metabolic properties of skeletal muscle fibers inspired the distinction of dif-
ferent MU types. To this end, MUs have been classified based on their speed of contraction, the handling of intracellular
Ca2+-ions, or their resistance to fatigue during prolonged contractions. For example, muscle fibers can be classified based
on the expression of certain isoforms of the myosin heavy chain, which determines the rate of XB cycling, and hence, the

FIGURE 7 Schematic representation of the excitation-contraction coupling in a muscle fiber (Adapted from Röhrle, Neumann, and
Heidlauf (2016))
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speed of contraction. Moreover, based on their metabolic properties, aerobic Type-I (slow-twitch) fibers can be distin-
guished from their fast-twitch counterparts (Type-II fibers), which, in addition to the oxidation of fats and carbohydrates,
use an anaerobic metabolism. Based on a certain stimulation protocol, Burke, Levine, Tsairis, and Zajac (1973) distin-
guished slow-twitch units (Type S) and fast-twitch units (Type F). The group of Type-F units was further split into fatigue-
resistant (Type FR) and fast-fatigable (Type FF) units (Burke et al., 1973).

In general, the smallest MUs, which are recruited first, exert the smallest forces, exhibit the slowest speed of contraction,
and show the least amount of fatigue. Conversely, the largest MUs, which are recruited last, exert the largest forces, have the
highest speed of contraction, and are most affected by fatigue. However, the physiological properties of human MUs do not
cluster into discrete groups, but rather exhibit a continuous distribution from one extreme to the other (Duchateau &
Enoka, 2011).

2.3.2 | Types of contractions

The most simple contraction is a single twitch, which is the motor unit's response to a single AP discharged by the MN. The
shape of a twitch can be well described by the impulse response to a critically damped second-order system (Fuglevand et al.,
1993). The total duration of a muscular AP, from depolarisation to the point where the resting state is restored, is about
2–5 ms. In contrast, the duration of a twitch from the first rise to complete relaxation varies from about 200 ms to more than
500 ms depending on the MU type. Thus, if subsequent stimulations are applied before the actively generated twitch force of
the fiber returned to its initial value, a summation of the resulting twitches is observed (fused twitches). Obviously, the
increase in force following subsequent stimulations is not unlimited, but after a number of stimulations, a peak force is
reached. The value of the peak force depends on the stimulation frequency—it increases with rising frequency up to a certain
optimal frequency, beyond which, no further increase in force can be generated. This form of contraction is referred to as
tetanic contraction. Peak firing frequencies during isometric contractions of human muscles are approximately 45 Hz
(Fuglevand et al., 1993).

2.4 | Motor control

During voluntary movement, the central nervous system controls the activity of the individual motor units in the different
muscles by modulation of the synaptic inputs to motor neurons. MN is the controller of a transducer, the motor unit, which
converts synaptic currents into contractile force (Heckman & Enoka, 2012). The sources of synaptic inputs to motor neuron
pools originate from several supra-spinal and spinal centers, sensory receptors and recurrent pathways (see also Section 2.1.4).
For example, a single αMN can receive up to 60,000 synaptic projections from excitatory and inhibitory pathways (Ulf hake &
Mulheim, 1988). Due to integrate-and-fire process of the motor neurons and the stochastic nature of these inputs, the MN dis-
charges during natural movements contain a certain degree of variability in the interstimulus interval (time between two suc-
cessive MN discharges) (Clamann, 1969). This implies that the discharge characteristics of MNs contain information about
the neural control signal (Farina, Negro, Muceli, & Enoka, 2016). For these reasons, for example, a significant linear associa-
tion between the control oscillations in the primary motor cortex and the discharge times of the motor units can be found
experimentally (Negro & Farina, 2012). The force generated by the muscles is the result of the summation of the activity of
all motor neuron discharges, also called neural drive to the muscles (Farina, Negro, & Dideriksen, 2014). Because of the sum-
mation process, in order to provide an efficient motor control, a proportion of the synaptic inputs are shared across MNs in the
same and between different motor nuclei (Ishizuka, Mannen, Hongo, & Sasaki, 1979; Lawrence, Porter, & Redman, 1985).
The presence of shared synaptic inputs in the motor pools determines a significant level of correlation between the discharge
times of different motor units during voluntary contractions (De Luca & Erim, 1994; Negro & Farina, 2012; Semmler, 2002).
The quantification of the correlation between motor unit spike trains has been traditionally separated in low-frequency
(<8 Hz) common oscillations (common drive) and high frequency components (short-term synchronization). Due to the low-
pass characteristics of the muscle contraction (Baldissera, Cavallari, & Cerri, 1998), only the shared low-frequency oscilla-
tions are relevant for force generation (Farina & Negro, 2015). Despite the multifunctional roles and control properties of dif-
ferent muscles, it has been shown in particular that their motor pool receives a similar and large proportion of (>60%)
common low-frequency components in their synaptic inputs (Negro et al., 2016). Therefore, the majority of the synaptic inputs
to the motor neuron pools in the functional bandwidth of muscle contraction is shared and this provides a simple scheme for
motor control (Thompson et al., 2018). On the other hand, shared synaptic input in higher bandwidths and independent inputs
do not have significant implications in the generation of force, in particular at moderate to high force levels (Castronovo,
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Negro, Conforto, & Farina, 2015; Dideriksen, Negro, Enoka, & Farina, 2012; Farina et al., 2014; Negro et al., 2016). For
these reasons, variations in the accuracy of the generated force during challenging task and/or activation of sensory inputs is
reflected mainly in the correlation of the low-frequency oscillations of the motor neuron discharges (Laine, Yavuz, & Farina,
2014; Yavuz et al., 2015).

2.5 | Further reading

An elaborate description of the nervous system and its components, the neurons, can be found, for example, in Kandel et al.
(2000). MacIntosh et al. (2006) give full account on the anatomy and physiology of skeletal muscles and provides some
details on the motor neurons (αMNs). Extensive reviews of the motor unit as the functional unit of the neuromuscular system
have been carried out by Heckman and Enoka (2004, 2012). Furthermore, the mechanisms involved in human movement,
from neural control to muscle mechanics, are comprehensively described in Enoka (2008).

3 | REVIEW ON STATE-OF-THE-ART APPROACHES IN MODELING THE
NEUROMUSCULAR SYSTEM

The above constitutes a short summary of the complex anatomy and physiology of the neuromuscular system and provides
the context for the respective computational models. From a modeling perspective, there exist two different modeling
approaches, that is, phenomenological and biophysical approaches.

Phenomenological models are based on experimentally determined input–output relations. They are often simpler, compu-
tationally more efficient, and rely on fewer parameters than their biophysical counterparts, which aim to directly model the
biophysical processes by taking into account the underlying anatomy and physiology. Within the range, in which the phenom-
enological model has been fitted to experiments, phenomenological models can accurately reproduce the system's behavior.
However, as they are fitted to input–output relations, phenomenological models cannot provide a full understanding of the
underlying physiology. This is true, irrespectively of the system. In contrast, biophysical models are built on the existing
knowledge of the physiology of the respective system, and hence, have the ability to be utilized within in silico laboratories to
investigate the behavior of the modeled system under normal and pathological conditions. To mimic the macroscopic system
behavior in a comprehensive way, biophysical models need to represent all relevant components and structures through
biophysically meaningful (state) variables. Therefore, biophysical models often depend on a multitude of parameters, some of
which are difficult or even impossible to determine accurately. Note, that (constitutive) relations between different state vari-
ables can still be modeled in a phenomenological way, for example, representing the mechanical behavior of a protein by a
nonlinear spring or modeling an ion channel as an variable resistor.

While each modeling approach has its own advantages and disadvantages, deriving or postulating a model requires
assumptions. These have to be kept in mind at all times. No model should ever be used to make predictions for cases that vio-
late any of the assumptions made within the derivation process.

Based on the constitution of the neuromuscular system, existing mathematical models either focus on the generation of
force in the muscle fibers or the muscle's control through the coordinated operation of the motor neurons as an ensemble.
Hence, we will first provide a review on modeling approaches for the individual components of the neuromuscular system, for
example, the motor neuron pool, the skeletal muscles, musculoskeletal system models, or the electrical state of a muscle (here,
EMG), before selecting particular models and stitching them together to a neuromuscular system model.

3.1 | Motor neuron pool model

Several phenomenological and biophysical models have been proposed for the simulation of the motor neuron pool. Phenome-
nological models are based on the characteristics of motor neuron discharges that have been found experimentally. For exam-
ple, based on the relation between the synaptic input to a motor neuron and its output discharge rate, Heckman and Binder
(1991) and Fuglevand et al. (1993) have proposed powerful phenomenological models for animal and human motor neurons,
respectively. These models have been used extensively for the testing of neurophysiological hypotheses or for interpreting
experimental data (Dideriksen et al., 2012; Dideriksen, Negro, Enoka, & Farina, 2011; Dideriksen & Farina, 2013; Dideriksen,
Farina, Bækgaard, & Enoka, 2010; Jones, Hamilton, & Wolpert, 2002; Enoka et al., 2003; Yao, Fuglevand, & Enoka, 2000).
However, one important limitation of phenomenological motor neuron models is the fact that they are not capable of naturally
describing the membrane dynamics of the motor neurons, where nonlinear behavior of αMNs predominantly originates.
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To overcome these limitations, several biophysical models have been proposed (Booth, Rinzel, & Kiehn, 1997; Cisi &
Kohn, 2008; Elias, Chaud, & Kohn, 2012; Elias & Kohn, 2013; Negro & Farina, 2011; Taylor & Enoka, 2004). These are
capable of integrating synaptic and/or common inputs on the motor neuron membrane level. This is done by adopting the
Hodgkin and Huxley formalism, derived from their experiments on the giant axon of the squid (Hodgkin & Huxley, 1952).
Using this formalism, it has been possible to progressively increase the type and the number of the ion channels in multiple
compartments of these realistic motor neuron models. Interestingly, the biophysical description of the motor neuron behavior
inherently accounts for the size principle of motor neuron recruitment (Henneman et al., 1965a, 1965b) (small, low-threshold
motor neurons are recruited before larger motor neurons with higher excitation threshold) and the “onion-skin” property
(De Luca & Hostage, 2010; De Luca, LeFever, McCue, & Xenakis, 1982a) (for a certain level of synaptic input to the motor
neuron pool, low-threshold motor neurons have higher discharge rates than high-threshold motor neurons). Additionally, these
complex motor neuron descriptions were able to reproduce and help to interpret important results in animal (Miles, Dai, &
Brownstone, 2005) and human (Powers & Heckman, 2015) experiments. Under the favor of the increased computational
power and the flexibility of the simulator environments, it has been possible to create models based on the three-dimensional
reconstructed morphology of experimentally recorded motor neurons (Elbasiouny, Amendola, Durand, & Heckman, 2010).
These models provide the unique possibility to investigate the neural alterations arising from pathologies of the neuromuscular
system.

More recently, biophysical neuromuscular models have been proposed to describe the link between neural activity and
force generation (Allen & Elbasiouny, 2018; Dideriksen, Negro, & Farina, 2015; Farina et al., 2016; Nagamori, Laine, &
Valero-Cuevas, 2018; Negro et al., 2016; Watanabe et al., 2013; Williams & Baker, 2009). Such models are an evolution of
the previously proposed alpha motor neuron models and usually include additionally the simplified simulations of supraspinal
pathways (motor cortex, brain stem, etc.), detailed spinal cord networks (excitatory and inhibitory interneurons, gamma motor
neuron, afferent projections, etc.) and the musculotendon unit (proprioception, joint dynamics, etc.). Recent applications of
these biophysical neuromuscular models include the analysis of the force variability during steady isometric contractions
(Dideriksen et al., 2015; Farina et al., 2014; Farina & Negro, 2015; Negro et al., 2016; Negro & Farina, 2011; Watanabe
et al., 2013), postural sway (Elias, Watanabe, & Kohn, 2014) and nonlinear control of force oscillations (Watanabe & Kohn,
2015, 2017).

