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ABSTRACT Wireless IoT networks have seen an unprecedented rise in number of devices, heterogeneity
and emerging use cases which led to diverse throughput, reliability and latency (Quality of Service)
requirements. Fulfilling these diverse requirements in a rapidly changing and dynamic wireless environment
is a complex and challenging task. On top of including new technologies and wireless standards, one
solution is to deploy cross-layer Design (CLD) and multiple Radio Access Technologies (Multi-RAT)
to develop scalable QoS-aware IoT networks. However, the complexity of such solutions is high as it
involves complex inter-layer interactions and dependencies and inter-application dependencies in multi-
RAT networks. Moreover, the wireless environment is very dynamic, so having an optimal constellation of
parameters is a challenging task. In this paper, we address the possibilities of using Artificial Intelligence
(AI) and Machine Learning (ML) to address these high dimensional and dynamic problems. Based on
our findings, we have proposed a distributed network management framework employing Al & ML
for studying inter-layer dependencies and developing cross-layer design, traffic classification and traffic
prediction at the edge devices for reliable QoS in multi-RAT IoT networks. A thorough discussion on
future directions and emerging challenges related to our proposed framework has also been provided for
further research in this field.

INDEX TERMS QoS in IoT networks, Al & ML for cross-layer design, cross-layer optimization, reliable
QoS, multi-RAT networks, edge intelligence.

. INTRODUCTION

HE WORLD is seeing a massive expansion of IoT

networks with billions of devices requiring network
access. According to the Ericsson mobility report of June
2021, cellular IoT devices would surpass 5 billion devices
by 2026 [1]. Similarly, Cisco’s Annual Internet Report
predicts an increase in networked devices to 29.3 billion
with Machine to Machine (M2M) connections reaching
14.7 billion by the end of 2023 [2]. This would lead to
a massive increase in wireless network traffic, requiring
resilient networks with high user density. The increased
traffic from billions of IoT devices needs new studies
aiming at expanding network capacity and providing reli-
able connectivity in such dense IoT networks. Various
research bodies and organizations, including 3GPP, SGPPP,

NGMN, IEEE and ITU etc. became aware of the require-
ments of increased capacity in wireless networks. As
such, they have started to employ higher frequency bands
(mmWave), network virtualization and spatial multiplexing
to meet the growing requirements [3]. Development of
5th generation network (5G) is an important step towards
increasing network capacities and supporting massive con-
nectivity. Similarly, IEEE introduced the 802.11ax stan-
dard to support high user density in WiFi based IoT
networks. These new technologies brought new complex-
ities to provide reliable Quality of Service (QoS) to IoT
devices.

Expansion of IoT networks have led to emerging new
use cases like smart homes, smart cities, Industry 4.0,
Smart Healthcare and autonomous vehicles etc. These use
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FIGURE 1. QoS Requirements in Healthcare loT Network.

cases have not only increased the number of devices
requiring network connectivity, but also introduced diverse
QoS requirements like throughput, reliability, latency and
energy efficiency. Present IoT networks have a range of QoS
requirements that require efficient management and control
of the network. For example, IoT networks in healthcare
have many use cases such as remote patient monitoring,
eHealth sensors, remote surgeries, emergency care and drugs
management. Each use case has different QoS requirements
as shown in Figure 1. These requirements keep changing
depending on use cases thus requiring sophisticated moni-
toring and forecasting to assist decision making related to
resources prioritisation. Moreover, the success of IoT use
cases depends on end user/application’s QoS provisioning
and it’s Quality of Experience (QoE), rather than improv-
ing network technical parameters (throughput, packet loss
and latency). Meeting these requirements in large networks
with a high number of devices and limited resources is
a cumbersome task and, therefore, introduces challenges
related to QoS provisioning and capacity enhancement in
IoT networks. High user density also demands solutions that
are scalable to support reliable connectivity to billions of IoT
devices.

Among the diverse QoS requirements, many IoT use cases
(e.g., self driving cars, Remote Surgery etc.) have strin-
gent latency constraints thus requiring highly responsive
networks. This necessitates developing edge intelligent solu-
tions where edge devices are taking their resource manage-
ment decisions themselves to meet their QoS requirements.
Many QoS management solutions proposed in literature
involve centralised control mechanism employing Software
Defined Networking (SDN) approaches [4], [5]. This forces
information to be pushed to the central controller for deci-
sion making thus inducing latency. However, low latency
IoT use cases demand distributed network management
and edge intelligence to improve responsiveness in wireless
networks [6]. This distributed network management would
also improve the network scalability by offloading compu-
tation and decision taking load to the edge devices, thus
supporting high density of IoT devices in the network.

Present IoT networks are facing challenges related to user
density, limited network capacity, diverse QoS requirements
and scalability. To overcome these challenges, Al & ML
algorithms can help develop edge intelligence in the network
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where APs, base stations and IoT devices themselves can
take optimal decisions for meeting their QoS requirements
and improving their QoE. Since networks operate with a lay-
ered structure following the Open System Interconnection
(OSI) model, they rely on layer protocols and parame-
ters to meet QoS requirements. Traditional optimization
approaches target layer protocols and parameters indepen-
dently to meet QoS requirements and therefore provide
guarantees of QoS for each layer. They do not con-
sider the overall QoS of IoT users/applications and hence
cross-layer approaches involving inter-layer dependencies
and interactions among layer parameters are employed to
provide end-to-end QoS in IoT networks [7]. However,
research efforts to develop cross-layer design remain limited
due the complex inter-layer dependencies and interactions.
Therefore, studies aiming at Al & ML based cross-layer
design and optimization are required. To support large user
density and increased network capacity, multi-RAT IoT
networks employing CLD can be developed, however, they
would involve high-dimensional complex decisions related
to RAT selection, routing dynamics, interference among dif-
ferent RATs and medium access. Advances in Al & ML have
underpinned stronger tools to handle such complexities to
enable high capacity, reliable IoT networks with diverse QoS
requirements.

In this paper, we have surveyed the cross-layer design
and optimization approaches proposed in literature to high-
light their results, determine their shortcomings and point
out complexities that require Al & ML based algorithms
designed to meet diverse QoS requirements. We have
discussed the role of Al & ML in studying inter-layer
dependencies and joint cross-layer parameter optimizations
in single and multi-RAT networks to develop high capacity
QoS aware IoT networks. To address the scalability concerns,
we have proposed a distributed network management frame-
work that employs CLD at the edge APs in a multi-RAT IoT
network to provide reliable QoS to the IoT users/applications.
To understand and follow the rest of the paper, the diagram-
matic view of this paper’s organization is given in Figure 2.
The different abbreviations used in the paper are given in
Table 1.

Il. MOTIVATION

Networks operate in a layered structure following the OSI
model. Although, layered structures have been successful in
wired networks, they are not well suited in wireless networks
due to unreliable link bandwidths and dynamic wireless envi-
ronment [8]. The diverse QoS requirements in a wireless
IoT network can be efficiently met through management
and control decisions at different layers of the OSI stack.
The choice of different parameters at transport, network, link
and physical layers can significantly improve user QoS [9].
Moreover, the sharing of information between adjacent lay-
ers as well as beyond, which is also known as cross-layer
Design (CLD), can help in insightful decisions that can
drive network towards better performance. Especially, the
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FIGURE 2. Diagrammatic View of Paper Organization.

interaction of Physical (PHY) and Medium Access Control
(MAC) layers with other layers of OSI stack have a con-
siderably large effect on network performance [10]. Various
schemes targeting PHY and MAC layers have been proposed
in literature [11], to improve network throughput. Authors
in [12], [13] have targeted PHY and MAC layers for guar-
anteed QoS delivery while optimizing spectrum efficiency
in a wireless network. Authors in [14] focused on trans-
port and MAC layers by dynamic estimation of channel for
multimedia traffic delivery. TCP performance improvement
through cross-layer interaction is a well known example of
CLD in transport and MAC layers [10], [15]. Joint optimiza-
tions combining power control, scheduling and routing have
also been done with limited problem complexities [16], [17].
Authors in [18] proposed an Adaptive Access parameter
Tuning (ADAPT) algorithm that focuses on the applica-
tion, network, MAC and physical layers to improve the
energy efficiency in Wireless Sensor Networks (WSN). A
similar work in [19] employed cross-layer design targeting
transport, network, MAC and physical layers to improve
data delivery in WSN. Many researchers have employed
CLD for different performance enhancement objectives in
wireless networks (rate maximization, routing decisions,
energy efficiency, multimedia traffic delivery etc.) however,
they have studied CLD with the objective of improving
overall network throughput, latency or reliability without
considering the user’s QoE. As a result, research lacks
the study of CLD with the end objective of meeting IoT
user’s/application’s QoS requirements to improve their QoE.
Moreover, researchers have limited their efforts to the study
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of only a few parameters simultaneously for cross-layer opti-
mizations (CLO) [15] due to increased problem complexity
that happens with the addition of each new parameter to the
optimization framework.

IoT devices and sensors employ different ranges of access
technologies depending upon their datarate and energy effi-
ciency requirements. IEEE 802.11, Bluetooth Low Energy
(BLE), Long Range Wide Area Network (LoRaWAN),
Narrow Band IoT (NB-IoT) and ZigBee are widely used
access technologies in IoT networks. As a result, [oT requires
network infrastructures that support multiple RATs operating
in harmony. Moreover, many [oT use-cases require stringent
latency requirements and failure to do so can lead to catas-
trophic effects. Self driving cars, emergency patient care and
remote surgery are few of those important use-cases requiring
low latency. To support different IoT devices and their strin-
gent QoS requirements, future IoT networks have to employ
multiple Radio Access Technologies (RAT) and distributed
network management frameworks. Distributed network man-
agement would not only increase responsiveness to satisfy
QoS requirements of low latency use cases in industrial and
healthcare IoT networks [20], [21], it would also improve
network scalability by offloading decision making to edge
devices. As a result, multi-RAT networks employing dis-
tributed network management can support large user density
and can cope up with the rising number of IoT devices in
the network.

Although CLD/CLO, multi-RAT IoT networks and dis-
tributed network management frameworks can solve the
network density, diverse QoS requirements and scalability
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TABLE 1. List of abbreviations.

