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Samenvatting 

Elastische scharnieren geven beweging vrij door middel van elastische deformatie. Deze be-

weging is heel voorspelbaar door de afwezigheid van wrijving, slijtage en speling. Dit is een 

voordeel ten opzichte van kogellagers en glijlagers en het maakt elastische scharnieren zeer 

geschikt voor precisietoepassingen. Een nadeel van elastische scharnieren is dat het werkbe-

reik wordt beperkt door de optredende spanningen in de deformerende delen, en doordat de 

ondersteuningsstijfheid en draagkracht drastisch verminderen bij uitwijking. Dit maakt het 

ontwerpen van elastische scharnieren uitdagend. 

De deformerende delen in elastische scharnieren met een groot werkbereik zijn vaak blad-

veren. Een bladveer is een vrij lange, dunne, brede strook materiaal die gemakkelijk defor-

meert in de buigrichting en de torsierichting, maar juist krachten kan opvangen in de andere 

richtingen. Door het slim combineren van meerdere bladveren kan een elastisch scharnier 

ontworpen worden die alleen beweging in specifieke gewenste richtingen toestaat, bijvoor-

beeld een elastisch rotatiescharnier of een bolscharnier. Een elastisch mechanisme is typisch 

opgebouwd uit meerdere van deze elastische scharnieren en kan zo honderden bladveren be-

vatten. Het efficiënt kunnen simuleren van deze elastische mechanismen is cruciaal voor het 

beoordelen van concept-ontwerpen en bij de real-time aansturing. 

Eerder onderzoek heeft aangetoond dat bladveren efficiënt gemodelleerd kunnen worden 

met balkelementen. Dit is echter niet altijd voldoende efficiënt en nauwkeurig en het limiteert 

de ontwerpvrijheid. In dit proefschrift worden vier verbeteringen gepresenteerd. 

 

Voor het evalueren van concept- mechanismen is het meestal nodig om vervormde configu-

raties van het concept uit te rekenen, bijvoorbeeld om de maximaal optredende spanning te 

kunnen berekenen. Het berekenen van deze grote deformaties vergt veel rekentijd, omdat de 

totale deformatie moet worden aangebracht in meerdere stappen. En het resultaat van elk van 

deze stappen moet middels een iteratieve procedure worden berekend om er zeker van te zijn 

dat het algoritme convergeert. In dit proefschrift wordt een nieuwe methode gepresenteerd 

om snel een benadering van een vervormde configuratie te berekenen, gebruikmakend van 

inzichten over de kinematica van elastische mechanismen. Deze benadering kan eventueel 

gebruikt worden als uitgangspunt bij de volledig nauwkeurige berekening van de vervormde 

configuratie, zodat het niet meer nodig is om de deformatie in meerdere stappen aan te bren-

gen. Het vinden van een benadering is tot 21 keer sneller dan een conventionele methode, 

waarbij de onnauwkeurigheden in termen van spanning en stijfheid onder de 1% blijven. 

 

De maximaal optredende spanning is vaak één van de belangrijkste randvoorwaarden bij het 

evalueren van een concept-ontwerp, maar het kan typisch het minst nauwkeurig worden be-

rekend. De optredende spanning in een balkelement wordt berekend aan de hand van interne 

spanningsparameters, namelijk de krachten die op de doorsnede van het balkelement werken. 

In dit proefschrift worden verschillende methoden om deze spanningsparameters te bereke-

nen vergeleken. Hieruit blijkt dat de spanningsparameters gerelateerd aan buiging, afschui-

ving en verlenging het nauwkeurigste kunnen worden berekend op basis van evenwicht. Voor 

torsie is een nauwkeurige methode verkregen die gebruik maakt van de oplossing van de 

Vlasov torsie theorie. 
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Daarnaast is de klassieke spanningsberekening verfijnd voor balkelementen met typische 

bladveerdimensies. Dit is gedaan door het toevoegen van termen ten gevolge van twee effec-

ten die optreden bij grote deformatie, namelijk anticlastische buiging en Wagner-torsie. Ook 

de lokale spanning die optreedt bij de inklemming van een bladveer is beschouwd. De aan-

gebrachte verfijningen reduceren de fout in de maximale spanning met ongeveer 50%. 

 

Het gebruik van balkelementen met een contante dwarsdoorsnede limiteert de ontwerpvrij-

heid. In dit proefschrift wordt een formulering voor balkelementen met een variërende dwars-

doorsnede gegeven, zodat ook bladveren met een variërende dwarsdoorsnede geanalyseerd 

kunnen worden. Ontwerp optimalisaties van diverse elastische scharnieren tonen aan dat deze 

extra ontwerpvrijheid kan resulteren in significant betere elastische scharnieren. 

 

Elastische scharnieren bevatten onderdelen om de bladveren aan elkaar te verbinden. Hoewel 

deze framedelen zo stijf mogelijk gemaakt worden, kan de compliantie van deze delen de 

totale ondersteuningsstijfheid van het scharnier significant verminderen. Dit heeft een nega-

tieve invloed op de prestatie van het scharnier. Voor een nauwkeurige analyse van de presta-

tie moet de stijfheid van de framedelen gemodelleerd worden. De framedelen hebben echter 

vaak complexe vormen waardoor ze niet goed met balkelementen gemodelleerd kunnen wor-

den. In dit proefschrift wordt een superelement geformuleerd. Hiermee kunnen complex ge-

vormde onderdelen efficiënt worden gemodelleerd. Enkele voorbeelden tonen aan dat elasti-

sche scharnieren efficiënter en nauwkeuriger gemodelleerd kunnen worden door gebruik te 

maken van superelementen om de framedelen te beschrijven in combinatie met balkelemen-

ten om de bladveren te beschrijven. 

 

Door gebruik te maken van de methoden en elementen die zijn geïntroduceerd in dit proef-

schrift kunnen hele complexe elastische mechanismen efficiënt en nauwkeurig doorgerekend 

worden. Dit kan de ontwikkeling van nieuwe elastische mechanismes stimuleren om de toe-

pasbaarheid van deze mechanismen te vergroten. 
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Summary 

Flexure joints allow motion by elastic deformation. This motion is very predictable due to 

the absence of friction, wear and backlash, in contrast to the motion of roller and slider bear-

ings. This makes flexure joints suitable for guiding motion in precision mechanisms. Disad-

vantages of flexure joints are the limited range of motion due to stress limits in the deforming 

elements and the fact that the support stiffness and load bearing capacity decrease drastically 

during deformation. This makes the design of flexure joints challenging. 

The deforming elements in flexure joints for a large range of motion are flexures. A flex-

ure is typically a quite long, wide, thin strip that allows considerable bending and torsion, 

while supporting load in the other directions. Multiple flexures can be combined to design a 

flexure joint for motion in specific intended directions, e.g. a flexure-based revolute joint or 

a ball joint. A flexure mechanism generally contains multiple flexure joints and can therefore 

consist of hundreds of flexures. The efficient simulation of these complex mechanisms is 

crucial in the early design phase and for real time control. 

History shows that flexures can be modelled efficiently using beam elements. However, 

this is not always sufficiently efficient and accurate and it limits the design freedom. This 

thesis presents four improvements. 

 

The evaluation of early design concepts typically requires the computation of deformed con-

figurations of a flexure mechanism, e.g. to obtain the maximum stress. Computation of such 

large deformations is time consuming, because the deformation has to be applied in multiple 

steps. Each of these steps has to be solved iteratively in order to ensure convergence of the 

computation. In this thesis, a new method is presented to efficiently obtain an approximation 

of the deformed configuration, by using insights about the kinematics of flexure mechanisms. 

Optionally, this approximation can be used as a starting point for the computation of the 

configuration with full accuracy, omitting the need to apply the deformation in multiple steps. 

Computing the approximation is up to 21 times faster than a conventional method, keeping 

errors in resulting stress and stiffness below one percent. 

 

The maximum stress is generally one of the most important restrictions in the evaluation of 

flexure-based designs, but it can typically be computed the least accurate. Stress in beam 

elements is derived from internal stress resultants, which are the forces acting on the cross-

section of the beam. This thesis evaluates different methods of obtaining these stress result-

ants. It is shown that the stress resultants relating to bending, shear and axial deformation can 

be obtained most accurately based on equilibrium. For torsion, an accurate solution was ob-

tained using the Vlasov torsion theory. 

Furthermore, the classic stress computation has been refined for beams with typical flex-

ure dimensions. This is accomplished by adding terms to account for two large deformation 

effects, namely anticlastic curvature and Wagner torque. Also local stresses around the 

clamping of the flexures were considered. These refinements decrease the error in the maxi-

mum stress by about 50%. 

 



viii Summary 

  

 

The use of beam elements with constant cross-section limits the design freedom. This thesis 

presents a formulation for beam elements with a varying cross-section, to allow for the anal-

ysis of non-prismatic flexures. Design optimizations of several flexure joints shows that this 

extra design freedom can result in significantly better flexure joints. 

 

Flexure joints contain parts which connect the flexures to each other. Although these so-

called frame parts are intended to be very stiff, their compliance can significantly decrease 

the overall support stiffness of the flexure joints, reducing the performance. An accurate eval-

uation of the performance requires the stiffness of the frame parts to be modelled. However, 

frame parts typically have complex shapes, such that they can barely be modelled using beam 

elements. This thesis formulates a superelement by which complex shaped parts can be mod-

elled efficiently. Examples show that flexure joints can be modelled efficiently and accu-

rately by using the superelement to model frame parts and using beam elements to model the 

flexures. 

 

Very complex flexure-based mechanisms can be analysed more efficiently and more accu-

rately by using the methods and elements that are introduced in this thesis. This may help the 

development of new flexure mechanisms, increasing the potential for using flexure mecha-

nisms in practice. 
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1 

Introduction 

CHAPTER 1  
1 Introduction 

 

1.1 Background – flexure mechanisms 
The function of a flexure is to support load in some directions while allowing motion in the 

other directions by elastic deformation. The shape of a flexure is therefore often long, wide 

and thin, see Figure 1.1 (such a flexure is also called a leafspring). Multiple flexures can be 

combined into a flexure joint that allows motion only in specific directions and supports the 

other directions. Flexure mechanisms can be designed by combining multiple flexure joints 

with stiff links. 

Flexure joints have several advantages over roller and sliding bearings. They can often 

be made out of one part, reducing the assembly time of products and increasing alignment 

accuracy. The absence of wear and the absence of the need for lubrication overcome the need 

for maintenance and allow flexure joints to work in a vacuum and in dirty environments. The 

absence of friction, backlash and wear makes the motion very predictable, which is essential 

in high precision applications. 

A disadvantage of flexures is the limited range of motion due to stress. Furthermore the 

support stiffness and load bearing capacity are limited because they decrease significantly 

with deflection. These are conflicting requirements in the design phase: a large range of mo-

tion requires thin flexures while the support stiffness and load bearing capacity increase with 

thicker flexures. 

 

 

 

 

 
Figure 1.1: Typical structure of flexure mechanisms.  
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Figure 1.2: a) Spherical flexure joint, containing two sets of three folded flexures and 

three frame parts. b) T-flex, manipulator with six identical arms, each arm containing two 

spherical flexure joints and an actuated revolute joint. 

This issue is addressed by the development of new flexure joint designs which tend to become 

increasingly complex. Previous work has shown that new joint configurations can lead to a 

significant increase of the performance of flexure joints [198]. Naves developed a large range 

of motion revolute joint with high support stiffness [133] as shown in Figure 2.1. Figure 

1.2(a) shows an example of a flexure-based spherical joint [132], which consists of six folded 

flexures and three frame parts. Design optimizations to find the optimal dimensions of the 

above-mentioned joints are essential to obtain this good performance. 

An example of such an application is the T-flex [130, 135], a high precision manipulator 

for a large range of motion, see Figure 1.2(b). This six-degrees-of-freedom robot contains six 

revolute joints and twelve spherical joints. 

For the development of such a system, it is crucial to be able to model flexure mechanisms 

efficiently with sufficient accuracy. This is necessary for the fast optimization and the com-

parison of different concepts in the early design phase, and also for use in real time control. 

1.2 State of the art and problem statement 
Finite element methods can be used to model flexure mechanisms. They can be very accurate, 

but high accuracy generally requires many finite volume elements, so the required computa-

tion time is high. The flexures can also be modelled using plate elements, which is more 

efficient but still requires a lot of computation time. Finite element modelling is therefore 

suitable for verification purposes but less suitable for control or design optimizations. 
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Another approach is to model the flexures with beam elements. This results in much faster 

computation, because the number of degrees of freedom in the model is considerably smaller 

than in models with volume or plate elements. Another advantage is that modelling with 

beam elements makes it easier to set up a parametrized model, which depends on several 

design parameters only. This makes it suitable for use in fast design optimizations. 

The multibody software SPACAR [101, 104], which uses the generalized strain formula-

tion [25], is well-suited for this beam-based analysis of flexure mechanisms. Sophisticated 

beam elements for the modelling of flexures have been developed and implemented in this 

software [103, 105, 139]. 

 

However, beam-based flexure modelling is not always sufficiently efficient and accurate and 

it also limits the design freedom. 

Flexure joints tend to become increasingly complex; some of the newest joints contain a 

lot of flexures, therefore dozens of beam elements are necessary to model these flexure joints. 

Although beam-based design optimizations are relatively fast, the design optimizations of 

flexure mechanisms containing multiple complex joints become very slow or even unfeasi-

ble. 

Furthermore, the accuracy of beam models of flexures is limited, because the large width 

of flexures typically violates the assumption of the long and slender geometry of beam ele-

ments. 

Beam-based modelling restricts the modelling freedom. This limits the design freedom in 

the shape of flexures and complicates the modelling of complex-shaped frame parts. 

1.3 Research objectives and outline 
 

The main objective of this thesis is to improve the computational efficiency, accuracy 

and design freedom in beam-based simulation models of flexure mechanisms for a 

large range of motion. 

 

This is addressed in the chapters 2 to 8 in four sub-objectives, as detailed below. Chapters 2 

to 8 have been written as scientific papers. Four chapters have been published and three chap-

ters have been submitted for publication in scientific journals. The published chapters, in-

cluding appendices, are almost identical to the corresponding papers. A few words have been 

changed to improve the readability. Furthermore, citations have been replaced by a reference 

to the corresponding chapter in this thesis where applicable. Chapter 9 presents the most 

important conclusions and proposes four new research directions. 

1.3.1 Develop a method for the efficient computation of large deformed con-
figurations of flexure mechanisms in design optimizations 

Design optimizations require the evaluation of the objective and the constraints of many dif-

ferent designs. Such objective and constraints are for example eigen frequencies and maxi-

mum stress. These properties have to be obtained in the deformed configurations. Computing 

these deformed configurations generally requires most of the computation time in the opti-

mization. This computation is especially expensive for complex mechanisms for a large range 

of motion, like the T-flex in Figure 1.2(b). This is because the large deformation has to be 

applied in multiple substeps that each have to be solved iteratively in order to ensure conver-

gence of the computation. 
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Chapter 2 presents a new algorithm, which uses kinematic insights of flexure mechanisms 

to efficiently obtain an approximation of the deformed configuration. This approximation can 

be used as a starting point for the full computation of the configuration, omitting the need to 

apply the deformation in multiple computation steps. Two variants of the algorithm are pre-

sented in Chapter 2. The method is refined in Chapter 3 by introducing three more variants. 

1.3.2 Increase the accuracy of the stress computation in beam-based flexure 
models 

The maximum stress in flexures is one of the most important constraints in design optimiza-

tions. However, the stress result of beam-based flexure models is typically less accurate than 

the other relevant properties such as support stiffness and eigen frequencies. This is because 

the maximum stress in a flexure element can occur very locally, whereas the other relevant 

properties can be considered as averaged values of the flexures which are not significantly 

affected by local effects. Many of these local effects occur around the clamped areas of the 

flexures and are not modelled in most beam elements. 

The stress in beam models is derived from internal stress resultants. These are for example 

the axial force, shear forces and bending moments, which may vary along the beam axis. 

Chapter 4 compares the accuracy of several methods to obtain the internal stress resultants 

of beam elements with large deformation. 

Chapter 5 presents refinements to the classic stress computation in beam elements. These 

refinements apply to beams with typical flexure dimensions, which implies that the beam has 

a wide rectangular cross-section and may have large deformations in bending and torsion. 

More specifically, the refinements account for local stresses due to anticlastic bending, Wag-

ner torsion, and effects around the attachment to the stiff frame parts. 

1.3.3 Enable the beam-based modelling of flexures with a varying cross-sec-
tion and investigate potential improvements with respect to flexures 
with constant cross-section. 

Modelling flexures using prismatic beam elements limits the design freedom of the flexure 

elements. This limitation can be reduced by using beam elements with a varying cross-sec-

tion. Chapter 6 shows how such a beam element can be implemented in the generalized strain 

formulation and shows that this may lead to significantly better flexure-based designs, in-

cluding a higher support stiffness of the spherical joint in Figure 1.2(a). 

1.3.4 Enable the modelling of complex, deformable frame parts 
The frame parts of flexure mechanisms can have complex shapes which are very hard to 

model using beam elements. However, the compliance of the frame parts can significantly 

affect the support stiffness. For example, the compliance of the ring in the spherical joint of 

Figure 1.2(a) significantly affects the overall support stiffness of the joint and therefore also 

the overall stiffness of the T-flex shown in Figure 1.2(b).  

Chapter 7 explains how a superelement with multiple interface points can be modelled in 

the generalized strain formulation, such that the small deformation of arbitrarily shaped parts 

can be modelled efficiently. Interface deformation between the superelements and beams, 

which allows even more accurate modelling, is considered in Chapter 8. 

 



 

 
Published in: Mechanism and Machine Theory (2020) 
Co-authors: R.G.K.M. Aarts, M.H.M. Ellenbroek and D.M. Brouwer 

See the introduction (Section 1.3.1) for the relation between the current chapter and Chapter 3. 
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Kinematically started deformation method I 

CHAPTER 2  
2 Kinematically started efficient position analysis of deformed 

compliant mechanisms utilizing data of standard joints 

Abstract 
Topology optimization of a flexure-based mechanism requires the properties of the 

mechanism in several deformed configurations. This chapter presents a fast and ac-

curate method to compute these configurations. It is generally applicable on mecha-

nisms with complex standard flexure joints. First kinematic equations of the mecha-

nism are derived by allowing the mechanism to move only in the directions for which 

it is designed. Secondly the configurations of the joints are approximated based on 

the rotations of the elements by which the joints are modelled. These orientations are 

obtained by a parameterization based on a priori knowledge of standard flexure 

joints. Finally, the resulting approximation is used as initial guess to obtain the con-

figuration accurately, after which relevant properties like stiffness can be derived. 

For a manipulator with three complex joints the computation time was reduced up to 

a factor of 65 compared to a conventional method. When for optimization purposes 

an approximation is acceptable, the computation time can be reduced by a factor of 

600, using a linear description of the deformation that remains in the first part of the 

method. 

 

2.1 Introduction 
Flexure-based mechanisms have become increasingly complex, especially for the cases 

where a large motion should be realized. These mechanisms typically consist of multiple 

flexure joints, and each flexure joint can consist of more than thirty leafsprings, see Figure 

2.1 for an example [133]. Moreover when large deformation is considered in the leafsprings, 

each leafspring should be modelled by using multiple elements. In the end many elements 

are required to obtain an appropriate model of flexure based mechanisms. 

Design optimization is common in flexure based design [39, 71, 133, 185, 198] as the per-

formance of these mechanisms highly depends on the configuration of the mechanism and 

the geometry of the flexure joints. These optimizations require an analysis of the mechanical 

properties of the mechanism, e.g. the support stiffness, the maximum stress, the buckling load 

and the eigen frequencies of the mechanism. These properties should be evaluated over the 

full range of motion. Therefore a number of relevant deformed configurations is chosen for 

which these properties are evaluated in each optimization iteration step. 
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Figure 2.1: 3x-Infinity joint: a state of the art flexure joint that facilitates one large rotation 

of 90 degrees about the z-axis [133]. 

Computing these relevant configurations currently requires the solution of nonlinear equa-

tions by iterative methods, and with tens to hundreds of design iterations it is clear that these 

computations are taking a lot of time. Therefore it is advantageous to obtain the deformed 

configuration of a mechanism containing flexure joints more efficiently. 

2.1.1 Literature 
Pseudo rigid body models (PRBMs) [93] offer a simple representation of flexure mecha-

nisms, allowing efficient computation of the configuration. These models consist of rigid 

parts and pivots. The stiffness of these mechanisms is modelled by torsional springs in each 

pivot. These models generally only describe the motion for which the mechanism is designed, 

which makes that the motion of the mechanism can be analysed very quickly. However this 

is also limits the applicability of the model as the motion and stiffness in the other directions 

cannot be analysed. Another limitation is that it is difficult to obtain accurate models, because 

it is difficult to tune pivot positions and their torsional stiffness and mass distribution [99, 

117, 145, 146, 178], balancing between errors in kinematics and stiffness in the models. Ap-

propriate values for the position, stiffness and mass depend on the mechanism configuration 

and loading conditions and are often obtained by using optimization techniques [178]. All in 

all, the pseudo rigid body models have not been shown to provide a simple but accurate 3D 

description of complex flexure based mechanisms. 

 

Reference [189] presents a semi-analytic-deflection-method in which each flexure joint is 

initially modelled by an ideal hinge, similar to the pseudo rigid body method. This model is 

used in a kinematic analysis to obtain an initial configuration of the mechanism. This config-

uration is used to compute the deflection of the flexure joints. The deflections are used to 

update the kinematics of the mechanism, which is used in new deflection analyses. In this 

way a loop is built in which the accuracy is improved at each iteration. So similar to the 

pseudo rigid body models, this method also starts by only allowing the motion for which the 

mechanism is designed, but in this case the motion in the other directions is added in later 

iterations. The deflection analysis however is based on semi-analytical approaches which 

means that the technique cannot be applied for mechanisms containing complex flexure joints 

like the one in Figure 2.1. So in order to reduce computation time of mechanisms with these 

complex joints, a more general approach is required, i.e. an approach that is applicable to 

joints of which an analytic solution is difficult to obtain. 

 

Model order reduction techniques are very general approaches to reduce computation time 

of complex mechanisms. These methods are well established in linear structural mechanics. 
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However, the large deformation of flexure joints cannot be described linearly. Some nonlin-

ear model order reduction methods are available, an overview can be found in [157]. One 

example is the modal derivatives approach [199]. This approach is accurate in a larger defor-

mation range than the linear methods, but for large deformation this method also lacks accu-

racy [160], such that it cannot be used to model flexible joints. 

There are some data-driven techniques to obtain a nonlinear reduced order model. This 

requires that training simulations with a model of the mechanism are run. A set of configu-

rations from these simulation (snapshots) is used to obtain a good basis for the reduced order 

model. For example Proper Orthogonal Decomposition [106, 118] uses a singular value de-

composition to obtain the most suitable modes to describe the deformed configurations. De-

sign optimizations require knowledge of many designs, i.e. mechanisms with varying dimen-

sions. The reduced order model depends on the dimensions. There are some methods to in-

clude such dimension variation in data-driven techniques, an overview can be found in [24]. 

A disadvantage of these reduced methods is that the accuracy is limited and that the accuracy 

can be sensitive to variations in the dimensions. Moreover, the data-driven techniques require 

the a priori computation of deformed configurations for many designs of the mechanism, 

which takes much computation time. 

 

Global Modal Parameterization (GMP) and similar techniques [1, 41, 87, 129] are model 

order reduction methods that describe the displacement of all nodes as the sum of two con-

tributions. One contribution introduces large (mainly rigid) displacements which are a func-

tion of only a few independent parameters. The second contribution consist of small (mainly 

flexible) displacements. As this contribution is assumed small, it can be approximated by a 

linear model. A disadvantage of GMP is that the relations between the independent parame-

ters and the large displacements are difficult to obtain. This is currently done in a cumber-

some preprocessing step [1, 41, 129], or by a data-driven technique [41, 87]. The main goal 

of GMP is to remove the high eigen frequencies in order to increase the allowable time step 

in dynamic simulations. In this chapter a similar technique will be used to improve static 

computations, i.e. a technique that first solves a large part of the motion and estimates the 

remaining part by a linear approximation. 

 

All in all, there is no proper reduction technique to obtain a model for flexure based mecha-

nisms that is accurate for large deformation and that does not require a priori obtained 

knowledge of the complete mechanism. 

2.1.2 Approach 
This chapter presents a combination of two methods. In the first place a method to kinemat-

ically obtain the configuration of a flexure-based mechanism by only allowing the motion for 

which the mechanism is designed. This configuration is used as a starting point to obtain the 

real deformed configuration based on static equilibrium. In this way the need for a cumber-

some iterative procedure to obtain the deformed configuration is avoided. This method will 

be referred to as the Kinematically Started Deformation method (KSD-method). 

 

Hereinafter the motion for which the mechanism is designed is referred to as intended mo-

tion/deformation. In other literature this is referred to as degrees of freedom, despite the fact 

that the mechanisms can also move slightly in the other directions. This other motion (i.e. the 

motion in the support-directions) will be referred to as unintended motion/deformation. In 

order to distinguish intended and unintended deformation, it appears to be useful to consider 
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flexure based mechanisms as an assembly of flexure joints and very stiff links. The distinc-

tion between intended and unintended deformation will also be made in each flexure joint. 

 

In the KSD-method, each flexure joint is modelled by a small finite element model. The 

method requires the internal configurations of the deformed flexure joints in the mechanism 

to be obtained. This requires a time-consuming iterative procedure in general. However, this 

step can be applied much more efficiently, using the fact that flexure joints are typically 

designed according to standard assemblies, e.g. the cross flexure [84, 175] the cart wheel 

[175, 202], the butterfly hinge [88, 202], the infinity hinge [198] or the 3x-Infinity hinge in 

Figure 2.1 [133]. Other standard assemblies can be found in [122]. Joints based on these 

standard assemblies will be referred to as standard flexure joints. 

Therefore it is considered to be a feasible solution to setup a database that contains infor-

mation about these standard flexure joints in order to speed up the static calculation of all 

mechanisms containing these standard flexure joints. In other words, we propose a data-

driven technique. In the literature review above, it was stated that using a data-driven reduc-

tion technique requires much a priory computation time. However, the proposed data-driven 

technique only requires data of default parts, which means that the databases does not have 

to be updated before each design optimization. Another disadvantage of data-driven tech-

niques mentioned above is that the accuracy is sensitive to variations in the dimensions of 

the model. This disadvantage is resolved by the second method in this chapter, which is based 

on a priory obtained parameters that are valid throughout the full range of commonly encoun-

tered dimensions of the flexure joints. 

 

The second method presented in this chapter obtains the largely deformed configurations of 

standard flexure joints, based on a limited number of parameters that are not sensitive to 

changes in the dimensions of that joint. It appears that the orientations of the elements are a 

good choice for these parameters as the orientations are independent of most of the dimen-

sions of the flexure joint and provide enough information to obtain a configuration that is 

close to the deformed configuration. A body that is described by this technique will be re-

ferred to as an Element Orientation based Body (EOB). 

 

Once the internal configuration in the EOB is obtained, its stiffness matrix can be obtained 

and this stiffness matrix can be reduced by model order reduction. In this chapter, the term 

element is reserved to refer to a modelling part of which the deformation can be described by 

analytic relations, e.g. beam elements or plate elements. A body is a modelling part that is 

based on a reduced finite element model. So each flexure joint is a body that is described by 

multiple elements. 