3.2 | Skeletal muscle models

The APs generated by the motor neurons trigger the force generation in the skeletal muscle fibers. There exist various different
methods to predict the skeletal muscle activity due to neural stimulation, that is, motor control, for example, analytical
methods (Section 3.2.1), phenomenological Hill-type (Section 3.2.2) or continuum-mechanical (Section 3.2.3) approaches,
biophysical Huxley-type (Section 3.2.4), or multiscale, multiphysics (Section 3.2.5) skeletal muscle models. Note, although
we distinguish modeling skeletal muscle mechanics into these categories, a clear separation between these models does not
exist.

3.2.1 | Analytical models and superposition

Heckman and Binder (1991) proposed a phenomenological model based on the input–output behavior of motor units (the
muscle fibers innervated by a single motor neuron) during an isometric contraction (the force-frequency relation). Fuglevand
et al. (1993) proposed probably the most popular model for linking motor control with muscle force generation of a single
motor unit. They use the impulse response of a critically damped, second-order system to represent the twitch force and pro-
vide for their system an analytical solution. This simplified motor unit force model has been adopted and enhanced by several
researchers, see, for example, Cisi and Kohn (2008) or Dideriksen et al. (2010, 2011, 2012). The resulting overall skeletal
muscle force is then obtained by simply adding the individual muscle force units, that is, linearly superimposing the MU
forces and hereby entirely ignoring the underlying heterogeneity and its functionality.

3.2.2 | Hill-type skeletal muscle models

In contrast to the models described in Section 3.2.1, Hill-type muscle models focus on describing the dynamics of muscle con-
traction (Delp et al., 2007; Günther, Schmitt, & Wank, 2007; Häufle, Günther, Bayer, & Schmitt, 2014; Lloyd & Besier,
2003a; Pandy, 2001a; Siebert, Rode, Herzog, Till, & Blickhan, 2008; Till, Siebert, Rode, & Blickhan, 2008; van Ingen
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Schenau, Bobbert, Ettema, de Graaf, & Huijing, 1988; Zajac, 1989). Hill-type models are based on the description of Hill
(1938). Hill-type models are phenomenological formulations of the macroscopic muscle physiology that superpose a length-
dependent passive force (stress–strain relation in the absence of neural stimulation) with a force that results from the neural
activation of the muscle (in the following termed active force) and depends on the muscle's length and contraction velocity.
Due to their simplicity, computational effectiveness, and the low number of involved parameters, Hill-type muscle models are
commonly used to interpret experimental data or describe movement and forces of (parts of) the muscular system within the
framework of multibody dynamics.

Hill-type muscle models are typically used to describe whole muscle behavior (Zajac, 1989), although they have also been
used to model single sarcomeres, and, by in-series arranging multiple Hill-type models, also myofibrils and muscle fiber seg-
ments (Günther, Röhrle, Haeufle, & Schmitt, 2012; Morgan, Mochon, & Julian, 1982; Stoecker, Telley, Stüssi, & Denoth,
2009). While these approaches can describe local changes in sarcomere length, they cannot capture the behavior of a fiber
within a three-dimensional muscle tissue. This is due to the fact that the passive forces in isolated myofibrils and single muscle
fibers are mainly attributed to the titin filament (Denoth, Stüssi, Csucs, & Danuser, 2002; Horowits, 1992), unlike in muscle
tissue, where the extracellular matrix contributes additional passive forces (Prado et al., 2005). Furthermore, in isolated myofi-
brils and single muscle fibers, force transmission can only take place along their length. In whole muscle, however, force
transmission also occurs in lateral direction (Huijing, 1999).

Hill-type models, as well as analytical models, exhibit significant drawbacks, since they lump together all functional and
structural properties of a muscle into a few parameters and essentially ignore any spatial heterogeneity. Hill-type models, for
example, are described at a point in space through spring constants, damper properties, and one activation level, and the calcu-
lated muscle force acts along a predefined line of action. Furthermore, since these models lack a volumetric representation of
the skeletal muscle, they are not capable of properly taking into account structural properties, for example, complex fiber
architectures, motor unit fiber distributions, or the interaction of a skeletal muscle with surrounding tissue, for example, bones,
adjacent muscles, or fat tissue. Moreover, activation history, fatigue, post-tetanic potentiation, doublet potentiation, and serial
dependence of twitch responses are—although not necessarily—typically only integrated in a phenomenological way
(Fuglevand et al., 1993; Perreault, Heckman, & Sandercock, 2003; Sandercock & Heckman, 1997).

In summary, for an adequate representation of fibers within the muscle tissue and its mechanical implications on the behav-
ior of the whole muscle, a three-dimensional model based on continuum-mechanical principles is required.

3.2.3 | Continuum-mechanical models

Based on the argument that Hill-type models inaccurately predict muscle forces in complex geometries, continuum-
mechanical models based on the finite-elasticity theory have been proposed (Blemker, Pinsky, & Delp, 2005; Böl & Reese,
2008; Ehret, Böl, & Itskov, 2011; Meier & Blickhan, 2000; Röhrle & Pullan, 2007; Sánchez, Lloyd, Fels, & Abolmaesumi,
2014; Zuurbier & Huijing, 1992). The need for continuum-mechanical models can be seen in particular when modeling com-
plex muscular structure like the tongue with its complex and interwoven fiber structure (Kieser et al., 2014; Stone et al., 2018;
Wang, Nash, Pullan, Kieser, & Röhrle, 2013).

Any continuum-modeling approach requires constitutive relations, mathematically representing the original mechanical
material behavior. Thereby, like many other biological tissues skeletal muscles are assumed to be incompressible. Further-
more, the mathematical description of the passive material behavior is typically based on a transversely isotropic, hyper-
elastic/viscoelastic macroscopic continuum-mechanical constitutive framework (Blemker et al., 2005; Böl, Sturmat, amd
Weichert, & Kober, 2011; Johansson, Meier, & Blickhan, 2000). Note that the passive material description often neglects vis-
coelastic effects (Bosboom et al., 2001; Van Loocke et al., 2008; Van Loocke et al., 2009). Partial justification for doing so is
given by Tian, Hoang, Gandevia, Herbert, and Bilston (2011), who demonstrated that the viscous effects in passive muscle tis-
sue are rather small.

While the passive behavior certainly plays a significant role in skeletal muscle tissue, the key mechanical contribution is,
however, provided by the active (contractile) material behavior. To adequately model the active behavior of skeletal muscle
tissue, there exist two different modeling frameworks in the literature. These are the active stress approach, for example,
Blemker et al. (2005), Johansson et al. (2000), Martins, Pires, Salvado, and Dinis (1998), McCulloch, Waldman, Rogers, and
Guccione (1992), Nash and Hunter (2000), and the active strain approach, for example, Kondaurov and Nikitin (1987), Nar-
dinocchi and Teresi (2007), Taber and Perucchio (2000). Historically, constitutive modeling of skeletal muscle tissue has been
decisively inspired by the cardiac tissue modeling community. Currently similar constitutive modeling approaches are applied
to simulate all types of muscle tissue (i.e., skeletal, cardiac and smooth muscle tissue), however, care should be taken, since
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even though different muscle tissues are constituted by similar classes of proteins, all muscle types still show significant struc-
tural and functional differences.

The most common constitutive modeling framework for modeling active contractile behavior of skeletal muscles is the
active stress approach (Blemker et al., 2005; Johansson et al., 2000; Martins et al., 1998; Röhrle, Davidson, & Pullan, 2008).
In detail, it is assumed that the overall stress-tensor can be obtained by adding an active contribution to the hyper-
elastic/viscoelastic passive stress tensor. The active stress tensor is thereby constituted by a scalar-valued stress component
(depending on the local activation, the current length and velocity) and a structural tensor taking into account the direction of
stress generation, for example, to contribute for the biophysical property that the active stress predominantly acts along the
muscle fiber direction.

Alternatively, the active strain approach is based on a multiplicative split of the deformation gradient tensor, which has
been initially developed in the field of elasto-plasticity (Lee, 1969). This approach has been utilized to simulate actively con-
tracting skeletal muscles, for example, by Ehret et al. (2011), Hernández-Gascón, Grasa, Calvo, and Rodríguez (2013), or
Sharifimajd and Stålhand (2013) Within the active strain approach, the deformation gradient tensor is multiplicatively
decomposed into an active (inelastic) component and an elastic part. Note that the active deformation gradient tensor can be
interpreted as a shift of the reference configuration and thus stores no energy. As the active stress tensor, the constitutive
description of the active deformation gradient tensor has to incorporate the local activation, length, velocity and anisotropy of
the tissue. Both the active stress approach and the active strain approach are valid from a macroscopic and phenomenological
point of view, that is, both methods can be fitted in such a way that they reproduce the same macroscopic data. While some
authors pointed out that the active stress approach might be beneficial from a mathematical point of view, since it is more
straight forward to enforce convexity and thus guarantee the existence of a unique solution of the mathematical problem
(Ambrosi & Pezzuto, 2012; Rossi, Ruiz-Baier, Pavarino, & Quarteroni, 2012), the active stress approach is more intuitive and
has, for example, proven to be a useful method to study knock-out conditions (Heidlauf, Klotz, Rode, Siebert, &
Röhrle, 2017).

Key advantages of continuum-mechanical models are, for example, the ability to take into account complex muscle fiber
distributions (Blemker & Delp, 2005; Ramasamy et al., 2018), to integrate regional activation properties, or to dynamically
generate lines of action (Röhrle & Pullan, 2007). The existence of relatively simple constitutive equations makes phenomeno-
logical continuum-mechanical modeling frameworks an elegant tool for predicting the mechanical behavior of skeletal mus-
cles subject to external constraints such as its embedding (other muscles or bones), activation, or impact. This is true even for
complex biological tissues. However, the accuracy of phenomenological continuum models always depends on the quality of
the available macroscopic (experimental) data. Macroscopic data should ideally consider mixed loading conditions and differ-
ent levels of activation. This is essential to reproduce the original mechanical tissue properties for (all) different modes of
deformation.

Obtaining a comprehensive set of experimental data suitable for fitting material parameters of constitutive equations, how-
ever, is extremely challenging—even under in vitro conditions. Designing experiments to obtain sufficient experimental data
in vivo poses numerous challenges (Bilston & Tan, 2015). While shearwave elastography (Ateş et al., 2015; Ateş et al., 2018;
Bilston & Tan, 2015), intramuscular pressure (Ateş et al., 2018), or measurements during surgical interventions (Ateş,
Temelli, & Yucesoy, 2013) can provide some insights into mechanical behavior of skeletal muscles in vivo and in humans,
most experimental data, if available, stem from animal experiments, are often restricted to uniaxial loading conditions, for
example, Hawkins and Bey (1994), Zajac (1989), or only consider the passive state of the tissue, for example, Böl et al.
(2012), Takaza et al. (2013), Van Loocke et al. (2006). Furthermore, biological tissue generally exhibits a high degree of
inter- and intra-subject variability. This is in contrast to classical engineering materials. Due to the high variability of the
mechanical properties a single set of material parameters is essentially useless as it is not representative at all.

While continuum-mechanical skeletal muscle models have certain advantages with respect to incorporating complex struc-
tural properties, they also have disadvantages. For example, phenomenological constitutive relations typically lump together
the mechanical properties of different structures such as the myofilament skeleton or the extracellular connective tissue. Thus,
the material parameters obtained by fitting the constitutive equations have no direct biophysical meaning and, hence, cannot
be related to the underling microstructure.

