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Abstract

Understanding pedestrian dynamics in crowded public spaces has shown to
be important. Nowadays, there are widely deployed sensing infrastructures
that detect Wi-Fi signals emitted by smartphones carried by people in crowds.
Based on these detections, crowd-monitoring insights can be derived in the
form of statistical counts, offering information such as the footfall in a location
as well as crowd flows between several locations. Because detections of devices
carried by individuals must be handled in the process, there are legitimate
concerns regarding the privacy of those sensed individuals. There have been
attempts to address these privacy concerns, but they proved to be insufficient,
mostly because uniquely tracing back to individuals still remained possible.

We propose two new methods that protect the privacy-sensitive detections
of individuals while still allowing the computation of statistical counts on
crowds. The first method anonymizes detections on the fly, ensuring protection
under what we call detection k-anonymity for all the collected data, no matter
how the anonymized data is combined to address future queries. The second
method relies on encoding detections into probabilistic data structures called
Bloom filters (BFs), and then encrypting the resulting BFs with a homomorphic
encryption (HE) scheme. As part of a multi-party cryptographic construction,
HE allows performing the operations needed for computing the statistical
counts directly on the encrypted data, without the ability to decrypt, revealing
only the end result in the clear to the intended recipient. Furthermore, to
enable granular decisions upon which detected devices are considered as part
of the crowd and under the same privacy protection guarantees ensured by the
combination of BFs with HE, we explore the possibility of separately counting
nonstationary from stationary devices based on their frequency of detection.

We implement and extensively evaluate the proposed contributions using
simulated, as well as real-world data. Our results demonstrate that highly
accurate statistical counting for pedestrian dynamics is possible while privacy
protection is guaranteed.
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Abstract (Dutch)

Het begrijpen hoe voetgangers zich gedragen in drukke, openbare ruimtes is
in de praktijk belangrijk gebleken. Tegenwoordig worden er op grote schaal
sensoren ingezet om de Wi-Fi signalen te detecteren die uitgezonden worden
door smartphones. Op basis van deze waarnemingen kunnen statistische
tellingen gemaakt worden, die inzicht geven in bezoekersaantallen, evenals hoe
een menigte zich tussen verschillende locaties beweegt. Omdat de signalen van
privé apparaten worden verwerkt in het proces, zijn er terechte zorgen over
de privacy van de eigenaren van de apparaten. Er is gepoogd om deze zorgen
weg te nemen, maar deze methoden bleken onvoldoende, grotendeels omdat
het nog steeds mogelijk was om individuen te traceren.

Wij dragen twee nieuwe methodes aan die de privacy-gevoelige waarnemin-
gen van individuen beschermen en tevens het maken van statistische tellingen
toelaten. Onze eerste methode anonimiseert de waarnemingen zodra ze gemaakt
zijn. De verzamelde gegevens zijn beschermd met wat we detection k-anonymity
noemen, zelfs als de geanonimiseerde waarnemingen in de toekomst gecombin-
eerd worden met andere data. Onze tweede methode codeert de waarnemingen
in probabilistische datastructuren, genaamd Bloom filters (BFs), en versleutelt
de BFs met homomorfe encryptie (HE). Door HE als onderdeel van de cryp-
tografische constructie te gebruiken, kunnen de tellingen op basis van de
versleutelde waarnemingen berekend worden, zonder dat de waarnemingen
eerst ontcijferd moeten worden. Bovendien wordt het eindresultaat alleen bek-
end gemaakt bij de partij die opdracht gaf te tellen. Daarnaast, om te oordelen
welke gedetecteerde apparaten, beschermd met de combinatie van BFs en HE,
onderdeel van een menigte zijn, onderzoeken we de mogelijkheid om stationaire
en bewegende apparaten apart te tellen, op basis van hun detectie-frequentie.

We implementeren onze voorgedragen ontwerpen, en evalueren ze uitgebreid
met zowel gesimuleerde gegevens en gegevens uit de echte wereld. Onze res-
ultaten tonen aan dat zeer nauwkeurige statistische tellingen voor voetgang-
ersgedrag, met garanties voor privacy, mogelijk zijn.

iii





Abstract (Romanian)

Intelegerea dinamicii multimilor in spatii publice aglomerate s-a dovedit a fi
importanta. Astazi sunt instalate, pe scara larga, infrastructuri de senzori
care detecteaza semnalele Wi-Fi emise de smartphone-urile oamenilor din
multimi. Pornind de la aceste detectii se poate construi o intelegere a multimilor
sub forma de contorizari statistice, oferind informatii precum numarul de
oameni prezenti intr-o locatie sau fluxul multimilor intre locatii. Avand in
vedere ca acest proces presupune utilizarea detectiilor dispozitivelor apartinand
persoanelor, exista ingrijorari legitime cu privire la privacy-ul acelor persoane
detectate. Incercarile de a rezolva aceste ingrijorari s-au dovedit insuficiente,
mai ales pentru ca reidentificarea unica ramanea inca posibila.

Propunem doua noi metode pentru a proteja detectiile privacy-sensitive,
pastrand in acelasi timp posibilitatea contorizarii statistice a multimilor. Prima
metoda anonimizeaza detectiile pe loc, garantand protectie sub forma detection
k-anonymity pentru toate datele colectate, indiferent cum datele anonimizate
ar putea fi combinate pentru a raspunde la viitoare intrebari. A doua metoda
se bazeaza pe codificarea detectiilor in structuri de date probabilistice denumite
Bloom filtre (BF-uri), urmata de criptarea acestora cu o schema de criptare
homomorfica (HE). Folosita in cadrul unei constructii criptografice multipartite,
HE permite executarea operatiilor necesare contorizarilor statistice direct
pe datele criptate, fara posibilitatea de decriptare, dezvaluind in clar doar
rezultatul final si doar partii careia acesta ii este destinat. Mai mult, pentru a
facilita decizii granulare cu privire la apartenenta dispozitivelor detectate la
multime si sub aceleasi garantii de protectie a privacy-ului oferita de combinatia
dintre BF-uri si HE, exploram posibilitatea de a contoriza separat dispozitivele
nonstationare de cele stationare in functie de frecventa detectiilor acestora.

Implementam si realizam o ampla evaluare a contributiilor propuse utilizand
date simulate, precum si date din lumea reala. Rezultatele noastre demonstreaza
ca se pot obtine contorizari statistice de inalta acuratete pentru dinamica
multimilor, in acelasi timp protectia privacy-ului fiind garantata.
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Chapter 1

Introduction

Being able to observe the behavior of a crowd is a cornerstone for successfully
managing crowded public areas. The prevalence of mobile devices paved the way
for wide-scale deployments of infrastructures that perform automated sensing.
Suddenly, people in a crowd could be discreetly monitored by leveraging radio
signals such as Wi-Fi probe requests periodically sent by their devices. However,
handling such uniquely identifying data in such a way that it does not expose
the sensed individuals to potential privacy infringements proves to be a difficult
task. This is the area where we position our research. Let us begin by presenting
an overview of the problem.

1.1 Overview

Understanding pedestrian behavior in crowded public spaces has been a matter
of interest for many years. Research within the crowd-dynamics field thoroughly
explored movement patterns and different behaviors that can occur inside a
crowd at different points in time [44, 55, 51]. It has already been shown that
insights can be extremely valuable for urban planning [49], traffic optimization
[60, 43], events organization [20, 80, 17, 82, 14], identification of travel patterns
[32], uncovering social interactions [45, 27], footfall estimation [68, 42] or
even public safety [46, 30, 81, 36]. Various technologies have been employed,
including video cameras, mechanical counters, RFID beacons and Infrared
devices. With the advent of smartphones as personal devices constantly carried
by people, an enormous amount of high-accuracy information became available,
foaming from inside the crowd and boasting an unprecedentedly intimate
whiff, creating opportunities for automated tracking through interfaces such as
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Bluetooth and Wi-Fi.

Wi-Fi-based crowd monitoring took an upper hand and became common-
place practice. Wi-Fi scanners installed in public spaces gather signals broad-
casted by devices carried by individuals. By leveraging such signals, interested
parties can estimate the size of crowds near those scanners, as well as the size
of the flows developing between them.

Dealing with data related to crowds has always been a sensitive matter,
regardless the technique used for monitoring, mainly because insights are built
upon the people making up these crowds, people who have privacy concerns.
In Wi-Fi-based crowd monitoring, signals gathered by scanners contain unique
identifiers, i.e. MAC addresses, corresponding to devices carried by individuals.
Detecting these identifiers at different locations over time allows the system to
build up crowd-level knowledge on pedestrian dynamics based on the movement
patterns of individuals. In such a system, an individual could be uniquely
re-identified from data bearing her identifier and have her every move followed,
infringing thus her privacy.

In an effort to prevent such situations from happening, sets of rules were
proposed to clearly regulate the process, like, for example, the General Data
Protection Regulation [63] (GDPR) in the EU. According to this regulation,
the kind of information processed and stored with the intent of profiling a
natural person, information which, combined with other external knowledge,
could lead to uniquely identifying individuals, qualifies as personal data.

Existing data protection strategies for Wi-Fi-based crowd monitoring proved
on several occasions not to provide a proper protection for the individuals
being sensed [58, 28]. Currently used strategies are based on replacing real
identifiers with pseudonyms obtained either by hashing the MAC addresses
with a one-way hash function, encrypting them with a deterministic encryption
scheme or assigning them a random token generated by a cryptographically
secure pseudorandom number generator. Pseudonyms still allow tracking over
time and space, as well as creating individual profiles which, under certain
conditions, for example when external knowledge is available, remain susceptible
to re-identification. As a result, organizations doing crowd monitoring ended up
facing difficult challenges while delivering their services. Many of them halted
their activities [1, 4, 5], while others are being fined due to privacy-related
incidents [6]. This brings us to our main research question, that we formulate
below.
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1.2 Research Questions

In this thesis we aim to come up with mechanisms to protect the privacy of
the sensed individuals by design while still fulfilling crowd-monitoring needs.
In other words, we investigate the following main research question:

MRQ: How to construct Wi-Fi-based crowd-monitoring systems in such a
way that they enable discovering pedestrian dynamics and protect the privacy
of the sensed individuals at the same time?

To address MRQ, we pursue an exploration from multiple directions,
materialized in three research questions. First of all, there is the privacy
protection problem. Therefore, we formulate the first research question as
follows:

RQ1: What techniques can be used for managing privacy-sensitive crowd-
monitoring data such that privacy protection is ensured?

Crowd-monitoring data undergoes privacy protection mechanisms. This
kind of processing can have consequences on the utility of the offered crowd-
monitoring insights. By utility here we refer to aspects such as the accuracy
of the crowd estimations, the degree of applicability of the system in certain
circumstances, as well as the potential granularity of the offered insights. Thus,
we come to the second research question:

RQ2: To what extent do the considered privacy protection techniques impact
the utility level of the attainable crowd-monitoring insights?

To address RQ2, we evaluate our proposed methods on simulated data,
covering a whole range of cases, as well as on real-world data to assess the impact
when dealing with real detections generated by actual pedestrian movements.

Wi-Fi-based crowd-monitoring systems already process large amounts of
data. Introducing mechanisms for privacy protection purposes implies an
additional overhead. Such overhead has the potential to impact the practicality
of the deployment. Hence, we propose the third research question:

RQ3: How expensive are the considered privacy protection techniques for
crowd monitoring from an efficiency point of view?

Answering RQ3 is based on performing proof-of-concept implementations of
the computationally heavy operations using commodity hardware and assessing
their performance when configured as being part of a crowd-monitoring system.
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After presenting our work in the following chapters, we will come back in
Chapter 6 with a detailed discussion on how each of the research questions has
been addressed.

1.3 Outline & Contribution

The rest of the thesis is structured as follows. In Chapter 2 we present back-
ground information together with relevant related work. Chapters 3 and 4
display the two methods proposed for monitoring crowds while protecting the
privacy-sensitive detections of individuals. In Chapter 5 we investigate how
to separately count nonstationary from stationary devices with privacy pro-
tection enabled. Chapter 6 concludes the thesis, reflecting upon achievements,
limitations and directions for future research.

Addressing the formulated research questions, we make the following con-
tributions.

Detection k-anonymity for crowd monitoring. We propose, in Chapter 3,
a novel anonymization technique that borrows from the notion of k-anonymity
while avoiding its well-known drawbacks that lead to de-anonymization. The
technique essentially anonymizes detected smartphones immediately at the
scanner before any data on such a detection is stored for further analysis.
Moreover, while ensuring what we coin detection k-anonymity, we also ensure
high accuracy of counting when dealing with realistic pedestrian flows within
crowds for which the amount of leavers and joiners is known. We evaluate
the solution both in a simulated environment and in a realistic environment
reproducing real-life settings.

Privacy-friendly crowd monitoring using Bloom filters & homo-
morphic encryption. We present, in Chapter 4, a construction that protects
the short-term storage and processing of privacy-sensitive Wi-Fi detections
under strong cryptographic guarantees and makes available in the clear, as end
results, only statistical counts of crowds. To produce these statistical counts,
we make use of homomorphically encrypted Bloom filters as facilitators for obli-
vious set membership testing under encryption. We implement the system and
perform evaluation on both simulated data and a real-world crowd-monitoring
dataset, demonstrating that it is feasible to achieve highly accurate statistical
counts in a privacy-friendly way.

Anonymized counting of nonstationary Wi-Fi devices. Emitting Wi-Fi
signals is not a feature for devices of only passersby, but also for printers,
smart TVs, and other devices that exhibit stationary behavior over time,
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which eventually end up affecting pedestrian crowd measurements. To deal
with this problem, we propose, in Chapter 5, a system that accurately counts
nonstationary devices sensed by scanners, separately from stationary devices,
using no information other than the Wi-Fi signals captured by each scanner
in isolation. As counting involves dealing with privacy-sensitive detections
of people’s devices, the system discards any data in the clear immediately
after sensing, later working on encrypted data that it cannot decrypt in the
process. The only information made available in the clear is the intended output,
i.e. statistical counts of Wi-Fi devices, fulfilling the same privacy-preserving
guarantees as in Chapter 4. Our approach relies on an object, which we call
comb, that maintains, under encryption, a representation of the frequency of
occurrence of devices over time. Applying this comb on the detections made
by a scanner enables the calculation of the separate counts. We implement
the system and feed it with data from a large open-air festival, showing that
accurate anonymized counting of nonstationary Wi-Fi devices is possible when
dealing with real-world detections.





Chapter 2

Background & Related Work

Monitoring crowds of pedestrians has been a matter of study for many years,
with several technologies being investigated as promising candidates. The
technical capabilities of the Wi-Fi together with its inconspicuous nature of
sensing people propelled it as a front runner technology. Therefore, nowadays
there are numerous Wi-Fi sensing infrastructures deployed in practice across
cities from around the globe. Privacy aspects, however, are not uniformly
addressed, often leading to underachievements or hiding pitfalls.

In this chapter we will first present background information, showing how
monitoring is possible. Then, we will provide a generic model of Wi-Fi-based
crowd-monitoring system that we are going to use throughout the rest of the
thesis, to understand where the privacy problem arises. Eventually, we will look
at currently existing approaches aiming for privacy protection when monitoring
crowds.

2.1 Background

People traveling in public spaces generally carry with them mobile devices,
such as smartphones. These devices have communication interfaces that allow
us to detect them when they are in the vicinity of a sensing infrastructure.
Research has shown that Wi-Fi and Bluetooth interfaces [67, 20, 7] are highly
appropriate for unobtrusively detecting the behavior of crowds of people. In
Wi-Fi setups [56], the MAC address of the devices carried by people is detected
by fixed scanners whenever they transmit probe requests meant to discover
available networks. Bluetooth sensing is performed by fixed scanners that send,
periodically, inquiry requests to nearby devices and then receive responses

7
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containing the MAC addresses of the devices. For pedestrian monitoring
however, Wi-Fi proved to be the better choice due to higher range, more
discoverable devices and lower deployment costs [67]. For an extensive study
of the matter, we refer the reader to [31].

Based on these detections, interested parties can later on derive relevant
information regarding pedestrian dynamics, such as crowd densities and flows
[67], as well as mobility patterns occurring within crowds [20]. The key element
allowing this to happen is that probe requests are accompanied by the MAC
addresses of the devices sending them, serving thus as unique identifiers in the
crowd-monitoring process. At the same time, this is the main cause of concerns
regarding privacy; we will come back to this later in this chapter. Let us now
model a Wi-Fi-based crowd-monitoring system.

2.2 Wi-Fi-Based Crowd Monitoring

Typically, setting up a Wi-Fi crowd-monitoring system starts by installing
a set of Wi-Fi scanners S = {s1, ..., sn} in a public space where crowds of
people are expected. These scanners could be either purposefully built Wi-Fi
sniffers, access points, or any other apparatus that can pick up Wi-Fi signals
in their vicinity. Ideally, scanners are positioned in such a way that they have
nonoverlapping ranges, to prevent them from sensing the same signals at the
same time.

People carrying Wi-Fi enabled devices pass through the public space. Their
devices regularly broadcast management frames called probe requests to search
for available Wi-Fi networks. Probe requests are sent out in the clear and
contain, along other information, the MAC address of the sender, a ∈ A where
A ⊂ {0, 1}48, hereby acting as a unique identifier for the broadcasting device.
Whenever such a device is identified by a scanner as passing through its range
(i.e. a probe request is received from it), the scanner learns its MAC address a
as well as the timestamp of reception t, and it associates it with an epoch e ∈ E
such that tstart(e) ≤ t < tend(e), where tstart and tend mark the beginning and
the end of an epoch and E denotes the set of all such epochs. We call the
3-tuple (a, s, e) a detection, signifying that a device with MAC address a was
detected by scanner s during epoch e.

We model a crowd as a set of detections Ds,e containing the devices detected
by a scanner s during an epoch e. This decision implies two effects. First, using
a set ensures that a device is counted by a scanner only once per epoch even if
it may broadcast multiple probe requests. Second, we consider the number of
detected devices as the number of people, this being the only information such
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a system can gather. We are aware that the actual number of people may be
different (e.g., due to some people not carrying mobile devices) and we assume
that a correction factor (e.g., how it is proposed in works such as [69]) will be
applied afterwards.

To address incoming crowd-monitoring queries, detection sets are usu-
ally stored on a central server. Detection sets contain MAC addresses of
devices belonging to individuals, representing thus privacy-sensitive informa-
tion. Handling such unique identifiers must be done carefully, as it was shown
that unconsented tracking [26] or even profiling [27] may happen otherwise.
Therefore, privacy protection measures must be employed.

2.3 Privacy Protection Directions

Being able to collect precise information on the whereabouts of individuals
without any explicit consent is a major privacy problem. This has been invest-
igated by hardware manufacturers, by organizations having crowd-monitoring
deployments and also by researchers in this field.

Hardware manufacturers tried to address the privacy issue by implementing
MAC address randomization, a mechanism that replaces the real MAC addresses
with random ones when sending out probe requests. Despite sometimes being
effective, it proved to be insufficient, as works such as [78] and [53] showed,
re-identification remaining possible through several techniques mostly because
of unclean and inconsistent deployments across the wide range of manufacturers,
which still remains a problem as of 2021 [40]. Leveraging this, there are works
[77] that show how different randomized MAC addresses belonging to the same
physical device can be clustered together and treated as a unique device for
crowd-monitoring purposes. Besides that, devices use their real MAC addresses
when they are connected to a network, a situation in which randomization is
of no use.

Wi-Fi crowd-monitoring organizations tried to address the problem as well.
The prevalent approach employs pseudonymization, a technique that replaces
too the original MAC addresses in probe requests, this time on the capturing
side. So-called pseudonyms result after applying either a one-way hash function,
a randomized allocation or a deterministic encryption scheme on the original
MAC addresses. However, the MAC address space is limited to 248, so any
resulting pseudonyms are susceptible to brute-force attacks, as they are known
as weak anonymized data [29]. Furthermore, it was shown by Demir et al.
how most commercial solutions using such mechanisms can be broken using
off-the-shelf equipment [28], also reconfirmed by Marx et al. [54] in a more
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recent work. This comes on top of the fact that a survey by Draghici and van
Steen [31] discovered that not using privacy-protecting methods is far from
being a rare event.

There are researchers who looked specifically into protecting the privacy of
individuals sensed by Wi-Fi crowd-monitoring systems. There are three main
directions that show potential here.

A first approach that comes to mind when thinking about protecting the
privacy of individuals whose data is stored in a dataset while still providing
useful statistical information based on it, is differential privacy [33]. In such
setups, to achieve privacy protection, data is usually perturbed with noise
[34]; to produce the same amount of privacy for queries involving a decreasing
number of individuals, more noise needs to be added. A notable effort towards
privacy-preserving crowd monitoring using differential privacy is presented by
Allagan et al. [11]. The authors make use of differentially pan-private Bloom
filters (BLIPs), i.e. probabilistic data structures in which they store the data
and perturb it for privacy protection. While their method works well for large
crowds, it achieves low accuracies when handling small crowds, this being a
common condition of systems implementing differential privacy.