Acronym Definition

RAN Radio Access Network

RAT Radio Access Technology

RRM Radio Resource Management
3GPP 3rd Generation Partnership Program
NGMN Next Generation Mobile Networks
IMT International Mobile Telecommunications
MTC Machine type Communication

BLE Bluetooth Low Energy

SDN Software Defined Network

SBA Service Based Architectures

GNN Graph Neural Networks

CNN Convolutional Neural Networks

LTE Long Term Evolution

CLD cross-layer Design

MAB Multi Arm Bandits

NFV Network Function Virtualization
EDGE Enhanced Data for GSM Evolution
MIMO Multiple Input Multiple Output

CSI Channel State Information

UE User Equipment
FBMC Filter Bank Multi Carrier
GFDM Generalized Frequency Division Multiplexing
NOMA Non Orthogonal Multiple Access
mMTC Massive Machine Type Communications
TDD Time Division Duplexing
OFDM Orthogonal Frequency Division Duplexing

SBA Service Based Architectures

SVR Support Vector Regression

TTI Transmission Time Interval

eMBB Enhanced Mobile Broadband
MAC Medium Access Control
URLLC Ultra-Reliable Low Latency Communication

QoS Quality of Service

QoE Quality of Experience

SON Self-Organizing Network

EDCA Enhanced Distributed Coordinated Access
5GPPP 5G Infrastructure Public Private Partnership
VOIP Voice over IP

CW Contention Window

AIFSN Arbitrary Inter frame Space Number
TXOP Transmission Opportunity
MU-MIMO Multi-user MIMO

ITU International Telecommunication Union

FG-ML5G Focus Group Machine Learning for 5G Networks
VAE Variational Auto Encoders
MPTCP Multi-path Transmission Control Protocol
GRUSs Gated Recurrent Units
ACA Automatic Channel Assignment
MSE Mean Square Error
WMMSE Weighted Minimum MSE
GCN Graph Convolutional Network
ARIMA Auto Regressive Integrated Moving Average
HARQ Hybrid Automatic Repeat Request
PSNR Peak Signal to Noise Ratio
QPS Quality Prioritised Selection
PRR Packet Received Ration

issues, there are numerous challenges that arise with these
solution approaches. These challenges are:

o Cross-layer  Optimization  (CLO): cross-layer
optimization involves large parameters to be jointly
optimized for improved QoS performances. However,
targeting more parameters simultaneously makes the
problem non-convex leading to high mathematical
complexity [22]. This increased complexity renders
conventional optimization algorithms insufficient to
find optimal solutions in realistic timescales (tens to
hundreds of milliseconds). Moreover, optimizations
need to be carried out keeping in view the user’s and
application’s QoS requirements.
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o Cross-layer Design (CLD): Information sharing among
OSI layers requires additional overhead that may lead
to non-optimal network performance thus requiring
the determination of optimal time instances for such
information sharing. Moreover, what information needs
to be shared for a given QoS requirement should be
determined under dynamic channel conditions, traffic
variations and network load.

o Multi-RAT Network Management: Managing multiple
access technologies requires continuous monitoring and
feedback of network dynamics, user QoS require-
ments and channel conditions for optimal and QoS
aware decision making. Moreover, routing dynamics,
interference among RATs and shared medium access
would make this decision making even more com-
plex compared to single RAT networks. Cross-layer
design and optimization involving lower layers of dif-
ferent RATs would also be different for each access
technology.

o Distributed Network Management: Distributed network
management for QoS provisioning requires edge devices
to learn IoT users/applications QoS requirements
through traffic flow classification. This traffic classifica-
tion would help determine precise QoS requirements of
IoT users/applications which can then be used for cross-
layer optimization at the edge. Edge devices can also
learn to predict IoT users/applications QoS requirements
to develop proactive control in the network however,
it requires understanding of traffic patterns as well as
inter-application dependencies.

To address these challenges, deep learning algorithms,
especially, Graph Neural Networks (GNN), Convolutional
Neural Networks (CNN), Recurrent Neural Networks (RNN)
and Deep Reinforcement Learning (DRL) possess strong
properties to solve such high dimensional and non-convex
problems [23], [24], [25]. Many Al & ML algorithms
(LSTMs, VAE, GRUs) can help determine the optimal
instances for cross-layer interactions, perform multi-RAT
decisions (GNNs, CNN, DRL), classify traffic flows (SVM,
Decision Trees, KNN, PCA etc.) and predict future IoT traf-
fic (LSTM, SVR) to take proactive, QoS aware and optimal
decisions. On top of it, they have the ability to adapt to
changing network dynamics, traffic loads, channel conditions
and QoS requirements [26]. GNNs possess strong general-
ization capabilities that can be exploited to extend ML based
optimization over varying ranges of network topologies [27].
They can also capture OSI inter-layer parameter dependen-
cies which possess a graphical structure between them [28]
to enable a stable cross-layer design.

lll. RELATED SURVEYS AND CONTRIBUTIONS

The awareness of importance of Al & ML and their suit-
ability to address complex challenges in wireless networks
already exists in literature. Due to their inherent strengths and
strong adaptive abilities, network researchers have employed
different variants of Al & ML algorithms in their work to
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optimize network performance [29], [30], [31], [32], [33].
Different network problems like channel access [34], link
configurations [35], frame aggregation [36], traffic and chan-
nel predictions [37], adaptive beamforming [38] etc. have
been addressed through AI & ML algorithms. From the
network management perspective, user mobility prediction,
handovers management [39], user associations [40] and
network deployment problems have also been tackled effi-
ciently through Al & ML. However, research efforts to
employ Al & ML to understand complex relationships
and dependencies between OSI layer parameters, cross-
layer optimization and developing distributed intelligence
in network edge devices to improve network scalabil-
ity and IoT user’s/application’s QoS/QoE is somewhat
unexplored.

The Networking research community has reviewed and
surveyed many works employing Al & ML in wireless
networks research. There are various surveys done on appli-
cation of AI & ML in wireless networks [41], [42], [43]
and WiFi networks [36], [44]. These surveys are focusing
on Al & ML employment in resource allocation, user associ-
ation, mobility management, network security and anomaly
detection etc. and they did not discuss Al & ML role in QoS
provisioning in wireless IoT networks. Some researchers
have surveyed works on cross-layer design and optimization
in wireless networks [7], [8], [9], [15] however, literature
lacks a review of Al & ML applications and associated
challenges in CLD/CLO. Similarly, many works have sur-
veyed distributed network management [45], [46], [47] for
improving traditional network parameters and did not address
QoS provisioning at the edge through distributed learning.
Different from the other works, we have focused on AI & ML
applications in cross-layer design and optimization in multi-
RAT IoT networks and distributed network management for
the end objective of meeting IoT users/applications QoS
and QoE. Our contributions to the body of research are as
follows:

« We have briefly surveyed traditional cross-layer design
and optimization approaches to highlight their limi-
tations and surveyed recent advances in Al & ML
employment in CLD. We have highlighted key issues
and challenges in AI & ML employment for CLD/CLO
and presented ways to address these challenges.

« We have presented a potentially novel approach to study
cross-layer dependencies using GNNs and how they can
be employed in cross-layer design.

« We have highlighted key challenges in employment
of multi-RAT for network capacity enhancement and
meeting QoS requirements in dense IoT networks and
highlighted advances in multi-RAT network manage-
ment along with new challenges/issues in them from
cross-layer design perspective.

« We have presented a complete systematic approach to
employ cross-layer design at the edge devices in a dis-
tributed framework. We have highlighted key elements
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required in the edge devices to enable reliable QoS for
end users/applications in dense IoT network.

« We have presented research efforts to standardize
Al & ML architecture for wireless networks and pointed
out open key research challenges and future directions
in the context of enabling reliable QoS in multi-RAT
IoT networks using Al & ML algorithms.

We hope that this article would help researchers working
in the field of wireless networks to understand the require-
ments and design flow of QoS provisioning using CLD and
distributed Al & ML approach.

IV. CROSS-LAYER DESIGN AND OPTIMIZATION

Wireless IoT networks operate in layered structures with each
layer performing its specified functions. All networks follow
the Open System Interconnection (OSI) model for commu-
nication between devices. The OSI model is a seven layered
structure with application, presentation, session, transport,
network, data link and physical layers as shown in Figure 3.
These layers make a modular structure which offers benefits
in terms of standardisation and easy implementation, how-
ever, they fail to exploit inter-layer interactions to improve
user QoS [15]. It has been studied in literature that inter-
actions between OSI layers and parameters can exploit
hidden relationships between them and can enhance network
performance in terms of security, QoS, Mobility and Link
Adaptation [9]. There are several parameters in different
layers of the OSI model that directly influence the over-
all performance of a wireless network. These parameters
include TCP window at transport layer for TCP traffic or
segment size in case of UDP traffic, routing and queue
management in network layer, airtime, channel assignment,
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scheduling, frame length and aggregation, contention win-
dow, transmit opportunity (TXOP), ACK (for TCP traffic)
and RTS/CTS threshold on MAC layer and transmit power,
MCS selection and MIMO configuration on PHY layer of
the OSI model. A pictorial representation of the OSI model
with performance affecting parameters at different layers is
shown in Figure 3. These parameters have complex rela-
tionships and inter dependencies among them and proper
configuration/reconfiguration of these parameters have great
potential to improve QoS and even increase network capacity
by reducing airtime wastage in wireless networks.

Additionally, the sharing of information between adjacent
layers and across non-adjacent layers can provide valuable
information for quick and efficient decisions towards reli-
able QoS. Informing the transport layer about non-congestion
related failure in case of packet loss is a well-known example
of information sharing between non-adjacent layers in the
TCP/IP protocol [48]. Since, there exist diverse QoS require-
ments in [oT networks for smart cities, smart industry and
smart healthcare, they can be met in number of ways through
a cross-layer design approach and cross-layer optimization.
The layer parameter selections and optimization can be done
differently for different QoS requirements and can thus
provide the desired QoS. For example, a reliable packet
delivery under network congestion in an industrial use case
may require momentary increase in buffer size rather than
dropping packets out of queue to increase packet deliv-
ery probability. The same requirement can also be met by
increasing transmission power at the physical layer under
such congestion to ensure usage of higher MCS and faster
transmission rates which in turn clears the buffer and reduces
packet drop probability. However, such decision making
requires understanding of application QoS needs, sharing
of information among layers and cross-layer parameter
optimization. To understand application QoS requirements,
edge nodes can employ traffic classification algorithms to
segregate traffic into different QoS categories which can
then be used for cross-layer design and optimizations. This
cross-layer approach can be employed in base stations/access
points as well as in end devices to improve performance in
both downlink and uplink of the network.