3.2.4 | Biophysical models of excitation-contraction coupling

Biophysical modeling of muscle cells has been pioneered by Huxley (1957, 1974) by summarizing the ideas of the sliding fila-
ment theory and the XB theory (Hanson & Huxley, 1953; Huxley & Hanson, 1954; Huxley & Niedergerke, 1954; Huxley,
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1957) within a mathematical model. The model of Huxley (1957) assumes a population of (independent) cross-bridges that
can be either in a detached state or an attached, force producing state. Thereby the kinetics of the state transitions depend on
the mechanical strains of the cross-bridges, mathematically resulting in a set of coupled partial differential equations (PDEs).
Subsequent work refined Huxley's modeling approach, for example, by increasing the number of cross-bridge states and refin-
ing the strain dependent kinetic state transitions (a review can, for example, be found within Smith, Barclay, and Loiselle
(2005)). Furthermore, the work of Hill (1989), Hill, Eisenberg, Chen, and Podolsky (1975) provided a thermodynamically
self-consistent framework, which enabled to relate the kinetic behavior of cross-bridges to muscle energetics. Therefore, bio-
physical Huxley-type models have been successfully applied to study the molecular mechanisms of force development and
transient effects caused by length perturbations. Furthermore, to avoid the complexity of solving PDEs, approximations can
be formulated in terms of ordinary differential equations (ODEs) in time, see, for example, the distributed moments approach
of Zahalak (1981).

Besides biophysical descriptions of cross-bridge dynamics, biophysical models of other parts of the complex signaling
pathway from electrical stimulation to force generation in skeletal muscle fibers have been developed. For example, based on
the ground-breaking work of Hodgkin and Huxley (1952), Adrian and Peachey (1973) proposed a model of the membrane
electrophysiology of muscle fibers. This model was extended by Wallinga et al. (1999) to a multicompartment model of the
ionic currents crossing the T-tubule membrane and the sarcolemma of a muscle fiber. Based on a similar approach, Cannon,
Brown, and Corey (1993) utilized a Hodgkin–Huxley model to simulate myotonia and paralysis caused by incomplete inacti-
vation of sodium channels.

Within the excitation-contraction pathway, the intracellular calcium concentration serves as an second messenger enabling
cross-bridge cycling. Calcium is also expected to modulate remodeling within the muscle fibers (Bassel-Duby & Olson,
2006). Mathematical models of the intracellular calcium dynamics have been introduced in the 1980s (Cannell & Allen, 1984;
Gillis, Thomason, Lefèvre, & Kretsinger, 1982) and subsequently refined/adopted (Baylor & Hollingworth, 1998; Konishi,
1998; Shorten et al., 2007).

While there exist multiple biophysical models focusing on specific aspects of muscle contraction, only few models con-
sider the entire excitation-contraction pathway and typically represent cardiac myocites (Hilgemann & Noble, 1987; Winslow,
Rice, Jafri, & Marban, 1999). To simulate the entire excitation-contraction pathway in skeletal muscle fibers, Shorten et al.
(2007) coupled a simplified version of Wallinga's model of the membrane electrophysiology (Wallinga et al., 1999) to a model
of calcium release from the sarcoplasmic reticulum (Ríos, Karhanek, Ma, & González, 1993), a model of intracellular calcium
dynamics (Baylor & Hollingworth, 1998), and an extended version of the cross-bridge dynamics model of Razumova,
Bukatina, and Campbell (1999). Furthermore, the model of Shorten et al. (2007) includes a description of metabolic fatigue
based on the accumulation of inorganic phosphate in the sacroplasm.

Note that there exists a wide class of similar (sub-) cellular, biophysical muscle models focusing on aspects like metabo-
lism, the behavior of individual ion channels or gene regulation. However, a detailed review of all existing models is beyond
the scope of this manuscript (for an overview see, e.g., the models repository on a platform like www.cellml.org).

3.2.5 | Multiscale, multiphysics models

To incorporate such detailed biophysical descriptions into macroscopic volumetric models, multiscale, multiphysics models,
which link macroscopic continuum mechanics to the microstructure and molecular kinetics, need to be considered. In contrast
to single-scale phenomenological models, biophysical multiscale models are capable to relate microstructural changes and
macroscopic deformation. If in addition, one incorporates AP-induced cross-bridge dynamics within active stresses, for exam-
ple, by solving Huxley-type myofilament models (Heidlauf & Röhrle, 2014; Röhrle et al., 2008) and coupling them to macro-
scopic deformations, that is, macroscopic mechanics, one obtains as for the case of the chemo-electro-mechanical models
proposed by Röhrle et al. (2008) multiscale, multiphysics skeletal models.

The list of applications benefiting from multiscale models is long. For example, anatomically-accurate electro-
physiological models can be used to investigate the electro-physiological properties of denervated muscles following func-
tional electrical stimulation (Kin, Trew, Pullan, & Röhrle, 2012). Furthermore, microstructural informed multiscale
approaches, which, for example, incorporate microscopic properties of connectives tissues, such as the ones highlighted by
Lanir (1979, 1983), are desirable for investigating, for example, experimentally observed changes in the mechanical properties
due to distrophies (Hu & Blemker, 2015) or Botulinum toxin type A injections (Ateş & Yucesoy, 2014; Ateş &
Yucesoy, 2018).
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Macroscopic continuum-mechanical models (no matter if phenomenological or biophysically informed) are only capable
of predicting the average deformations of a smeared homogenized material. Applications like predicting muscle injuries, how-
ever, might also require local maxima of the displacement field within the heterogeneous microstructure. To overcome such
limitations in continuum models, micromechanical continuum models have been developed (Sharafi & Blemker, 2010;
Sharafi & Blemker, 2011; Virgilio, Martin, Peirce, & Blemker, 2015). The work by Virgilio et al. (2015) uses, for example
microstructural finite-element models of skeletal muscle tissue to study pathological conditions such as muscular dystrophies.
In these models, the different constituents, that is, the muscle fibers and the extracellular matrix, are spatially resolved and
coupled to each other. While these models provide valuable insights into the mechanics of the underlying microstructure, they
also require constitutive material descriptions for each constituent. This often poses additional challenges in obtaining suitable
experimental data.

The integration of such microstructural properties can be achieved by employing homogenization theories. Macroscopic
and microscopic continuum models, for example, can be unified by means of the FE2-method (Miehe, Schröder, & Schotte,
1999; Schröder, Schröder, & Hackl, 2014; Smit, Brekelmans, & Meijer, 1998). To the best knowledge of the authors, this
methodology, however, has not been applied to model the mechanics of skeletal muscle tissue. The FE2-method is computa-
tionally very expensive such that novel homogenization techniques need to be investigated. Such methods are challenging and
subject of current research (Bleiler, Ponte Castañeda, & Röhrle, 2019; Spyrou, Agoras, & Danas, 2017).

For modeling the neuromuscular system, it is important to consider the entire physiology (cf. Section 2.2) and not only
mechanical aspects. To do so, the excitation-contraction pathway of Shorten et al. (2007) has been coupled to bioelectrical
field equations and a continuum-mechanical constitutive equation by Röhrle and co-workers (Röhrle, 2010; Röhrle et al.,
2008; Röhrle et al., 2012; Röhrle, Sprenger, Ramasamy, & Heidlauf, 2013) to simulate the propagation of APs along muscle
fibers and the force generation and deformation of muscle, respectively. The resulting model is a multiscale, multiphysics skel-
etal muscle model that can be linked to a motor neuron model; for example the model of Fuglevand et al. (1993) has been used
to drive the simulated muscle contractions by assuming a one-by-one relation between αMN APs and muscle fiber APs
(Röhrle et al., 2012). In order to simulate functional electrical stimulation, Kim, Davidson, Röhrle, Soboleva, and Pullan
(2007) established an anatomical detailed model of the nerve trunk connecting the MNs and the muscle fibers, and which con-
siders the spatial propagation of APs along the nerve. While the original model of Röhrle and co-workers was limited to iso-
metric contractions, subsequent works established a fully coupled and flexible modeling framework (Heidlauf & Röhrle,
2013; Heidlauf & Röhrle, 2014) embracing neural inputs, feedback mechanisms, and force generation and EMG generation
during nonisometric conditions. Furthermore, the overall modeling framework is easily extensible to include additional bio-
physical details or physiological hypothesis and has for example been used to study residual force-enhancement based on cal-
cium modulated actin-titin interactions (cf. Section 2.2.3) (Heidlauf et al., 2016; Heidlauf et al., 2017).

While the works of Röhrle and co-workers tried to establish an integrated physiological model of the neuromuscular sys-
tem, there exist other multiscale, multiphysics models focusing on individual aspects of skeletal muscle physiology. For exam-
ple, Hernández-Gascón et al. (2013) coupled a continuum mechanical muscle model to a phenomenological description of the
excitation-contraction coupling pathway, however, neglected muscle recruitment on the motor unit level and the spatial propa-
gation of action potentials. Furthermore, Fernandez, Buist, Nickerson, and Hunter (2005) and Böl, Weikert, and Weichert
(2011) used similar modeling approaches, additionally taking into account the spatial propagation of action potentials. How-
ever, those models still fail to simulate realistic recruitment scenarios, since they do not resolve individual motor units.

Considering volumetric muscle models, neural control has only been considered by unidirectional coupling and by
employing phenomenological models, for example, by using the Fuglevand model to predetermine the motor unit firing times
(Röhrle et al., 2012). The bidirectional coupling of the multiscale chemo-electro-mechanical muscle models (Heidlauf &
Röhrle, 2014) and biophysical models of the motor neuron pool (Negro & Farina, 2011), that is, including sensory feedback,
is feasible, yielding an integrated multiscale and multiphysics model of the neuromuscular system (Heidlauf, Negro, Farina, &
Röhrle, 2013).

3.3 | Musculoskeletal system modeling

Almost all simulations of (parts of) the musculoskeletal system appeal to multibody simulation frameworks. In these frame-
works, the mechanical behavior of skeletal muscles and the corresponding tendons are typically modeled with spatially
lumped Hill-type skeletal muscle models (cf. Section 3.2.2). The respective lines of action are typically defined through a
straight line between the muscle-tendon unit's insertion and its origin. To appropriately capture the muscle lever arms, in par-
ticular of muscle-tendon units wrapping around a joint, the respective lines of action are diverted through wrapping surfaces
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or via points (Charlton & Johnson, 2001; Garner & Pandy, 2000; Scholz, Sherman, Stavness, Delp, & Kecskeméthy, 2016;
Zarifi & Stavness, 2017). Multibody musculoskeletal modeling provides a method to investigating movement statics and
dynamics by also considering the underlying muscle forces (Damsgaard, Rasmussen, Christensen, Surma, & De Zee, 2006;
Pandy, 2001a). Multibody musculoskeletal simulations are mostly based on inverse dynamics using an optimization criteria,
for example, minimal squared muscle activation sum or minimal metabolic cost of transport, to determine muscle activation
and force distribution given a particular motion (Anderson & Pandy, 2001; Rasmussen, Damsgaard, & Voigt, 2001). These
models aim to understand movement disorders or to estimate muscle activation strategies and force distributions for specific
conditions (Sartori et al., 2017). Although this approach provides repeatable muscle force patterns that may be valid in specific
conditions, its optimization approach omits the nonlinear and context-dependent (time, training, fatigue, pathology, etc.)
dynamics of the neuro-musculoskeletal system as a whole. Those vary strongly across subjects/patients. Alternatively, one can
also integrate into the musculoskeletal model formulations unique muscle activation captured, for example, from experimental
EMG recordings, that is, to employ forward-dynamics simulations to predict motion from neural input. Such EMG-driven
musculoskeletal models were used to blindly estimate the multimuscle joint torque function, that is, without any tracking
mechanism that accounts for prediction errors (Lloyd & Besier, 2003a; Sartori, Reggiani, Farina, & Lloyd, 2012; Sartori,
Yavuz, & Farina, 2017). It is noteworthy that these modeling approaches uses experimental data to simulate muscle force
under specific conditions while providing the possibility for real time analysis of neuro-musculoskeletal functions in vivo
(Durandau, Farina, & Sartori, 2018).