A second direction pursued by researchers is striving for privacy through
anonymity and, in particular, k-anonymity [66], which is the kind of protec-
tion achieved when the information about a person contained in a release
is indistinguishable from k-1 other persons. For crowd-monitoring systems,
Kamp et al. [47] proposed a protection mechanism based on linear counting
sketches [65]. Their approach allows estimating footfall in one location as well
as reconstructing crowd flows between different locations, privacy protection
being based on expected k-anonymity over the identifiers, which comes as a
natural property of sketches. In contrast, also building around k-anonymity, our
work presented in Chapter 3 introduces detection k-anonymity, an anonymity
measure which is, this time, guaranteed by an active mechanism for footfall
and crowd flow queries while eventually allowing estimations of the concerned
crowds. There we will also present a broader background on anonymity and
k-anonymity.

Finally, privacy-sensitive data of individuals can be protected through
cryptographic means. In such constructions, once encryption has been applied
on the privacy-sensitive data, one cannot go back to its original form under the
assumption that a set of security requirements is followed. Moreover, by using,
for example, a homomorphic encryption scheme, mathematical operations can
be performed on the data without the need for decryption, making it a promising
candidate for privacy-preserving crowd monitoring under encryption. We design
such a construction to support a crowd-monitoring system in Chapter 4, that we
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also use later in Chapter 5 for separately counting nonstationary from stationary
devices. In these chapters we will provide more background information on the
matter.





Chapter 3

Detection k-Anonymity

In this chapter, we propose a novel privacy protection method for crowd monito-
ring that preserves the privacy of all monitored individuals under anonymity
guarantees while maintaining high accuracy of measurements. Our mechanism
leverages k-anonymity principles on top of truncated identifiers, dropping the
usage of unique identifiers and ensuring, for any formation of crowd-monitoring
scenarios, that there is no individual having her privacy compromised. Moreover,
the mechanism is computationally lightweight, running in linear time, and can
be applied in a live manner right at the collection point even before the sensing
data reaches the crowd-monitoring database, thus complying with requirements
of anonymization on the fly. We evaluate our construction both in a simulated
environment, to test edge cases and behavior when ranging different parameters,
and in a realistic environment reproducing real-life settings.

This chapter is based on the work presented in [72]. The rest of the chapter
is organized as follows. Section 3.1 presents the system model, together with
the theoretical grounds supporting our construction. Section 3.2 introduces
the experimental setup, the metrics used and the employed mechanisms, while
in Section 3.3 a thorough evaluation is performed. In Section 3.4 a review
of related literature is provided and then, finally, Section 3.5 concludes the
chapter.

3.1 System model

3.1.1 Overview

Crowd monitoring is a process usually performed to get insights regarding
crowds of people, such as discovering either the presence or movement patterns

13
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happening inside a certain public or private environment [83]. Regardless of the
technology used for sensing (e.g., Wi-Fi or Bluetooth scanners, video cameras,
and so on), it relies on detecting people passing by several collection points
at different time intervals. For example, in the case of Wi-Fi, a mobile device
regularly broadcasts probe requests containing its MAC address as a unique
identifier, which can be subsequently picked up at a Wi-Fi scanner. In a näıve
setting, a device detection is constructed at the scanner as a triplet containing a
device’s MAC address, a timestamp, and the scanner’s identifier. Such triplets
are stored in a central database for further analysis.

Clearly, without taking further measures, privacy infringement is at stake.
More specifically, we consider a threat model in which an attacker has access
to the stored detections. By making use of these detections and assuming no
additional background knowledge, the attacker aims to uniquely trace back to
the individuals who generated them. We do not consider other attackers, such
as attackers manipulating the sensed data or injecting false detections.

As an advancement of state-of-the-art methods, we propose to perform a
novel anonymization process on the fly, directly at the scanner, or more general
at collection points, before detections reach the server, a process that we will
introduce later on in this chapter. For clarity and without loss of generality,
we will assume that Wi-Fi sensors are used.

In our construction, when we talk about movement patterns of crowds,
we specifically refer to being able to understand pedestrian crowd flows, i.e.
how people constituted in a crowd circulate through public spaces. To achieve
this, we need to build our system in such a way that it offers high accuracy of
measurements for this kind of scenarios while offering anonymity guarantees
for all the data being stored.

3.1.2 Formalities

Let us now present the formalities that we are going to use in this chapter.
We recall that a Wi-Fi crowd-monitoring environment, as we define it in our
construction, consists of:

• A set S of N scanners, which could be either access points, Wi-Fi
sniffers, or any other device able to gather Wi-Fi messages. We make the
assumption that scanners have nonoverlapping ranges and they run the
protocol as expected.

• A set E of K epochs during which the system runs; the duration of the
epochs is established according to the specificity of the environment. We
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assume that each epoch lasts τ time units. T = K · τ is the total time
span during which we perform crowd-monitoring activities.

• A set IDS of M people being detected throughout our system during
T ; each person is represented by a unique 48-bit identifier, be it a MAC
address or other pseudonym.

We consider a detection as a triplet (id, s, e), id ∈ IDS, s ∈ S, e ∈ E ,
representing a person uniquely identified by id, sensed by scanner s during
epoch e. Let D(s, e) ⊂ IDS be the set of identifiers detected at scanner s ∈ S
during epoch e ∈ E . In our system we assume that, at the end of each epoch,
the detections collected by the scanners undergo an anonymization process P :

Definition 1. Let 2IDS denote the powerset of the set IDS. We define an
anonymization process P as an algorithm P : 2IDS × IDS −→ PIDS that
takes a set of identifiers A ∈ 2IDS and an identifier id ∈ A as input and outputs
an anonymized identifier pid ∈ PIDS, where PIDS denotes the set of all
possible identifiers that are anonymized with respect to P , including the special
symbol ⊥ (which captures the “removal” of identifiers for anonymization).

By modelling P to take as input both an identifier id as well as an identifier
set A in which id resides, we enable P to anonymize id depending on its
“environment” A. To ease readability, for id ∈ A ∈ 2IDS we write P (A, id)
simply as PA(id) or even as P (id) if there is no ambiguity about the underlying
set A. For any B ⊆ A, we interpret P (A,B) as

⋃
b∈B PA(b). We note that

for a set A ∈ 2IDS , PA(A) defines a multiset for which m(pid) = |{j ∈ A |
PA(j) = pid}| denotes the multiplicity of pid ∈ PA(A) \ {⊥}1. The multiplicity
m(⊥) of ⊥ in P (A) is always set to 1 (as removed identifiers are assumed to
be nonreconstructable).

Notation. For a detection set D(s, e) ⊆ IDS and anonymization process P ,
we denote the multiset PD(s,e)(D(s, e)) as PD(s, e).

A simple example of such an anonymization process P is the truncation
operation trunc(id, nb) which removes all but the last nb bits from the bin-
ary number id, i.e. trunc(id, nb) = id mod 2nb, for all id ∈ IDS. In this
example, IDS ⊆ {0, 1}48 while PIDS = {0, 1}nb. We will see more examples
of anonymization processes P later in the chapter.

After undergoing the process P , detections are stored as multisets in a
database. The purpose of this crowd-monitoring database (CMD) is to provide

1We write mA(pid) instead of m(pid) when the context is ambiguous.
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meaningful answers to crowd-monitoring queries. Those queries are modelled
again as multisets.

Definition 2. For scanners from S and epochs from E we define a crowd-
monitoring query as a multiset PD(s, e) and any AND-combinations of such
multisets. In particular, a simple query is a single multiset PD(s, e) for
some s ∈ S and e ∈ E . A composite query CD is an AND-combination of
multisets over a collection D = {PD(s, e)} and is defined as the multiset

{pidm|pid ∈
⋃
d∈D

d;m = min
d

{md(pid)}}.

Composite queries, as they are defined above, cover a broad spectrum
of situations; many of these situations are not relevant for crowd analytics,
while some are even impossible (such as detecting the same device at different
locations at the same time). As we mentioned, we are interested in composite
queries regarding crowd flows. Envisioning crowd flows, we expect to encounter
people detected as moving together in the form of a crowd between different
scanners over time. Under ideal circumstances, a crowd identified as being
together at a certain point should be also detected in its entirety as it travels.
However, in reality there are people leaving as well as joining a crowd flow, thus
creating variations of ideal crowd flows. Ideal crowd flows and their variations
form the focus of our investigations.

Definition 3. An ideal crowd flow (of size n) is a collection of detection sets
D = {D(s1, e1), . . . , D(sn, en)} where ei < ej for i < j, such that

⋂
D(sj , ej) ∈

D. We call this situation “ideal” because in one of its detection sets we capture
a crowd which is also fully encountered across all the other detection sets. Such
an ideal crowd flow is depicted in Fig. 3.1.

... ...

D(s1,e1) D(s2,e2) D(s3,e3)
Figure 3.1: Example of ideal crowd flow of size 3.
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Definition 4. Let CF denote an ideal crowd flow of size n. Let Λ =
{λ1, λ2, . . . , λn−1} be a set of percentages, where λi represents the percentage
of devices that have left CF during ei (i.e. these devices were detected during
ei, but no longer during ei+1). Likewise, let Γ = {γ1, γ2, . . . , γn−1} be a set
of percentages, where γi represents the percentage of devices that joined CF
during ei, meaning that these devices were detected during ei, but not during
ei−1. We define such a flow as a (Λ,Γ)-crowd flow . We display an example
in Fig. 3.2.

......

D(s1,e1) D(s2,e2) D(s3,e3)

λ1 λ2

γ1 γ2

Figure 3.2: Example of (Λ,Γ)-crowd flow of size 3.

3.2 k-Anonymous Crowd Flow Analytics

3.2.1 Metrics

We have shown in the previous section how CMD is built and what kind of
crowd-monitoring queries are to be performed onto it. Now we focus on how to
assess the effectiveness of a given anonymization process P in protecting the
anonymity of individuals, as well as to measure its impact on the quality of
outcomes expected from the system.

In terms of anonymity, we adapt the widely used notion of k-anonymity [66]
to our setting of detection sets and introduce the notion detection k-anonymity.
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Definition 5. We call an anonymization process P detection k-anonymous
if ∀A ⊆ IDS, id ∈ A : m(PA(id)) ≥ k or PA(id) = ⊥.

An anonymized identifier pid should correspond to at least k identifiers
from the original set. Note that for sets smaller than k, the only option is to
transform each identifier to ⊥, since there are not enough identifiers in the
original set to proceed differently.

Applying such a process on all the detection sets at collection points
generates, by construction, multisets that can yield answers only to detection
k-anonymous simple queries. We will show that this is sufficient in order to
protect the anonymity of individuals under detection k-anonymity guarantees
for any crowd-monitoring query, be it simple or composite, as it also exclusively
leads to detection k-anonymous composite queries.

Definition 6. A (simple or composite) query CD is said to be detection
k-anonymous if ∀pid ∈ CD : m(pid) ≥ k.

Theorem 7. Consider a collection of detection k-anonymous simple queries
D = {PD(s, e)} over a set of scanners S and epochs E . The composite
query CD obtained by composition over these simple queries is also detection
k-anonymous.

Proof. Consider an identifier pid ∈ CD. By definition of a composite query, we
know that mCD(pid) = min{mPD(pid)} for any PD ∈ D for which pid ∈ PD.
As each PD ∈ D is detection k-anonymous, we have that mPD(pid) ≥ k, and
thus also mCD(pid) ≥ k.

Anticipating further discussions on re-identification, apart from detec-
tion k-anonymity, an anonymization process is under scrutiny regarding its
l-surjectiveness, as defined below.

Definition 8. We call an anonymization process P l-surjective if ∀id ∈ IDS :
m(PIDS(id)) ≥ l.

When P is applied on the entire IDS, the resulting multiplicities represent
the actual number of physical devices behind each anonymized identifier in
the dataset. Therefore, in other words, an l-surjective anonymization process
ensures that any resulting anonymized identifier is shared by at least l real
devices in CMD, no matter the query. Imagine a trivial process which simply
takes a query and makes each identifier in it occur k times. Despite detection
k-anonymity being respected, an attacker can immediately trace back to indi-
viduals with a probability of 1. To avoid such a situation, l-surjectivity acts
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as a fallback solution, because the attacker can only guess correctly with a
probability of 1/l. Hence, it is highly important to choose the parameters of
the crowd-monitoring system such that they lead to a satisfactory value of l,
i.e. l ≫ k.

Besides measuring the anonymity achieved by individuals, we are interested
in the impact on the quality of outcomes expected from the system. Hence,
we need to introduce an accuracy metric to express how far the answers to
crowd-monitoring queries are from their original values after applying the
anonymization process.

Definition 9. Let CD be a simple or composite crowd-monitoring query.
Then, with CD∗ = CD ∪ {⊥}, let IDS(CD∗) denote the identifiers in IDS
detected by the scanners, as they were before applying the anonymization
process P . We define the query accuracy as follows:

Acc(CD) = 1− Abs(|CD| − |IDS(CD∗)|)
|IDS(CD∗)|

Abs denotes the absolute value. Special situation: if there was no identifier
detected, respectively |IDS(CD∗)| = 0, then Acc(CD) = 1.

Anonymization could remove identifiers by transforming them to ⊥, while
manipulating the remaining ones together with their occurrences. Recalling
this, what Definition 9 actually captures is the relation between the number
of anonymized identifiers obtained as answer to the crowd-monitoring query
and the number of original, nonanonymized identifiers, as they were before
applying any anonymization process.

3.2.2 Mechanisms

We have as main goals achieving high accuracy for the kind of crowd-monitoring
scenarios that we are interested in, as well as preserving the anonymity of all
the individuals under detection k-anonymity guarantees. Let us then proceed
on a quest addressing, as layers, different mechanisms needed for fulfilling these
requirements.

In our system, we perform anonymization at scanner level on an epoch basis.
We are willing to manipulate the detection sets in such a way that they deem
detection k-anonymous simple queries. This is equivalent to saying that after
applying anonymization, for each id from an input set D(s, e), its associated
pid should occur at least k times in an output multiset PD(s, e). Following a
layered approach, we chain several mechanisms, each of them representing an
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anonymization process by itself but inflicting changes only to the pid’s that
have both not yet been manipulated to occur at least k times, but also not
ending up to ⊥.

Pseudonymization, a de-facto standard found both in literature and industry,
represents a flavour of an anonymization process P , as it adheres to Definition 1.
However, it is a weak mechanism since it simply does a one-to-one mapping
of identifiers, leaving no way for k-anonymity aspirations. Nevertheless, it is
important to apply it as a first step because it strips the identifiers from any
connection with their original meaning.

Applied as a second layer on top of pseudonymization, the previously
introduced truncation operation trunc(id, nb) has the potential to achieve
better results in terms of anonymization. It can lead to a many-to-one mapping
of identifiers if the number of bits to truncate is well chosen, in accordance
with the size of the detection sets. While, regardless of the number of bits
being truncated, the accuracy of simple queries cannot be affected (resulting
multisets have the same sizes as the original sets), the situation is different for
crowd flows as we discovered through experiments. To illustrate, we display in
Fig. 3.3 the results of an example experiment concerning a ({30}, {50})-crowd
flow (i.e. 30% leavers, 50% joiners) containing 1000 identifiers and a desired
anonymity of k=2. On the y-axis we show both the accuracy and the inherent
k-anonymity achieved when ranging nb as displayed on the x-axis. By inherent
k-anonymity we mean the fraction of people in a crowd flow that have their
corresponding truncated identifier occurring at least k times after applying
the truncation alone. When the parameters are chosen in such a way that
the crowd-monitoring query gets close to being detection k-anonymous, the
accuracy is the lowest. The accuracy gets higher when the inherent k-anonymity
decreases and, as a consequence, the query gets farther from being detection
k-anonymous. The inflection points of the curves can slide left- or rightwards
when Λ, Γ, k or when the crowd size are changed, but the pattern remains the
same. Besides that, the truncation operation, as an anonymization process,
cannot be even by definition detection k-anonymous because it does not work
for settings in which A ⊆ IDS, |A| < k.

Building on top of the detection k-anonymity inherently obtained through
truncation, to preserve the high accuracy of queries and, at the same time,
resolve the remaining nonanonymized individuals, we present, as a third layer,
a correction mechanism. A simple method would be to drop the truncated
identifiers corresponding to nonanonymized individuals, but this would dramat-
ically lower the accuracies. The same holds for another method at hand, which
is inserting copies until each truncated identifier reaches at least k multiplicity.
We hypothesize that using a smart combination of consistently adding copies
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Figure 3.3: Detection k-anonymity versus accuracy when performing truncation
on a ({30}, {50})-crowd flow with 1.000 identifiers, k=2, nb ranges from 1 to
20.

or removing identifiers has a minimum impact on the accuracy.

Definition 10. Let us suppose that we apply a truncation operation keep-
ing nb bits and let CIDS(nb, k) ⊂ PIDS be a set of identifiers such that
|CIDS(nb, k)| = 2nb/k. For a resulting simple crowd-monitoring scenario
PD we define a correction mechanism as a transformation T : PIDS −→
PIDS, T (PD) = PD∗, such that ∀pid ∈ PD,

mPD∗(pid) =


mPD(pid), if mPD(pid) ≥ k

k, if mPD(pid) < k AND pid ∈ CIDS(nb, k)

0, if mPD(pid) < k AND pid /∈ CIDS(nb, k)

The correction mechanism, as we can see, affects only part of the identifiers:
the nonanonymized ones. If we assume a uniform distribution of identifiers
at query level, the mathematical expectation (when given enough queries;
cf. law of large numbers) is that the inserted identifiers will perfectly balance
the removed ones. At the same time, the mathematical expectation is that
when composing simple queries into ideal crowd flows, the count of identifiers
originally present in the intersection and removed by the mechanism to be
equal to the count of the ones present in the intersection after being inserted
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for detection k-anonymity purposes, thus not affecting the accuracy at all. In
reality, though, there will be some limited changes in the accuracy, which we
measure through experiments as discussed in Section 3.3. There are two reasons
why accuracy is affected. First, although we can ensure uniform distribution
of identifiers globally by, for example, using a uniformly distributed hash
function as pseudonymization mechanism, there is no way we can guarantee
such uniformity at query level. Second, in reality we encounter (Λ,Γ)-crowd
flows rather than ideal crowd flows.

A detailed description of the actual implementation of our entire detec-
tion k-anonymous anonymization process is presented in Algorithm 1. The
algorithm works with any pseudonymization mechanism of choice, be it hash-
ing, tokenization or other method. As a correction mechanism, we use a
best-effort adaptation of Definition 10, which, under the assumption of simple
query-level uniformly distributed identifiers, is identical with the original one,
but in practice, when the assumption does not hold, it takes care that the
accuracy of simple queries is not severely affected. Essentially, instead of fixing
CIDS, for example, to a uniform random sample of size (1/k)-th of the original
pseudonyms space, we systematically look at the IDs that violate detection
k-anonymity, order them, and keep only the first (1/k)-th part.

3.3 Evaluation

The anonymization process that we have introduced as a composition of three
different mechanisms is detection k-anonymous, protecting the anonymity of
individuals for any crowd-monitoring query. In this section we analyze the
impact of applying this process on the accuracy of the (Λ,Γ)-crowd flows.

3.3.1 Simulated environment

To get a clear understanding of the behavior of our anonymization process,
in our evaluation we generate detections to emulate the scenarios that we are
interested in. By doing this we can freely test our design in numerous settings
and we can focus on the process itself as a theoretical construction. There are
a number of parameters that shape the experiments, in particular those related
to physical settings (size of the crowd, number of epochs, percentages of leavers
- Λ, percentages of joiners - Γ) and those related to the anonymization process
(values of k, truncation nb parameter).

