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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• A novel algorithm for the parallelization 
of GPU based DEM at the level of the 
RVE is presented. 

• Simulation level parallelism of inde
pendent RVEs is provided. 

• A low latency and memory efficient 
implementation of deformable PBC is 
performed. 

• Modified UG and BVH contact detection 
algorithms is used to partition the 
simulation index into the hashing keys. 

• Drained DEM triaxial test is used to 
validate the algorithm on dry graded 
quartz.  
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A B S T R A C T   

Calibration of Discrete Element Method (DEM) parameters is essential for modeling geotechnical applications. 
This task can, however, be extremely tedious or sometimes even impossible to undertake. This is largely due to 
two issues namely: (1) a large sample size of DEM simulations and number of sampling iterations are necessary to 
accurately infer the probability distribution of a model over a large parameter space and (2) DEM is computa
tionally intractable compared to other numerical methods. In the scope of reducing the number of sampling 
iterations, automatic calibration techniques are available to extract and make use of the hidden contact meso
structure correlations through adaptive sampling. Coincidentally, to improve computational speed, significant 
advances toward Graphics Processor Unit (GPU) based DEM algorithms have been achieved over the past years 
on particle parallelism. Nevertheless, the problem remains that DEM simulations are serialized during the 
calibration processes. While the companion paper addresses parameter calibration, this study presents a novel 
algorithm to parallelize independent simulations within a sample set. The selected system is the Representative 
Volume Element (RVE) which is widely used in geotechnics for solving soil response in the static regime. The 
algorithm includes the following key features: (1) simulation level parallelism of non-interacting RVEs through 
highly efficient hierarchical memory groups and access patterns (2) a low latency and memory-efficient 
implementation of deformable periodic boundary conditions (PBC) which uses lookup tables and bitmasks (3) 
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modified Uniform Grid and Bounding Volume Hierarchy (BVH) contact detection algorithms which partitions the 
RVE index into the hashing keys. The drained DEM triaxial compression is used to validate the algorithm on dry 
graded quartz. Three performance degrading factors for the calibration processes are considered: (1) the number 
of particles per RVE (2) calibration sample size and (3) sequential launch time per calibration step. This algo
rithm shows a factor of about 9.8 times speedup when parallelizing 100 DEM RVEs in one batch.   

1. Introduction 

Calibration of physical parameters for numerical models is essential 
for simulations to emulate real-world engineering problems. This pro
cess involves tuning model parameters such that the numerical response 
matches the experimental response. Well-established numerical models 
are generalizable enough to solve various problems but cumbersome to 
calibrate, especially for complex non-linear applications such as those 
modeling granular materials. 

The Discrete Element Method (DEM) put forward by Cundall and 
Strack [1] is a fundamental numerical tool used to simulate the 
macroscopic behavior of granular material through mechanical in
teractions of discrete particles. Graphics Processing Unit (GPU) based 
DEM is becoming more relevant in large scale engineering problems 
[2,3,4,5] given the rise of high-performance parallel computing hard
ware and distributed nature of particles and their interactions. 

The Representative Volume Element (RVE) is the smallest volume 
meso-structure used to constitute the macroscopic characteristics of soil 
[6,7]. Oftentimes, rigid walls are often used with a servo-control 
mechanism to impose some stress or strain conditions. However, the 
packing fraction at the wall is generally lower than the rest of the 
sample, and the stress response at the wall is different from that of the 
center [8]. Periodic boundary conditions (PBC) are used in RVEs to 
reduce the effects of rigid wall boundaries [9]. 

There is a growing need to simulate many calibrated independent 
RVEs. Among these methods is the hierarchical Finite Element Method - 
Discrete Element Method (FEM-DEM) multiscale simulations such as 
those from N. Guo, et al. [10] and others [11,12,13]. The hierarchical 
FEM-DEM simulations replace the constitutive model with the response 
stress deformation response of an RVE. This is achieved by mapping 
each RVE to a material point or Gaussian integration point in the FEM 
mesh. The parallelization of RVEs is significant in improving the per
formance of these simulations. Yade [14] can support independent RVEs 
as scenes but is developed on the CPU. S. Zhao et al. [15] developed a 2D 
parallel thread-block-wise GPU-based RVE code for DEM and Material 
Point Method (MPM) coupling. Finally, [13] performed multi-scale hi
erarchical FEM-DEM parallel simulations on RVEs for dry sand. 

Another application to simulate many RVEs is the automatic cali
bration of DEM parameters such as genetic algorithms implemented by 
[16] and Bayesian inference algorithms developed [17,18]. These al
gorithms may require many RVEs for a large parameter set to be cali
brated accurately and efficiently. 

There are many challenges to achieving parallelism at an RVE level: 
(1) GPU algorithms are implemented in a thread-structured pattern 
which limits how memory is accessed between particles; (2) A particle 
may have up to 7 boundary particles that interact differently with other 
real and boundary particles during the contact detection and force 
calculation stages. For instance, if a real particle interacts with an 
another particle’s boundary particle, force symmetry should ensure that 
the real particles register contact with each other while the contact is 
only made among the boundary and real particles; (3) Deformation of 
RVEs modifies the local coordinates and the velocities of the particles; 
(4) Parallel non-interacting RVEs may have a unique simulation state 
and initial configuration; (5) Contact detection algorithms are only able 
to partition one simulation domain at a time and do not consider the 
special rules of boundary particles; (6) Special techniques such as atomic 
functions or parallel reductions are necessary for threads to communi
cate to each other and perform volume averaging of state variables such 

as the stress. 
This study addresses these issues by introducing a novel algorithm 

for GPU-based DEM to simulate many independent RVEs for the drained 
triaxial test. The code is developed into the existing CoSim-DEM [13] 
framework and used for generating a large statistical sample size and the 
fast calibration in the companion paper. 