If musculoskeletal system modeling frameworks that appeal to volumetric skeletal muscle representations do exist at all,
then they are typically found in computer animations (Lee, Sifakis, & Terzopoulos, 2009). The main aim of these models is to
achieve realistically looking movement fast. They do that by ignoring most of the underlying biophysical principles of skeletal
muscle mechanics. Three-dimensional (continuum-mechanical) musculoskeletal system models that aim to resolve the under-
ling physical behavior are extremely rare. Fernandez and Hunter (2005), for example, investigated the wrapping of muscles
around the knee joint using a continuum-mechanical musculoskeletal muscle model following an inverse-dynamics approach,
that is, prescribing the motion of the skeleton as well as the respective muscle activations to determine contact forces due to
muscle wrapping around the knee. One of the first forward-dynamics simulation of a musculoskeletal system, that is, deter-
mining the deformations of the soft tissues due to muscular activity, was proposed by Wu, Hung, Hunter, and Mithraratne
(2013). They aimed to study facial expressions as a result of prescribing different muscle activations. Ramasamy et al. (2018)
developed a pipeline for a simulation-analysis workflow for finite element simulations of the socket and stump of above knee
amputees. Although that workflow can be used for forward- or inverse-dynamics simulations, they did not pursue the predic-
tion of motion in that study. The only model predicting the motion of an agonist–antagonist musculoskeletal system (here a
two-muscle-one-degree-of-freedom upper limb model) was proposed by Röhrle, Sprenger, and Schmitt (2017). This model
was also the basis for developing a novel surrogate approach to achieve forward and inverse simulations in real time
(Valentin, Sprenger, Pflüger, & Röhrle, 2018).

Note that accurate musculoskeletal system models require an adequate representation of surrounding connective tissues
such as the tendons and aponeuroses, that is, resolving both the three-dimensional geometry as well as the mechanical material
behavior. This is essential because connective tissues have a significant influence on the transmission of active muscle stresses
to the skeleton and thus on control strategies as well as the energetic efficiency of motion.

Finally, continuum-mechanical musculoskeletal system models, in which skeletal muscles are modeled with chemo-elec-
tro-mechanical skeletal muscle models, or which are linked to motor neuron pool models, do not exist. In particular, motor
neuron driven musculoskeletal system models combined with chemo-electro-mechanical skeletal muscle models could provide
significant impact, as one would be able to predict the resulting electrical potential on the surface, that is, the electromyo-
graphic (EMG) signals (cf. Section 3.5). With the help of these simulations and the comparison with measured EMG signals,
in particular high-density EMG signals (Staudenmann, Roeleveld, Stegeman, & van Dieen, 2010), one could obtain entirely
new insights into the underlying biophysical processes of the neuromuscular system.

3.4 | Sensory feedback modeling

Coupling musculoskeletal system models (cf. Section 3.3) to models of the neural system (cf. Section 3.1), that is, yielding a
coupled neuromuscular system model, also requires the consideration of signals stemming from sensory feedback mechanism.
The sensory signals evoked by muscle spindles and Golgi tendon organs are the two major feedback signals involved in mus-
cular control and therefore modeling and integration of these two signals should also be considered within computational
models. The signals stemming from the muscle spindles and Golgi tendon organs hereby modulate the activity of the αMNs
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by feeding back to the αMNs information about the local stretch, the rate of deformation and the mechanical stress within the
muscle. Moreover, the sensory activity can be adjusted by specialized γMNs and βMNs (cf. Section 2.1).

The most simplistic approaches for modeling sensory feedback signals, which originate from muscle spindles, are black-
box approaches that provide a function simply capturing the (experimentally determined) input–output relation between the
afferent firing rate and mechanical perturbations. A comparison between different spindle models is provided, for example, in
Prochazka and Gorassini (1998).

Such phenomenological modeling approaches have significant limitations. While they implicitly include the fusimotor drive as
well as the contribution from primary and secondary spindle feedback mechanism, they fail to predict the influence of static and
dynamic fusimotor inputs stemming from the γMNs and βMNs. Furthermore, phenomenological models are not capable of sepa-
rating the influence of primary and secondary spindles. Therefore, more detailed (physiologically informed) muscle spindle models
haven been proposed that include the modulation of the sensory feedback caused by the fusimotor drive of the γMNs (Lin &
Crago, 2002a; Mileusnic, Brown, Lan, & Loeb, 2006) or from both γMNs and βMNs motoneurons (Maltenfort & Burke, 2003).

The Golgi tendon organ is the reciprocal partner of the muscle spindles and plays an important role as it senses changes of
the muscle tension. Similar as for the muscle spindles, there exist simplistic phenomenological Golgi tendon organ models that
are calibrated to reproduce experimental data from animal experiments (Crago, Houk, & Rymer, 1982; Fukami & Wilkinson,
1977; Houk & Henneman, 1967; Lin & Crago, 2002b; Song, Lan, Loeb, & Gordon, 2008). Furthermore, a more detailed,
comprehensive model of the Golgi tendon organ, which is capable of predicting the nonlinear response of the Golgi tendon
organs caused by the activity of a heterogeneous MU population, has been proposed by Mileusnic and Loeb (2006).

Realistic modeling predictions of such models, however, are challenging, because the current knowledge on the activity of
the mixed fusimotor drive is still poor. Thus, predictions obtained from simulations are based on modeling assumptions that
try to estimate the fusimotor activity and therefore yield a high degree of uncertainty. For example, the neuromusculoskeletal
model of Elias et al. (2014) considers the static and dynamic fusimotor activities. They do so by appealing to a Gaussian ran-
dom process with an empirically chosen variance.

3.5 | Simulating electromyographic signals

The impact of a muscle on the electrical potential of its environment, that is, the body, is a consequence of the depolarisation of
the muscle fiber membranes. Hence, measuring the overall electrical potential by means of electromyography (EMG), for exam-
ple, by placing electrodes on the surface of the skin close to a muscle, provides a way of investigating a skeletal muscle's electri-
cal state, and hence can provide deep insight into the functioning of the neuromuscular system (Staudenmann et al., 2010).
EMG signals are typically easy to record, for example, using either noninvasive surface electrodes or invasive needle electrodes.
However, one of the major drawbacks of EMG signals is that they are hard to interpret and analyze (Farina, Holobar, Merletti, &
Enoka, 2010). Thus, mathematical models have a great potential to improve signal interpretation. EMG signals are usually simu-
lated by means of volume conductor models (see Mesin (2013) for a detailed review). Thereby, skeletal muscle tissue is
assumed to be an (anisotropic) ohmic conductor and the bio-electrical activity arising from the depolarisation of the muscle fiber
membranes is represented by spatially distributed current sources/sinks. Purely phenomenological models simulate EMG signals
by prescribing the shape of action potentials and the corresponding conduction velocity (Farina & Merletti, 2001; Farina, Mesin,
Martina, & Merletti, 2004; Lowery, Stoykov, Taflove, & Kuiken, 2002; Merletti & Parker, 2004). A biophysically more
detailed description of the propagation of action potentials along muscle fibers can be obtained by solving the monodomain
model (Mordhorst, Heidlauf, & Röhrle, 2015), which can be considered to be an one-dimensional extension of Hodgkin–
Huxley type models. Thereby, the biophysical models can account for changes in the amplitude and propagation velocity of the
AP that result, for example, from membrane fatigue. While most of the existing (single-physics) EMG models do not take into
account tissue deformation, and hence are restricted to isometric conditions, cf. Mesin, Joubert, Hanekom, Merletti, and Farina
(2006), multiphysics models coupling EMG models to continuum mechanical models (Mordhorst et al., 2015), can also simu-
late EMG generation during nonisometric conditions. To speed up the computation of the electrical signals and the EMG, one
can also apply model order reduction techniques (Mordhorst, Strecker, Wirtz, Heidlauf, & Röhrle, 2017).

3.6 | Further reading

With regard to theoretical and mathematical descriptions of biophysical models, the reader is referred to Keener and Sneyd
(2009a, 2009b), Tuckwell (2005), and Herzog (2000). As far as fundamentals of mechanical properties of living tissues and
continuum mechanics are concerned, the reader is referred to Fung (2013) and Holzapfel (2000).
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4 | MODELING THE NEUROMUSCULAR SYSTEM

The aim of this section is to provide for each of the components one sample model and to link them together in one overall
systemic model. The framework is hereby set up in a modular way such that individual components of the overall neuromus-
cular model can be exchanged in a straight forward way. Thereby note that this review focuses on multiscale neuromuscular
modeling and not on aspects of validating individual components or even the entire model. This would be beyond the scope
of this review. However, one of the advantages of having a multiscale models of the neuromuscular system available is the
ability to systematically investigate the impact of specific components with respect to the other components and phenomena
on different scales—something that might be challenging to achieve from an experimental point of view. By estimating
parameters or changing modeling assumptions on one specific scale and validating against output from another scale, one can
also further increase the confidence into the predictive power of multiscale models. The latter is of particular importance for
scales on which only sparse and/or poor data exist, that is, on data-poor scales.

After providing a review on the state of the art of different components of the neuromuscular system, this section provides
the underlying mathematical equations for one particular neuromuscular model. Hence, after introducing some fundamentals
of biophysical modeling by outlining the pioneering work of Hodgkin and Huxley (1952) on the membrane behavior of excit-
able cells (Section 4.1), this Section follows the structure of Section 3. Starting with the introduction of the individual compo-
nents of the neuromuscular model, that is, the mathematical description of the biophysical motor neuron model by Negro and
Farina (2011) (Section 4.2), the mathematical description of the biophysical muscle fiber model by Shorten et al., (2017)
(Section 4.3), the mathematical description of the skeletal muscle model by Röhrle et al. (Section 4.4, the mathematical
description of the muscle spindle model by Maltenfort and Burke (2003) (Section 4.5) and finally a fully coupled model of the
whole neuromuscular system is presented by combining all sub-models (Section 4.6).

The models have not been chosen arbitrary. The MN pool model of Negro and Farina (2011) was selected because it is capable
of integrating excitatory and inhibitory signals from various sources and because it is based on a biophysical modeling approach
that implicitly reflects many important characteristics of real MN pools such as, for example, the well established size principle
(Henneman et al., 1965a, 1965b). Furthermore, considering the functional organization of the neuromuscular system into MUs, a
three-dimensional multiscale continuum modeling approach such as the on proposed by Röhrle et al. (2012) is almost indispens-
able. In particular, the fact that the physiologically detailed skeletal muscle model can predict both the mechanical system response
as well as the corresponding EMG signal during dynamic contractions is needed for the link to the feedback system (mechanical
part) and for integrating chemo-electromechanical principles from the (sub-)cellular space. Employing the biophysical muscle fiber
model of Shorten et al. (2007) provides us with the ability to link the electrical properties of skeletal muscle fibers with the
mechanical properties of the overall muscle tissue, that is, resulting in a multiscale model that is capable of relating macroscopic
findings to the cellular state of the tissue. Thereby, the organ-scale skeletal muscle model is implicitly capable of capturing multiple
complex phenomena such as, for example, the nonlinear summation of twitches, decrease in the muscle fiber stresses caused by
the insufficient activity of the SERCA pumps or membrane fatigue caused by the accumulation of potassium ions in the T-tubule
system. Finally, the muscle spindle model of Maltenfort and Burke (2003) has been chosen because it provides the possibility to
modulate the sensory feedback based on the activity of a γMN pool. Note, all models are also available for download.

