
20
22

 I
EE

E 
7t

h 
In

te
rn

at
io

na
l E

ne
rg

y 
C

on
fe

re
nc

e 
(E

N
ER

G
Y

C
O

N
) 

| 9
78

-1
-6

65
4-

79
82

-0
/2

2/
$3

1.
00

 ©
20

22
 I

EE
E 

| D
O

I: 
10

.1
10

9/
EN

ER
G

Y
C

O
N

53
16

4.
20

22
.9

83
03

01

2022 7th IEEE International Energy Conference (ENERGYCON 2022)

Robust Energy Management for a Microgrid
Jens H onen1, Johann L. Hurink1, Bert Zwart2,3 

1 Department o f EEMCS, University o f Twente, Enschede, The Netherlands 
2Department o f Mathematics and Computer Science, Eindhoven University o f Technology, Eindhoven, The Netherlands 

3 Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands 
j .honen @utwente.nl

Abstract—Due to the increasing penetration of photovoltaic 
(PV) systems, electric vehicles (E V ) and other smart devices on 
a household level, the role of consumers changes from pure 
consumption to production and storage of electricity. These 
prosumers will also directly participate in future electricity 
markets. To compensate for the small scale and the fluctuations in 
their demand and production, one promising approach for pro­
sumers is to form small energy communities or microgrids, and 
participate in the electricity markets as one entity. A challenge 
for these microgrids is to find an optimal energy management 
strategy, mainly due to the uncertainty in electricity prices, in 
PV generation as well as in the prosumer loads. To integrate this 
uncertainty into the planning, an adaptive robust optimization 
approach using linear decision rules is proposed in this paper. 
The linear decision rules allow for a delayed determination of 
some of the decisions and can therefore adapt to realizations of 
the uncertainty. Three different uncertainty scenarios are used to 
evaluate and compare the proposed approach in a case study and 
to get more structural insights into the efficiency of the approach.

Index Terms—adaptive robust optimization, microgrid, energy 
management, uncertainty, energy transition

I .  I n t r o d u c t i o n

In recent years, the ongoing energy transition has led to a 
drastic increase of renewable energy sources and new smart 
devices, especially in the distribution grid. This in principle 
positive development has also a downside, since in particular 
the increase of PV systems as well as the growing popularity 
of EVs and other devices such as e.g. heat pumps has led to 
an increased burden on the low-voltage (LV) grid due to larger 
peaks in demand and supply. Furthermore, the intermittent 
nature of renewable energy sources poses new problems to 
the operation of LV grids.

A promising approach to this problem is to use robust 
planning and optimization techniques to ensure feasibility of 
operation regardless of future realizations of the uncertainty 
in demand and supply. This may allow to integrate more PV 
systems and EVs without the need to upgrade current LV grids.

In recent research, robust optimization has already been 
successfully applied to various settings, from the classical unit 
commitment problem to trading between microgrids. Due to 
its focus on feasibility, robust optimization fits well with the 
risk-averse rules of the current energy system. For example, 
static robust optimization has been used to deal with different 
sources of uncertainty in the energy system, from i) price

This research is supported by the Netherlands Organization for Scientific 
Research (NWO) grant 645.002.001.

uncertainty [1] over ii) uncertainty within household or EV 
load to iii) uncertainty in renewable energy generation, such 
as e.g. PV and wind generation [2], [3], Adaptive robust 
optimization on the other hand offers an appealing way to 
include the time aspect of decision making into the optimiza­
tion process. Instead of directly making all the decisions, the 
concrete decision for some of the variables may only need to 
be determined in a later stage. These situations often can be 
modeled as two-stage robust optimization problems and one 
way to solve these problems is to split them up into an inner 
and an outer subproblem. In [4], this approach, combined with 
Benders’ decomposition, is applied to a security-constraint unit 
commitment problem. In the last few years, this approach has 
become quite popular in energy management systems and the 
algorithm has been modified to also include other types of 
uncertainty, such as e.g. uncertain EV arrivals and departures
[5] or generator failures [6], new types of constraints, such 
as e.g. active and reactive power [7] or energy transactions 
between microgrids [8]. In addition, decentralized versions 
of the algorithm have been proposed to better comply with 
the microgrid structure as well as with privacy aspects of the 
prosumers [9].