For the simplicity of the exposition and easiness of interpretation, we start
by looking at Λ and Γ of length 1, representing crowd flows traveling from one
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Input: DSE[ ] //Detections made by a scanner during an epoch;
Input: nb //Number of bits to keep;
Input: k //Desired value for k;
Output: PDSE[ ] //Anonymized detections;

TIDS := [ ];

foreach DSE as currentId do
/* Compute the pseudonym of each identifier */
pseudoId := computePseudonym(currentId);

/* Apply the truncation operation */
truncId := trunc(pseudoId, nb);

if containsKey(TIDS, truncId) then
count := getValue(TIDS, truncId);
updateValue(TIDS, truncId, count+1);

else
addKeyValue(TIDS, truncId, 1);

end

end

/* Apply correction to reach detection k-anonymity */

PDSE := [ ];
breakingPids := [ ]; //pids disobeying detection k-anonymity

foreach TIDS as (pid, count) do
if count ≥ k then

addCountCopies(PDSE, pid);
else

totalBreaking += count;
add(breakingPids, pid);

end

end

sortAscending(breakingPids);
breakingToKeep := floor(totalBreaking/k);
for i := 0 to breakingToKeep do

addKCopies(PDSE, breakingPids[i]);
end

return PDSE ;

Algorithm 1: Our anonymization process.

scanner to another between two epochs. We assume to initially have a crowd
of 1000 people; part of it travels to the next scanner, part of it leaves the flow,
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while new people join the flow on the way. The number of bits to keep nb
depends on k and on the expected sizes of the crowd. For example, in case of a
crowd of 1000 uniformly distributed identifiers, as previously shown in Fig. 3.3,
7 bits ensure almost full inherent 2-anonymity but deem low accuracies; 11 bits
still ensure some degree of inherent anonymity even for k equals 3 or 4, but with
much higher accuracies. Thus, we fix nb to 11. We do not fix k though, since
an acceptable value can be only decided when building the crowd-monitoring
system, as part of the design process; instead we run experiments for different
values. We intend to see the accuracy when the percentages of joiners and
leavers vary. Initially, we wanted to show it as a single figure, with both
joiners and leavers fluctuating, but instead, for a much easier interpretation,
we decided to split it in two. Therefore, we first show what happens when the
percentage of leavers varies and the percentage of joiners remains constant,
then we look at the case in which the leavers are fixed and the joiners fluctuate.
Afterwards, we also clarify what happens when faced with different percentages
of joiners in the first and leavers in second case.
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Figure 3.4: Crowd flows accuracy, γ=20, λ ranges from 0 to 100.

In the first experiment we assume that the flow starts with a crowd of
1000 people and, before reaching a second scanner, a fixed number of 200 new
people join the flow. In Fig. 3.4 we display the accuracy of the corresponding
composite query having our detection k-anonymous process in action when the
percentage of people leaving the flow ranges from 0 to 100%. For each pair



3.3. EVALUATION 25

(Λ,Γ) we perform 100 simulation runs, for each run generating a different set
of uniformly distributed identifiers, and we display the mean accuracy of those
runs. Intuitively, the accuracy of queries decreases when the fraction of leavers
increases. It slowly decreases as long as there are enough people remaining in
the crowd flow; it abruptly decreases when there are more people joining the
flow than remaining in it, but at that point we consider that we are not looking
at a realistic crowd flow any more since we are already dealing with different
crowds mixing together. For the configurations in which the percentage of
leavers is lower than 70% the system achieves accuracies higher than 0.8 for
all the tested values of k. Note, however, that for higher desired values of k
the truncation operation should decrease the number of bits to be kept. The
reason for this is to avoid ending up with each truncated identifier occurring
k times only because, at that point, a privacy attacker can try guessing with
a 1/l probability (as l-surjectiveness indicates) who is behind an anonymized
identifier.
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Figure 3.5: Standard deviations of crowd flows accuracy, γ=20, λ ranges from
0 to 100.

For the same settings as above, we plot, for each configuration, the standard
deviations within the 100 simulated runs. For clarity reasons, we choose to
show this graph separately for one specific value of k; the graph looks similar
for other values of k as well. 68% of the accuracy values are within the dotted
surface while the striped surface covers 95% of them. Thus, as we can see, they
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are close together, the standard deviation ranging between 0.003 (0% leavers)
and 0.052 (90% leavers).
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Figure 3.6: Crowd flows accuracy, λ=20, γ ranges from 0 to 600.

A second experiment concerns situations in which the percentage of people
leaving the flow remains constant, while the number of people joining the flow
increases. Again we start with a crowd of 1000 people, a fixed percentage of
20% of them leave the crowd before reaching a second scanner and between 0
and 600% new people join; we perform 100 runs for each (Λ,Γ) pair, for each
run generating a different set of uniformly distributed identifiers, exactly as we
did in the first experiment, and we display the mean accuracy of those runs.
The results are displayed in Fig. 3.6. We interpret them as follows: the accuracy
stays above 0.9 as long as the remaining crowd is larger than the number of
new people joining the flow and it can only go as low as 0.8 (note the y-axis)
when there are 6 times more people joining the crowd than they were originally
in it (in our case, 6000 new people joining). This lower bound has a theoretical
explanation, being dictated by the value of Λ. In a worst-case scenario, the
number of actual leavers may go completely undetected. This can happen when
among the increasing number of joiners there are, after anonymization, enough
identifiers to match all of the 200 leaving persons. Calculated according to the
accuracy formula, the theoretical lower bound in this case is 0.75. Lastly, it is
worth mentioning that fixing the percentage of leavers to a different value will
generate a similarly-shaped graph, but with a different slope; the same holds
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for the first experiment when fixing, this time, the percentage of joiners to a
different value.

Now that we understand how our detection k-anonymous process influences
the accuracies of crowd-monitoring queries when applied to simple (Λ,Γ)-crowd
flows, let us move forward and investigate realistic scenarios from a well-known
real-life deployment.

3.3.2 Reproducing real-life deployment settings

To get insights on how people use public underground transport and to explore
potential improvements, in 2016 Transport for London conducted a pilot Wi-
Fi data collection experiment across 54 London Underground stations [2],
publishing their findings in a detailed review [3]. Salted hashing of MAC
addresses was used as a privacy-preservation mechanism, a typical example
of pseudonymization bearing all the pitfalls mentioned in the introduction.
Starting with July 2019, data collection is performed across the whole London
Underground network, using tokenization (i.e. the assignment of a unique
random value to each MAC address) instead of hashing. Considering that
tokenization does not solve the previously presented issues of pseudonymization,
we investigate what impact our anonymization process has on their results,
arguing that our solution can be successfully applied in such settings, evolving
from pseudonymization to anonymization.

The experimental Wi-Fi crowd-monitoring environment, in this case, con-
sists of a set S of 1070 scanners distributed across the 54 stations, a set E of
epochs covering the total timespan T of the experiment (from 21 November to
19 December 2016) and a set IDS of 5.6 million devices detected by any of the
1070 scanners during the experiment. Choosing, for example, the epoch length
τ as 1 minute would mean that the total number of epochs in this experiment
is 41760. Then, fixing the number nb of bits to be kept to 11 and running 100
experiments concerning 5.6 million uniformly distributed identifiers, we could
see that, on average, at least l identifiers map to each anonymized identifier,
with l = 2559. The main concern of the study, besides looking at statistical
values and measurements, was to visualize the real flows of people inside the Un-
derground network, to see the specific routes that are chosen between a source
and a destination station, to measure train-level congestion and crowdedness.
This is equivalent with having a look at the devices detected by a number of
scanners in a sequence of epochs representing a journey, successfully mapping
to the crowd flows introduced in this chapter.

As building blocks, we need to correctly identify scanner-epoch combinations
in order to be able to spot the devices carried by persons taking a specific train,
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as well as the devices carried by persons who get off a train. By doing this,
we are able to model the whole range of situations, i.e. the start of a journey,
intermediate connections, and the end of a journey. Assuming that the train
schedules are known, the solution for identifying the size of the crowd making
a journey on a specific route should take into account the detections made in
the following settings:

• Scanner ss on the platform of the origin station, epoch es before a train
arrives

• Scanners on the platforms of the connecting stations, epochs before the
intermediate trains arrive

• Scanner sd on the platform of the destination station, epoch ed after
the train of that journey has completely departed from the destination
station

Some could argue that the assumption that the devices are indeed detected
within the specified epochs is unrealistic due to heterogeneous crowd dynamics
or sensing technology limitations. That does not affect our argumentation
though since it is not related to our anonymization process; this has to do
with the baseline functioning of the crowd-monitoring system itself, which is a
distinct problem.

The London Underground Network has some particularities making us
claim that most of the journeys can be uniquely modelled through two-epoch
crowd flows, regardless of the source, destination or number of connecting
stations. Looking at, for example, all the 17 routes between King’s Cross St.
Pancras and Waterloo, as they are presented in the published review [3], one
can immediately see that 12 of them have unique combinations of source and
destination platforms. This means that in this case, for each source platform s
and destination platform d, it is enough to simply look at the detections made
by scanners ss and sd during the epochs matching the beginning and the end of
the analyzed journey. Detections made at intermediary stations are not needed
for shaping the crowd flow since the routes are already unique by source and
destination. The remaining five routes have the same combinations of source
and destination platforms, but contain different connecting stations. Even if it
seems rare, we could encounter the following situation: some people begin a
journey on the same train, they then take different paths at some point, and
then they end up, again, on the same train, arriving together at the destination.
To model these alternative paths, three-epoch crowd flows are needed. Please
note, however, that if, according to the circulation schedule, the alternative
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paths cannot lead to boarding on the same final train, a two-epoch crowd flow
is still sufficient for modelling even these granular routes.

The accuracy of the crowd-monitoring queries related to (Λ,Γ)-crowd flows
is highly influenced by the percentages of leavers and joiners. In the current
environment, the leavers are those detected during es but remaining on the
platform after the source train departs (we can assume that they are waiting
for another train), plus the ones taking the source train and going to a different
destination than the one that we are looking at. The joiners are the persons
detected on the platform after the destination train has left and were either
there before the train arrived (we can assume, again, that they are waiting for
another train) or came by train but from another source station than the one
that we are looking at. We already know from previous experiments that our
anonymization process performs well in terms of accuracy when the leavers and
joiners are not overwhelmingly high relative to the size of the crowd, indicating
popular routes as candidates for high accuracies. We can then immediately
see that crowd flows originating or ending on platforms which have a unique
line passing through them have a higher chance of achieving high accuracy.
Since there are no trains going somewhere else to be waited for, the leavers
and joiners would be at a minimum.
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Figure 3.7: London Underground route types.

With respect to the layout of the source and destination platforms, we
identify four categories of routes, which we also depict in Fig. 3.7:

1. Unique lines going through both source and destination platforms, e.g.,
King’s Cross St. Pancras (light blue) - Oxford Circus - Waterloo (brown)

2. One line going through the source platform and multiple lines through
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the destination platform, e.g., Waterloo (brown) - Baker Street - King’s
Cross St. Pancras (yellow/violet/pink)

3. Multiple lines going through the source platform and one line through the
destination platform, e.g., King’s Cross St. Pancras (yellow/violet/pink)
- Baker Street - Waterloo (brown)

4. Multiple lines going through both source and destination platforms,
e.g., King’s Cross St. Pancras (yellow/violet/pink) - Baker Street (yel-
low/violet/pink)

We perform example experiments regarding the four different categories of
routes, running 100 rounds and computing the mean accuracy for each. For
comparison reasons, we fix the following settings: people that enter and exit
a train (200), people following the analyzed route (100), people on the train
to destination coming from other directions (200-100=100), total number of
people on a platform having 3 lines going through it (500). Recalling that
within (Λ,Γ)-crowd flows the values of λ and γ represent percentages, the
routes can be mapped to crowd flows like this:

1. ({50},{50})-crowd flow

2. ({50},{200})-crowd flow

3. ({80},{20})-crowd flow

4. ({80},{80})-crowd flow

Table 3.1: London Underground routes accuracies.

Accuracy Accuracy Accuracy
Route type (k=2) (k=3) (k=4)

(1) 0.9502 0.94 0.9195
(2) 0.8742 0.8589 0.8493
(3) 0.8651 0.8443 0.8378
(4) 0.6194 0.5788 0.5774

The results of the experiments can be seen in Table 3.1. These results
would be achieved using the already existing sensing infrastructure, without
any modifications, as it is currently deployed in the London Underground
Network. The impact that our anonymization process has on the accuracy of
crowd monitoring queries concerning the first three types of routes is low. For
the fourth type of route, we cannot accurately capture the crowd flow by using
the existing sensing infrastructure alone. The reason is that we are trying to
identify a relatively small crowd in relation to an overwhelming number of
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leavers and joiners. A solution at hand for accurately capturing this situation
would be augmenting the sensing infrastructure with scanners placed directly
on the trains. Otherwise, measurements shall be done only for situations where
either the source or the destination allows us to do accurate counting.

3.4 Related Work on Anonymity

Performing crowd-monitoring by leveraging the communication interfaces of
the widely-available modern smartphones is currently done at large scale.
Numerous ways of doing it are already out there, having different approaches
on individuals’ privacy or anonymization issues. Having already presented
in Chapter 2 related work regarding pedestrian tracking, flow identification
and privacy-preservation approaches, let us now focus on anonymity matters,
k-anonymity and state of the art developments in this field influencing the
work presented in this chapter.

3.4.1 Anonymity

Anonymity, as a means of achieving privacy, is defined in [79] as noncoordinatab-
ility of traits such that a person is nonidentifiable. Privacy regulations regarding
data processing carefully consider this aspect. For example, GDPR recital 26
[38] states that if personal data is rendered anonymous in such a manner that
the data subject is no longer identifiable, then data protection principles do not
apply any more, thus indicating anonymization as a very powerful mechanism
for achieving privacy. Along with this, it explicitly mentions pseudonymization
as a counterexample. Our anonymization process is tailored in such a way that
every individual present in CMD is proven to be protected under detection
k-anonymity guarantees, no matter what crowd-monitoring query is performed.

First introduced in [66] by Samarati and Sweeney as a privacy-preserving
policy for data releasing and then extended in [75], k-anonymity is defined as the
kind of protection achieved when the information about a person contained in a
release is indistinguishable from k-1 other persons. Opportunely, k-anonymity
is indicated as an acceptable anonymization technique by the European Data
Protection Board [19], making it a strong starting point when designing a
mechanism to protect information about individuals under GDPR. In our case,
the information to protect would be the mere presence of a person near a
scanner during an epoch or in a crowd flow. This presence is indicated by
the person having a unique identifier which is displayed among the results
of a crowd-monitoring query. Hence, pursuing detection k-anonymity comes
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naturally. However, to the best of our knowledge, there is no investigation
performed regarding this particular setting.

Using k-anonymity alone is prone to several attacks, such as homogeneity
attack and background knowledge attack, as suggested by Machanavajjhala
et al. [52]. To avoid these, the authors propose another technique, l-diversity,
to ensure that for every equivalence class of size greater or equal to k there
are at least l well-represented values for the sensitive attribute. Considering
the scanner and the epoch as nonsensitive attributes and the identifier as a
sensitive attribute, we can clearly see that these attacks are not possible in our
setting and l-diversity suddenly becomes a nonproblem. The reason is that
detection k-anonymity is achieved by manipulating the original identifiers into
anonymized identifiers occurring multiple times, so even if the anonymized
identifiers in a query are all identical, in fact they correspond to distinct
values. We do protect against another kind of diversity attack though, through
l-surjectiveness, as previously described in this chapter.

Anonymization techniques based on k-anonymity are present in numerous
domains; relevant to our work are approaches regarding location-based services
(LBS), moving-objects databases (MOD), as well as trajectory databases. All
have in common the spatio-temporal dimension of the data being protected. In
[15], Bettini et al. look into k-anonymity for location-based services, where a
geo-localized history of user requests to a service provider can reveal sensitive
information about individuals. Indirectly, such history is, in fact, a trajectory,
and can be related to persons being sensed in a crowd-monitoring environment.
However, their solution, which is based on historical k-anonymity, does not
work for our settings since it only ensures that there are at least k people
launching requests across the same spatio-temporal history, thus not protecting
an individual’s presence per se. In [8], Abul et al. propose (k,δ)-anonymity
for trajectories, such that there are at least k trajectories found within a
cylinder of uncertainty having the radius δ. Trajectory translations should be
performed until such conditions are met. This concept is very closely related
to ours and, if we consider the scanners as central points and their ranges
as δ, translations are not even required because our system does not store
localization information other than the position of scanners. In other words,
any trajectory would already be within such a cylinder. Even so, we do not
have trajectories in our system, but detections that deem trajectories only after
they have already reached CMD. This is why this solution cannot be applied
on the fly, at the collection point, as we demand. For the same reasons, similar
solutions presented in [57], [76] or [24] do not suit our problem.

Finally, there are several studies about ensuring k-anonymity on the fly
for data streams, such as [84], [22] or [50]. In essence, these methods ensure
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that streaming data is made k-anonymous before publishing, just like we do.
In contrast to our work, all the existing works consider a setting in which a
single trusted server collects and stores the raw (nonanonymized) stream of
data (typically from one source) which it turns into a k-anonymous form before
final publishing; this works by taking the complete history of the data stream
into account for the anonymization procedure. Unfortunately, this approach
does not work in our setting where the anonymization must happen at each
data source in isolation (i.e. at each scanner in our case) before it reaches
the server and without access to the history of the complete data stream
that ultimately consists of the data from multiple sensors. This difference,
i.e. the anonymization of data at each sensor in isolation as opposed to the
anonymization at the central collection point, defines the major challenge that
we tackle in our work.

3.5 Conclusion

In this chapter, we addressed the problem of privacy-preservation through
anonymity in crowd-monitoring systems. Our aim was to ensure that the
privacy of each monitored individual is preserved while the system can still
offer meaningful insights regarding pedestrian dynamics. Having privacy-by-
design principles in mind, we designed a lightweight anonymization process to be
executed right on the crowd-monitoring sensors, before forwarding the data to
a central server. This process manipulates the detected identifiers of individuals
through a series of pseudonymization, truncation and correction operations.
After these operations are executed, every individual whose smartphone is being
monitored ends up being protected with anonymity guarantees, making our
solution aligned with GDPR specifications. In our construction, we introduce
detection k-anonymity as anonymity metric, ensuring that there is no crowd-
monitoring query in which there are anonymized identifiers occurring fewer
than k times each. Besides that, we introduce l-surjectiveness as a metric
indicating the number of real devices behind any anonymized identifier.

We evaluated our anonymization process on pedestrian crowd flows, first
in a purely simulated environment, then in an environment reproducing the
real-life deployment from the London Underground Network. Results show
that our anonymization process has a low impact on the accuracies of queries
related to crowd flows suffering small perturbations, i.e. relatively few people
leaving or joining the flow. In the realistic environment reproduction, the
accuracy of such queries stays above 0.8 for all the tested values of k, topping
at 0.9502 for k=2 in the case of a ({50},{50})-crowd flow. The impact is higher
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for crowd flows suffering big perturbations and having a relatively small size in
comparison with the number of leavers and joiners. However, this is a desirable
result, as we designed our system to also protect the anonymity of people in
small crowds, hence offering lower accuracy in those cases. Our experimental
results confirm this behavior.



Chapter 4

Bloom Filters & Homomorphic
Encryption

The aim of a crowd-monitoring system for pedestrian dynamics is to provide
insights on crowds in the form of statistical counts. In the process of building
such aggregated information, privacy-sensitive data of individuals has to be
used. Following data protection as a goal and data minimization as a way
to achieve it, we envision a system that offers statistical counts as the only
accessible information in the clear while protecting the privacy-sensitive data
of individuals at rest and during processing.

Searching for a method to facilitate oblivious crowd observance over time,
in [70] we investigated the use of Bloom filters (BFs), i.e. probabilistic data
structures supporting set operations, together with homomorphic encryption
(HE), i.e. a type of encryption that allows performing operations on encrypted
data. Preliminary experiments indicated that such a scheme can indeed be
suitable for our goal, allowing counting over encrypted representations of sets
or intersections of sets of devices without revealing what is being counted.

Having shown that by combining BFs with HE it is possible to provide
statistical counts while protecting the data of individuals, in this chapter we
address the problem of actually designing a crowd-monitoring system based on
the proposed principles, as well as what has to be done in order to make the
deployment of such a system feasible. The contributions of this chapter are
summarized as follows.

• We propose a crowd-monitoring system that can produce statistical counts
as a service for interested consumers while protecting the privacy-sensitive
data of sensed individuals. The system is secure against honest-but-
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curious adversaries and it allows counting crowds at one location, as well
as counting the crowd flow between locations.

• We carry out an implementation of the system using Raspberry Pi as
a typical sensing device and two different server configurations (i.e. a
laptop and a more powerful cloud server) as operators under encryption,
to assess the feasibility of our solution. We deploy the system, trialing
different setup parameters, and analyze its performance when faced with
a whole range of crowds.

• We perform a thorough evaluation using simulated data, to explore the
potential of our solution to estimate statistical counts, as well as using real-
world data from an open-air festival consisting of 26 million detections, to
see how the system performs when dealing with real detections generated
by actual pedestrian movements. Statistical counts regarding footfall
are estimated with an accuracy of at least 97.2% when analyzing the
most crowded area of the festival. 88.5% of the statistical counts on
crowd flows happening during the festival on a circulated street have an
accuracy of at least 90%, while 98.7% of the estimations are less than 3
devices away from the real counts.