4.1 | Fundamentals—the Hodgkin–Huxley model of the membrane electrophysiology

The Hodgkin and Huxley model (HH-model) simulates the electrical behavior of the membrane of excitable cells by employing an
electrical equivalent circuit (Hodgkin & Huxley, 1952). It considers the behavior of a small patch of a membrane and represents
ionic currents for sodium and potassium as well as a leakage current. Furthermore, voltage-dependent gating properties are intro-
duced to represent the currents flowing through a large population of ion channels (Nelson, 2005). The form of this description has
been used as the basis for almost all other ionic current models of excitable tissues. As such, the HH-model also builds the basis
for the motor neuron model and the biophysical skeletal muscle model. Although already nicely presented in their original work
(Hodgkin & Huxley, 1952), we briefly introduce it here once more, as it is the basis for many—if not all—biophysical models.

Cell membranes are selectively permeable to (charged) ions, and consequently they are able to separate electrical charges.
Within a mathematical model, this can be represented by assigning a capacitance to the cell membrane. The law of capacitance
states that the electric charge of a capacitor equals the voltage difference across the capacitor times its capacitance. Taking the
time derivative of the law of capacitance and assuming that the membrane capacitance, Cm, is constant with respect to time,
then Cm times the temporal change of the membrane potential, Vm, equals the (negative) sum of the ionic currents crossing the
membrane, Iion, that is,
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Im = Cm
∂Vm

∂t
+ I ion = 0, ð1Þ

where Im denotes the total current flow across the cell membrane. The HH-model considers currents through sodium and
potassium channels, INa and IK, respectively, and a leakage current IL representing the natural permeability of the membrane
to, for example, Cl−-ions. Furthermore, a current Istim is considered that allows to stimulate the model from outside, that is,

I ion = INa + IK + IL− Istim: ð2Þ

Herein, a positive sign indicates an outward current with the exception of Istim, where a positive sign indicates an inward
current. Based on Ohm's law, the membrane current of a given ion type i, with i 2 {Na, K, L}, is proportional to the mem-
brane's conductance for this ion species and to a driving force in the form of the difference between the membrane potential
and the ion's equilibrium potential, Ei, that is,

Ii = gi Vm−Eið Þ, ð3Þ

where gi denotes the conductance per unit area for ion species i and is the inverse of the resistance. While the leakage conductance,
gL, is assumed to be constant, the conductances for the potassium and sodium channels depend on the membrane potential, that is,

gK = �gKn
4 andgNa = �gNam

3h, ð4Þ

respectively. Therein, �gK and �gNa denote the maximum values of the respective conductances, and n, m, and h are gating vari-
ables resembling probabilities associated with the potassium channel activation, sodium channel activation, and sodium chan-
nel inactivation, respectively (Hodgkin & Huxley, 1952).

The evolution equations of the gating variables are based on first-order kinetics and can either be expressed using relaxa-
tion time constants (Hodgkin & Huxley, 1952), or take the form

∂ω

∂t
=αω Vmð Þ 1−ωð Þ−βω Vmð Þω, ð5Þ

for ω 2{n, m, h}. Hereby, (1 − ω) and ω represent two states, for example, ω is the probability that a channel is open and,
hence, (1 − ω) is the probability that the channel is closed. The dependence of the forward and backward reaction rates ηω
2{αω(Vm), βω(Vm)}, respectively, on the membrane voltage can be generalized using the form

ηω =
aω + bωVm

cω + dω exp Vm + eω
f ω

� � , ð6Þ

with constants aω, bω, cω, dω, eω, and fω (Nelson, 2005). For the sake of brevity, further details are omitted here but can be
found, for example, in Hodgkin and Huxley (1952), Nelson (2005).1 Figure 8 shows the electrical circuit used in the
Hodgkin–Huxley model to represent the cell membrane.

Based on the same formalism, more detailed models have been proposed in the literature. These models typically distin-
guish more ionic currents, and/or subdivide the modeled membrane into multiple compartments, but which are coupled to
each other (Adrian & Peachey, 1973; Segev, Fleshman, & Burke, 1989; Wallinga et al., 1999). Moreover, the same ideas
of having transition variables between different states have also been utilized for other models than membrane models of
excitable cells.

4.2 | Modeling motor neurons and the motor neuron pool

Based on the Hodgkin–Huxley formalism, Cisi and Kohn (2008) proposed a compartmental model for the simulation of
spinal cord MNs. While Hodgkin and Huxley simulated a small patch of a membrane, the MN model of Cisi and Kohn
(2008) represents the entire cell. To limit the computational load, Cisi and Kohn (2008) simplified the spatial propagation

22 of 43 RÖHRLE ET AL.



of the AP by considering two spatially lumped compartments, that is, one representing the dendrites and one representing
the soma. Both compartments are connected by an ohmic conductor. They assume that the dendrites and the soma can
be geometrically represented by a cylinder. Thus, the electrical properties of the compartments, for example, the mem-
brane capacity, can be derived from macroscopic and geometrical parameters of the compartment, that is, the length and
the radius. To be able to solve the evolution of the gating variables analytically, Cisi and Kohn (2008) approximate the
time courses of the reaction rates (cf. Equation (6)) by rectangular pulses. Negro and Farina (2011) discard this approxi-
mation and solve the ODEs for the gaiting variables using functions of the form given in Equation (6) and using parame-
ters provided by Traub and Miles (1991). The model of Negro and Farina (2011), including its parameterization, is
adopted in this work for the simulation of spinal cord MNs.

4.2.1 | Mathematical description of the motor neuron model of Cisi and Kohn

Due to the two compartment approach, the MN model of Cisi and Kohn (2008) distinguishes the membrane potential in the
dendrites and in the soma, Vm

d(t) and Vm
s(t), respectively, that is,

Cd
m
∂Vd

m

∂t
= − Idion Vd

m

� �
− IdC Vd

m,V
s
m

� �
,

Cs
m
∂V s

m

∂t
= − Ision V s

m

� �
− IsC Vd

m,V
s
m

� �
:

ð7Þ

The two equations are linked to each other through coupling currents IdC and IsC, where I
s
C = −IdC due to the conservation of

electric charge. Furthermore, in Equation (7), Idion and Ision are the ionic currents crossing the membrane of the dendrites and
the soma, respectively. For the dendrites, only a leakage current IdL is considered, while for the soma a leakage current IsL, a
sodium current INa, a fast and a slow potassium current, IKf and IKs, respectively, and an external current Istim are considered,
that is,

Idion = IdL and Ision = IsL + INa + IKf + IKs− Istim: ð8Þ

Cisi and Kohn (2008) reduced the number of ionic currents to a minimum while still ensuring that the model is capable of
capturing the most important neuronal properties, that is, recruitment and firing rate strategies based on electrical properties of
the respective αMN. The slow potassium current, for example, has been included to incorporate the afterhyperpolarisation,
which impedes the generation of subsequent APs. Additional properties, like persistent inward currents, have been included in
follow-up studies (Elias & Kohn, 2013; Elias et al., 2012). The electrical circuit corresponding to the MN model of Cisi and
Kohn (2008) is depicted in Figure 9.

Similar to the approach of Hodgkin and Huxley, the description of the ionic currents is based on Ohm's law, that is, the cur-
rents equal a conductance times a potential difference, that is,

FIGURE 8 Illustration electrical equivalent circuit, which was used by
Hodgkin and Huxley (1952) to mimic the electrical behavior of the
membrane of the squid giant axon. Resistors with an arrow indicate voltage-
dependent conductances. The membrane potential, Vm, equals the difference
between the intracellular potential, ϕi, and the extracellular potential, ϕe.
The driving forces in the model are the differences between the membrane
potential and the corresponding equilibrium potentials, which are
represented by batteries
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IdL = gdL Vd
m−EL

� �
, IsL = gsL V s

m−EL
� �

,

IdC = gC Vd
m−V s

m

� �
, INa = gNa V s

m−ENa
� �

,

IKf = gKf V s
m−EK

� �
, IKs = gKs V s

m−EK
� �

,

ð9Þ

where EL, ENa, and EK are the equilibrium (or Nernst) potentials, gC denotes the (constant) coupling conductance, gL
d and gL

s

are the (constant) dendritic and somatic leakage conductances, respectively, gNa is the sodium channel conductance, and gKf
and gKs represent the fast and slow potassium channel conductances, respectively. To model the membrane potential depen-
dence of gNa, gKf, and gKs gating variables m, n, h, and q are introduced, together with the maximum conductances, �gNa, �gKf ,
and �gKs, the gating variables are defined as

gNa = �gNam
3h, gKf = �gKf n

4, and gKs = �gKsq
2: ð10Þ

The evolution of the gating variables, ω 2 {m, n, h, q}, is given by Equation (5) using the respective forward and backward
reaction rates given in Equation (6). Together with the equations for the dendritic and somatic membrane potentials (7), this
yields a nonlinear system of six coupled ODEs.

4.2.2 | Mathematical description of the Negro and Farina motor neuron pool model

To simulate the behavior of a MN pool, each MN is described by the equations given above. Note that the equations for one
MN can be solved independently of all other MNs, since the modeled MNs are not coupled to each other or do exchange
information. The MNs of a pool are only related to each other through synaptic input components common to several MNs
and the assigned MN parameters, for example, the excitation threshold. As described in Section 2.1, MN excitation thresholds
are distributed across the corresponding MN pool, whereat many low-threshold MNs and few high-threshold MNs are found,
cf. for example, Powers and Binder (1985), Thomas, Ross, and Stein (1986). The MN model of Negro and Farina (2011)
accounts for this distribution by specifying extreme values for the electrical and geometrical properties of the MNs in a pool,
and interpolating exponentially between these extreme values to find the properties of a given MN. To do so, it is convenient
to number the MNs in the pool in an ordered sequence, for example, starting from the MN with the lowest excitation threshold
(MN number 1) to the highest-threshold MN (MN number N, with N being the number of MNs in the pool). Let δl and δu
denote the lower and upper extreme values of a property, respectively. Following Negro and Farina (2011), the corresponding
value of the i-th MN with i 2 {1, … , N} is determined from

δi = δl +
δu−δl
100

exp ln 100ð Þ i
N

� �
: ð11Þ

The extreme values of the electrical (soma- and dendrite-specific resistances) and geometrical properties (length and
diameter of soma and dendrite) used in the interpolation stem from Cisi and Kohn (2008). It is noteworthy that due to
the assigned parameter ranges, a size-ordered MN recruitment pattern is observed, when applying a common stimula-
tion current to the entire MN pool (Cisi & Kohn, 2008). This behavior is also experimentally observed, cf. Henneman
et al. (1965a, 1965b). Furthermore, parameters such as equilibrium potentials and membrane capacitance are also
adopted from Cisi and Kohn (2008), who utilized for their model a broad range of experimental data available in the
literature.

FIGURE 9 Electrical circuit model for the motor neuron model.
Again, resistors with an arrow indicate voltage-dependent conductance. The
dendritic membrane potential, Vm

d, equals the difference between the
dendritic intracellular potential, ϕi

d, and the extracellular potential, ϕe. The
somatic membrane potential, Vm

s , equals the difference between the somatic
intracellular potential, ϕi

s, and the extracellular potential, ϕe. The driving
forces in the model are the differences between the membrane potentials and
the corresponding equilibrium potentials, which are represented by batteries
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4.2.3 | Input to motor neurons

Spinal cord MNs constantly receive excitatory and inhibitory postsynaptic inputs from various sources, for example, from the
motor cortex via the corticospinal tract, from the brain stem, from afferent neurons, and from spinal/supraspinal interneurons.
Due to the temporal and spatial summation of these postsynaptic potentials, the MN's membrane potential is permanently sub-
ject to random fluctuations (Calvin & Stevens, 1968). In order to account in the model for these fluctuations, the synaptic
input current to each MN contains noise components. Furthermore, components in the input signal can be different for each
MN or common to (parts of) the MN pool depending on the origin of the input. In detail, a cortical input current ICI, common
to the entire MN pool, is considered. This input consists of two parts, a mean component ICI

m and a noise component ICI
n. The

fluctuating component, ICI
n, is modeled as colored Gaußian noise (bandwidth 0.5–40 Hz), cf. Negro and Farina (2011).

