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Abstract
Scientific advances, especially in the healthcare domain, can be accelerated by making data available for analysis. However, 
in traditional data analysis systems, data need to be moved to a central processing unit that performs analyses, which may be 
undesirable, e.g. due to privacy regulations in case these data contain personal information. This paper discusses the Personal 
Health Train (PHT) approach in which data processing is brought to the (personal health) data rather than the other way 
around, allowing (private) data accessed to be controlled, and to observe ethical and legal concerns. This paper introduces 
the PHT architecture and discusses the data staging solution that allows processing to be delegated to components spawned 
in a private cloud environment in case the (health) organisation hosting the data has limited resources to execute the required 
processing. This paper shows the feasibility and suitability of the solution with a relatively simple, yet representative, case 
study of data analysis of Covid-19 infections, which is performed by components that are created on demand and run in 
the Amazon Web Services platform. This paper also shows that the performance of our solution is acceptable, and that our 
solution is scalable. This paper demonstrates that the PHT approach enables data analysis with controlled access, preserv-
ing privacy and complying with regulations such as GDPR, while the solution is deployed in a private cloud environment.
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Introduction

In the last decades, the progressive spread of information 
technologies in the global society has caused a substantial 
increase in the amount of generated data [1]. These data are 
of paramount value for the modern way of life and spread 
through all domains, from science to life style to commerce 
and to security. In the healthcare domain, for instance, these 
data can foster medical advances and improve healthcare 
services, improve disease surveillance, and enable clini-
cal decision support and population health management, to 
mention just a few benefits [2].

Until recently, data analysis required data to be copied 
and moved to a central location where they would be eventu-
ally combined with data from other sources. This approach 
requires potentially large amounts of data to be moved 
around, so that centralising them is in general not convenient 
anymore. From technical and economical perspectives, it is 
increasingly unlikely that a single organisation or individual 
can afford to collect and store all the needed data and main-
tain their required infrastructure. Another argument against 
data centralisation comes from a social perspective related 
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to the ethical and legal restrictions to the sharing of privacy-
sensitive data. Regulations such as the European General 
Data Protection Rules (GDPR) defines rules to protect the 
access of personal data and have an impact on the way data 
can be stored and processed [3]. Therefore, to comply with 
these regulations and, at the same time, harness the potential 
of the massive amount of data available, a distributed and 
privacy-preserving data analysis approach is necessary.

Distributed learning allows data from different source 
locations to be analysed without the need to move them to 
a central location [4]. In the healthcare domain, the Per-
sonal Health Train (PHT) is an approach that have been 
gaining momentum in the last years. The Personal Health 
Train initiative started in 2016 when a number of life sci-
ences researchers in the Netherlands discussed the idea of 
a decentralised and privacy-preserving data and services 
infrastructure that could facilitate the reuse of data. This 
infrastructure should be based on the FAIR principles [5] to 
guarantee that not only the data but all relevant elements of 
the infrastructure are findable, accessible, interoperable and 
reusable. To introduce the initial ideas in an intuitive way, 
the Dutch Techcenter for Life Sciences produced an anima-
tion video1 in collaboration with the involved researchers, 
showing the main elements of the intended infrastructure 
and illustrating some of the expected use cases. The main 
idea of the PHT is that the algorithms move to the data 
instead of the other way around. The PHT uses the analogy 
of a train system, in which trains (the analysis algorithm) 
move through (data) stations, so that in each station data 
can be accessed and analysed. This approach allows analysis 
to be performed on scattered data, including sensitive data, 
without the data leaving their organisational boundaries, so 
that data privacy and control can be preserved, and ethical 
and legal concerns are observed [6].

The personal part of the Personal Health Train is about 
giving to the data controller the means to exercise control-
ling authority over their personal data that are hosted and 
managed in different locations. This allows data controllers 
to more precisely know where their data are located and 
also to determine the data access and reuse conditions. The 
PHT supports dynamic consent, in which the data controller 
is asked to explicitly consent for a data requester to access 
his/her data under some specific context. Regarding privacy 
and security, the main benefit of the PHT is that data pro-
cessing happens within the administrative realm of the data 
controller. In this way, data analysts are able to get valuable 
information from different sources, including sensitive data, 
without directly accessing the data [7].

Data analysis algorithms require input data. Although 
seemly obvious, this statement embeds a number of 

assumptions such as that the data have been discovered, 
are accessible, match the algorithm’s requirements and 
are allowed to be used. In biomedical research, there is an 
increase adoption of machine learning (ML) techniques for 
identification, classification and prediction of, for instance, 
pathologies and their outcomes [8–11]. A commonality 
among these works is that ML algorithms require an often 
large amount of training data to improve their results. By 
following the FAIR principles, the PHT approach improves 
the findability, accessibility, interoperability and reusabil-
ity of the data made available in the Data Stations. This is 
expected to improve the availability of potential training sets 
for these algorithms.

The PHT vision foresees data stations of different sizes 
and capabilities. For instance, large hospitals would have 
large stations containing data from a significant number of 
patients, while small medical practices would have a station 
containing only the data of its patients. Since computing 
capacity is necessary whenever processing is expected to 
be performed, a suitable environment should be available 
in the organisation hosting the data station. However, the IT 
infrastructure of many organisations may not be powerful 
enough to support the processing required by arriving trains 
in addition to their own operational processes. In this case, 
a mechanism has to be devised to allow more powerful pro-
cessing environments to be dynamically staged for execut-
ing the incoming algorithms while keeping the data under 
control of the data controller and sensitive data protected.