 

The main idea of the KSD-method is to prevent the need for a large number of iterations to 

obtain the deformed configuration of a mechanism, where the main idea of the EOB is to 

prevent the need for an iterative approach to find the internal configuration of the joints. With 

this combination the required simulation time is reduced significantly. 

 

The proposed method shares various concepts with the methods in the literature review. The 

KSD-method first solves for a main part of the deformation, i.e. the intended deformation. 

This is similar to the PRBMs, the semi-analytic-deflection-method [189] and the GMP-tech-

nique. In contrast to PRBMs, flexure joints are not simply modelled as ideal hinges, but par-

asitic motion is taken into account, and the KSD-method does offer the opportunity to ap-

proximate the unintended deformation. In contrast to GMP, the KSD-method separates the 
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large and small contribution to the deformation based on physics, i.e. in intended and unin-

tended motion. Another difference is that GMP is used in dynamics and the KSD-method 

solves static equations. In contrast to the semi-analytic-deflection-method, the KSD-method 

can be applied to mechanisms with flexure joints that are arbitrarily complex. 

The EOB computes the internal configurations of joints based on a priory simulations, 

similar to the data-driven reduction techniques. The main novelty of the EOB is the type of 

data that is used, i.e. the element orientations. Therefore the data is insensitive to changes of 

most of the dimensions. 

 

Section 2.2 explains the KSD-method and Section 2.3 gives details about the EOB. The KSD-

method with EOBs is validated in Section 2.4 by the analysis of a single cross flexure, a 

fourbar-mechanism with four cross flexure joints and a manipulator with three 3x-infinity 

joints. The chapter ends with the most important conclusions. 

2.2 Static deformation starting from a kinematic approxima-
tion 

The KSD-method computes the static deformed configuration of a mechanism in five steps. 

Details about the steps are given in the following subsections. In the first two steps the con-

figuration is estimated purely based on kinematic relations. In these steps, only the intended 

deformation is described and a database with data of the standard flexure joints is used. Based 

on these two steps, stiffness matrices of the joints can be obtained. In steps 3 and 4 these 

stiffness matrices are used to update the estimation of the configuration by static equilibrium. 

In these steps, the deformation in the unintended directions is described linearly. Step 5 com-

putes the configuration based on static equilibrium, taking the configuration after step 4 as 

an initial guess. Because this initial guess is already quite good, only a few iteration steps are 

required in this fifth step. Two conditions should be satisfied in order to perform the KSD-

method. In the first place, the system should be kinematically determinate, as explained in 

Section 2.2. Secondly, data of all the joints in the mechanism should be present in a database. 

The steps are schematically visualized in Figure 2.2 for a two-dimensional fourbar mech-

anism with four cross flexures. Each cross flexure is modelled by a finite element model with 

three flexible beam elements per leafspring and four rigid elements to link the flexible ele-

ments. The configuration is described by the positions and rotations of the nodes. The nodes 

at which the joint is connected to other parts are referred to as interface nodes and the nodes 

inside the joints are internal nodes. The displacements related to these nodes are interface 

displacements and internal displacements respectively. The term displacement refers to the 

combination of rotations and translational displacements in this chapter. 
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Figure 2.2: Schematic overview of the five steps in the KSD-method for a fourbar mech-

anism. 1) Estimate the interface displacements by kinematics, based on the displacement 

of the end-effector in actuated directions 2) Estimate the internal displacements by kine-

matics, based on the information in the database. Based on this step, a stiffness matrix of 

the joint can be obtained. 3) Update the interface displacements based on static equilib-

rium 4) Update the internal displacements based on static equilibrium 5) Update all dis-

placements based on static equilibrium. 

2.2.1 Database with information of standard flexure joints 
This subsection explains what kind of data of a joint is stored in a database and how this 

information can be obtained. The joint is modelled by a finite element model. The position 

and orientation of one of the interface nodes of this model is fixed. The displacement of the 

other interface node is prescribed in the intended directions, on a finite number of values over 

the range of motion. The resulting configurations of the flexure joint for each prescribed 

value are obtained based on static equilibrium, where the forces and moments in the unin-

tended directions are zero. These conditions result in a unique configuration of the flexure 

joint for each prescribed value of the intended direction. 

Figure 2.3 shows the finite element model of the cross flexure that is used as an example 

in this section. It is fixed at interface node A. A cross flexure is meant to allow rotation, so 

the rotation of interface node B is the intended direction. This intended direction can for 

example be prescribed on 10 intervals in the range between -30 degrees and 30 degrees, as-

suming the reaction forces in the x-direction and y-direction on interface node B to be zero. 

The resulting configurations are used to derive two kinds of functions that are stored in 

the database for use in step 1 and 2 of the KSD-method. The functions for step 1 are kinematic 

relations between both interface nodes of the joint. These are formulated as constraints for 

the unintended deformations. In case of the cross flexure, these functions can be chosen to 

be the horizontal and vertical positions of interface node B with respect to interface node A 

as functions of the intended deformation 𝜃, so the functions 𝑥(𝜃) and 𝑦(𝜃). These functions 

can be derived based on the simulation data, for example by a least square polynomial fit. 

The second kind of functions that are stored in the database are the rotations of the ele-

ments as functions of the intended deformation. These functions are also obtained based on 

the same simulation data. Section 2.3.1 gives more details about the way to describe element 

orientations. 
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Figure 2.3: Two-dimensional cross flexure, modelled by ten elements. 

Note that static equilibrium is used to obtain the necessary data for the database, but that the 

resulting functions in the database are purely kinematic. One of the advantages of using kin-

ematic relations is that they do not depend significantly on most of the dimensions of the 

joint, e.g. the kinematic relations of the cross flexure joint do not depend on the width and 

thickness of the flexures. 

However, some design parameters may affect the functions in the database. For the cross 

flexure, the overall length of the flexure (i.e. the distance between both interface nodes) will 

affect the constraint functions 𝑥(𝜃) and 𝑦(𝜃). However, this can be easily avoided by storing 

dimensionless functions in the database: �̅�(𝜃) = 𝑥 𝐿⁄  and �̅�(𝜃) = 𝑦 𝐿⁄ , where 𝐿 is the length 

of the flexure. But also the angle 𝛼 between both flexures (as indicated in Figure 2.3) influ-

ences the results. This means that the functions in the database explicitly depend on 𝛼: 

 x̅(𝜃, 𝛼),   �̅�(𝜃, 𝛼). (2.1) 

So, although we wanted to obtain data that is insensitive to the dimensions of the joint, still 

some dimensions may have to be considered explicitly. 

2.2.2 Step 1 – Estimate the interface displacements by kinematics 
In step 1 the positions and orientations of the interface nodes of the mechanism are approxi-

mated by a kinematic approach based on two conditions. In the first place the displacement 

of the end-effector in the actuated directions, 𝒒𝑒𝑛𝑑, is prescribed. The second condition is 

that the joints only allow motion in the intended direction. This is done by using the constraint 

equations for the standard flexures in the database. In this way the flexure joints do not have 

to be modelled as simple ideal pivot joints, but parasitic motion is also taken into account. 

These two conditions are sufficient to obtain the configuration based on kinematic equa-

tions. However, this can only be solved uniquely if the mechanism is kinematically determi-

nate (in other literature also referred to as a mechanism that is not underconstrained). This 

means that the KSD-method does not work for mechanisms that are kinematically indeter-

minate. On the other hand, if the mechanism is statically indeterminate (overconstrained) the 

number of unknown displacements is less than the number of equations. This means that 

some of the constraint equations are redundant. By removing these redundant equations the 

interface displacements can still be found. 
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This system of nonlinear kinematic equations is solved by a Newton-Raphson iteration. Alt-

hough this is an iterative process it can be computed very fast with respect to the computation 

of the solution of the full finite element model  of the mechanism. 

2.2.3 Step 2 – Estimate the internal displacements by kinematics and obtain 
stiffness matrices of the joints 

In step 2 the internal displacements are obtained from the interface displacements of step 1. 

These displacements will then be used to obtain the stiffness matrices of the joints. This can 

be done by using the Element Orientation based Body (EOB) description which is explained 

in Section 2.3. The result is a relation for each joint as: 

 𝑭𝑛𝑜𝑑𝑒𝑠 = 𝑲𝑛𝑜𝑑𝑒𝑠𝒒𝑛𝑜𝑑𝑒𝑠 + �̂�𝑛𝑜𝑑𝑒𝑠 , (2.2) 

where 𝑭𝑛𝑜𝑑𝑒𝑠 and 𝒒𝑛𝑜𝑑𝑒𝑠  are the forces on the nodes and the displacements of the nodes of 

the joint, respectively. 𝑲𝑛𝑜𝑑𝑒𝑠 is the stiffness matrix of the joint. The term �̂�𝑛𝑜𝑑𝑒𝑠 is a virtual 

force that appears because this stiffness relation is linearized around a deformed configura-

tion and not in the undeformed configuration. 

Note that the internal configuration of a joint can also be obtained without using the EOB. 

The most straightforward method to find the internal configuration is by solving the equilib-

rium equation of the finite element model of the joint, using the displacements of the interface 

nodes of step 1 as boundary conditions. Once the internal configuration is found, also the 

stiffness relation of eq. (2.2) can be found. However, solving the equilibrium equation will 

require an iterative process that will take a lot of computation time with respect to the solution 

of the EOB. Therefore in this chapter EOBs are used to obtain the stiffness matrices of the 

joints.  

2.2.4 Step 3 – Update the interface displacements based on static equilibrium 
Step 3 updates the interface displacements by using the stiffness matrices from step 2. From 

this step on the unintended deformation is not constrained anymore and force-displacement 

relations are used, in contrast to step 1 and 2 where kinematic relations were used. This means 

that also load on constrained directions will have influence on the result of this step. Also the 

compliance of the stiff connecting links (e.g. the three links in the fourbar mechanism) can 

be modelled in this step. 

In step 3A the stiffness matrices of the joints that specifies the stiffness between the in-

terface nodes are obtained by using the boundary modes of the Craig-Bampton method [59]. 

The extra force term �̂�, has to be taken into account during this reduction. Eq. (2.2) is split 

in interface coordinates of the joint (normally called boundary coordinates in the Craig-

Bampton method, indicated by 𝑏) and internal coordinates of the joint (indicated by 𝑖): 

 
{
𝑭𝑖
𝑭𝑏
} = [

𝑲𝑖𝑖 𝑲𝑖𝑏

𝑲𝑏𝑖 𝑲𝑏𝑏
] {
𝒒𝑖
𝒒𝑏
} + {

�̂�𝑖
�̂�𝑏
}. (2.3) 

By assuming no applied forces on the internal nodes, so 𝑭𝑖 = 𝟎, this equation can be rewritten 

to: 

 𝑭𝑏 = 𝑲𝑇𝒒𝑏 + �̂�𝑇 , (2.4) 

where: 
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 𝑲𝑇 ≡ 𝑲𝑏𝑏 −𝑲𝑏𝑖𝑲𝑖𝑖
−1𝑲𝑖𝑏 , �̂�𝑇 ≡ �̂�𝑏 − 𝑲𝑏𝑖𝑲𝑖𝑖

−1�̂�𝑖. (2.5) 

𝑲𝑇 is the Craig-Bampton reduced stiffness matrix of the joint. �̂�𝑇 is a virtual force that is 

applied on the interface nodes of the body.  

In step 3B the interface displacements are computed by using these Craig-Bampton re-

duced stiffness matrices. The interface displacements of step 1 are used as the starting point 

for this step. Because these displacements are close to the displacements that are obtained in 

this step, only a few iteration steps are required to solve this static problem. 

2.2.5 Step 4 – Estimate the internal displacements based on static equilibrium 
In step 4, for each joint the internal displacements are updated by using the interface dis-

placements of step 3 and the joint stiffness matrices of the joints of step 2. An equation for 

the internal displacements can be derived from eq. (2.3): 

 𝒒𝑖 = −𝑲𝑖𝑖
−1(𝑲𝑖𝑏𝒒𝑏 + �̂�𝑖). (2.6) 

2.2.6 Step 5 – Update all displacements based on static equilibrium 
In step 5, the interface and internal displacements are updated simultaneously by solving for 

static equilibrium by an iterative approach. The interface displacements of step 3 and the 

internal displacements of step 4 are used as a starting point. Because the starting configura-

tion is close to the deformed configuration, only a few iteration steps are required. The system 

of equations that is solved in this step is exactly the same as the system of equations that is 

solved in the conventional approach, i.e. obtaining the deformed configuration by an iterative 

process starting from the undeformed configuration. This means that step 5 will give the same 

result as the conventional method where it is generally faster as it will involve fewer iteration 

steps. 

2.2.7 Reduced KSD-method and full KSD-method 
In the kinematic iterative process in step 1 and in the static equilibrium iterative process in 

step 3 a mechanism is considered in which each joint is considered as a single body and 

where only the interface displacements were obtained. This mechanism will be referred to as 

the reduced mechanism. In contrast, in step 5 the full mechanism is considered. In the full 

mechanism each element in the finite element models of the joints is considered as a separate 

modelling part and the interface displacements and internal displacements are computed sim-

ultaneously. The result after step 4 is a good approximation of the displacements. Using this 

as final result will be referred to as KSD-reduced. Using all 5 steps will be referred to as 

KSD-full. 

Step 3 may seem unnecessary for KSD-full, as step 3 updates the displacements in unin-

tended directions which are generally small. However, using step 3 to update the displace-

ments of the interface nodes gives the advantage of performing some more iteration steps 

with the reduced mechanism instead of the full mechanism, which is much faster. Moreover, 

the inaccuracy of the obtained interface displacements in step 1 can be significant, such that 

a static equilibrium iteration on the full mechanism in step 5 can become instable. 
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2.3 Element orientation based approach to obtain the inter-
nal configuration 

This section shows the approach to obtain the internal configuration and the stiffness relations 

of an EOB, which is used to apply step 2 of the KSD-method. The position and orientation 

of the interface nodes should be known on beforehand. So the EOB is valuable in combina-

tion with the KSD-method, as the interface displacements of the joints are computed in step 

1 of the KSD-method. Based on the interface positions and rotations and a database, the 

element orientations are obtained (Section 2.3.1). Using these orientations a configuration is 

derived that is close to the deformed configuration, referred to as the near configuration 

(Section 2.3.2). In this near configuration the stiffness matrix of the body is derived (Section 

2.3.3). 

2.3.1 Obtain the element orientations 
The orientations of the elements are described by functions of the intended deformation that 

are stored in the database. These functions may depend on some of the design parameters. In 

case of the cross flexure, the angle 𝛼 (see Figure 2.3) appears to have a significant influence 

on the rotation of the elements, as noted in Section 2.1. The intended deformation is already 

known after step 1 of the KSD-method, the element orientations can therefore be obtained 

by simply evaluating the functions that are stored in the database: 

 �̂�𝑘 = 𝒇𝑘(Intended deformation, Design Param), (2.7) 

where �̂�𝑘 are the parameters that are used to describe the rotation of element 𝑘. The meaning 

of the hat on 𝜷 is explained below. If the intended deformation is only in one plane, for 

example the deformation of a 2D or 3D cross flexure, the rotation of each element can be 

described by the rotation about one axis. If the elements rotate about multiple axis other tech-

niques are required to describe the orientation. In that case �̂�𝑘 can be for example a vector 

with Euler parameters or Euler angles. 

 

Instead of using a database with functions to obtain the element orientations, we could also 

define functions that define other properties of the joint by which the internal configuration 

and stiffness matrix of the joint could be obtained. One other option is to store some relevant 

terms of the stiffness matrix. However, these terms will depend on the material properties of 

the joint and are very sensitive to the thickness and width of all the individual flexures. That 

means that the database should provide different functions for all the relevant designs of the 

flexure joint. The configuration of the joint is less sensitive to these design-parameter varia-

tions, therefore storing kinematic functions is preferred. 

Another option is to store functions for the displacements (rotational and translational) of 

all the internal nodes in the body. This would immediately describe the internal configuration 

and provide enough information to obtain the stiffness matrix. However, the translational 

displacements are more sensitive to variations in the dimensions of the joint than the element 

rotations. All in all, the element orientations are probably the most dimension independent 

parameters that provide enough information to obtain the stiffness matrices of the elements 

and the internal configuration of the body as the remaining part of this section will show. 
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Figure 2.4: Near configuration. a) Near configuration of the complete body. b) Displace-

ment of one element. 

2.3.2 Obtain the near configuration 
Figure 2.4(a) shows the near configuration. The displacements of the nodes in the near con-

figuration are defined with respect to one of the interface nodes, in this case with respect to 

node A. The orientations of the elements in the near configuration are equal to the orientations 

that are described by  �̂�. The orientations of two elements that are connected to each other 

are not necessarily the same and therefore the orientation of the intervening node cannot be 

uniquely defined. Therefore each element is described by its own nodes in the near configu-

ration, these nodes will be referred to as markers. So the near configuration of the joint in 

Figure 2.4(a) is described by 24 markers as it consist of 12 elements that all have two markers. 

To obtain the translational displacements of the markers, the condition is set that the ele-

ments are undeformed in the near configuration. The translational displacement of the mark-

ers associated with node 𝐴 equal zero by definition. The other translational displacements are 

obtained by considering the joint to consist of multiple chains of connected elements that 

start at node 𝐴. Once the translational displacement of one of the markers of an element is 

found based on this condition, the translational displacements of the other markers can be 

found by the rotation of the element with respect to the undeformed configuration, see also 

Figure 2.4(b): 

 �̂�𝑘,𝑞 = �̂�𝑘,𝑝 + (�̂�𝑘 − 𝟏)𝒅𝑘,𝑝𝑞 , (2.8) 

where �̂�𝑘,𝑞 and �̂�𝑘,𝑝 are the translational displacement of marker 𝑞 and 𝑝 respectively on 

element 𝑘. The hat indicates that the related variable describes a displacement from the un-

deformed configuration to the near configuration, these displacements will be referred to as 

rigid displacements. The vector 𝒅𝑘,𝑝𝑞 is the distance from marker 𝑝 to marker 𝑞 in the unde-

formed configuration. The matrix �̂�𝑘 is the rotation matrix that defines the rotational part of 

the rigid displacement is only a function of �̂�𝑘. Note that in case of one or more closed loops 

of elements, there will be points at which the markers of two coupled elements are not exactly 

at the same location because they are related to node 𝐴 by a different chain of elements. This 

is also the case in the cross flexure, therefore the locations of both markers at node 𝐵 are not 

exactly the same. For clarity this effect is exaggerated in Figure 2.4(a). 
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2.3.3 Obtain stiffness matrix in the near configuration 
This section describes how the stiffness matrix can be obtained in the near configuration by 

which a better approximation of the deformed configuration can be obtained. Because the 

orientation of each element in the near configuration should be close to the orientation of the 

deformed configuration, the displacements between both configurations can be described lin-

ear. Note that there can be deviation in the locations of both configurations, but large trans-

lations do not make the force-displacement relation nonlinear. The force-displacement rela-

tion for an element 𝑘 is 

 𝑭𝑘 = 𝑲𝑘�̅�𝑘, (2.9) 

where 𝑭𝑘 is the vector with the forces and force moments on the markers of element 𝑘 ex-

pressed in absolute coordinates. So this vector consist of six numbers for each marker of a 

three dimensional element 𝑘. 𝑲𝑘 is the global stiffness matrix of element 𝑘 which can be 

obtained by rotating the local stiffness matrix, using the rotation matrix �̂�𝑘 of the element. 

The vector �̅�𝑘 contains the translational and rotational displacements on the markers of ele-

ment 𝑘. The bar indicates that these are displacements from the near configuration to the 

deformed configuration, which will be referred to as the flexible displacements. Note that 

there is no force required for the rigid displacements, this means that the force in eq. (2.9) is 

the total force that is required to have element 𝑘 in its deformed configuration. The relations 

for all elements can be combined in one equation: 

 𝑭𝑎𝑙𝑙 = 𝑲𝑎𝑙𝑙�̅�𝑎𝑙𝑙 , (2.10) 

where: 

 
𝑭𝑎𝑙𝑙 ≡ {

𝑭1
⋮
𝑭𝑁

} , 𝑲𝑎𝑙𝑙 ≡ [
𝑲1   
 ⋱  
  𝑲𝑁

] , �̅�𝑎𝑙𝑙 ≡ {
�̅�1
⋮
�̅�𝑁

}, (2.11) 

where 𝑁 is the number of elements by which the joint is modelled. 

 

The total displacement is the sum of the rigid and the flexible displacement. This is shown 

for the two markers of one element in Figure 2.5. So, the flexible displacement is the total 

displacement minus the rigid displacement: 

 �̅�𝑎𝑙𝑙 = 𝒒𝑎𝑙𝑙 − �̂�𝑎𝑙𝑙 . (2.12) 

Note that, in case of large rotations about multiple axis, the rotational parts in these displace-

ment vectors cannot be added directly due to the non-vectorial nature of rotations. Therefore 

the rotations in 𝒒𝑎𝑙𝑙  and �̂�𝑎𝑙𝑙  should be defined in such way that their difference equals the 

finite rotations in �̅�𝑎𝑙𝑙 . In this chapter only large planar deformation is considered, such that 

the rotation in 𝒒𝑎𝑙𝑙 and �̂�𝑎𝑙𝑙  can be described by the rotation about the axis perpendicular to 

this deformation plane. Substituting eq. (2.12) in eq. (2.10) gives: 

 𝑭𝑎𝑙𝑙 = 𝑲𝑎𝑙𝑙(𝒒𝑎𝑙𝑙 − �̂�𝑎𝑙𝑙) = 𝑲𝑎𝑙𝑙𝒒𝑎𝑙𝑙 + �̂�𝑎𝑙𝑙 , (2.13) 

in which the term: 

 �̂�𝑎𝑙𝑙 = −𝑲𝑎𝑙𝑙�̂�𝑎𝑙𝑙 , (2.14) 
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Figure 2.5: The total displacement is the sum of the rigid displacement and the flexible 

displacement, indicated for one element. 

is constant. This term compensates for the fact that the rigid motions in the first term on the 

right hand side of the equation are computed linear. This term can be computed directly as 

the rigid displacements �̂�𝑎𝑙𝑙  are the displacements from the undeformed to the near configu-

ration that was obtained in Section 2.3.2. 

In order to obtain the deformed configuration, the constraints between the elements 

should be applied. These constraints are applied by defining a Boolean matrix 𝑳 such that: 

 𝒒𝑎𝑙𝑙 = 𝑳𝒒𝑛𝑜𝑑𝑒𝑠 , (2.15) 

where 𝒒𝑛𝑜𝑑𝑒𝑠 is the matrix with the total displacements of the nodes in the joint. The forces 

on the nodes can then be related as: 

 𝑭𝑛𝑜𝑑𝑒𝑠 = 𝑳𝑇𝑭𝑎𝑙𝑙 , �̂�𝑛𝑜𝑑𝑒𝑠 = 𝑳𝑇�̂�𝑎𝑙𝑙 . (2.16) 

This means that the relation between the forces and the displacements on the nodes can be 

written as: 

 𝑭𝑛𝑜𝑑𝑒𝑠 = 𝑲𝑛𝑜𝑑𝑒𝑠𝒒𝑛𝑜𝑑𝑒𝑠 + �̂�𝑛𝑜𝑑𝑒𝑠 ,      𝑲𝑛𝑜𝑑𝑒𝑠 ≡ 𝑳
𝑇𝑲𝑎𝑙𝑙𝑳. (2.17) 

This is the static equilibrium equation, which is valid around the near configuration. The 

equation is identical to eq. (2.2) that should be obtained in step 2 of the KSD-method. 

2.4 Numerical validation 
The EOB is validated by an analysis of a 3D cross flexure (Section 2.4.2) and the KSD-

method with EOBs is validated by a fourbar mechanism with four cross flexure joints (Sec-

tion 2.4.3). Section 2.4.1 describes the cross flexure model that is used in these sections. The 

KSD-method is further analysed by a spatial manipulator with more complex joints in Section 

2.4.4. 

The used stiffness matrices of the flexible 3D beam elements are derived in Section 2.A. 

The performance of the KSD-method is compared to that of a conventional method that is 

described in Section 2.B. Both, the KSD-method and the conventional method are imple-

mented in matlab and both methods solve the same finite element models of the mechanisms. 
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2.4.1 Cross flexure model 
The finite element model of the cross flexure that was used in the simulations is shown in 

Figure 2.6. The relevant properties of the flexure are given in Table 2.1. Both connector 

blocks are modelled by rigid elements and the interface nodes are exactly in the centre of 

these connector blocks. The leafsprings were modelled with 1 to 5 serial connected equally 

sized elements. 

The intended rotation is described by the angle between node 𝐴 and 𝐵 around the 𝑧-axis. 

It is denoted by 𝜃 and referred to as the (intended) rotation. For each of the models with 1 to 

5 elements per leafspring, simulations were run where the intended rotation was varied from 

0 to 75 degrees in steps of 5 degrees and the displacements of all nodes were obtained. These 

displacements are used as simulation data to obtain the two required types of functions. 

 

In order to perform step 1 of the KSD-method, five constraints for the unintended defor-

mation are required. Four of these constraints can be defined without using data of a priory 

simulations (the chosen constraints are different from the constraints for the 2-dimensional 

cross flexure, introduced in Section 2.1): 

 The displacement in the 𝑧-direction of node 𝐵 with respect to node 𝐴 should be zero. 

 The rotation around the 𝑥-axis of node 𝐵 with resprect to node 𝐴 should be zero 

 The rotation around the 𝑦-axis of node 𝐵 with resprect to node 𝐴 should be zero 

 The rotation around the 𝑧-axis of node 𝐴 and 𝐵 with respect to the line through both 

nodes should be equal in size and opposite, as shown in Figure 2.6. 

 

The fifth constraint is the length of the cross flexure (the distance between both interface 

nodes) as a function of the intended deformation. This length was parameterized as a function 

of the intended rotation by a sixth order polynomial least squares fit to the simulation data. 

The odd terms in this polynomial are zero. The obtained relation is found to be almost inde-

pendent of the cross flexure dimensions, except for the angles at which the leafsprings are 

positioned with respect to the local 𝑥-axis, which is denoted by 𝛼 in Figure 2.6. In this chap-

ter, only results are obtained with an angle 𝛼 = 45∘. In summary, the constants 𝑔𝑘 in the 

following relation are obtained: 

 𝐷

𝐷0
≈ 1 + 𝑔1 ⋅ 𝜃

2 + 𝑔2 ⋅ 𝜃
4 + 𝑔3 ⋅ 𝜃

6, (2.18) 

where 𝐷 is the distance between both interface nodes, and 𝐷0 is this distance in undeformed 

configuration. 

The rotations of the elements around the 𝑧-axis were fitted by third order polynomials as 

a function of 𝜃. So for the rotation of each element 𝑘 a relation is obtained as: 

 �̂�𝑘 ≈ 𝑐𝑘1 ⋅ 𝜃 + 𝑐𝑘2 ⋅ 𝜃
2 + 𝑐𝑘3 ⋅ 𝜃

3. (2.19) 

The global stiffness matrices of the beam elements as described in Section 2.A depend on the 

orientations of the nodes, therefore also the orientation of the nodes are parameterized by a 

third order polynomial, similar to eq. (2.19). 
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Figure 2.6: Finite element model of the cross flexure with 3 beam elements per leafspring. 