Gaußian white noise refers to a random signal with zero mean, constant power spectral density, and Gaußian (normal) ampli-
tude distribution. Furthermore, a second common input component ISI is considered representing, for example, signals from
the brain stem, interneurons and afferent neurons. This component is modeled as band-limited (0–100 Hz) Gaußian white
noise (Negro & Farina, 2011). Additionally, an independent signal IIN

i, where i 2 {1, … , N}, for each MN is considered rep-
resenting synaptic noise, which is modeled as band-limited (0–100 Hz) Gaußian white noise (Negro & Farina, 2011). The spe-
cific forms of the components are chosen based on literature data, cf. Negro and Farina (2011). The synaptic input signal for
each MN is a linear combination of these components, that is, Istim

i = (ICI
m + ICI

n) + ISI + IIN
i with i 2 {1, … , N}

(cf. Figure 10). Note that the independent noise component, the secondary common input component, and the fluctuating cor-
tical component contain positive and negative values, representing excitatory and inhibitory signals, and variations from the
mean cortical input, respectively. In general, the total variance of the injected synaptic current is modeled as a percentage of
the mean synaptic input able to provide a coefficient of variation for the interspike interval (ISI) during steady state contrac-
tions of approximately 15% (Maltenfort, Heckman, & Rymer, 1998; Moritz, Barry, Pascoe, & Enoka, 2005).

4.3 | Mathematical description of the skeletal muscle model of Shorten et al.

The signaling pathway from electrical excitation to contraction and force generation in skeletal muscles (see Section 2.2.5) is
extremely complex and to date not completely understood (MacIntosh et al., 2006). Even though mathematical models of the
excitation-contraction coupling pathway are an essential component for any universal in silico model of the neuromuscular
system, the work of Shorten et al. (Shorten et al., 2007) is an exception (cf. Section 3.2.4), providing a model of the entire
excitation-contraction coupling pathway. Therefore, within this section, we provide an overview of the model of Shorten et al.
(Shorten et al., 2007), including additional modifications to simulate nonisometric contractions.

FIGURE 10 Schematic drawing of the motor neuron pool model; the
figure illustrates the structure of a model that simulates a pool with
100 αMNs. Thereby the size and thus the electrical properties of the MNs
changes through the pool exponentially. Motor neurons receive inputs from
different classes of inputs signals. The independent input, that is, IIN

i, is
represented by Gaußian noise with a bandwidth of 0–100 Hz. The common
input signal represents the linear combination of a mean component, that is,
ICI

m, a Gaußian noise component (bandwidth 0.5–40 Hz), that is, ICI
n, and

the secondary common input, that is, ISI, corresponding to oscillations
generated from other structures of the central nervous system and which is
also modeled as zero mean Gaußian noise (bandwidth 0–100 Hz). The
output of the model is the firing trains of αMNs
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In summary, Shorten et al. (2007) combine several published sub-models of the excitation-contraction pathway
representing

a. the electrophysiology of the muscle fiber membrane, that is, a HH-model simulating the APs caused by currents in the sar-
colemma and T-tubules, cf. Adrian and Peachey (1973), Wallinga et al. (1999),

b. intracellular Ca2+ release from the sarcoplasmic reticulum in response to membrane depolarization through ryanodine
receptor (RyR) Ca2+ release channels, cf. Ríos et al. (1993),

c. intracellular calcium dynamics, that is, the binding of Ca2+ to troponin enabling XB cycling and buffers like parvalbumin,
adenosine triphosphate, and in the SR to calsequestrin, cf. Baylor and Hollingworth (1998),

d. force generation via cross-bridge cycling, cf. Campbell, Razumova, Kirkpatrick, and Slinker (2001a, 2001b), Razumova
et al. (1999), Razumova, Bukatina, and Campbell (2000), and

e. muscle fatigue based on the accumulation of phosphate in the SR.

Figure 11 schematically depicts an overview of the model of Shorten et al. (2007), indicating the individual model compo-
nents (a–e, see above) and their interactions. Mathematically, the evolution of the state variables, y = [y mem

T, y RyR
T, y CaD

T, y

XB
T, y p

T]T, can be described by 56 coupled ODEs, that is, y2R56.
The section is divided into three subsections, providing a brief summary of the individual sub-models and their coupling.

While the model of XB cycling was extended to simulate concentric/eccentric contractions (i.e., resolving the force-length
relation and the force-velocity relation), the phosphate dynamics model is not described here since the evolution of fatigue in
the Shorten et al. (2007) model is not sensitive to the corresponding differential equations (at least for the published parame-
ters). Note that for the sake of brevity, only some important/exemplary differential equations are presented within this manu-
script, however, a complete mathematical description and an implementation of the model is available on www.cellml.org.2

4.3.1 | Membrane electrophysiology

Based on the Hodgkin–Huxley formalism and geometrical considerations on the shape of the muscle fibers and the T-tubule
system, a two-compartment model of membrane electrophysiology is utilized (Wallinga et al., 1999; Adrian & Peachey,
1973). Thereby, ionic currents crossing the sarcolemma (superscript s) and the T-tubule membrane (superscript t) are distin-
guished. The latter, the current density in the sarcolemma, Iion

s, and the current density in the T-tubule membrane Iion
t, can be

calculated as the sum of the individual ion channel current densities, that is,

Ision = IsNa + IsDR + IsIR + IsCl + IsNaK, ð12Þ
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FIGURE 11 Schematic representation of the model of Shorten et al. (2007), indicating its components and their interactions. Therein,
(a) indicates the model of the membrane ionic currents, (b) is the Ca2+-release model, (c) denotes the Ca2+-dynamics model, (d) is the model of the
XB dynamics, and (e) shows the fatigue model. The figure is taken from Heidlauf (2015)
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I tion = I tNa + I tDR + I tIR + I tCl + I tNaK: ð13Þ

In detail, the model considers sodium channels (INa
s, INa

t), delayed rectifier potassium channels (IDR
s, IDR

t), inverse rectifier
potassium channels (IIR

s, IIR
t), chloride channels (ICl

s, ICl
t), and Na+-K+ pumps (INaK

s, INaK
t). Furthermore, based on Ohm's

law, an access current between the T-tubule space and the extracellular space is introduced, electrically coupling the T-tubule
space and the extracellular space, that is,

IT =
V s
m−V t

m

Ra
: ð14Þ

Therein, Ra denotes the access resistance at the T-tubule entrance, taking into account the relative volume of the T-tubule
space. Furthermore, Vm

s and Vm
t are the potential differences across the sarcolemma and the T-tubule membrane, respectively.

Finally the evolution of the transmembrane voltage in the sarcolemma and in the T-tubule membrane can be calculated by the
following differential equations:

Cs
m
∂V s

m

∂t
= − Ision t,V s

m

� �
− IT,

Ct
m
∂V t

m

∂t
= − I tion t,V t

m

� �
+
IT
γt
:

ð15Þ

Therein γt is a geometrical parameter, that is, denoting the ratio between the T-tubule membrane surface are and the sarco-
lemma membrane surface are. Note that the mathematical modeling of the ion channels, that is, the gating properties and the
constitutive relation between the channel conductivity and the gating variables, is similar as in the original Hodgkin–Huxley
model, cf. Section 4.1. Further note that the electro-physiological model can be extended to three-dimensional simulations,
that is, taking into account the spatial propagation of action potentials, by employing bidomain-type modeling approaches
(cf. Section 3.2.5). Thereby, macroscopic quantities, for example, the action potential conduction velocity, are a consequence
of the geometrical shape of the muscle fibers (surface-to-volume ratio), the conductivity of the tissue, as well as the (micro-
scopic) membrane properties, and, hence, a predictable outcome of the model. For further details refer to Heidlauf and Röhrle
(2013), Röhrle et al. (2008), and Röhrle et al. (2012).

4.3.2 | Intracellular calcium release and calcium dynamics

Incoming APs enter the T-tubule and depolarize the T-tubule membrane ensuring a simultaneous activation of all sarcomeres
in the cross-section of a muscle fiber. Changes in the T-tubule membrane potential are sensed by the dihydropyridine receptor.
The dihydropyridine receptor in the T-tubule membrane is linked to the RyR complex in the membrane of the SR, which,
upon activation, enables the release of Ca2+-ions.

The intracellular release of calcium from the SR to the cytosol is described by a 10-state model originally proposed by Ríos
et al. (1993). Therefore, the model takes into account four voltage sensors, which are activated by the T-tubule membrane
potential and control the permeability of the Ca2+-channel. In detail, each sensor can be in an activated or a deactivated state,
and the Ca2+-channel can be closed or open. The rate at which the Ca2+-channel opens (closes) increases with the number of
voltage sensors in the activated (deactivated) state.

In the myoplasma, the released Ca2+-ions activate the thin filament by binding to troponin. Furthermore, Ca2+-ions com-
pete with ions like Mg2+ to bind buffers such as parvalbumin and ATP. Mathematically, the transition between the different
biochemical states is described by employing first-order kinetics. For example, for the binding of Ca2+ to ATP, that is,

Ca2+ +ATPÐkon
koff

CaATP, ð16Þ

this yields the following differential equations:
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∂ Ca2+
� 	
∂t

= koff CaATP½ �−kon Ca2+
� 	

ATP½ �,
∂ ATP½ �

∂t
= koff CaATP½ �−kon Ca2+

� 	
ATP½ �,

∂ CaATP½ �
∂t

= kon Ca2+
� 	

ATP½ �−koff CaATP½ �:

ð17Þ

Therein, square brackets indicate concentrations. Note that the calcium-dynamics model considers two myoplasma com-
partments, that is, one close to the SR and one further away, that are coupled via Fick's law of diffusion. Furthermore, note
that since the overall concentration of components as Ca2+-ions is assumed to be constant, the overall model includes addi-
tional algebraic constraint equations.

In order to restore the high calcium concentration gradient between the SR and the myoplasma, Ca2+-ions are transported back
to the SR via the Ca2+-ATPase (SERCA), where Ca2+- ions bind to calsequestrin. Note that the model of Shorten et al. (2007)
fatigue is caused by the inability of the SERCA to maintain the calcium concentration gradient during repeated stimulation. In
summary, the calcium dynamics model accounts for 18 ODEs within the biophysical muscle model (Shorten et al., 2007).

