Understanding dynamic sparse training
capabilities in accommodating sparse data
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Abstract. Deep learning algorithms have became the state-of-the-art
models for various tasks in a large area of applications. The most ad-
vanced deep learning models have many parameters, increasing costs,
computational requirements, and memory footprints. Recently, the dy-
namic sparse training methods showed that it is possible to outperform
the dense neural networks with sparse neural networks, while reducing
the number of parameters (connections) quadratically. So far, all the
proposed sparse training methods are tested on well-known benchmark
datasets without data quality problems. However, in real-world data sci-
ence applications, a lot of data quality challenges may appear, (e.g. miss-
ing data). Missing data can cause daunting challenges in determining the
accuracy of models. Within this research, we intend to understand the
interplay between dynamic sparse training methods and data sparsity
for their mutual benefits.
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1 Introduction

Enabled by the large amount of data that are continuously recorded, deep learn-
ing has been proven successful for various tasks (e.g., classification, regression,
clustering, feature selection, and dimensionality reduction) in a large area of
applications. However, the most advanced deep learning models have many pa-
rameters, increasing costs, computational requirements, and memory footprints.
For example, Inception-V3 [14] a highly accurate object recognition network,
requires 5.7 billion arithmetic operations and 27 million parameters to be eval-
uated, while GPT-3 [2] an experimental natural language processing network,
requires 175 billion parameters (350 GiB assuming 16 bits per parameter). The
latest language model, GPT-4, is claimed to have 100 trillion parameters —
500x the size of GPT-3. Training these huge models require extensive comput-
ing facilities leading to an undesirable impact on our otherwise scarce resources
(i.e. energy consumption and CO2 footprint [12]). Thus, deep learning models,
in general, must be trained in the cloud and then moved on to the hardware for
exploitation. This limits their flexibility drastically.
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2 Related work

A plethora of methods have been proposed, ranging from more traditional com-
pression and pruning methods [8] [11] to the most recently introduced sparse
training methods [9] [6], aiming to obtain faster and cheaper training and in-
ference for neural networks. Model pruning assumes the training of large neural
networks in the cloud. Then, it identifies the least meaningful connections based
on various criteria, e.g., magnitude or information metrics. After that, those
unimportant connections are removed in order to obtain models with sparse
connectivity, which yield smaller memory footprints and faster computational
times during inference. The sparse models obtained following the above pro-
cedures, also called dense-to-sparse models, can be as effective and even be
exploited for inference purposes. Perhaps one of the most recent and popular
dense-to-sparse method is The Lottery Ticket Hypothesis [7]. The solutions dis-
cussed above are limited by the initial need to train a very large neural network
in the cloud. Recently, it has been shown that sparse neural networks trained
from scratch (i.e., sparse training) can reach or even can outperform dense neu-
ral networks while using much fewer computational resources, and consequently,
small memory footprint, while having high representational power. The basic
idea of sparse-to-sparse models is to use sparse connectivity before training in
neural networks [1,9,10,4,6,15]. This starts to appear as the “de facto” solu-
tion to obtain sparse neural networks with a small number of parameters, which
many times outperform even their very large dense counterparts. All in all, this
makes the adaptive sparse connectivity concept very suitable for the training
and exploitation of neural networks.

In this research, sparse data will be described as a subset of the data. It can
be distinguished between two cases. First one includes some missingness mecha-
nisms which have been traditionally divided into three main categories, such as
Missing Completely at Random (MCAR) — in which the probability of miss-
ing a data depends neither of observed or unobserved data, Missing at Random
(MAR) — in which the probability of missing a data depends just on observed
data, and Missing not at Random (MNAR) — in which the probability of miss-
ing a data depends on observed data conditioned by observed measurements [13].
Second case includes, when all data are present, but the artificial neural network
can not model them correctly. For example, data which are recognized to be
easy-to-forget or hard-to-be-memorized.

3 Sparse data and sparse training models

We envision a general framework that accounts for mutual benefits between
sparse data and sparse models. The main PhD research is split into two main
parts. In the first part, we have started investigating the learning capabilities of
dynamic sparse training methods to account for sparse data (e.g. missing data)
in a given incomplete observability environment. In the second part, we aim to
explore and extend the dynamic sparse training methods to accommodate special
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types of data recognized as being hard to perceive by the neural network model
(e.g. easy-to-forget or hard-to-memorize) and the main well-known challenges
related to it. The general flow of information, including the connection between
both parts, can be seen in Figure 1.
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Fig. 1. Schematic representation of main research components and their interrelations.
Sparse data includes all three missing data mechanisms: MCAR, MAR and MNAR.
Black hash represents a missing data point, and orange and green shadows represents
the conditional dependence to that specific missing point in case of missing at random.
Part I consider the sparse data as input into a dynamic sparse model (i.e. Sparse
Evolutionary Training [9]). Part II focus on understanding the possible difficulties to
perceive the given data and their reflection on online learning tasks.