This paper reports on our efforts to extend the PHT 
approach to allow data to be processed in the cloud, dynami-
cally augmenting the processing power of the IT infrastruc-
ture of healthcare organisations. Our solution not only fulfils 
the functional requirements of the PHT approach, but it also 
complies with privacy regulations, particularly the GDPR. 
The paper describes the design and implementation of our 
solution, and demonstrates its suitability with a simple yet 
representative case study.

This paper extends [12] by giving more details on the 
PHT architecture and describing the process that determines 
whether a data station needs to be staged. Other small adjust-
ments have also been made in the staging process to better 
reflect the current status of its design and development.

This paper is further structured as follows: the next sec-
tion introduces the PHT architecture, explaining its main 
components, the third section discusses the data visiting 
process that determines the data stations to which a train is 
forwarded, the fourth section presents the data staging pro-
cess that is performed in case a train is executed in the cloud, 
the fifth section presents the implementation of our solution, 
by justifying our choices of technologies, the sixth section 
discusses the case study we used to validate our solution, the 
seventh section discusses related work and the last section 
gives our conclusions and recommendations for future work.1  https://​vimeo.​com/​14324​5835.

https://vimeo.com/143245835
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Architecture

The Personal Health Train (PHT) architecture adopts the 
metaphor of a train system in which trains move around and 
stop at stations. In the PHT, the trains represent analysis 
(processing) algorithms that visit stations where data are 
made available for processing. The architecture is specified 
with the Archimate 3.1 language [13], which is the OMG 
standard for Enterprise Architecture modelling as a visual 
language with a default iconography for describing, analys-
ing, and communicating architectural concerns. Parts of the 
PHT architecture are also specified with UML [14], such as 
sequence and activity diagrams for describing behavioural 
aspects.

Components and Roles

Figure 1 shows the main architectural components of the 
PHT, namely:

•	 Data Station is a software application responsible for 
making data and their related metadata available to users 
under the accessibility conditions determined by applica-
ble regulations and the related Data Controllers.

•	 Personal Gateway is a software application responsible 
for mediating the communication between Data Stations 
and Data Controllers. The Data Controllers are able to 
exercise their control over the data available in different 
Data Stations through the Personal Gateway.

•	 Station Directory is a software application respon-
sible for indexing metadata from the reachable Data 
Stations, allowing users to search for data available in 
those stations.

•	 Train represents the way data consumers interact with 
the data available in the Data Stations. Trains represent 
a particular data access request and, therefore, each 
train carries information about who is responsible for 
the request, the required data, what will be done with 
the data, what it expects from the station, etc.

•	 Train Handler is a software application that interacts 
with the Stations Directory on behalf of a client to dis-
cover the availability and location of data and sends 
Trains to Data Stations.

Related to the components above, the following roles 
played by stakeholder also depicted in Fig. 1 have been 
identified:

•	 Station Owner is the role of being responsible for the 
operation of a Data Station.

•	 Directory Owner is the role of being responsible for 
the operation of a Station Directory.

•	 Data Controller is the role of controlling rights over 
data.

•	 Train Provider is the role of being responsible for the 
creation of a specific Train, e.g. the developer of a spe-
cific analysis algorithm.

Fig. 1   Main roles and components of the PHT architecture
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•	 Train Owner is the role of using a Train Handler to send 
Trains to Data Stations.

Since the PHT data analysis is mainly performed at the 
data source side, appropriate definitions are necessary to 
determine where to find, how to access, how to interpret and 
how to reuse the data. These definitions are provided using 
appropriate metadata to describe each of the PHT elements 
as depicted in Fig. 1. Therefore, the PHT infrastructure relies 
on the FAIR (Findable, Accessible, Interoperable, Reusable) 
data principles [5], which should apply to all elements of the 
architecture, including the Train and Data Station, focus-
sing on the reusability of distributed data with distributed 
analytics.

Train Types and Structure

Trains represent algorithms that manipulate data. We can 
use different methods to realise data manipulation such as 
queries, API calls, container technologies, scripts, among 
others. Therefore, Trains can have different types, according 
to the data manipulation method they use. Figure 2 depicts 

examples of Train types as application components with 
their respective data objects.

A Train is composed of two parts (see Fig. 2), namely 
the Train metadata and its payload. The metadata provides 
information about the Train, including its creator (Train 
Provider), its dispatcher (Train Dispatcher), the required 
input data, the expected output, what is supposed to happen 
with the data (the process), its purpose and its computa-
tion requirements. Most of the Train metadata properties 
are applicable to any type of train. In contrast, the train pay-
load depends on the train type. For instance, in a SPARQL 
train, which is a specialisation of Query Train, the payload 
is the SPARQL query, while in a Docker train, which is a 
Container Train, the payload is the identifier of the Docker 
image stored in a Docker repository.

Data Station Services

Data Stations provide access to their functionality through 
their API. In the PHT architecture, we classified the ser-
vices offered by the Data Stations in three groups, namely 

Fig. 2   Examples of Train types in the PHT approach
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Station Metadata Service, Station Services and Interaction 
Service, as depicted in Fig. 3.

The Station Metadata Service is responsible for man-
aging and providing access to the metadata of the Data 
Station itself and its contents. This includes interfaces 
for managers and data stewards to add and edit metadata 
records, and for users and client applications to search and 
retrieve the available metadata content.

The Station Services include Data Station-specific func-
tions, such as the connection between the Data Station 
and the Personal Gateway, subscription services where, for 
instance, the Station Directory can subscribe to received 
notifications on updates on the metadata content of the 
station.