The right figure explains the fourth constraint on unintended deformation. 

 

Table 2.1: Properties of the cross flexure. 

Leafspring length 𝐿 0.1 m 

Angle 𝛼 45∘ 

Thickness leafsprings 𝑡 1 ⋅ 10−3 m 

Width inner leafspring 𝑤1 0.04 m 

Width outer leafsprings 𝑤2 0.02 m 

Elasticity 𝐸 200 ⋅ 109 Pa 

Shear modulus 𝐺 76.9 ⋅ 109 Pa 
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Figure 2.7: Normalized applied moment on the cross flexure as a function of the intended 

rotation. a) For the default model with 2, 4 and 6 elements per leafspring. b) for two 

different widths of the outer leafsprings with 2 elements per leafspring (upper lines) and 

with 6 elements per leafspring (lower lines). 

2.4.2 Results for single cross flexure 
The accuracy of the results of the linearized equilibrium in the EOB, eq. (2.17) was analysed, 

which is representative for the accuracy of KSD-reduced. Figure 2.7 shows the force moment 

that has to be applied on the cross flexure as a function of the intended rotation. The force 

moment is normalized by dividing it by the linear approximation [84], given by: 

 
�̅�𝑛𝑜𝑟𝑚 =

𝑀

𝑀𝑙𝑖𝑛

, 𝑀𝑙𝑖𝑛(𝜃) =
2𝐸𝐼

𝐿
𝜃, (2.20) 

where 𝑀 is the applied moment on node 𝐵 around the 𝑧-axis and 𝐼 is sum of the second 

moment of area for all the three leafsprings:  

 
𝐼 =

1

12
(𝑤1 + 2𝑤2)𝑡

3. (2.21) 

An analytic reference for the single cross flexure, which is based on the assumptions of infi-

nite axial stiffness of the flexures and no shear, was adapted from [84]. Figure 2.7(a) shows 

that in the default case, the results of the EOB are exactly similar to the results of the finite 

element model of the joint: The line of the FEM result in this figure is exactly behind the line 

of the result of the EOB. Also the stiffness in the unintended directions of the EOB was found 

to match the result of the finite element method perfectly. 

 

The applicability of the EOB is found to be bounded by two kinds of limitations. 

The first kind of limitation is that the difference in stiffness between the inner flexure and 

the two outer flexures may not vary too much. Figure 2.7(b) shows the effect of wider outer 

leafsprings. In the default case, 𝑤2 = 0.02 m, the line of the reference case is hidden behind 

the line of the EOB. If the width of the outer flexures is four times as large, the standardized 

moment is a little lower for both cases, but this effect for the EOB is smaller than for the 

reference case. So there is some variation between the EOB and the reference, which is 

caused by the fact that the parameterizations of the rotations �̂� are not accurate for a large 

variation in the ratio between these stiffness of the inner and the outer flexures. The result 
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indicates that it should be carefully considered for which ranges in the dimensions the para-

metrization holds. 

The second kind of limitation is on the amount of unintended deformation. The results 

become inaccurate if this deformation becomes so large that the assumption of linear unin-

tended deformation is not valid anymore. Figure 2.8 shows the effect of a disturbance force 

in the z-direction on node 𝐵. The resulting displacement mainly depends on the stiffness in 

the intended direction for large intended deformation. Therefore the applied force is scaled 

by dividing it by the stiffness in this direction: 

 
�̅� =

𝐿2

2𝐸𝐼
⋅ 𝐹𝑧, (2.22) 

where 𝐹𝑧 is the applied force on node 𝐵 in the 𝑧-direction. The 𝑧-displacement is normalized 

by dividing it by the length of the leafsprings, 𝐿. The force moment that is required for the 

intended deformation is scaled by dividing it by the linear stiffness: 

 
�̅�𝑠𝑐𝑎𝑙𝑒 =

𝐿

2𝐸𝐼
⋅ 𝑀. (2.23) 

Note that this scaled force moment is different from the normalized force moment that was 

introduced in eq. (2.20). The results in Figure 2.8 indicate that the deformation in the 𝑧-

direction is approximated quite accurately with the EOB, but that it shows almost no effect 

of the disturbance force on the applied force moment, where this effect can be quite signifi-

cant. 

 

       

Figure 2.8: Effect of large force in 𝑧-direction on node 𝐵 of the cross flexure, modelled 

with four elements per leafspring. a) Displacement of node 𝐵 in the 𝑧-direction. b) Effect 

on the applied moment to rotate the cross flexure. 
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2.4.3 Fourbar-mechanism 
Figure 2.9 shows the fourbar mechanism. The cross flexures are modelled with the properties 

given in Table 2.1, and the other relevant dimensions are indicated in the figure. The width 

𝑊 is 0.4 m and the height 𝐻 is 0.3 m. The links between the cross flexures are assumed to 

be infinitely stiff. The desired motion of the fourbar is described by the displacement of the 

centre of the upper link in the 𝑥-direction. The mechanism is actuated by a force on this point 

in the 𝑥-direction. 

 

Figure 2.10 shows the normalized applied force as a function of the normalized displacement 

for the full mechanism and for the reduced mechanism. The displacement, 𝑑, is scaled by 

dividing it by the height 𝐻 of the mechanism, the force is normalized by dividing it by the 

linear approximation, given by: 

 
�̅�𝑛𝑜𝑟𝑚 =

𝐹

𝐹𝑙𝑖𝑛
,   𝐹𝑙𝑖𝑛(𝑑) =

4𝐸𝐼

𝐿𝐻2
⋅ 𝑑, (2.24) 

where 𝐹 is the force that is applied on the centre of the upper link. The result shows that 

KSD-reduced gives accurate results. 

 

The computational efficiency of the KSD-method is examined by computing the deformed 

configuration of the fourbar mechanism where the endpoint is displaced by 𝑑 = 0.3 m. The 

computation stops if the norm of the vector with resulting forces and force moments on the 

nodes is smaller than 5 ⋅ 10−7, in which the forces are expressed in N and the moments in 

Nm. 

Figure 2.11 (a) shows the number of iteration steps that are required for the conventional 

approach, KSD-reduced and KSD-full. In each iteration step the independent coordinates are 

updated one. Inside each iteration step, another iterative algorithm updates a set of dependent 

coordinates. For the full approach, the number of iterations is split in the number of iterations 

on the reduced mechanism for step 3 of the KSD-method (which is of course identical to the 

number of iterations for KSD-reduced) and the number of iterations on the full mechanism 

for step 5. The conventional approach requires more iterations than the KSD-method, espe-

cially in case of a large number of elements per leafspring. This is because of the higher 

number of independent parameters that describe the configuration, increasing the nonlinear-

ity of the system of equations. 

 

 

 
Figure 2.9: Fourbar mechanism in undeformed and deformed configuration. Flexible 

parts are dark and rigid parts are light. 
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Figure 2.10: Normalized applied force to displace the end effector of the fourbar mecha-

nism with 1 and 3 elements per leafspring. 

Figure 2.11 (b) shows the average time per iteration. The solution time per iteration applied 

on the reduced mechanism is almost independently of the number of elements per leafspring. 

In the case of the fourbar each iteration applied on the reduced mechanism was solved in 

approximately 30 ms. The time per iteration on the full mechanism is higher. The average 

time per iteration on the full mechanism in step 5 of the full approach is shorter than the time 

per iteration of the conventional approach. It is reduced by a factor of about 2 for the cases 

with 4 or 5 elements per leafspring. The reason for this is that the displacements in these 

iterations are much smaller, and therefore it takes shorter to update the dependent coordinates 

in each iteration. 

 

    
Figure 2.11: Efficiency of the KSD-method and the conventional approach for the fourbar 

problem. a) Number of iterations that was required. b) Average time per iteration, for the 

full approach, this is split in the time per iteration on the reduced mechanism (step 3) and 

the time per iteration on the full mechanism (step 5). 
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Figure 2.12: Fourbar mechanism with an external applied force moment, computed for 

21 different values of the applied force. a) Resulting rotation of the upper link around the 

z-axis for the full mechanism and the reduced mechanism. b) Required number of itera-

tions and simulation time to compute the configuration for the conventional approach and 

step 5 of KSD-full. 

In order to study the effect of forces in the unintended directions, an external moment around 

the z-axis is applied on the end-effector, i.e. the centre of the top-bar. Figure 2.12(a) shows 

the resulting rotation of the upper link for the full model and for the reduced model. This 

error is result of the linearization of the unintended motion of the cross flexures. Even without 

external moment, there is a difference of about 20% in the rotation. This unintended motion 

is present as the cross flexures are not excited to a pure moment. Figure 2.12(b) shows the 

required number of iterations and the total simulation time for the conventional method and 

step 5 of KSD-full. It indicates that for both methods the required number of iterations in-

creases with an increasing force in the unintended directions. The KSD-method is about 5 

times faster over the full range of the external moment in unintended direction. It was ob-

served that in simulations with a force out of plane (e.g. a force in the z-direction on the 

centre of the top link) the computation of the KSD-method does not converge in step 5. 

Overall KSD-reduced is about 20 times faster than the conventional method for 4 or 5 

elements per leafspring, respectively. KSD-full is about 5 times faster than the conventional 

method for 4 or 5 elements per leafspring. The main reason for this increase in efficiency is 

the reduced number of required iterations. 

2.4.4 Spatial three-link manipulator 
The KSD-method is applied to the manipulator with three 3x-infinity joints and three links, 

as shown in Figure 2.13. The first joint can rotate around the global 𝑧-axis and the other two 

rotate initially around the global 𝑦-axis. Figure 2.14 shows the dimensions of the 3x-infinity 

joints. The material properties are similar to the material properties of the cross flexure: the 

elasticity is 200 GPa and the shear modulus 76.9 GPa. The joints are modelled by 30 flexible 

beam elements and 36 rigid beam elements. To obtain data of these joints for the database, 

training simulations were run to compute the resulting configurations of 19 different values 

of the intended rotation. These 19 values for the intended rotation are chosen in the range 

between -45 and 45 degrees, with a step size of 5 degrees. 
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Five constraints on the unintended deformation are required for step 1 of the KSD-

method. Three of these constraints are identical to the first three constraints of the cross flex-

ure, described in Section 2.4.1. The other two constraints are the displacements in the 𝑥 and 

𝑦-direction of interface node 𝐵 with respect to node 𝐴 as a function of the intended rotation. 

These constraints are expressed as a fourth order polynomial of the intended rotation which 

is a least squares approximation of the simulation data. The rotations of all the elements and 

nodes are also approximated by a fourth order polynomial in the intended rotation, in order 

to perform step 2 of the KSD-method. 

The manipulator has three intended degrees of freedom, therefore three parameters are 

required to define the position of the end-effector. Two different parameter sets are analysed 

to describe the position: 

 Joint-case: the rotational motion of each of the three joints; 

 Location-case: the location of the end-point of the third link in 𝑥, 𝑦, and 𝑧-direction. 

 

           
Figure 2.13: Manipulator, fixed to the ground at the left side. Flexible parts are light and 

rigid parts are dark. a) Undeformed configuration showing length and angles of the links. 

b) Undeformed configuration and some deformed configurations. 

        
Figure 2.14: Dimensions of the 3x-infinity joint in mm. The thickness of the flexible ele-

ments is 0.045 mm. Flexible parts are light and rigid parts are dark. a) Top view. b) Side 

view. c) 3D-view. The figure of the top view is rescaled to visualize the small dimensions.  
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Figure 2.15: Computational efficiency for manipulator with 3x-infinity joints for two dif-

ferent descriptions for the position of the end-effector, computed for 19 different positions 

of the end-effector. a) Conventional method. b) KSD-reduced (this is the same as step 3 

of KSD-full). c) KSD-full – step 5. d) Factor by which the number of iterations and sim-

ulation time are reduced by using KSD-full in comparison to the conventional method. 

Both cases are essentially different in terms of the reaction forces. The joint-case assumes 

three reaction moments around the joints, the location-case assumes three linear forces on 

the end-point of the third link. This means that the motion in the unintended directions is 

different. Actually there is no unintended motion in the joint-case as all joints are actuated 

by a pure force moment. Therefore the KSD-method is expected to perform better in the this 

case. 

 

Simulations are run in which the rotation of all three joints is simultaneously varied in the 

range from minus 45 to 45 degrees. Figure 2.13(b) shows some of the resulting configura-

tions. In a first run the joint-case was performed. In a second run, the location-case was per-

formed, using the locations for the end-point of the third link obtained from the joint-case. 

Figure 2.15 shows the required number of iterations and the total simulation time. It shows 

that the KSD-method indeed requires more iterations for the location-case. This holds sur-

prisingly also for the conventional method. Figure 2.15(d) shows that using KSD-full instead 
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of the conventional method reduces the simulation time up to a factor of 65. KSD-reduced 

reduces the total simulation time by a factor up to 600. The joint-case has almost 100% ac-

curacy (except from some numerical and interpolation errors). The error on the estimated 

reaction force of the location-case is less than 2% and the error in displacements less than 

0.3%. 

2.5 Conclusions 
In this chapter we presented a Kinematically Started Deformation method (KSD-method) to 

obtain static equilibrium of flexure mechanisms efficiently, by exploiting prior knowledge 

on the intended degrees of freedom. The relatively large deformation in the intended degrees 

of freedom is kinematically approximated as a first step in the iteration process. 

The flexure joints in the mechanism were modelled with Element Orientation based Bod-

ies (EOBs). The configuration of an EOB is approximated based on a parameterization of the 

rotations of the elements and this approximation is refined using static equilibrium. Using 

element orientations makes the parameterization suitable for joints with a large range of di-

mensions and therefore applicable in design optimizations. 

The KSD-method with EOBs provides a way to use a database with information of stand-

ard joints. As a consequence, the application of the method is limited to mechanisms that 

consist of joints of which information exist in the database. This required information con-

sists of relations between the interface points during intended deformation and the rotations 

of the elements as function of the intended deformation. Another limitation is that the mech-

anism should be kinematically determined in order to perform the first step of the KSD-

method, but this is typical the case for flexure based mechanisms. A last limitation is that 

unintended deformation (deformation in supporting directions) should be low. This is not a 

large limitation as the purpose of a flexure based designs are related to high support stiffness. 

Although in this chapter the method was only applied to mechanisms that were modelled by 

beam-elements, the method is not fundamentally limited to this modelling approach. 

The efficiency of the KSD-method is compared to that of a conventional method. For a 

fourbar mechanism the required computation time was decreased up to a factor of 5 to obtain 

the accurate deformed configuration. For a manipulator with three 3x-infinity joints the com-

putation time reduced up to a factor of 65. The computed configuration of the KSD-method 

is exactly the same as the configuration found by the conventional method as the KSD-

method solves in the end exactly the same equations. However, the KSD-method can also be 

used to obtain the approximated deformed configuration in which the deformation in the un-

intended direction of the flexure joint is assumed to be linear. The time reduction to find this 

approximation with respect to the conventional method is a factor up to 20 for the fourbar-

mechanism and a factor up to 600 for the manipulator. The proposed method potentially saves 

orders of magnitude of valuable time during the optimization of flexure mechanisms in the 

conceptual phase. 
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2.A Stiffness of the beam elements 
In this section the stiffness matrix of a beam element is derived that is used in this chapter. 

The used beam formulation and its derivation are relatively similar to the formulation de-

scribed in [105]. 

2.A.1 Element configuration 

Nodal coordinates 
Figure 2.16 shows a beam element in its initial configuration and its deformed configuration. 

The configuration of the beam is defined by twelve independent nodal coordinates: 

 𝒙 = {𝒓𝑝𝑇 𝝀𝑝𝑇 𝒓𝑞𝑇 𝝀𝑞𝑇}
𝑇 , (2.25) 

where 𝒓𝑝 and 𝒓𝑞 define the locations of node 𝑝 and 𝑞 respectively with respect to the global 

fixed frame. The rotation matrices that define the orientations of the nodes, 𝑹𝑝 and 𝑹𝑞, are 

parameterized by 𝝀𝑝 and 𝝀𝑞 respectively. The initial orientation of the element is given by 
[𝒏𝑥 𝒏𝑦 𝒏𝑧]. The unit vectors at the nodes of the elements, as visualized in Figure 2.16 

can therefore computed by: 

 𝒏𝑦
𝑝
= 𝑹𝑝(𝝀𝑝) 𝒏𝑦, 𝒏𝑦

𝑞
= 𝑹𝑞(𝝀𝑞) 𝒏𝑦 ,

𝒏𝑧
𝑝
= 𝑹𝑝(𝝀𝑝) 𝒏𝑧 , 𝒏𝑧

𝑞
= 𝑹𝑞(𝝀𝑞) 𝒏𝑧 .

 (2.26) 

 

 

 

 
Figure 2.16: Beam element in initial configuration and deformed configuration. 
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Deformation coordinates 
The deformation of the beam is described by six mode shapes. These modes are specified by 

deformation coordinates, 𝜺, that are an explicit function of the nodal coordinates: 

 𝜺 = 𝓓(𝒙). (2.27) 

The chosen functions for these deformation coordinates are:  

 휀1 = |𝑳| − 𝐿0 (axial elongation)

휀2 =
1

2
𝐿0(asin(𝒏𝑧

𝑝
⋅ 𝒏𝑦

𝑞
) − asin(𝒏𝑦

𝑝
⋅ 𝒏𝑧

𝑞
)) (torsion)

휀3 = −𝐿0 asin(𝒏𝑧
𝑝
⋅ 𝒏𝑙)

휀4 =   𝐿0 asin(𝒏𝑧
𝑞
⋅ 𝒏𝑙)

휀5 =   𝐿0 asin(𝒏𝑦
𝑝
⋅ 𝒏𝑙)

휀6 = −𝐿0 asin(𝒏𝑦
𝑞
⋅ 𝒏𝑙)}

 
 

 
 

(bending)

 (2.28) 

where:  

 
𝒏𝑙 =

𝑳

|𝑳|
, 𝑳 = 𝒓𝑞 − 𝒓𝑝. (2.29) 

The resulting mode shapes are visualized in Figure 2.17. The difference between these de-

formation functions and the deformation functions introduced in [105], are the arcsine-terms 

in the second till the sixth function. The arcsine-terms are included to make the deformation 

functions linear dependent on the angle between the unit vectors. These arcsine-terms were 

also introduced in the 3D beam formulation in [60] and correspond to most of the 2D coro-

tational beam formulations like [98, 114]. 

 

 
Figure 2.17: Mode shapes beam element.  
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Relation between change of nodal and deformation coordinates 
The change of displacements of the nodes is given by:  

 𝛿𝒒 = {𝛿𝒓𝑝
𝑇 𝛿𝝓𝑝𝑇 𝛿𝒓𝑞

𝑇 𝛿𝝓𝑞𝑇}
𝑇
, (2.30) 

where 𝛿𝝓𝑝 and 𝛿𝝓𝑞  are the virtual rotations of node 𝑝 and node 𝑞 respectively. Note that 

the orientations are defined different in the nodal coordinates. However, there exists relations 

between these virtual rotations and the change of 𝛿𝝀𝑝 and 𝛿𝝀𝑞. These relations depend on 

the choice of parametrization of the rotations and is therefore not discussed in this section. 

The relation between the change of the deformation and the virtual displacements is given by 

a matrix 𝑫:  

 𝛿𝜺 = 𝑫𝛿𝒒, (2.31) 

In order to derive an expression for 𝑫, based on the definition of the deformation coordinates 

in eq. (2.28), we note that the change of a rotation matrix can be expressed by the virtual 

rotations as:  

 

𝛿𝑹𝑝 = 𝛿�̃�𝑝𝑹𝑝, 𝛿𝑹𝑞 = 𝛿�̃�𝑞𝑹𝑞 , where �̃� = [

0 −𝜙𝑧 𝜙𝑦
𝜙𝑧 0 −𝜙𝑥
−𝜙𝑦 𝜙𝑥 0

], (2.32) 

Using these relations, the derivatives of the unit vectors in eq. (2.26) with respect to the vir-

tual rotations can be expressed as:  

 𝜕𝒏𝑦
𝑝

𝜕𝝓𝑝
= −�̃�𝑦

𝑝
,
𝜕𝒏𝑦

𝑞

𝜕𝝓𝑞
= −�̃�𝑦

𝑞
,

𝜕𝒏𝑧
𝑝

𝜕𝝓𝑝
= −�̃�𝑧

𝑝
,
𝜕𝒏𝑧

𝑞

𝜕𝝓𝑞
= −�̃�𝑧

𝑞
.

 (2.33) 

The derivative of the unit vector 𝒏𝑙 with respect to the locations of the nodes can be expressed 

as:  

 𝜕𝒏𝑙
𝜕𝒓𝑝

= −
𝜕𝒏𝑙
𝜕𝑳

,
𝜕𝒏𝑙
𝜕𝒓𝑞

=
𝜕𝒏𝑙
𝜕𝑳

,
𝜕𝒏𝑙
𝜕𝑳

=
1

|𝑳|
(𝟏 − 𝒏𝑙 ⋅ 𝒏𝑙

𝑇). (2.34) 

The matrix 𝑫 can be determined from the definitions in eq. (2.28), using eqs. (2.33) and 

(2.34): 

 𝑫 = [𝑫1 𝑫2] (2.35a) 
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𝑫1 = 

[
 
 
 
 
 
 
 
 
 
 
 
 

−𝒏𝑙
𝑇 𝟎𝑇

𝟎𝑇
𝐿0
2𝐵2𝑎

[�̃�𝑧
𝑝
𝒏𝑦
𝑞
]
𝑇
−

𝐿0
2𝐵2𝑏

[�̃�𝑦
𝑝
𝒏𝑧
𝑞
]
𝑇

𝐿0
𝐵3
[
𝜕𝒏𝑙
𝜕𝑳

𝒏𝑧
𝑝
]
𝑇

−
𝐿0
𝐵3
[�̃�𝑧

𝑝
𝒏𝑙]

𝑇

−[
𝜕𝒏𝑙
𝜕𝑳

𝒏𝑧
𝑞
]
𝑇

𝟎𝑇

−
𝐿0
𝐵5
[
𝜕𝒏𝑙
𝜕𝑳

𝒏𝑦
𝑝
]
𝑇 𝐿0

𝐵5
[�̃�𝑦

𝑝
𝒏𝑙]

𝑇

𝐿0
𝐵6
[
𝜕𝒏𝑙
𝜕𝑳

𝒏𝑦
𝑞
]
𝑇

𝟎𝑇
]
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𝑫2 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

𝒏𝑙
𝑇 𝟎𝑇

𝟎𝑇
𝐿0
2𝐵2𝑎

[�̃�𝑦
𝑞
𝒏𝑧
𝑝
]
𝑇
−

𝐿0
2𝐵2𝑏

[�̃�𝑧
𝑞
𝒏𝑦
𝑝
]
𝑇

−
𝐿0
𝐵3
[
𝜕𝒏𝑙
𝜕𝑳

𝒏𝑧
𝑝
]
𝑇

𝟎𝑇

𝐿0
𝐵4
[
𝜕𝒏𝑙
𝜕𝑳

𝒏𝑧
𝑞
]
𝑇 𝐿0

𝐵4
[�̃�𝑧

𝑞
𝒏𝑙]

𝑇

𝐿0
𝐵5
[
𝜕𝒏𝑙
𝜕𝑳

𝒏𝑦
𝑝
]
𝑇

𝟎𝑇

−
𝐿0
𝐵6
[
𝜕𝒏𝑙
𝜕𝑳

𝒏𝑦
𝑞
]
𝑇

−
𝐿0
𝐵6
[�̃�𝑦

𝑞
𝒏𝑙]

𝑇

]
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where: 

 
𝐵2𝑎 = √1 − (𝒏𝑧

𝑝
⋅ 𝒏𝑦

𝑞
)
2
, 𝐵2𝑏 = √1 − (𝒏𝑦

𝑝
⋅ 𝒏𝑧

𝑞
)
2
,

𝐵3 = √1 − (𝒏𝑧
𝑝
⋅ 𝒏𝑙)

2
, 𝐵4 = √1 − (𝒏𝑧

𝑞
⋅ 𝒏𝑙)

2
,

𝐵5 = √1 − (𝒏𝑦
𝑝
⋅ 𝒏𝑙)

2
, 𝐵6 = √1 − (𝒏𝑦

𝑞
⋅ 𝒏𝑙)

2
.

 (2.36) 

2.A.2 Stiffness properties 

Local stiffness matrix 
The relation between the elastic load on the mode shapes and the deformation of the mode 

shapes is represented by a matrix 𝑺:  

 𝝈 = 𝑺𝜺. (2.37) 

The local stiffness matrix 𝑺 can be expressed as:  
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 𝑺 = diag(𝑆1, 𝑆2, 𝑺3, 𝑺4), (2.38) 

with:  

 
𝑆1 =

𝐸𝐴

𝐿0
,

𝑆2 =
𝑘�̅�𝐺𝐼𝑝

𝐿0
3 ,

𝑆3 =
𝐸𝐼�̅�

(1 + Φ�̅�)𝐿0
3 [

4 + Φ�̅� −2 + Φ�̅�

−2 + Φ�̅� 4 + Φ�̅�
] ,

𝑆4 =
𝐸𝐼�̅�

(1 + Φ�̅�)𝐿0
3
[
4 + Φ�̅� −2 + Φ�̅�

−2 +Φ�̅� 4 + Φ�̅�
] .

 (2.39) 

Here, 𝐸 is the modulus of elasticity and 𝐺 is the shear modulus. 𝐴 is the area of the cross-

section, 𝐼𝑝 is the polar moment of area of the cross-section and 𝐼�̅� and 𝐼�̅� are the second 

moments of area of the cross-section with respect to the principal 𝑦 and 𝑧-axis respectively. 

𝑘�̅� is the torsion correction factor according to Saint-Venant’s theory. The shear factors are 

given by  

 
Φ�̅� =

12𝐸𝐼�̅�

𝑘�̅�𝐺𝐴𝐿0
2 , Φ�̅� =

12𝐸𝐼�̅�

𝑘�̅�𝐺𝐴𝐿0
2 , (2.40) 

in which 𝑘�̅� and 𝑘�̅� are shear correction coefficients [58]. The derivation of this stiffness 

matrix is based on the exact solution of the equilibrium equations of the Timoshenko beam 

for the case that only load is applied on the nodes of the beam element. For further details the 

reader is referred to [105]. 

Global stiffness matrix 
The forces at the nodes, 𝑭𝑝 and 𝑭𝑞 and the force moments 𝑻𝑝 and 𝑻𝑞 are combined in one 

vector with nodal forces:  

 𝑭 = {𝑭𝑝𝑇 𝑻𝑝𝑇 𝑭𝑞𝑇 𝑻𝑞𝑇}
𝑇 , (2.41) 

These forces are in the same direction as the nodal displacements, 𝒒, of the element. There-

fore, the relation between the nodal forces, 𝑭, and the elastic load, 𝝈, can be derived by the 

principle of virtual work using eq. (2.31):  

 𝛿𝒒𝑇 𝑭 = 𝛿𝜺𝑇𝝈 = (𝛿𝒒𝑇𝑫𝑇)𝝈    ∀   𝛿𝒖   ⇒    𝑭 =  𝑫𝑇𝝈. (2.42) 

Using this equation and eqs. (2.31) and (2.37) the relation between the forces and displace-

ments can be derived:  

 𝑭 = 𝑲𝒒, 𝑲 ≡ 𝑫𝑇𝑺𝑫, (2.43) 

where the displacements, 𝒒, are assumed to be small. 𝑲 is the global stiffness matrix of the 

beam element that was used in the simulations in this chapter. 
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2.B Conventional method 
To analyse the performance, the KSD-method is compared to a conventional method which 

solves the full finite element model of the mechanisms. As this conventional method uses 

exactly the same model that was used in the KSD-method, the final results of both methods 

are exactly the same, but the required simulation time may be different. 