The rest of the paper is structured as follows: Section 2 provides an 
overview of the basic DEM contact model; Section 3 introduces the 
Moment Rotation Law (MRL) which is used to introduce grain roughness 
for triaxial simulations; Section 4 gives an overview of the DEM inte
gration scheme; Section 5 discusses the RVE and presents the stress and 
strain invariants for the triaxial test; Section 6 introduces the parallel 
piped unit cell and transformation between local and global coordinate 
systems; Section 7 presents the implementation of the GPU algorithm; 
Section 8 shows the homogenization procedure; Section 9 presents a 
validation of the DEM simulation to the drained triaxial sand of dry sand 
quartz; Section 10 shows a potential application to the algorithm by 
studying the softening and hardening behavior of a designed material; 
Section 11 gives a performance comparison implement algorithm for 
isotropic strain-based compression. Section 12 concludes the paper and 
future recommendations are made. 

2. Discrete element method 

DEM is a force-displacement Lagrangian approach to solving New
ton’s equations of motion for an assembly of discrete particles. These 
particles are governed by force contact law which determines their 
interaction forces. The simplest law in DEM is based on a Hertzian spring 
model and called the Frictional Law (FL) [1]. The FL is used as an initial 
approximation in this study and modified to include the effects of the 
particle shape. 

In FL, the resultant force vector F→
t+Δt 

of particle A of a pairwise 
contact with particle B is decomposed into the sum of the normal force 
F→N and the tangential (or shear) force F→T: 

F→
t+Δt

= F→N
t+Δt

+ F→T
t+Δt

(1a)  

F→N
t+Δt

= ⟦KN⟧λP n→ (1b)  

Δ F→T
t+Δ

= − ⟦KT ⟧Δ λ
→

T (1c)  

where λP is the penetration depth, Δ λ
→

T is the incremental tangential 
displacement vector and n→ is the normal direction of contact. The 
viscous dashpot term as in [19] is neglected since this study is restricted 
to systems in the quasi-static regime for dry sand quartz with very small 
relative velocities. 

The normal stiffness ⟦KN⟧ and tangential stiffness ⟦KT⟧ are calculated 
using the radius of the two particles rA and rB: 

⟦KN⟧ = E
2rArB

rA + rB
(2a)  

⟦KT ⟧ = νE
2rArB

rA + rB
(2b) 

The tangential force FT
t+Δt is found by summing the history of the 

tangential increments Δ F→T
t+Δ 

at the previous time steps of the same 
contact pair. A frictional Mohr-Coulomb criterion is applied which 
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enables the particles to slip. That is if the tangential force exceeds the 
normal force times the friction angle |FT

t+Δt| > |FN
t+Δt| tan φ, then the 

expression is: 

F→T
t+Δt

= tanφ
⃒
⃒Ft+Δt

N

⃒
⃒

⃒
⃒Ft+Δt

T

⃒
⃒

F→T
t+Δt

(3) 

The FL introduces four material parameters: Young’s moduli E which 
scales the magnitude of the normal and shear force; Poisson’s ratio ν 
which scales the magnitude of the shear force; Intergranular frictional 
angle μ = tanφ determines the strength limit of the tangential force. The 
torques of the particles are calculated by: 

T→
t+Δt

= λT( − n→)× F→
t+Δt

(4)  

where λT= (rA − λP) is the mathematical complement of the radii 
overlap. 

3. Moment Rotation Law 

Particles may be represented by different geometries [20] which can 
influence the bulk properties such as shear strength and angle of repose 
[21]. However, resolving contact for particles with detailed geometry 
requires complex and computationally demanding algorithms [22,23]. 
This study uses spherical particles and artificially introduces a grain 
roughness by using the Moment Rotation Law (MRL). 

MRL modifies the FL by introducing rolling M→roll and twisting M→twist 
moments. Artificially adding these moments was shown to produce 
desirable results under quasi-static triaxial compression 
[24,18,25,26,13]. 

M→
t+Δt

= T→
t+Δt

+M→twist
t+Δt

+M→roll
t+Δt

(5) 

The rolling and twisting moments are solved similarly to each other 
(denoted by the subscript). The incremental moments are found by: 

ΔM̅̅→I
t+Δt

= − ⟦KI⟧Δ λ
→

I (6)  

where Δ λ
→

I is the incremental moment rotation vector. The total 

moment M→I
t+Δt 

is obtained by the summation of the moment increments 

from the particle history from ΔM̅̅→I
i+1

. Then a stiffness is found by: 

⟦KI⟧ = ηImin(rA, rB)
2⟦KT ⟧ (7)  

where ηI is the stiffness coefficients. 

After the moment is incremented, a threshold is applied if 
⃒
⃒
⃒
⃒M
→

I
t+Δt

⃒
⃒
⃒
⃒

〉

Meta
I holds. The modified moment is given by: 

M→I
t+Δt

= Meta
I

λ
→

I⃒
⃒
⃒ λ
→

I

⃒
⃒
⃒

(8a)  

where 

Meta
I = αI

⃒
⃒
⃒F→N

t+Δt⃒⃒
⃒ (8b)  

and αI is a strength parameter. Eqs. (6) to (8) should be repeated for both 
the bending and twisting moments. MRL introduces 4 additional pa
rameters: twisting and rolling stiffness coefficient ηtwist and ηroll, and the 
twisting and rolling strength αtwist and αroll. 

4. Integration scheme 

The translational acceleration a⇀
t+Δt

2 and angular acceleration ω⇀
t+Δt

2 of a 
particle is found using the particle mass mA and Newton’s second law 
with the resultant force and moment. Then, a first-order Euler integra

tion scheme is used to find the velocity u⇀
t+Δt 

and position s⇀
t+Δt

: 

a⇀
t+Δt

2
=

F→
t+Δt

mA
(9a)  

Fig. 1. RVE of 2000 particles with uniformly distributed radii between 5 × 10− 5m and 1.25 × 10− 4m. The cell lengths are shown as Lx, Ly and Lz, and the mean cell 
length Lmean is about 33 times larger than the mean particle radius rmean. 
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adamp = a⇀
t+Δt

2
(

u⇀
t
+

Δt
2

a⇀
t+Δt

2
)

(9b)  

u⇀
t+Δt

= u⇀
t
+ a⇀

t+Δt
2
[
1 − Cdampsign

(
a⇀

t+Δt
2
) ]

Δt (9c)  

s⇀
t+Δt

= s⇀
t
+ u⇀

t+Δt
(9d)  

where Cdamp is the normal damping coefficient. A similar integration 
scheme is performed for the moment for the particle. The time step Δt is 
set as half the critical time step [27]: 

Δtcr = rmin

̅̅̅̅̅̅̅̅
E

ρmin

√

(10)  

where rmin and ρmin are the minimum radius and density of the particles, 
respectively. 