The Interaction Service is responsible for receiving and 
executing trains. Since we have different types of trains, 
stations need to specialise this service with the specific 
functionality required to support each of the train types. 

Station owners may restrict the types of interaction ser-
vices a given station supports.

Data Visiting Process

The PHT approach encourages and regulates data reuse since 
Trains reaching the Data Stations access the necessary data 
and complete their tasks without giving direct data access 
to their end-users. In the PHT, a data consumer who wants 
to analyse or manipulate data in any way, plays the role of a 
Train Owner and uses the Train Handler (client application) 
to dispatch a Train to the relevant Data Station.

Figure 3 shows how the Interaction Component of the 
Data Station executes the train payload. This component 
serves as an intermediary between the data source (Data 
Storage in Fig. 3) and the Train. Therefore, data manipula-
tion (analysis, copy, creation, etc.) occurs at the Data Station 

Fig. 3   Data Station functions, services, interfaces and internal components
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and under the supervision of the Station Owner. This allows, 
for instance, that the station has the opportunity to inspect 
the output of the train execution and check whether the 
results are allowed to be returned to the Train Owner.

Figure 4 depicts the sequence of interactions involved in 
selecting and dispatching a train. The process starts with the 
Train Owner using its Train Handler application to select a 
train. In order to list the available trains to its user, the Train 
Handler interacts with the Station Directory to request the 
list of Train Garages, which are Data Stations specialised in 
providing Trains instead of or in addition to data. With this 
list, the Train Handler invokes each Train Garage to retrieve 
the metadata of the available trains. These options are then 
returned to the Train Owner, who selects a train to be dis-
patched. From the train metadata, the Train Handler retrieves 
the required parameters of the train. For example, in a health 
application one parameter could indicate the disease the 
train provides analysis for. The parameters are provided by 
the Train Owner, who then proceeds to dispatch the train. 
The Train Handler identifies the required input data from 
the train metadata, searches in the Station Directory for the 
Data Stations that provide the required data, plans the train 
execution and dispatches the train to the discovered stations. 
Once the train is executed, the Train Handler receives the 
results and presents them to the Train Owner.

Data Staging

An important step of the data visiting process that is per-
formed by a Data Station is the decision to accept or refuse 
the execution of the train. To make this decision, the station 
needs to consider a number of different variables such as 
who sent the train, for which purpose, the required data, the 
expected results and the computation requirements of the 
train. Figure 5 gives the high-level steps of the train evalu-
ation process. In this process, once a train gets to the sta-
tion, two parallel evaluations are triggered, one to evaluate 
the train data access requirements and another to evaluate 
the train computation needs. In this process we have three 
possible outcomes, (i) the train is executed because both 
computation and data access requirements are matched, (ii) 
the train is rejected because either the data access has been 
denied or the station does not have enough resources to run 
the train, or (iii) the data access has been authorised, the 
station is not capable of executing the train but it can stage a 
capable station with enough resources to run the train.

The train evaluation process path related to data can 
become significantly complex as issues such as privacy, 
security, access control and data structure and semantics 
should be taken into consideration. We are progressively 
working on these issues by investigating the use of seman-
tic descriptions of data requirements and data offerings to 

support automated matching. However, in this paper, we 
focus on the situation in which (i) the original station has 
asserted that the incoming train has access to the required 
data, and (ii) the station is not able to execute the train but 
has determined the feasibility of dynamically deploying 
another station with the required data in an environment 
with enough computing resources, such as a cloud plat-
form. The architectural design of the Data Station supports 
that the Data Station platform runs the Train either locally 
or uses a Staging Station in the cloud, depending on the 
computing resources available at the main Data Station 
and the Train requirements. This capability improves flex-
ibility and scalability, using local resources or extending 
the infrastructure resources with the Staging Station when 
required.

Figure 6 depicts the proposed Data Station architec-
ture with the elements related to staging. The Data Inter-
action Service provides functionality that allows Trains 
to access the data available at the Data Station and also 
validates the incoming Train via the Train Validation Ser-
vice, as depicted in Fig. 5. The Data Interaction Service 
assesses whether the Train behaves according to the Sta-
tion requirements and the Train description provided in 
the Train metadata. Whenever the data required by a Train 
have access restrictions, the Data Interaction Service also 
enforces the required access control through authentica-
tion and authorisation. In some cases, the authorisation 
process triggers the Consent Service, which is responsible 
for requesting a consent from the responsible person or 
entity to grant access to the data.

The Data Station Metadata Service provides access to the 
metadata of the Data Station and of all data sets made avail-
able through this Station. External applications willing to 
retrieve metadata from the Data Station invoke this metadata 
service to accomplish the task.

Once the station has determined that it needs to stage a 
new station in the cloud in order to execute the train, the 
Staging Service proceeds to deploy a new Data Station in 
the cloud through its related Staging Interface, configuring 
the environment with the computing capabilities compatible 
with the Train requirements. The Staging Service uses the 
Data Interaction Service to retrieve the data required by the 
Train and copy them to the newly deployed Staging Station. 
Finally, the Train is forwarded to the Staging Station where 
it is expected to be executed.

The Station Owner of the original Data Station is also 
responsible for the Staging Station. The staging process 
should therefore be transparent to the Train Owner. How-
ever, the use of an external platform can incur an extra cost. 
For this reason, we defined a Billing component, which can 
be used at the Station Owner’s convenience and can accrue 
the staging costs that should be covered by the Train Owner, 
depending on prior agreements.
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The Staging Station is an extension of the regular Data 
Station and it behaves like the original Data Station, but with 
some additional features.