The theoretical background of this conventional method is the same as the theoretical 

background that has been implemented in SPACAR [104], as this software has often been 

used to model flexure based mechanisms [39, 71, 133, 185, 198]. It is particularly suited to 

obtain the relevant mechanism properties that are required in a design optimization, like max-

imum stress and eigen frequencies. The configuration is described by a set of independent 

coordinates and a set of dependent coordinates that are kinematically related to the independ-

ent coordinates. This theoretical background of SPACAR is implemented matlab, similar to 

the KSD-method, in order to have a fair comparison between both methods. 

The number of iterations in the conventional methods is automatically determined as 

shown in Figure 2.18. The total displacement of the end-effector, 𝑑𝑡𝑜𝑡 is first tried to be 

solved in one step. One iteration is performed, which means that the independent coordinates 

are updated based on the linearized equilibrium equations and the dependent coordinates are 

updated based on the underlying kinematic relations. After an iteration an error, 휀, is com-

puted based on the resulting forces on the nodes. The next step is decided based on this error, 

which has three options: 

 The error is larger than a threshold, 휀𝑚𝑎𝑥: in this case the iterative process will prob-

ably not converge and the step size in terms of displacement of the end-effector, 

𝑑𝑠𝑡𝑒𝑝, is reduced by a factor of two. 

 The error is smaller than 휀𝑚𝑎𝑥, but above a certain accuracy-threshold, 휀𝑎𝑐𝑐: the 

equilibrium equations are linearized again and a new iteration is performed to in-

crease the accuracy. 

 The error is smaller than 휀𝑚𝑖𝑛: the computation for the current step, 𝑑𝑠𝑡𝑒𝑝, is com-

pleted, therefore either the full process is completed, i.e. the total displacement 𝑑𝑡𝑜𝑡 
has been reached, or a new step on the displacement of the end-effector is applied. 

 

 
Figure 2.18: Schematic overview of the conventional method that is used as a reference 

for the KSD-method. 
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CHAPTER 3   
3 Efficient computation of large deformation of spatial flexure 

based mechanisms in design optimizations 

Abstract 
Design optimizations of flexure-based mechanisms take a lot of computation time, 

in particular when large deformations are involved. In an optimization procedure, 

statically deformed configurations of many designs have to be obtained, while find-

ing the statically deformed configuration itself requires tens to hundreds of load step 

iterations. The kinematically started deformation method (KSD-method, Chapter 2) 

computes deformed configurations fast by starting the computation from an approx-

imation. This approximation is obtained by allowing the mechanism only to move in 

the compliant motion-direction, based on kinematic equations, using data of the flex-

ure joints in the mechanism. This is possible as flexure based mechanisms are typi-

cally designed to be kinematically determined in the motion directions. In this chap-

ter, the KSD-method is extended such that it can also be applied without joint-data, 

such that it is  not necessary to maintain a database with joint-data. This chapter also 

shows that the method can be used for mechanisms containing joints that allow full 

spatial motion. Several variants of the KSD method are presented and evaluated for 

accuracy and required computation time. One variant, which uses joint-data, is 21 

times faster and shows errors in stress and stiffness below 1% compared to a con-

ventional multibody analysis on the same model. Another variant, which does not 

use joint-data, reduces the computation time by a factor of 14, keeping errors below 

1%. The KSD-method is shown to be helpful in design optimizations of complex 

flexure mechanisms for large range of motion. 

 

3.1 Introduction 
Flexure joints have no backlash and friction and therefore allow excellent predictable motion, 

in contrast to sliding or roller bearings. Therefore they are often used in precision applications 

like electron microscopes and lithography equipment [93, 113, 152, 175, 182, 196, 200]. A 

challenge is the limitation in the range of motion of flexure joints, which is mainly limited 

by stress in the material and by a dramatically drop of the support stiffness and load bearing 

capacity under deformation [198]. Design optimizations are used to obtain flexure joint de-

signs in which this loss of support stiffness is as low as possible [132, 133].  

 



36 3.  Kinematically started deformation method II 

 

 

However, these design optimizations are taking a lot of computation time. For example, it 

takes several hours to optimize five design parameters of a spherical flexure joint [132] (see 

Figure 3.6) that is modelled with 48 spatial beam elements. Although the analysis of a single 

design for this flexure can be executed in about 10 seconds, the optimization takes several 

hours as it requires the analysis of hundreds of designs. Therefore the number of design pa-

rameters that can be optimized is limited. Moreover, as the computation time significantly 

increases with increasing complexity of the analysed part, the optimization of a complete 

flexure based mechanism that contains multiple flexure joints is still practically unfeasible. 

A large part of the computation time is used to obtain the configuration of a mechanism 

after deformation. A considerable amount of literature has been published on modelling of 

the deformation of flexure mechanisms, literature overviews can be found in [28, 83, 119]. 

Most literature focuses on the modelling of a single leafspring (i.e. a single flexure, which is 

a thin flexible beamlike element that is the common building block of flexure mechanisms 

for large range of motion). These leafsprings can be modelled by beam elements using the 

finite element method, see e.g. [20, 143], but a single beam element is only accurate for small 

deformation. An analytical solution for large bending of beams exist which is based on ellip-

tic integrals  [30, 42, 201, 206]. However, the application of this solution in 3D leads to an 

infinite series of elliptic integrals [73, 166]. A method that works well in 3D is the beam 

constraint model, which is a model for slender beams that captures nonlinear effects [54, 165, 

166, 187]. Models for beams with a rectangular cross-section of which the width is much 

larger than the thickness are derived in [17, 139], these models are more appropriate to model 

leafsprings. In all the before mentioned techniques leafsprings can be modelled by multiple 

serial connected elements [16, 20, 55, 187, 201], which can optionally be solved by the chain 

algorithm. The chain algorithm solves the displacement of the beams individually in a se-

quence starting from the beams root [53, 93]. However, flexure mechanisms for large range 

of motion tend to be composed of many leafsprings such that all the before mentioned tech-

niques that model each leafspring individually make the analysis still cumbersome. 

The most widely used method to reduce the computation time of static computations on 

general mechanisms are model order reduction techniques [22, 118, 125]. However, many of 

these techniques are only accurate for small deformations such that they cannot be used for 

the optimization of flexure joints for large range of motion. The available model order reduc-

tion techniques for large deformation typically use a data of the mechanism which have to be 

available before the actual simulation [64, 110]. In a design optimization these required data 

are typically not available and obtaining the required data before the actual optimization is 

unpractical as this requires a lot of computation time. Therefore model order reduction tech-

niques that require data of the full mechanism are not suitable for design optimizations. 

 

The main reason for the large computation time of conventional methods is that a large de-

formation cannot be applied in a single computation step. A large deformation has to be ap-

plied in multiple small steps and for each step equilibrium has to be achieved by applying an 

iterative procedure in order to ensure the mathematical system to converge. In the kinemati-

cally started deformation method (KSD-method) we avoided this by starting the computation 

from a cheap obtained approximation of the deformed configuration instead of the unde-

formed configuration. 

The essence of this approximation is the fact that flexure based mechanisms for precision 

mechanisms are typically designed to be compliant in the motion-directions and stiff in the 

other directions [31]. The kinematic behaviour of these motion directions is well-determined, 

meaning that its motion is almost independent of the stiffness-properties of the mechanism 

and therefore this motion can be approximated by kinematic equations. The KSD-method 

approximates this motion and uses the result as a starting point for finding equilibrium of the 
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mechanism. Hereinafter the motion in the motion-direction will be called ‘intended motion’ 

(in other literature referred to as ‘degrees of freedom’) and the motion in the stiff, ideally 

constrained direction is called ‘unintended motion’ (also referred to as ‘support-directions’ 

or ‘off-axis directions’ in other literature). 

In Chapter 2, the approximation was made using previously obtained data of the flexure 

joints in the mechanism. These data (hereinafter joint-data) describe the kinematic behaviour 

of the joints deforming in the intended directions. It is useful to store joint-data in a database 

as the required data is almost independent on the stiffness-properties of the joint, but mainly 

depends on the joint-composition (i.e. the way in which the flexures in the joint are positioned 

and connected with respect to each other). Flexure mechanisms are often built from joints 

with a standard compositions, examples of such standard joint-compositions are the cross 

flexure [84] and the butterfly hinge [202]. 

Two different variants of the KSD-method were introduced, KSD-full and KSD-reduced. 

KSD-full computes exactly the same deformed configuration as a conventional method, but 

more efficient. The computation time required for KSD-reduced was even lower than that of 

KSD-full by calculating only an approximation of the deformed configuration. 

However, two issues are related to the KSD-method. In the first place there is a strong 

trade-off between computation time and the accuracy. On the one hand the KSD-full requires 

a lot of computation time with respect to KSD-reduced. On the other hand KSD-reduced can 

accidently result in an error that is far over 10%, especially the stress results are unreliable. 

The second issue is that the KSD-method requires joint-data of the joints in the mechanism. 

Obtaining these data requires a lot of time and therefore the KSD-method is mainly valuable 

for mechanisms that consist of flexure joints with compositions of which the data is already 

available. 

 

In this chapter new variants of the KSD-method are developed to address the two issues 

mentioned before. These variants are more efficient than KSD-full and more accurate than 

KSD-reduced. In this way the user can select a different variant that reduces the computation 

time significantly in case a lower accuracy is permitted. One of the variants does not require 

joint-data such that the KSD-method can also be efficiently used for mechanisms containing 

joints of which no joint-data is available.  

 

Section 3.2 gives a summary of the existing variants of the KSD-method and Section 3.3 

presents the new variants of the method.  Section 3.4 gives results to show the efficiency and 

accuracy of the different variants of the KSD-method in comparison to a conventional 

method. In this section the KSD-method is applied to several mechanism, of which one con-

tains spatial spherical flexure joints where Chapter 2 only applied the KSD-method to joints 

for planar motion. Section 3.4 also shows that the computation time can be reduced signifi-

cantly by neglecting the geometric part of the stiffness matrix during the computation. One 

of the prerequisites for using joint-data in the KSD method in design optimizations is that 

these data are almost unaffected by changes of dimensions of flexure joints. Section 3.5 ex-

amines this requisite and analyses the accuracy of the KSD-method. Section 3.6 performs 

design optimizations using the KSD-method. The chapter ends with the conclusions. 
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Figure 3.1: Two-dimensional cross flexure modelled by 4 rigid and 6 flexible elements in 

deformed configuration. Functions of 𝑥(𝜃) and 𝑦(𝜃) have to be stored in a database to 

constrain the unintended motion. 

3.2 Summary of the existing variants of the kinematically 
started deformation method 

Goal of the KSD-method is to make static computation more efficient by avoiding the long 

iterative procedures that are required in conventional methods. All variants of the KSD-

method consist of several steps that will be summarized after two introductory notes. 

1. In the KSD-method the motion of a flexure based mechanism is split in intended motion 

and unintended motion. The intended motion is approximated in the first two steps of the 

KSD-method, mainly based on kinematic relations. The remaining motion is computed in 

later steps. 

2. A flexure mechanism is considered as a combination of flexure joints and stiff links. Each 

flexure joint is modelled by a small finite element model. Two nodes of this model are con-

nected to the links, these are called interface nodes and their displacements interface dis-

placements, see Figure 3.1.The other nodes are called internal nodes, and their displacements 

are called internal displacements. The term displacement is used for the combination of ro-

tations and translational displacements. 

 

Two different variants of the KSD-method were introduced in Chapter 2, KSD-full and KSD-

reduced. KSD-full consist of the five steps described below. Step 1 and 2 both require joint-

data that describe the kinematic behaviour of the joints. The method to obtain these data is 

explained after the description of the 5 steps. The steps are visualized in Figure 3.2 for a 2D 

four-bar mechanism consisting of four cross flexures and three stiff links. Each flexure is 

modelled by 4 rigid and 6 flexible beam elements as also shown in Figure 3.1. The five steps 

are: 

1. Estimate the interface displacements based on a prescribed displacement of the end-

effector and by using joint-data to constrain motion in unintended directions. For 

the 2D cross flexures these joint-specific constraint equations can be the 𝑥 and 𝑦-

position as a function of the intended motion, i.e. the rotation 𝜃, see Figure 3.1. If 

the mechanism is kinematically determinate [31], the resulting kinematic equations 

can be solved uniquely. 
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Figure 3.2: Overview the steps in various variants of the KSD-method. 

 

2. Estimate for each joint the internal displacements based on the interface positions 

of that joint, and use the internal configuration to obtain the stiffness matrices of the 

joints. In order to speed up this step, we use the Element Orientation based Body 

that is introduced in Section 2.3, which approximates the internal configuration 

based on joint-data. The main idea is that an estimation of the internal configuration 

can be obtained efficiently if the orientations of all the elements in the joint are 

known. This is possible as the orientations are the only variables that make the static 

equilibrium equation nonlinear. Section 2.3 explains the method for planar joints. 

Section 3.A summarizes the method and explains how this technique can be used 

for joints with spatial intended motion.  

3. Update the displacements of the interface points based on static equilibrium of the 

mechanism. To do this, for each joint the stiffness matrix of step 2 is reduced using 

the Craig-Bampton boundary modes to obtain the stiffness matrix in terms of its two 

interface points. 

4. Update the internal configuration for each joint based on the new position of the 

interface points and the stiffness matrices of step 2.  
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5. Update all displacements by solving the full model for static equilibrium. This step 

is similar to a conventional method. However, where conventional methods start 

from the undeformed configuration, the KSD-method starts this step from the posi-

tions that are obtained in step 3 and 4 as initial configuration. 

 

These are the five steps of KSD-full. Step 5 of KSD-full is the most computationally expen-

sive, where the error in the positions after step 4 is already small. Therefore KSD-reduced 

was introduced which only performs step 1 till 4 of KSD-full, shown in column 2 of Figure 

3.2. 

 

The joint-data that is used in step 1 and 2 is obtained based on static simulations with the 

finite element model of the joint. One of the interface nodes of the joint is fixed and the other 

interface node is prescribed in the intended directions. For a finite number of values of the 

intended motion the configuration of the joint is obtained based on static equilibrium. Based 

on the resulting configurations of the joint in the intended deformation the required data for 

step 1 and 2 is approximated based on a least square fit. Using the cross flexure in Figure 3.1 

as an example, we can fix interface point 𝐴 and prescribe the rotation of interface point 𝐵 at 

a finite number of values between -30 and 30 degrees. Based on the resulting configurations 

from static equilibrium we can fit the positions 𝑥 and 𝑦 as a function of the rotation 𝜃 which 

is the joint-data that is required for step 1. 

The rotation of each individual element can also be fitted as a function of the intended 

rotation 𝜃 which is the data required for step 2. If a third order polynomial least square fit is 

used, the resulting equation for the rotation of element 𝑘 in the cross flexure will be: 

 𝜃𝑘 = 𝑐1𝜃 + 𝑐2𝜃
2 + 𝑐3𝜃

3, (3.1) 

where the constants 𝑐𝑖 are approximated by the least square fit. The resulting constants will 

be insensitive to many of the dimensions of the joint like the thickness and the width of the 

flexures. This is as the kinematic behaviour of joints deforming in the intended direction is 

well-determined, i.e. insensitive to the stiffness properties. This means that that the same fit 

functions can be used for cross flexures with different dimensions making it useful to store 

the result in a database. 

Some dimensions may change the geometry of the flexure joint significantly and therefore 

influence the element rotations. In that case the simulation results should be obtained for 

multiple values of this dimension and it should be taken into account explicitly in the func-

tion. As the rotations are sensitive to angle 𝛼 (see Section 3.5) the function for the rotation 

of element 𝑘 of a third order approximation will be: 

 𝜃𝑘 = 𝑐10𝜃 + 𝑐20𝜃
2 + 𝑐30𝜃

3 + 𝑐11𝜃𝛼 + 𝑐21𝜃
2𝛼 + 𝑐12𝜃𝛼

2. (3.2) 

This ends the summary of the existing variants of the KSD-method, more details can be found 

in Chapter 2. 

3.3 New variants of the kinematically started deformation 
method 

For complex mechanisms, the error of the stress-result of KSD-reduced is very sensitive to 

the accuracy of the joint-data. It was found that without an iterative procedure to find internal 

configurations of the flexure joints, the stress result was unreliable. A second observation is 
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that the performance of the KSD-method is sensitive to errors in the unintended displace-

ments of the joints after step 3. 

Based on these two observations a new variant of the KSD-method is introduced, referred 

to as KSD-it1 (shown in the third column of Figure 3.2). KSD-it1 performs the first three 

steps of the KSD-method similar to KSD-full and KSD-reduced. In step 4 the configuration 

of the joints is updated with two differences with respect to KSD-full and KSD-reduced. In 

the first place the update is iterative. So, where KSD-full and KSD-reduced only update the 

configuration once based on the stiffness matrix that was obtained in step 2, KSD-it1 recom-

putes the stiffness matrix after the update of the configuration. This is repeated till a certain 

accuracy is reached. The second difference is related to the boundary conditions. In KSD-

full and KSD-reduced, the positions of the interface nodes are used. KSD-it1 uses positions 

for the intended directions and reaction forces for the unintended directions as boundary con-

ditions. Using the cross flexure in Figure 3.1 as an example we define the rotation of point 𝐵 

with respect to point 𝐴 (i.e. the position of 𝐵 in intended direction) and the reaction forces on 

point 𝐵 in horizontal and vertical direction (i.e. the reaction forces in unintended directions) 

as boundary conditions. The reason for this second change is that small errors in the defor-

mations in the unintended directions have a large influence on the reaction forces and there-

fore on the resulting stress in the flexure joints where a small variation in the reaction forces 

does not significantly change the stress, the position or the stiffness. Because of this second 

difference in step 4, the position of both interface points with respect to each other may 

change a little in this step. Therefore a fifth step is required which updates the interface po-

sitions, this step is performed the same as step 3. 

In step 2 the internal configuration is obtained based on joint-data. However, this step can 

also be applied by an iterative procedure starting from the undeformed configuration of the 

joint. The resulting procedure is similar to step 4 of KSD-it1, except from the fact that forces 

in the unintended directions will be set to zero as they are not available in step 2. The resulting 

approach will be referred to as KSD-it2 and is shown in the fourth column of Figure 3.2. The 

disadvantage of this approach is that step 2 will require significantly more computation time. 

The advantage of this procedure is that it does not require the joint-data that is otherwise used 

in step 2. 

In KSD-it2 still requires some joint-data to perform step 1 of the KSD-method, i.e. the 

data that describes the intended motion. Therefore KSD-it3 is introduced which does not 

require joint-data. KSD-it3 is the same as KSD-it2 except from the approximation of the 

intended motion in step 1. This intended motion is obtained by assuming the hinges to be 

ideal, i.e. neglecting parasitic motion. For example the intended motion of the cross flexure 

is assumed to be a pure rotation around its initial centre. Using such a rough approximation 

is possible because in step 2 the internal configuration is obtained by assuming the reaction 

forces in the unintended directions to be zero instead of using the displacements in the unin-

tended directions. Some flexure joints cannot be described as ideal hinges as their intended 

motion is not a simple combination of ideal rotations or translations. An example is the folded 

leafspring which has five intended directions that are not a simple combination of rotations 

and translations. KSD-it3 does not work for mechanisms containing these joints. However, 

for these joints a rough approximation of the intended motion based on a few simulation 

results can be used. 

Many more variants of the KSD-method could be defined. It is also possible to use dif-

ferent update methods for different joints. For example, if a mechanism contains two types 

of joints and for only one of them joint-data is available, then it is possible to update one of 

the joint-types based on the joint-data (similar to KSD-it1) and the other joint type can be 

assumed to be ideal with an iterative procedure in step 2 (similar to KSD-it3). In this chapter 
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we stick to the five introduced methods as their results together give a representative over-

view of the achievable reduction in computation time and achievable accuracy. 

The results described below indicate that KSD-reduced is the most suitable method to use 

in a design optimization if the accuracy requirements are not high and joint-data for all joints 

is available, as KSD-reduced is the most efficient variant. Otherwise KSD-it1 is probably 

most suitable for the joints of which the joint- data is available and KSD-it3 for the joints of 

which no data is available. 

 

Five conditions needs to be fulfilled in order to obtain an accurate approximation based on 

kinematic relations in the first two steps of the KSD-method. Although this may seem to limit 

the applicability of the method significantly, the first four conditions hold for most of the 

common flexure based mechanisms and optimization criteria: 

 The analysed mechanism should be built from separable joints and links; 

 The analysed mechanism should be kinematically determinated; 

 The large displacement of the mechanism should be prescribed by kinematic rela-

tions (i.e. by input displacements) and not by input forces; 

 The displacement of the mechanism in the unintended direction should be small, as 

it is initially approximated linearly; 

 Most variants of the KSD-method require data of the flexure joints to be available; 

 

The KSD-method can be applied to all flexure based mechanisms that fulfil these criteria to 

obtain a deformed configuration. After this configuration is determined the results that are 

required for a design optimization can be evaluated like the stress in the leafsprings, the re-

action forces on the mechanism, the required actuation forces, the stiffness of the mechanism 

and its eigen frequencies. 

3.4 Efficiency results 
This section evaluates the performance of the KSD-method based on three different mecha-

nisms: 

 Four-bar mechanism with four cross flexures, see Figure 3.3 and Table 3.1. The top 

bar is displaced by 𝑑 = 0.29 m. This case was introduced in Section 2.4.3 with a 

displacement of 0.3 meter. However, in KSD-it3 (which assumes ideal hinges in 

step 1) a displacement of 0.3 meter result in exactly 90 degrees rotation of the two 

vertical bars, which is a singular configuration making this method to fail. 

 Manipulator with three 3x-infinity joints, see Figure 3.4 and Table 3.2. The dis-

placement of the tip of the mechanism is chosen such that the rotation of each of the 

joints is 45 degrees (the first joint in positive z-direction, the other joints in negative 

y-direction). This case was introduced in Section 2.4.4, the 3x-infinity joint has been 

developed in [133]. 

 T-flex: a flexure-based hexapod with twelve identical spherical joints, see Figure 

3.5, Figure 3.6 and Table 3.3. Each spherical joint consist of two serial stacked 

groups with each group comprising three folded leafsprings in parallel. Their 𝑧-axes 

are aligned with their corresponding upper arm. The six lower spherical joints are 

combined with a folded leafspring that constrains the rotation around the local 𝑧-

axis of that spherical joint. The six revolute joints at the bottom are assumed to be 

ideal joints. Two cases are analysed in which each side of each folded leafspring is 

modelled with 2 and with 4 elements respectively. In deformed configuration the 

rotation of each of the six rotational joints at the bottom is 20 degrees, in counter-
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clockwise direction seen from outside (indicated by the dotted arrows in Figure 3.5). 

This mechanism is described in [134] and the spherical joint in [132]. 

 

The required joint-data for the four joints (cross flexure, 3x-infinity, spherical joint and 

folded leafspring) are fitted by fourth order polynomials. KSD-it3 cannot be executed on the 

T-flex as the intended motion of the folded leafspring cannot be approximated by an ideal 

joint. Instead a linear expression is used to imprecisely approximate this motion. 

 

 

        
Figure 3.3: Four-bar mechanism in deformed and undeformed configuration and  cross 

flexure modelled with three beam elements per leafspring. 

 

Table 3.1: Dimensions four-bar mechanism and cross flexure. 

Height mechanism, 𝐻 0.4 m 

Width mechanism, 𝑊 0.4 m 

Leafspring length, 𝐿 0.1 m 

Angle leafspring, 𝛼 45∘ 

Thickness leafsprings, 𝑡 1 mm 

Width inner leafspring, 𝑤1 40 mm 

Width outer leafsprings, 𝑤2 20 mm 
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Figure 3.4: Manipulator in undeformed configuration with lengths and orientations of the 

links and 3x-infinity joint. 

 

Table 3.2: Dimensions of the 3x-infinity joint. 

Width inner leafspring cross flex, 𝑤1 12 mm 

Width outer leafspring cross flex, 𝑤2 6 mm 

Width inner leafsprings, 𝑤3 60 mm 

Thickness leafsprings, 𝑡1, 𝑡2, 𝑡3 0.45 mm 

Length joint, 𝐿1 45 mm 

Length side leafsprings, 𝐿2 38.2 mm 

Horizontal size inner leafsprings, ℎ 25 mm 

Angle leafsprings cross flex, 𝛼 53∘ 

Angle cross flex, 𝛽 20∘ 

Length of part between cross flexs., 𝑑 8 mm 

Total length cross flexs., 𝐷 38 mm 

Length rigid part between inner leafsprings, 𝑠 2.5 mm 
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Figure 3.5: T-flex. 

              
Figure 3.6: a) Spherical joint, consisting of two identical serial stacked groups of three 

folded leafsprings. The ‘A’ indicate connections of the dark group to one of the rigid 

links, the ‘B’ indicate the connections of the light group to the other rigid link, the ‘I’ are 

rigid connections to one intermediate ring. b) Dimensions and position of folded leaf-

spring. 

Table 3.3: Dimensions T-flex. 

Centre to revolute joints, 𝑟1 250 mm 

Distance two revolute joints, 𝑑1 75 mm 

Distance two spherical joints, 𝑑2 50 mm 

Length lower arm, 𝐿1 251 mm 

Length upper arm, 𝐿2 304 mm 

Undeformed height end-effector, ℎ2 265 mm 

Length side folded leafspring, 𝐿3 40 mm 

Angle folded leafspring, 𝛼 50∘ 

Distance folded leafspring to 𝑧-axis spherical joint, 𝑑3 15 mm 
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Table 3.3 continued 

Length leafsprings, 𝐿 27.4 mm 

Distance centre to centre folds, 𝑟 11 mm 

Angle folded leafsprings, 𝜓 86∘ 

Angle between fold and 𝑧-axis, 𝜃1 30∘ 

Width leafspring, 𝑤 15 mm 

Thickness leafspring, 𝑡 0.4 mm 

Counterclockwise rotation of upper layer 25∘ 

 

The performance of the KSD-method is compared to the performance of a conventional 

method. The theoretical background of this reference method is that of SPACAR [104], as 

this software has often been used to model flexure based mechanisms [132-134]. The solver 

initially tries to solve the full displacement in one step and continues till the error in forces is 

below a certain lower threshold. If the error in forces is more than a certain upper threshold 

or the current iteration step can’t be computed then the step-size in the displacement is re-

duced by a factor of 2 as explained in more detail in Section 2.B. The KSD-method is imple-

mented within the same theoretical background. All algorithms have been implemented in 

Matlab2017b for a fair comparison between the reference method and the KSD-method. The 

mechanisms are modelled using the beam-element that is described in Section 2.A. 

For all the 4 cases it was found that the computation of updates in the configuration could 

be performed by neglecting the geometric part of the stiffness matrices, i.e. only using the 

material part of the stiffness matrix. Table 3.4 shows that the computations without these 

terms are much more efficient in the framework of SPACAR. The convergence plot in Figure 

3.7 shows the most important reason for this increase in efficiency: without the geometric 

term, the full displacement can be added in one step, but with the geometric term the dis-

placement had to be split in four steps for convergence. Another reason is that the computa-

tion of the geometric part of the stiffness matrix takes a significant amount of time. In the 

remaining part of this chapter the geometric part of the stiffness matrix is not used during the 

update of positions, not for the reference method and not for the iterative updates in the KSD-

method. 