This chapter is based on the work presented in [71]. The rest of the chapter is
organized as follows. Section 4.1 introduces the system model, including crowd-
monitoring formalities, involved actors and security requirements. Section
4.2 presents our construction instantiating the system model by combining
BFs with HE. In Section 4.3 we perform an evaluation of the system on
simulated data to get an understanding of how well statistical counts can be
estimated. Section 4.4 presents an implementation of the system, together with
a performance analysis. Section 4.5 evaluates our system on real-world data
from a mass event, followed by a discussion in Section 4.6. Finally, Section 4.7
concludes the chapter.

4.1 System Model

Crowd-monitoring systems are usually deployed to provide an understanding
of the pedestrian dynamics happening in crowded public spaces. Hence, the
world of such a system is represented by a public space where crowds of people
are expected. In this space, a technical infrastructure is usually installed to
collect data about the crowd. Based on that sensed data, useful information is
built in the form of crowd-monitoring insights. Considering that for building
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these insights data related to people is handled by multiple entities, the whole
process should be governed by some clearly stated rules to ensure that the
privacy of the sensed individuals is protected. We start by first recapping the
Wi-Fi crowd-monitoring environment. Then, we model the insights offered
by the system as statistical counts for pedestrian dynamics. Eventually, we
describe the actors involved in the process, together with requirements such
that the privacy-sensitive data of individuals is protected.

4.1.1 Crowd-Monitoring Environment

A Wi-Fi crowd-monitoring system consists of a set of Wi-Fi scanners S =
{s1, ..., sn} installed in a public space where crowds of people are expected.
Devices carried by people emit probe requests containing the MAC address
of the sender a ∈ A where A ⊂ {0, 1}48. Each occurrence of such a device
is associated with an epoch e ∈ E . We call the 3-tuple (a, s, e) a detection,
signifying that a device with MAC address a was detected by scanner s during
epoch e. We model a crowd as a set of detections Ds,e containing the devices
detected by a scanner s during an epoch e.

4.1.2 Statistical Counts for Pedestrian Dynamics

Detections made by Wi-Fi scanners can be used to derive numerous statistics
on crowds. In particular, for pedestrian dynamics we are looking at two main
situations in our work:

1. The crowd of people present in one place in a particular period of time,
known as footfall (Fig. 4.1a)

2. The crowd flow of people traveling from one place to another (Fig. 4.1b)

We formally define these situations in terms of counts below.

Definition 11. Let Ds,e be the set of detections made by a scanner s during
an epoch e within a crowd-monitoring system. We define the footfall in the
area covered by the range of scanner s during epoch e as the count obtained
by computing |Ds,e|.

Definition 12. For a collection of sets {Ds1,e1 , . . . ,Dsn,en} representing de-
tections made by scanners s1, . . . , sn during epochs e1, . . . , en within a crowd-
monitoring system, we define the crowd flow as the intersection

⋂n
i=1 Dsi,ei

over that collection. The size of the crowd flow following the corresponding
path is the count obtained by computing |

⋂n
i=1 Dsi,ei |.
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Figure 4.1: Situations encountered in pedestrian dynamics: (a) footfall and (b)
crowd flow.

A Wi-Fi crowd-monitoring system concerned with pedestrian dynamics
should use readings made by scanners to produce the necessary data such
that these two types of statistical counts can be computed. Note, though, the
differences between Definition 12 and Definitions 3 and 4 presented in Chapter 3.
Those two define the crowd flow in relation with the percentages of joiners and
leavers, while the current definition is independent of such parameters.

4.1.3 Service Model

Let us now model, from an architectural point of view, the actors taking part
in the process. We separate data gathering and processing from its usage and
propose two classes of entities (see Fig. 4.2).

Scanner s1

Scanner s2

Scanner sn

Consumer c1

Consumer c2

Consumer cm

Data

Data

DataQuery

Response

QueryResponse

QueryResponse

Server

Service ProviderConsumers

Figure 4.2: Service Model.

Service Provider (SP). This is the entity which owns the sensing infrastruc-
ture and provides the crowd-monitoring service. The service is provided in
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the form of responses to queries received from parties interested in pedestrian
dynamics insights. The responses should contain sufficient information to allow
the computation of statistical counts corresponding to the situations indicated
by the queries. Queries can be numerous and they can span across multiple
scanners and epochs, so we assume that a separate service, acting as a central
manager, assembles the data generated by scanners into responses. This service
can be implemented, e.g., by a single or multiple cloud-based servers. For
coherence, we are going to use the term server throughout the rest of the
chapter.

Consumers. These are public or private parties interested in understanding
pedestrian dynamics. They are external to the crowd-monitoring system,
launching queries whenever they want to discover insights. Also, they have to
process received responses in order to find out the desired statistical counts.

4.1.4 Security Requirements

Privacy-sensitive data related to individuals is handled throughout the crowd-
monitoring process. This includes unique identifiers, places and times of
detections. Improper handling can lead to infringing the privacy of individuals.
Therefore, we impose a number of security requirements that must be satisfied
while still being able to compute statistical counts.

Consumers. The only information we allow consumers to learn is that of
statistical counts as answers to queries they launch, namely the count of
all detections made in either footfall or crowd flow situations. Additionally,
consumers need to have a publicly verifiable identity (e.g., a public key certified
by a trusted certificate authority).

Scanners. We demand that scanners are tamper-proof, such that the system
can put trust in the outputs they produce. Nevertheless, even if their outputs
can be trusted, we do not allow scanners to be in possession of data other than
what they can generate themselves through sensing. We do allow them, though,
to be aware of the consumers enrolled in the system, as they might need to
generate specific data for each consumer. Still, scanners should be programmed
to accept only certified consumers. Finally, at the end of each epoch scanners
must discard all the detections made in that epoch, thus keeping data in clear
as short as possible.

Oblivious server. The server should not be able to assemble any meaningful
information from the data it handles, neither MAC addresses collected by
scanners nor statistical counts nor other intermediary information related to
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individuals. Fulfilling this requirement protects individuals from honest-but-
curious SPs, as well as in the case of an external attack on the server. Following
the same honest-but-curious model, despite the server trying to extract as
much information as possible from the data it handles, yet we trust it to run
the protocol correctly. So we allow it to know of involved consumers, scanners
and queries, as it needs to manage incoming queries as well as obliviously
assembling their responses.

Non-colluding entities. We do not allow the SP to collude with any of the
enrolled consumers. This means that the SP and consumers cannot cooperate
outside the protocol to derive information in addition to what they are allowed
to know according to the protocol. It also means that the SP cannot enrol itself
as a consumer (situation prevented, nevertheless, by a previous requirement as
consumers must have publicly verifiable identities).

4.2 Our Construction

As an instantiation of the previously introduced system model, we present our
construction supporting statistical counts for pedestrian dynamics as a service
while fulfilling the proposed security requirements.

Each epoch, scanners collect detections and write them in detection sets. In
the case of a footfall query, a scanner can simply calculate itself the cardinality
of such a detection set, delivering it as a response to the server which forwards
it to the intended consumer. Then, the scanner can immediately discard
the data used for the calculation, as demanded by our design choice. The
problem gets complicated when queries regarding crowd flows are launched.
The answer to a crowd flow query is represented by the cardinality of an
intersection of sets coming from multiple scanners and epochs. As detection
sets are discarded, by design, at the end of each epoch, we are faced with the
challenge of performing an intersection of sets without having the original sets
any longer. In consequence, to support this we should come up with structures
resembling sets and allowing intersections, but without knowing what is stored
in the structures themselves.

4.2.1 Bloom Filters

A Bloom filter (BF) [18] is a space-efficient probabilistic data structure typically
used for storing sets of elements and allowing set membership testing. It consists
of an array of m bits initially set to 0, along with k different hash functions.
Whenever a set element e has to be added in the BF, the k hash functions
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are computed on e, each result pointing to one of the m array positions; these
positions are set to 1. Correspondingly, to check whether an element is a
member of a set, one has to verify if all the positions indicated by the k hash
functions are set to 1. From this it immediately follows that by multiplying
the bits found on the same positions of BFs which were previously encoded
using the same hash functions, a new BF is obtained which approximately
corresponds to the intersection of the underlying sets.

False negatives cannot occur with BFs, but false positives can, since positions
corresponding to an element can be set to 1 by hashes of elements other that
the one being tested for. Nevertheless, the parameters of the BF can be tuned
in such a way that a desired probability of false positives p is achieved when
knowing that a set of n elements must be accommodated [21].

We consider to use BFs in our system to support the result computation
for footfall and crowd flow queries as the cardinality of the underlying sets.
According to Swamidass and Baldi [74], the cardinality c of a BF having t bits
set to 1 can be estimated as:

c = −m

k
ln(1− t

m
) (4.1)

Service provision could thus happen in the following way. Scanners encode
detections they make into BFs and transfer them, at the end of each epoch,
to the server. When the server receives a query from a consumer, it starts
assembling an answer by gathering the necessary data generated by scanners.
In case of a footfall query, it uses that single BF of interest, while for a crowd
flow query it generates a new BF by performing a bitwise multiplication of the
corresponding BFs. Afterwards it shuffles the positions to remove any meaning,
transforming the BF into a random array of 0’s and 1’s, and delivers the result
to the consumer. We can trust the server to do the shuffling as this is part
of the protocol and it is assumed to correctly follow it. The consumer, being
provided with the values of m and k, computes the desired statistical count by
applying eq. (4.1), as the number of 1’s is not affected by the shuffling.

Until now we have a system that can address both footfall and crowd
flow queries as specified by the service model. At the same time, security
requirements are met at scanner and consumer level. However, the solution
is not complete, the server not being yet compliant with our requirements.
The MAC address space is easily enumerable [16]. Because of this, an entity
(including the server) knowing the hash functions can do an exhaustive search
on a BF in limited time, revealing with high probability the MAC addresses
stored in it. Moreover, the server can apply itself eq. (4.1) and find out any
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statistical counts it desires, since it has access to BFs in the clear and it sees
how many 1’s are in each of them.

To prevent the server from doing the previously mentioned actions, we need
to combine BFs with an encryption scheme such that the server would handle
only encrypted data that it cannot decrypt. To satisfy our security requirements
while maintaining the functionality unchanged, such an encryption scheme
should have the following properties:

• Encrypting the same value on several occasions should produce different
ciphertexts. Otherwise, as BFs contain only 0’s and 1’s, an attacker could
learn, despite encryption, the positions containing identical values, thus
being able to infer how the original BFs looked like.

• It should allow multiplications under encryption, such that the decryption
of the result of a multiplication of ciphertexts equals the result of the
multiplication of the unencrypted values behind those ciphertexts.

• It should be a public-key encryption scheme such that everyone (especially
the scanners) can encrypt values but that only the consumer, who is the
only one having the corresponding secret key, can decrypt it.

4.2.2 Homomorphic Encryption

Homomorphic encryption (HE) [64] is a type of encryption that allows mathem-
atical operations to be performed directly on encrypted data without requiring
decryption. The results of such operations, encrypted as well, are the same as if
the operations were performed on the unencrypted data. HE includes different
classes of encryption schemes depending on how many types of operations
they allow and how many times they can be applied. Partially homomorphic
encryption (PHE) is a class of schemes that allow performing a single type of
operation under encryption, either addition or multiplication, for an unlimited
number of times. PHE sufficiently satisfies our requirements, having specified in
4.2.1 that we are looking for an encryption scheme that allows multiplications
under encryption (i.e. a single type of operation).

ElGamal [37] is such a PHE cryptosystem which allows multiplications
under encryption; we are going to use it in our construction. The algorithm is
asymmetric, using a public key for encryption and a private key for decryp-
tion. Furthermore, the algorithm is probabilistic, involving randomness in
the encryption process, so that encrypting the same value several times yields
different and indistinguishable ciphertexts.
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Combining BFs with HE closes the circle of our system model. The complete
service provision happens as follows. When a consumer enrolls in the system,
it generates a public-private key pair and it gives the public key to the SP,
which distributes it to its scanners. At the end of an epoch, scanners write
detections into a BF. For each enrolled consumer, they make a copy of that BF
and encrypt each position with the public key of that specific consumer.1 They
then send the resulting encrypted BFs (EBFs) to the server and discard the
original detections. When the server receives a query from a consumer, it acts
in the same way as before, just that this time it obliviously handles encrypted
data and, if necessary, it performs bitwise multiplications under encryption,
as depicted in Fig.4.3. To estimate the statistical count from a response, a
consumer iterates through it, decrypts the ciphertexts, sums up the 1’s to find
out t and applies eq. (4.1).

[0]pkc... [1]pkc [0]pkc [0]pkc [1]pkc [0]pkc [0]pkc [0]pkc [1]pkc ...
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Figure 4.3: Preparing response to a crowd flow query by performing multiplica-
tions under encryption and shuffling. Consumer decrypts response, then counts
the 1’s and estimates the statistical count using eq. (4.1).

1We note that 0’s are represented as random numbers as ElGamal can deal only with
positive integers.
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4.3 Accuracy Analysis

In this section we explore the potential of our solution to estimate statistical
counts for pedestrian dynamics. We generate detections emulating footfall
and crowd flow situations for a whole range of sizes. We feed these detections
as inputs to our system and perform an accuracy analysis of the responses,
i.e. comparing the statistical counts generated through our system with the
actual counts of the emulated situations. In doing this, we examine different
combinations of parameters for BFs, as this is the part in our solution that
influences the statistical counts. For the hashing part, we choose to use
MurmurHash3 [12] with different seeds, a fast hash function which despite its
non-cryptographic nature is suitable for our case where the positions written
in BFs are not available in the clear.

We expect to see differences between what is estimated and ground-truth
values because of two main reasons. First of all, the result of the estimation
formula is the number of elements having the highest likelihood of being members,
given the state of the BF; the actual number can be different depending on
the probabilistic properties of the underlying set. Secondly, false positives can
be encountered when working with BFs, which means that the k positions
corresponding to an element tested as present could have been set to 1 by the
hash values of other elements; this can also lead to differences in counts when
intersecting BFs for crowd flows.

The accuracy metric that we propose measures the closeness of the estimated
count c to the real count ct and is formally represented below. Please note that
we choose to interpret estimated counts that are more than twice as high as
the real counts as having accuracy 0 since they are more than 100% off from
the real counts.

Acc = max(1− |c− ct|
ct

, 0) (4.2)

BF parameters can be set in such a way that a desired false positive
probability p is obtained when having a set containing n elements. The length
m of the BF can be computed as −n ln p/(ln 2)2 and the optimal number of
hash functions k as − log2 p. In our crowd-monitoring setting, choosing values
for n and p implies accommodating a maximum number of devices n detected by
a scanner during an epoch while allowing a maximum false positive probability
p for the resulting BFs. In Table 4.1 we display the setup parameters that we
use throughout the rest of the chapter.
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Table 4.1: BF Parameters.

p ↓ n → 100 1000 10000 100000 k ↓
0.0001 m=1918 m=19171 m=191702 m=1917012 13
0.001 m=1438 m=14378 m=143776 m=1437759 10
0.01 m=959 m=9586 m=95851 m=958506 7
0.1 m=480 m=4793 m=47926 m=479253 3

4.3.1 Accuracy of Footfall Queries

In principle, a lower m would be desirable for performance reasons, as it would
mean less cryptographic operations to be performed. However, reaching a
lower m requires opting for a higher probability of false positives p, which may
have consequences on the accuracy of queries. To get a clear understanding
of the link between the choice of p and the accuracy of footfall queries, for
fixed values of n, we run experiments ranging p, as displayed in Table 4.1.
As identifiers, we generate random MAC addresses coming from a uniform
distribution, resembling, thus, real-world deployments, where a cryptographic
hash is usually applied on the real identifiers before being processed; we will
use the same way of generating addresses throughout the rest of this section.

We plot in Fig. 4.4, as worst case, the minimum mean accuracy measured
for each choice of n and p when handling between 0 and n devices, with a step
equal to 10% of n and doing 100 runs per step with different addresses each run.
Results show that indeed lower accuracy is to be expected for footfall queries
when choosing a higher p, a trend which is consistent across all the tested
values of n. However, the impact is not significant, as even for the highest
tested value of p, the accuracy does not get below 96.7%, 98.9%, 99.6% and,
respectively, 99.8% for the 4 different values of n. For example, a worst-case
accuracy of 98.9%, as when n is 1000 and p is 0.1, comes from estimating 784
instead of 800 devices.

By looking at the formula for estimating statistical counts (eq. (4.1)), when
BF parameters are fixed, we see that the estimation and hence the accuracy
of the concerned footfall query depend only on the number of bits t set to 1.
In our case, t is dictated by the number of sensed devices ct. Let us see, thus,
what accuracy we can expect from footfall queries when ranging ct. To see
the trend, we run an experiment in which we fix n to 1000 and p to 0.01 and
range ct, starting from 0, going to n and then even beyond, up until it leads
to a t getting close to m. We increase ct with a step of 100, we do 100 runs
with different addresses for each step and plot mean accuracies together with
standard deviations in Fig. 4.5.
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Figure 4.4: Worst-case accuracy for footfall queries when dealing with different
values of n and p.
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Figure 4.5: Accuracy of footfall queries when increasing the number of detected
devices until completely filling up the BF. Parameters: n=1000 and p=0.01.
The vertical dashed line marks n.

The accuracy of the statistical counts stays above 99.2% when ct ≤ n, as
also presented in Fig. 4.4, showing a standard deviation of 0.04% in that worst
case. For this experiment, the threshold for which ct leads to a full BF is
around 10000 devices. Regarding footfall only, the accuracy of the statistical
counts stays above 95.3% even when larger-than-designed-for crowds of up to
the mentioned threshold arrive, though with a higher standard deviation of
4.5%. We have run experiments with other values of n and p as well and we
confirm that the same trend, with accuracies in the range of 90%’s, is to be
seen. Please note, however, that in cases when the crowd is inflated beyond
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the designed maximum, the false positive probability inflates as well, which
deems the results as problematic for further counting crowd flows.

4.3.2 Accuracy of Crowd Flow Queries

A crowd flow is represented in data as a BF resulting from performing a bitwise
multiplication of other BFs. This result is an approximation of the intersection
of the underlying sets, as the probability of false positives leads to having false
matches in an intersection. We say that the BF resulting from the bitwise
multiplication of BFs which represent sets of detections is different from the
BF representing the intersection of those sets of detections. It tends to be
more different when more false matches occur. For this reason, in the same
manner, the statistical counts estimated by eq. (4.1) will also get farther from
the actual counts. This aspect was also noticed by Papapetrou et al. in [59].
They propose to improve the estimation by taking into account, besides the
1’s in the resulting BF, the 1’s in the BFs used in the bitwise multiplication.
For t1, t2 and t∧ as the number of bits set to 1 in two BFs to multiply and,
respectively, in the result, the estimation formula is:

c∧ =
ln(m− t∧×m−t1×t2

m−t1−t2+t∧
)− ln(m)

k × ln(1− 1
m )

(4.3)

We run a preliminary experiment in which we fix n to 1000 and p to 0.01. We
intersect two crowds of 500 people each and range the crowd flow size between
10 and 500 people. We plot the accuracy of statistical counts while using both
estimation equations to understand the dimension of the improvement. In
Fig. 4.6 we see that the improvement is sensible, the accuracy much faster
approaching 100% when using eq. (4.3) instead of eq. (4.1).

For applying eq. (4.3), a consumer would need to know, along the crowd
flow query response, the answers to the associated footfall queries in order to
determine t1 and t2. This is not in contradiction with our system model, as
consumers are allowed to launch such queries. Also, it does not imply any
additional computationally expensive operations. Hence, we use this alternative
in the rest of the evaluation for estimating statistical counts on crowd flows.