Figure 7 depicts the architecture elements of the Staging 
Station, which offers the following services:

•	 Access Control Service offers access control to the 
cloud environment, but only to the Data Station Owner. If 
needed, more users can be added and get specific permis-
sions and policies to execute particular tasks. Commu-
nication between the components in the cloud is denied 
by default to provide a proper secure environment. The 
Identity Management Service can later provide roles to 

allow or deny access to the other resources deployed and 
used by the Staging Data Station, such as storage and 
computing instances.

•	 Data Storage Service stores the input and output data. 
The input data are selected at the original Data Station 
based on the Train needs and moved to the Staging Data 
Station in the cloud. The output data result from the Train 
execution, and are sent to the original Data Station.

•	 Even-Based Services The Staging Platform provides 
event-based services to automate the execution steps. For 
instance, when the data are entirely moved to the cloud, 
the Staging Data Station notifies the cloud computing 
instance in which the Train can be executed. Further, 

Fig. 5   High-level steps of the train evaluation process

Fig. 6   Data Station architecture with staging components
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the original Data Station may subscribe to be notified 
when the Train execution finishes, to harvest the output 
data once they are available. Events and trigger actions 
are achieved through the Event Handler and Event Dis-
patcher services, which listens to the events issued by 
infrastructure components to create rules and trigger 
actions, and executes the actions provided by the Event 
Handler, respectively.

•	 Logging Service logs the data access interactions, ena-
bling regulatory compliance and security, but also opera-
tional tasks. It identifies which actions were taken by 
whom, the resources that were acted upon, who accessed 
which data when the event occurred, and other details to 
help analyse and respond to an activity. This is a require-
ment for GDPR compliance, but it is also used to com-
municate with the Event-based services to launch tasks 
when an event occurs.

Solution Implementation

In this section, we present our implementation of the pro-
posed Staging Station architecture that has been developed 
to process a Container Train, which is a Train that represents 
a Docker image. We begin by discussing the selection of 
tools, followed by the implementation in the dynamic infra-
structure platform.

Technologies

For the dynamic platform to stage Data Stations, we chose 
Amazon Web Services (AWS), due to its GDPR compli-
ance [15], free-tier resources for testing, plenty of options 
for infrastructure resources [16] and its global infrastructure, 
with multiple locations worldwide and especially in Europe. 
For the provisioning tool, we chose Terraform2, since it is 
open source, supports multiple dynamic platforms and has 
declarative configuration. Furthermore, most alternatives are 
vendor-specific solutions and could create yet another ven-
dor lock-in. The extensive integration and support offered 
by Terraform confirmed our choice for AWS as dynamic 
platform.

Terraform is convenient because it allows many infra-
structure components to be implemented through pieces 
of code that can be deployed at the same time. Terraform 
provisions the resources of a dynamic platform, and a 
Terraform provider is used to interact with the APIs and 
expose the resources from the corresponding dynamic 
platform. In our implementation, the AWS provider is 
used for provisioning all the required resources. Besides, 
we chose the closest European AWS region (Frankfurt) in 

Fig. 7   Staging Station architecture

2  https://​www.​terra​form.​io.

https://www.terraform.io
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order to comply with GDPR. Terraform has been installed 
in the machine that runs the Data Station.

The implementation comprises two parts: the Data 
Station, which runs in a laptop, and the Staging Station, 
which runs in AWS. Since we implemented our data stag-
ing prototype to run Container Trains, once the Train is 
set up to run in a Data Station, the Station takes the con-
tainer identifier from the Train payload and retrieves the 
container image from its Train Registry. In our prototype, 
we used the Amazon Elastic Container Registry (ECR) 
service, which supports Docker images, as the Image 
Repository.

We implemented the Data Station in our prototype on 
a computer with 1.8 GHz Dual-Core Intel Core i5 and 
8 GB memory. We implemented an API that plays the 
Data Station role and interacts with the Staging Station. 
In addition to Terraform, the technologies used in the 
implementation and installed in the computer are Docker 
client, AWS SDK for Python, NodeJS, and Express. The 
Data Station API is configured in NodeJS and exposed to 
the Internet via the localtunnel npm tool.

Our implementation supports the functionality trig-
gered after the decision that the Train cannot run at the 
original Data Station due to lack of enough computing 
resources. In addition, it assumes that the Train can have 
access to the required data.

Interactions

Figure 8 depicts the sequence diagram that shows the inter-
actions between our implementation components to support 
the deployment and execution of the Train in the Staging 
Station. Once the decision to stage a new station in the cloud 
has been made, the Data Station Staging Interface launches 
the Staging Station in AWS as described in the Terraform 
definition files. This allows all the necessary components to 
be provisioned in the AWS cloud at the same time.

Once the Staging Station is deployed, the (original) Data 
Station subscribes to the Staging Station Publish-Subscribe 
Service to receive a notification when the Train execution is 
completed. The Data Station also moves the required data to 
the Staging Station through its Data Storage Service. Once 
the required data have been transferred to the Staging Data 
Station, the Event-Based Service immediately triggers the 
Data Interaction Service to launch the Train. In order to 
do so, the Data Interaction Service pulls the Train Image 
from the Image Repository, deploys it in the Staging Station 
and executes it. Once the Train execution is completed, the 
resulting data are stored by the Data Storage Service.