In this work, we propose and analyze a specific adaptive 
robust energy management problem which occurs on a mi­
crogrid level. Based on results in [10], the calculation of an 
optimal solution to such a problem can be computationally 
expensive. To overcome this issue, we propose to use affine 
linear decision rules (LDRs) at the cost of approximating 
optimality. To first get structural insights into the suggested 
approach, we only use base models for the different devices, 
while details can be integrated in a later stage.

The paper is structured as follows. In Section II, we intro­
duce the considered model of a microgrid. We focus hereby 
on devices, which offer most flexibility to the systems. Such 
devices must likely form the core components of any future 
energy management system. In addition, we assume that the 
microgrid has a connection with limited capacity, which allows 
the microgrid to participate in different electricity markets. 
This connection is considered as a bottleneck of many current 
and nearby future LV grids. In Section III, we shortly introduce 
the main concepts of (adaptive) robust optimization and then 
deal with the uncertainty considered in this paper. In Section 
IV we verify and analyze our proposed algorithms in a small 
case study and compare them with a static robust optimization
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approach. Section V concludes the work and gives an outlook 
on future research directions.

I I .  S e t t i n g  a n d  M o d e l

In this section, we first introduce the setting of the consid­
ered energy management problem with its players and devices 
and then present a deterministic mathematical formulation for 
the operation of the microgrid. This forms the basis for the 
adaptive robust approach considered in the following sections.

A. Devices and Entities
Throughout this paper, we consider a time horizon which is 

split up into a set of time slots T  with T  =  |T |. For any two 
time slots t i ,  ¿2 G T , t i  <  ¿2 denotes that time slot t \  ends 
before time slot t 2 starts. The considered microgrid consists of 
a microgrid operator (MGO), and a set M p  of prosumers. In 
addition, the microgrid is connected to two different electricity 
markets, where the MGO can buy and sell electricity:

• In the day-ahead market, the MGO can buy and sell
electricity the day before the actual realization. The price 
for buying and selling electricity at time slot t  from the 
day-ahead market are assumed to be given and denoted 
by 7rt , and irt .

• In the intraday market, the MGO can buy and sell 
electricity directly within a time slot. The prices for 
buying and selling electricity at the intraday market at 
time slot t  are denoted by n{D’b and 7r /D,s.

The microgrid is connected to the markets via a line with a lim­
ited capacity C9rid, representing e.g. the capacity constraint 
of the considered LV grid.

Each prosumer has given a fixed load and is possibly 
equipped with different devices, such as a PV system, a battery 
or an EV. The MGO can be equipped with a (communal) 
battery, a PV system and with distributed generators (DG). 
Let A fpv, A/”b , M e v  and M e g  denote the overall sets of PV 
systems, batteries, EVs and distributed generators respectively 
and let /  : M py  U M b  U Me v  —•► M p  be a function mapping 
each device to its corresponding prosumer. In the following, 
we shortly describe the modeling of the different device types 
and the flexibility, these offer to the system:

• Each prosumer i G M p  has & fixed load p L'1 G MT, with 
p f ’* being the load during time slot t. This load cannot 
be curtailed or shifted.

• A PV system j  G M p v  has an output pPV4 g RT, 
with p f  being the output during time slot t. The PV 
generation can only be controlled by curtailment.

• A battery k  G Mb  has four different parameters, the 
capacity C B,k G M+, a discharging limit D L B,k G M+, a 
charging limit C L B,k G M+ and an initial state of charge 
SO C B,k G M+ at the beginning of the time horizon.

• An EV h  G M e v  is modeled as a battery with some 
additional parameters. C EV,h, D L EV’h, C D EV’h and 
SO C EV,h again denote the capacity, the discharging and 
charging limit and the initial state of charge of EV h. 
Furthermore atEV,h G T  and dtEV,h G T  denote the v- 
th arrival and w-th departure time of EV h  during the

time horizon and p f v,h the electricity usage during time 
slot t. Let I h denote the set of time slots in which EV 
h  is not connected to the microgrid.