A. RESEARCH EFFORTS IN CROSS-LAYER DESIGN AND
OPTIMIZATION

CLD has been studied extensively by the telecommunication
research community in the past [9], [15]. Application-
specific throughput and latency requirements were met
through cross-layer optimization for video streaming appli-
cation in [49]. Application, data-link and physical layers are
jointly optimized using application oriented objective func-
tion to maximise user satisfaction. A cross-layer optimizer is
used to find the optimal parameters for three layers (appli-
cation, data link and physical) using parameter abstractions,
and optimal parameters selection at these layers is done to
meet application requirements. Video source rate, time slot
and modulation schemes are used as parameters and are
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jointly optimized using Peak Signal to Noise (PSNR) in
the optimization function [49]. This overhead can pay off
with improved performance in a number of scenarios in IoT
networks. A similar work is done in [50] in which MPEG-4
video transmission is optimized by CLD involving the data-
link and physical layers. Graph Signal Processing has been
used in [51] to optimise energy in WSN by considering
application requirements and physical layer connectivity. The
authors have shown that CLD can significantly improve
performance, however, it comes at a cost of communication
and computation overhead.

A well known example of CLD is the TCP window
optimization using information from the link layer. TCP
employs a congestion control mechanism whereby it read-
justs its transmission rates and window size based on
transmission errors. Whenever an error occurs, the TCP
sender reduces its transmission rate considering network
congestion has occurred, however, the transmission error
can be caused by several other factors related to the uncer-
tainty of wireless medium. The CLD here employs explicit
notification of transmission error through Explicit Loss
Notification (ELN) to inform TCP sender about the loss
other than network congestion and therefore, avoids reduc-
ing the transmission rate [48]. A snoop agent keeps track of
the acknowledgements (ACK) and sets an ELN bit in case of
missing acknowledgement. This ELN bit is either included
in the TCP header or communicated using Internet Control
Message Protocol (ICMP) messages. Similar to TCP window
optimization, network throughput is significantly increased
through Automatic Modulation and Coding (AMC) at the
PHY layer and Hybrid Automatic Repeat Request (HARQ)
employment at the Link Layer (LL) [52]. HARQ addresses
the fading problems and enables the MAC to select the best
modulation schemes and also arranges re-transmission of
lost packets upon information from receiver. This improves
spectral efficiency and reduces the latency of the system as
ACK packets do not have to go through the entire stack back
to the transport layer. In mobility scenarios, the handovers
causes significant delays in user traffic as users shift from
one base station / access point to another. These handovers
are handled by the network layer (L3) which has topology
information and by the link layer (L2) which is controlling
link management. The intercommunication between L2 and
L3 can significantly improve network performance by initi-
ating handover procedure on L3 prior to its completion on
L2 [53], [54].

B. ISSUES AND CHALLENGES IN CROSS-LAYER
DESIGN AND OPTIMIZATION

Despite the advantages of CLD, it has not seen much
support by the research community. It is believed that lay-
ered and modular structure offers longevity, proliferation
and parallel development of multiple technologies at OSI
layers [55]. Moreover, it defines standard interfaces and
intercommunication protocols that can be followed during
development in parallel with the assurance that system will
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keep running. On the other hand, CLD involves feedback
loops across the layers and which might cause instability
in controlling the network [55]. CLD then requires extreme
care. Since there are several performance affecting param-
eters and they are interrelated to each other in numbers of
ways, the optimization of such parameters would be done
in multiple loops at different timescales and would cause
instability in the system [56]. Moreover, one interaction
between two layers can initiate multiple unintended inter-
actions with other layers that can cause catastrophic effects
on network performance. This necessitates construction of
dependency graphs and robust cross-layer designing that can
ensure performance improvement while providing system
stability.

In order to avoid the unintended consequences of cross-
layer design, research must be focused on studying the
inter-layer dependencies. As layer parameters have effects
on the throughput, latency and packet loss for different QoS
requirements, it is possible some parameters have the same
effect on end KPIs. A useful tool to identify such parameters
is to calculate the mutual information between layer param-
eters. If we have two parameters X and Y with probability
distributions of their range of values as P(X) and P(Y), then
the mutual information between them can be calculated as
follows:

1= Pxy(x. nlog(Px.y(x.y)/PxWPy(y) (1)

yeY xeX

Mutual Information (MI) employs concepts of proba-
bility and information theory (entropy). Ml-based analysis
would identify level of information that co-exist between
multiple layer parameters. As such, their effects on network
performance can be studied keeping in view the mutual
information they carry together. This analysis can also help
in identifying parameters that can cause potential instabil-
ity in the system. These parameters can then be handled
by carefully designing feedback and optimization loops
in algorithms targeting cross-layer design [57]. Moreover,
similar parameters carrying identical information or produc-
ing similar effect on network performance can be grouped
together for dimensionality reduction [58] and easing the
optimization complexity. This would significantly improve
the optimization time and can target large range of time-
constraint decisions in wireless IoT networks to satisfy
latency sensitive services. Considering healthcare use cases
from Figure 2, robotic surgery and emergency care use cases
can be served with much lower latency in a healthcare 10T
network with such optimizations.

C. THE ROLES OF Al & ML IN CROSS-LAYER DESIGN
AND OPTIMIZATION

Interest in cross-layer design has decreased in the past due to
the high complexity, however, with the advancement in tech-
nology, researchers can now exploit strengths of Al & ML
algorithms for better and efficient cross-layer designs as
well as cross-layer optimization. Since QoS requirements
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and traffic patterns keep on changing in an IoT network,
Al & ML algorithms can learn to map QoS requirements to
the optimal cross-layer parameters for meeting their chang-
ing requirements. The benefits of such approach are two-fold
1.) it can help improve the network level throughput, latency
and packet loss and 2.) it can provide improved QoS in the
network for large number of traffic flows. CNNs have seen
great progress in the field of computer vision and com-
pletely revolutionized it as they have the ability to extract
complex features from underlying data for a given objec-
tive. Similarly, DRL, LSTM and GNN algorithms have seen
an upward trend to solve complex optimization problems in
wireless networks [29], [41], [44], [59], [60]. A brief review
of Al & ML algorithms employment in CLD/CLO in wire-
less networks towards meeting QoS requirements is given
in Table 2. DRL, LSTM, GNN and CNNs possess great
potential to study cross-layer interactions and handle com-
plex cross-layer optimization which remained a bottleneck
in the past CLD/CLO studies.

The strengths of AI & ML have been exploited in the liter-
ature for cross-layer design to some extent. A work in [61]
employed cross-layer design to target network and MAC
layers of an IEEE 802.15.4 based network and achieved
a higher packet reception ratio and energy efficiency with
less overhead. The authors in [62] used DRL for power
efficiency and route latency reduction for better energy effi-
ciency and reduced latency. A similar work [63] used DQN in
a Cognitive Radio Network (CRN) to optimize physical and
network layers parameters (SINR and Routing) for improved
QoE in an interactive video use case. Multiple research
works [63], [64] have employed Al & ML algorithms for
cross-layer optimization, however, they have targeted few
parameters (two or three) from only two layers at a time
for joint optimization. However, advanced machine learning
algorithms (CNN, GNN, LSTM, DRL) have the strength to
optimize much more complex problems. Moreover, mutual
information analysis combined with Al & ML algorithms for
CLD can work together really well with mutual information
performing the dimensionality reduction and Al algorithms
performing the joint optimization of reduced parameter
space. It is to be noted here that with each parameter addi-
tion in ML problem, its complexity increases but at the
same time it can deliver more optimized results. Therefore,
research efforts in this domain can prove very fruitful. Due
to the multiple inter-dependencies of cross-layer parame-
ters, systems can face potential instability with an ML
approach therefore, caution is required while devising such
solutions [55].

In the real world, human beings gather information from
multiple sources such as eyes, nose, ears, touch etc. The
human mind processes information from these sources jointly
to take decisions. The information from each source can be
encoded and represented as a single modality and it can also
be combined with information from multiple sources to make
it multi-modal information. Each information source has its
own statistical properties and it is important to determine the
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TABLE 2. Machine learning applications for CLD/CLO in wireless networks.

Classification AI/ML Algorithm Used Problems Addressed Results Year Ref
Distributed Actor-Critic DRL QoE Enhancement for 360 High Reward in 50K 2020 [64]
degree Video iterations over QPS
Graph Neural Networks Multipath TCP optimization 14.87% TH Improvement over 2020 [28]
cross-layer Lo - mesh Protocol .
optimization Prioritized Memory DRL Power Efficiency and Route 25% & 28.5% improvement in 2019 [62]
Latency Reduction EE and Lat over DQN
Deep Q-Network QoE through Video QoE improvement 2019 [63]
SINR and Routing over PHY layer optimization
Deep Q-Learning Packet Reception Ratio and 11% EE and 20% 2020 [61]
Energy optimization improvement in PRR
Deep Reinforcement Learning Energy and Throughput 14.1% EE and 2.9% 2021 [25]
optimization TH improvement over CPLEX
Decision Trees Throughput Improvement by 20% Video/Voice QoS 2015 [30]
optimising AIFSN improvement over IEEE 802.11e
Random Forest & M5P Regression Frame Length optimization 55% Network TH 2020 [36]
Parameter for Throughput improvement over IEEE 802.11
optimization Deep Neural Network TCP Window optimization 9.02% TH Improvement 2019 [65]
Graph Neural Networks Throughput optimization for Prediction Accuracy 90% 2019 [66]
Multimedia Traffic 29% Latency Reduction
Convolutional Neural Networks Power control for Sum-rate 95.13% Sum-rate & 2.45% 2020 [23]
maximization Time Improvement over MLP
Graph Neural Networks Power Control Sum-rate improvement over 2017 [67]
WMMSE with varying topologies
Bipartite Graph Learning Channel Usage Improvement 20.2% TH Improved & 23.9% 2020 [68]
Multi- ) ) ) in Wirgless Network o reduction compared to ACA
modal Multi-modal Split Learning mMWave Received Power Prediction 16x Lower Comm Latency & 2020 [69]
Learning 2.8% Less Privacy Leakage
Deep Multi-modal Learning MIMO Channel Predictions Normalized MSE of 0.005 to 2020 [70]
0.008 with different Models

Deep Learning model for Inter-
Modality feature extraction to
be represented as abstractions

for global space
(Single Layer Parameters)

Deep Learning Model
for decision making
and learning over
Cross Modalities
Cross Layer Optimizations

Combination of
multiple abstractions
to represent all
modalities
(Cross Modalities)

(Cross Layer Parameters)

FIGURE 4. Multi-Modal Learning Flow.

relationship between statistical properties of these modali-
ties for better and improved decisions. Analogous to human
beings, information for the decision making in wireless
networks come from multiple sources. For a central network
controller, information comes from multiple switches, access
points and gateways in the network to take policy decisions.
Similarly, an edge node employing cross-layer design gets
information from multiple OSI layers for optimal param-
eter selections to meet application QoS requirements. This
information from multiple layers can be represented as multi-
modal information and hence Multi-Modal Learning can be
employed.