5. Upscaling and RVE 

A large system of fine powders or soils often requires enormous 
amounts of computational resources to simulate to the exact scale. 
Instead, the material response can be found by studying a subscale of the 
system which is characterized by an RVE. The RVE solves the constitu
tive laws of the microscopic (particle) interactions to statistically find 
the macroscopic variables employing volume averaging [6]. The size of 
the RVE must be much smaller than the macroscopic system LRVE ≪ 
LMAC, but large enough to be homogenized and eliminate the fluctua
tions (of the averaged field variables) LSUB ≪ LRVE which is due to 
microscopic effects [28]. An example of a homogenized RVE is shown in 
Fig. 1. 

For a homogenized RVE, the effective stress is found by using the 
Cauchy stress [29]: 

σi,j =
1

VRVE

∑

Nc

d
⇀c

⊗ f
⇀c

(11)  

where VRVE is the volume of the RVE. The tensor product ⊗ is calculated 

for the contact force f
⇀c 

and the branch vectors d
⇀c 

over all contact pairs 
Nc. 

Using the effective stress, the mean principal stress p and deviatoric 
stress q for a 3D system is given by: 

p =
1
3
(
σ1,1 + σ2,2 + σ3,3

)
(12a)  

q =
1̅
̅̅
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
σ1,1 − σ2,2

)2
+
(
σ1,1 − σ3,3

)2
+
(
σ2,2 − σ3,3

)2
√

(12b) 

The strain tensor εi, j is the relative change in position of the RVE 
under deformation. The volumetric strain εV and deviatoric strain εq are 
given by: 

εV = ε1,1 + ε2,2 + ε3,3 (13a)  

εq =
1̅
̅̅
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
ε1,1 − ε2,2

)2
+
(
ε1,1 − ε3,3

)2
+
(
ε2,2 − ε3,3

)2
√

(13b) 

The initial configuration of the RVE should approximately match the 
particle size distribution, porosity, and density of contacts of the 
experiment [28]. It is, however, not necessary to match the bulk density 
since the time step and the maximum deformation rate (defined in 
Section 6) are scaled relatively. Particle mass density may also be arti
ficially increased to decrease the magnitude of the time step and lessen 
computational time [30,31]. However, this study chooses to match the 
porosity of the system but assumes a similar bulk density to the exper
iment. The effects of gravity within the packing are also ignored for 
mesoscale simulations. The simulation parameters used are defined in 

Appendix A. 

6. Deformable boundaries and periodicity 

The parallel piped unit cell is used to incorporate different servo- 
controlled deformations and periodicity into an RVE. Fig. 2 shows a 
2D illustration of this unit cell as part of an infinite system of images. As 
the centroid of a particle traverses an edge and leaves the unit cell, the 
position of the particle is translated across the opposite edge, conserving 
its direction of motion and energy. Particles in between the unit cell and 
its images lead to boundary particles. The number of boundary particles 
depends on how many edges are overlapped. The term real particle is 
used to distinguish between a particle in the main unit cell and its 
boundary particles in other images. 

The periodic images contain identical particles which are incre
mented by the cell length. 

For the parallel piped unit cell, two coordinate systems are used, 
namely, the global (cartesian) coordinate system and the local (cell) 
coordinate system. These coordinate systems are interpreted as matrices 
with the column entries as the basis of the system. The global coordinate 
system is denoted as xi and the local coordinate system is denoted as Xj. 
The coordinate transformation between these systems are: 

xi = HijXj (14a)  

Xj = H− 1
jk xk (14b)  

where Hij is the transformation with its columns as basis vectors of the 
cell, and Hjk

− 1 is the inverse transformation. 
The images of the particles in the local coordinates can be obtained 

by periodically shifting their positions si → s′ i by units of local cell length 
Li

′ , as shown in Fig. 2. 

s′i = si ±Li
′ (15) 

The motion due to the homogeneous deformation of the boundaries 
is considered by differentiating Eq. (16) and decomposing it to the affine 

mean-field velocity u⇀mf

′

and fluctuating velocity u⇀fl

′

. 

ẋi = ḢijXj +HijẊj = u⇀mf

′

+ u⇀fl

′

(16a)  

u⇀mf

′

= u⇀mf ± ḢijLi
′ (16b)  

Fig. 2. 2D illustration of a parallel piped unit cell (green) in the global and 
local coordinates. The periodic images contain identical particles which are 
incremented by the cell length. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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u⇀fl

′

= u⇀fl (16c) 

The affine mean-field velocity is attributed to the macroscopic ho
mogeneous deformation of the RVE cell, and the fluctuating velocity or 
velocity is driven by a particle force and is not affine. 

The velocity due to the homogeneous deformation of the RVE is 
found in the global coordinate system by: 

uhi = Uijxj (17a)  

Uij = ḢikH− 1
kj (17b)  

where Uij the velocity gradient (tensor) which is used to represent the 
gradient of homogeneous deformation. The induced acceleration is 
found by differentiating Eqs. (17) 

u̇hi = U̇ikxk +Uikẋk (18) 

The boundary-induced velocity and acceleration are considered in 
the motion integration scheme. The velocity gradient or strain rate al
lows for scaling and rotation and is applied incrementally by the servo- 
controller to deform the cell. 

Ct+Δt
ij = Ht

ijC
t
ij (19a)  

Ht
ij = δi,j +Ut

ijΔt (19b)  

C0
ij =

⎡

⎣
L1 0 0
0 L2 0
0 0 L3

⎤

⎦ (19c)  

where δi, j is the identity matrix, Ci, j is the cell matrix with wall lengths 
L1, L2 and L3. 

The shear rate γ̇ is defined as the second invariant of the velocity 
gradient (strain rate tensor) in Eq. (19). From this, the following a 
rheological relation is given [32]: 

γ̇ =
I ′

2rmean

̅̅̅̅̅̅̅̅
σc

ρmean

√ (20)  

where ρmean and rmean are the mean radii and densities of the particles, 
respectively. σc is the confining pressure. The dimensionless inertia 
number I′ corresponds to the flow regime which is set to 10− 3 for the 
quasi-static regime in this study. 