Part I: Incomplete data observability In real-world data science appli-
cations, quite often, the neural networks models should be able to accommodate
various data quality aspects (e.g., missing data) and take advantage in a data-
efficient way of all of them. In this first part, we want to go one step beyond the
state-of-the-art and understand the interplay between “sparse data” and “sparse
training models”. This lead us to the following research questions:
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Can sparse training benefit from a data-efficient solution? How should the
“sparse training models” and “sparse data” interact? Can they possibly be si-
multaneously used to drive training efficiency to the next level?

Part II: Incomplete modeling In this second part, we aim to investigate
the learning capabilities of sparse neural networks in a fully-observable environ-
ment, where all the data are present, but the neural network may not perceive
them. Recently, it has been observed that deep neural networks can have samples
that are either hard-to-memorize during training or easy-to-forget during prun-
ing. Prior work has shown that using a specifically selected subset of data rather
than the all training set, a dense-to-sparse model may overcome these issues
and identify lottery tickets more effectively — leading to the general idea for this
particular pruning models [16]. Based on our knowledge, the hard-to-memorize
and easy-to-forget sample problems have not been analyzed in the context of
any sparse-to-sparse models. Consequently, in the second part of this research,
the following research questions will be investigated:

To what extent can we find a subset of data that allows us to overcome
the catastrophic forgetting problem in sparse neural networks? Are the dynamic
sparse training algorithms able to accommodate the hard-to-memorize and easy-
to-forget samples?

4 Preliminary Results

We are considering the Wisconsin Breast Cancer [5] dataset, a very simple multi-
variate benchmark dataset with two classes, benign and malign, and 32 variables.
We simulate the MCAR data using a set-aside masked values from the full data
matrix. The obtained sparse data are then fed into a multi-layer perceptron
(MLP) and trained using a sparse evolutionary training (SET) procedure. We
compare the learning capabilities and computational performance of SET-MLP
with a dense MLP and a static sparse MLP (SS-MLP).

For all three models, we use similar hyperparameters and a 30 x 100 x 100 x
100 x 2 architecture. For the three hidden layers, we use a ReLU activation
function, while for the output layer, we use Softmax. During training, we use
a stochastic gradient descend optimizer and a cross-entropy loss function. Fur-
thermore, we use a learning rate of 0.001, a momentum of 0.9, a batch size of
10, and a dropout rate of 0.1. The initial sparsity level for SET-MLP and Static
Sparse MLP varies, while for SET-MLP the evolution of the weights is consid-
ered with a ¢ = 0.1 rate. All models have been run three times using a truly
sparse implementation, building on top of the Curci et al. [3] code.

In Fig. 2 (left), we plot the accuracy of SET-MLP (solid lines) versus SS-
MLP (dashed lines) and their dense MLP counterpart (black line) in the case
of low (i.e. 25%) and moderate (i.e. 50% and 75%) model sparsities. We can
observe that both resource-aware models, SET-MLP and SS-MLP, are often
more accurate than the dense network while having a quadratically reduced
number of parameters. Furthermore, as we increase the level of sparsity toward
the high sparsity regime, as can be seen in Fig.2 (right), all three methods show
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Fig. 2. Comparison over Wisconsin Breast Cancer dataset between a dense MLP, a
static sparse MLP, and SET-MLP in (left) a low to moderate sparse regime and (right)
an extreme sparse training regime.

good generalization capabilities and similar accuracy. Beyond a 90% reduction in
both the data input used and model parameters, the huge gain in computational
performance is reflected in a slight decrease in accuracy.

Our initial results using data in an incomplete observability environment
show a great potential towards an impressive computational reduction and an
increase in accuracy. These results are yet limited to one dynamic sparse training
algorithm (i.e., Sparse Evolutionary Training [9] and one dataset where the miss-
ing completely at random features have been simulated (Breast Cancer Wiscon-
sin) [5]. Further theoretical considerations and empirical results are currently un-
der development to generalize these results and support these impactful claims.
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