Figure 3.8 shows the computation times per step of the KSD-method. It shows that the 

reduction in computation time is in general more significant for more complex mechanisms, 

i.e. the mechanisms with a higher number of degrees of freedom. The figure also indicates 

that the computation time of the steps which only update the interface coordinates is almost 

negligible. KSD-reduced is the most efficient method and reduces the computation time up 

to a factor of 90 with respect to the conventional method. KSD-full gives a reduction up to a 

factor 1.8 for the most complex mechanism (T-flex 4). The time reduction for the manipulator 

is much higher. This has to do with the fact that the 3x-infinity joints in this manipulator are 

very stiff in the unintended directions, and therefore the approximation of the configuration 

is already very accurate after step 4, such that step 5 can be performed in only a few iterations.  

The computation times by KSD-it2 and KSD-it3 are on average a factor of 1.75 higher 

than the computation time KSD-it1 which uses joint- data. This indicates that the computa-

tion time in the KSD-method can be reduced by a factor of 1.75 by using joint-data. The 

computation time of KSD-it2 and KSD-it3 is comparable, indicating that the required com-

putation time is insensitive to the accuracy of the estimation in step 1. 
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Table 3.4: Computation times in seconds of the reference method with and without geo-

metric stiffness. The number of degrees of freedom is given as a measure for the com-

plexity of the mechanism. 

 With geom. Without geom. 

Four-bar (305 DOF) 4.9 1.0 

Manipulator (249 DOF) 48.6 5.0 

T-flex - 2 (1518 DOF) 333 39.9 

T-flex - 4 (3246 DOF)  1 951 188 

 

 
Figure 3.7: Convergence of the conventional method for the four-bar mechanism. The 

numbers indicate the size of the step that is converged. The upper dotted line indicates 

the upper threshold (if the error is above this norm, the step size is reduced by a factor of 

2), The lower dotted line indices the lower threshold (if the error is below this line the 

current step is converged). 

 
Figure 3.8: Computation time per step for the reference without geometric stiffness, and 

the KSD-method (KSD-reduced is equivalent to the first 4 steps of KSD-full). The black 

numbers indicate the time reduction factor with respect to the reference. The plot of T-

flex 4 is zoomed in, the times of the reference and KSD-full are 188 and 103 s respec-

tively. 
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3.5 Accuracy results 
This section evaluates the accuracy of the KSD-method and its dependency on variations of 

dimensions of the flexure joints. In step 2 of KSD-full, KSD-reduced and KSD-it1, the ele-

ment configuration is computed by element orientation based bodies. In this method the ele-

ment rotations are obtained as a function of the intended deformation based on a least square 

fit on simulation results as explained in Section 3.A. For each of the three joints it has been 

analysed which dimension parameters have a significant influence on the rotations of the 

elements, the results are given in Table 3.5. A significant influence means more than 10% 

deviation of the rotations for common values of the dimension parameters and common val-

ues of motion. In general the width and thickness of flexures have a negligible influence. For 

the two joints with a simple motion (cross-flexure and 3x-infinity), only a limited number of 

dimension-parameters have influence. For the spherical joint with a complex 3-dimensional 

motion more dimensions have influence. 

 

Table 3.5: Influence of dimension-parameters on rotation of elements during intended 

motion. Significant influence means that element rotations have more than 10% devia-

tion. For each dimension parameter the range for common values is given. 

Joint Range of motion Significant influence Negligible influence 

Cross-flexure [−30∘, 30∘] 𝛼, [30∘, 60∘] 𝑡 𝐿⁄ , [0.001, 0.05] 

𝑤1 𝐿⁄ , [0.1, 1] 

𝑤2 𝑤1⁄ , [0.25, 1] 

3x-infinity [−45∘, 45∘] 𝛽, [30∘, 120∘] 

𝐷 𝐿⁄ , [0.5, 1] 

𝑑 𝐷⁄ , [0, 0.3] 

ℎ 𝐿⁄ , [0.2, 0.8] 

𝑠 𝐿⁄ , [0, 0.1] 

𝛼, [30∘, 60∘] 

𝑡1 𝐿⁄ , [0.001, 0.05] 

𝑡𝑖 𝑡1⁄ , [0.5, 2], 𝑖 = 2,3 

𝑤1 𝐿⁄ , [0.2, 4] 

𝑤2 ∕ 𝑤1, [0.05, 1] 

𝑤3 ∕ 𝑤2, [0.25, 1] 

Spherical 

joint 

Tip-tilta: [−30∘, 30∘] 

Pan: [−15∘, 15∘] 

𝜃1, [25
∘, 45∘] 

𝜓, [70∘, 100∘] 

𝑟 𝐿⁄ , [0.1, 0.5] 

𝑤 𝐿⁄ , [0.1, 0.5] 

𝑡 𝑤⁄ , [0.01, 0.1] 

a Tip-tilt is rotation around the x and y-axis. Pan is rotation around the z-axis. 
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Figure 3.9 shows results for three introduced flexure joints on which one of these dimensions 

is varied. It shows the required applied moment and the maximum stress for a certain intended 

deformation: 

 The cross-flexure is rotated 30∘; 
 The 3x-infinity is rotated 45∘; 
 The spherical joint is rotated 10∘ around the 𝑧-axis and then 20∘ around the 𝑦-axis, 

the graph only shows the required moment around the 𝑧-axis. 

 

The results are given for the reference method, for KSD-reduced which uses joint-data ob-

tained with the default dimensions and for KSD-reduced which uses joint-data that is explic-

itly made dependent on the dimension-parameters with significant influence based on fourth 

order polynomials. 

The results are accurate as there is almost no deformation in the unintended directions in 

these cases. The only significant error is the stress computed for the spherical joint with KSD-

reduced, but this error is reduced by making the joint-data dependent on the dimension-pa-

rameter. However, to obtain this accuracy a fourth order polynomial was required for the 

joint-data, using a third order polynomial gives similar results to the case where the data did 

not depend on the dimension parameters. This indicates that the stress result of KSD-reduced 

can be quite sensitive to the accuracy of the joint-data. 

 

 

 

 
Figure 3.9: Analysis results for three flexure joints in which one dimension is varied. 
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Figure 3.10: Analysis results in which one dimension of the flexure-joints is varied. For 

some lines the average error is given. The reference line is often hidden behind the blue 

line. 

Figure 3.10 shows the results for the mechanisms with the deformations as described in Sec-

tion 3.4, in which dimension parameters are varied. The forces are: 

 For the four-bar: the required force applied at the centre of the top-bar; 

 For the manipulator: the total required force on the tip; 

 For the T-flex: the required moment applied by one of the revolute joints, indicated 

by the ‘A’ in Figure 3.5. 

 

The stiffness results are in unintended directions where the motion in the intended direction 

of the mechanism is constrained at the displacements given in Section 3.4: 

 For the four-bar: the stiffness at the centre of the top bar in the vertical direction; 

 For the manipulator: the rotational stiffness of the tip around the 𝑦-axis; 

 For the T-flex: the vertical stiffness at the centre of the end-effector. 

 

In these stiffness results the geometric stiffness terms are taken into account although it was 

not used to find the deformed configuration. The computation of the geometric stiffness and 

the stresses is not part of the KSD-method and it is therefore not included in the computation 

times in Figure 3.8. 
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Figure 3.11: Average computation time of one function evaluation during the optimiza-

tions for the different methods, split in the time for the computation of the deformation 

and the post-processing. 

 

3.6 Optimizations 
The performance of the KSD-method in a design optimization is tested with the four-bar and 

the manipulator. 

In the four-bar the flexure thickness (𝑡) and the length of the flexures (𝐿) were used as a 

design variables. The other dimensions were the same as in Sections 3.4 and 3.5, see Table 

3.1. The four-bar was optimized for stiffness in the z-direction at the centre of the top-bar 

under 0.29 m displacement. The stress in the leafsprings was limited to 600 MPa. 

In the manipulator the thickness of the inner flexures (𝑡1) and the angle of both rigid 

elements (𝛾) were used as design variables. The length of both diagonal rigid links (𝐿3) was 

adjusted in each design to keep the undeformed end-position at coordinate (0.35, 0, 0). The 

other dimensions were the same as in Sections 3.4 and 3.5, see Table 3.2. The manipulator 

was optimized for rotational stiffness around the z-axis when the end-effector is displaced to 

the coordinate: (0.2, 0.2, 0.1). The stress in the leafsprings is limited to 600 MPa. The opti-

mization is executed twice for each method, once with each flexure modelled by one beam-

element (similar to the case of the previous sections) and once with each flexure modelled 

by two beam elements. 

Both cases are optimized using the CMA-ES algorithm [81], a genetic algorithm, with a 

population size of 10. The optimizations required 400 till 600 function evaluations for con-

vergence, independent of the method. Each function evaluation includes the computation of 

one deformed configuration. Figure 3.11 shows the average computation times per function 

evaluation. The time-reduction of the KSD-method with respect to the reference method is 

lower than the time reduction shown in Figure 3.8. One reason is that the displacement of the 

manipulator is smaller than the case defined in Sections 3.4 and 3.5 such that it can be com-

puted faster by the reference method. Another reason is that the KSD-method performs es-

pecially well on mechanisms with common flexure dimensions. This is because the kinematic 

approximation of the indented motion becomes worse if the intended motion is not much 

more compliant than the unintended motion. This happens for example if the flexures are 
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very thick or very short, which will be the case in some trial-designs during the optimization. 

This is the reason that the KSD-full method is even slower than the reference method in case 

of the four-bar. This also explains that the difference between the computation time of KSD-

it1 is sometimes slower than KSD-it2 and KSD-it3. 

 

Table 3.6 shows the resulting optimized design parameters and support stiffness. All optimi-

zations converged to the same global optimum although there are some slightly deviations. 

KSD-it3 gives relatively large errors on the four-bar which is probably due to the large par-

asitic error motion of cross flexures. KSD-reduced results in a significant error in the support 

stiffness, but still gives a good result for the design parameters. The errors of the different 

KSD-methods for the manipulator are significant smaller than de error that is made by mod-

elling all the flexures by only one beam element instead of two beam elements. 

 

 

Table 3.6: Accuracy of the optimizations, optimized design parameters and support stiff-

ness. The numbers between brackets give the accuracy with respect to the reference 

method. 

 Four-bar Manipulator 1 Manipulator 2 

 𝒕 

(𝐦𝐦) 

𝑳 

(𝐦𝐦) 

𝑲 

(𝐍 𝐦⁄ ) 

𝒕𝟏 

(𝐦𝐦) 

𝜸 

(∘) 

𝑲 

(𝐤𝐍𝐦) 

𝒕𝟏 

(𝐦𝐦) 

𝜸 

(∘) 

𝑲 

(𝐤𝐍𝐦) 

Ref. / 
KSD-full 

0.272 83.4 100.7 0.55 48.1 15.4 0.59 52.8 6.47 

KSD-red 
0.270 

(1.0%) 

82.2 

(1.5%) 

96.0 

(4.7%) 

0.55 

(0.6%) 

48.2 

(0.2%) 

15.4 

(0.0%) 

0.58 

(1.1%) 

51.9 

(1.7%) 

6.94 

(7.2%) 

KSD-it1 
0.270 

(0.7%) 

82.6 

(1.0%) 

100.7 

(0.4%) 

0.55 

(0.0%) 

48.3 

(0.5%) 

15.4 

(0.1%) 

0.59 

(0.0%) 

52.0 

(1.5%) 

6.80 

(5.1%) 

KSD-it2 
0.270 

(0.6%) 

82.7 

(0.9%) 

101.1 

(0.4%) 

0.53 

(3.9%) 

47.8 

(0.6%) 

14.9 

(3.4%) 

0.57 

(3.5%) 

53.0 

(0.4%) 

6.43 

(0.7%) 

KSD-it3 
0.254 

(6.8%) 

76.6 

(8.3%) 

91.5 

(9.2%) 

0.53 

(4.0%) 

49.0 

(2.0%) 

14.9 

(3.5%) 

0.57 

(3.5%) 

52.8 

(0.0%) 

6.43 

(0.6%) 
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3.7 Conclusions 
The kinematically started deformation method (KSD-method), efficiently computes large de-

formed configurations of flexure based mechanisms. Existing variants of the KSD-method 

utilize a priori obtained joint-data of flexure joints to efficiently obtain its internal deformed 

configuration. This chapter shows that the KSD-method can also be used without these joint-

data, this increases the required computation time but it is still significantly faster than a 

conventional method. 

The computational efficiency and accuracy are compared to a reference method. This 

reference method is an implementation of the conventional method SPACAR in Matlab. It 

was found that most static computations on flexure based mechanisms can be performed 

without using the geometric part of the stiffness matrix in the updates of the configuration. 

This reduces the computation time of the conventional method SPACAR significantly. 

The performance of different variants of the KSD-method, that vary in accuracy and com-

putation time, were verified. This is verified by computations on three mechanisms and three 

joints. One of these joints is a spatial spherical joint proving that the KSD-method also works 

for full spatial joints. 

The variant ‘KSD-full’ is as accurate as the reference method and reduces the computa-

tion time up to a factor of 5.6. The variant ‘KSD-reduced’ is up to 90 times faster than the 

reference method but can result in errors of up to 15%. The variant ‘KSD-it1’ reduces the 

computation time up to a factor of 21 and it gives errors below one percent. The variants 

‘KSD-it2’ and ‘KSD-it3’ which uses less and no joint-data respectively are up to 14 times 

faster than the reference method, resulting in errors below 1%. 

The KSD-method is especially helpful in design optimizations as it does not use data that 

is sensitive to the dimensions of the analysed mechanism, which is shown by several design 

optimizations. 
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3.A Spatial element orientation based body 
This section summarizes how the internal configuration of a spatial element-orientation-

based body is found. Chapter 2 gives more details about this method for planar joints. This 

section shows that for bodies with a full spatial intended motion, not only the orientations of 

the elements, but also the orientations of the nodes are required. 

In the element orientation based body the deformed configuration is approximated based 

on the rotations of the elements. This approximation is referred to as near configuration, see 

Figure 3.12. It is the configuration that is obtained in step 2 of the KSD-method (for the 

variants that use element orientation based bodies: KSD-full, KSD-reduced and KSD-it1). 

The near configuration is obtained as follows. 

 The intended motion of the element orientation based body is obtained in step 1 of 

the KSD-method. 

 The rotations of the elements are obtained based on this intended motion and the 

least square fit that is a priori obtained by simulation-data. 

 The locations of the elements are obtained starting from one of the interface points. 

The local displacement of this interface point is defined to be zero which defines the 

positions of the elements that are attached to this interface point. The locations of 

the other elements are obtained by placing them in chains to the previous elements, 

assuming all elements to be undeformed, so it is only rotated and displaced as shown 

in Figure 3.12. 

 

As the orientations of the elements are known in the near configuration the stiffness matrices 

of the elements can be defined by rotating the undeformed stiffness matrices to obtain the 

equation: 

 

𝑭𝑎𝑙𝑙 = {
𝑭1
⋮
𝑭𝑁

} = [
𝑹1𝑲1

(𝑢𝑛𝑑𝑒𝑓)
𝑹1
𝑇 0 0

0 ⋱ 0

0 0 𝑹𝑁𝑲𝑁
(𝑢𝑛𝑑𝑒𝑓)

𝑹𝑁
𝑇

] {
�̅�1
⋮
�̅�𝑁

} = 𝑲𝑎𝑙𝑙�̅�𝑎𝑙𝑙 , (3.3) 

where 𝑭𝑘 are the 12 boundary-forces and moments on element 𝑘, 𝑲𝑘
(𝑢𝑛𝑑𝑒𝑓)

 is its stiffness 

matrix in the undeformed configuration, 𝑹𝑘 is the rotation matrix of element 𝑘 that defines 

the rotation to the near configuration and �̅�𝑘 are the 12 displacements with respect to the near 

configuration (see Figure 3.12). As �̅�𝑎𝑙𝑙  is the difference between the displacement to the 

deformed configuration (𝒒𝑎𝑙𝑙) and the displacement to the near configuration (�̂�𝑎𝑙𝑙) we can 

rewrite eq. (3.3) to: 

 𝑭𝑎𝑙𝑙 = 𝑲𝑎𝑙𝑙𝒒𝑎𝑙𝑙 −𝑲𝑎𝑙𝑙�̂�𝑎𝑙𝑙 . (3.4) 

This equation is in terms of 12 displacements per element (6 displacements for both sides). 

However, elements that are connected share a node. Therefore a Boolean matrix 𝑳 is defined 

to express the displacements of the sides of the elements in terms of the displacements of the 

nodes: 

 𝒒𝑎𝑙𝑙 = 𝑳𝒒𝑛𝑜𝑑𝑒𝑠 , 𝑭𝑛𝑜𝑑𝑒𝑠 = 𝑳
𝑇𝑭𝑎𝑙𝑙 , (3.5) 

where 𝒒𝑛𝑜𝑑𝑒𝑠 is composed of the displacements of the nodes and 𝑭𝑛𝑜𝑑𝑒𝑠 is composed of the 

forces on the nodes. Substituting eq. (3.5) in eq. (3.4) gives: 

 𝑭𝑛𝑜𝑑𝑒𝑠 = 𝑲𝑛𝑜𝑑𝑒𝑠𝒒𝑛𝑜𝑑𝑒𝑠 + �̂�𝑛𝑜𝑑𝑒𝑠 (3.6) 
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Figure 3.12: Element orientation based body indicating the three different types of dis-

placement for one element. 

where 

 𝑲𝑛𝑜𝑑𝑒𝑠 = 𝑳𝑇𝑲𝑎𝑙𝑙𝑳, �̂�𝑛𝑜𝑑𝑒𝑠 = −𝑳
𝑇𝑲𝑎𝑙𝑙�̂�𝑎𝑙𝑙  (3.7) 

This is the stiffness relation that is used to update the interface positions in step 3 of the KSD-

method and to update the internal configuration in step 4 of the KSD-method. 

Equation (3.6) can be obtained for joints with planar intended deformation, but if the 

motion is spatial the large rotations in 𝒒𝑎𝑙𝑙 , 𝒒𝑛𝑜𝑑𝑒𝑠 and �̂�𝑎𝑙𝑙 should be described by parame-

ters that can describe large rotations, e.g. Euler parameters or Euler angles. Using Euler pa-

rameters as an example, this means that the flexible displacement �̅�𝑎𝑙𝑙  is a small difference 

in Euler parameters. However, the stiffness matrix 𝑲𝑎𝑙𝑙  relates forces to rotations around the 

𝑥, 𝑦 and 𝑧-axis. This means that for each node the small difference in Euler parameters should 

be rewritten to small differences in rotations around the 𝑥, 𝑦 and 𝑧-axis. The required rela-

tions to do this do exist, see for example [163]. The relation between variations in Euler 

parameters {𝛿𝜆0, 𝛿𝝀
𝑇}𝑇 = {𝛿𝜆0, 𝛿𝜆1, 𝛿𝜆2, 𝛿𝜆3}

𝑇, and variations in these rotations 𝛿𝜽 =

{𝛿𝜃𝑥 , 𝛿𝜃𝑦 , 𝛿𝜃𝑧}
𝑇
 is: 

 

𝛿𝜽 = 2[−𝝀 𝜆0𝟏 + �̃�] {
𝛿𝜆0
𝛿𝝀
} = 2𝚲 {

𝛿𝜆0
𝛿𝝀
} , �̃� = [

0 −𝜆3 𝜆2
𝜆3 0 −𝜆1
−𝜆2 𝜆1 0

]. (3.8) 

However, the matrix 𝚲 depends on the orientation of the node. Therefore this orientation has 

to be estimated on beforehand. This means that the orientations of the nodes should be ob-

tained similar to the orientations of the elements, i.e. based on a least square polynomial fit 

on the simulation results. 
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Computation of internal stress resultants in beam elements 

CHAPTER 4   
4 Computation of internal stress resultants in beam elements with 

constrained torsional warping 

Abstract 
The computation of stress in beam elements requires the internal stress resultants like 

axial force and bending moments. For displacement-based beam elements, these re-

sultants can be obtained 1) based on equilibrium, 2) consistent to the constitutive law 

or 3) based on load interpolation functions. Although the methods give similar results 

in case of small deformation, the discrepancies in case of large deformation are sig-

nificant. This chapter shows that the method based on equilibrium gives the most 

accurate results. 

Torsion of beam elements causes warping of the cross-section. This warping is 

constrained at clamped ends of beam elements, causing extra stress. This chapter 

shows a method to accurately obtain the corresponding internal stress resultants, i.e. 

the Saint-Venant torsion moment and bimoment. 

 

4.1 Introduction 
Structures are often analysed using beam-elements. This chapter is motivated by flexure 

mechanisms in particular, where each leafspring can be modelled by multiple serial con-

nected beam elements [32, 40, 132, 133, 198]. Figure 4.1 shows an example. Stress in mech-

anisms that are modelled by beam-elements can be computed in three steps, see Figure 4.1: 

1. The displacements, deformations and reaction forces on each beam element are com-

puted based on the stiffness relations; 

2. For each beam-element the internal stress resultants are computed at a finite number of 

points along the beam axis. These stress resultants are quantities like the axial force and 

bending moments. 

3. The stress-distribution on the cross-section is computed based on the internal stress re-

sultants. Formulas for this can be found in standard text books [188]. 

 

This chapter focusses on step 2, the computation of internal stress resultants for three-dimen-

sional beams undergoing large deformation. Firstly by comparing 3 different methods to 

compute five of the internal stress resultants and secondly by proposing an accurate method 

to interpolate the internal stress resultants related to torsion. 
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The internal stress resultants can be determined from equilibrium equations or be com-

puted consistent with the constitutive law. These two methods give a different result. For 

small planar elastic deformations though, it was concluded that the discrepancies between 

these methods are small [158, 193, 208]. 

However, the deformation in a beam element can be large. Moreover, by using beam 

elements that are accurate for larger deformation, less serial connected beam elements are 

required to model a single leafspring accurately, and this increases the computational effi-

ciency. A significant amount of literature is published on the modelling of stiffness of beam 

elements for large deformation. An overview can be found in [165]. The use of these beam 

models urges for an accurate method to obtain internal stress resultants in case of large de-

formation. 

Two specific beam formulations are used in this chapter, a 2nd order formulation [102] 

and a 3rd order formulation [139]. The 3rd order formulation is based on the Hellinger-Reiss-

ner principle, which implies that interpolation functions for both load and displacement fields 

are used. The load interpolation functions can be used to obtain the internal stress resultants. 

This is the third method that is used in this chapter for comparison. 

Torsion of a beam generally causes warping of the cross-section. This warping however 

is constrained at the clamped ends of the beam element and this can cause significantly extra 

stiffness and stress [137, 191]. This effect can be included in a beam element by two extra 

deformation modes for the torsion, which is also applied in the used formulations [102, 139]. 

The correct computation of the corresponding stress requires two internal stress resultants, 

namely the bimoment and the Saint-Venant torsion. These stress resultants however cannot 

be derived very accurately by the three previously mentioned methods. This chapter presents 

a more suitable method to obtain the bimoment and Saint-Venant torsion moment. 

The results in this chapter are derived for the case of flexure mechanisms, using beam 

elements with thin rectangular cross-section, in which the torsional warping is explicitly 

modelled. However, the results also apply to most other applications, beam formulations and 

different cross-sectional shapes. 

 

 

 

 
Figure 4.1: Steps to obtain stress, shown for a parallel flexure guidance consisting of two 

flexures (each modelled by three beam elements) and a connecting rigid part,    1) compute 

forces and displacements of a mechanism, 2) compute for each beam element the internal 

stress resultants 3) compute the stress distribution on the cross-section. 
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Figure 4.2: Beam-element, showing the forces, positions and orientations for both nodes 

and internally. Reference frame 𝑂 is the global reference frame. 

4.2 Method 
This section shows how the internal stress resultants can be obtained based on the results of 

step 1 of Figure 4.1. These results are visualized in Figure 4.2: the positions (𝒓𝑝 𝒓𝑞) and 

orientations (𝑹𝑝, 𝑹𝑞) of both nodes of the beam-element, and the forces (𝑭𝑝, 𝑭𝑞), moments, 

(𝑴𝑝, 𝑴𝑞) and bimoments (𝐵𝑝, 𝐵𝑞) at both nodes. Based on the nodal positions, orientations 

and the mode shapes of the element, the local displacements, (𝑢𝑥(𝑠), 𝑢𝑦(𝑠), 𝑢𝑧(𝑠)) and local 

rotations (𝜙𝑥(𝑠), 𝜙𝑦(𝑠), 𝜙𝑧(𝑠)) can be obtained. Here 𝑠 is the axial coordinate from 0 to the 

undeformed length 𝐿0. Using these local displacements, the global positions (𝒓(𝑠)) and ori-

entations (𝑹(𝑠)) inside the element can also be found. 

Seven internal stress resultants should be obtained: section 4.2.1 presents three methods 

to obtain the axial force, shear forces in the local 𝑦-direction and 𝑧-direction and the bending 

moment around the local 𝑦-axis and 𝑧-axis. Section 4.2.2 explains three methods to obtain 

the Saint-Venant torsion moment and the bimoment. 

4.2.1 Internal stress resultants for extension, shear and bending 
 

Method A1 – Equilibrium. The internal stress resultants can be found based on equilibrium, 

using the values at both nodes: 

 𝑭𝐿(𝑠) = 𝑹
𝑇(𝑠)𝑭𝑞 , 𝑴𝐿(𝑠) = 𝑹𝑇(𝑠)(𝑴𝑞 + (𝒓(𝑠) − 𝒓𝑞) × 𝑭𝑞) (4.1) 

where the subscript 𝐿 emphasizes that it is expressed in the local reference frame 𝑹(𝑠). The 

local force is composed of the axial force and the 2 shear forces and the moment is composed 

of the total torsion moment and the 2 bending moments: 

 

𝑭𝐿(𝑠) = {

𝐹𝑥(𝑠)

𝐹𝑦(𝑠)

𝐹𝑧(𝑠)

} , 𝑴𝐿(𝑠) = {

𝑀𝑥(𝑠)

𝑀𝑦(𝑠)

𝑀𝑧(𝑠)

}. (4.2) 
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Method A2 – Constitutive law. The internal stress resultants are directly related to the de-

rivatives of the local displacements: 

 𝐹𝑥(𝑠) = 𝐸𝐴𝑢𝑥
′ (𝑠) 

𝐹𝑦(𝑠) = 𝐺𝐴𝜅𝑦 (𝑢𝑦
′ (𝑠) − 𝜙𝑧(𝑠)),         𝑀𝑦(𝑠) = 𝐸𝐼𝑦𝜙𝑦

′ (𝑠), 

𝐹𝑧(𝑠) = 𝐺𝐴𝜅𝑧 (𝑢𝑧
′ (𝑠) + 𝜙𝑦(𝑠)) , 𝑀𝑧(𝑠) = 𝐸𝐼𝑧𝜙𝑧

′(𝑠) 

(4.3) 

where ( )′ defines a derivative to coordinate 𝑠. 𝐸 is the elasticity modulus of the material and 

𝐺 the shear modulus,  𝐴 is the cross-sectional area, 𝜅 the shear correction factor according to 

Cowper [58] and 𝐼𝑦  and 𝐼𝑧 are the second moments of area. 