When the Train finishes its execution, the Data Interac-
tion Service informs this via the Event-Based Service to 
the Publish-Subscribe service. Finally, the Publish-Sub-
scribe Service sends a notification message to the Data 
Station, which can proceed to transfer the output data 

Fig. 8   Interaction sequence for Staging Station
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from the Stating Station. At this point if necessary, the 
Data Station can verify whether the output data complies 
with the expected output as defined in the train metadata. 
Once all checks have been done, the Data Station sends 
the output data to the requesting Train Handler.

AWS Services

Figure 9 illustrates the Staging Data Station implementa-
tion we deployed in the AWS cloud in accordance with 
the interaction diagram of Fig. 8.

Table 1 shows the AWS services we used in our imple-
mentation, as well as the service that implements each 
PHT component from Fig. 7.

Authentication

In order to create an environment in AWS, we first need 
an Amazon Web Service Account and a special authentica-
tion method. We used Multi Factor Authentication (MFA) 
to access the AWS console. We assigned an Admin role to 
the Station Owner, having a name and two keys, namely, the 
public assess key and the secret key. In this way, the desired 
connection to the environment is established in an absolutely 
reliable and secure way.

The authentication credential are configured in the Data 
Station, allowing it to interact with AWS through its Staging 
Service to trigger the deployment of a Staging Station. The 
creation of the AWS account and the configuration of the 
Data Station with the AWS account credentials are manual 
steps that have to be taken by the Station Owner.

Fig. 9   Implementation in AWS

Table 1   PHT components and AWS services

PHT component AWS service Description

Data storage service Simple storage service (S3) Provides object storage through a web service interface
Event handler, event dispatcher Cloud watch Monitoring service that provides data and actionable insights for AWS 

infrastructure resources
Publish-subscribe service Simple notification service (SNS) Using SNS topics, publisher systems can fan out messages to many 

subscriber systems, including HTTP endpoints
Container environment Elastic container service (ECS) fargate Computation runtime environment based on serverless technology that 

facilitates deployment, so that we do not need to be concerned about 
how many resources assign in advance

Access control Identity and access management (IAM) Manages access to AWS services and resources securely
Networking Virtual private cloud (VPC) Creates a custom networking environment
Image repository Elastic container registry (ECR) Fully managed Docker container registry
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Publish‑Subscribe Service

We use Amazon SNS to implement the Publish-Subscribe 
Service. The SNS can respond with three types of mes-
sages: (i) subscription confirmation, (ii) confirmation to 
unsubscribe, and (iii) the actual notification. The mes-
sages sent by SNS use HTTP POST requests with the 
message type on the header, allowing us to identify the 
type of message and run specific jobs in the Data Station 
Staging Interface, as shown in Fig. 8.

Storage

The Data Storage Service is implemented with Ama-
zon S3, so from now on it is referred to as the bucket, in 
accordance with the AWS S3 terminology. We used three 
buckets by design, to store input data, output data and log 
files, respectively. The use of several buckets provides 
more granular security and facilitates automation, trig-
gering different actions on each of them: the availability 
of input data triggers the Train execution, while the avail-
ability of output data triggers the download and smooth 
data retrieval at the end of the Train execution. Table 2 
shows our buckets and their use.

The implementation supports client-side encryption 
and server-side encryption for protecting data stored in 
the cloud and in transit against unauthentic and unau-
thorised access, while ensuring that they remain intact 
and available. Client-side encryption is used to protect 
data in transit by encrypting data before sending them 
to AWS S3. HTTPS is used to guarantee secure con-
nections. If the healthcare organisation has a Virtual 
Private Network (VPN) infrastructure, we recommend 
to establish a private connection to the cloud. For the 
server-side encryption, a unique encryption key is gen-
erated for each object, and data are encrypted using the 
256-bit Advanced Encryption Standard 256 (AES-256). 
After that, a securely stored and regularly rotated master 
key encrypts the encryption key itself. Users can choose 
between mutually exclusive possibilities to manage the 
encryption keys. The input and output buckets use unique 
Amazon S3-Managed Keys (SSE-S3) with strong multi-
factor encryption.

Data Transfer

Data transfer is configured with the Terraform files. We used 
the depends on meta-argument provided by Terraform to 
express dependencies between components. In this case, 
data are transferred once the remaining resources are created 
in the cloud, so that we can move data without concerns. 
Furthermore, we verify the integrity of the uploaded data 
with Message Digest (MD5) checksum in order to detect 
data corruption.

Event‑Based Services

Usually, AWS Services generate notifications when an event 
occurs, and these events are used to trigger an action. How-
ever, these actions have to be stored somewhere, and rules 
and targets should be defined based on them, so we use Log 
Bucket to store all the input bucket actions. We create a 
CloudTrail that reports the activities of objects in the input 
bucket, which are seen as events by the CloudWatch service. 
After that, we configure an upload S3 event rule in Cloud-
Watch. Once a rule condition is fulfilled, the CloudWatch 
target triggers an action. Accordingly, when data are com-
pletely uploaded to the Input Bucket, our system launches a 
compute engine for containers using ECS, and in this way 
the Train is executed.

Computing Resources

Amazon ECS makes it easy to launch containers and scale 
rapidly to meet changing demands, but one of the challenges 
during execution is the provision and management of com-
puting and memory resources. There are several mechanisms 
to predict the resources required and scale them appropri-
ately. However, the Staging Station is a temporary deploy-
ment that has the main task of providing the appropriate 
computing resources for the Train. ECS Fargate is a server-
less solution that allocates the required amount of computing 
capabilities, so that instances do not have to be chosen in 
advance since it scales cluster capacity as required by the 
application.