As we have previously mentioned, the probability of false positives p is an
important parameter when it comes to estimating statistical counts on crowd
flows. Inserting elements in a BF with higher p leads to a higher density of 1’s
than by inserting the same elements in another BF with lower p; consequently,
this leads to more false matches when using the former type for estimating
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Figure 4.6: Preliminary experiment with n=1000, p=0.01, crowd size 500 in
both locations, crowd flow size ranges between 10 and 500.

crowd flows. To assess how big of a problem this is, we propose the following
experiment. For a fixed n, resembling a worst-case scenario, we take two crowds
of size n (i.e. the maximum accommodated number of devices) and range the
size of the crowd flow happening between them from 1% to 100% of n. We
plot the mean accuracy (from 100 runs) of the estimated crowd flows when
choosing p to be 0.0001, 0.001, 0.01 and 0.1. We run the experiment four times,
for n equals 100, 1000, 10000 and 100000. We display the results for the first
two values of n in Fig. 4.7.
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Figure 4.7: Accuracy of crowd flow queries for n first fixed to 100 and then
to 1000, for different values of p, when ranging the crowd flow size between 0
and n. Plots display worst-case scenario, crowds at the ends of the crowd flow
being fixed to the maximum value (i.e. n).
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The accuracy of statistical counts on crowd flows shows logarithmic growth
for all the setups we have tested, from low when the crowd flow is small in
comparison with the intersected crowds to high for more steady crowd flows.
Also, as expected, higher p means constantly having lower accuracy, but not
significantly lower; e.g., for n equals 10000 and 100000, lines representing the
accuracy for different p-s almost entirely overlap, this being the reason for not
showing their graphs. This is important, as we recall that p inversely influences
the length m of BFs (see Table 4.1) and, thus, the performance of the system,
a phenomenon which we will study in detail in the upcoming section. Another
pattern we observe is that for setups where the maximum crowd size is higher,
the accuracy gets close to 1 quicker. To illustrate this better, we draw another
graph (Fig. 4.8) based on the same experiment, this time showing, for a fixed
value of p and all the four values of n, the minimum crowd flow size as a
percentage of n for which accuracies of at least 50%, 60%, 70%, 80% and 90%
are reached. To reach, for example, an accuracy of at least 90%, the crowd flow
size should be at least 29% of the initial crowds when n is 100, 10.8% when n
is 1000, 3.7% when n is 10000 and 1.3% when n is 100000. We remind, though,
that these are results for worst-case scenarios, when initial crowds are equal
to n; when initial crowds are smaller, accuracy thresholds are reached even
quicker.

As seen from Fig. 4.7, a low accuracy is to be expected for crowd flows that
are small in comparison with the intersected crowds, but a low accuracy does
not necessarily mean something bad for crowd-monitoring purposes, especially
when talking about small numbers. For example, having two crowds of 500
people with an actual crowd flow of 20 people between them and an estimated
count of 15 or 25 incurs an accuracy of 75%, which might seem low at first
sight. In reality, the estimation is only 5 devices away from the real count,
which can be very well considered an insignificant error given the size of the
initial crowds, i.e. being 100 times bigger. This leads us to looking into the
actual distances between the estimations and the real counts, to get better
insights for such situations where the accuracy does not tell too much. For
this, we run an experiment in which we fix p to 0.01, n to 1000, initial crowds
to n and range the size of the crowd flow between 0 and 100 with a step of 20.
We do 1000 runs per step, each time using different addresses for devices. We
show the results in Fig. 4.9. For the upper part of the graph, we compute the
mean estimated count µc, as well as the standard deviation σc. We plot the
difference between µc and the real count ct, along with σc, to see how far away
from the real counts, corresponding to 0 on the y axis, and in which direction
the estimations are. In the lower part of the graph we plot σc as a percentage
of µc, a measure commonly known as relative standard deviation.
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Figure 4.8: Fixing p to 0.01 and initial crowds as worst-case to maximum (i.e.
n), we display the crowd flow size as a percentage of n for which accuracies of
at least 50%, 60%, 70%, 80% and 90% are reached.

The maximum standard deviation is 14.32 when the real count is 40 devices,
a point beyond which the mean estimation stabilizes as almost identical to
the real count. It decreases to the right, the estimations getting closer to the
mean. It also decreases to the left in a counterintuitive manner, due to a
positive estimator bias inflicted by estimations which are negative, according
to the formula, but we set them to 0, as statistical counts cannot be negative.
The relative standard deviation quickly decreases, as expected from previous
experiments concerning accuracy, the estimations getting closer to the real
counts as the crowd flow size increases. Considering the case of the maximum
standard deviation, 68% of the estimations of a crowd flow of 40 devices
traveling between two crowds of 1000 devices fall between 26.63 and 55.27,
with a mean of 40.95 devices. The minimum encountered standard deviation is
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Figure 4.9: We fix p to 0.01, n to 1000, initial crowds as worst-case to maximum
(i.e. 1000) and range crowd flow size between 0 and 1000. In the upper part we
display mean estimated counts as devices away from real counts, together with
standard deviations of the estimated counts. Below we plot standard deviations
as percentages of the mean estimated counts. The vertical dashed line marks
the minimum crowd flow size for which estimations always turn positive.

6.78 for a real count of 720 devices; for this case, 68% of the estimations fall
between 714.21 and 727.77, with a mean of 720.99.

4.4 Implementation & Performance Analysis

To understand the cost dimensions our solution incurs at different levels of
the system and bearing in mind that adding homomorphic encryption may
generate considerable overhead, in this section we carry out an actual end-to-
end implementation. We describe the necessary algorithms and we deploy them
at scanner, server and consumer. Based on this implementation, we conduct a
performance analysis addressing several relevant and practical concerns. We
use again MurmurHash3 with different seeds as a hash function for BFs. We
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instantiate ElGamal using the NIST P-256 elliptic curve [9] and we use the
SCAPI2 library [35] for homomorphic encryption support.

4.4.1 Scanner-Side

Scanners execute Algorithm 2, which takes each detection made in an epoch,
applies the k hash functions on it, sets the corresponding BF positions to 1
and then it applies the ElGamal encryption. They run this algorithm for each
consumer enrolled in the system.

Input: pkc //Public key of consumer;
Input: DSE[ ] //Detections;
Input: m //BF length;
Input: k //Number of hash functions;
Input: H[k] //The hash functions;
Output: EBF[ ] //Encrypted BF;
BF := [0];

/* Set BF positions corresponding to detections */
foreach DSE as currentMAC do

for i := 0 to k − 1 do
pos := H[i](currentMAC);
BF[pos] := 1;

end

end

/* Encrypt each BF position */
for i := 0 to m− 1 do

if BF[i] = 1 then
EBF[i] := ElGamalEnc(pkc,BF[i]);

else
EBF[i] := ElGamalEnc(pkc,rand());

end

end

return EBF ;

Algorithm 2: Algorithm running on a scanner, for each enrolled consumer,
at the end of an epoch.

We implement this on a Raspberry PI 4B, which uses a Broadcom BCM2711
SoC, with a 1.5GHz 64-bit quad-core ARM v8 Cortex-A72 processor, 8GB of

2https://github.com/cryptobiu/libscapi
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DDR4 RAM memory, 16GB microSD memory card and it is running Ubuntu
20.10 as OS. We implement both serial and parallel versions of the algorithm,
using C++11 threads for parallelization.

Supposing that a single consumer is enrolled in the system, we want to see
how long it takes for a scanner to process the readings in an epoch. Analyzing
the algorithm, for d = |DSE|, we see that for an epoch a scanner must compute
d ∗ k hashes and m ElGamal encryptions. In Fig. 4.10 we display the results of
an experiment timing such executions for serial and parallel implementations.
In the former subfigure, we show the timings when p influences the run time, n
being fixed to 1000 (axis y linear), while in the latter we fix p to 0.01 and range
n (axis y logarithmic). Hash operations, in comparison with encryptions, are
negligible, their duration falling in the range of nanoseconds, while encryptions
are in the milliseconds range. This is why the values in Fig. 4.10 are mostly
dictated by the resulting m for given p and n. For a crowd of maximum 1000
people, readings can be processed by the chosen scanner in less than 93 seconds
for any tested value of p in the serial implementation and in less than 25 seconds
for the parallel implementation; when p=0.1, the parallel run time is as low
as 6 seconds. Larger crowds can be processed too in a reasonable amount of
time judging by the parallel timings, such as approximately 2 minutes for a
crowd of 10000 and 20 minutes for a crowd of 100000, the maximum size we
have tested for.
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Figure 4.10: Time needed for processing the readings in an epoch for a single
consumer.
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To keep up with the incoming detections, a scanner must process the
readings for all the consumers enrolled in the system in a time period which
is less than the epoch length. Therefore, for a scanner achieving an average
hashing duration in parallel th, an average encryption duration in parallel te,
for the system parameter epoch length el and BF parameters k, n and m, the
maximum number of consumers enrolled in the system at the same time can
be computed as:

nc = ⌊el − k ∗ n ∗ th
m ∗ te

⌋ (4.4)

In particular, for the resource-constrained device which we used as a scanner
and a fixed epoch length of 5 minutes, we plot nc in Fig. 4.11 when ranging n
for different values of p. More consumers can be supported for higher values of
p. For example, when n is 10000, nc is 1, 1, 2 and 4 for p equals 0.0001, 0.001,
0.01 and 0.1. The x axis extends up until no more consumers can be supported
for the lowest value of p, which is when n reaches 11614. For the highest value
of p, at least one consumer can be accommodated up until n reaches 46455,
while for crowds of 1000 people, no less than 46 consumers can be satisfied.

4.4.2 Server-Side

A server gathers and stores EBFs from its scanners. Whenever it receives a
query from one of the enrolled consumers, it runs Algorithm 3. Essentially,
it multiplies under encryption, position-wise, the EBFs corresponding to the
scanners and epochs concerned by the query and then shuffles the results.

For a query of complexity q representing the number of EBFs to combine,
a server must do m ∗ q homomorphic multiplications under encryption, plus a
final shuffle operation. We plot in Fig. 4.12a the computational effort needed
to address queries of complexities between 1 and 10 for different values of p,
where we consider a homomorphic multiplication to take one computational
unit and the shuffle operation as negligible.

We implement Algorithm 3 both on a laptop and a more powerful cloud
server to see how quickly different servers can provide responses to queries
launched by consumers. We use the same ElGamal configuration as for the
scanners. The algorithm is embarrassingly parallel, the iterations through the
i loop showing no interdependencies, so we parallelize it using C++ 11 threads.
The configuration of the laptop is running Ubuntu 20.04 x86 64, with 8GB
RAM and a 4-core Intel(R) Core(TM) i5-10210 CPU @ 1.60GHz, while the
cloud server is running Ubuntu 18.04 x86 64, it has 16GB RAM and a 16-core
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Figure 4.11: The number of consumers nc enrolled in the system which can be
supported by a scanner, when the epoch length is fixed to 5 minutes.

Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz. In Fig. 4.12b we plot the mean
query response time in seconds from 10 runs on the two server configurations, as
well as minimum and maximum response times, when q ranges between 1 and
10 and BF parameters are fixed. The responses are almost instant for footfall
queries, only shuffling being necessary. The response time increases with q as
expected from Fig. 4.12a, remaining below 10 seconds for the most complex
query launched on the cloud server configuration, while even the basic laptop
could provide responses in comparable times. Most importantly, almost ideal
speedup can be easily achieved in a cloud environment by adding additional
cores next to the existing ones, as the most computationally expensive parts of
the algorithm are executed in parallel.

Besides response time, we also evaluate what throughput can be achieved
by the two server configurations. We first show in Fig. 4.13a the throughput in
homomorphic multiplications under encryption per minute (HMs/min), which
is independent of BF-related parameters and independent of the complexity
of launched queries. Having this information, a SP can form an idea on how
to choose the parameters of the system in harmony with the expected crowd
sizes, the accuracy desired from the system, the number and complexity of



56 CHAPTER 4. BLOOM FILTERS & HOMOMORPHIC ENCRYPTION

Input: pkc //Public key of consumer;
Input: EBFs[ ][ ] //Encrypted BFs to combine;
Input: q //EBFs length;
Input: m //BF length;
Output: QRes[ ] //Query response for consumer;

EBFRes := [ ];

for i := 0 to m− 1 do
mul := EBFs[0][i];
for j := 1 to q − 1 do

currentEBF[] = EBFs[j];
mul := ElGamalMul(mul,currentEBF[i]);

end

EBFRes[i] := mul;

end

/* Rearrange positions in random order */
QRes := shuffle(EBFres);

return QRes;

Algorithm 3: Server assembling query response for a consumer.

the queries expected from consumers. To exemplify, in Fig. 4.13b we then
evaluate the throughput in queries per minute achievable by a system which
must accommodate crowds of up to 1000 people, with a probability of false
positives 0.01. We display on the graph only results for query complexities q
between 2 and 10, as for footfall queries (i.e. q = 1) no additional homomorphic
operations have to be done. In other words, for such setup parameters, a server
can address approximately 35000 footfall queries per minute or tens of crowd
flow queries per minute, with numbers decreasing when queries’ complexity
rises.

4.4.3 Consumer-Side

The statistical count related to a query is estimated by the consumer based on
the response received from the server in Algorithm 4.

The computational load is approximately equal to that of a server assembling
a response for a query of complexity 1, as the ElGamal multiplication and
decryption operations have similar duration and the rest of the operations can
be considered negligible. We plot in Fig. 4.14 the time needed by the laptop
configuration acting as a consumer, when ranging m between its minimum and
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maximum values in Table 4.1. It ranges between less than a second for the
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Input: skc //Private key of consumer;
Input: m //BF length;
Input: k //Number of hash functions;
Input: QRes[ ] //Query response;
Output: c //Estimated statistical count;

t := 0;

for i := 0 to m− 1 do
x := ElGamalDec(skc,QRes[i]);
if x = 1 then

t := t+1;
end

end

/* Estimate count */
c := -m/k*ln(1-t/m);

return c;

Algorithm 4: Statistical counts estimation.
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Figure 4.14: Consumer computation time. Dashed line is at m=191702; all
computation times for n is 100, 1000 and 10000 are to the left of it, regardless
which value of p we choose from Table 4.1.

lowest and approximately 12 minutes for the highest value of m. Additionally,
we indicate on the graph the computation time for a setup with n = 1000 and
p = 0.01, which is 3.8 seconds. We also indicate through a dashed line the
value of m for which n = 10000 and p = 0.0001; all the parameter combinations
except those with n = 100000 find themselves to the left of this line and lead
to computation times lower than 77 seconds. Eventually, for n = 100000 we
explicitly indicate the corresponding computation times.
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4.5 Real-World Case Study: Assen TT festival

It is important to go beyond simulations and test our system using real-world
data. Such data has some particularities that can be hardly reproduced in
simulations. In a real-world setting, crowd sizes and directions of flows are
generated by real people and their movements. The identifiers sensed by our
system are, too, real, not synthetic. The distribution of the identifiers is unique,
hard to mimic, as their appearance and occurrence is dictated by the devices
and movements of the aforementioned real people, and it is also influenced by
the particular setup in which the sensing takes place. In other words, facing
our system with real-world data, reproducing the execution of it and analyzing
the system’s behavior is the closest we can get to a real deployment.

Every year, in the city of Assen, The Netherlands, a motorcycle grand
prix3 takes place which gathers crowds of people from all over Europe. In
parallel, the municipality organizes the TT Festival4 in the days before and
after the race. The festival is spread across the city center, which is open
only to pedestrians for the duration of the festival. There are concerts taking
place on multiple stages, places for motorcycle stunts, street-food areas and
amusement parks. Typically, more than a hundred thousand people visit this
event, leading to a considerable amount of pedestrian movement between the
attractions.

Figure 4.15: Placement of scanners in the city center of Assen.

Wi-Fi data gathering from scanners installed through the city was performed

3https://www.motogp.com/en/event/Netherlands
4https://ttfestival.nl/
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during the 2015, 2016 and 2017 editions [61]. In this work, we use the dataset
from 2017, when 30 Wi-Fi scanners were deployed in the city of Assen for
12 days, covering the whole period of the TT Festival as well as several days
after the festival. In total, there were 26414742 detections of devices having
176888 different identifiers. A map with the placement of scanners is displayed
in Fig. 4.15. Highlighted in red is the scanner placed in Koopmansplein,
corresponding to the most visited area, having 1.6 million detections throughout
the whole period. Also, we highlight in blue the scanners on Torenlaan street,
which find themselves on the main path leading to a big parking on the edge
of the city center and having a whole range of crowd flows happening between
them.

For the setup phase, our system needs the following parameters: el - epoch
length, n - a maximum number of devices expected near a scanner within the
chosen epoch time, p - the probability of false positives when n devices are
present. Being interested in capturing both footfall and crowd flow situations,
we choose to fix el to 5 minutes. This is a time interval long enough to ensure
that we capture probe requests from most of the devices broadcasting such
messages near a certain scanner within an epoch, as well as short enough to
interpret a detection of the same device at another scanner in a subsequent
epoch as being part of a crowd flow. Analyzing the dataset, we see that for a 5
minutes long epoch most of the detection sets contain less than 1000 devices,
with very few only marginally exceeding this threshold, which makes 1000 an
appropriate setup value for n. We set p to 0.01 as we have seen from sections
4.3 and 4.4 that such value is expected to produce highly accurate responses
and it is safely supported by the resource-constrained device that we use as
scanner in our experiments.

We emulate the scanner in Koopmansplein by feeding the Raspberry Pi with
detections from the dataset at the exact same pace as they happened in real life.
We choose a continuous period spanning across 9 days, containing 3 festival
nights followed by 6 festival-free days; this choice is consistent throughout the
rest of the section, representing an interval in which all the concerned scanners
(including those in Torenlaan street) uninterruptedly gathered detections. We
allocate detections to corresponding epochs, according to the timestamps
attached to them in the dataset, and we subject them to Algorithm 2 while
using the same hash functions and encryption scheme as in the previous section.
Getting as close as possible to reality, we want to test how well a scanner
performs, as part of an actual implementation of our system, when faced with a
real-world flow of detections. Also, we want to see how accurate the statistical
counts of footfall queries are for such a setup. We are aware that based on
Section 4.3 one can form an idea about what to expect; nevertheless, what we
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Figure 4.16: Estimating footfall in Koopmansplein during festival days and
afterwards. Vertical dashed lines indicate midnight.

perform here is a neat reproduction of the festival environment as if our system
was implemented there, dealing with real distributions of identifiers and real
detections of them across time.

In Fig. 4.16 we plot the statistical counts estimated by a consumer based
on the answers received from the system, the absolute errors of these counts
(i.e. the absolute differences between real counts and estimations), as well as
the accuracy according to the definition. The average processing time on the
scanner was 12 seconds, with minor variations depending on footfall size. The
highest absolute error is 19.58, where instead of 1012 devices the estimation
was 992.42. The lowest observed accuracy is 97.2%, where instead of 36 devices
the estimation was 35.01. The small gap in the fourth day corresponds to a
period when readings did not reach the server, which is common across different
scanners.



62 CHAPTER 4. BLOOM FILTERS & HOMOMORPHIC ENCRYPTION

0 500 1000 1500 2000

0
20
40
60
80
100
120

Epoch #

S
ta

ti
st
ic
a
l
C
o
u
n
t

0

2

4

6

8

10

A
b
so

lu
te

E
rr
o
r

60
70
80
90
100

A
c
c
u
ra

c
y
%

Figure 4.17: Estimating crowd flow size on Torenlaan street. Vertical dashed
lines indicate midnight.

Using the same setup parameters, in Fig. 4.17 we have a look at the crowd
flows between the two scanners in Torenlaan, flowing in the direction of the
parking, which target devices making the transition between the two places
in consecutive epochs. We plot the statistical counts a consumer estimates
based on the results returned by our system, together with absolute errors, as
well as the obtained accuracies. Please note that there is a one-to-one match
between epochs in Fig. 4.17 and Fig. 4.16. The largest crowd flow has 122
devices in it, with an estimation of 117.18 and an accuracy of 96%. The lowest
observed accuracy is 58.7% for a real count of 3 and an estimation of 4.23,
though for 88.5% of the 2422 crowd flows the accuracy stays above 90%. The
highest observed absolute error is 9.17, which happened for a real count of 45
estimated as 54.17. However, for 98.7% of the crowd flows, the estimation is
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less than 3 devices away from the real count.

In Fig. 4.18 we group the crowd flows by their real count found on the
x-axis. In the upper part we display the estimated counts as devices away from
the real counts. For comparison, we show them overlapped with the graph from
Fig. 4.9, which was plotting, as a worst-case scenario, the mean and standard
deviation for crowd flows originating from crowds sized 1000. In the lower part
we plot, for each real count, the mean accuracy of the estimated counts.
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Figure 4.18: Estimating crowd flow size on Torenlaan street, grouped by real
count and compared with Fig. 4.9.

All crowd flows happening on Torenlaan street are estimated within the
boundaries of one worst-case standard deviation from the real count. Small
crowd flows are much closer to the real count than to the expected mean
as they come from much smaller initial crowds than they do in the worst-
case; for Torenlaan street, crowd flows smaller than 10 usually result from
intersecting initial crowds smaller than 100, compared to 1000 in the worst-case,
systematically leading to less false matches and more accurate estimations.
Accuracy-wise, the mean stays above 89.9% for all the encountered crowd flow
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sizes. The decrease in smoothness once the crowd flow size increases comes
from having fewer samples for larger crowd flows.

4.6 Discussion

4.6.1 Comparison with previous work

We have combined BFs with homomorphic encryption for computing statistical
counts on crowds on another occasion [70], which we refer to as previous work
throughout this section. The current chapter is also based on that paper, using
the same building blocks but proposing a different construction. The main
difference lies in where, when and how the query response is built, as well as in
how the statistical count is calculated based on that response.