Multi-Modal Learning [71] aims at studying the rela-
tionship between different modalities to improve decision
making by using AI algorithms. The inputs from a sin-
gle layer can be called as intra-layer modalities and can
be represented with a single abstraction. Similarly, inputs
from other layers can be represented with abstractions which
can be combined to extract cross modalities as it is done
in multi-modal learning [72]. The working of multi-modal
learning and its analogy with cross-layer optimization is
shown in Figure 4. Multi-modal learning has proved very
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beneficial in different multi-modal classification tasks like
video classification [73], sentiment analysis [74] and visual
question answering [75]. Like other fields, multi-modal
learning can be employed in cross-layer design for improv-
ing QoS in wireless networks. Different researchers have
employed multi-modal learning in wireless networks for
example, to optimize channel usage [68], mmWave received
power prediction [69] and MIMO channel predictions [70].
Since QoS provisioning in wireless network through cross-
layer design involves inputs from multiple layers, they
can be represented with cross modalities and multi-modal
information fusion and learning can be employed to learn
the optimal parameter configurations for wireless network
optimizations.

Besides cross-layer optimization, information sharing
between OSI layers can significantly improve QoS in the
network. Sharing of information between application and
lower layers can help tailor parameters in lower layers to
deliver information as per application needs. Other than
increasing buffer size or transmit power upon information
sharing about congestion, low latency traffic can be better
handled if the application layer shares its QoS requirements
through inclusion of traffic tags in packets. Another way of
serving low latency traffic through cross-layer design is to
share information about hardware transmission queues to the
MAC layer to increase the quantum of high priority traffic
thus reducing its delay. However, this additional information
leads to overhead and can reduce network performance.
Therefore, enabling this communication at important time
instances only, determined through AI & ML algorithms, can
significantly improve efficient QoS delivery in IoT networks.

Cross-layer design and optimization have great potential to
improve QoS in IoT networks but they require understanding
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of inter layer dependencies and layer parameter dependencies
for a stable system. Failure to do so can lead to much worse
performance and failure of IoT use cases. However, Al & ML
algorithms, especially GNNs possess strong properties to
study inter layer dependencies that can generalize well over
different QoS requirements. Multi-modal learning, CNNs and
DRL can also help in cross-layer optimizations by targeting
larger number of layer parameters in optimization problem.

V. GNN FOR INTER-LAYER DEPENDENCIES AND
NETWORK PERFORMANCE ENHANCEMENTS
Cross-layer design and optimizations rely on study of inter-
layer dependencies and their exploiting for different QoS
requirements of applications and devices in an IoT network.
Due to dependencies and relationships among layer param-
eters, they are better studied in a relational way and Graph
Neural Networks (GNNs) are a promising tool to undertake
such a study. The layer parameters and their relationships can
be represented as graphs and nodes to employ GNNs, with
the QoS requirements included in the overall optimization
framework. Similarly, wireless networks include base sta-
tions (eNB, gNB), relays, APs and Remote Radio Heads
(RRH) that are distributed by network operators in a planned
and organised way with the end objective of serving more
users and enhance coverage. The users in the wireless
network are mobile and are randomly distributed under
network coverage. This creates a non-structured network
with irregularly positioned nodes as shown in Figure 5.
Therefore, GNNs become an optimal choice to optimize
overall network performance as well. GNNs possess strong
relational inductive bias [27] that enables them to generalize
solutions over changing network topologies as well as over
changing QoS requirements.

A. GNNS EMPLOYMENT FOR CROSS-LAYER
OPTIMIZATION

As we have
performance

network
through
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seen in the previous
can be significantly
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FIGURE 6. Graphical Representation of relationships between parameters at
different OSI layers.

cross-layer optimization however, it requires the study of
interdependencies between performance affecting parame-
ters at different layers of the OSI model to create a stable
design. Information theory is one way to study those depen-
dencies and relationships, however, GNNs posses strong
properties to learn inter-parameter and inter-layer relation-
ships. Since, layer parameters have different dynamics and
affects network performance (latency, throughput and packet
loss) in different ways, they posses non-structured data and
resultantly GNNs are more suitable for studying inter-layer
dependencies as they can efficiently handle non-structured
data. CNNs and LSTMs, on the other hand, require struc-
tured data like images represented with matrices or word
embeddings in case of language data for LSTMs. The layer
parameters from OSI layers are inter-related to each other
in a number of ways that it creates a complex graphical
structure. It is possible to represent these relationships with
node and edges as shown in Figure 6. The relationships exist
between parameters on the same layer as well as across
the layer parameters. Each parameter from an OSI layer
affects QoS metrics in a different way than the other, there-
fore it would make an extremely heterogeneous graphical
structure and, thus, present huge challenge to study these
relationships. Moreover, as QoS requirements change, the
relationship between cross-layer parameters also change and
they need to exploited in a different way to meet chang-
ing QoS requirements. GNNs have some inherent properties
to address theses complexities and can be employed to
study inter-layer dependencies. The changing QoS require-
ments in networks would also change the graphical structures
between layer parameters, however, GNNs can generalize
solutions well over large range of graphical structures [27].
Since GNNs have been employed in heterogeneous networks
for example, for multi path routing [28], they possess the
capability to capture dependencies in inter-layer parameters
as well. Although very complex, the creation of depen-
dency graphs through GNNs would aid in stable cross-layer
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design and can avoid unintended consequences as discussed
in [55].

B. GNNS USAGE IN NETWORK PERFORMANCE
ENHANCEMENT

Historically, graph theory has been greatly employed in
wireless network problems like channel assignment and
interference mapping [76], [77]. Weighted graph colour-
ing has been used in [76] for channel reuse in a WLAN
network. Similarly, [77] used graph colouring for channel
allocation in a cellular network. Augmenting graph theory,
GNNs have opened new doors to address network prob-
lems with increased complexities. Many research works have
employed GNNss in their work for channel and power alloca-
tion, link prediction, route optimization, intrusion detection
and traffic prediction problems. For example, RouteNet [78]
is a novel solution based on GNN that takes into account
the network topology, routing and input traffic to reduce
delay, jitter and loss. A custom built packet level simu-
lator with queues from OMNETH+ is used for training
and testing of models. 260,000 training samples were used
with 100 different routing configurations and wide vari-
ety of traffic. The system is able to achieve on average
30% improvement in terms of delay and jitter compared
to Shortest Path (SP) routing policy and utilisation based
optimizer.

Taking RouteNet [78] as reference, authors in [79]
proposed PLNet for an IP transport network that is able
to achieve same performance as RouteNet but with better
inference speed. For improving channel allocation in WLAN,
Graph Convolutional Networks (GCN) are employed in [80]
to capture the relationships between APs and DRL and
are later employed to allocate channels to the APs in
shorter time while maximizing reward. Multi-Path TCP, also
known as MPTCP, in heterogeneous path network faces
sub optimal performance therefore, GNNs are employed
in [28] to perform throughput prediction over multiple
paths and leverage learnt information to optimize multi path
routing. The proposed approach is tested in a Software
Defined Network (SDN) and is able to achieve lower Mean
Square Error (MSE) in unseen environments (not seen during
training) with higher network throughput compared to tradi-
tional multi-path routing algorithms. GNNs are employed
in [67] for power control in Ad-hoc wireless networks
where the weights of Weighted Minimum Mean Square Error
(WMMSE) algorithm are parameterized using GNNs for
power allocation decisions. The proposed technique is highly
generalizable and is tested on variable network sizes and
densities for validation. Virtual Network Functions (VNF)
placement based on its past usage is done in [66] using
GNNs to improve VOIP and other IP multimedia sub-
systems. Due to the generalisation capability and learning
ability of GNNs for topological dependencies, GNNs have
recently seen massive research in wireless networks [81].
Looking at the literature of GNN employment in wireless
networks, it can be clearly seen that they have been used to
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optimize network holistically and targeted relational network
parameters that impact neighboring users like transmit power,
channel assignments and routing. This strengthens the fact
that their employment to study inter-layer dependencies in
a relational way can prove very beneficial for reliable QoS
in wireless 10T networks.

Besides channel assignment, power control and routing
optimization, GNNs can also be employed at network level
to understand QoS requirements of different IoT devices in a
relational way. They can predict link establishments between
IoT nodes to proactively handle QoS requirements [82], [83].
Similarly, they can predict network level queue dynamics,
routing bottlenecks and application similarities to handle
network resources efficiently and improve QoS provision-
ing. GNNs have also been employed in combination with
other machine learning algorithms to improve network wide
performance [84]. Specifically, combination of GNNs and
DRL has been seen in various networks problems [80], [84].
Although, GNNs have been used in combination with DRL,
their combination with other learning algorithms like LSTM,
GRU and VAE can be further explored for QoS improvement
in wireless IoT networks.

Due to non-structured and continually changing topolo-
gies of wireless networks, GNNs have seen a lot of success
in developing generalizable solutions for different problems
in wireless network. As they can study systems in a rela-
tional way, they can help understand inter-layer dependencies
for a stable cross-layer design and optimization. GNNs, in
combination with DRL and LSTM etc, can optimize large
parameter space while looking at the system from a global
perspective thus enabling improved network management
and control. However, more research efforts are required
in this domain.