We use an entity called a task definition to describe to 
ECS how to run the container. The ECS task definition can 
be thought of as a prototype for running an actual task, and 

Table 2   Buckets description Bucket Use

Input data Stores the data required by the Train transferred from the original Data Station
Log Stores event history logs of the AWS account activity in the region, besides 

helping the event-based service launch other resources dynamically
Output Stores the results of the Train execution. The original Data Station retrieves 

the data from this bucket at the end of the Train execution
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allows for one or more containers to be specified. In our 
implementation, each Train is mapped onto one task defini-
tion, which describes that the Train should be pulled from 
the Image Repository when the CloudWatch rule matches 
the uploading event. Unlike Virtual Machines in the cloud, 
ECS Fargate is charged by vCPU and memory, and not by 
the hour.

Security

In addition to the use of authentication and encryption mech-
anisms, an appropriate strategy for increasing security is to 
classify, split, and divide everything, using roles, permis-
sions, regions, networks or firewalls. In a cloud environ-
ment, we can implement security at different levels. In our 
solution, we created a Virtual Private Cloud to isolate our 
components from other customers in AWS. However, the 
resources cannot interact with each other if we do not config-
ure a policy to allow them to interact. Therefore, we provide 
security via an Identity and Access Management service 
with access control through user definitions, roles and per-
missions to users in each step of the workflow. For instance, 
the ECS Cluster has read access to the S3 input bucket, but 
it does not have write permission as it only requires to get 
data from it. In contrast, ECS has write-access to the S3 
output bucket.

The implementation uses a collection of network access 
rules to limit the traffic types that can interact with a 
resource. This collection of rules is called a security group, 
and each resource can be assigned to one or more security 
groups. The rules in a security group control the traffic 
allowed to an instance. If incoming traffic does not match a 
rule from the group, access is denied by default.

Case Study

We evaluated the design proposed in this research with a 
simple analysis of COVID-19 data spread through data 
sets of various sizes representing different workloads. This 
allowed us to evaluate the system behaviour, mainly in terms 
of the consumed network and computing resources. We used 
our implementation to build a Container Train with an algo-
rithm to process and analyse COVID-19 patients’ informa-
tion. We used data sets created in the literature [17], where 
the authors generated synthetic data using the open-source 
Synthea tool, resulting in data sets containing synthetic 
Electronic Health Records (EHR). The experiment aimed 
at calculating all matching patients diagnosed with COVID-
19 and evaluate our system using 10K and 100K bundles. 
For the patients diagnosed with COVID-19, we got summary 
statistics of patients who recovered and died and the care 
plan of the people infected.

Evaluation Metrics

Performance is the most suitable quality attribute to evalu-
ate the architecture using dynamic analysis. We used two 
sets of measurements for this quality at- tribute, based on 
the ISO 25010 standard [18] and the validation technique 
presented in [19]:

•	 Time Behaviour is the degree to which the response and 
processing time and throughput rates of a system meet 
its requirements when performing its functions. For this 
we measured the execution times from when the GET 
method is invoked until the resources are deallocated.

•	 Resource Utilisation is the degree to which the amount 
and types of resources used by a system meet its require-
ments when performing its functions. For this we meas-
ured the CPU Average use and RAM average use in the 
cloud. Moreover, we measured network traffic in the Data 
Station during the execution process.

Validation

We ran the execution of the system five times per bundle. 
After these executions, we got an average calculation for the 
analysis of the system. This prevents any data disturbance 
caused by isolated events from having significant effects 
on the results. We used the tool iftop on the computer that 
runs the Data Station to collect network traffic information. 
Besides, we harnessed the CloudWatch monitoring tool in 
AWS to get the CPU and memory utilisation.

Table 3 shows the execution time for the provision and 
deprovisioning process for both bundles. The provisioning 
process comprises the Terraform files execution, data trans-
fer, Train routing, Train processing in the cloud, and down-
loading the results. The deprovision process covers only 
the deletion of the entire cloud resources created by Ter-
raform. We observed that the difference between the execu-
tion time of both bundles is around 15%. Table 4 shows that 

Table 3   Average execution time

10K 100K

Provision 3 min. 54 seg 4 min. 14 seg
Deprovision 17 seg 20 seg

Table 4   Average resource 
utilisation

Resource 10K 100K

Network 62 Mb 70 Mb
CPU 53.5% 85.6%
RAM 12% 16%
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this behaviour can be justified by considering the average 
resource utilisation.

Table 4 shows the network traffic during the provisioning 
process in the Data Station. The 100K bundle consumes on 
average around 70 Mb while the 10K consumes around 62 
Mb. The slight difference in consumption is because in the 
100K bundle case the multi-upload option was used due to 
the size of the bundle. Multi-upload divides the bundle into 
several chunks consuming more networking resources but 
in less time. Consequently, the transmission times were dif-
ferent but not ten times bigger than the amount of data, like 
it could be expected.

Table 4 also depicts the CPU and RAM average utilisa-
tion, which are the resources consumed in the cloud. We 
observed that the CPU average utilisation for the 100K bun-
dle was 85.6%, almost 30% higher than for the 10K bundle. 
From Tables 3 and 4, we have that the cloud processing time 
was very similar among both bundles, but the 100K bundle 
consumed more resources. In general, the average memory 
utilisation was low and both tests used less than 20% of 
the available memory. This may also indicate that we could 
reduce the memory allocation in the cloud configuration. 
The overall execution time of both bundles was also very 
similar with a difference of around 8% despite a tenfold size 
difference between the two data bundles.