In our previous work the query response is built step by step on the scanners
concerned by the query, each step a scanner carrying forward only the BF
positions indicated by the hashes of identifiers sensed in that epoch, i.e. it
multiplies the values found on those positions with an encrypted 1 and it writes
an encrypted 0 on all the other positions. Eventually, the final scanner performs
set membership testing under encryption, i.e. it multiplies for each sensed
identifier the k hash-indicated positions together, assembling the results into a
response for the consumer. Then, the consumer learns the statistical count by
simply decrypting the response and counting the 1’s.

In contrast, in current work the response is built on the server, whenever all
the necessary data is available, by multiplying position-wise the encrypted BFs
and shuffling the result; the statistical count is then estimated by the consumer
by applying the proposed equations.

These construction differences have implications on three main dimensions
of the system: performance, security and utility. Let us now detail each of
them.

Performance. Involving scanners in the creation of responses, as we did in
previous work, makes their load increase with the number of queries, eventually
leading to a limitation in terms of queries a scanner can be involved into at the
same time. Queries in crowd-monitoring systems come at varying pace and they
can very well concern the same scanner in an overwhelming way, e.g., when a
scanner is at a crossroad, being asked to produce data for numerous crowd flows
passing through it. A scanner, which is a hardware device with fixed capabilities,
is hard to scale in such settings. Moving most of the computationally expensive
operations related to response creation on a server, as we do in current work,
ties the load on the scanners to the number of enrolled consumers rather than
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the number of queries. The number of enrolled consumers does not change
often and, when it does, it is predictable. Thus, scanners have stable amounts
of computation for long periods of time and it is known beforehand when they
must scale. On the other hand, servers are more suitable for dealing with a
varying pace of queries and they can scale much easier, as we have shown in
4.4.2.

Security. Scanners do not know any longer in which queries they are involved.
They just perform sensing, write detections in BFs, encrypt and send them
to the server, their role in the protocol being reduced. They do not receive
any longer other encrypted BFs to perform operations on, which means a
lower communication overhead as well as less communication rounds. The
server gets more responsibility in the protocol, being trusted to correctly
perform operations under encryption and shuffle results before sending them
to consumers. Nevertheless, both variants of the protocol are secure under the
same honest-but-curious adversary model.

Utility. In previous work, for data minimization purposes, the system was
producing data necessary for responses only when it was required by a consumer
through a query launched before the data collection had to start. While
still being able to function this way if desired, the current system offers the
additional possibility to launch queries concerning a certain situation also
after it happened, as there are cases when interest arises post-factum, e.g.,
for investigating unexpected events. Another point on utility, the accuracy
of the statistical counts differs between the two approaches, different ways
of calculation being used. In general, it tends to be higher in previous work,
as scanners, step by step, inherently drop detections that are not part of the
intersection from BFs, this being an effect of their participation in the query
response computation when their turn comes, which is no longer the case in
current work.

4.6.2 Security Analysis

Our system, as we propose it, is secure against honest-but-curious adversaries,
also known as semi-honest. Such adversaries follow the protocol correctly, but
they may use the data they handle to learn more about the input of the other
parties.

Honest-but-curious scanner. Scanners are assumed tamper-proof in the
system model, otherwise there is no way to guarantee the proper functioning
of the system. Nevertheless, dropping this assumption for a moment, by
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compromising a scanner, an honest-but-curious attacker cannot learn more
than the input of that scanner in the protocol, that is the detections made by
it. It cannot learn detections of other scanners, as no information is exchanged
among scanners, neither does it come from the server.

Honest-but-curious server. The server stores and processes EBFs. In order
to see what is in there, it would need to be able to decrypt. Decryption is
possible by using the private key of a consumer for whom the EBF is produced.
Having that private key would mean that the SP colludes with that consumer,
which would break the requirements of the system model. Another thing a
server may try is encrypting 0’s and 1’s itself using public keys of consumers
and compare them with encrypted values in EBFs, in an attempt to uncover
the values stored under encryption. This would be meaningless due to the
ciphertext indistinguishability property of the ElGamal scheme, also known
as probabilistic encryption, which guarantees that encrypting the same value
multiple times results in different ciphertexts.

Honest-but-curious consumer. A consumer can query the system and
receive an EBF as answer. After decrypting the answer, knowing that BFs are
used in the process, it may be tempted to check whether a certain device is in
there by computing the hash functions on its identifier and searching for 1’s
in the corresponding positions. However, it would be useless since the EBF
was shuffled before being sent to the consumer. Thus, the only meaningful
information available after decryption is a statistical one, i.e. how many 0’s and
1’s are in there, which is all that a consumer needs to reach its goal according
to the protocol, namely computing statistical counts.

The security of the system can be compromised in case the implementation
of the system deviates from the system model. For example, if the non-colluding
entities condition is not satisfied, an honest-but-curious server, even without
being malicious, would be able to see what is stored in EBFs. Moreover, if the
server is malicious, it could very well skip the shuffling part and deliver the
EBFs as they are to the consumers.

4.7 Conclusion

In this work, we propose a novel crowd-monitoring system that produces stat-
istical counts of crowds while fully protecting the privacy-sensitive data of the
individuals being monitored. At the core of our solution lies a cryptographic
construction in which the detections of individuals are encoded into homo-
morphically encrypted BFs and then immediately discarded. This construction
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allows our system to blindly perform computations over encrypted data that
it cannot decrypt, such that only statistical counts become available in the
clear. Therefore, the system can accommodate, in a privacy-friendly way,
footfall counting, as well as counting crowd flows between different locations,
measurements otherwise unacceptable due to the risk of uniquely identifying
individuals from the handled data.

We implement the system using Raspberry Pi as a scanner and different
server configurations as operators under encryption. In addition to simulations,
we test the system using real-world data from a large festival. For footfall
scenarios concerning the most crowded area of the festival, the accuracy does
not get below 97.2% (i.e. 1 device away in that particular case). Also, when
measuring crowd flows happening on a circulated street, 88.5% of the statistical
counts had an accuracy above 90%, 10.7% between 80% and 90%, 0.6% between
70% and 80% and 3 of them below 70%. For the same crowd flows, 98.7%
of the estimations were less than 3 devices away from the real counts. These
results demonstrate that highly accurate statistical counts of crowds are indeed
practical when dealing with real-world data. Moreover, limited hardware
(i.e. resource-constrained devices as scanners and a laptop as server) proves
to be sufficient for this purpose, successfully accommodating a homomorphic
encryption scheme on top of probabilistic data structures such as BFs. We hope
that our work inspires other researchers searching for a solution in comparable
settings, who aim to protect privacy-sensitive data sensed by an infrastructure
of data collection points while still being able to use it for the intended purpose
of their system.





Chapter 5

Anonymized Counting of
Nonstationary Wi-Fi Devices

With a continuously increasing desire for uninterrupted connectivity, most
people nowadays carry with them a smartphone whenever they leave their
house. Besides offering people access to the Internet, smartphones leave
radio traces behind them wherever they go. For example, Wi-Fi interfaces of
smartphones, whenever enabled, periodically broadcast radio signals known
as probe requests to discover available nearby Wi-Fi networks. These signals
can be easily captured by Wi-Fi scanners placed in public spaces; interpreted
and later aggregated into statistical counts, they are being leveraged into a
tremendous source of behavioral information regarding the dynamics of the
people carrying the emitting devices. Such constructions are called Wi-Fi
based crowd-monitoring systems (CMS), large-scale deployments being already
implemented in many cities across the globe.

Along with signals transmitted by devices of passersby, CMSs receive signals
coming from devices not belonging to the crowd intended for monitoring. There
are fixed devices such as printers, smart TVs, as well as many other home
appliances from neighboring buildings, which are Wi-Fi enabled. Also, there
are devices that are not necessarily fixed, yet they are not part of the crowd
either, such as laptops or even smartphones of people living or working in
nearby buildings, displaying a stationary behavior.

As the focus of a CMS is pedestrian dynamics, stationary devices end
up negatively influencing crowd measurements. Strategies for setting them
apart usually rely on fingerprinting Wi-Fi devices over time by making use
of information extracted from probe requests, e.g., MAC addresses, received
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signal strength (RSS), frequency of probing, etc. Such strategies are prone to
profiling allegations, as profiles of individuals can be potentially created as a
side effect, without consent, in the process, a practice frowned upon by privacy
watchdogs and strictly regulated by data protection regulations such as the
GDPR in the EU.

Modern CMS proposals follow privacy by design principles and perform
anonymization on the fly. This process happens directly on scanners, and it
implies discarding privacy-sensitive data as soon as possible after ingestion,
allowing only processed privacy-friendly data that is sufficient to serve the
intended purpose of the system, i.e. statistical counts on crowds. In other
words, by construction, such a CMS would not be allowed to maintain data for
building fingerprints of devices. Therefore, a novel method is needed to support
the separate counting of nonstationary and stationary devices, achieving the
same goal as it was achieved through fingerprinting but without needing access
to privacy-sensitive data.

We build upon the notion of t-persistence [23] and we call nonstationary
and stationary devices the devices whose probe requests reach a certain scanner
in less than t, respectively at least t out of a total of ce epochs (i.e. predefined
fixed-length time intervals) preceding the concerned moment of counting. We
propose a system that allows separately counting these two types of devices by
operating solely on encrypted data that cannot be decrypted in the process.
This is made possible by making use of an object, which we call comb, that
maintains an encrypted representation of the frequency of occurrence of devices
over time. We implement the system and evaluate it using real-world data from
a large open-air festival, achieving a mean accuracy of 99.9% when counting
nonstationary devices sensed by the most crowded scanner throughout all the
epochs in the dataset.

This chapter is based on the work presented in [73]. The rest of the chapter is
structured as follows. Section 5.1 presents background information and reviews
the related work. Section 5.2 introduces the system model. In Section 5.3
we propose our construction, followed by an evaluation in Section 5.4 and a
discussion in Section 5.5. Finally, Section 5.6 concludes the chapter.

5.1 Background & Related Work

Devices with an active Wi-Fi interface periodically broadcast wireless signals
(i.e. 802.11 Management Frames) called probe requests, expecting to receive
back probe responses from access points (APs) available in their vicinity,
responses that contain information necessary for a potential connection. Probe
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requests happen outside any established connection, so they circulate in the
clear. Moreover, any Wi-Fi scanner can receive them since they are being
broadcasted. Therefore, they represent a rich source of information that can
be easily sniffed.

The header of a probe request frame contains, among other information,
the sender’s MAC address, serving as an identifier of the sending device. By
having a scanner performing Wi-Fi sniffing at a location over time (e.g., a
location where pedestrian traffic is expected), one can get a good idea regarding
the devices passing through that scanner’s range. Considering that most
people nowadays carry Wi-Fi enabled devices, the step from sensing devices to
monitoring crowds came naturally, as it was proved that a clear correlation can
be seen between measured devices and people present in a certain location [67].
Such measurements, commonly known as statistical counts, are the expected
outputs of a CMS, and they can lead to accurate representations of crowds
under the assumption that an appropriate correction factor is applied [13, 69].

A common crowd-monitoring scenario is presented in Fig. 5.1. An entity
providing crowd-monitoring services (i.e. a service provider) runs an infrastruc-
ture of scanners, generally managed by a server. Each scanner gathers Wi-Fi
signals and creates a list of devices detected within a certain period of time
(i.e. epoch). It passes that list to a server, which is later queried by a party
interested in statistical counts on crowds (i.e. a consumer). A classical query
is that of footfall, asking for how many devices were detected in the range of
a scanner in an epoch. An improved version of the query, which we also aim
to accommodate in this work, can ask for more insights, such as how many of
those devices displayed a nonstationary versus a stationary behavior.

Anonymization on the fly is a vital prerequisite for protecting collected data
that is generated by individuals’ devices from being exposed to privacy-invasive
situations. In CMSs implementing this concept, such as [11] and also including
the systems proposed in Chapters 3 and 4, scanners process the data sensed
from devices into an anonymized format that still allows the computation of
statistical counts. Immediately afterwards, they discard the original data. As
a result, only anonymized data leaves the scanners at the end of each epoch.
This can be achieved, for example, as we have shown in Chapter 4, i.e. by
immediately encoding data into a format facilitating statistical counts and
encrypting it with a cryptographic scheme that allows the computation of those
counts under encryption while leaving no possibility of decryption through
the process. In such a system, once a device is recorded as present within an
epoch, it remains counted, so discarding detections on the fly does not affect
the statistical counts. However, being able to tell whether a sensed device is
nonstationary or stationary can prove to be challenging, as a single spotting of
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Figure 5.1: Intended behavior of a CMS offering statistical counts on footfall,
including the ability to count separately nonstationary and stationary devices.

a device may not be enough for making a decision.

There are different methods researchers attempted to use for discriminating
between nonstationary and stationary devices based on transmitted Wi-Fi
signals. Chilipirea et al. [25] investigated the use of so-called stay points [48].
Essentially, the approach relies on the assumption that a nonstationary device
will be detected by multiple nonadjacent scanners. We cannot use such an
approach since it implies a post-factum decision based on information from
multiple scanners, whereas in our case the decision should be made directly on
the scanner, in isolation, while having no access to information external to the
concerned scanner.

A solution that can indeed be deployed in isolation on a scanner is presented
by Redondi et al. in [62]. The authors extract, for each MAC address seen in
probe requests, features such as interprobe period, RSS, number of broadcasted
or directed probe requests, etc. They use these features to build a machine-
learning algorithm for classifying devices into nonstationary (handheld) and
stationary (nonhandheld) devices. However, for such a system to be effective,
privacy-sensitive data must live for a much longer period than anonymization
on the fly permits.

Lastly, single-shot attempts such as [10] try to make the distinction by
looking only at the MAC address of a device, more precisely at the first 24
bits representing the Organizationally Unique Identifier (OUI). The advantage
of such an approach is that, besides being applicable in isolation, it does not
need to store data for a long time. There are, though, several drawbacks, such
as the fact that new OUIs are constantly being assigned, therefore additional
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effort is required to maintain an up-to-date list, and, more importantly, the
same OUI can be very well be assigned by manufacturers to devices of both
types, thus making the approach impractical for our purpose.

5.2 System Model

5.2.1 Overview

We model a CMS as a system run by a service provider (SP), offering crowd-
monitoring insights in the form of statistical counts to interested parties, which
we call consumers (see Fig. 5.1). The SP manages an infrastructure of scanners,
which detect Wi-Fi devices in their vicinity. Scanners collect and group such
detections in sets corresponding to predefined periods of time called epochs.
Consumers can address queries to the SP, asking for statistical counts such as
footfall found near a scanner in a specific epoch. Furthermore, consumers can
ask for more granular information, such as how many of the counted devices
are (non)stationary. The system should deliver its functionality in such a way
that the privacy of individuals whose devices are detected is not compromised
in the process.

5.2.2 Formalities

We denote by S = {s1, ..., sn} the set of all scanners managed by the SP. Each
scanner s ∈ S performs Wi-Fi sensing across successive time intervals called
epochs.

Definition 13. An epoch e ∈ E is a time interval having tstart(e) as beginning
and tend(e) as end, where E denotes the set of all such epochs.

When a scanner receives a probe request from a nearby device, it reads the
MAC address a ∈ A ⊂ {0, 1}48 encased in the probe request and assigns it,
according to the timestamp of reception tr, to the corresponding epoch e for
which tstart(e) ≤ tr < tend(e).

Definition 14. We call detection a triplet (a, s, e) indicating that a device
bearing the MAC address a was detected by scanner s during epoch e. We
denote the set of all such detections made by a scanner s during an epoch e as
Ds,e.

1

1Note that by using sets, we avoid counting the same device multiple times within an
epoch. This is useful since many Wi-Fi devices are known to transmit numerous probe
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Typically, a CMS is able to offer information regarding footfall in the range
of a scanner s during an epoch e by computing the statistical count |Ds,e|.
However, in this chapter we go further and aim to offer additional valuable
information for crowd monitoring, such as how many of the spotted devices
are (non)stationary.

Definition 15. For a current epoch e, a set of ce consecutive epochs E =
{e−ce , ..., e−1} preceding it and a threshold t, we define a nonstationary device
as a device detected in an epoch e near a scanner s that was also detected by
the same scanner s in less than t out of the ce epochs in E. Conversely, a device
is stationary if it was detected by s in at least t out of the ce epochs in E.

For an epoch e and a scanner s we denote the sets of nonstationary and
stationary devices as NDs,e and SDs,e, respectively. The corresponding stat-
istical counts can be, thus, computed as |NDs,e| and |SDs,e|. These, together
with |Ds,e|, represent the types of outputs the system should offer.

5.2.3 Threat model

Throughout the crowd-monitoring process, the system senses and manages data
generated by Wi-Fi devices, many of them belonging to people from the crowd.
Such data is privacy-sensitive and must be carefully handled. We consider
an attacker having as main purpose learning privacy-sensitive information
about the individuals being sensed. To reach her target, the attacker could
compromise each component of the system and try to infer as much insights as
possible from the data handled by that component. To make sure that such an
attack cannot succeed, we demand three main security goals to be met, while
ensuring that one assumption is followed.

Anonymization on the fly. There should be no data in the clear surviving
more than the duration of the epoch in which it was generated, nor outside the
scanner that handles it. Gathering and processing detections is, thus, confined
to each scanner and limited in time, allowing nothing else than anonymized
data to leave the scanners. Note that in order to ensure that this procedure is
performed correctly, we need to demand that scanners are tamper-proof.

Blind server. The server should not store, nor handle privacy-sensitive
data that it can understand. This requirement offers protection against SPs

requests in short periods of time, while for a CMS it is sufficient that a device signals its
presence once in an epoch to count it.
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who could try to infer additional information from the data they handle.
Nevertheless, we assume that the server executes its tasks correctly.

Outputs. The system should allow consumers to learn statistical counts on
crowds, as this is the intended functionality of the system, but nothing else.
Also, the system should enroll only consumers that have a publicly verifiable
identity, such as a public key certified by a trusted certificate authority.

Noncolluding entities assumption. The SP does not collude with any of the
enrolled consumers, this being a common request of multi-party computation
constructions. In essence, SP and consumers are not allowed to cooperate
outside the protocol for mutual information enrichment. This also implies that
the SP is not allowed to enroll itself as a consumer.

5.3 Our Construction

In this section we introduce a novel mechanism for separating, on the spot,
sensed devices into nonstationary and stationary, as demanded by their defin-
ition. In this process we make use of an instrument obliviously built under
encryption that makes the distinction possible and that we also introduce in
this section. The privacy protection part is ensured by the same building blocks
used in the method proposed in Chapter 4.

5.3.1 Statistical counting with Bloom filters

For computing statistical counts on crowds, we have proposed, in Chapter 4,
to make use of Bloom filters (BFs) [18]. We recall the characteristics of BFs:
m - BF length (i.e. number of positions in the array), k - number of hash
functions associated with a BF, p - probability of false positives expected when
n elements are present in the BF.

We leave security aside for a moment to recall the functionality under
the hood. We will get back to this in subsection 5.3.3, where we present
the complete multi-party cryptographic construction, along with a detailed
description of the actions executed by each party.

In the context of crowd monitoring, the set of detections in an epoch is
encoded into a BF. Later on, based on the count of 1’s in the BF ct, one
can get an estimation c of the cardinality of the original set of detections, as
Swamidass and Bald propose in [74], by computing the formula in eq. (5.1).
This estimation is highly accurate, as shown by Papapetrou et al. in [59].
Please note that this is the same formula we have used for estimating footfall
in Chapter 4.
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c = −m

k
ln
(
1− ct

m

)
(5.1)

Thus, for a scanner s and an epoch e, the computation on the corresponding
BF of c ≈ |Ds,e|.

5.3.2 Combing: Separately counting nonstationary from
stationary devices

Estimating statistical counts using eq. (5.1) is intended for footfall insights.
However, the computed values of c cover the sensed devices altogether, including
stationary devices that are not part of the actual footfall, whereas footfall is
much better represented by the nonstationary devices alone.

An ideal solution would be able to simply tell nonstationary from stationary
devices detected in an epoch, as indicated by the choice of t and ce in Definition
15, and write them in two different BFs. Then, the corresponding granular
statistical counts could be computed by separately applying eq. (5.1) on the
two BFs. Yet, in our case, we are dealing with a single BF containing all the
detections in an epoch. We aim to start from the bottom up and leverage this
single BF into something close to the two BFs in the ideal case above.

The BF-equivalent of a device being detected in an epoch is represented by
the k positions indicated by the hashes computed on its address. If the same
device is detected by the same scanner across multiple epochs, still the same k
positions will correspond to it. Intuition says that positions corresponding to
stationary devices will be written in BFs, over time, more often than positions
corresponding to nonstationary devices. This leads us to envisioning an object
called a comb to help us make this separation.