VI. CAPACITY AND QOS IMPROVEMENT THROUGH
MULTI-RAT ACCESS NETWORKS
Network management and control play an important role in
optimising network resources and improving overall network
capacity. Different conventional and AI based algorithms
have been proposed for efficient network management and
control of network parameters to enhance network capacity.
For example, Wi-Balance [85] provides better channel-aware
user association to increase throughput. Similarly, [86] used
Graph theory for user association and interference manage-
ment in WLAN network for capacity enhancement. AI & ML
algorithms (DRL, SVM, Decision trees) have also been
employed to optimize Contention Window (CW) [87] and
AIFSN [30] for improving QoS. Similarly, authors in [88]
proposed a distributed ‘Reinforcement Learning (RL) user
specific cell association scheme with back haul capacity
constraints to improve QoS. For efficient spectrum usage
in wireless network, a DRL based spectrum allocation
algorithm is proposed in [89].

Although AI & ML algorithms can achieve promising
results in wireless network management and parameters
optimization, they are still limited by the maximum bit
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FIGURE 7. Multi-RAT Healthcare Wireless loT Network.

rate possible at the physical layer technology. After passing
through upper layers (Transport, Network, MAC), traffic
packets due for transmission reach the PHY layer where
they are put in the hardware transmission queue before get-
ting into the air. This hardware queue is cleared at a rate that
depends on the PHY layer technology. The access technol-
ogy always supports transmission of a certain number of bits
per second depending on the physical layer technology and
channel conditions. For example, WiFi-6 (IEEE 802.11ax)
can achieved a maximum bit rate of 9.6 Gbps with MIMO
and maximum carrier bandwidth (160 MHz). Similarly,
Bluetooth (BLE 5.0) has a theoretical maximum bit rate of
3 Mbps. However, having multiple radio access technologies
at PHY/MAC layers can enable clearance of transmission
queues at a much faster pace compared to single access
technology, thus increasing network capacity. In addition to
it, having multi-RAT APs in IoT networks might have addi-
tional benefits as IoT networks can serve a diverse range of
devices and sensors that employ different access technologies
ranging from Bluetooth, ZigBee, LoRa to WiFi and cellular
NB-IoT as shown in an healthcare IoT network in Figure 7.
Therefore, a single AP can provide the desired wireless
connectivity to a wide range of IoT sensors and devices.
Moreover, many IoT devices are battery operated and require
very high energy efficient communications and a multi-
RAT network can offer energy efficient communications to
such devices while providing high data rate communication
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A. ADVANTAGES OF MULTI-RAT IOT NETWORK

Multi-RAT IoT networks offer a wide range of advantages
to provide reliable QoS. They can improve network capacity
through use of multiple access technologies at the PHY layer
to offload traffic [90]. For example, 5SG networks employ
WLAN technology to increase their capacity and support
high user density [91]. They can also reduce the latency in
networks by offloading wireless traffic over different access
technologies. Authors in [92] have studied latency reduction
in multi-RAT IoT network with RAT selection employed
at edge devices and observed significant improvements in
latency sensitive applications (see Figure 8). Multi-RAT also
offer benefits in terms of energy efficiency and data rate.
Authors in [93] report an increase in energy efficiency from
11% to 42% with Multi-RAT network while data rates
increase up to 39% compared to single RAT network. A
similar work in [94] reported both energy efficiency and
latency gains in multi-RAT IoT network with LoRa and
NB-IoT access technologies with dynamic QoS requirements
and variable payload sizes. Another potential gain of multi-
RAT network is availability of redundant connections in case
of a single access technology failure. Under such scenario,
another technology can hop in to keep connectivity alive
in the network [94]. In this context, authors in [95] have
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FIGURE 8. Latency Improvement with Multi-RAT Traffic Offloading [92].

improved reliability through Multiple Connectivity (MC) and
sending data through multiple RATs. They have employed
distributed RL to learn policies for each device for efficient
MAC configuration and RAT selection.

Although multi-RAT networks have several benefits, they
also face complex management and control challenges
that must be handled efficiently. These challenges include
dynamic RAT selection with traffic aware decisions, han-
dovers of users over different RAT, interference management
among unlicensed bands (WLAN, BLE, ZigBee), energy
management of low-power and energy harvesting nodes, and
multi-path routing with multiple RATs on the data path.
There are various works in literature [93], [96], [97], [98]
which have addressed these challenges using conventional
as well as Al & ML techniques, however, our focus in this
article is on cross-layer design in multi-RAT IoT networks.

B. CROSS-LAYER DESIGN IN MULTI-RAT NETWORKS

Just like with single RAT networks, cross-layer optimization
in multiple RATs can provide promising results towards
enhancing network capacity and meeting QoS requirements.
However, it would require independent efforts for CLD for
each access technology in the network. Cellular networks
(LTE and 5G) have different layer structure and involve
PHY, MAC, RLC (Radio Link Control) and PDCP (Packet
Data Convergence Protocol) layer. Moreover, the operations
of the PHY and MAC layers are also different from the same
OSI layers in IEEE 802.11 networks. Similarly, the layered
structure and operation are also different for IEEE 802.15
networks. These differences require independent cross-layer
solutions for each access technology and would requires
inter-layer interactions after the RAT selection decision. SDN
architectures would effectively aid in CLD for multi-RAT
networks as it separates the control plane from the under-
lying data plane. Applications requirements from devices
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in the network, wireless environment and channel statistics
from the data plane can be communicated to the control
plane to take RAT selection decisions. Afterwards, cross-
layer optimization can be employed on the data plane for
each access technology independently to maximise network
performance.

C. ROLE OF SDN IN MULTI-RAT NETWORKS

Software Defined Networking (SDN) technology is a promis-
ing enabler for the efficient management of multi-RAT
networks. It can provide benefits in terms of seamless
handovers, unified authenticity and security and increased
flexibility [99]. SDN facilitates the creation of network slices
from a centralised controller thus creating multiple logical
networks over same infrastructure to support different QoS
requirements. These slices can belong to different RATSs
available on PHY layer of the multi-RAT network and can
be managed through a single SDN controller. Al & ML can
effectively aid in creation, management and operation of
these network slices based on user QoS requirements while
controlling each slice as per underlying access technology
constraints. This would also help in employing independent
cross-layer designs for each RAT while involving global
network knowledge like routing paths, adjacent channel
usage, transmit power of neighboring devices etc. into the
decision matrix.

SDN architectures and controllers that support multiple
access technologies are very limited, therefore, research
efforts towards development of practical multi-RAT SDN
controllers are required. Though 5GEmpower [100] sup-
port LTE and WLAN access technologies, support for
other access technologies is yet to be integrated. Like
5GEmpower, the SDN controller proposed in [99] employs
RAT Abstraction Functions (RAF) to control different RAT
technologies. The SDN controller resides in the Core
Network (CN) and takes RAT selection decisions without
worrying about lower layer aspects of access technology,
however, this controller has not been tested in a physical
testbed and is not IoT focused. Multi-RAT SDN architec-
tures have been proposed for cellular networks [101] and
WLANS [102] however, incorporation of other low-power or
long-range technologies for power constrained IoT devices
is still needed. SDN-WISE [101] is a good effort towards
developing a SDN controller for 802.15.4 based WSN to
reduce signalling overhead and includes programmability,
however, no effort has been seen in literature that targeted
development of SDN controller for IEEE 802.11 and IEEE
802.15 based IoT networks simultaneously. Several other
SDN architectures for WSN and IoT networks are discussed
in [103], however, they also lack multi-RAT support.

D. ROLE OF Al & ML IN CROSS-LAYER DESIGN IN
MULTI-RAT NETWORKS

Cross-layer design in Multi-RAT network is more com-
plex and challenging task as access technologies differ in
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their operations specifically in MAC and PHY layer opera-
tions. Although many works have targeted CLD in different
access technologies like IEEE 802.15 [104], [105], IEEE
802.11 [106], LoRa [107] and cellular networks [108] and
also employed Al & ML [61], [62], [63], there is no uni-
versal cross-layer design addressing all technologies. Some
researchers have employed Multi-agent DRL (MARL) for
intelligent RAT selection and resource allocation at the
edge however, they did not consider cross-layer information
from multiple layers for maximizing user QoS satisfac-
tions [109], [110]. Due to significant differences in the
MAC and PHY layers operations of RAT, getting cross-
layer information and employing Al algorithms become
increasingly complex. However, SDN architectures provide
a framework where different network applications can be
deployed in SDN controller that can gather information from
different layers of access technologies. This information can
then be fused to employ Al & ML algorithms for CLD
(see Section IV) and CLO for different access technologies
together. Such a framework resembles manager based CLD
discussed in [15] but offers flexible control over multi-RAT
networks. Authors in [111], [112] have proposed SDN based
cross-layer approaches to improve data plane functionality,
however, AI & ML employment to perform CLD in multi-
RAT network is yet to be explored. One drawback of the
SDN approach is the centralized management of network
which introduces significant delays and can fail many low
latency IoT use-cases (see Section VII). This can also lead
to single point of failure and jeopardize the whole network
in case of controller failure. However, different distributed
SDN controllers have also been proposed in literature to
overcome this drawback [113].

Multi-RAT IoT networks employing CLD can provide reli-
able QoS to the wide range of IoT users/applications by
providing multiple access technologies to offload their traf-
fic under congested and dynamic environments, however,
they present complex challenges that needs to be addressed.
Despite additional challenges to perform cross-layer design
in multi-RAT IoT networks, Al & ML algorithms in SDN
controlled network can efficiently overcome these chal-
lenges. Since IoT networks are expanding everyday, more
scalable solutions are required to handle large network den-
sities. AI & ML algorithms can also help in this context
to develop intelligence in edge devices thus enabling dis-
tributed network management. This would also help improve
performance of low latency use cases in many IoT networks.
Nevertheless, research efforts focusing on edge intelligence
for network decisions and distributed SDN architectures are
required.

VIl. DISTRIBUTED NETWORK MANAGEMENT AND EDGE
INTELLIGENCE

IoT is improving our lives in a number of ways. More
and more smart devices and sensors are being manufac-
tured that are being connected to Internet and improving
our quality of lives. In smart industries, various sensors,
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cameras and robots are deployed to increase factory pro-
ductions [20]. In smart healthcare, various kinds of patients
data is being collected to monitor health of patients [21].
This data is continuously analyzed through intelligent algo-
rithms to detect health concern and automatically initiate
corrective actions. Inferences and proactive actions are now
being taken through predictions and data analysis at the edge
rather than in central server or cloud. AI & ML algorithms
are playing a vital role in enabling edge intelligence into
the end devices [114]. This edge intelligence can also be
employed to take network resource management, optimal
communication parameters selection and cross-layer design
decisions to enable reliable QoS in the network. This would
enable distributed network management to efficiently support
low latency and highly responsive use cases in wireless IoT
networks.