4.3.3 | Force generation via cross-bridge dynamics

The binding of two Ca2+ ions to troponin C leads to a conformational change in the troponin molecule that removes the block-
ing tropomyosin from the actin filament, which allows the myosin heads to attach to the actin binding sites to form XBs. Thus,
to derive force generation within the sarcomeres from cross-bridge cycling, modulated by Ca2+-ions, Shorten et al. extended the
regulatory process of the generic myofilament models of Razumova, Campbell, and co-workers (Campbell et al., 2001a; Camp-
bell et al., 2001b; Razumova et al., 1999; Razumova et al., 2000). In detail, in six of the eight states, XBs are detached with
either zero, one, or two Ca2+-ions bound to troponin (denoted by indices 0, 1, and 2, respectively), and tropomyosin in either
the blocking (B) or nonblocking (D) position. Only when two Ca2+-ions are bound to troponin, the tropomyosin block can be
removed (B2 ! D2), and myosin heads can bind to the thin filaments. Furthermore, two attached states are distinguished—the
prepower stroke state, A1, and the postpower stroke state, A2. Thereby, the transition from the A1 to the A2 state represents the
power stroke, that is, the force producing step. While in classical Huxley-type myofilament models, for example, Huxley (1957)
each XB is associated with an individual elongation of the myosin heads' molecular spring, the applied XB dynamics model
(Campbell et al., 2001a, 2001b; Razumova et al., 1999, 2000) is based on mean-field approach, that is, each cross-bridge state
is associated with an average cross-bridge elongation. While Shorten et al. (2007) only considered isometric contractions and
thus the average XB elongations are constants, the myofilament model of Razumova, Campbell, and co-workers (Campbell
et al., 2001a, 2001b; Razumova et al., 1999, 2000) is also capable to simulate concentric/eccentric contractions. The velocity
dependency of the prepower stroke XB elongation x1 and the postpower stroke XB elongation x2 can be easily incorporated into
the model of Shorten et al. (2007) by including two additional differential equations (Heidlauf & Röhrle, 2014). Thereby, XB
cycling within the sarcomeres can be simulated by the following differential equations:

∂ D2½ �
∂t

= konT Ca2+
� 	

D1½ �+ konCa B2½ �+ f 0 A1½ �+
+ g0 A2½ �− koffT + koffCa + f 0

� �
D2½ �,

∂ A1½ �
∂t

= f 0 D2½ �+ h0 A2½ �− f 0 + h0ð Þ A1½ �,
∂ A2½ �
∂t

= h0 A1½ �− h0 + g0ð Þ A2½ �,
∂x1
∂t

= − f 0
D2½ �
A1½ � + h0

A2½ �
A1½ �

� �
x1 +

+ h0
A2½ �
A1½ � x2−x0ð Þ+ _ℓhs,

∂x2
∂t

= −h0
A1½ �
A2½ � x2− x1 + x0ð Þð Þ+ _ℓhs:

ð18Þ
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Therein, kT
on and kT

off are the rate coefficients for the binding and unbinding of Ca2+ to troponin, respectively, and kCa
on

and kCa
off denote the rate coefficients for switching between the blocking and the nonblocking state of the regulatory unit

when two Ca2+ ions are bound to troponin. Furthermore, f0, f
', h0, h

', g0 are reaction rate coefficients for XB cycling and _ℓhs is
the contraction velocity of the half-sarcomere. Assuming constant reaction rates to simulate the XB-cycle would result in a lin-
ear force-velocity relation. To reproduce a more realistic hyperbolic force-velocity relation (Hill, 1938), Razumova et al.
(1999) introduced additional constitutive relations to modulate the attachment rate, f0, caused by the interactions between
neighboring XBs and the detachment rate, g0, depending on the average elongation of the postpower stroke XBs, that is,

f 0 = �f ð1+ A1½ �
T tot

exp
x1
x0

ν−1ð Þ
� �

−1

 �

+
A2½ �
T tot

exp
x2
x0

ν−1ð Þ
� �

−1

 �

Þ,

g0 = �gexp ϑ x2−x0ð Þ2
� �

,

ð19Þ

where �g is the XB-detachment rate of an isometric contraction, ϑ controls the distortion dependence �f is the forward rate of
XB attachment if no neighbor is in the force-bearing state and ν controls the influence of the cooperative effects (for further
details see Razumova et al. (1999)).

Furthermore, the number of possible force-producing XBs depends on the overlap between the thin actin and the thick
myosin filaments and thus on the half-sarcomere length (cf. Section 2.2.3). The force-length relation, fl(ℓhs), is assumed to be
a scalar valued function between 0 and 1 (i.e., fl : ℓhs ! [0, 1]) and can be included into the model as an additional constitu-
tive relation (Heidlauf & Röhrle, 2014). As fl is included on the sarcomere level, the piecewise linear relation proposed by
Gordon et al. (1966) is employed.

Finally, the normalized active force produced by a half-sarcomere can be expressed as a function of the time, the state vari-

ables corresponding to the bound XBs, the sarcomere length ℓhs, and the contraction velocity _ℓhs, that is,

Ffibre t,y,ℓhs, _ℓhs
� �

= f l ℓhsð Þ A2½ �x2 + A1½ �x1
Amax
2

� 	
x0

, ð20Þ

where Amax
2

� 	
is the concentration of postpower stroke XBs for an isometric, tetanic contraction and x0 is the average elonga-

tion of postpower stroke XBs for during an isometric contraction.

4.4 | A continuum-mechanical, multiscale skeletal muscle model of Röhrle et al.

With respect to all existing skeletal muscle modeling approaches (cf. Section 3.2.3), continuum-mechanical frameworks pro-
vide the greatest flexibility for integrating many physiological details. To establish a biophysically based model of a whole
muscle within a continuum-mechanical framework, the microscopic function needs to be linked to the macroscopic (mechani-
cal) behavior of the muscles. This can be achieved through appropriate constitutive models. Within this section, we want to
provide a brief overview how the macroscopic active behavior can be derived from the microscopic state of skeletal muscle
tissue by utilizing a multiscale constitutive framework.

Any continuum body Ω needs to satisfy the balance of linear momentum, which is given in its' local form by

ρ x
::
=div J−1PFT� �

+ ρb, inΩ: ð21Þ

Therein x is the actual coordinate of a material point, J is the determinant of the deformation gradient tensor F, P is the first
Piola-Kirchhoff stress tensor, ρ is the density of the body and b denotes body forces. Equation (21) contains two unknowns,
the actual coordinate of a material point and the stress tensor that depends on the deformation and hence on the actual coordi-
nate of a material point. To be able to solve Equation (21), the stress tensor needs to be constitutively defined, that is, relating
the stresses to the applied deformations and other state variables, for example, describing the overall active behavior of the
muscle. To define the stress tensor, that is, the constitutive law, it is assumed that skeletal muscle tissue is incompressible and
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that the overall stress tensor can be obtained through linear superposition of the passive, Ppassive, and an active contribution,
Pactive, that is,

P=Ppassive +Pactive−pJF−T : ð22Þ

Therein p is the hydrostatic pressure, entering the equation as a Lagrangian multiplier enforcing the incompressibility con-
straint J = 1 (cf., Holzapfel (2000) for more details). From a mechanical point of view, the superposition of the overall stress
tensor implies that passive elastic energy and the active elastic energy are stored in two independent mechanical components
acting in parallel. Justification can be obtained from the assumption that the filament skeleton is (nearly) rigid (Huxley, 1957),
that is, the mechanical interactions between the active XBs and other elastic constituents like collagen or titin are negligible.
Note that the overall stress tensor can be easily extended to include additional stress contributions, for example, induced by
the sarcomere protein titin (Heidlauf et al., 2016; Heidlauf et al., 2017).

Taking into account the organized fiber arrangement of the microstructure and assuming that the passive mechanical
behavior of skeletal muscle tissue is hyperelastic (cf. Section 3.2.3), the passive stress tensor, Ppassive, can be derived from any
suitable transversally isotropic strain energy function Wpassive (i.e., one that is capable to match macroscopic data):

Ppassive F,a0ð Þ= ∂Wpassive F,a0ð Þ
∂F

: ð23Þ

Therein a0 is a unit vector pointing in the fiber direction in the reference configuration. Popular constitutive laws for skele-
tal muscle tissue are Mooney-Rivlin- or Ogden-based, fiber-reinforced, hyperelastic constitutive laws (Blemker et al., 2005;
Johansson et al., 2000; Röhrle & Pullan, 2007). Note that a generic transversally isotropic material could be either stiffer in
the fiber direction or in the cross-fiber direction. Moreover, as discussed in Section 3.2.3, the constitutive laws are always only
as good as the available experimental data.

Constitutive laws for passive materials are straight forward and essentially appeal to the same principles and theories as the
ones developed for man-made materials. This is not necessarily any longer true for a skeletal muscles active behavior. How-
ever, within Section 4.3.3, we introduced a myofilament model of XB cycling on the sarcomere level that is capable of simu-
lating the force produced by a single muscle fiber (cf. Equation (20)). Due to the normalization, that is,

Ffibre t,y,ℓhs, _ℓhs
� �2 0,1½ �, one can interpret the microscopic forces as normalized stresses. Thus, upscaling methods could be

applied to directly derive the active stress tensor from the single muscle fiber force. However, from a smeared/homogenized
macroscopic point of view the active muscle stress at a specific material point, depends on the contribution of different MUs.
Therefore, we introduce a (generic) homogenization operator, TH, to evaluate the local activation at the material point x,
that is,

TH : x,F1
fibre,F

2
fibre,…,FN

fibre

� �
↦�γ, ð24Þ

where �γ 2 0,1½ � is the normalized active stress at the material point x and N is the number of MUs. Note that the muscle fiber
models need to be coupled to the continuum model by the deformation and the rate of deformation in the muscle fiber direc-
tion. For example, the normalized active stress �γ can be calculated by the arithmetic mean of the single muscle fiber stresses
weighted by their volume fraction in an referential elementary volume, that is,

�γ xð Þ=
XN
i=1

wi
MU xð ÞFi

fibre xð Þ, ð25Þ

where wMU
i is the volume fraction of the i-th MU at a specific material point, cf. Heidlauf and Röhrle (Heidlauf & Röhrle,

2014), Heidlauf et al. (Heidlauf et al., 2016; Heidlauf et al., 2017). Note that in the work of Heidlauf and co-workers (Heidlauf
et al., 2016; Heidlauf et al., 2017; Heidlauf & Röhrle, 2014) additionally complexity arises from coupling the cellular muscle
model to a model of the action potential propagation (cf. Section 3.2.5). Finally the active stress tensor can be calculated by.

Pactive �γ,F,a0ð Þ= pmax�γF a0�a0ð Þ, ð26Þ
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where pmax is a material parameter denoting the maximum stress during an isometric contraction.

4.5 | The muscle spindle model of maltenfort and burke

Muscle spindles are proprioceptive sensory cells detecting changes of the muscle length. Muscle spindles are functionally
divided into two specific endings that are sensitive to jerk (fast) and static (slow) perturbations. The primary and secondary
axons from mammalian muscle spindles transmit those information to the central nervous system. The sensitivity of the mus-
cle spindles is controlled/adjusted by the fusimotor neurons, that is, the γMNs. In correlation with spindle feedback γMNs are
conventionally divided into two groups (static and dynamic) that bias the activity of primary and secondary spindle cells.
While there exist multiple models to simulate skeletal muscle mechanics and activation (i.e., both phenomenological and bio-
physical), only few (mostly phenomenological) models consider sensory systems such as the muscle spindles
(cf. Section 3.4).