• A generator g G M dg  is specified by a capacity C DG,g, a 
ramp-up limit R U DG’9 and a ramp-down limit R D d g ’9. 
In addition, there are variable generation costs cDG’9 G 
Rt  per unit of produced electricity.

B. Model
In this section we introduce the energy management prob­

lem within the microgrid by specifying its decision variables, 
the objective and the constraints.

1) Variables:
• y f A,buv and y BA’sel1 denote the amount of energy the 

MGO buys or sells at the day-ahead market during time 
slot t.

• x{D'buy and x lD,sel1 denote the interactions of the MGO 
with the intraday market.

• x BVb denotes the amount of electricity from PV system 
j  during time slot t  which is not curtailed.

• x f ’k denotes the amount of charged electricity of battery 
k  during time slot t. If x f ’k >  0, the battery is charged, 
while for x f ’k < 0, the battery is discharged.

• x f v,h represents the charging and discharging of EV h 
and has the same assumptions as the battery.

.  x ? G’9 denotes the amount of produced electricity by 
generator g.

2) Objective Function: The objective function (1) repre­
sents the cost associated with the microgrid over the complete 
time horizon.

mm
t e r

D A .b  D A ,b  D A . s  D A . s’ <1/ ' _ <rr ’ at ’Vt -  Tt+ Vt +  r;I D .b  ID .b  
’ X .  ’

I D . 8 I D .  
TV ’ X + ’ +  X !  cDG,9x ? G’9

gC.SÍDG
(D

3) Demand-Supply-Balancing Constraint: The demand- 
supply-balancing constraint (2) ensures the balance between 
demand and supply within the microgrid for every time slot t.

E + x  *?G'9 - x  *?•* - x
j€ A /p v  9€lNdg /cGA/b HslNe v

■ D A .b  - I D .b  D A . s  I D . s  L . i  sr\\
+  Vt + x t ’ - y t ’ -  x t ’ =  2 ^  Pt ■ (2)

ieA/>

4) PV Constraint: The following constraint restricts the 
influence on the PV production to curtailment.

0 < x BVb < P tV,j Vt g  T, j  G Mpv (3)
5) Battery Constraints: Constraint (4) ensures that the state 

of charge of a battery after time slot t, is between 0 and the 
total capacity of the battery, while constraint (5) ensures the 
limitations on charging and discharging.

t
0 < SO C B'k + X  x?’k < cB,k vt e T , k  e  M b  (4)

S=1
- D L B’k < x ? ’k < C L B’k Vt e T , k  e  M b (5)

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on October 17,2022 at 07:38:06 UTC from IEEE Xplore.  Restrictions apply. 



2022 7th IEEE International Energy Conference (ENERGYCON 2022)

6) EV Constraints: As an EV h can be modeled as a 
battery, constraint (6) is similar to constraint (4). The only 
difference in the state of charge is the incorporation of the 
used energy pEV,h of EV h, and constraint (8), which ensures 
that EV h can only be charged or discharged when connected 
to the grid. Note that constraints (6) - (8) have to be introduced 
for each EV h  e  M e v -

0 < S O C EV’h + J 2 x f V’h - p f V,h< C EV’h Vt G T  (6)
S —1

—D L EV,h < x f v 'h < C L EV’h\/t G T  (7) 

x f v’h =  0 Vt G I h (8)

7) Generator Constraints: Constraint (9) ensures that the 
capacity of each generator g G N dg  is not exceeded, while 
constraint (10) enforces the ramping-up and ramping-down 
limits for each generator g G M d g -

0 < x f G'9 < C DG’9 Vt G T  (9)

- rdd g ’9 < x? G ’9 -  x?Gf  < rud g '9 vt e r  (io)
8) Market and Grid Constraints: Constraints (11) and (12) 

ensure that the line capacity between the markets and the 
microgrid is not violated.