Definition 16. For a scanner s, an epoch e and a BF of length m containing
the detections made by s during e, we define the comb as an array of the
same length m, for which each position indicates whether the corresponding
position in the BF should be taken into account when counting nonstationary or
stationary devices. The comb is built across ce epochs preceding e by summing
up, positionwise, the BFs built at s during those epochs; the result is similar
to a counting BF [39].

We present in Fig. 5.2 an example of a combing process when considering
nonstationary devices as those being detected by a scanner s in less than 20
out of the 24 epochs preceding the current epoch e. Applying the comb on a
BF produces two BF-like structures corresponding to supposedly nonstationary
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and stationary devices. Subjecting these structures to eq. (5.1) generates the
estimated counts nc and sc, which approximate the statistical counts |NDs,e|
and |SDs,e|.
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Figure 5.2: Combing a BF for t = 20, ce = 24, in order to compute the
statistical counts of nonstationary and stationary devices seen by scanner s
during epoch e.

We stress that these structures are not BFs by definition, as they are
generated according to some conditions that do not necessarily translate into a
separation of elements but rather into a separation of positions. Their statistical
properties (e.g., the number of 1’s), though, are relevant for statistical counts.
Yet, the accuracy of the estimations may be different from in the ideal case
(i.e. separate actual BFs), as we know that more elements can be hashed to
the same position and deciding how to label that position (i.e. nonstationary
or stationary) can potentially have an impact. We will analyze these aspects
in detail in Section 5.4.
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5.3.3 Anonymized counting under encryption

The representation of data in BFs, despite being different from detections in
the clear, still leaves the stored 0’s and 1’s visible. As the identifier space (i.e.
MAC address space) is easily enumerable [16], BFs storing such elements are
susceptible to brute-force attacks, in which an attacker can check, in limited
time, the presence of each possible identifier by iteratively computing the
k hash functions and verifying the corresponding positions. Therefore, BFs
should not be allowed to live as they are for more than an epoch, nor outside
the scanner that generates them. Still, in order to build a comb, we need
to combine data from multiple epochs, data that should have been already
discarded. To overcome this problem, we consider the option of encrypting
data before discarding it in such a way that it allows the operations that we
need to perform on it, but this time under encryption.

In Chapter 4, to enable combining BFs under encryption for counting crowd
flows, we used homomorphic encryption [64], i.e. a type of encryption that
allows mathematical operations directly on the encrypted data, without the
need for decryption. More precisely, we used the multiplicatively homomorphic
version of ElGamal [37]. In particular, in this system, in order to build the
comb, we need an encryption scheme allowing additions under encryption, so
we opt to use the additively homomorphic version of ElGamal.

Let us now assemble the components and present how the whole process of
anonymized counting takes place.

Preamble. Consumers enroll in the system by presenting their public key to
the SP, which stores it on the server and forwards it to the scanners.

Sensing. Each epoch, scanners perform sensing and write detections in a BF.
At the end of an epoch, they encrypt a copy of the BF, positionwise, for each
enrolled consumer, using their public key. They discard the original BF and
send the resulting encrypted BFs (EBFs) to the server.

Querying. A consumer interested to find out insights on footfall in the vicinity
of a scanner s within an epoch e informs the SP of her interest. She specifies,
along with the query, the number of epochs ce preceding epoch e for which she
would like to have a comb built.

Response. The response to a query is prepared by the SP on the server.
The server generates the comb by summing up positionwise, under encryption,
the EBFs generated by s in the ce epochs preceding e, making use of the
homomorphic property of the encryption scheme. It delivers, as a response, the
EBF from scanner s and epoch e, along with the generated comb. Before that,
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it shuffles the positions of both structures to make sure that any BF-related
meaning is lost. Note, though, that the shuffling of the comb should mirror the
shuffling of the EBF, because the order of the positions may not be important
for combing, but the correspondence between the positions of the two is still
needed.

Result. The consumer, being in the possession of the secret key, decrypts the
shuffled EBF and comb, performs the combing according to a threshold t that
she desires and applies eq. (5.1) to estimate the statistical counts.

5.4 Evaluation

In this section, we start by running a set of preliminary experiments, testing
our intuition that positions in a comb corresponding to stationary devices are
set to 1 more often than positions corresponding to nonstationary devices, thus
allowing their separation based on a threshold. We continue by presenting an
error analysis to understand how to setup the system in order to minimize
counting errors. Then, we perform an evaluation using a real-world dataset to
see how well the system can separately count nonstationary from stationary
devices. Finally, we do an actual implementation, including the encryption
layer, and analyze its performance.

5.4.1 Preliminary experiments

BFs are generally configured to support a number of inserted elements n while
satisfying a desired probability of false positives p. To meet these conditions,
the length m of the BF should be calculated as −n ln p/(ln 2)2 and the optimal
number of hash functions k as − log2 p. For example, to accommodate a
maximum of 100 detections at a probability of false positives of 0.01, m should
be 959 and k should be 7. In this subsection, we stick to these parameters
to run some preliminary experiments. For hashing, we use, with different
seeds, MurmurHash3 [12], a fast hash function, noncryptographic, but suitable
though for our purpose since BFs and combs are going to be encrypted anyway.
As identifiers, we generate random MAC addresses coming from a uniform
distribution.

The idea of a comb comes from the intuition that positions where stationary
devices are mapped in BFs, are written more often than those where non-
stationary devices are, making their separation possible based on a threshold.
Following this intuition, we run a set of preliminary experiments. We build
a comb for ce = 24 epochs, and we choose, for separation, a threshold t of 20
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epochs. For this set of experiments, the epoch length is not important, but we
choose ce as 24 having in mind epochs of 5 minutes and, thus, a total interval
of two hours for building the comb. We fix the number of devices per epoch,
denoted as d, first to 50, then to 100, from which 10 are stationary and the rest
nonstationary. We make the stationary devices appear in a random number
of epochs between t and ce. Each epoch we fill, up to d, with nonstationary
devices. For d = 50, each nonstationary device appears once; for d = 100, we
make 10 of them appear randomly between 1 and t− 1 times and the rest once.
We show the results in Fig. 5.3, where we display the values found in the comb
on the x axis and their mean frequency out of 100 runs on the y axis (i.e. how
many positions are in the comb for each value).
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Figure 5.3: Frequency of comb values when sensing 50 and 100 devices per
epoch for ce = 24 epochs, using BFs configured for n = 100 and p = 0.01. The
dashed line marks the threshold t = 20.

We can see from both experiments that indeed writings in the comb are
concentrated separately, according to the inserted nonstationary and stationary
devices. If we were to apply this comb on a BF containing the detections from
an epoch, the positions whose corresponding comb values are found to the left
of the dashed line would be considered as belonging to nonstationary devices,
whereas those on the right would be considered as belonging to stationary
devices.

Yet, we can see a difference between the results of the two experiments.
For d = 50, the threshold clearly separates the values corresponding to the
two types of devices, as the frequency is 0 for values such as 17, 18 and 19.
For d = 100, although apparently this was the figure for which the system
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was configured, we can see the curve corresponding to nonstationary devices
expanding, through some of its positions, beyond the dashed line, into the
territory where positions are marked as stationary. This overlap can incur
errors on the counts, and it can visibly get even bigger for lower thresholds or
when there are more nonstationary devices appearing more often. Opting for a
value of m higher than is usually computed would alleviate the problem, and it
comes natural since the comb combines detections from multiple BFs, leading
to much more collisions than expected for a single BF. We elaborate on this
matter below.

5.4.2 Error analysis

We stated earlier that a higher value for m should be used. In principle, with an
infinite m, each device, no matter its type, will write at positions never written
by any other devices. As a result, the values at the positions in the comb would
be exactly equal to the number of occurrences of the devices pointing to them.
Thus, applying the threshold would make a perfect separation, as if we would
have used from the start two separate BFs for nonstationary and stationary
devices. In practice though, we cannot choose m infinite for performance
reasons that we will further explain in Section 5.4.4, so we expect to see comb
positions written by different devices. We call such an event a collision.

We remind that statistical counts of nonstationary and stationary devices
are computed by applying eq. (5.1) on the two BF-like structures resulting
after combing. The only thing from the formula that makes the counts differ
from those in the ideal scenario (i.e. two separate BFs) is the change of ct
(i.e. cts for stationary and ctn for nonstationary) inflicted by values of 1 being
misplaced by the comb into the other BF-like structure due to collisions. We
present how combing happens at position level in Fig. 5.4.

Depending on what devices generate them, we have the following taxonomy
of elementary collisions: (1) between stationary devices, (2) between a stationary
and a nonstationary device and (3) between nonstationary devices. Each of the
three can affect in different ways the counts of nonstationary and stationary
devices, also linked with which device writes (or not) at a collision-related
position in the BF to which the comb is applied.

(1). When two stationary devices generate the collision on the comb, the
concerned position will be marked as stationary as both devices appeared at
least t times and their combined writings will definitely lead to a sum at least
as large as t. No matter which of the two devices appears (or not) in the
analyzed epoch, combing will not produce any change in cts, nor in ctn, and,
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Figure 5.4: Moving value vbi from a colliding position i in a BF to the
nonstationary (NBF) or stationary (SBF) BF-like structure, based on the
relationship between its corresponding value in the comb vci and t.

thus, no impact on sc, nor on nc, as long as there is no other nonstationary
device writing at that position. In case any nonstationary device writes at that
position, ctn will decrease by 1; in addition, in this particular case, if none of
the stationary devices appears, cts will increase by 1.

(2). A position where a stationary and a nonstationary device collide will
always be marked as stationary. As in the above case, the presence of another
device writing at the same position with a stationary device can only increase
the already greater or equal with t sum. If there is no nonstationary device
writing at that position in the analyzed epoch, cts and ctn will not change, no
matter whether the stationary device appears or not. If any nonstationary
device writes at that position, ctn will decrease by 1 as the position is marked
as stationary; moreover, if in this situation the stationary device does not show
up, cts will increase by 1, falsely believing that the device was present.

(3). When two nonstationary devices collide on a position, the position can be
marked as nonstationary if the count of epochs in which at least one of them
appears is lower than t, otherwise, the position is marked as stationary. The
lower the t, the higher the chance of marking the position as stationary in case
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of such a collision. If the position is marked as nonstationary, there will be no
impact whatsoever, no matter what nonstationary devices write at it. Note
that stationary devices cannot be expected to write at that position, otherwise
they should have been part of the collision. If the position is marked stationary
and at least one nonstationary device writes at that position in the analyzed
epoch, ctn will decrease by 1 and cts will increase by 1.

To summarize, when collisions occur, cts tends to increase and ctn tends to
decrease. The systematic effect of this is a potential overcounting of stationary
devices and undercounting of nonstationary devices.

We see that the choice of t, which is a functional parameter dictated by
the consumer and her functionality needs, can, depending on t, influence the
accuracy of counts in case of collisions between nonstationary devices. We will
have this in mind when evaluating the accuracy of the system. However, most
of the impact on counts can be prevented by minimizing the probability of
having collisions in the first place. This can be done through a careful choice
of BF parameters.

We have already mentioned that a higher m is desirable, deviating from
typical BF configurations, which choose m and k to match a probability of false
positives p. Though, the probability p′ that a position in the comb corresponds
to a collision is different from p and is the same as the probability that at least
two elements write at that position, which we display in eq. (5.2).

p′ =

(
1−

(
1− 1

m

)k
)2

(5.2)

As our intention is to minimize p′ and not necessarily to match p, besides
already fixing m as high as performance requirements allow, k should be always
chosen as 1.

5.4.3 Evaluation with real-world data

We proceed with an evaluation using real-world data, to assess how well our
mechanism is capable of separately counting nonstationary from stationary
devices when faced with real detections sensed by an actual infrastructure of
scanners. We are using a dataset collected in 2017 by 30 scanners placed in
the city of Assen, The Netherlands. Scanning took place for 12 consecutive
days, covering the whole period of a large open-air festival. As mentioned in
Chapter 4, there were 26 million detections of devices bearing 176 thousand
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different identifiers (i.e. MAC addresses run through a one-way cryptographic
hash function).

We fix the epoch length to 5 minutes, as it proved to be long enough to
ensure capturing probe requests from most devices simultaneously present
near a scanner [41]. For this epoch length, with few exceptions, detection sets
from the dataset consist of less than 1000 devices. Normally, when setting up
BFs, for n = 1000 and a low p, e.g., 0.01, m should be ≈ 10000 and k = 7.
Nevertheless, we increase m to 100000 (i.e. 10 times higher) and use k = 1, as
discussed in Section 5.4.2. We will later show in Section 5.4.4 that this high
value of m still allows even resource-constrained scanners to produce EBFs for
at least two consumers within 5 minutes. Lastly, we fix ce to 24 (i.e. 2 hours).
Two hours of detections should provide enough information to decide whether
a device is nonstationary or stationary, in the context of an open-air urban
festival and considering pedestrian dynamics in such conditions.

For the following experiments, we consider a scanner placed in the most
crowded area of the festival, which gathered a total of 1.6 million detections.
For each epoch, we group these detections in detection sets that we encode into
BFs. Then, for each BF, we create its associated comb corresponding to the
previous ce epochs. In parallel, we calculate and store the actual frequency of
occurrence for each device that we write in the comb. To evaluate the accuracy
of counts of nonstationary and stationary devices from an epoch, we compare
two things: (1) the results, rounded to the nearest integer, obtained by combing
that epoch’s BF (i.e. using our mechanism) with (2) the counts obtained by
separating devices sensed in that epoch based on the previously stored actual
frequency of occurrences (i.e. obeying Definition 15). Note that there may
be cases when carry-on devices end up being considered stationary when, for
example, they spend more than t epochs in one place. This is consistent with
our evaluation because, by definition, those devices are indeed stationary.

We select a sequence of five of the very crowded encountered epochs, as
an extreme scenario seen by the system. Each epoch contains around 1000
detections. We first plot, in Fig. 5.5, the split between nonstationary and
stationary devices counted by using our mechanism, when setting the threshold
t to 20, 10 and 5, respectively.

This figure allows us to understand what the threshold t means for the
classification of devices. Choosing a lower t determines the mechanism to
consider more devices as stationary, since fewer detections are sufficient for
passing the threshold. For t = 5 for example, the definition of stationary devices
is broad and includes from smart TVs that are present in most epochs to devices
that spend 25 minutes in the area and then leave. On the other hand, for t = 20
the definition is stricter and, thus, fewer devices are considered stationary.
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Figure 5.5: Separate counts of nonstationary and stationary devices for ce = 24
and different values of t.

Nevertheless, in our construction the choice of t and the interpretation of
what nonstationary and stationary devices are, fall onto the consumer, who
proceeds according to her needs; we will come back to this discussion later, in
Section 5.5.1.

For the same sequence of epochs, we want to see how accurate the split we
have just presented is. We plot thus in Fig. 5.6, side by side, actual counts and
counts estimated by our system. The lower part of the figure (left y axis) shows
nonstationary, while the upper part (right y axis) shows stationary devices.
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Figure 5.6: Comparing real counts of nonstationary and stationary devices
with counts estimated by the system.
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For these very crowded scenarios in the dataset and using appropriately
chosen system parameters, both nonstationary and stationary devices are
estimated with high accuracy. For t = 20, the estimated count of nonstationary
devices is at most 1 device away from the actual count (i.e. 967 instead of
966 devices leading to an error of 0.1%, equivalent with an accuracy of 99.9%)
and for stationary devices at most 2 devices away. For lower t, the system can
perform accurate estimations too, though we can notice a small decrease in
accuracy. The highest error when estimating nonstationary devices for t = 5 is
3.4%, corresponding to an accuracy of 96.6%. This is something we expected
to see, as we have shown that a lower t increases the probability of collisions
between nonstationary devices, leading to more positions being marked as
stationary. To get a better feeling of this, we plot for the same sequence of
epochs, in Fig. 5.7, the absolute error of nonstationary and stationary counts
when t equals 20, 10 and 5.
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Figure 5.7: Absolute error of counts of nonstationary and stationary devices.

Constantly, the error is bigger for lower t. We can also see a direct correlation
between the decrease of nonstationary counts and the increase of stationary
counts. Let us take a look, for example, at the 5th epoch. We interpret the
numbers as follows. The collisions in the comb led to a number of positions in
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the 5th epoch’s BF being marked as stationary, despite nonstationary devices
wrote there in the comb as well. Not counting these positions as nonstationary
diminishes the count of nonstationary devices by 23. Counting the exact same
positions as stationary increases the count of stationary devices by 20.

We move on now to analyzing the accuracy of counts of nonstationary
devices for the whole period of the festival in the vicinity of the most crowded
scanner. Our purpose is to exclude from counts stationary devices that are
present most of the time (i.e. printers, smart TVs, home appliances from
nearby buildings, etc.). Even though in principle such devices do not move,
there may be situations when they do not transmit probe requests for a while
or the probe requests do not reach the scanner (e.g., a temporary power cut, a
device overload / malfunction, or simply a sudden signal interference). This
is why we consider 20 to be an appropriate value for t and we fix it like this.
The rest of the parameters of the system remain unchanged, including ce = 24.
We present, in Fig. 5.8, the counts of nonstationary devices estimated by our
system throughout all the epochs of the festival, as well as the absolute error
for each epoch.
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Figure 5.8: Estimated nonstationary devices and their absolute errors during
festival days and afterwards.
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The graph covers a total of 2977 epochs spread across 11 days; it does not
include the first 24 epochs, as combs need 24 epochs to be built. All estimations
are at most 6 devices away from the actual counts. For those epochs with an
absolute error of 6 (i.e. 4 of them, very crowded epochs with actual counts
between 843 and 1112), accuracy is higher than 99.2% for all of them. The
mean accuracy across all the epochs is 99.9%. Overall, in 93.9% of the epochs,
the estimation is at most one device away from the actual count; when it is
farther than one device away, it is for very crowded epochs where the impact on
accuracy is very low. We ran the same experiments for estimating stationary
devices and we confirm that the results are similar, i.e. a mean accuracy of
99.6% (apparently lower, but due to stationary devices being fewer and absolute
error having thus a higher impact) and estimations at most 5 devices away
from actual counts.

5.4.4 Implementation & Performance analysis

We perform an implementation of the system and assess its performance, cover-
ing the procedures done by the different involved parties, including shuffling and
operations done under encryption according to the protocol. By going through
this complete implementation process, we also validate that implementing such
a system is feasible.

Hashing that has to be done to find positions in a BF corresponding to
an element can be considered negligible, being in the range of nanoseconds.
The same holds for shuffling. The procedures we expect to be the most
resource consuming are those using homomorphic encryption. For evaluation,
we instantiate ElGamal using the NIST P-256 elliptic curve [9] and use the
SCAPI2 library [35] for homomorphic encryption support.

Scanner. For each enrolled consumer, a scanner must create an EBF at the
end of each epoch. Creating an EBF incurs a fixed amount of work, equivalent
with m homomorphic encryptions. We implement this on a Raspberry Pi 4B,
having a 1.5GHz 64-bit quad-core ARM v8 Cortex-A72 processor, 8 GB of
DDR4 RAM memory, a 16 GB microSD memory card and running Ubuntu
20.10 as OS. We perform the encryptions in parallel using C++11 threads. For
m = 100000, as we used in the evaluation with real-world data, the scanner
creates an EBF in 125 seconds. To avoid lagging behind, a scanner should
create EBFs for all enrolled consumers faster than the length of an epoch.
Thus, for an epoch of 5 minutes, even a resource-constrained scanner such

2https://github.com/cryptobiu/libscapi
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as Raspberry Pi could support 2 enrolled consumers at the same time while
providing accurate statistical counts for crowds up to 1000 devices per epoch.

Server. When a consumer launches a query, besides having to deliver the
concerned shuffled EBF, the server must create its corresponding comb by
performing (ce − 1) ∗m additions under encryption. We implement and run
this on a basic cloud server with 16GB RAM and a 16-core Intel(R) Xeon(R)
Silver 4110 CPU @ 2.10 GHz, running Ubuntu 18.04 x86 64. The additions
under encryption are done in parallel using C++11 threads. For m = 100000,
m additions under encryption are performed in 8.6 seconds; for ce = 24, this
means that a comb can be created and delivered to a consumer in approximately
200 seconds. Knowing that the server will have to store EBFs, we check their
size. In our implementation, we compute the size occupied by an encryption to
678 B, meaning that, for m = 100000, an EBF would occupy 67.8 MB.

Consumer. To be able to compute the statistical counts, the consumer must
first decrypt the shuffled EBF and its corresponding comb by performing 2 ∗m
decryptions. We consider a consumer having a laptop running Ubuntu 20.04
x86 64, with 8GB RAM and a 4-core Intel(R) Core(TM) i5-10210 CPU @
1.60 GHz. Such laptop can do the necessary decryptions (also in parallel), for
m = 100000, in 80 seconds.