This study applies two constraints to correctly simulate a quasi-static 
response in DEM. The first constraint is that the time step should be 
below the critical time step in Eq. (10) to have numerical stability. The 
second constraint is that the maximum incremental strain for the servo- 
controller should be sufficiently small. 

dεmax = Δt • γ̇ (21) 

As γ̇ and Δt becomes smaller, more simulation iterations are neces
sary to reach a final simulation time or servo-controlled goal (strain or 
stress). Therefore, to ensure reasonable computational time, γ̇ and Δt are 
automatically calculated for the RVE to the mean radii, mean particle 
density, and Young’s modulus. In the case of multi-RVE simulations with 
different Young’s moduli or particle densities, the time steps may vary. 
The servo-controller also checks if the potential energy (calculated from 
particles’ stiffness) is greater than their kinetic energy (calculated from 
the particles’ mass and velocity) before a strain increment is applied to 
the boundaries. The DEM solver uses the global coordinate system but 
temporarily deforms the RVE to its local coordinate system to find the 
respective boundary particles. 

7. GPU algorithm 

7.1. GPU architecture 

The implementation is done in C++ and the NVIDIA CUDA toolkit 
[33] for General-Purpose Graphics Processing Unit (GPGPU) program
ming. Depending on the GPU device used, the implementation in the 
code may differ, but the procedure and principles would remain the 
same. 

The CUDA programming model is separated into host-side and 
device-side (GPU) processes which execute on different memory and 
processing spaces. To efficiently utilize the GPU the following principles 
should be followed [34,35,36]: (1) global memory access (read and 
write) should be reduced and performed in a coalesced (grouped) 
manner; (2) the total amount memory requirements should be reduced; 

Fig. 3. Flow chart of the GPU DEM simulation loop. The modified GPU DEM processes are shown in grey and the extended PBC sub-class processes are shown in blue. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(3) thread occupancy should be increased by using enough threads to 
keep the processor busy; (4) bank conflicts (overlapping memory 
address) should be minimized; (6) branch divergence or forking logical 
statements must be reduced. 

The present GPU algorithm for solving multiple non-interacting 
RVEs concurrently attempts to adhere to these optimization principles. 
Some procedures utilize existing optimized algorithms such as sorting, 
inclusive scans, and reductions made available by libraries CUB (D. 
[37]) and thrust [38]. 

7.2. Concurrent RVE simulation scheme 

The developed framework follows a modified simulation loop 
compared to traditional DEM codes [39,2,36]. The modified simulation 
loop includes (1) servo-controlled deformable boundaries and periodic 
boundary conditions for the RVE; (2) particle and boundary particle 
interaction at the RVE walls; (3) many non-interactable RVEs are solved 

concurrently. The rest of this section presents the overarching simula
tion loop while the next sections explain the detailed implementation. 

The simulation loop of the framework is shown in Fig. 3. The steps 
shown in grey are adapted from the general DEM simulation loop, such 
as the modified collision detection and integration. While the steps 
shown in blue are newly introduced features implemented into a module 
called PBC. The PBC module introduces some additional steps: the servo- 
controller applies a deformation to each RVE (Step 1); boundary parti
cles are assigned (Step 2); volume averaging for each RVE is performed 
(Step 5); periodicity is applied to the particles crossing the boundary 
(Step 7); RVEs are flagged as finished after they reach user-specified 
stress or strain goal, and the total number of thread is reduced to 
improve overall efficiency (Step 8). 

7.3. Coalescence of memory and threads 

The memory structure and data access patterns are aligned with the 

Fig. 4. Schematic diagrams of the (a) hierarchical memory groups and (b) collective thread groups. The numbers indicate the indices for NBatch number of batches, NP 
number of particles, NB number of boundary particles and NRVE number of RVEs. The dashed line in (a) indicates the class membership. 
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GPU optimization principles mentioned in Section 7.1. This is achieved 
through hierarchical (top-down) memory groups and collective thread 
groups. 

The memory groups illustrated in Fig. 4 (a) may be either located on 
the host-side (CPU) or device-side (GPU). The class memberships are 
indicated through a dashed line. For instance, a batch has a collection of 
member RVEs, an RVE has a collection of member particles, and so on. 
The batch memory group is processed serially using asynchronous host 
to device and device to host copies using CUDA streams. Batch pro
cessing is used when the memory limit on the GPU card is reached. RVEs 

are solved concurrently in the same simulation loop. This is achieved by 
defining an RVE index (Section 7.4). Particles that belong to the same 
RVE have the same RVE index and may not interact with particles that 
have different RVE indices. Each member in a group has their state 
variables. For instance, particles contain information on their positions, 
velocities, angular velocities, forces, moments, radii, etc. 

Fig. 4 (b). shows the layout of the thread groups which are dis
patched to read and write to the respective memory indices. In general 
GPU DEM codes [2,3,4,5], the memory layout usually follows a set of 
bytes per particle, and a thread per particle is assigned as the global 
thread group. Similarly, this algorithm allows highly efficient memory 
and data access patterns. Boundary particles can retrieve information 
about their parents (real particles) such as radii or contact history. 

Volume averaging is achieved by first summing all forces and con
tacts of the particle in the force calculation kernel. Then, a segmented 
reduce function using CUB (D. N.-L. [40]) is utilized (based on the RVE 
index) to calculate the RVE state variables. The hierarchical memory 
layout and collective thread groups remove the restriction of using 
shared memory to compute the RVE state variables such as [15]. 

7.4. Handling boundary particles 

If a real particle intersects two or more walls within a parallel piped 
unit cell then boundary particles are created at the adjacent walls as 
shown in Fig. 5. There are four possible configurations: particle (P0) has 
no boundary particles; particle (P1) intercepts one wall and has one 
boundary particle (B1) at the adjacent cell wall; particle (P2) intercepts 
two walls and has three boundary particles (B2) at the three adjacent 
walls; particle (P3) intercepts three walls and has seven boundary par
ticles (B3) at the adjacent walls. 