 

Method A3 – Load interpolation functions. The third order beam element is derived based 

on the Hellinger-Reissner principle. This implies that it is derived based on a combination of 

load interpolation functions and displacement interpolation functions of which the corre-

sponding coordinates are computed in step 1 of Figure 4.1. These load interpolation functions 

(see eq. 24 of ref. [139]) give a direct estimation for the required internal stress resultants. 

4.2.2 Saint-venant torsion moment and bimoment 
Torsion causes warping of the cross-section. At the clamped ends of a beam this warping is 

constrained, resulting in additional strain energy storage, which causes extra stiffness and 

stress. The internal stress resultant related to warping is the bimoment, 𝐵. The shear stress is 

related to the Saint-Venant torsion moment, 𝑇𝑥. According to Vlasov torsion theory [191] the 

total torsion moment is composed of the Saint-Venant torsion moment and the derivative of 

the bimoment: 

 𝑇𝑥(𝑠) + 𝐵
′(𝑠) = 𝑀𝑥(𝑠) (4.4) 

Below, three methods are given to compute the Saint-Venant torsion moment and the bi-

moment. 

 

Method B1 – Interpolation. The bimoment is available at both nodes such that the bi-

moment can be obtained by a linear interpolation between these two values: 

 
𝐵(𝑠) = −𝐵𝑝

𝐿 − 𝑠

𝐿
+ 𝐵𝑞

𝑠

𝐿
 (4.5) 

The Saint-Venant torsion moment is not available at the nodes so it cannot be obtained by 

interpolation. The Saint-Venant torsion moment can however be approximated by the total 

torsion moment 𝑇𝑥(𝑠) ≈ 𝑀𝑥(𝑠), which is a good approximation far from the clamped ends. 

This total torsion moment 𝑀𝑥(𝑠) can be computed based on equilibrium, see method A1, eq. 

(4.2). 

 

Method B2 – Constitutive law. The Saint-Venant torsion moment and bimoment are di-

rectly related to derivatives of the torsion angle: 

 𝑇𝑥(𝑠) = 𝐺𝐼𝑡𝜙𝑥
′ (𝑠),          𝐵(𝑠) = −𝐸𝐼𝜔𝜙𝑥

′′(𝑠) (4.6) 

where 𝐼𝑡 is Saint-Venant’s torsion constant and 𝐼𝜔 is Vlasov’s warping constant [191]. 
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Figure 4.3: a) The particular solution is obtained using an estimation of the total torsion 

moment, which is derived based on an approximation of the forces on the undeformed 

line 𝑀𝑥
∗(𝑠), 𝑀𝑦

∗(𝑠) and 𝐹𝑧
∗(𝑠), and its deflection, 𝑢𝑦(𝑠), 𝜙𝑧(𝑠). b) The homogeneous so-

lution is based on the end-points of a whole leafspring. 

Method B3 – ODE. The Saint-Venant torsion moment and the bimoment can be solved 

based on the differential equation in eq. (4.4). According to eq. (4.6) the Saint-Venant torsion 

moment and bimoment are related as:  

 
𝐵(𝑠) = −

𝐸𝐼𝜔
𝐺𝐼𝑡

𝑇𝑥
′(𝑠) (4.7) 

Substituting this result into eq. (4.4) gives the ordinary differential equation (ODE):  

 
𝑇𝑥 −

𝐸𝐼𝜔
𝐺𝐼𝑡

𝑇𝑥
′′ = 𝑀𝑥(𝑠) (4.8) 

To solve for 𝑇𝑥 a homogeneous and a particular solution have to be obtained. 

For the particular solution 𝑀𝑥(𝑠) is approximated by a 4th order polynomial. This is done 

by first approximating the internal forces on the undeformed element (the orange, dotted line 

in Figure 4.3a). The torsion 𝑀𝑥
∗(𝑠) and the shear force 𝐹𝑧

∗(𝑠) are linearly interpolated between 

their values on the nodes. The bending moment 𝑀𝑦
∗(𝑠) is approximated by a second order 

polynomial that corresponds to the moments on the nodes and satisfies 𝑀𝑦
∗′′(𝑠) = 𝐹𝑧

∗′(𝑠). 

Then, using equilibrium considerations, the total torsion moment at the deformed line (black 

dotted line in Figure 4.3a) is computed by: 

 𝑀𝑥
(4𝑡ℎ)(𝑠) = 𝑀𝑥

∗(𝑠) + 𝑀𝑦
∗(𝑠) ⋅ 𝜙𝑧(𝑠) − 𝐹𝑧

∗(𝑠) ⋅ 𝑢𝑦(𝑠) (4.9) 

The resulting relation is fourth order, assuming the displacement 𝑢𝑦(𝑠) to be a third order 

polynomial which is common in beam elements. Note that this equation neglects displace-

ments in the z-direction as the shown beam element is very stiff in this direction. However, 

displacements in the z-direction could be accounted for in similar way as for the 𝑦-direction 

by including the term −𝑀𝑧
∗(𝑠) ⋅ 𝜙𝑦(𝑠) + 𝐹𝑦

∗(𝑠) ⋅ 𝑢𝑧(𝑠). Having a polynomial expression for 

𝑀𝑥(𝑠), the particular solution 𝑇𝑥
(𝑃)

 of the ODE is easily obtained. The corresponding bi-

moment can be obtained by using eq. (4.7). For a constant total torsion moment, the solution 

is 𝑇𝑥
(𝑃)(𝑠) = 𝑀𝑥 , 𝐵

(𝑃)(𝑠) = 0. This indicates that the particular solution describes the bi-

moment due to a variation of the total torsion moment over the axial coordinate. 
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The homogeneous solution describes the effects at the boundaries of a leafspring where 

the warping is usually fully constrained or completely released. The homogeneous solution 

of the ODE is: 

 𝑇𝑥
(𝐻𝐺)(𝑠𝐿𝐹) = 𝐶1 cosh(𝜆𝑠𝐿𝐹) + 𝐶2 sinh(𝜆𝑠𝐿𝐹) , 𝜆 = √𝐺𝐼𝑡 𝐸𝐼𝜔⁄  (4.10) 

where 𝑠𝐿𝐹 is the axial coordinate for a whole leafspring, from 0 to the undformed length 𝐿𝐿𝐹. 

The corresponding bimoment is, according to eq. (4.7): 

 𝐵(𝐻𝐺)(𝑠𝐿𝐹) = −√𝐸𝐼𝜔 𝐺𝐼𝑡⁄  (𝐶1 sinh(𝜆𝑠𝐿𝐹) + 𝐶2 cosh(𝜆𝑠𝐿𝐹)) (4.11) 

The constants 𝐶𝑖 are computed based on the end-conditions of a full leafspring. For a clamped 

end we have the boundary condition 𝑇𝑥 = 0 and for a free end we have the condition 𝐵 = 0 

(see Figure 4.3b). So the particular solution was computed for each beam element individu-

ally, where the homogeneous solution is computed for a whole leafspring at once. 

Note that as this method does not use the bimoment at the nodes that was computed in 

step 1 of Fig 5, it can also be used with beam elements that do not have warping modes. 

4.3 Results 
This section applies the methods to investigate which method is most accurate. A 2nd order 

beam model [102] and a 3rd order model [139] are used, with slightly different deformation 

modes as derived in Section 2.A. A rectangular beam with the following dimensions and 

material properties is used: length: 𝐿 = 100 mm, width: 𝑤 = 10 mm, thickness: 𝑡 =
0.3 mm, material elasticity: 𝐸 = 200 GPa, Poisson ratio: 𝜈 = 0.3. Vlasov’s warping constant 

is computed as 𝐼𝜔 = 𝑤
3𝑡3 144⁄ , see [180, 184]. The left side of the beam is fixed to the 

ground, the torsional warping at both sides is constrained and the right side is subjected to 

six different loading conditions, visualized in Figure 4.4. 

Case 1 and 2 are simple, the only nonzero internal stress resultant is the bending moment 

around the z-axis which is constant. For these two cases all methods give the exact result. 

 

 

 
Figure 4.4: Load cases of the leafspring, modelled by 10 beam elements. The left side is 

always completely fixed, except for case 4. 1) bending rotation, 2) applied bending mo-

ment, 3) bending displacement in combination with a shear force, 4) the displacement of 

both ends is fixed and both ends are rotated to create a coupling between the axial and 

bending direction, 5) torsion, 6) torsion in combination with bending to create a signifi-

cantly varying torsion over the axial coordinate. 
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Figure 4.5: Resulting internal stress resultants as function of the axial coordinate 𝑠𝐿𝐹 for 

two loading cases shown in Fig. 8. The leafspring is modelled with 1, 3 and 10 beam 

elements. Method A1 is applied with the 2nd order and with the 3rd order beam element. 

Method A2 is only applied with the 2nd order beam element (the results with the 3rd order 

element were worse in general). Method A3 can only be applied with the 3rd order ele-

ment. 

Figure 4.5 shows results for case 3 and 4 to compare methods A1, A2 and A3. Some obser-

vations are: 

 The differences between the results of the three methods are significant if few beam 

elements are used. 

 The results show that all methods converge to the same result if many beam ele-

ments are used in series, indicating that all methods converge to the exact solution. 

One exception on this observation is in the shear force 𝐹𝑧 where method A2 and A3 

give fundamentally wrong results. Section 4.A explains this and shows that the re-

sulting relative error in the final stress is small. 

  Method A1 converges the most rapidely to the exact solution when using more 

beam elements. The most imporantant reason for this is that this method accounts 

for local rotations of the cross-section, i.e. the vector with internal foces 𝑭𝐿(𝑠) and 

the vector with internal moments 𝑴𝐿(𝑠) is rotated according to the orientation of 

the cross-section 𝑹(𝑠), see eq. (4.1). 
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 The internal stress resultants obtained by method A1 are continuous between the 

elements, where this is not the case for the methods A2 and A3. 

 The 3rd order beam element gives generally better results than the 2nd order beam 

element, especially in case 4. 

 

Figure 4.6 shows results of torsion (method B1-B3). The following observations are made: 

 The bimoment on the beam nodes of case 5 is perfectly computed by the 3rd order 

beam element, but method B1 still gives a quite bad estimation inside the elements 

because of the linear interpolation. Method B2 also gives significant errors, even 

with 10 beam elements the bimoment at both ends is 40% off. Method B3 gives a 

perfect result for case 5, even with only one beam element. 

 In case 6 the total torsion moment varies over the axial coordinate and therefore the 

bimoment at the nodes is not accurately approximated by the 2nd order and 3rd order 

beam element if only 1 or 3 beam elements are used. Therefore method B1 gives a 

bad estimation of the internal bimoment. Method B3 gives a relatively accurate re-

sult, even with only 1 beam element. 

 The Saint-Venant torsion moment in case 6 is in method B1 approximated by the 

total torsion moment. Internally this approximation is quite good (for 3 or more 

beam elements) but not at both ends of the leafspring. In method B2 clearly a lot of 

beam elements are required for an accurate estimation of the Saint-Venant torsion 

moment. Method B3 gives an accurate result with 3 or more beam elements. 

 

In summary, method A1 gives more accurate results than method A2 and A3. The most im-

portant reason is that it is easy to evaluate the nonlinear equilibrium-equation (see eq. (4.1)), 

therefore method A1 accounts for the effect of local displacements and rotations of the cross-

sections on the equilibrium. Method A2 and A3 use interpolation functions that are based on 

equilibrium in the undeformed state. 

Method B3 gives the most accurate results for torsion. Similar to method A1, this method 

obtains an accurate estimation of the total torsion moment based on equilibrium and the local 

displacements of the beam. Based on this estimation the Saint-Venant torsion moment and 

the bimoment can be obtained accurately. 

As this reasoning is not limited to the used beam dimensions and loading conditions, 

method A1 and B3 will be the most accurate for displacement based elements in general. 
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Figure 4.6: Resulting internal bimoment and Saint-Venant torsion moment as function of 

the axial coordinate 𝑠𝐿𝐹. The leafspring is modelled with 1, 3 and 10 beam elements. 

Results are given for methods B1-B3 based on results of the 2nd order or 3rd order beam 

element. 

4.4 Conclusions 
The computation of stress in beam elements requires the internal stress resultants to be ob-

tained. These resultants can be obtained by different methods, which result in significant 

different results in case of large deformation. Three methods were compared to obtain the 

internal stress resultants for extension, shear and bending. The method based on equilibrium 

equations gives the most accurate results. 

Three other methods are proposed to obtain the internal stress resultants related to torsion, 

i.e. the Saint-Venant torsion moment and the bimoment. It was found that these resultants 

can be obtained accurately based on the solution of the differential equation that relates the 

total torsion moment, the Saint-Venant torsion moment and the bimoment. 

The results indicate that a right choice of the method to obtain the internal stress resultants 

is highly relevant for an accurate computation of the stress in beam elements undergoing 

large deformation. 
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4.A Inconsistency of internal shear force 
This section explains why an inconsistency is found between the shear force that is obtained 

based on the equilibrium-method and the shear force obtained by the constitutive law, even 

for short beams. The inconsistency occurs in generalized strain beam elements. First the re-

lations of these elements are summarized. Then two causes of the inconsistencies are derived. 

Finally, it is shown why the error in the final stress is small in engineering practice. 

The derivations in this section use the formulation of the 2nd order element [102], but also 

hold for the used 3rd order element, which are both generalized strain elements. 

4.A.1 Summary of the generalized strain beam formulation 
In a generalized strain beam element deformation modes are defined, which are related to the 

nodal coordinates 

 𝜺 = 𝓓(𝒙) (4.12) 

The used beam elements have 8 deformation modes (eq. 7 of [102]), but only the first 6 are 

relevant. They are visualized in Figure 4.7. 

The generalized forces of these deformation modes are called generalized external 

stresses, 𝝈. They are related to the generalized strains by a constant stiffness matrix: 𝝈 = 𝑺𝜺. 

The exact expression for the stiffness matrix is given in eq. 40 of [102], but not relevant for 

the current derivation. According to the principle of virtual work the nodal forces are related 

to the generalized stresses (eq. 15 of [102]) 

 𝑭 = 𝓓,𝒖
𝑇 𝝈 (4.13) 

in which 𝑭 consist of 12 terms, i.e. the forces and moments at both nodes. 𝓓,𝒖
𝑇  is the derivative 

of 𝓓(𝒙) to the nodal displacements and rotations, 𝒖. The exact relations given in eq. 10-15 

of [102]. The relevant results (eq. 16 of [102]) are: 

 𝜎1 = −𝐹𝑥
𝑝
= 𝐹𝑥

𝑞
(normal force)

𝐿𝜎2 = −𝑀𝑥
𝑝
= 𝑀𝑥

𝑞
(torsion moment)

𝐿𝜎3 = −𝑀𝑦
𝑝
,   𝐿𝜎4 = 𝑀𝑦

𝑞

𝐿𝜎5 = −𝑀𝑧
𝑝
,   𝐿𝜎6 = 𝑀𝑧

𝑞     } (bending moments)

 (4.14) 

These reaction forces are also visualized in Figure 4.8. 

 

 
Figure 4.7: Six deformation modes of the beam element. 
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Figure 4.8: Reaction forces on a beam element with torsion. 

4.A.2 Cause 1 – Different coordinate-axes 
In short the first reason for inconsistency is that the relations between the deformation modes 

and coordinates are defined using different coordinate axes such that also the relations be-

tween 𝝈 and reaction forces are defined in different axes. Figure 4.8 shows for example that 

𝑀𝑧
𝑝
 and 𝑀𝑦

𝑝
 have a different orientation. 

It can be easily seen from Figure 4.8 that based on method A1 (equilibrium), the shear 

force at node p should be: 

 
𝐹𝑧
𝑝
= −

𝑀𝑦
𝑝

𝐿
+
𝑀𝑦
𝑞

𝐿
cos(𝜃2) −

𝑀𝑧
𝑞

𝐿
sin(𝜃2) (4.15) 

The same result is obtained by substituting eq. (4.14) into the full expression of eq. (4.13). 

By assuming a short beam element, such that also the deformations become small, we can 

linearize this result and substitute 𝜃2 = 𝜙𝑥
′𝐿: 

 
𝐹𝑧
𝑝
= −

𝑀𝑦
𝑝

𝐿
+
𝑀𝑦
𝑞

𝐿
−
𝑀𝑧
𝑞

𝐿
𝜙𝑥
′𝐿 = −

𝑀𝑦
𝑝

𝐿
+
𝑀𝑦
𝑞

𝐿
− 𝑀𝑧

𝑞
𝜙𝑥
′  (4.16) 

which is the internal shear stress at node p that is found from equilibrium. 

 

The resulting shear force at node 𝑝 based on method A2 (constitutive law) is intuitively only 

related to the moments around the 𝑦-axis: 

 
𝐹𝑧
𝑝
= −

𝑀𝑦
𝑝

𝐿
+
𝑀𝑦
𝑞

𝐿
 (4.17) 

This result can also be obtained by a more detailed derivation: First substituting the mode 

shapes (eq. 38 of [102]) into eq. (4.3): 

 
𝐹𝑧
𝑝
= 𝐸𝐴𝜅𝑧 ⋅ (𝑢𝑧

′ (𝑠) + 𝜙𝑦(𝑠)) =
𝐸𝐴𝜅𝑧
𝐿

⋅
Φ𝑧

2(1 + Φ𝑧)
(휀4 − 휀3) (4.18) 

where Φ𝑧 = 12𝐸𝐼𝑦 𝐺𝐴𝜅𝑦𝐿
2⁄ . Then the inverse of the stiffness relation (eq. 40 of [102]) and 

eq. (4.14) can be used to obtain: 

 
𝐹𝑧
𝑝
=
1

𝐿
(−𝜎3 + 𝜎4) = −

𝑀𝑦
𝑝

𝐿
+
𝑀𝑦
𝑞

𝐿
 (4.19) 
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The difference in result between the equilibrium method and the constitutive-law-method is 

the term −𝑀𝑧
𝑞
𝜙𝑥
′ . This term can be nonzero, even for very short beams. As the bending mo-

ment in a very short beam is almost constant we will write this as −𝑀𝑧𝜙𝑥
′  

4.A.3 Cause 2 – Second order term in the deformation modes 
In the 2nd order beam element a second order term is included which correct for the fact that 

the local rotation matrices are not linear in the virtual rotations around the 𝑥, 𝑦 and 𝑧 axis 

(eq. 45 of [102] gives the full expression of the rotation matrix). This causes a coupling term 

between the torsional deformation (휀2) and the bending deformation (휀3 till 휀6). This effect 

is included by modifying the strain definitions (see eq. 54 of [102]). The modification that 

causes an inconsistency is in the torsional mode: 

 
휀2̂ = 휀2 +

1

𝐿
(−휀3휀6 + 휀4휀5) (4.20) 

where 휀2̂ is the second order generalized strain definition and the other generalized strains 

are the linear definitions as visualized in Figure 4.7. For short elements, all the generalized 

strains become small, meaning that this second order term with squared generalized strains 

becomes negligible. 

The reason for the inconsistency is that the extra term in the derivative �̂�,𝒖
(2) = 𝑑휀2̂ 𝑑𝒖⁄  

does not become zero for short beams. This causes an extra term in eq. (4.13), which causes 

an inconsistency as derived in more detail below. 

Eq. (4.13) can be evaluated for 𝐹𝑧
𝑝
. Note that 𝐹𝑧

𝑝
 is a term in 𝑭 such that only the derivative 

of 𝓓 to the corresponding displacement, 𝑧𝑝, is required: 

 
𝐹𝑧
𝑝
= �̂�,𝑧𝑝

𝑇 𝝈 = (
𝜕�̂�

𝜕𝑧𝑝
)

𝑇

𝝈 

      =
𝜕휀1
𝜕𝑧𝑝

𝜎1 +
𝜕휀2̂
𝜕𝑧𝑝

𝜎2 +
𝜕휀3
𝜕𝑧𝑝

𝜎3 +
𝜕휀4
𝜕𝑧𝑝

𝜎4 +
𝜕휀5
𝜕𝑧𝑝

𝜎5 +
𝜕휀6
𝜕𝑧𝑝

𝜎6 

(4.21) 

in which the nonzero terms in the derivative of 휀2̂ are, see eq. (4.20): 

 𝜕휀2̂
𝜕𝑧𝑝

=
𝜕휀2
𝜕𝑧𝑝

−
휀6
𝐿

𝜕휀3
𝜕𝑧𝑝

−
휀3
𝐿

𝜕휀6
𝜕𝑧𝑝

+
휀5
𝐿

𝜕휀4
𝜕𝑧𝑝

+
휀4
𝐿

𝜕휀5
𝜕𝑧𝑝

 (4.22) 

In a beam element that is only deformed in bending around the 𝑧-axis, eq. (4.21) reduces to: 

 
𝐹𝑧
𝑝
= −(

휀6
𝐿
+
휀5
𝐿
)𝜎2 − 𝜎3 + 𝜎4 = (𝜃6 + 𝜃5)

𝑀𝑥

𝐿
+
𝑀𝑦
𝑝

𝐿
+
𝑀𝑦
𝑞

𝐿
 (4.23) 

For short beam elements the resulting terms are: 

 
𝐹𝑧
𝑝
=
𝜃6 + 𝜃5
𝐿

𝑀𝑥 +
𝑀𝑦
𝑝

𝐿
+
𝑀𝑦
𝑞

𝐿
= 𝜙𝑧

′𝑀𝑥 +
𝑀𝑦
𝑝

𝐿
+
𝑀𝑦
𝑞

𝐿
 (4.24) 

This is the internal stress resultant found by method A1 (equilibrium). The internal stress 

resultant obtained by method A2 (Constitutive law) is given in eq. (4.17). So the inconsistent 

term is 𝜙𝑧
′𝑀𝑥. This is a nonzero error, even for very short beam elements. 
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Figure 4.9: Rectangular cross-section with thickness 𝑡 and width 𝑤. 

4.A.4 Influence of the inconsistencies on the total stress 
The inconsistent terms in the shear stress are: −𝑀𝑧𝜙𝑥

′  and 𝜙𝑧
′𝑀𝑥 as derived above. The re-

sulting stress terms can be shown to be negligible for initially straight beams of common 

materials, based on classic beam theory, see e.g. [188]. For common materials we can assume 

that the maximum strain is limited to 1% and the maximum shear strain to 0.5%, this limits 

the curvatures 𝜙𝑥
′  and 𝜙𝑧

′ . For bending of a beam with rectangular cross-section of thickness 

𝑡 and width 𝑤 (Figure 4.9) the relation between the highest strain and the bending curvature 

is: 

 
휀𝑥𝑥 𝑚𝑎𝑥
(𝑏𝑒𝑛𝑑) =

𝑡

2
𝜙𝑧
′ ≤ 0.01 ⇒ 𝜙𝑧

′ ≤
1

50𝑡
 (4.25) 

For torsion, the relation between the highest shear stress and the curvature is approximately: 

 
𝛾𝑥𝑧 𝑚𝑎𝑥
(𝑡𝑜𝑟) = 𝜙𝑥

′ 𝑡 ≤ 0.005 ⇒ 𝜙𝑥
′ ≤

1

20𝑡
 (4.26) 

 

The following relations exist between the highest stress and the internal stress resultants of 

shear, bending and torsion: 

 
𝜏𝑥𝑧 𝑚𝑎𝑥
(𝑠ℎ𝑒𝑎𝑟) =

3

2𝑤𝑡
⋅ 𝐹𝑧(𝑠),          𝜎𝑥𝑥 𝑚𝑎𝑥

(𝑏𝑒𝑛𝑑) =
6

𝑤𝑡2
𝑀𝑧(𝑠),          𝜏𝑥𝑧 𝑚𝑎𝑥

(𝑡𝑜𝑟) =
6

𝑤𝑡3
𝑇𝑥(𝑠) (4.27) 

Using these formulas we can relate the inconsistency in shear stress because of the terms 

−𝑀𝑧𝜙𝑥
′  and 𝜙𝑧

′𝑀𝑥 to the existing stress of bending and torsion, accounting for the constraints 

in eqs. (4.25,4.26): 

 
𝜏𝑥𝑧 𝑚𝑎𝑥
(𝑠ℎ𝑒𝑎𝑟,𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠) =

3

2𝑤𝑡
|𝜙𝑧

′𝑀𝑥 −𝑀𝑧𝜙𝑥
′ | 

 

                             ≤
3

2𝑤𝑡
|
𝜏𝑥𝑧 𝑚𝑎𝑥
(𝑡𝑜𝑟) 𝑤𝑡2

6
⋅
1

50𝑡
−
𝜎𝑥𝑥  𝑚𝑎𝑥
(𝑏𝑒𝑛𝑑) 𝑤𝑡2

6
⋅
1

20𝑡
| 

(4.28) 

By simplifying this equation we obtain the maximum extra shear stress: 

 
𝜏𝑥𝑧 𝑚𝑎𝑥
(𝑠ℎ𝑒𝑎𝑟,𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠) ≤ |

𝜏𝑥𝑧 𝑚𝑎𝑥
(𝑡𝑜𝑟)

100
−
𝜎𝑥𝑥 𝑚𝑎𝑥
(𝑏𝑒𝑛𝑑)

80
| (4.29) 

Which indicates that the error in shear stress is below 1/80 of the total stress. Moreover, both 

terms in these equation are likely to partly cancel each other, which further reduces the error. 
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CHAPTER 5   
5 Refined stress computation for wide rectangular beams 

Abstract 
Flexure joints are utilized in mechanisms for their deterministic behaviour, making 

them excellent for precision applications. The deforming parts of flexure joints are 

often leafsprings. To evaluate design concepts in the first phase of flexure joints, 

these leafsprings are often modelled efficiently with beam elements. However, leaf-

springs have a wide rectangular cross-section, which causes inaccuracies in the stress 

computation in beam elements. Computing stress accurately is important for flexure 

design optimization where stress is often the constraint that is driven to the limit. 

This chapter refines the classic stress computation for beam elements with a wide 

rectangular cross-section. In the first place, the stresses due to Wagner torque and 

anticlastic bending are added. Secondly, the stresses in the vicinity of clamped sides 

of the leafspring are modified by adding stress fields that depend on the in-plane 

reaction forces and initial bending curvature. 

The stresses due to bending and torsion are generally more than 95% accurate 

with this refined computation, whereas the accuracy of classic theory is often less 

than 90%. Forces in the in-plane directions of the beams cause high local stresses 

near both corners of the clamped sides, making the maximum stress up to 36% higher 

than computed with the classic beam theory. The refined stress computes these 

stresses over 90% accurately. However, in a few specific cases the refined stress 

computation is only 83% accurate. In summary, the refined stress computation is 

generally over 90% accurate and is often twice as accurate as the classic theory. 

 

5.1 Introduction 
Flexure joints are often utilized in mechanisms for their deterministic behaviour, making 

them excellent for precision applications [4, 77, 135, 147, 179, 200]. However, their range 

of motion is limited due to stress constraints and due to the deterioration of the support stiff-

ness with deflection. New flexure joint configurations are developed with optimal dimen-

sions [132] to obtain the best performance. The evaluation and optimization of these designs 

requires models which are both efficient and accurate. 