A. LOW LATENCY USE-CASES IN IOT NETWORKS

A large number of uses cases in IoT networks require low
latency and high reliability communication. To name a few,
these use cases include industrial automation, autonomous
vehicles, remote diagnosis and surgery, intelligent trans-
portation, emergency healthcare and smart electricity grid as
shown in Figure 9. Augmented Reality (AR) assisted robotic
surgeries are being performed by expert surgeons while sit-
ting in any part of the world. They require high throughput
and ultra low latency communications to transport video
and haptic feedbacks. Similarly, vehicle predictive mainte-
nance requires high reliability communications with various
sensors data like temperature and vibration to reduce mainte-
nance costs and improve downtime. Low latency and reliable
communications are also required to ensure protection of
electricity grids and harbour automation. To enable these low
latency use cases, the data processing and inferencing has
already been shifted to the edge to increase responsiveness
and reduce latency [115]. Moreover, Al & ML algorithms
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on heterogeneous data from IoT devices have enabled edge
devices to initiate corrective actions without having to send
the data to central server [116].

Low Latency IoT use-cases require information to be
delivered reliably with minimal latency thus requiring highly
responsive communication and network infrastructure. The
true benefits of IoT in smart high tech environment can
only be realized if their required communication needs are
met in a satisfactory way [117]. Current communication
requirements of an IoT network are met through multiple
technologies including cellular, WiFi, Bluetooth, ZigBee
and LoRa which involve centralized as well as user-centric
(distributed) control of wireless resources. They employ stan-
dard channel access mechanisms without understanding the
application/IoT sensors QoS requirements which induces
increased latency to critical traffic flows. New medium
access protocols have also been proposed to improve channel
access and reduce latency for machine type communica-
tion in industrial IoT networks [118], [119]. Moreover,
increasing user density in the network causes congestion
thus affecting QoS in whole network [120]. Understanding
QoS requirements and managing network resources as per
application requirements at the edge possess great poten-
tial to enable high quality, low latency communication.
Al & ML algorithms in the edge can autonomously under-
stand users/applications QoS requirements and can efficiently
map them to available network resources for reliable QoS.
However, AI & ML at the edge is still in its infancy and
researchers are trying to employ multiple learning algo-
rithms for distributed network management [121]. Enabling
the edge (Base Stations, Access Points, Devices themselves)
to take decisions regarding channel assignments, routing,
traffic scheduling, traffic shaping and channel access can
not only reduce latency, it would also be beneficial in
shedding off computational overload on the central network
controller. Despite advantages of distributed network man-
agement and control, there are certain decisions that require
global network knowledge. For this purpose, cooperative
decision making and federated learning architectures, in
which edge node share their learnt information with the cen-
tral node which regulates the decision of edge nodes, have
been proposed in the literature [122], [123], [124], [125].
Various works have tried to address decentralised and
distributed network resource management, however, most
of these works have focused on routing [125], power
allocation [123], channel assignment [126] and schedul-
ing [118], [119]. One of the fundamental requirements
to meet QoS requirements at the edge is to understand
user’s/application’s QoS requirements. Base stations/Access
points are the edge devices handing user traffic and network
resources, therefore, they need to employ Al & ML algo-
rithms to classify IoT traffic to understand QoS requirements.
Moreover, they would be able to predict traffic using
LSTMs and regression techniques to develop proactive con-
trol of network resources, thus enabling reliable QoS in the
network.
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TABLE 3. DSCP tags in wired networks.

DSCP Value Class Standard Use-Case
0 BE Best Effort
8 CS1 Scavenger
16 CS2 Network Control
24 CS3 Broadcasting
32 CS4 Streaming
40 CS5 High Priority
48 CS6 Network Management
56 CS7 Network Management
10 AF11 High Throughput Data
12 AF12 High Throughput Data
14 AF13 High Throughput Data
18 AF21 Low Latency Data
20 AF22 Low Latency Data
22 AF23 Low Latency Data
26 AF31 Multimedia Broadcasting
28 AF32 Multimedia Broadcasting
30 AF33 Multimedia Broadcasting
34 AF41 Multimedia Conferencing
36 AF42 Multimedia Conferencing
38 AF43 Multimedia Conferencing
44 Voice Admit (VA) | Voice Calls
46 EF Real-Time Interaction

B. TRAFFIC CLASSIFICATION AT THE EDGE

IoT devices have a diverse range of QoS requirements
depending on the underlying use cases. In order to take com-
munication and networking decisions locally, intelligence
needs to be embedded into the edge to classify IoT traffic into
QoS classes according to the desired levels of throughput,
latency and reliability [127]. Depending on traffic classes,
underlying network resources can be managed to provide the
desired QoS. In wired networks, QoS is provided through
Differentiated Services (DS) by including QoS information
in the form of Differentiated Services Code Point (DSCP)
in the IP header. The different DSCP tags used in wired
networks are given in Table 3. Depending on DSCP tags,
the traffic is scheduled to meet the QoS requirements of dif-
ferent traffic flows present in the network. Wired networks
have considerably large bandwidths and channels are reliable,
therefore, meeting QoS requirements is easier compared to
wireless networks. On the other hand, traffic traversing from
wired to wireless networks involves the translation of DSCP
to Quality Class Indicators (QCI) in cellular networks and
IEEE Access Categories (AC) in 802.11 (WiFi) networks.
The scheduling policies at MAC layer then handle traffic to
meet QoS requirements of different traffic flows. In principle,
traffic classification in wireless networks is done through the
DSCP tags in the IP header. However, the IEEE 802.11e stan-
dard [128] defines only four ACs, namely voice, video, best
effort and background traffic and, therefore, traffic travers-
ing from wired to wireless interface loses QoS information
embedded in the traffic flows. The WiFi ACs, their priorities
and DSCP translations are given in Table 4. Moreover, most
of the network traffic is tagged as Best Effort (BE) by the
IoT devices despite having different QoS requirements [129].
This necessitates development of traffic classification algo-
rithms at the edge devices to improve the QoS delivery
in wireless networks. The classification cannot be universal
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TABLE 4. IEEE 802.11 access categories and DSCP translations.

Priority | User Priority | 802.11e Access Category | Description DSCP to AC Translation
Lowest 1 AC_BK Background Traffic CSl1
2 AC_BK Background Traffic CS1
0 AC_BE Best Effort Traffic AF11, AF12, AF13, CS2
3 AC_BE Best Effort Traffic AF21, AF22, AF23
4 AC_VI Video Traffic AF31, AF32, AF33, AF41, AF42, AF43, CS4, CS3
5 AC_VI Video Traffic CS5
6 AC_VO Voice Traffic VA, EF
Highest 7 AC_VO Voice and Management Traffic CS6, CS7

and depends on the various IoT applications in the network,
therefore, understanding traffic classes is essentially required
to initiate subsequent resource management for the desired
QoS. Al & ML techniques can be employed to determine
statistical characteristics of IoT traffic and classify them into
various QoS classes [130]. For crude classification, traffic
coming of various ports or IP addresses can be tagged at
the processing nodes, however, it requires knowledge about
VLANSs and IP assignment to various kind of IoT devices.
Another way is defining standard traffic tags based on QoS
requirements just like multimedia traffic [129]. IoT sensors
and applications can include these tags in IP packets to
enable priority based resource management.

C. TRAFFIC PREDICTION AT THE EDGE

Proactive network management, where base station/access
points take proactive decisions based on their previously
encountered traffic patterns, decisions taken and their future
predicted traffic patterns, can significantly enhance the QoS
in the network. Besides traffic classification, real-time traf-
fic prediction can also help in efficient mapping of network
resources to user demands [131]. These user demands keep
changing at different times of day and the traffic varia-
tions also occur due to user mobility which shifts traffic
load from one access point to another. Therefore, continu-
ous forecasting of traffic is required. Al & ML techniques
such as Long Short Term Memory (LSTM) [132] and regres-
sion models (Decision Tree Regression, Gradient Boosted
Regression Tree, K-Nearest Neighbour Regression, Support
Vector Regression etc.) [133] are promising tools to under-
stand time dependencies and accurately forecast/estimate
user requirements. LSTMs were able to achieve the MSE and
MAE of 0.05 and 0.3 respectively while regression models
achieved MSE and MAE of 0.004 and 0.002 respectively for
different traffic predictions tasks indicating their potential to
perform this task accurately [132], [133].

D. ROLE OF Al & ML IN DISTRIBUTED NETWORK
MANAGEMENT AND EDGE INTELLIGENCE

Distributed learning algorithms are increasingly being
researched in control problems, edge inferencing and
network decisions [121]. Federated learning and Actor-Critic
classes of DRL are being employed to improve latency
performance of IoT traffic and multimedia traffic deliv-
ery [64], [115]. Similarly, contention window optimization is
now done in a distributed manner through federated learn-
ing to improve system throughput [31]. Cooperative DRL
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algorithms are also being employed to develop distributed
control in the network for improving energy efficiency and
reducing delay of IoT sensors [125]. As discussed earlier,
distributed learning for reliable QoS requires first to under-
stand QoS requirements autonomously. This requires traffic
classification to be performed at the edge devices and subse-
quently employing either AI & ML aided CLD/CLO or RAT
selection. A brief review of distributed learning, network
management, traffic classification and prediction has been
given in Table 5.

Traffic classification in wired as well as wireless networks
has been researched well over the past two decades.
Both machine learning [134], [135] and conventional traf-
fic classification techniques [136], [137] have been studied
and promising results have been achieved. Recently, traf-
fic classification studies have focused on IoT networks
due to different characteristics of IoT traffic and diverse
QoS requirements [138], [139]. The existing traffic clas-
sification techniques are either port based, payload based,
behaviour based or statistics based with different accuracies.
Port based classification have low accuracy as applications
keep changing port usage and payload based classifica-
tion requires deep packet inspections, thus incurring delays.
Therefore, statistics based traffic classification are well
suited at edge devices considering their limited computa-
tional powers as well. Al & ML algorithms have shown
promising results in classifying IoT traffic with higher accu-
racy (up to 83.3% [127] with Decision Trees and up to
94% [135] with CNNs) and their employment at the edge
devices can build highly reliable IoT networks with diverse
QoS needs. Readers are referred to [127], [134], [135]
for detailed surveys of Al & ML techniques for traffic
classification.