A bitmask is used to store the possible combinations of boundary 
particles. An example of a bitmask in Fig. 5 is (P0) 000000 (no boundary 
particles), (P1) 000100, (P2) 010100, and (P3) 010101. The first three 

Fig. 5. Four possibilities of particle-wall intersections of a periodic cell, and the 
respective boundary particles. 
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digits are set for intersecting a wall near the origin of the cell. The second 
three digits are set when overlapping adjacent cells. The bitmask of each 
particle has a permutation that describes the boundary particle bitmask. 
For instance, (P2) permutes into the three boundary particles 000000; 
010001; 000100. Therefore, after finding the real particle bitmask, the 
boundary particle bitmask can be calculated. 

Algorithm 1 is used to find the boundary particles of a real particle 
that intersect the RVE walls. The algorithm contains two main proced
ures. The first procedure is a device-side kernel that is launched for a 
thread per real particle, and the second is a host-side function used to 
dynamically allocate memory. The SetBoundaryParticles procedure is 
called twice (lines 25 and 28). The first call performs a dry run that 
calculates the real particle bitmasks and counts the number of boundary 
particles to be created. Particles are temporarily transformed to the 
deformed coordinates of their respective RVE (lines 2–5) and tested for 
the intersection of the RVE walls (lines 7–15). The TheMallocBoundar
yParticles procedure is responsible for dynamically allocating a refer
ence array for the boundary particles using a prefix sum (line 26). After 
the number of boundary particles per real particle is found nB, a 
boundary particle reference array (Bref of size NB) is dynamically allo
cated which points a boundary particle to its real particle (line 27). After 
the boundary particle reference array has been allocated, each boundary 
particle is permutated using a lookup table and then assigned a pointer 
to its real particle (lines 18–20). 

Algorithm 1. Bitmask Boundary Particles. 

Algorithm 3 is a procedure called to obtain the boundary particle 
positions and velocities. As shown in line 4, the values to a respective 
boundary particle are obtained by referring to its set pointer Bref (line 4). 

The vector for the wall of the boundary particle w⇀
′

i is found using a 
lookup table and the calculated mask of the particles (line 6). It is 
memory-efficient to store only the bitmask of the shifted particle images. 
However, this comes at a performance trade-off since matrix multipli
cation is necessary to move the particles’ coordinates from local to 
global coordinates. This study instead stores the boundary particle po
sitions and velocities while referring to the real particle for other vari
ables such as the particle radii. 

The force calculation of particles must also consider contact between 
real and boundary particles. It is common for the contact between par
ticles to be performed in a thread per particle kernel [39,2]. In this case, 
the contact between particles is performed also performed similarly but 
a real particle also sequentially loops over its boundary particles. The 
force that is computed for a boundary particle should be mapped back to 
the real particle following Newton’s third law. The allowed binary 
contacts are real-real and real-boundary. The boundary-boundary con
tacts are avoided by excluding contacts during the collision detection. 

Algorithm 2. Get boundary particles. 

7.5. Modified collision detection 

As discussed in Section 7.2, the time evolution of all RVEs is solved 
within the same simulation loop to improve efficiency. To solve many 
non-interacting systems (simulations), an RVE index is used which can 
be interpreted to add a non-spatial dimension. Particles that have the 
same RVE index are allowed to interact, while particles of different RVE 
indices do not interact. This is achieved by modifying existing collision 
detection algorithms and by ensuring all particles are within the same 
reference frame (global coordinates). This study modifies the GPU-based 
Uniform Grid [41,2] and BVH [42,23] collision detection algorithms. 
The Uniform Grid is more efficient for monodisperse simulations and 
compact simulation domains while the BVH is more efficient for highly 
polydisperse simulations and sparse domains [23]. 

The conventional Uniform Grid partitions the spatial domain into a 
3D grid of M = MxMyMz number of grid cells. The particles are binned 
into the grid cells through a spatial hashing scheme. The neighboring 
cells of the selected particles are inspected for their nearest neighbors. 
The Uniform Grid resolution is determined by the cell size and a cell can 
contain more than one particle. However, computational performance 
will be degraded if there are too many particles within a cell. 

The modified Uniform Grid (Fig. 6) partitions the particles and their 
boundary particles into the grid. Then a modified hash scheme is used to 
partition the particles based on their spatial coordinates and RVE index: 

Hash = w+ binxNRVE + binyNRVEMx + binzNRVEMxMy (22) 

Fig. 6. Two RVEs (red and blue particles) share the same global coordinates 
and Uniform Grid. Particle contacts of the same RVE index are allowed and 
those of different indices are ignored. The domain and grid cell sizes are 
enlarged for visual purposes. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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where w is the RVE index; NRVE is the number of RVEs; Mx, My, Mz are the 
number of grid cells; binx, biny, binz is the number of bins in the ith 
dimension. The entire domain is generally defined to ensure all possible 
deformations of the RVE are contained within the grid. A possible 
downside to this method is that the number of grid cells can become 
quite large as NRVE increases which may lead to increased memory 
usage. 

The conventional BVH partitions the spatial domain into a 3D Mor
ton key. The particles are assigned indices which are then sorted with 
the Morton keys such that their localities are preserved. The tree is 
constructed using a binary search on the keys and the leading bits of the 
Morton key are used to construct the hierarchy. The internal nodes 
(numbered one less than the number of particles) are assigned two 
children nodes which can either be another internal node or a leaf node. 
In this case, the particles are assigned as the leaf nodes. An upwards 
agglomeration is performed, from the particles to the root node to assign 
the tree axis-aligned bounding boxes (AABB). Broad phase collision 
detection is performed by traversing the tree top down. 

The modification to the BVH is made by adding a bit value at the start 
of the Morton hashing scheme, as shown in Fig. 7. The first level of in
ternal nodes is partitioned by the RVE index and then by the spatial hash 
of the particles. The traversal is initiated at the top-most internal node of 
the RVE index instead of the root node. 

8. RVE homogenization 

The RVE must have enough contacting particles at about even ori
entations to transition from a mesoscopic constitutive model to a 
macroscopic one. Multiple factors may influence homogenization such 
as particle size distribution, porosity, particle geometry, and the simu
lation dimensions (1D, 2D, or 3D). As some of these parameters are 
varied, the number of particles must be increased and therefore require 
more computational resources. For instance, the number of possible 
contact orientations in 1D simulations is significantly less than in 2D 
simulations. Therefore, 2D simulations require more particles to ho
mogenize an RVE than 1D simulations. 