The deforming parts of flexure joints for a large range of motion are leafsprings. These 

are flexural elements of which the thickness is much smaller than the width and length, see 

Figure 5.1. Leafsprings allow large deformation in the bending direction and in torsion and 

are stiff in the three in-plane directions. 
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Figure 5.1: The two directions in which leafsprings allow large deformation. 

The leafsprings are often modelled with beam elements [32, 40, 132, 133, 198]. Beam ele-

ments are well suited for use in design optimizations as they are computationally efficient. 

However, the width of a leafspring can typically be in the same order of magnitude as its 

length, which violates the assumption that the cross-sectional dimensions of a beam element 

are much smaller than its length. In practice, classic beam elements give relatively accurate 

results for the stiffness of leafsprings, and the accuracy can be further increased using the 

modifications proposed in ref. [124]. 

However, the accuracy of the computed stress in the leafsprings using beam elements is 

somewhat limited. The stress is usually not uniformly divided over the cross-section, and 

high stresses can occur very locally. The stiffness computation does not suffer much from 

these local effects as stiffness properties are averaged values.  The inaccuracy of stress com-

putation of wide rectangular beams is caused by two effects. In the first place by the effects 

that occur in case of large deformation. Secondly, by effects in the vicinity of clamped sides 

of leafsprings (referred to as end effects). 

 

The Euler-Bernoulli beam theory is a classic theory for bending and elongation, see for ex-

ample ref. [21]. It assumes that the cross-sectional dimensions are much smaller than the 

length and that there is no deformation of the cross-section. The Timoshenko beam theory 

includes shear deformation and is therefore more appropriate for wide beams. To account for 

the non-uniformity of the shear over the cross-section, correction coefficients for the Timo-

shenko shear theory are proposed [58, 141, 161]. 

The Saint-Venant torsion theory is the classic theory for torsion, which assumes uniform 

torsion and assumes the deformation of the cross-section to be only out-of-plane, see for 

example ref. [21]. The classic theory to describe the constrained warping at the end of a beam 

is the Vlasov theory [123, 191]. More details about this classic theory can be found in [90, 

148]. 

 

Many general refinements on these classic theories have been published, see for example the 

overview given by Carrera [51]. Most refinements are based on a suitable description of the 

deformation of the cross-section. One of these methods is the generalized beam theory, which 

describes warping of beams with thin-walled cross-sections [173]. Another method is to de-

scribe the cross-sectional deformation by a Taylor series or polynomial series in the cross-

sectional coordinates. Each term in this series is a new degree of freedom in the beam-element 

[50, 51, 126]. The variational asymptotic method gives a systematic approach to identify the 

most important terms in the cross-sectional deformation [52, 85, 204]. It is based on an as-
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ymptotic expansion of the internal energy in a small parameter and it solves the most im-

portant terms in the displacement fields by minimizing this energy.  In ref. [172] a data-driven 

approach was used to find the most important cross-sectional deformation. 

These methods can be used to improve the stress computation in beams with arbitrary 

cross-sections, however they suffer from two limitations. The methods typically model the 

end effects by adding extra degrees of freedom or using three-dimensional computations, 

which significantly increase the computation time. Furthermore, in the case of most of these 

methods it has not been shown that they are able to accurately describe the effects due to 

large deformation of the beam. 

 

More specific refinements have been published for wide rectangular beams, to describe the 

effects in the case of large deformation (i.e. out-of-plane bending and torsion) and the end 

effects. 

The most significant effect in the out-of-plane bending of wide rectangular beams is the 

anticlastic curvature, caused by the Poisson effect, see Figure 5.1(b). This bending  causes 

extra stiffness and stress. The shape of the anticlastic curve depends on the Searle parameter 

(who first addressed this topic [164]), 𝛽 = 𝑤2 𝑅𝑡⁄ . For a constant bending radius 𝑅 an ana-

lytical result for the shape of this curve is derived [6, 10, 111] which is validated experimen-

tally for values of the Searle parameter up to 50, see refs. [23, 57, 92, 96]. The resulting extra 

stiffness is derived in refs. [6, 124, 149] and the stress is derived in refs. [57, 92]. Reference  

[45] shows that this also gives reasonable results for slightly varying bending curvatures. 

However, to the best of the author’s knowledge, no analytical solution has been found for the 

anticlastic curvature in the vicinity of clamped sides. 

The most important nonlinear effect in the case of torsion of beams with a wide rectan-

gular cross-section is the Wagner torque, described in refs. [80, 183, 195]. This is caused by 

the fact that the outer fibres in the material have to elongate with respect to the inner fibres 

in the case of significant torsion, see Figure 5.1(a). This effect causes extra torsional stiffness 

and stress. 

 

The end-effect of torsion is the constrained warping described by the Vlasov theory [123, 

191]. This can be implemented by extra modes in the beam-element [79, 102, 155]. This 

method is widely used in thin-walled beams where the constrained warping effect has a sig-

nificant influence on the stiffness. Traditional thin-walled beam theory results in zero warp-

ing rigidity for thin, wide rectangular cross-sections, but the warping rigidity can be obtained 

using the secondary warping [184] (also called thickness warping). However, the resulting 

stress of this method is not totally accurate. 

The in-plane deformation is the combination of extension (axial deformation), bending 

(the result of an applied moment) and flexure (shear deformation). The stress due to this 

deformation is also affected by end effects. These end effects can be described by Papkovich-

Fadle eigenfunctions, i.e. an infinite series of stress distributions that are high around the 

clamp and decay to zero far from the clamp, see chapter 6 of ref. [19].  These eigenfunctions 

can be used to describe the stress if the stress distribution at the clamped side is known. 

However, for the clamped sides of a leafspring, a displacement condition typically applies, 

which means that the stress distribution at the clamp is unknown. 

Obtaining the stress distribution based on a displacement end-condition is more difficult, 

mainly due to stress singularities [78]. Stress singularities are the points where the stress 

theoretically becomes infinite, and they typically exist at both corners of a clamp. Solutions 

for the stress distribution with displacement end-conditions are found by means of integral 

equations [35, 192]. However, these solutions have to be obtained numerically and can be 

obtained only on a finite number of points over the width of the leafspring [78]. In ref. [78] 
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the displacement fields corresponding to the Papkovich-Fadle eigenfunctions are derived. 

This results in an infinite series of displacement fields with the corresponding stress fields. 

Based on these functions, the stress distribution for an arbitrary displacement end-condition 

can be obtained. In ref. [116] a differential equation in the axial coordinate for the stress and 

displacement is used to obtain the stress distribution of an end-effect. However the resulting 

eigenfunctions have to be solved by a numerical procedure. Both methods [78, 116] result in 

an infinite series of quite complex functions and require a lot of functions for an accurate 

result. So, although these methods work very well in obtaining the exact boundary stress, 

they are less suitable for fast prediction of the stress. Moreover, in reality the clamped end of 

a leafspring is not a perfect clamp and fillets are often added to reduce the stress peaks, such 

that in reality the analytical results never occur. 

 

The purpose of this chapter is to refine the stress computation of wide rectangular beam-

elements, which are typically used in precision flexure mechanisms. This is achieved by add-

ing extra stress terms related to the end effects and to the effects caused by large deformation. 

The extra stresses due to Wagner torque and anticlastic curvature are added based on analytic 

relations. The stress resulting from the in-plane end effects and the anticlastic bending end-

effect are approximated using a combination of pre-defined stress fields. These stress fields 

are an explicit function of the dimensions of the leafspring, the reaction forces, the material 

properties and the bending curvature and can therefore be evaluated efficiently. These stress 

fields are obtained using the principle of minimal potential energy or the principle of minimal 

complementary energy. 

The accuracy is compared to the results of the finite element method, which gives the 

exact theoretical solution except from discretization errors. Mesh convergence studies are 

performed to make sure that these errors are negligible compared to the errors of the refined 

stress computation. One exception is that the effect of in-plane effects are validated using 

two-dimensional finite element models which neglect the effects in the thickness direction. 

Furthermore, the stress around the stress singularities cannot be obtained exactly with the 

finite element model, these singularities are addressed separately. 

 

Section 5.2 derives all the stress refinements. That section also shows the importance of these 

individual refinements and validates their accuracy. In section 5.3 the accuracy for combined 

loading and displacement conditions is validated. The chapter ends with the most important 

conclusions. 

5.2 Method 
The stress in a beam element is generally derived from stress resultants. Stress resultants are 

the forces and moments that act on the cross-section. In this chapter, the beam element de-

scribed in [103] is used to obtain the stress resultants. This beam element includes the Vlasov 

theory and the effect of Wagner torsion on the stiffness. The effect of anticlastic curvature 

on the stiffness [45, 124] is also included as detailed in Section 5.A. The stress refinements 

can also be applied to other beam elements. 

 

Section 5.2.1 gives an overview of the stress resultants. Section 5.2.2 summarizes the classic 

stress distribution for beam-elements. The remainder of this section details seven refinements 

for stress in wide rectangular beams. Table 5.1 gives an overview of the effects. The two 

effects related to large deformation (Wagner torque and anticlastic curvature) are obtained 

based on existing relations from literature. The three in-plane end effects are obtained using 

the principle of minimal complementary energy. The two end effects of torsion and out-of-  
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Table 5.1: Overview of the stress refinements with the corresponding stress resultant. The 

table indicates whether the effect occurs due to large deformation, whether it is an end-

effect and whether it exists only because of a non-zero Poisson ratio. 

  Description 
Stress 

resultant 
Large 

deform. 
End- 

effect 
Poisson- 

effect 
Section 

Wagner torque 𝑊𝑥 ×   5.2.3 

End-effect axial force 𝐹𝑥  × × 5.2.4.3 

End-effect in-plane moment 𝑀𝑦  × × 5.2.4.4 

End-effect shear force 𝐹𝑧  ×  5.2.4.5 

Anticlastic curvature 𝑀𝑧 ×  × 5.2.5 

End-effect anticlastic curvature 𝑀𝑧  × × 5.2.6 

End-effect torsion 𝑇𝑥, 𝐵  ×  5.2.7 

 

 
Figure 5.2: Deformed beam element with two highlighted cross-sections. The first cross-

section shows most of the internal stress resultants and the second defines the local rota-

tions 𝜙𝑥 and 𝜙𝑧. 

plane bending are also considered, the latter based on the principle of minimal potential en-

ergy. In total, end effects for five directions are considered. The sixth direction is related to 

the out-of-plane shear force, which is not considered because the related shear stress can be 

neglected for thin beams. In summary, the seven stress refinements deal with both effects of 

large deformation and with the end effects in all relevant directions, which indicates that all 

relevant effects are considered. 

5.2.1 Stress resultants 
Stress resultants are the forces and moments that act on the cross-section, see Figure 5.2. 

These stress resultants can be computed based on equilibrium (see ref. [188] or Chapter 4), 

which is not further discussed in the current chapter. Some of the stress refinements derived 

in this section will be related to the out-of-plane bending curvature 𝜙𝑧
′  and the curvature of 

torsion 𝜙𝑥
′ . Figure 5.2 shows the local rotations 𝜙𝑧 and 𝜙𝑥, and ( )′ defines the derivative to 

the local 𝑥-coordinate. These local rotations can typically be obtained based on the defor-

mation modes of the beam element. 
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The resistance to torsion is caused by three effects: 

 Saint-Venant torsion, see for example [21]: this is the classic theory for torsion, 

which is derived by assuming that the cross-section is free to warp in the axial di-

rection 

 The Vlasov-theory [191] describes the resistance against the axial warping. This is 

especially important near the clamped sides, where this warping can usually be con-

sidered to be fully constrained 

 The Wagner torsion [195]: this is the resistance due to the effect that the outer fibres 

have to elongate with respect to the inner fibres in the case of large deformation, as 

explained in the introduction, see Figure 5.1(a).  

 

The total torsional moment 𝑀𝑥 is related to three stress resultants: 

 𝑀𝑥(𝑥) = 𝑇𝑥(𝑥) + 𝐵
′(𝑥) +𝑊𝑥(𝑥), (5.1) 

where 𝑇𝑥 is the moment of Saint-Venant torsion, 𝐵 is the bimoment (i.e. the resistance against 

the warping in the Vlasov-theory [148]) and 𝑊𝑥 is the moment due to Wagner torsion. All 

these stress resultants are related to derivatives of the torsional rotation 𝜙𝑥: 

 
𝑇𝑥 = 𝐺𝐼𝑡𝜙𝑥

′ , 𝐵 = −𝐸𝐼𝜔𝜙𝑥
′′, 𝑊𝑥 =

1

2
𝐸𝐼𝑛(𝜙𝑥

′ )3, 𝐼𝑛 =
𝑤5𝑡

180
, (5.2) 

where 𝐺 is the shear modulus, 𝐸 is the material elasticity, 𝐼𝑡 is Saint-Venant’s torsion constant 

and 𝐼𝜔 is the warping constant, defined below. 

5.2.2 Stresses in classic beam theory 
The derivation of the stresses in beams can be found in [148, 181]. For the evaluation of the 

terms related to torsion and warping of a rectangular cross-section, Prandtl’s membrane anal-

ogy [181] is used. This results in infinite series of which only the first terms have to be com-

puted, depending on the required accuracy. 

 

The stress in the 𝑥-direction is caused by the axial force, the bending moments and the bi-

moment: 

 
𝜎𝑥𝑥(𝑥, 𝑦, 𝑧) =

𝐹𝑥
𝐴
+
𝑀𝑦𝑧

𝐼𝑦
+
𝑀𝑧𝑦

𝐼𝑧
+
𝐵 𝜔(𝑦, 𝑧)

𝐼𝜔
, (5.3) 

where 𝐴 is the area and 𝐼𝑦  and 𝐼𝑧 are the second moments of area, which are for a rectangular 

cross-section: 

 
𝐴 = 𝑤𝑡 , 𝐼𝑦 =

𝑤3𝑡

12
, 𝐼𝑧 =

𝑤𝑡3

12
. (5.4) 

𝜔(𝑦, 𝑧) is the warping field, obtained by Prandtl’s membrane analogy: 

 

𝜔(𝑦, 𝑧) = 𝑦𝑧 −
8𝑡2

𝜋3
∑

(−1)
𝑛−1
2

𝑛3
 
sinh (

𝑛𝜋𝑧
𝑡
)

cosh (
𝑛𝜋𝑤
2𝑡

)
sin (

𝑛𝜋𝑦

𝑡
)

∞

𝑛=1,3,5,…

. (5.5) 

Based on this warping field, the warping constant can be obtained: 
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𝐼𝜔 = ∫𝜔

2𝑑𝐴
𝐴

=
𝑤3𝑡3

144
(1 + (

𝑡

𝑤
)
3 13824

𝜋7
 ∑

1

𝑛7
tanh (

𝑛𝜋

2

𝑤

𝑡
)

∞

𝑛=1,3,5,…

 

−(
𝑡

𝑤
)
2 2304

𝜋6
(2 ∑

1

𝑛6

∞

𝑛=1,3,5,…

+ ∑
1

𝑛6
1

(cosh (
𝑛𝜋
2
𝑤
𝑡
))

2

∞

𝑛=1,3,5,…

)

)

 . 

(5.6) 

For rectangular beams with a large ratio between its width and thickness, this is often ap-

proximated with 𝐼𝜔 ≈ 𝑤
3𝑡3 144⁄ , see e.g. ref. [184]. The resulting relative error of this ap-

proximation is less than 4.8(𝑡 𝑤⁄ )2. The warping field can be approximated with 𝜔(𝑦, 𝑧) =
𝑦𝑧. The resulting relative error of the maximum value in 𝜔(𝑦, 𝑧) is smaller than 𝑡 𝑤⁄ . In this 

chapter these two approximations are not used. 

 

The shear stress in the 𝑥𝑧-direction is caused by the shear force in 𝑧-direction and torsion: 

 

𝜏𝑥𝑧 =
𝐹𝑧
𝐼𝑦
(
𝑤2

8
−
𝑧2

2
) −

8𝑇𝑥𝑤

𝜋2𝐼𝑡
∑

(−1)
𝑛−1
2

𝑛2
 
sinh (

𝑛𝜋𝑦
𝑤
)

cosh (
𝑛𝜋𝑡
2𝑤

)
 cos (

𝑛𝜋𝑧

𝑤
)

∞

𝑛=1,3,5,…

, (5.7) 

in which the Saint-Venant torsion constant can be computed by: 

 
𝐼𝑡 =

1

3
𝑡3𝑤(1 −

192

𝜋5
𝑡

𝑤
∑

1

𝑛5
tanh (

𝑛𝜋𝑤

2𝑡
)

∞

𝑛=1,3,5,…

). (5.8) 

 

The thickness of the beam is assumed to be very small, therefore the stress due to the shear 

force in the y-direction will be ignored, such that the shear stress in the 𝑥𝑦-direction is only 

caused by torsion: 

 

𝜏𝑥𝑦 =
8𝑇𝑥𝑤

𝜋2𝐼𝑡
∑

(−1)
𝑛−1
2

𝑛2
(1 −

cosh (
𝑛𝜋𝑦
𝑤
)

cosh (
𝑛𝜋𝑡
2𝑤

)
) sin (

𝑛𝜋𝑧

𝑤
)

∞

𝑛=1,3,5,…

. (5.9) 

The stresses in the other directions, 𝜎𝑦𝑦, 𝜎𝑧𝑧, 𝜏𝑦𝑧 are zero in the classic beam theory. In the 

refinements the stress 𝜎𝑧𝑧 will become non-zero. 

5.2.3 Wagner torque 
During large torsion of wide beams, the outer fibres have to elongate with respect to the inner 

fibres, see Figure 5.1(a). This term was included in the stiffness of the beam element that was 

used in this chapter (see eq. (5.1)), but also causes normal stress in the axial direction, which 

can be computed by [183]: 

 
𝜎𝑥𝑥
(𝑊𝑎𝑔𝑛𝑒𝑟)

=
1

2
𝐸 (𝑧2 −

𝑤2

12
) (𝜙𝑥

′ )2. (5.10) 
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Figure 5.3: Stress as a result of Wagner torque. The stress is evaluated in the centre (in-

dicated by the ellipses). 

 
Figure 5.4: The three in-plane stress cases. 

Note that this stress depends on the squared torsional curvature where the shear force due to 

Saint-Vanant torsion depends linearly on the squared torsional curvature. This means that the 

Wagner stress is especially relevant in case of large torsion. Figure 5.3 shows the normalized 

Wagner stress in the centre of a beam that is twisted 20∘ with properties: 𝜈 = 0.3, 𝐿 𝑡⁄ =
100. The analytical result is almost the same as the FEM. The maximum normalized shear 

stress, 𝜏𝑥𝑧 𝐸⁄ , is about 1.34 ⋅ 10−3 in both cases, which means that the Wagner stress for the 

second case is higher than the shear stress. This indicates that the Wagner stress can be sig-

nificantly high for wide beams. 

5.2.4 In-plane end effects 
In this section the stresses as result of the in-plane end effects of leafsprings are modelled. 

Because the in-plane deformation is usually small, the stress can be assumed to be a linear 

effect of the three in-plane reaction forces, see Figure 5.4. 

 
𝝈 =

𝐹(𝑒𝑥𝑡)

𝐸𝑤𝑡
𝝈(𝑒𝑥𝑡)(𝑥, 𝑧) +

𝑀(𝑏𝑒𝑛𝑑)

𝐸𝑤2𝑡
𝝈(𝑏𝑒𝑛𝑑)(𝑥, 𝑧) +

𝐹(𝑓𝑙𝑒𝑥)

𝐸𝑤𝑡
𝝈(𝑓𝑙𝑒𝑥)(𝑥, 𝑧). (5.11) 

This section approximates general functions for 𝝈(𝑒𝑥𝑡), 𝝈(𝑏𝑒𝑛𝑑) and 𝝈(𝑓𝑙𝑒𝑥), defined as ex-

plicit functions of the material properties and leafspring dimensions, such that the resulting 

𝝈 can be computed easily. 

Sections 5.2.4.1 and 5.2.4.2 explain the general approach to obtaining these stress fields. 

Sections 5.2.4.3 till 5.2.4.5 apply this approach to the three different cases and present the 

accuracy. Section 5.2.4.6 summarizes the results. 
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5.2.4.1 Approach 
The stress is approximated using complementary energy, which is energy based on stress. In 

the linear case, compatibility is satisfied if the complementary energy is minimal, which is 

the principle of minimum complementary energy [203]. In this section a stress field is defined 

that depends on certain parameters (referred to hereinafter as variation parameters, also 

called ‘redundants’ in literature); these variation parameters are computed by minimizing the 

complementary energy. In order to obtain a simple, general stress field, several assumptions 

are made: 

 The in-plane displacements are small; the principle of minimum complementary 

energy holds under this condition 

 The clamp is perfect, so there is no displacement at  𝑥 = 0 

 The thickness is small, so a plane-stress situation is assumed 

 The material is isotropic, the effect of elasticity can be removed by dimensional 

analysis (see below), so the only relevant material parameter in the functions is the 

Poisson ratio 

 The length of the leafspring is assumed to be relatively long, such that the effect 

of the clamp on the free side can be ignored, based on Saint-Venant’s principle. 

 

The complementary energy is defined as [203]: 

 
𝑃𝐶𝐸 =

1

2
∫𝝈𝑇𝑪𝝈𝑑𝑉
𝑉

−∫𝒇𝑇𝒖𝑑𝑆
𝑆

, (5.12) 

where 𝑉 is the volume and 𝑆 the boundary, 𝑪 is the compliance matrix of the material and 𝒇 

is the traction and 𝒖 the displacements. For a plane-stress situation, the first terms can be 

written as: 

 
𝝈 = {

𝜎𝑥𝑥
𝜎𝑧𝑧
𝜏𝑥𝑧
} , 𝑪 =

1

𝐸
[
1 −𝜈 0
−𝜈 1 0
0 0 2(1 + 𝜈)

]. (5.13) 

The last term of eq. (5.12) can be ignored as it is not influenced by the clamp-effects: the 

clamped side of the leafspring has zero displacement, the top and bottom edge have zero 

traction and the right side is assumed to be unaffected by the clamp. This means that the first 

integral term of eq. (5.12) should be minimal. This special case of minimum complementary 

energy is sometimes referred to as the principle of minimum deformation work. This first 

term can be written as: 

 
𝑃𝐶𝐸
(1) =

1

2
∫𝝈𝑇𝑪𝝈𝑑𝑉
𝑉

=
𝐹𝑏𝑜𝑢𝑛𝑑
2

𝐸
⋅ 𝑤2𝑡 ⋅

1

2
∫ ∫ �̅�𝑇�̅��̅� 𝑑𝑧̅

1 2⁄

−1 2⁄

𝑑�̅�
�̅�

0

, (5.14) 

where the dimensionless parameters in the integral are defined as: 

 
𝑧̅ =

𝑧

𝑤
, �̅� =

𝑥

𝑤
, �̅� =

𝐿

𝑤
, �̅� =

𝝈

𝐹𝑏𝑜𝑢𝑛𝑑
, �̅� = 𝐸 ⋅ 𝑪. (5.15) 

𝐹𝑏𝑜𝑢𝑛𝑑 are the reaction forces at the boundary divided by a factor to give it the same dimen-

sion as stress. For these three effects they are: 𝐹(𝑒𝑥𝑡) 𝑤𝑡⁄ , 𝑀(𝑏𝑒𝑛𝑑) 𝑤2𝑡⁄  and 𝐹(𝑓𝑙𝑒𝑥) 𝑤𝑡⁄  re-

spectively. 
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By making this function dimensionless, the unknown stress field only depends on the dimen-

sionless coordinates and the Poisson ratio. Section 3.3.2 will give a general choice for this 

stress field, which depends on several variation parameters. The remaining subsections will 

apply this to the three different cases and solve for the variation parameters by minimizing 

the resulting integral term in eq. (5.14) 

5.2.4.2 General choice for the stress fields 
The principle of complementary energy requires that the stress field should satisfy equilib-

rium: 

 𝜕𝜎𝑥𝑥
𝜕�̅�

+
𝜕𝜏�̅�𝑧
𝜕𝑧̅

= 0,
𝜕𝜏�̅�𝑧
𝜕�̅�

+
𝜕𝜎𝑧𝑧
𝜕𝑧̅

= 0. (5.16) 

The stress field will be composed of the default (unclamped) stress field and the clamp-effect: 

 �̅�(�̅�, 𝑧̅, 𝜈) = �̅�(𝑢𝑛𝑐𝑙) + �̅�(𝑐𝑙). (5.17) 

The unclamped stress field is the stress of the classic beam theory and satisfies equilibrium. 

The clamped stress field will be described as the sum of 𝑁 functions. Each of these functions 

is the product of the 𝑥-dependency, 𝜎𝑘
(𝑥)(�̅�), and the 𝑧-dependency, 𝜎𝑘

(𝑧)(𝑧̅). The following 

general stress functions are chosen which automatically satisfy the internal equilibrium: 

 �̅�(𝑐𝑙)(�̅�, 𝑧̅) = {𝜎𝑥𝑥
(𝑐𝑙)

𝜏�̅�𝑧
(𝑐𝑙)

𝜎𝑧𝑧
(𝑐𝑙)}

𝑇
, (5.18) 

where: 

 

𝜎𝑥𝑥
(𝑐𝑙)(�̅�, 𝑧̅) = ∑𝜎𝑘

(𝑥)(�̅�) ⋅

𝑁

𝑘=1

𝑑2𝜎𝑘
(𝑧)

𝑑𝑧̅2
, 

 

𝜏�̅�𝑧
(𝑐𝑙)

= −∑
𝑑𝜎𝑘

(𝑥)

𝑑�̅�
⋅
𝑑𝜎𝑘

(𝑧)

𝑑𝑧̅

𝑁

𝑘=1

, 

 

𝜎𝑧𝑧
(𝑐𝑙)

=∑
𝑑2𝜎𝑘

(𝑥)

𝑑�̅�2
⋅ 𝜎𝑘

(𝑧)(𝑧)̅

𝑁

𝑘=1

. 

(5.19) 

The stress functions should also satisfy equilibrium at the boundaries. The stresses 𝜎𝑧𝑧
(𝑐𝑙)

 and 

𝜏�̅�𝑧
(𝑐𝑙)

 should be zero at the upper and lower edges, which is ensured if: 

 
𝜎𝑘
(𝑧) (±

1

2
) = 0,

𝑑𝜎𝑘
(𝑧)

𝑑𝑧̅
|

�̅�=±1 2⁄

= 0. (5.20) 

As the unclamped stress already satisfies the equilibrium condition at the right side, the 

clamped stresses 𝜎𝑥𝑥
(𝑐𝑙)

 and 𝜏�̅�𝑧
(𝑐𝑙)

 should be zero at this side. This is ensured if: 

 
𝜎𝑘
(𝑥)(�̅�) = 0,

𝑑𝜎𝑘
(𝑥)

𝑑�̅�
|

�̅�=�̅�

= 0. (5.21) 
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Figure 5.5: The function 𝑔𝑘
(𝐵)(�̅�) that is used to describe the stress as function of the 𝑥-

coordinate. 