5.5 Discussion

5.5.1 On choosing ce and t

In order to separately count nonstationary and stationary devices from an
epoch, a consumer must decide on values for ce and t.

When choosing ce, a consumer must think about how much time is needed
in order to accumulate sufficient information to allow deciding upon the
(non)stationary nature of the sensed devices. The choice of ce (i.e. lower
or higher) directly limits the range for t, allowing thus a lower or higher granu-
larity for the interpretation of stationarity. For monitoring crowds, ce should
be chosen to cover more time than people from the crowd typically spend in
the sensed area, such that an effective t can be set. For example, if the scanner
is placed in a transit area, a lower ce may prove to be enough. If the scanner
is in a place where people tend to spend more time, a higher ce is preferable.

After choosing ce, a consumer must set t in order to perform the combing.
Before we go into details, it is worth noting again that it can happen that
probe requests do not reach the scanner in some epochs due to various reasons,
so this should be kept in mind before considering t. The consumer chooses
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t according to her own interpretation of what a nonstationary or stationary
device is. For example, for a t close to ce, stationary devices will be those that
are detected almost always as present and nonstationary all the others. For
t = 3 on the other hand, nonstationary devices will be mostly those that pass
through the scanner’s range without spending more than a couple of minutes
there and stationary devices all the rest.

A consumer can potentially compute even more sophisticated counts, such
as the number of devices spending some time in the range of a scanner but not
being almost always present (e.g., by subtracting stationary devices estimated
for a t close to ce from those estimated for t = 3). Though, the relevance, as
well as the accuracy of such arithmetically estimated counts remain yet to be
investigated.

5.5.2 Security analysis

Our system achieves the security goals proposed in the threat model, under the
assumption of noncolluding entities. By achieving these goals, our construction
becomes secure against honest-but-curious (HBC) adversaries,3 as we present
below.

Detections are encoded into BFs and then immediately discarded at the
scanner. BFs are encrypted at the end of an epoch, and only then they can
leave the scanner. Anonymization on the fly is, thus, satisfied. Moreover,
scanners cannot learn anything more than they already see through sensing, as
they do not handle any external data.

By handling only encrypted data that it cannot decrypt and by creating
combs obliviously under homomorphic encryption, the server is blinded and,
thus, cannot learn anything from data dealt with in the process.

Consumers can see, in the clear, shuffled BFs and combs. Such data
is meaningless when it comes to the privacy-sensitive detections that were
previously stored in it, since it was shuffled and it lost any such meaning in
the process. The only meaning left is given by its statistical properties, that is
a targeted need for estimating statistical counts.

Security of the system can be broken if the implementation deviates from
the system model, the attacker does not follow the protocol (i.e. becoming
malicious instead of HBC) or the noncolluding entities assumption is broken.
For example, if the server becomes malicious and does not shuffle an EBF, a
consumer could find out, through brute-force, the elements encoded in the BF.

3HBC adversaries do not deviate from the protocol but try to learn as much as possible
from the data they handle.
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Also, if the SP colludes with a consumer, even without being malicious, an
HBC server could see what is stored in the EBFs of that consumer.

5.5.3 Limitations on number of consumers

Homomorphic encryption is known to be resource-demanding. With our
resources, we were able to set up the system in such a way that it computes
highly accurate statistical counts for the considered dataset and for high, as
well as low thresholds. However, our limited resources could support a limited
number of consumers. For an epoch of 5 minutes, scanners could support 2
consumers, while the server could produce counts for one consumer within an
epoch.

More consumers can be supported by the same hardware if m is reduced.
We tried to fix m to 10000, therefore supporting 10 times more consumers.
Accuracy was still very high for t = 20 (i.e. > 98% for counting nonstationary
devices from the sequence of 5 epochs). However, accuracy decreased quicker
for lower t’s, which we expected since the lower value of m also meant more
collisions. To ensure the accuracies obtained by using m = 100000 but while
supporting more consumers, more powerful hardware is needed.

5.5.4 Integration with crowd flows counting

The capability to separately count nonstationary from stationary devices is
intended to be integrated in a CMS such as the one presented in Chapter 4.
The privacy protection guarantees are similar for the two works, making the
protocols designed to achieve these guarantees compatible with each other and,
therefore, enabling a handy attachment of this novel capability to such CMS.
However, the used variants of ElGamal homomorphic encryption are slightly
different. More precisely, the way in which 0’s and 1’s are encoded under
encryption differs in order to accommodate two different types of operations,
i.e. additions for building a comb and multiplications for combining EBFs to
count crowd flows. Thus, in order to support footfall and crowd flow counting at
the same time with separately counting nonstationary from stationary devices,
scanners should build, for each epoch and for each enrolled consumer, two
EBFs having their positions encoded according to the two different ElGamal
variants. The BF parameters of the two EBFs, though, do not necessarily have
to be identical, allowing the SP to set them separately.
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5.6 Conclusion

In this chapter, we proposed a system that can separately count nonstation-
ary from stationary Wi-Fi devices when monitoring crowds. Unlike previous
attempts, our system performs the separate counts in an anonymized way,
protecting, thus, the privacy-sensitive detections of devices belonging to in-
dividuals. The system encrypts and then immediately discards in-the-clear
detections, afterwards operating only on encrypted data that it cannot decrypt.
As a result, it supports decisions on the stationarity of devices built upon
information spanning extended periods of time, which were previously not
possible without privacy infringement risks. Moreover, the system allows users
to define themselves (and count accordingly) what nonstationary and stationary
devices are, based on the frequency of detections in a given period of time and
a custom threshold to use for separation.

We implemented the system using a Raspberry Pi as a scanner, a cloud
environment as a server and a laptop as a consumer, and we fed it with real-
world data from an open-air festival. Our system achieved a mean accuracy of
99.9% when estimating nonstationary devices sensed by a scanner placed in
the most crowded area of the festival throughout the whole period of sensing.
For the same scanner, in 93.9% of the estimation were at most one device away
from the actual count. These results show that highly accurate anonymized
counting of nonstationary Wi-Fi devices is possible when dealing with real-
world detections of crowds and while fully protecting the privacy-sensitive data
of the individuals being monitored.



Chapter 6

Conclusion

Wi-Fi-based crowd-monitoring systems are nowadays widely deployed, offering
valuable insights on the dynamics developing within crowds of pedestrians. At
the same time, such insights are built upon detections of devices of people
making up these crowds, people who have privacy concerns. These systems
have been initially built without taking privacy of individuals into account and
existing attempts to patch them with privacy-protecting capabilities proved to
be insufficient on numerous occasions.

In this thesis we aimed to protect the privacy of individuals when their
devices are sensed by a Wi-Fi-based crowd-monitoring system. Also, we
wanted to do this in such a way that the functionality of the system remains
valid. Hence, we proposed, as our main research question, to find out how
to construct Wi-Fi-based crowd-monitoring systems in such a way that they
enable discovering pedestrian dynamics and protect the privacy of the sensed
individuals at the same time. To address the main research question, we split
the research in three research questions: RQ1 on suitable techniques for privacy
protection, RQ2 on the utility level achievable using these privacy protection
techniques and RQ3 on the efficiency of the proposed methods. Below we
will show how these questions have been responded through the contributions
presented in the chapters of the thesis.

6.1 Contributions

RQ1: What techniques can be used for managing privacy-sensitive crowd-
monitoring data such that privacy protection is ensured?

We proposed two methods to ensure privacy protection for crowd-monitoring
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data. While protection is ensured by both methods, the type of offered
protection differs. One of them is based on k-anonymity and it was presented
in Chapter 3, while the other one combines Bloom filters with homomorphic
encryption, being displayed in Chapter 4. Both of them perform anonymization
on the fly, i.e. data is anonymized directly, in isolation, before leaving the
scanners. The first one ensures that no matter how the data is combined after
anonymization in order to address crowd-monitoring queries, it is impossible to
have an identifier appearing less than k times. The second one drops entirely the
idea of using identifiers by encoding detections into Bloom filters and encrypting
them with a homomorphic encryption scheme, leaving no possibility of going
back to the original data under the proposed cryptographic construction.

RQ2: To what extent do the considered privacy protection techniques impact
the utility level of the attainable crowd-monitoring insights?

The proposed methods both allow the computation of statistical counts on
crowds, i.e. measuring the footfall in a location as well as the size of a crowd
flow between locations. The impact of both privacy protection methods on
measuring footfall proved to be low. However, the utility level differs when
it comes to crowd flows, as the k-anonymity approach proved to achieve less
utility than the Bloom filters approach in the following sense. The accuracy of
the counts on detection k-anonymous crowd flows decreases when the number
of people joining and leaving the crowd increases, limiting thus its applicability
to situations known to have few perturbations. On the other hand, the Bloom
filters approach is not sensitive to such variations, confirmed by achieving
highly accurate estimations for most situations when experimenting with a
wide range of real-world crowd flows, i.e. 98.7% of the estimations being at
most 3 devices away from the real counts.

Obtaining such results with the Bloom filters approach made us look into
whether we can enable the option of making granular decisions upon which
devices to be considered as part of the crowd, willing to expand even further
the utility of statistical counts. Thus, we explored in Chapter 5 the possibility
of separately counting nonstationary from stationary devices under the same
privacy protection guarantees as in Chapter 4, an attempt which succeeded,
achieving a mean accuracy of 99.9% while experimenting with the same real-
world dataset.

RQ3: How expensive are the considered privacy protection techniques for
crowd monitoring from an efficiency point of view?

To answer this question, we performed proof-of-concept implementations
of the systems and assessed their performance. The k-anonymity approach
does not incur a significant cost on the performance of the system, as the
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applied operations are lightweight, truncation implying a binary operation and
correction (if needed) a sorting algorithm. The Bloom filters approach is more
expensive, as cryptographic operations, which tend to be heavy, are performed
in the process. However, our implementation, which used a resource-constrained
device as a scanner, and first a laptop then a cloud environment as a server,
could successfully accommodate several consumers enrolled at the same time,
being able to perform the necessary operations below the allowable time limit
needed to ensure the liveness of the system.

6.2 Limitations & Directions for Future Research

In the following paragraphs we will reflect upon the results of our research
from the perspective of encountered boundaries, thus discussing limitations of
our work, as well as presenting potential avenues for future research starting
from our findings.

6.2.1 Detection k-anonymity’s sensitivity to perturbations

In Chapter 3 we realized that despite being highly efficient, detection k-
anonymity is sensitive to perturbations, i.e. the percentage of people joining or
leaving a crowd flow. For crowd flows known to have few perturbations, the
accuracy is high. If there are more perturbations, the accuracy decreases. Our
intuition made us ask ourselves whether knowing information on the percentage
of expected joiners and leavers can help getting better crowd flow estimations.
To quickly test this, we performed a preliminary implementation of a multiple
linear regression algorithm and the improvements indeed looked promising for
the presented London Underground routes. However, more research is needed
to get a complete picture of all the implications.

6.2.2 Clarifications on statistical counts

Wi-Fi scanners cover a certain range where they gather detections from. This
range is influenced by the physical characteristics of the installation location
and it fluctuates in time because there are phenomena that are known to
influence Wi-Fi signals propagation, such as reflection, refraction, scattering,
diffraction, absorption or shadowing. So when we say that a device is near a
scanner, it means that the device is in the range of the scanner at a specific
moment. However, being in the range of a scanner does not guarantee that
a device is detected. For a detection to happen, a device should broadcast a
Wi-Fi probe request message within that epoch (sending patterns differ across
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devices) and that message should reach the scanner (packet loss can occur due
to congestion or interference).

Literally, the footfall as we model in our work is the number of distinct
identifiers in the Wi-Fi messages reaching a scanner within an epoch. This
number is different from the number of people in that area, as there are people
that carry no device while others carry more than one device. Moreover, this is
even different from the number of detected devices, as there might be devices
that use MAC address randomization and re-randomize their broadcasted
identifier in a period of time shorter than the epoch duration. Also, it is worth
mentioning that this number is independent of how many times the identifiers
are seen, since we made the decision to use detection sets.

Continuing along the same lines, a statistical count on a crowd flow is
the number of distinct identifiers found in the Wi-Fi messages that reach the
concerned scanners during the specific epochs indicated by the crowd flow query.
In addition to the influences mentioned for footfall, the closeness of crowd
flows to real-life flows of people is influenced by the distance between scanners.
Measuring crowd flows between distant scanners must take into account the
traveling speed of pedestrians, such that appropriate epochs are chosen. On
the other hand, crowd flows between close scanners must take into account the
possibility of detecting the same device in multiple places at the same time,
because overlapping ranges, though not desirable for crowd-monitoring, can
happen in practice.

6.2.3 Dealing with overlapping ranges of scanners

Throughout the thesis we made the assumption that, ideally, scanners are
positioned in such a way that their ranges do not overlap. In real-world
implementations, though, it can happen that scanners overlap in coverage,
either temporarily, due to the fluctuation of ranges, or by design, for contiguous
coverage purposes. By following the definition, a crowd flow between such
scanners will falsely count devices that find themselves in the overlap as making
the transition. The problem is most impactful for crowd flows of complexity
q = 2, i.e. between two scanners, as having at least a third one would already
indicate an actual movement unless all of them overlap, which is uncommon.

In Fig. 6.1, for scanners with overlapping ranges s1, s2 and epochs e1, e2,
we present the 4 possible situations in which devices might find themselves
when counted as part of the crowd flow. All situations show devices detected
by s1 in e1 and by s2 in e2. Situation (a) is similar with the case when scanners
have non-overlapping ranges, device a1 being detected by a single scanner
each epoch. In (b) and (c), in one of the epochs devices are detected by both
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scanners, being in the overlap of ranges. Eventually, devices like a4 in (d) are
detected by both scanners in both epochs.

s1

a1

e1

s2

a1

e2

s1

e1

s2

a2

e2

s1

a3

e1

s2
a3

e2

s1

e1

s2
a4

e2

(a)

(c)

(b)

(d)

a2

a4

Figure 6.1: Situations of crowd flows between scanners with overlapping ranges.

An improved estimation of the crowd flow in discussion could be achieved,
for example, by computing |Ds1,e1 ∩Ds2,e2 | − |Ds1,e1 ∩Ds2,e2 ∩Ds1,e2 ∩Ds2,e1 |.
This formula excludes from counting devices in (d), for which no information
regarding their movement can be derived. Other strategies, such as excluding
devices in (b) or (c), can be applied in the same way.

Both systems proposed in Chapters 3 and 4 can support such calculations.
For example, the system proposed in Chapter 4 can achieve this by asking the
server to perform the additional necessary BF intersections under encryption,
then shuffle and deliver the result to the consumer along with a query response.
We tested this on crowd flows between two scanners from the Assen dataset
that seemed to have overlapping ranges and indeed we were able to identify
and subtract apparently unmoving devices from the statistical counts. To what
extent, though, the improved statistical counts are closer to the actual flows
cannot be deduced from the available data only.

6.2.4 Crowd flows between more than two locations

In Chapter 4, when analyzing the accuracy of crowd flows, we essentially looked
at combining two BFs and used an improved closed formula [59] for estimating
the counts. However, there is no improved closed formula for combining more
than two BFs and applying the general (unimproved) formula makes accuracy
quickly decrease.

To accurately estimate the counts for such crowd flows (i.e. concerning
more than two locations), there are currently two available options that could
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be investigated. The first one is applying the general estimation formula that
was used also for footfall. Note, though, that BFs may need to be designed
larger in order to maintain high accuracy for the more crowded flows. The
second one is resorting to the variant proposed in [70], that does not have the
accuracy negatively affected by the number of combined BFs. Yet, it should
be dealt with its particularities, such as the fact that queries must be specified
beforehand and heavy computations have to be performed on the scanners.
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[55] M. Moussäıd, D. Helbing, S. Garnier, A. Johansson, M. Combe, and
G. Theraulaz. Experimental study of the behavioural mechanisms under-
lying self-organization in human crowds. Proceedings of the Royal Society
B: Biological Sciences, 276(1668):2755–2762, 2009.

[56] A. Musa and J. Eriksson. Tracking unmodified smartphones using wi-fi
monitors. In Proceedings of the 10th ACM conference on embedded network
sensor systems, pages 281–294, 2012.

[57] M. E. Nergiz, M. Atzori, and Y. Saygin. Towards trajectory anonymization:
a generalization-based approach. In Proceedings of the SIGSPATIAL ACM
GIS 2008 International Workshop on Security and Privacy in GIS and
LBS, pages 52–61. ACM, 2008.

[58] F. of Privacy Forum. https://fpf.org/wp-content/uploads/10.22.13-
FINAL-MLA-Code.pdf, 2013. [Online; accessed 04-June-2020].

https://fpf.org/wp-content/uploads/10.22.13-FINAL-MLA-Code.pdf
https://fpf.org/wp-content/uploads/10.22.13-FINAL-MLA-Code.pdf


BIBLIOGRAPHY 105

[59] O. Papapetrou, W. Siberski, and W. Nejdl. Cardinality estimation and
dynamic length adaptation for bloom filters. Distributed and Parallel
Databases, 28(2):119–156, 2010.

[60] M. Perttunen, V. Kostakos, J. Riekki, and T. Ojala. Urban traffic analysis
through multi-modal sensing. Personal and Ubiquitous Computing, 19(3-
4):709–721, 2015.

[61] A.-C. Petre, C. Chilipirea, M. Baratchi, C. Dobre, and M. van Steen.
Wifi tracking of pedestrian behavior. In Smart Sensors Networks, pages
309–337. Elsevier, 2017.

[62] A. E. C. Redondi, D. Sanvito, and M. Cesana. Passive classification of wi-fi
enabled devices. In Proceedings of the 19th ACM International Conference
on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
pages 51–58, 2016.

[63] G. D. P. Regulation. Regulation eu 2016/679 of the european parliament
and of the council of 27 april 2016. Official Journal of the European Union,
2016.

[64] R. L. Rivest, L. Adleman, M. L. Dertouzos, et al. On data banks and
privacy homomorphisms. Foundations of secure computation, 4(11):169–
180, 1978.

[65] F. Rusu and A. Dobra. Statistical analysis of sketch estimators. In Proceed-
ings of the 2007 ACM SIGMOD international conference on Management
of data, pages 187–198, 2007.

[66] P. Samarati and L. Sweeney. Protecting privacy when disclosing in-
formation: k-anonymity and its enforcement through generalization and
suppression. Technical report, technical report, SRI International, 1998.

[67] L. Schauer, M. Werner, and P. Marcus. Estimating crowd densities and
pedestrian flows using wi-fi and bluetooth. In Proceedings of the 11th
International Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services, pages 171–177. ICST (Institute for Computer
Sciences, Social-Informatics and . . . , 2014.

[68] B. Soundararaj, J. Cheshire, and P. Longley. Estimating real-time high-
street footfall from wi-fi probe requests. International Journal of Geo-
graphical Information Science, pages 1–19, 2019.



106 BIBLIOGRAPHY

[69] B. Soundararaj, J. Cheshire, and P. Longley. Estimating real-time high-
street footfall from wi-fi probe requests. International Journal of Geo-
graphical Information Science, 34(2):325–343, 2020.

[70] V.-D. Stanciu, M. v. Steen, C. Dobre, and A. Peter. Privacy-preserving
crowd-monitoring using bloom filters and homomorphic encryption. In
Proceedings of the 4th International Workshop on Edge Systems, Analytics
and Networking, pages 37–42, 2021.

[71] V.-D. Stanciu, M. van Steen, C. Dobre, and A. Peter. Privacy-friendly
statistical counting for pedestrian dynamics. Under review.

[72] V.-D. Stanciu, M. van Steen, C. Dobre, and A. Peter. k-anonymous crowd
flow analytics. In MobiQuitous 2020-17th EAI International Conference
on Mobile and Ubiquitous Systems: Computing, Networking and Services,
pages 376–385, 2020.

[73] V.-D. Stanciu, M. van Steen, C. Dobre, and A. Peter. Anonymized counting
of nonstationary wi-fi devices when monitoring crowds. In Proceedings
of the International Conference on Modeling Analysis and Simulation of
Wireless and Mobile Systems on International Conference on Modeling
Analysis and Simulation of Wireless and Mobile Systems, pages 213–222,
2022.

[74] S. J. Swamidass and P. Baldi. Mathematical correction for fingerprint
similarity measures to improve chemical retrieval. Journal of chemical
information and modeling, 47(3):952–964, 2007.

[75] L. Sweeney. k-anonymity: A model for protecting privacy. Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
10(05):557–570, 2002.

[76] M. Terrovitis and N. Mamoulis. Privacy preservation in the publication of
trajectories. In MDM, volume 8, pages 65–72, 2008.
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