We can conclude that the Data Station network and cloud 
computing instance play a crucial role in the performance 
of our system, more than the amount of data. Scalability of 
the computing resources is achieved in the cloud, however, 
the network consumption depends on the network capabili-
ties of each healthcare organisation. If we want to increase 
transfer data speed, we can use multi-threading techniques, 
although in this case many more network resources would 
be consumed.

Table 5 presents the results from the analysis of the 10K 
data sets. With 8820 infections, 96% of the people recovered, 
which is a high rate, from which we concluded that COVID-
19 is highly contagious but not highly fatal.

The care plan in this data set has two values, namely 
‘home isolation’ and ‘hospitalised’. Table 6 summarises the 
statistics of patients who recovered at home and hospitals. 

The hospitalisation rate is considered high for the period 
these data were gathered. However, still, the vast majority 
of people followed a ‘home isolation’ care plan, i.e. they 
stayed and were treated at home. Table 7 shows that the 
Intensive Care Unit (ICU) Admission rate was high, and 
almost everyone at the ICU required ventilation. The death 
rate for people in the ICU was also high. From these data, 
we can conclude that patients admitted to the ICU and who 
use ventilation have a high probability of dying.

These results demonstrate that our architecture imple-
mentation is capable of running a Train to perform data 
analysis in the cloud. Our deployment enables analysis using 
privacy-sensitive data sources and successive evaluation of 
that analysis in a secure enclave. We could deploy the Stag-
ing Data Station, so that the Train analysed the data and got 
a final file with the information provided in Tables 5, 6 and 
7 directly in the Data Station. This also demonstrates that 
the standardisation of the data structures alongside a proper 
architecture facilitates data analysis in any environment, par-
ticularly in a distributed environment.

Related Work

The Personal Health Train is often related to Distributed 
learning, a concept first introduced by Google in 2016 [4], 
where distributed databases are analysed at different data 
sources location. In this paradigm, data source organisations 
control the entire execution and return just the results, with-
out sharing information and keeping the privacy of sensitive 
data [6].

The inspiration for the PHT was the Euregional Computer 
Assisted Theragnostics project (EuroCAT)3, which started 
in September 2010. From the scope of this project, the Var-
ian Learning Portal (VLP) has been developed by Varian 
Medical Systems. Varian Medical Systems is an American 
manufacturer of oncology software and treatments, and that 
is why the papers reporting the use of this technology men-
tion only applications involving cancer [20–24].

The VLP is a cloud-based system that implements user, 
distributed data sources, and project management. It consists 
of two elements, namely a master and a learning connector. 

Table 5   Mortality rate

COVID-19 Recovered Deceased Ventilated

(n = 8820) 0.9606 0.0404 0.0325

Table 6   Care plan Care plan Rate

Home isolation 0.7952
Hospitalised 0.2116

Table 7   ICU admission rate

Care plan Rate

Ventilation req 0.7653 1.0
Recovered 0.3573 0.1637
Death 0.6453 0.8362

3  http://​www.​euroc​at.​info/​index.​html.

http://www.eurocat.info/index.html
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A learning connector is installed at each data source to con-
nect the VLP master to a local source. The end-user uploads 
his application to the VLP web portal, which can be done 
in MATLAB. VLP and data sources communicate via file-
based, asynchronous messaging. The iterative execution of 
applications and communication between them is known as 
a learning run, which can be accepted or denied by each 
data source.

In [22], the authors demonstrated that it is feasible to use 
the distributed learning approach to train a Bayesian network 
model on patient data coming from several medical institu-
tions. Data were extracted from the local data sources in 
each hospital and then mapped to codes. Besides, in the Var-
ian learning portal, the researchers uploaded their Bayesian 
network model application for learning. The Varian learning 
portal transmits the model application and validation results 
between the central location and the hospitals. In [23], the 
authors built a logistic regression model in MATLAB R2018 
to predict post-treatment 2-year survival. The VLP connec-
tor was installed in 8 healthcare institutions. In [21], the 
authors used the VLP to run a study to develop a radiomic 
signature; the authors pointed out the preference for VLP 
because it offered already the essential technical overhead 
such as logging, messaging and Internet security.

In these proofs of concept, the authors have concentrated 
on the algorithms to evaluate and train the data distributed 
geographically. They tried to demonstrate that the results 
are just as accurate as when data are centralised. Therefore, 
they have harnessed the PHT approach using VLP technol-
ogy, but they did not try to define a reference architecture. 
Furthermore, the VLP is a proprietary solution. Moreover, 
the applications are not freely reusable, and only the users 
of each project can see what they have done. For case stud-
ies beyond cancer, this solution may not be suitable, so that 
other options must be explored or developed.

DataSHIELD [25] and Vantage6 [26, 27] are two other 
distributed processing platforms. Both have been designed 
and developed in the biomedical sciences domain but Data-
SHIELD is also used in other domains such as social sci-
ences. Both approaches follow a similar client-server schema 
where a client application sends analysis requests to poten-
tially multiple servers where the data are accessed and the 
analysis occurs. Concerning the interaction mechanism, 
DataSHIELD is based on R while Vantage6 is based on 
Docker images. In June 2021, the Vantage6 team announced 
a partnership with DataSHIELD to allow Vantage6 users 
to take advantage of the extensive DataSHIELD toolset by 
embedding these tools in Docker images used in the Van-
tage6 environment [28].