To determine the number of particles necessary to homogenize the 
RVE, this study follows a similar approach to others [18,10,7,28,15] 
along with an additional statistical step presented bellow. 

RVEs with different numbers of particles are generated. They are 
then slightly pre-consolidated to 50 Pa with a high Youngs modulus and 
low friction angle to ensure a jammed low-stress packing. Samples are 
consolidated to 100 kPa after pre-consolidation. The parameters used 
are shown in (Appendix A, Table 1). 

An example of three RVEs with an increasing number of particles 
(400, 2000, 2800) is shown in Fig. 8(a). The rose diagrams show that the 
contact orientations of the RVE with 400 particles are non-uniform. On 
the contrary, the rose diagrams for 2000 and 2800 are more uniform. 

Fig. 7. The BVH for two non-interacting RVEs with two particles each. In (a), the constructed binary tree on the RVE index (red and blue) and the root node (green). 
The corresponding scene is shown in (b) in the same reference frame. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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Fig. 8. The number of particles necessary for an RVE to be homogenized. Three example RVEs are shown as I, II, and II. In (a) the spatial configuration, contact 
orientations, and histogram of contacts are shown. The χ2 similarity test (b) is shown for the contact orientations, along with a cut-off range (dashed line) were 1/ 
χ2 plateau 
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The histogram and average for the number of contacts per RVE with 400 
particles are much different than those of 2000 and 2800. 

The additional statistical step involves using the Chi-squared (χ2) test 
(Appendix B) on the contact orientations as shown in Fig. 8(b). The 
contact orientations are binned into a frequency table and have an 
equally likely chance to occur in any direction. The χ2 the test indicates 
how likely the observed frequencies are to be equal to the expected 
frequencies which, in this case, is a uniform distribution. Thus, if values 
of 1/χ2 plateaus then the RVE is more likely to be homogenized. 

The RVE must also be small enough to avoid localization and to 
reduce computational costs. There is a large decrease in 1/χ2 at 400,800 
to 1600 number of particles. At 1600 the 1/χ2 plateaus at 1600 to 2000 
number of particles. Therefore, a number of particles of 2000 are suf
ficient to be homogenized and computationally feasible. 

9. Triaxial test of dry quartz sand 

Dry sand is often used to understand the behavior of geomaterials 
under various loading conditions. It is common for the triaxial test to be 
used to simulate the drained triaxial response of dry sand 
[24,43,44,25,26]. This section shows that our algorithm can reproduce 
experimental results if the meso parameters are calibrated. The detailed 
procedure of the experiment and calibration process can be found in the 
companion paper. 

The experiment involves a drained triaxial experiment on graded dry 
quartz sand. The particle size distribution of the sample is graded to be 
about uniformly distributed between 0.01 mm and 0.025 mm. The 
experiment is performed for a confining pressure of 200 kPa. Other 
confining pressures are presented in the companion paper. The 
following DEM configurations were used: a uniformly distributed par
ticle diameters of 0.01 mm to 0.025 mm; the DEM initial void ratio 
matches that of the experiment at about e0 = 0.65; the time step is about 
1.72 × 10− 8s and the particle density of about 2600kg/m− 3 is used and 
the bulk density is assumed to match. The material parameters used are 
shown in (Appendix A, Table 2). 

Fig. 9 shows the stress over axial strain (a) and volumetric strain over 
axial strain (b) of the simulated and experimental drained triaxial test 
under a confining pressure of 200 kPa. The simulated response matches 
closely the experimental response. 

10. Softening and hardening behavior 

In industry, it may be useful to know the shear strength of sand for 
different meso parameters or meso structures. This section shows a po
tential application to the presented GPU-based algorithm by modeling 
the softening and hardening response of the same material. The algo
rithm may simulate many different material parameter sets or particle 
configurations to efficiently perform a parametric sweep. 

For this study, samples are generated using a sphere packing algo
rithm [45] which is modified in the companion paper. The samples have 
the same material parameters and particle size distributions as that in 
Section 9 (Appendix A, Table 2). The initial void is varied to control the 
dilatancy of the sample. 

The drained triaxial response of 5 RVEs is performed for 100 kPa, and 
the material response is shown in Fig. 10. The stress over axial strain is 
shown in (a) and volumetric strain and axial strain is shown in (b). The 
dense sample shows a stress peak and a softening response afterward. 
The invariants q-p in Eq. (12) is shown in (c). Since there is no back
pressure the total and effective stress paths are linear with a slope of M 
= 3, as expected. The specific volume and logarithm of the mean 
effective stress invariant are shown in (d). The hardening response is 
shown by a downward trend of the specific volume and a softening is 
shown by the upward trend of the specific volume. The simulations are 
performed for 5 triaxial tests but can easily be performed for 400 or 
more triaxial tests in parallel which are not included for visual purposes. 
Using many triaxial tests, useful statistics may be extracted from the 
numerical simulations. 

11. Performance comparison 

This section shows the significant benefit of the present GPU algo
rithm to simulate many non-interacting RVEs (in parallel). First, the size 
of the sequential batches is increased. One batch solves many RVEs in 
parallel, and each batch is solved sequentially (see Section 7.2). Next, 
the number of RVEs is increased to study the influence of the sample size 
on the performance. Lastly, the number of particles is increased to study 
how the algorithm scales with the number of particles. 

The simulations are performed under a constant isotropic strain- 
based compression for a 3D RVE. The particles are monodisperse with 
a diameter of 0.015 mm. The time step is about 1.51 × 10− 8 s, the strain 
rate is about 2.86 × 7 m.s− 1 and the RVEs are compressed isotropically 

Fig. 9. The simulated and experimental drained triaxial response for graded dry quartz under 200 kPa: (a)The stress (as a fraction over confining pressure); (b) the 
volumetric strain. 
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to a volume fraction of about 12%. The contact law and parameters are 
the same as those from Section 9 (Appendix A, Table 1). The simulations 
are performed on a Tesla V100 NVIDIA GPU graphics card. 