0 <  i,EA’buy + x \ D'buv <  C grid Vt G T  (11)

o < yEA’seU + x [ D 'sel1 < c grid vt g r  (12)
yDA,sell ̂  y DA,buy ̂ ^D^ell ̂  ¿Dfiuy  > Q Vt G T  (13)

Objective function (1), together with constraints (2) -  (13) 
form the deterministic model for the energy management of 
the considered microgrid.

III. A d a p t i v e  R o b u s t  O p t i m i z a t i o n

Robust optimization offers a practical way to include uncer­
tainty of the parameters into the model. Within the scope of 
the above microgrid model, the uncertainty in the parameters 
stems mainly from prediction errors, either due to human 
behavior (e.g. the load) or due to the intermittent nature 
of renewable energy sources (e.g. PV generation). In robust 
optimization, for each uncertain parameter, an uncertainty set 
is defined as the set of possible true realizations of this param­
eter. Robust optimization now tries to find the best solution, 
which is feasible for every possible realization of the uncertain 
parameters. To do so, it reformulates constraints containing 
uncertain parameters into a computationally tractable form. In 
this way it directly includes the uncertainty into the model, 
see e.g. [11] for more details.

Disadvantages of this (static) robust optimization approach 
are its often quite conservative solution, as well as the fact 
that all decisions are made upfront, i.e. already for the whole 
time period. However, in settings with multiple time slots 
often some of the decisions in later time slots do not have 
to be made at the beginning of the planning horizon, but can 
be delayed until earlier uncertainty has been realized. If this 
additional information can be used, the resulting solution will 
likely perform better compared to the static case. Adaptive

robust optimization (ARO) is a methodology for such multi­
stage robust problems, in which not all decisions have to be 
made directly, see [12] for an overview of different techniques 
and examples.

ARO divides the variables of a multi-stage robust optimiza­
tion problem into here-and-now and wait-and-see variables. 
The values of the here-and-now variables are to be determined 
directly, while the decisions of the wait-and-see variables can 
be postponed until the start of their corresponding time slot. 
Although even simple multi-stage RO problems are often NP- 
hard [10], there are techniques using Bender’s decomposition 
or column and constraint cuts to speed up the computation. 
Nevertheless, for larger instances, even these advanced tech­
niques may struggle to find the optimal solution within a 
reasonable time. One way how to overcome this issue is to 
drop the optimality requirement and to only approximate an 
optimal solution. This e.g. can be done by replacing the wait- 
and-see variables by a (affine linear) function depending on the 
uncertain parameters. In the remainder, we refer to these affine 
linear functions as linear decision rules (LDRs). It has been 
shown that this type of approximation performs quite well in 
many different settings, see e.g. [13] for further applications 
and examples.

A. Uncertainty Sets

The key components of any form of robust optimization 
are the uncertainty sets, which define the uncertainty in the 
parameter. Within the scope of this microgrid, there are a 
various sources of uncertainty:

• Load: The demand of the prosumers is highly influenced 
by the behavior of the prosumers.

• PV: The output of a PV system strongly depends on the 
weather. Perfect predictions even over a short or mid-term 
time horizon with small time slots are nearly impossible 
to achieve.

• EV: The electricity demand of an EV depends on a 
number of external factors, such as temperature, distance, 
speed and acceleration as well as the vehicle heating or 
cooling. In addition, arrival and departure times are often 
uncertain as well, in particular in setting with short time 
slot lengths, e.g. as 15 minutes.

• Market: The electricity prices of both, day-ahead and 
intraday market are subject to constant fluctuations.

In the following, we use the PV generation as an example to 
introduce the uncertainty sets in more detail. The uncertainty 
sets for the remaining parameters can be dealt with in a similar 
way.