Like traffic classification, Al & ML has been vastly
employed in traffic prediction tasks in wireless IoT networks.
Different approaches and learning algorithms have been
proposed in literature. Authors in [131] included prior
knowledge in information fusion to train neural networks
and achieved a 10% improvement over statistical traffic
predictions. Similarly, authors in [132] and [133] were able
to achieve MAE of 0.3 and 0.002% using LSTMs and regres-
sion models respectively. Authors in [140] were able to
achieve a Root Mean Square Error (RMSE) of 0.0298 in
their prediction accuracy with 500 units in their LSTM
model. To predict traffic in an online network, authors
in [141] employed Monte Carlo based DRL algorithm to
predict IoT traffic and they were able to achieve performance
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TABLE 5. Machine learning applications in wireless networks management and distributed control.

Classification AI/ML Algorithm Used Problems Addressed Results Year Ref
Distributed Cooperative DRL Energy Aware QoS Improved QoS performance over 2020 [125]
(Delay and Reliability) Distributed Cooperative Routing
Distributed Actor-Critic DRL QoE Enhancement for 360 High Reward in 50K 2020 [64]
Distributed degree Video ) iterations over QPS
Learning Federated DRL Edge caching for offloading 27% Avg Delay and 15 % Backhaul 2020 [115]
backhual traffic traffic Improvement over FIFO
Federated Reinforcement Learning Contention Window optimization Faster Convergence (200 iterations) 2021 [31]
for Throughput vs RL (700 iterations) and high TH
Multiple Al & ML Algorithms Survey on Distributed Learning Survey 2022 [121]
Support Vector Machines (SVM) Handover optimization Reduced Service Interruptions 2017 [65]
Deep Reinforcement Learning Backhaul aware User Better QoS and Convergence 2015 [88]
Association with only 20 Episodes
Deep Reinforcement Learning Interference Management through Improved D2D sum-rate and 2016 [89]
Network spectrum allocation outage probability over DQN
Management DRL and GCN Channel Assignments 17.5% Improvement in system 2020 [80]
TH over DRL without GCN
Multi Arm Bandits Channel Allocation and MAB supremacy over Dynamic AP 2020 [40]
User Association & Dynamic Channel for Fairness
Random Forest, Decision Traffic Classification in SDN-IoT 83.3% Accuracy with Six Classes 2020 [127]
Tress & KNN
Multiple AT & ML Algorithms ML based Traffic Classification Survey 2014 [130]
for QoS
Classification Linear Discriminant Analysis Traffic Classification beyond Classification of Diff Serv 2020 [129]
and and K Means Diff Serv classes to 23 sub-classes
Prediction Long Short Term Memory ToT Traffic Prediction 1.9% Reduction in MAE, 2.1% 2022 [131]
increase in R? compared to SVM
Long Short Term Memory Traffic Generation Prediction LSTM RMSE:0.04,ARIMA RMSE:0.18 2021 [132]
by IoT Devices Feedforward-NN RMSE:0.08

ration of 73.4% and 63.18% compared to PCA and LSTM
respectively. There are many more research works [142]
that employ Al & ML techniques to predict network traf-
fic, however, most of them are focused on IP networks and
cellular networks data sets. Few works have been focused
on IoT networks but they fail to consider the dynamic char-
acteristics of IoT sensors/devices, different packet structures
compared to IP traffic and IoT traffic burstiness. Moreover,
these prediction algorithms need to be deployed at the
edge base stations/access points, therefore, studies consid-
ering computational requirements of proposed algorithms
and their suitability to be deployed at edge must also be
studied.

Distributed network management and edge intelligence
brings several benefits in terms of increased responsiveness,
distributed computational load and adaptability. This would
significantly increased network scalability and would sup-
port large density of IoT sensors, devices and users in the
network. However, there are certain network decision that
affect neighboring users and require global knowledge for
better decision making, such as routing, power control and
channel selection decisions. These decisions, although taken
at the edge, need to be regulated from a central controller
that has the global picture of the network.

Based on the discussion so far, a complete edge intel-
ligent solution for reliable oS in wireless IoT network
would have edge APs/base stations employing Al & ML
enabled CLD/CLO with their decisions being regulated from
the central controller as shown in Figure 10. GNNs along
with federated and multi-agent deep reinforcement learn-
ing are promising techniques that can be employed in such
distributed and edge intelligent network management frame-
work. This makes it a Hybrid network control architecture
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where intelligence in the edge nodes for traffic classification,
traffic prediction and local resource management through
CLO/CLD is regulated by the central controller to provide
the reliable QoS for a large number of emerging IoT use
cases.

VIll. STANDARDIZATION EFFORTS TOWARDS Al & ML
EMPLOYMENT IN IOT NETWORKS

Enabling a reliable QoS in wireless IoT networks would
require employment of Al & ML algorithms to handle the
complexities and emerging challenges. Moreover, Al & ML
are being considered as a key requirement for 5G and beyond
networks [143]. Realising this importance of Al & ML, the
International telecommunication Union (ITU) has formed a
focus group on Machine Learning for 5G networks known
as FG-ML5G to assist the research community in the appli-
cation of ML in wireless networks and keep all efforts
aligned with common standards. FG-ML5G was tasked to
provide technical specifications of ML architectures, proto-
cols, data structures, ML interfaces and algorithms for ML
based network optimization. It has released ML architec-
tural requirements for future networks as a guideline to
implement Al & ML based solutions to a wide range of
network problems and use cases [144]. In this section, we
will discuss the essential elements proposed in the FG-ML5G
architecture.

A. ML ARCHITECTURE BY FG-ML5G

A standard architecture always proves useful in converg-
ing various research efforts towards a common goal. For
the same purpose, FG-ML5G has defined the architec-
tural components and ML pipelines along with interfaces
that form up the ML architecture (see Figure 11). These
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FIGURE 10. Distributed Network Management with Edge APs employing Al based Cross Layer Design.

components include the source (nodes), collector (that’s
collects data from multiple nodes), Pre-Producer (that pre-
pares data for ML algorithm), Model (the ML Model),
Policy (the learnt policy), Distributor (that distributes the
ML policy to sinks) and Sink (the nodes or APs). Due
to the lack of interpretability of ML models [29], the
FG-ML5G architecture includes an ML Sandbox that pro-
vides a framework to train ML models over simulated
data for testing them before their deployment in production
network. An ML Function Orchestrator (MLFO) is deployed
to manage all ML pipeline functionalities and selection of
ML algorithms for different problems. FG-ML5G architec-
ture guidelines include high-level architecture requirements
like enablers for correlation of data coming in from het-
erogeneous sources with distributed instantiation of ML
functionalities. It also provide enablers defining interac-
tions points with the network that are independent of ML
functionalities, support for their flexible placement and
addition of new ML data sources while the system is
running [144].

For interactions, FG-ML5G has defined interface require-
ments for transfer learning as well as APIs/protocols that
match with the ones used in the underlying network technol-
ogy. The selection of models at startup, and independence of
network performance from training and model updates is also
among the requirements of an ML architecture. FG-ML5G’s
standardisation will prove very useful in the long run as it
will keep research directions focused and interoperable for
seamless integration of various algorithms.
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B. ROLE OF ML5G ARCHITECTURE IN FUTURE
RESEARCH

There is a huge amount of research being done to employ
Al & ML in wireless communications and networking
domains. Many different ML architectures are being
proposed to address different problems [36], [65], how-
ever, following MLS5G architecture is recommended as
it would keep research efforts interoperable with each
other. FG-ML5G has defined various ML use cases [145]
along with guidelines to follow ML5G architecture while
developing solutions. The uses cases range from network-
management specific uses cases, to application oriented use
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cases to facilitate researchers in defining their data collection,
storage and processing requirements inline with the ML5G
architecture.

IX. FUTURE RESEARCH DIRECTIONS AND EMERGING
CHALLENGES

Wireless Networks have seen a massive increase in employ-
ment of AI & ML for performance enhancement in almost
all domains. A number of comprehensive surveys [29], [41],
[44], [59], [60] have been published to cover the Al & ML
application in wireless networks. Various ML data related
challenges are already identified and require research efforts
to cater heterogeneity in wireless network data. These chal-
lenges include the labelling of data, the interpretability of
ML algorithms, ease of use of ML models, training of ML
models in reasonable time and support for ML toolboxes
in network simulators [29]. The network research commu-
nity is trying to solve dynamic network problems through
Al & ML that evolve with changing network conditions,
ranging from resource allocation, interference coordination,
user association, scheduling, rate adaptability, user authen-
tication/security and application aware QoS management.
However, there are few research directions that still need
exploration and exploitation of AI & ML algorithms espe-
cially towards QoS satisfaction in dense IoT networks.
We will discuss these research areas and challenges in
subsequent paragraphs.

A. CROSS-LAYER DESIGNING AND OPTIMIZATION
THROUGH Al & ML

CLD is proven to provide significant benefits in wireless
networks by enabling inter-layer information sharing and
interactions. However, it is not encouraged and supported
historically to preserve the modular structure of the OSI
model, which has its own benefits. Previous CLD efforts
threatened the modular structure of network communications,
however, cross-layer design can be done by introduc-
ing new messages following the same modular structure.
These messages (packets) would be generated to communi-
cate cross-layer information at crucial instances, determined
through AI & ML, to drive the network towards the desired
performance which can vary from lower latency at one time
instant to high reliability and throughput at another. Learning
these dynamic user requirements would help change param-
eters at various layer through intercommunication and can
improve overall QoS in the network.

Similarly, modelling and capturing the combined effects
of large number of cross-layer parameters on different user
QoS requirements was not possible due to the problem’s
complexity. Few efforts have been made in the past to
employ Al & ML in CLO, however, they targeted a few
parameters for joint optimizations. Looking at Figure 3, we
can find multiple parameters at different layers that can be
jointly optimized. Recently, advances in Al & ML algo-
rithms have introduced new and powerful tools that can
handle large number of parameters in CLO. Nowadays,
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GNNs, CNNs, LSTMs and DRL can be used to develop
ML aware cross-layer optimizations to improve overall QoS
in wireless network. These optimizations would also improve
network capacities to support more IoT sensors/devices in
the network.