11.1. Parallel versus sequential simulations 

The number of concurrent RVE simulations is increased by changing 
the number of batches NBatch and keeping the number of particles and 
RVEs constant (NP = 2000 and NRVE = 100). The runtime and memory is 
plotted in Fig. 11. The fully sequential case is shown at (NRVE/NBatches =

1) and the fully parallel case is shown at NRVE/NBatches = 100. 
A significant improvement is shown for solving even 10 RVEs at 

once, with a factor of about 5.4 runtime speedup. The fully parallel case 
shows a speedup with a factor of about 9.8 at the trade-off of about 100 
times the memory requirement. Interestingly, the fraction of memory 
over the number of RVEs per batch increases linearly, while the fraction 
of runtime decreases in an exponential manner. 

11.2. Scaling the number of particles 

The number of particles NP per RVE is increased and the number of 

RVEs is kept constant for a fully parallel simulation (NRVE = 1 and 
Nbatches = 1). The runtime and memory for the Uniform Grid and BVH are 
plotted in Fig. 12. Two details are shown, namely, how the performance 
and memory scale with the number of particles per RVE, and how the 
collision detection algorithms scale with the number of particles per 
RVE. 

The overall runtime and memory increase linearly with the number 
of particles. The runtime for the Uniform Grid is better than that of the 
BVH since the simulation uses monodisperse particles. The memory for 
the BVH scales similarly to that of the Uniform Grid. 

The percentage execution time of a kernel function within the 
simulation loop (in Section 7.2), with an increase in the number of 
particles, is shown in Fig. 13. The implemented algorithm (B) Bitmasked 
Boundary Particles shows an overall decrease in percentage perfor
mance. For RVEs with many particles, the presented GPU-based algo
rithm works quite well. Additionally, the percentage runtime of the 
following processes also decreases with an increase in the number of 
particles: (A) servo-controller, (C) Uniform Grid, and (E) Volume aver
aging. (F) integration and periodicity and (G) Memory copy. The (D) 
Force calculation algorithm increases significantly with an increase in 
percentage runtime. The increase in the number of particles leads to 

Fig. 10. Simulated drained triaxial response for the same material with different initial void ratios and under different confining pressures. Shown are the (a) stress 
and axial strain curve, (b) volumetric strain and axial strain curve, (c) deviatoric and mean effective stress with a slope of M = 3 (d) specific volume and log mean 
effective stress, showing softening. 
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additional boundary particles which require additional computational 
work. Furthermore, the collision detection may have false-positive (non- 
overlapping) contacts due to matching a single precision sphere inter
section test, while the force calculation matches a double precision 
intersection test. 

11.3. Scaling the number of RVEs 

The number of RVEs NRVE is increased and the number of particles is 
kept constant for a fully parallel simulation (NP = 2000 and Nbatches = 1). 
The runtime and memory for the Uniform Grid and BVH are plotted in 
Fig. 14. Two details are shown, namely, how the performance and 
memory scale with the number of RVEs, and how the collision detection 
algorithms scale with the number of RVEs. 

The overall runtime and memory increase linearly with the number 
of RVEs. The runtime for the Uniform Grid is again better than that of the 
BVH since the simulation uses monodisperse particles. The memory for 
the BVH scales similarly to that of the Uniform Grid. 

The percentage execution time of a kernel function within the 
simulation loop (in Section 7.2), with an increase in the number of RVEs, 
is shown in Fig. 15. The percentage runtime of the (A) servo-controller 
decreases with the number of RVEs compared to the other computa
tionally demanding processes. The implemented algorithm (B) Bit
masked Boundary Particles shows a decrease in percentage performance 
which again shows the presented GPU-based algorithm works quite well 
for many RVEs. Additionally, the percentage runtime of the (E) Volume 
averaging, and (F) integration and periodicity also decreases with an 
increase in the number of RVEs.The collective increase in the number of 
particles, boundary particles, and RVE indices leads to an increase in the 
(C) Uniform Grid and the (D) Force calculation algorithm. Interestingly, 
the percentage kernel execution times of the cases with 100, 200, 300, 
and 400 RVEs are similar with slight variances. 

11.4. Discussion on performance 

An RVE must be homogenized to transition from a meso to a macro 
constitutive response. Homogenization occurs if there are enough sta
tistics on the meso scale such that few fluctuations are present when 
performing volume averaging of the state variables [28]. The distribu
tion of contacts and the contact orientations must be consistent when 
increasing the number of particles. Some factors that influence this is the 
particle size polydispersity, void ratio, and simulation dimensions (1D, 
2D, or 3D). For 2D simulations, a fewer number of contacts are needed to 
account for a uniformly distributed orientation. Therefore, a 2D RVE 
may require fewer particles to be homogenized than a 3D RVE. A GPU- 
based RVE parallelization algorithm exists for the 2D case [10]. How
ever, such an algorithm utilizes the shared memory (typically of size 
64kB or 96kB) between thread blocks (up to 1024 threads) to perform 
volume averaging. The algorithm is therefore restricted to 1024 paral
lelized particles per RVE. The benefit of the present GPU algorithm in 
this paper is that it parallelizes all particles and performs volume aver
aging by using a segmented reduce (D. [37]). This approach may be 
more beneficial for RVEs with a large number of particles. 

The speed improvement of parallelizing 100 RVEs under isotropic 
strain-based compression is about 9.8 times faster than the sequential 
case. The present GPU algorithm exploits thread occupancy (concur
rency of many tasks) and keeps the hardware busy to hide latencies [33]. 
However, the speedup comes at the cost of about 100 times the GPU 
memory. Depending on the memory limitation of the GPU card, one 
must consider a balance between the number of particles, the number of 
RVEs, and the number of batches (serial simulations). 

The performance and memory are found to increase linearly with 
both the number of particles and the number of RVEs. There is a sharper 
increase in memory for an increase in the number of particles than for an 
increase in the number of RVEs. This shows the importance of mini
mizing the number of particles in an RVE. That is, it is advantageous to 
homogenize an RVEs as in Section 8 to optimize the performance. 