The set of all PV systems is modeled as one single PV 
system in order to take into account the correlation between the 
output of neighboring PV systems. Instead of directly defining 
the uncertainty set with possible PV output values, we modify 
the uncertain PV output into a certain (known) part and an 
uncertain part,

pEV = p EV { I +  a.EVu EV),
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where pPV is the deterministic expected or nominal value 
of the PV output. The expression a PVu PV describes the 
fraction by which the PV production p PV might deviate, i.e. 
increase or decrease. This part consists of a given (known) 
fraction a PV e  [0,1] of the PV production, which may 
depend on the weather forecast or other external factors and a 
random variable u PV specifying how much of this fraction is 
really added or subtracted. The latter variable represents the 
uncertain part of the parameter and hence, the uncertainty of 
the PV output can be specified by the uncertainty set

This uncertainty set is often referred to as a budget uncertainty 
set. It restricts the uncertainty for each time slot between —1 
and 1, and in case T PV <  |T |, the Ll-norm constraint does 
not allow all uncertainty to be at extreme points (here -1 or
1). The budget uncertainty set therefore represents scenarios 
in which not all possible uncertainty per time interval can 
be realized, but at most a certain amount TPV. This type of 
uncertainty set is a frequently used set for uncertainty and there 
exist robust optimization techniques to derive computationally 
tractable robust counterparts for such sets, see [14] for a 
detailed overview.

Due to the standardized uncertain part u, most of the 
uncertainty sets are very similar to each other and only have 
an alternative budget parameter T, depending on the corre­
sponding parameters and setting. Note, that the uncertainty 
parameter a  allows for a quick and easy adaptation of the 
uncertainty within the model.

The only uncertain parameters within our microgrid model 
which cannot be modeled by means of a budget uncertainty 
set are the arrival and departure times of the EVs. Here, a 
simple uncertainty interval is an appropriate choice

UEV’A’h = [ a tEV’h e  T \a tEV’h < atEV,h < atEV'h} ,

whereby values atEV’h and atEV,h are given lower and upper 
bounds on the considered times.

B. Linear Decision Rules
In the following, we highlight how the uncertainty of the 

parameters can be included into the linear decision rules to 
design an adaptive robust model. Similar to the uncertainty 
sets, we use the PV system to present the linear decision rule 
in a more detailed way; applying them to the other variables 
can be done in a similar way. Given a PV system j  and time 
slot t, the variable x FV’9 describes the amount of electricity 
which is used, i.e. not curtailed. Note, that the decision how 
much to curtail can be made directly before the time slot. Thus, 
the corresponding LDR for x f v ’9 is designed as follows

' { u ) = ß ^ + ß lP V ,j,P V  P V
t  u t

PVi3>L,F(j) L ,F (j)
■ ß t , t - H -l

where , p [ J ’9’p v  and p FJ ^ { L,F^  serve as the parame­
ters of the LDR. Within this LDR, represents the part of 
the decision, which is independent of any future realizations,

TABLE I
Device Parameter

Type C C B /R U D B /R D S O C
EV 54 1.9 1.9 0

Battery 10 5 5 0
DG 1 5 5 -

while P tJ r,'*’PV and p FJ ^ { L,F^  represent the influence of the 
realization of the uncertain PV and load parameter. Note, that 

depends on the realization of the load uncertainty 
of time slot t  — 1, while for p FY ’3,FV we assume that it is 
possible to perfectly predict the PV production of the next 
time slot t. When replacing the variable x FV’9 by the LDR 
x f V,3{u), the parameters of the LDR become here-and-now 
variables in the robust model. Note that replacing every wait- 
and-see variable by a LDR results in a final model with 
only here-and-now variables, and hence well-known standard 
techniques from static robust optimization can be applied.

IV. C o m p u t a t i o n a l  S t u d y

The goal of this computational study is to demonstrate the 
practical feasibility of the proposed approach by means of a 
small case study. Hereby, we focus on two main questions. The 
first question is how much better the LDR approach performs 
compared to the static robust model. In a second step, we focus 
more on the effect of the different components of LDRs on 
the objective value. Unless explicitly mentioned, we apply the 
linear decision rules as described in Section III to all decisions 
of the deterministic model in Section n  apart from the day- 
ahead market variables. That is, we replace x j D,buy, x*D’se 1, 
x f v,\  x f ’9, x f ’b and x f v,h each with their respective LDR.