Herein, we provide a brief introduction of the muscle spindle model of Maltenfort and Burke (Maltenfort & Burke, 2003),
consisting of a model describing the material behavior in response to an external perturbation, that is, which is based on a phe-
nomenological transfer function, and a sensory model. From a mathematical point of view, the sensory response can be
described by a set of algebraic equations and thus, a function can be provided mapping the current deformation, velocity and
γ-activation (cf. Sections 2.1 and 2.1.4) to the firing rate of the muscle spindle, that is, Rspindle. Thereby, it is assumed that the
overall spindle response can be calculated by the superposition of a passive contribution, Rpassive, and a mm modulated contri-
bution, Rγ, that is,

Rspindle λ, _λ,γs,γd
� �

=Rpassive λ, _λ
� �

+Rγ λ, _λ,γs,γd
� �

, ð27Þ

where λ is the applied stretch, _λ denotes the rate of deformation, γs is the static γMN drive and γd is the dynamic γMN drive
(both in pulses-per-second). Based on the knowledge that there exist different types of muscle spindles, the γMN modulated
sensitivity of the muscle spindles can be further split into an static part, Rs

γ , that is, increasing the sensitivity to static stretch

perturbations, and a dynamic part, Rd
γ , that is, increasing the sensitivity to fast length perturbations:

Rγ λ, _λ,γs,γd
� �

= Rs
γ λ, _λ,γs
� �

+Rd
γ λ, _λ,γd
� �

+

+
1

Rs
γ λ, _λ,γs
� � + 1

Rd
γ λ, _λ,γd
� �

 !−1

:
ð28Þ

Finally all individual parts, that is, Rpassive, Rs
γ and Rd

γ , can be calculated from the following generic equation, separating

purely stretch dependent feedback, purely velocity dependent feedback, mixed stretch and velocity dependent feedback and a
velocity and stretch independent spindle activity:

R= f sv γ, _λ
� �

+ f s γð Þ� 	
λ+ f v γ, _λ

� �
+ f c γð Þ: ð29Þ

Therein fsv, fs, fv and fc are arbitrary scalar valued functions, for a more detailed description see Maltenfort and Burke
(2003). Note that for the passive spindle activity, Rpassive the dependency from γ vanishes. Finally note that while the model of
Maltenfort and Burke (2003) includes a phenomenological description of the βMNs (not described here), it fails to simulate
the response of secondary spindles.

4.6 | The neuromuscular model: Coupling the neural and chemo-electromechanical model

After introducing models for all major components of the neuromuscular system, that is, MN pools (cf. Section 4.2), skeletal
muscles (cf. Section 4.3 and Section 4.4) and the sensory system (cf. Section 4.5), it is possible to combine them to an inte-
grated physiological in silico model of the neuromuscular system. The coupling between the different sub-models is schemati-
cally represented in Figure 12. In detail, the MNs (Cisi & Kohn, 2008; Negro & Farina, 2011) integrate cortical and sensory
inputs and thereby dictate the recruitment and firing frequency of the muscle fibers, as well as the γ-activation of the muscle
spindles. Note that to the knowledge of the authors there exists currently no suitable model considering γMN pools and
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therefore assumptions such as co-activation between the αMNs and the γMNs need to be employed (Vallbo, 1974). Further-
more, the amount of physiological realism can be increased by incorporating additional sensory systems such as the Golgi
tendon organs as well as modeling the fusimotor drive from the βMNs. The multiscale skeletal muscle model (Heidlauf &
Röhrle, 2013; Heidlauf & Röhrle, 2014) is directly driven by the discharge trains of the MN pool, cf., for example, Röhrle
et al. (2012), and can thereby, in combination with the applied boundary conditions, predict both quantities that are typically
captured by experiments, for example, the overall muscle force or EMG signals, as well as additional internal state variables,
for example, ion concentrations or the full displacement field. Note that by employing multiscale constitutive relations, micro-
scopic and macroscopic quantities are directly coupled to each other. Furthermore, the muscle spindle models (Maltenfort &
Burke, 2003) are assigned to specific points within the three-dimensional muscle geometry. Input to the spindle models are

obtained from the local deformation, that is, the local deformation gradient tensor F, the local rate of deformation, that is, F
:

,
and the γ-drive obtained from the γMN pool model. Thereby an additional constitutive equation is needed, mapping the defor-
mation gradient tensor F to the stretch of the muscle spindles. Finally, the perceived changes, that is, encoded by the muscle
spindle firing frequency, need to be translated into (electrical) signals that can be integrated by the αMNs. The combination
by several of those models, that is, extending the neural connectivity according to physiological hypothesizes, will result in an
integrated model of the whole musculoskeletal system (cf. Section 3.3).

4.7 | Numerical considerations

The integrated model of the neuromuscular system (cf. Section 4.6) takes into account physical processes on multiple time
and length scales. From a mathematical point of view, this yields highly heterogeneous and coupled sets of equations, that is,
by coupling different types of PDEs and ODEs representing different processes on different spatial and temporal scales. From
a numerical point of view, this leads to multiple challenges. While it would theoretically be possible to solve the fully coupled
model in one framework and in a monolithic way, it is often more convenient to employ staggered solution schemes for such
large-scale, multiscale, multiphysics problems. Thereby, specialized solution methods and optimized numerical discretizations

Descending Inputs:
motor cortex, thalamus

brain stem, cerebellum

γ MN pool modelα MN pool model:

γ
s
, γ

d

γ

Cisi and Kohn (2008),

Negro and Farina (2012)

Continuum mechanics:

Multi-scale skeletal muscle model: Heidlauf and Röhrle (97, 98)

F, Ḟ

F, Ḟ
Röhrle et al. (2008)

Muscle fibre model:

Shorten et al. (2007)

Muscle spindle model:

Maltenfort and Burke (2003)

Discharge trains

Sensory Feedback

FIGURE 12 Schematic
representation of the structure of the
biophysical model of the
neuromuscular system. The MN pools
integrate descending inputs from the
central nervous system and feedback
signals from sensory organs such as
the muscle spindles. Note that
currently there exists no suitable
model for the γMN pool and thus
simulations of the integrated model
rely on assumptions such as co-
activation between the αMN pool and
the corresponding γMN pool. The
discharge trains calculated by the
motor neuron model are used to drive
the multiscale skeletal muscle model
by stimulating the membranes of the
muscle fibers belonging to the
corresponding MU. Thereby both
macroscopic quantities such as the
overall muscle force output and
internal states such as the
concentrations of specific ions can be
observed. Furthermore, the sensory
feedback of the muscle spindles is
calculated based on the current
deformation, the rate of deformation
and the applied γ-activation
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schemes (both in space and time) can be applied to each of the sub-problem. For example, the system of PDEs originating
from the governing equations of the three-dimensional, continuum-mechanical framework describing the mechanical behavior
of skeletal muscles is usually best discretized using the finite element method (FEM) with Taylor-Hood basis functions. For
solving the equations describing the bioelectrical state of the activated skeletal muscle, one might need to appeal to a much
finer mesh resolution while linear Lagrange basis elements are, due to the fine mesh resolution, often fully sufficient. While
staggered solution schemes seem to provide an almost natural way of choosing different discretizations and basis functions,
one needs to define appropriate transfer functions to exchange variables between the different meshes. Appropriate interpola-
tion or restriction operators are needed. This might, however, not always be trivial and often the starting point to novel homog-
enization techniques. Furthermore, for choosing a monolithic approach over a staggered solution scheme, one requires an
extremely flexible, multiphysics simulation framework that is capable of handling multiple discretizations and equation types.
If such flexibility would not be given, but yet one wants to solve the resulting system in a monolithic way, then such large-
scale, multiscale, multiphysics skeletal muscle models lead to extremely demanding simulations often exceeding the computa-
tional power of the largest supercomputing facilities. However, if the flexibility is given, monolithic solution schemes might
be advantageous. Regardless of choosing a monolithic or a staggered solution schemes, parallelization strategies are essential
to obtain for such detailed biophysical modeling approaches predictions within reasonable time. This poses entirely new chal-
lenges with respect to data communications. Finally note that the development of systemic physiological models is massively
facilitated if existing models are easily accessible, for example, by using mark-up languages or sharing models within open-
source software projects such as CellML (Lloyd, Lawson, Hunter, & Nielsen, 2008) or FieldML (Christie, Nielsen, Blackett,
Bradley, & Hunter, 2009).

4.8 | Further reading

The models of Cisi and Kohn, of Negro and Farina, and the nonisometric extension of Shorten et al., that is, Heidlauf and
Röhrle (2014), are provided as CellML models within the Supporting Information. As far as implementation details and
numerical aspects, in particular of the continuum-mechanical framework together with the FEM method, are concerned, the
reader is referred to the books of Bonet and Wood (2008), Zienkiewicz, Taylor, and Zhu (2005), or Hughes (2012).

5 | SUMMARY AND CONCLUSIONS

In summary, this review focuses on key anatomical and physiological aspects of the neuromuscular system, on an overview of
the state of the art in modeling individual parts of the neuromuscular system and on an outline of a specific neuromuscular
system model, which closely represents the underlying physiological behavior. Specifically, this neuromuscular system model
demonstrates how to couple the biophysically detailed MN pool model of Negro and Farina (2011) to the chemo-electro-
mechanical skeletal muscle model of Röhrle et al. (2012). All of the sub-models within the outlined neuromuscular system
model have been chosen, because they have been previously developed, used (whereby the authors were capable to validate
published simulation results) and/or extended by the authors. While the aim is to develop a fully biophysical-based neuromus-
cular model, the presented model still appeals for modeling the mechanical behavior of the (passive) skeletal muscle tissue
(cf. Section 4.4) and for the muscle spindle model (cf. Section 4.5) phenomenological models.

While the specific neuromuscular system model outlined in Section 4 closely resembles many of the physiological relevant
pathways of the neuromuscular system leading to voluntary force generation, for example, as described in Section 2, there
exist significant uncertainties regarding its parameters. This is a major challenge for all (multiscale) modeling approaches that
aim to simulate biological systems. While all individual (sub-)models are typically calibrated to reproduce data that were mea-
sured during specific experimental conditions, one cannot obtain experimental data for all state variables and parameters of
the model. Furthermore, the experimental environment does unfortunately often differ from the in vivo conditions, which one
aims to model. A further challenge is that most of the experimental studies for the individual models do not stem from the
same animal model. While an extensive overview and discussion on the acquisition of experimental data and on parameter
estimation methods is far beyond the scope of this review, it is obvious that a fully validated biophysically detailed
nueromuscular system model remains hardly feasible. On the other hand, careful identification and isolation of shortcomings
are needed as this highlights the requirement for strictly physics-based modeling approaches, that is, eliminating multiple
degrees of freedom by employing physical constraints (e.g., based on the laws of thermodynamics). Furthermore, strictly
physics-based modeling increases the confidence to produce substantial simulation outputs when using a model for extrapola-
tion, that is, prediction, by simulating conditions the model was not calibrated to—something not (necessarily) possible for
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phenomenological models or machine learning approaches. Finally note that the goodness of physics-based models can also
be evaluated by it's capabilities to predict phenomena that were not explicitly modeled or assumed within the model itself.

In general, the individual parts of the integrated neuromuscular model, that is, the sub-models, can be replaced with other
more elaborate sub-models and further extended to simulate further physiological phenomena. For example, including models
capturing metabolism is essential when simulating (various) long-lasting exercises/activities. Moreover, including detailed
models of signal transduction on the cellular level (e.g., including the transcription and translation of genes or second messen-
ger systems such as the intracellular calcium concentration), can potentially be used to simulate remodeling processes and thus
importantly contribute to investigate degenerative neuromuscular diseases. This, however, also puts strong requirements onto
the flexibility of the overall computational framework. One framework, which has been specifically designed to cope with
such flexibility and challenges, is, for example, the international open-source software library, OpenCMISS (Bradley et al.,
2011; Bradley et al., 2018).

In conclusion, the model described in this review should serve as an excellent example of a multiscale model that is capa-
ble of successfully simulating muscle contractions under several different conditions. The reviewed biophysically based,
three-dimensional neuromuscular system model should serve researchers as a starting point to further improve individual sub-
models, to integrate new physiological aspects, to develop experimental protocols for validating the overall model, or to make
predictions and test hypothesis for identifying underlying processes leading to pathologies and, hence, to obtain an advanced
in silico testing tool for gaining new insights into neuromuscular diseases.
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ENDNOTES

1 For an implementation see https://models.physiomeproject.org/workspace/hodgkin_huxley_1952.
2 For an implementation see https://models.physiomeproject.org/workspace/shorten_ocallaghan_davidson_soboleva_2007.
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