After the emergence of the PHT concept, a number of 
research groups started working on the implementation 
of different aspects of the ideas and concepts depicted in 
the PHT animation video [29]. In [3] and [7], the authors 

leveraged containerisation technologies for sending appli-
cations to Data Stations, more precisely Docker containers. 
The former created a Train containing an FHIR query and 
an algorithm to calculate summary statistics, then wrapped 
them as a Docker image and submitted it to a private Docker 
registry. The latter initially used a phenotype design web cli-
ent to create Docker images containing a query, the metadata 
and the script and then submitted them to a public Docker 
registry.

Some aspects set our approach apart from the aforemen-
tioned distributed learning initiatives. The first is that, to 
the extend of our knowledge, our approach is the only one 
that takes the FAIR principles as the basis for design and 
development. As a direct consequence, metadata are given 
a key role to describe the data and services in a semantically 
rich and machine-actionable way, supporting improvements 
in automation such as matching between Train requirements 
and Data Station capabilities. In our architecture, we offer 
the flexibility of using different data interaction mechanisms, 
not imposing one particular method such as R scripts or 
Docker images. Finally, our proposed architecture has been 
defined to lead and guide the development of existing and 
new applications based on common interfaces, metadata for-
mats and schemata. The reference implementation is being 
development to serve as a concrete example of the realisa-
tion of the architecture and not as the only implementation 
option. In this way, we aim at supporting flexibility as devel-
opers may decide to just extend their current applications to 
comply with these common interfaces, metadata formats and 
schemata instead of having to replace their whole system.

Conclusion

In this work, we started from the reference architecture of 
the Personal Health Train and focussed on the architectural 
elements and processes to enable the dynamic staging of a 
Data Station in the cloud in case the original Data Station 
does not have enough resources to perform the computation 
required by a given Train in the premises of an organisation. 
In our implementation, we employed Infrastructure as Code, 
APIs, and event-based systems to realise a dynamic deploy-
ment in the cloud. We implemented the architecture proposal 
for the dynamic staging of a station using novel technolo-
gies and a popular cloud environment (AWS). We evaluated 
the proposal with a dynamic analysis through a case study, 
analysing data sets of 10,000 patients and 100,000 patients, 
respectively.

Our research showed that we could seamlessly deploy 
a more powerful computation environment when required 
using the cloud and automation tools, complying with the 
PHT principles while providing a fitting and secure site. 
Although our design requires moving the data to the cloud, 
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the data are still within the realm and control of the original 
Data Station, keeping the same privacy levels. Moreover, our 
proposal complies with the main regulation for processing 
personal data in the cloud to keep the information as secure 
and private as possible, assuming that the cloud environment 
does not misbehave nor has been hacked. The case study 
showed that the instantiation and processing times of the 
Staging Station depend on the network in the Data Station 
and the computing resources consumed in the cloud. The 
simulation showed similar execution times with different 
workloads sizes, but a significant difference in the network 
and computing consumption, which can cause a bottleneck 
in the Data Station network. We highlight that the same cor-
relation between processing time and computing resources 
consumed holds for the original Data Station. This leads 
to the conclusion that further investigation is necessary to 
improve the identification of the Train computing require-
ments so that the dynamic staging mechanism would be able 
to define a better provision of cloud resources for the staged 
station and, therefore, achieve optimal processing time. 
Other parameters such as execution time constraints and 
costs have not been included in the current implementation 
but should also be taken into consideration by the improved 
dynamic staging mechanism.

Different types of Trains have different data and comput-
ing requirements, which affect both the volume of data to 
be transferred to the Staging Station and the Train execu-
tion. Therefore, we think that it may be useful to design 
capabilities that allow the originally targeted Data Station to 
inform the Train Owner in case the Train cannot be executed 
in the station but in a dynamically deployed Staging Sta-
tion in the cloud. In this way, in time-critical situations, the 
Train Owner can decide beforehand whether the increase in 
response time and the possible additional costs are accept-
able, and may choose to abort the Train execution.

The case study worked adequately with a simple aggrega-
tion algorithm, so we have evidences to conclude that our 
system can alleviate the IT infrastructure constraints that 
healthcare organisations may have to ensure the PHT execu-
tion, while respecting the principles of the PHT approach.

Future research should be performed to test our solution 
with other use cases, by including Machine Learning algo-
rithms in the Train or dependent transactions, for instance, 
to experience idle moments waiting for input data. Other 
Trains types with different interaction mechanisms (e.g., 
APIs, queries, and messages) should be implemented and 
tested as extensions to our system. We also propose some 
future work to assess the solution developed in this research, 
integrating the implementation to existing proof of concepts 
developed by organisations that contribute to the PHT initia-
tive. Some of these implementations already have deployed 
a vast majority of the PHT workflow and have elaborated 
more robust case studies. It would beneficial to combine 

these efforts and to evaluate how our solution behaves by 
applying other metrics like performance and execution time 
measured from when the end-user dispatches the Train until 
the results are made available.

Finally, the work reported in the paper together with 
efforts to implement other aspects of the PHT architecture, 
such as data access authorisation process and dynamic con-
sent are being further developed and tested in a number of 
projects such as the C4yourself, Personal Genetic Locker 
and the European Joint Programme on Rare Diseases. In 
these projects, the PHT architecture is being applied to new 
and existing applications, aiming at demonstrating the con-
vergence of approaches and interoperability improvements 
that can be achieved by agreeing on a common architectural 
specification.
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