A. Data
Throughout this computational study, we consider a micro­

grid over a time horizon of 2 days, split up into 192 time slots, 
each of 15 minutes length. In the base scenario, we consider 
a microgrid of 10 prosumers, one distributed generation unit, 
one communal battery and 5 EVs (see Table I for the parameter 
settings of the EVs, the battery and the DG). Furthermore, 
the day-ahead and intraday market prices are taken from the 
EPEX market from the 8th and 9th of September 2021 (see 
Figure 1). The prosumer load profiles are modeled to have an 
average electricity consumption of 8 to 10 kWh per day. The 
aggregated load profile as well as the PV production over the 
complete time horizon are specified as depicted in Figure 2.

Regarding the uncertainty sets, we introduce three scenarios, 
A, B  and C, each representing a different level of uncertainty. 
The corresponding uncertainties are given in Table II.

t a b l e  n
Uncertainty Scenarios

Scenario a L a PV a EV a DA a ID
A 0.1 0.15 0.05 0.05 0.1
B 0.2 0.25 0.1 0.1 0.2
C 0.35 0.4 0.2 0.2 0.3
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Fig. 1. Market Prices and DG cost
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Fig. 2. Aggregated PV and Load profiles

B. LDRs vs. Static Robust Model
To get some insight in the working of the proposed ap­

proach, we compare the solution by the adaptive robust LDR 
approach with the solution of the static approach for the three 
different scenarios. As the LDR approach heavily depends on 
the true realizations of the uncertainty, directly comparing the 
objective values of both models with each other does not 
lead to a fair comparison due to the adaptive behavior of 
our proposed approach. Hence, we will randomly draw 100 
realizations of the uncertainty and use the LDRs as well as 
the solution of the static robust model to compute the actual 
costs of the approaches.

Static I Static (avg cost) LDR ■ LDR (avg cost)

Fig. 3. Static vs. Adaptive Approaches

The results are displayed in Figure 3, where the three 
groups represent the three different scenarios A, B  and
C. Furthermore, the columns Static and LDR represent the 
objective value of the static robust, respectively the LDR 
model, while the addition of (avg cost) represents the average 
actual cost of the 100 random realizations. Note, that due 
to the uncertainty in the market prices, the average actual 
costs of both approaches are better than the objective value 
of the respective models, as these assume the worst case

realizations of the prices. Focusing on the objective values of 
the models first, we note that the additional flexibility gained 
by replacing the wait-and-see variables by LDRs results in 
small improvements of 5.4% to 6.9%. Comparing the average 
actual costs on the other hand, we note that for scenario A, the 
LDRs are 10.70% better than the static solution, for scenario
B , this increases to 24.41% and in scenario C, the LDRs are 
better by 24.65%.

As expected, the real advantage of the LDR approach over 
the static robust model only reveals itself when considering 
the actual costs instead of the objective value of the models, 
as the LDR can only then display their adaptive behavior. In 
addition, the LDR approach is particularly useful for scenarios 
with larger uncertainty sets, although even in cases of only 
minor uncertainty it already outperforms the static robust 
optimization model. This improvement for larger uncertainty 
sets can be attributed to the, on average, larger differences 
between the worst case realizations and the actual realizations.

C. Structure o f LDRs
As the adaptive robust approach performs (significantly) 

better than the static robust model, in this subsection, we 
analyze the LDRs in more detail. One disadvantage of the 
proposed approach is the size of the resulting LP formulation, 
which is several (hundred) times that of the static robust 
model. As a larger LP formulation often implies a longer 
running time of the solver, reducing the number of variables 
and constraints without changing the set of feasible solutions 
can be a first step to shorten the running time. By identifying 
which LDRs have a larger impact on the objective value, we 
are able to derive more compact models which still perform 
better than the static robust model. This subsection consists 
of two parts. In the first, we derive and test various versions 
of LDR models and in the second, we analyze the differences 
between the two best performing LDR models.

To identify which LDRs have the largest impact on the 
objective value, we modify the full LDR model to only include 
LDRs for one variable type. The resulting five models (PV, EV, 
Battery, intraday market, DG) are tested using base scenario 
B . In addition to the single LDR models, we also test a 
model in which only the EV, the PV and the intraday market 
variables are replaced by LDRs. This choice stems from the 
optimal solutions of the full LDR model, in which only these 
three LDRs had non-zero parameters corresponding to the 
uncertainties. Hence, the full LDR model and the EV+PV+ID 
model should perform equally well. Once again, the objective 
value of the model and the average actual cost are used to 
compare the models with each other, see Table HI.