It is shown that BVH scales overall worse in terms of performance 
compared to the Uniform grid. The performance simulations are how
ever limited to monodisperse particles and not highly polydisperse 
particles which the BVH may perform better. A details study of the BVH 
performance with particle size polydispersity and geometry is presented 

Fig. 11. Performance of the isotropic strain-based compression for 100 RVEs. 
The number of batches is increased while the number of particles and RVEs are 
kept constant. A fully serial simulation is shown on the left (NRVE/NBatches = 1) 
and fully parallel simulation is shown on the right (NRVE/NBatches = 100). 

Fig. 12. Performance of the isotropic strain-based compression for one RVE. 
The number of particles is increased while the number of RVEs and batches is 
kept constant. 

R. Lubbe et al.                                                                                                                                                                                                                                   



Powder Technology 407 (2022) 117631

14

in [23]. 

12. Conclusion 

In this paper, a novel algorithm for the parallelization of RVEs in 
GPU-based DEM is implemented. GPU-based parallelization of the RVEs 
may be used to generate statistics of material responses by simulating 
many non-interacting RVEs efficiently. The algorithm features the 
following key components: (1) GPU parallelism of non-interacting RVEs 
within the same simulation loop; (2) A member hierarchy of RVE, par
ticle, and boundary memory groups that are aligned with the GPU 
optimization principles (3) handling of boundary particle and 

periodicity of deformable walls efficiently by assigning particle bitmasks 
and a referencing lookup tables (4) modification to the contact detection 
algorithms to partition non-interacting RVEs. The DEM simulations 
share a simulation domain on the global cartesian basis which removes 
the complexities from the contact detection process. Volume averaging 
of the RVEs is performed by utilizing a segmented summation (D. [37]) 
of the hierarchical memory groups. 

The algorithm in this paper is validated using the drained triaxial 
experiment of dry quartz sand. Then, a potential application for the al
gorithm is presented to study the softening and hardening behavior of a 
material under drained triaxial compression (or incremental loading). 
Drained triaxial tests are simulated for the same material parameters but 
with different initial void ratios. The algorithm showed to reproduce 
expected results for a typical drained triaxial test of dens and loose sand. 
A large sample set of statistics may be generated by increasing the 
sample size from 5 drained triaxial tests to 400 or even 1200 drained 
triaxial tests. 

The RVE homogenization as a performance impacting factor is dis
cussed. For instance, the number of particles needed for a system to be 
homogenized in 3D may be far greater than that of 2D. The number of 
particles necessary for an RVE to be homogenized is selected if the in
verse Chi-squared 1/χ2 plateaus. 

A series of performance tests were done under isotropic strain-based 
compression. The speed improvement of parallelizing 100 RVEs is about 
9.8 times faster than the sequential case. This comes at the cost of 100 
times the GPU memory usage. It is also shown that handling boundary 
particles have a fast runtime compared to other processes in the same 
simulation loop. The total GPU memory for both the BVH and Uniform 
Grid scales linearly with an increase in the number of particles and 
RVEs. The Uniform Grid method shows the overall best performance. To 
improve memory usage, methods can be explored to partition the grid 
over the deformed RVEs instead of over an extended domain. 

The disadvantages of the present GPU algorithm are as follows: (1) 
The algorithm has a high memory usage, especially for the collision 
detection algorithm. The high memory usage may also influence the 
overall performance; (2) Non-interacting RVEs are restricted to have the 
same number of particles; (3) The force calculation algorithm dominates 
the percentage performance and should be optimized. The current 
implementation performs the contact for a thread per real particle and 
sequentially loops over their respective boundary particles. One 

Fig. 13. Percentage runtime of the GPU functions for the isotropic strain-based compression for one RVE. The number of particles is increased while the number of 
RVEs and batches is kept constant. 

Fig. 14. Performance of the isotropic strain-based compression for many RVEs. 
The number of RVEs is increased while the particles and batches are 
kept constant. 
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approach would be to launch the kernel for a thread per real and 
boundary particle; (4) Currently, only spherical particles can be paral
lelized, but the algorithm can be extended to simulate polyhedral or 
spherical clumps. 

In the future, concurrent simulations of a sparse domain with large 
deformation would be advantageous. The DEM parameters of a landslide 
simulation may be easily calibrated, and sufficient statistics can be 
extracted [46]. This may be especially useful in disaster control soft
ware, where fast numerical models are critical. Furthermore, simulation 
level parallelism may be implemented to generate a large statistical 
sample size or solve a multi-optima calibration problem (i.e., triaxial 
compression and angle of repose). In these cases, the use of global co
ordinates and volume averaging by segmented reduction may be well 
suited since the simulations may have different configurations (number 

of particles, sparsity of domain size, etc.). 
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Appendix A. Simulation parameters  

Table 1 
The DEM parameters used in this study for the RVE homogenization and performance study. See companion paper for details on the Moment Rotation 
Law parameters.  

E [GPa] ν μs [◦] ηtwist ηroll αtwist αroll 

8.00 0.50 25.00 2.00 2.00 0.20 0.20   

Table 2 
The calibrated DEM parameters for the drained triaxial compression of dry quartz sand under 200 kPa. See the companion paper for details on the 
calibration processes and Moment Rotation Law parameters.  

E [GPa] ν μs [◦] ηtwist ηroll αtwist αroll 

4.3 0.50 33.4 1.70 1.80 1.30 1.9  

Appendix B. Chi-squared test 

The Chi-squared test [47] compares the observed frequencies with the expected frequencies for a table with frequencies of categorical data 
(contingency table). This method can be used to quantify the similarity between two distributions by binning the observation distribution and 
simulated distribution on a histogram. The Chi-squared similarity test is defined by 

Fig. 15. Percentage runtime of the GPU functions for the isotropic strain-based compression for one RVE. The number of RVEs is increased while the number of 
particles and batches is kept constant. 
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χ2 =
∑

(
Oij − Eij

)2

Eij
(23) 

where Oij is the observational frequencies and Eij is the expected frequencies. The Chi-squared test has a requirement that there should be at least 5 
entries in a bin and 13 samples. This study found this condition to be met even for 400 particles and 36 bins of x-y and x-z orientations. The calculated 
p-values of all RVEs are also well below 0.05 which indices that we can reject the null hypothesis. 
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