Though AI & ML can capture complex relationships in
cross-layer parameters, model driven Al (CNNs) require a
lot of labelled network data for their training. A compre-
hensive data pre-processing would be required to represent
cross-layer parameters and their effect on network KPIs.
Many previous research works have already highlighted chal-
lenges related to data heterogeneity and labelling in wireless
networks, CLD/CLO would add new dimensions to those
challenges in data labelling. Moreover, information from
OSI layers have different timing constraints (millisecond
at MAC layer and microsecond at PHY layer) therefore,
handling these different timing constraints is also a com-
plex challenge. Luckily, Network simulators like NS3 and
Omnet++ can prove very useful to generate IoT networking
data, handle timing constraints of OSI layers and train/test
Al & ML algorithms before moving on to real world test
beds. Unlike supervised learning, DRL can provide model
free learning solution over real time network data through
interactions with wireless environment and exploitation of
learnt policies over time.

B. MUTUAL INFORMATION AND CROSS ENTROPY
ANALYSIS FOR CLO

Although Al & ML algorithms can help in cross-layer opti-
mizations with large number of parameters, they do face
a drawback of longer convergence speed. This would not
affect non real-time decisions in the core network (associa-
tions, security authentications, handovers), however, various
performance affecting decisions in the access network require
near real-time decision making (for example the selection of
radio resources, transmit power, MCS and contention win-
dow, etc.). To improve convergence speed of Al & ML
algorithms, mutual information and cross entropy analysis
of various parameters at different layers can identify sim-
ilar information carrying parameters that would have the
same effect on desired QoS metrics. This would significantly
reduce the number of parameters to be optimized, thus caus-
ing dimensionality reduction of the underlying Al & ML
problem. Such a study has not been done for a stable
CLO solution. Mutual information and cross entropy analy-
sis would involve probability theory and its results can be
embedded in the Al frameworks to speed up the convergence
of CLO.

C. STUDY OF INTER-LAYER DEPENDENCIES

THROUGH GNNS

Current research on CLD and CLO lacks a formal study of
relationships between layer parameters. Moreover, CLD suf-
fers from instability problems if not designed correctly. The
instability occurs due to the usage of dependent variables
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(parameters) in more than one loop (by optimization algo-
rithms). This requires the creation of dependency graphs
prior to employing Al & ML algorithms in CLD [55].
The cross-layer parameters can have multiple relationships
among themselves that may go beyond adjacent layers. These
relationships posses typical graphical structure as shown in
Figure 6. Therefore, Graph Neural networks (GNNs) can
be employed to study inter-layer dependencies and cap-
ture relationships between layer parameters. Recently, GNNs
have seen rise in their application to wireless networks
and are used in combination with other ML algorithms
for channel allocation, routing and interference mapping.
GNNs employment with DRL and RNN have been seen in
literature, however, their usage with other AI & ML algo-
rithms can be studied for a wide range of wireless network
problems.

D. MULTI-RAT SDN ARCHITECTURES AND NETWORK
MANAGEMENT THROUGH Al

Future networks are becoming increasingly heterogeneous
with multiple radio access technologies being employed
to increase network capacity. With multiple RATS, han-
dovers across multiple access technologies, medium access
and optimal routes with multiple RATs on path add addi-
tional dimensions to the task complexity. Since different
access technologies (e.g., WLAN, BLE, ZigBee) use unli-
censed band (2.4 GHz) for communication, they require
complex interference management and interference-aware
RAT selection. Current research on multi-RAT networks
lack multi-dimensional decision making that takes into
account RAT specific congestion, routing latencies and chan-
nel interference, specifically for QoS satisfaction of IoT
users/applications.

Software Defined Networking (SDN) possess all the nec-
essary traits to address the above mentioned challenges
in multi-RAT networks and even employ CLD. An SDN
controller can collect information from distributed network
devices and OSI layers by deploying various network apps.
This information can be fused using AI & ML algorithms
to undertake multi-dimensional decisions in multi-RAT
networks. However, research efforts are required to develop
information collection and information fusion applications
in multi-RAT SDN controllers. Al & ML can really help
in efficient information fusion for CLO and CLD in multi-
RAT networks, however, very few SDN architectures have
been proposed in literature that support multiple RATSs
and have been tested in real world environments. Most
of the SDNs proposed in literature support 4G, 5SG and
WLAN access technologies while neglecting LoRa, BLE
and ZigBee technologies which are used by many IoT sen-
sors and devices. Therefore, research efforts to develop SDN
controllers supporting LoRa, BLE and ZigBee along with
WLAN and Cellular technologies are required. Moreover,
the different timing constraints in CLD/CLO of OSI layers
would remain a complex challenge in multi-RAT networks
as well.
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E. TRAFFIC CLASSIFICATION AND PREDICTION FOR
RELIABLE QOS

In order to meet QoS requirements in IoT networks, it is nec-
essary to understand the QoS needs of the applications and
IoT devices. Unlike multimedia traffic, IoT traffic is not cat-
egorised into multiple classes depending on QoS needs. As
such, traffic classification algorithms are required to classify
IoT traffic into multiple classes representing their throughput,
latency, reliability and energy efficiency requirements. This
classification is a complex and cumbersome task as all pack-
ets appear similar with variable packet sizes, packet arrival
rates, source ports and temporal characteristics. Although
there is a plethora of research done on IP traffic classifica-
tion, IoT network traffic classification on the edge devices
remains an open research. Machine learning, especially, deep
learning algorithms can be employed to analyze multiple
features of IoT traffic and classify them into various QoS
classes. This can help create more QoS classes and would
also improve QoS granularity in the network, offering more
control over user QoE.

Besides traffic classification, another way to classify IoT
traffic is to standardise 10T traffic classes and include them
in the IoT device design. IoT devices can then tag pack-
ets with their QoS requirements while sending traffic. This
would enable base stations / access points to treat traffic as
per their QoS requirements and manage network resources
accordingly, however, changes in present radio access tech-
nologies to incorporate those 10T traffic tags in their traffic
handling procedures and QoS frameworks would be required.

Meeting diverse QoS requirements is not only the mat-
ter of using powerful and recent hardware, rather, it can
also be achieved through efficient mapping of user needs
with available resources [146] therefore, traffic prediction
and forecasting can also benefit in improving QoS in IoT
networks. Knowing traffic requirements in advance allows
efficient resource sharing and utilisation to avoid violations
of agreed Service Level Agreements (SLA) in the network.
Machine learning algorithms like LSTMs and GRUs can be
employed to study complex time series traffic data for accu-
rate forecasting however, they require long training. Classical
techniques like Auto Regressive Integrated Moving Average
(ARIMA) and Exponential Smoothing are fast to train how-
ever, their prediction accuracy are lower. Therefore, high
accuracy prediction algorithms with training time constraints
are required to forecast network traffic in milli-seconds
timescale for rapidly changing QoS requirements in IoT
networks.

F. MULTI-MODAL Al AND ORTHOGONAL LEARNING

Al & ML have been employed in every layer of network
protocol stack from the application layer to the physical
layer [44], [41], [60]. Network researchers have mostly
employed Al & ML to one or two problems at a time like
channel-aware user association, load balancing, congestion
control and spectrum allocation etc. It is known that the
addition of more parameters increases problem complexity,
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however, many learning algorithms can run simultaneously
in a wireless network for performance enhancement. For
example GNNs can be used to optimize deployment of
network nodes and assigning channels (frequencies) while
multiple DRL algorithms can be run to manage handovers,
associations, transmit powers, scheduling, etc at the same
time. Similarly, decision trees, LSTMs and SVMs can be
run to optimize frame lengths, airtime and TCP window
size to improve link performances while other algorithms
are addressing different problems. This would create an Al
pipeline where multiple Al algorithms would run towards
optimising their target parameter with the end objective of
user QoS satisfaction. This can definitely produce improved
results, however, there are multiple parameters that have
overlapping effects due to non-orthogonal processes (e.g.,
decisions related to airtime would affect decisions related to
TCP window size or transmit power). Therefore, a mecha-
nism to develop inter-communication between different Al
algorithms would be required to keep local Al algorithm
decisions aligned with the overall network performance
objectives.

Moreover, decision making in wireless networks based
on inputs from multiple OSI layers and different range of
devices in the network (Switches, Gateways, Access Points)
can be represented as different modalities and, resultantly,
multi-modal learning algorithms and approaches can be
employed. As the data from these layers and devices would
have different structures, veracity and, timescales, therefore,
learning upon such data is a complex task. Multi-modal
learning requires data from all layers of the OSI model which
would require a good network monitoring framework. This
adds to overhead in network operations, therefore, multi-
model learning models with limited or insufficient data are
also required for creating a balance between performance
improvement and overhead addition in the network.

X. CONCLUSION

The number of devices requiring connectivity is growing at
a fast pace with IoT networks becoming ever more dense. At
the same time, IoT devices are becoming increasingly hetero-
geneous in terms of QoS requirements. Research efforts are
ongoing to improve network capacities and QoS provisioning
in dense IoT networks and new technologies and tech-
niques are being proposed to meet emerging requirements.
Among other technologies, Cross-layer Design, Cross-layer
Optimization and Distributed Network Management of
multi-RAT IoT networks are promising methods to meet
diverse QoS requirements in dense IoT networks. Previous
CLD/CLO research targets only a few OSI layer parameters
while neglecting the true potential of all layers parame-
ters optimizations which was not possible in past due to
problem complexity. Moreover, they had targeted improve-
ments in technical network parameters while overseeing user
QoS requirements and QoE. Similarly, CLD and CLO is not
considered in multi-RAT IoT networks to enable high capac-
ity QoS aware networks. On top of it, QoS requirements in
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various [oT use cases have become far more stringent and
require edge devices to learn QoS needs and take decisions
of network resource management. Research efforts in these
domains are disconnected from each other, therefore, unified
efforts to develop edge intelligence and distributed network
management where CLD and CLO would be employed in
multi-RAT network on the edge are required.

To develop such complex solutions, advancements in
Al & ML have underpinned new algorithms and methods
for capturing inter-layer dependencies, performing cross-
layer optimization and taking distributed decisions. These
Al & ML based solutions should be developed while fol-
lowing FG-ML5G architectural guidelines to keep research
efforts aligned with a common standard. However, there are
numerous research challenges that needs to be solved by the
networking research community.
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