Focusing on the objective values first, we notice that both, 
the EV model and the EV+PV+ID model, achieve the same ob­
jective value as the full LDR model. Regarding the EV+PV+ID 
model, this is no surprise, as the optimal solution of the full 
LDR model is also feasible for the more restricted model. 
Regarding the EV model, the optimal solution of the full LDR 
model is not feasible, but nevertheless the objective value is 
the same. This implies that replacing only the EV variables
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TABLE m
Comparison of Single LDR Models

Model obj. value avg actual cost
Static Robust model 19.05 11.01

full LDR model 18.02 8.32
PV 19.05 11.04
EV 18.02 10.09

Battery 19.05 11,04
intraday market 19.05 11.04

DG 19.05 11.04
EV+PV+ID 18.02 9.73

by LDRs can already achieve the same effect as replacing all 
wait-and-see variables and hence offers a promising direction 
into decreasing the size of the model.

Shifting the focus from the ’worst-case’ oriented objective 
value to the actual cost, we see a difference between the 
previously equally good models. Both, the EV model and the 
EV+PV+ID model perform worse compared to the full LDR 
model. The reason for this is that the EV model only has a 
single LDR, and therefore, it can adapt less of its decisions 
to the actual realizations of the uncertainty. Regarding the 
EV+PV+ID model, this does not hold true, as also the full 
LDR model only makes use of the LDRs of the EV, the PV 
and the intraday market. Hence, it might be expected that 
both models should perform equally well w.r.t. the actual cost. 
However the full model performs better by about 16.88%.

This difference can be explained by the structure of the 
underlying set of feasible solutions. Due to the additional 
variables introduced via the LDRs, there are often multiple 
optimal solutions. Even though the optimal solution of the full 
LDR model is also feasible (and optimal) for the EV+PV+ID 
model, the solver produced another optimal solution. Hence, 
although both solutions have the same objective value w.r.t. 
the objective function, evaluating them w.r.t. the random 
realizations leads to different actual costs. Using the optimal 
solution of the EV model, which is feasible and also optimal 
for the full LDR model, the difference in actual cost between 
two optimal solutions can be as much as 21.24%.

One possibility to get a ’good’ optimal solution regarding 
the actual realizations is the following approach, which is 
based on solving two similar models.

1) Run the original model giving the optimal objective 
value of the problem.

2) Modify the model by adding a constraint, considering 
only solutions having this objective value into the model. 
Now replace the objective function by a function which 
uses e.g. average or expected prices.

Introducing the objective function as a constraint into the 
model restricts the set of feasible solutions to the set of optimal 
solutions. Solving the second model then only considers 
optimal solutions w.r.t. the original objective function, while 
also minimizing the average of the expected cost. Furthermore, 
note that this approach does not guarantee a better solution, as 
there may always be realizations in which the original optimal 
solution performs better. Note, that all LDR models within this 
computational study are using the afore mentioned two stage

approach. For the full LDR model and scenario B  this leads 
to an improvement of 16.18% between the average actual cost 
of the two stage approach (8.32) and the average actual cost 
of the solution of the first model run (9.93).

V . C o n c l u s i o n

In this paper, a new adaptive robust optimization approach 
was introduced for a microgrid energy management problem. 
The proposed approach uses affine linear functions to replace 
variables and thereby enables an adaptive behavior in the 
model. The numerical results show that the proposed adaptive 
approach performs significantly better than the static robust 
model, while still ensuring feasibility.

The proposed approach still leaves further open research di­
rections. When introducing the two stage approach, we briefly 
mentioned an option on how to integrate further knowledge, 
in particular stochastic information, such as e.g. distribution 
functions of the prices. This is one way how to combine robust 
optimization with aspects of stochastic programming, such 
as optimizing over expected values. Another way to develop 
the approach even further is by combining the model with a 
Rolling Horizon technique to reflect on the time-dependency 
of the uncertainty.
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