The functions 𝜎𝑘
(𝑧)

 will be defined with polynomials that satisfy eq. (5.20), and are introduced 

for each of the three cases in the following subsections. The functions 𝜎𝑘
(𝑥)

 should decay in 

𝑥 (i.e. they tend to go to zero for higher values of 𝑥) as the clamping effect is expected to 

have an influence only near the clamp, which is Saint-Venant’s principle. Exponential func-

tions are suitable to describe this effect. Therefore the functions 𝜎𝑘
(𝑥)

 are chosen to be in one 

of the following two expressions. The first expression is: 

 𝑔𝑘
(𝐴)(�̅�) = 𝐴𝑘 exp(−𝜆𝑘�̅�) + 𝐵𝑘 exp(−𝜆𝑘(�̅� − �̅�)), (5.22) 

where 𝜆𝑘 is a variation parameter. 𝐴𝑘 and 𝐵𝑘 are computed based on the boundary conditions: 

the function value is one at a clamped end and zero at a free end. So for the clamped-free 

situations of Figure 5.4: 𝑔𝑘
(𝐴)(0) = 1, 𝑔𝑘

(𝐴)(�̅�) = 0. However, the constants 𝐴𝑘 and 𝐵𝑘 can 

be easily modified to use the result for the evaluation of a clamped-clamped or free-clamped 

leafspring. Sometimes a function with more design freedom is required, for which an ex-

tended expression is used: 

 𝑔𝑘
(𝐵)(�̅�) = 𝐴𝑘(exp(−𝜆𝑘�̅�) + 𝛼𝑘 exp(−2𝜆𝑘�̅�))

+ 𝐵𝑘(exp(−𝜆𝑘(�̅� − �̅�)) + 𝛼𝑘 exp(−2𝜆𝑘(�̅� − �̅�))), 
(5.23) 

where 𝛼𝑘 is an extra variation parameter. Note that for 𝛼𝑘 = 0 the second type is equal to the 

first type. Figure 5.5 shows the function for a few different sets of variation parameters to 

demonstrate the design freedom. These functions fulfil the first boundary condition in eq. 

(5.21). The second condition is not satisfied precisely; however, the derivatives of 𝑔𝑘
(𝐴)

 and 

𝑔𝑘
(𝐵)

 will be small at �̅� = �̅�. 

5.2.4.3 Clamped extension 
Based on the definitions given in the previous subsections, the stress in a beam subjected to 

an axial force is written as: 

 
𝝈(𝑒𝑥𝑡) =

𝐹𝑥
𝑤𝑡
�̅�(𝑒𝑥𝑡) =

𝐹𝑥
𝑤𝑡
(�̅�(𝑢𝑛𝑐𝑙,𝑒𝑥𝑡) + �̅�(𝑐𝑙,𝑒𝑥𝑡)), (5.24) 

where the unclamped stress according to the classic beam theory is (see also eq. (5.3)): 
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Figure 5.6: Functions to describe the 𝑧-distribution of the in-plane stress. 

 𝜎𝑥𝑥
(𝑢𝑛𝑐𝑙,𝑒𝑥𝑡) = 1, 𝜎𝑧𝑧

(𝑢𝑛𝑐𝑙,𝑒𝑥𝑡) = 0, 𝜏�̅�𝑧
(𝑢𝑛𝑐𝑙,𝑒𝑥𝑡) = 0. (5.25) 

The axial elongation causes the beam to shrink in the 𝑧-direction (referred to as Poisson ef-

fect). This effect is, however, constrained at the clamp, which causes extra stress (mostly in 

the 𝑧-direction). A two-dimensional finite element analysis shows that this stress is especially 

high in the centre (so for 𝑧̅ ≈ 0), see Figure 5.7. Therefore a first stress function is defined 

as: 

 
𝜎1
(𝑧)(𝑧̅) = �̃� ⋅ (1 − 8𝑧̅2 + 16𝑧̅4),

𝑑2𝜎1
(𝑥)

𝑑�̅�2
= 𝑔1

(𝐵)(�̅�). (5.26) 

�̃� is a variation parameter. The 𝜎1
(𝑧)

-term between brackets is shown in Figure 5.6(a). Note 

that these two functions fully define the first part of the clamped stress �̅�(𝑐𝑙,𝑒𝑥𝑡) according to 

eqs. (5.18) and (5.19). The FEM result also indicates that 𝜎𝑧𝑧 is almost constant at the clamp 

(i.e. for 𝑥 = 0). Therefore a second stress function is introduced as: 

 
𝜎2
(𝑧) = �̃� ⋅ (1 − 6 144𝑧̅10 + 20 480𝑧̅12) − 𝜎1

(𝑧),
𝑑2𝜎2

(𝑥)

𝑑�̅�2
= 𝑔2

(𝐵)(�̅�). (5.27) 

The term between brackets is shown in Figure 5.6(a). Based on these two stress functions, 

the clamped stress �̅�(𝑐𝑙,𝑒𝑥𝑡) is fully defined as a function of five variation parameters accord-

ing to eqs. (5.18) and (5.19). Together with �̅�(𝑢𝑛𝑐𝑙,𝑒𝑥𝑡), this defines the full stress field for 

extension, �̅�(𝑒𝑥𝑡). The complementary energy as defined in eq. (5.25) is minimized for this 

full stress field, for eight values of the Poisson ratio ranging from 0.05 to 0.4. This results in 

values for the five variation parameters. Using a polynomial interpolation, the variation pa-

rameters are expressed as: 

 �̃�   = 1.18𝜈 − 0.197𝜈2, 
𝜆1 = 2.35 + 0.262𝜈 − 0.012𝜈

2, 
𝛼1 = −7.13 + 2.33𝜈 − 0.59𝜈2, 
𝜆2 = 22.6 + 4.32𝜈 − 1.5𝜈2, 
𝛼2 = −0.621 − 0.188𝜈 + 0.34𝜈2 − 0.25𝜈3. 

(5.28) 
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Figure 5.7: Stress fields for clamped extension with ν = 0.3. The finite element results 

are obtained with 120x120 equally sized planar linear elements. The lines in the ‘Error’ 

graphs are defined in eqs. (5.30) to (5.32). 

For 𝜈 = 0, the variation parameter �̃� equals zero, which means that there is no effect. The 

stress in the vicinity of the corners becomes infinitely high in theory. These so-called stress 

singularities are also indicated by the FEM result in Figure 5.7. However, in reality the clamp-

ing of a leafspring is not perfect and fillets are often added to the sharp corners to reduce the 

stress peaks. Therefore the stress is limited to: 

 𝜎𝑥𝑥
(𝑐𝑙,𝑒𝑥𝑡) ≤ 0.55, 𝜏�̅�𝑧

(𝑐𝑙,𝑒𝑥𝑡) ≤ 0.25, (5.29) 

which is found to be a suitable value based on 3D FEM simulations with a fillet in the width 

direction with a radius of 10% of the width and a Poisson ratio of 0.3. 

 

Figure 5.7 shows the resulting stress fields. The graphs that show the error between the FEM 

result and the refined result contain the lines ‘reference’, which are the minimal and maxi-

mum value of the FEM result: 

 Reference(�̅�) = {max
�̅�
(𝜎𝑥𝑥

(𝐹𝐸𝑀)(�̅�, 𝑧)̅ , min
�̅�
(𝜎𝑥𝑥

(𝐹𝐸𝑀)(�̅�, 𝑧)̅}. (5.30) 

The error type 1 is defined as the maximum error for a specific value of �̅�: 

 Error1(�̅�) = max
�̅�
(|𝜎𝑥𝑥

(𝑟𝑒𝑓𝑖𝑛𝑒𝑑)(�̅�, 𝑧)̅ − 𝜎𝑥𝑥
(𝐹𝐸𝑀)(�̅�, 𝑧)̅|). (5.31) 
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However, this does not give a fair measure of the error, mainly because the FEM result gives 

a fairly high value at the corners for 𝜎𝑧𝑧 and 𝜏�̅�𝑧 where this should be zero based on equilib-

rium. Therefore a second error is defined that is the difference between the maximum values 

of the refined computation and FEM for a given value of �̅�: 

 Error2(�̅�) = max
�̅�
(𝜎𝑥𝑥

(𝑟𝑒𝑓𝑖𝑛𝑒𝑑)(�̅�, 𝑧̅)) − max
�̅�
(𝜎𝑥𝑥

(𝐹𝐸𝑀)(�̅�, 𝑧̅)). (5.32) 

This defines the error at the most important location in 𝑧̅, namely where the stress is maximal. 

Ignoring the stress singularities, this error is below 20% of the maximum dimensionless stress 

of 0.3 almost everywhere. Only in the 𝜎𝑥𝑥
(𝑒𝑥𝑡)

 the error is about 0.15. The refined stress is 0.3 

at this point. However, the error is not relevant as this point is very close to the corner, where 

the stress should also be 0.3. 

5.2.4.4 Clamped bending 
Based on the definitions given in the previous subsections, the stress in a beam subjected to 

an in-plane bending moment is written as: 

 
𝝈(𝑏𝑒𝑛𝑑) =

𝑀𝑦

𝑤2𝑡
�̅�(𝑏𝑒𝑛𝑑) =

𝑀𝑦

𝑤2𝑡
(�̅�(𝑢𝑛𝑐𝑙,𝑏𝑒𝑛𝑑) + �̅�(𝑐𝑙,𝑏𝑒𝑛𝑑)), (5.33) 

where the unclamped stress, according to the classic beam theory is (see also eq. (5.3)): 

 𝜎𝑥𝑥
(𝑢𝑛𝑐𝑙,𝑏𝑒𝑛𝑑) = 12𝑧,̅    𝜎𝑧𝑧

(𝑢𝑛𝑐𝑙,𝑏𝑒𝑛𝑑) = 0,    𝜏�̅�𝑧
(𝑢𝑛𝑐𝑙,𝑏𝑒𝑛𝑑) = 0. (5.34) 

Extra stress occurs near the clamp for a similar reason as in extension: due to the Poisson 

effect the beam becomes narrower for the positive axial stresses (𝑧̅ > 0) and wider for the 

negative axial stress (𝑧̅ < 0). This movement is constrained near the clamp, which causes 

stresses mainly in the 𝑧-direction. The FEM result (Figure 5.8) indicates that this stress, 𝜎𝑧𝑧, 

is almost linearly distributed in 𝑧̅ at the clamp. Further away from the clamp the stress con-

centrates more in the centre (i.e. around 𝑧 = 0). Based on these observations, the stress field 

is modelled as the sum of three sub-functions which are defined as: 

 
𝜎1
(𝑧) = �̃� ⋅ (𝑧̅ − 8𝑧̅3 + 16𝑧̅5),

𝑑2𝜎1
(𝑥)

𝑑�̅�2
= 𝑔1

(𝐴)(�̅�), 

𝜎2
(𝑧) = �̃� ⋅ (𝑧̅ − 48𝑧̅5 + 128𝑧̅7) − 𝜎1

(𝑧),
𝑑2𝜎2

(𝑥)

𝑑�̅�2
= 𝑔2

(𝐴)(�̅�), 

𝜎3
(𝑧) = �̃� ⋅ (𝑧̅ − 589 824𝑧̅17 + 2 097 152𝑧̅19) − 𝜎1

(𝑧) − 𝜎2
(𝑧) ,   

𝑑2𝜎2
(𝑥)

𝑑�̅�2
= 𝑔3

(𝐵)(�̅�). 

(5.35) 

The terms between brackets are given in Figure 5.6(b). These functions define the stress 

�̅�(𝑢𝑛𝑐𝑙,𝑏𝑒𝑛𝑑) according to eqs. (5.18) and (5.19). The values for the variation parameters are 

obtained by minimizing the complementary energy of the resulting field �̅�(𝑏𝑒𝑛𝑑), for eight 

different values of the Poisson ratio ranging from 0.05 to 0.4. 
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Figure 5.8: Stress fields for boundary in-plane moment with 𝜈 = 0.3. The finite element 

results are obtained with 120x120 equally sized planar linear elements. The lines in the 

‘Error’ graphs are defined in eqs. (5.30) to (5.32). 

After polynomial interpolation, these values can be expressed as: 

 �̃�  = 16.0𝜈 − 3.2𝜈2, 
𝜆1 = 10.6 + 2.9𝜈, 
𝜆2 = 16.0 + 4.4𝜈, 
𝜆3 = 42.6 + 6.5𝜈, 
𝛼3 = −0.569 − 0.136𝜈 + 0.13𝜈2. 

(5.36) 

For 𝜈 = 0, the variation parameter �̃� equals zero, which means that there is no effect. Theo-

retically, the stress at the corners becomes infinitely high; the stress is therefore limited to: 

 |𝜎𝑥𝑥
(𝑐𝑙,𝑏𝑒𝑛𝑑)| ≤ 1.5, 𝜏�̅�𝑧

(𝑐𝑙,𝑏𝑒𝑛𝑑) ≥ −0.75, (5.37) 

which were found to be suitable values based on 3D FEM simulations with a fillet with a 

radius of 10% of the width and a Poisson ratio of 0.3. Figure 5.8 shows the resulting stress 

fields. The ‘Error2’ (defined in eq. (5.32)) is always less than 20% of the maximum stress of 

about 2. 
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5.2.4.5 Clamped flexure 
An applied shear force causes a polynomial distribution of the shear force. A shear force also 

causes an internal moment which results in axial stress. The stress distribution without clamp 

effects is therefore (see eqs. (5.3) and (5.7)): 

 
𝝈(𝑓𝑙𝑒𝑥) =

𝐹𝑧
𝑤𝑡
�̅�(𝑓𝑙𝑒𝑥) =

𝐹𝑧
𝑤𝑡
(�̅�(𝑢𝑛𝑐𝑙,𝑓𝑙𝑒𝑥) + �̅�(𝑐𝑙,𝑓𝑙𝑒𝑥)), 

 

𝜎𝑥𝑥
(𝑢𝑛𝑐𝑙,𝑓𝑙𝑒𝑥)

= 12�̅�𝑧̅, 𝜎𝑧𝑧
(𝑢𝑛𝑐𝑙,𝑓𝑙𝑒𝑥)

= 0, 𝜏�̅�𝑧
(𝑢𝑛𝑐𝑙,𝑓𝑙𝑒𝑥)

= 1.5 − 6𝑧̅2. 

(5.38) 

A shear force causes warping in the axial direction. This warping is constrained at the clamp, 

which results in an axial stress and a shear stress. A non-zero Poisson ratio also causes 

stresses in the 𝑧-direction. The distribution of the shear stress is the easiest to model, see 

Figure 5.9. Therefore the stress field is defined as: 

 𝑑𝜎1
(𝑧)

𝑑𝑧̅
= �̃� ⋅ (−1 + 8𝑧̅3 − 16𝑧̅5),

𝑑𝜎1
(𝑥)

𝑑�̅�
= 𝑔1

(𝐵)(�̅�), 

𝑑𝜎2
(𝑧)

𝑑𝑧̅
= �̃� ⋅ (−1 + 5𝑧̅3 − 256𝑧̅5) −

𝑑𝜎1
(𝑧)

𝑑𝑧̅
,

𝑑𝜎2
(𝑥)

𝑑�̅�
= 𝑔2

(𝐵)(�̅�). 

(5.39) 

The terms between brackets are shown in Figure 5.6(c). The resulting variation parameters 

are obtained using nine different values of the Poisson ratio ranging from 0 to 0.4: 

 �̃�   = 0.280 − 0.180𝜈 + 0.032𝜈2, 
𝜆1 = 6.63 − 1.10𝜈 + 0.43𝜈

2, 
𝛼1 = −0.566 − 0.271𝜈 − 0.022𝜈2, 
𝜆2 = 15.8 − 4.07𝜈 + 2.0𝜈2, 
𝛼2 = −0.546 − 0.306𝜈 + 0.039𝜈2. 

(5.40) 

There is also an effect if the Poisson ratio is zero, because flexure always causes warping of 

the cross-section which is constrained at the clamped sides. The axial stress is limited to: 

 |𝜎𝑥𝑥
(𝑐𝑙,𝑓𝑙𝑒𝑥)

| ≤ 1.0. (5.41) 

Figure 5.9 shows the results. If the stresses near the corners are ignored, the maximum stress 

is about 0.5 in 𝜎𝑥𝑥
(𝑐𝑙,𝑓𝑙𝑒𝑥)

 and the errors are less than 20% of this maximum. 

5.2.4.6 General remarks 
The above results show that the effect of a perfect clamped leafspring can be approximated 

with about 80% accuracy with relatively simple stress functions. The maximum error of 35% 

by the classic stress computation can therefore be reduced by a factor of five to about 7% of 

the maximum stress. These results, however, disregard the stress singularities at the corners. 

The stress at the corners is much harder to estimate and highly dependent on the fillets and 

the stiffness of the attached body. Therefore disregarding the stress singularities at the sides 

is appropriate. 

 

The stress fields can be easily modified for a clamped-clamped or free-clamped leafspring of 

finite length. Only the constants 𝐴𝑘 and 𝐵𝑘 of the functions 𝑔𝑘 have to be modified for this, 
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Figure 5.9: Stress fields for boundary shear force with 𝜈 = 0.3. The finite element results 

are obtained with 120x120 equally sized planar linear elements. The lines in the ‘Error’ 

graphs are defined in eqs. (5.30) till (5.32). 

as explained in Section 5.2.4.2, while the optimized variation parameters do not have to be 

changed. For a clamped-clamped leafspring, it can be shown that this method is still about 

80% accurate if 𝐿 > 0.5𝑤, but the results that validate this are not included in this chapter. 

5.2.5 Anticlastic curvature 
The stress due to the anticlastic bending is derived from a description of the displacement 

field. The Kirchhoff-Love plate theory is used, which means that the full displacement is 

described in terms of the displacement of the mid-surface of the plate. The shape with the 

primary curvature 𝑅 is used as a reference configuration, see Figure 5.10. The vector �̃� de-

fines the displacement of the mid-surface with respect to this reference configuration. The 

resulting strain can be written in terms of this displacement: 

 
휀𝑥𝑥 =

𝑦

𝑅
+
�̃�𝑦

𝑅
+
𝜕�̃�𝑥
𝜕𝑥

− 𝑦
𝜕2�̃�𝑦

𝜕𝑥2
, 

휀𝑧𝑧 =
𝜕�̃�𝑧
𝜕𝑧

− 𝑦
𝜕2�̃�𝑦

𝜕𝑧2
, 

𝛾𝑥𝑧 =
𝜕�̃�𝑥
𝜕𝑧

− 2𝑦
𝜕2�̃�𝑦

𝜕𝑥𝜕𝑧
+
𝜕�̃�𝑧
𝜕𝑥
. 

(5.42) 
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Figure 5.10: Anticlastic curvature, mid-surface of the plate with and without anticlastic 

curvature, the vector �̃� defines the displacement from the shape without anticlastic cur-

vature to the deformed shape. 

The relation between stress and strain in the Kirchhoff-Love plate theory is: 

 
𝜎𝑥𝑥 =

𝐸

1 − 𝜈2
(휀𝑥𝑥 + 𝜈휀𝑧𝑧),     𝜎𝑧𝑧 =

𝐸

1 − 𝜈2
(𝜈휀𝑥𝑥 + 휀𝑧𝑧),     𝜏𝑥𝑧 =

𝐸

2(1 + 𝜈)
𝛾𝑥𝑧 . (5.43) 

 

By assuming that 𝑅 is constant (which means that the solution is independent of 𝑥 and that 

�̃�𝑥 = 0), an analytic displacement field is derived in refs. [6, 10, 111]: 

 �̃�𝑦 = 𝑢𝑎𝑐 ≡ 𝑡(𝐵𝑎𝑐 cosh(𝛼𝑧) cos(𝛼𝑧) + 𝐶𝑎𝑐 sinh(𝛼𝑧) sin(𝛼𝑧)), (5.44) 

where: 

 
𝐵𝑎𝑐 =

𝜈

√3(1 − 𝜈2)

sinh(𝛼𝑤 2⁄ ) cos(𝛼𝑤 2⁄ ) − cosh(𝛼𝑤 2⁄ ) sin(𝛼𝑤 2⁄ )

sinh(𝛼𝑤) + sin(𝛼𝑤)
, 

 

𝐶𝑎𝑐 =
𝜈

√3(1 − 𝜈2)

sinh(𝛼𝑤 2⁄ ) cos(𝛼𝑤 2⁄ ) + cosh(𝛼𝑤 2⁄ ) sin(𝛼𝑤 2⁄ )

sinh(𝛼𝑤) + sin(𝛼𝑤)
, 

 

𝛼 = √
3(1 − 𝜈2)

𝑡2𝑅2

4

. 

(5.45) 

The term 𝛼𝑤 that appears in this equation is closely related to the Searle parameter, 𝛽 =
𝑤2 𝑅𝑡⁄ . The displacement �̃�𝑧 for a constant primary curvature can be derived based on the 

equilibrium in the 𝑧-direction. Because stress is linearly distributed in the 𝑦-direction, the 

stress at the mid-surface, 𝜎𝑧𝑧
(𝑦=0)

, should be zero. This results in the following relation for the 

strains, using eq. (5.43): 

 𝜎𝑧𝑧
(𝑦=0)

= 0      ⇒    𝜈휀𝑥𝑥
(𝑦=0)

+ 휀𝑧𝑧
(𝑦=0)

= 0. (5.46) 
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By substituting eqs. (5.42) and (5.44), a relation for the mid-plane displacement �̃�𝑧 is ob-

tained: 

 
휀𝑧𝑧
(𝑦=0)

= −𝜈휀𝑥𝑥
(𝑦=0)

     ⇒      
𝜕�̃�𝑧
𝜕𝑧

= −𝜈
𝑢𝑎𝑐
𝑅
   ⇒     �̃�𝑧 = −

𝜈

𝑅
∫ 𝑢𝑎𝑐(�̂�) 𝑑�̂�
𝑧

0

. (5.47) 

A relation for the stress can be obtained by substituting the mid-plane displacements �̃�𝑦 and 

�̃�𝑧 in eq. (5.42) to obtain the strain, which can be substituted into eq. (5.43): 

 
𝜎𝑥𝑥 = 𝐸

𝑢𝑎𝑐
𝑅
+

𝑦𝐸

1 − 𝜈2
(
1

𝑅
− 𝜈

𝑑2𝑢𝑎𝑐
𝑑𝑧2

),    𝜎𝑧𝑧 =
𝑦𝐸

1 − 𝜈2
(
𝜈

𝑅
−
𝑑2𝑢𝑎𝑐
𝑑𝑧2

),    𝜏𝑥𝑧 = 0. (5.48) 

This is similar to the result given by ref. [92], where the approximation was substituted that 

𝑀𝑧 ≈ 𝐸𝑡
3 (12(1 − 𝜈2)𝑅)⁄ . The accuracy of this stress result is evaluated in Section 5.2.6. 

 

To study the significance of the anticlastic bending on the stress, we denote that the largest 

stress in case of pure bending occurs at the edges of the beam, i.e. 𝑧 = ±𝑤 2⁄ . At the edges 

the stresses 𝜎𝑧𝑧 and 𝜏𝑥𝑧 are zero. This means that the maximum Von Mises stress equals the 

normal stress 𝜎𝑥𝑥 at the edges. Based on eqs. (5.44) and (5.48) we can derive: 

 𝑑2𝑢𝑎𝑐
𝑑𝑧2

|
𝑧=±𝑤 2⁄

=
𝜈

𝑅
    ⇒     𝜎𝑟𝑒𝑓𝑖𝑛𝑒𝑑

(𝑚𝑎𝑥) = 𝜎𝑥𝑥|𝑧=±𝑤 2⁄ =
𝐸

𝑅
(
1

2𝑡
+ 𝑢𝑎𝑐|𝑧=±𝑤 2⁄ ). (5.49) 

 

In the classic beam theory, the maximum stress as a function of the bending curvature can be 

written as (see eq. (5.3)): 

 
𝜎𝑟𝑒𝑓
(𝑚𝑎𝑥) = 𝑀𝑧

(𝑛𝑜 𝑎𝑛𝑡𝑖𝑐𝑙𝑎𝑠) 𝑡

2𝐼𝑧
=
𝐸𝐼𝑧
𝑅
⋅
𝑡

2𝐼𝑧
=
𝐸𝑡

2𝑅
. (5.50) 

However, in the beam formulation used in this chapter, the effect of anticlastic curvature was 

included in the stiffness as derived in Section 5.A. The resulting maximum Von Mises stress 

based on the classic beam theory with the refined stiffness as given in eq. (5.2) is: 

 
𝜎𝑐𝑙𝑎𝑠𝑠𝑖𝑐
(𝑚𝑎𝑥) =

𝑀𝑧𝑡

2𝐼𝑧
= 𝑃(𝛽)

𝐸𝑡

2𝑅
, (5.51) 

where the factor 𝑃 as a function of the Searle parameter 𝛽 is given in Section 5.A. Figure 

5.11 shows the stiffness factor 𝑃, and the ratios of the refined stress computation with respect 

to the other stress definitions. The maximum Von Mises stress of the refined computation is 

up to 19% higher than the stress computed based on the bending curvature, 𝜎𝑟𝑒𝑓
(𝑚𝑎𝑥)

 and up to 

13% higher than the stress computed with the classic stress computation combined with the 

refined stiffness, 𝜎𝑐𝑙𝑎𝑠𝑠𝑖𝑐
(𝑚𝑎𝑥)

. 
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Figure 5.11: Results for the stiffness and stress of the anticlastic bending effect for 𝜈 =
0.3. The text indicates the results for infinite values of 𝛽. 

5.2.6 Constrained anticlastic curvature 
At the clamped sides of a leafspring the anticlastic curvature is constrained. In this section 

the resulting displacement field will be derived based on the principle of minimal potential 

energy. This displacement field will be rewritten as an explicit function of three parameters 

(the curvature, Searle parameter and Poisson ratio) and the resulting stress can be derived 

from this displacement field. 

 

Similar to Section 5.2.5, the Kirchhoff-Love plate theory is used and the displacement of the 

mid-surface is described with respect to the shape without anticlastic curvature, as visualized 

in Figure 5.10. This displacement �̃�𝑥 should be zero at the clamped sides of a leafspring and 

should equal the unconstrained displacement at the free sides, defined in eqs. (5.44) and 

(5.47). Also the derivatives 𝑑�̃�𝑦 𝑑𝑥⁄  are zero at the sides. Section 5.B formulates the chosen 

displacement field as a function of four variation parameters. This function is chosen in such 

a way that it can be easily modified for clamped-clamped, clamped free of free-free boundary 

conditions, as shown in Section 5.B. Eq. (5.42) is used to obtain the strain, which is also a 

function of the variation parameters. Based on this strain, the internal potential energy is 

derived, which can be written for plane stress as: 

 
𝑃𝑃𝐸
𝑖𝑛𝑡 =

𝐸 𝐿 𝑤 𝑡

2(1 − 𝜈2)
 

∫ ∫ ∫ (휀𝑥𝑥
2 + 휀𝑧𝑧

2 + 2𝜈휀𝑥𝑥휀𝑧𝑧 +
1 − 𝜈

2
𝛾𝑥𝑧
2 ) 𝑑 (

𝑦

𝑡
)

1 2⁄

−1 2⁄

𝑑 (
𝑧

𝑤
)

1 2⁄

−1 2⁄

𝑑 (
𝑥

𝐿
)

1

0

. 

(5.52) 

The potential energy due to external loads is constant and therefore ignored. The term inside 

the integrals depends only on the four variation parameters, the normalized curvature, the 

Searle parameter and the Poisson ratio. This term is minimized for 24 cases with a Poisson 

ratio of 0.3 with four values for the normalized curvature 𝑅 𝑡⁄ ∈ {50, 100, 200, 500} and six 

values for the Searle parameter 𝛽 ∈ {1, 2, 5, 10, 25, 50}. Based on the results, the variation 

parameters are written as a function of the normalized curvature and the Searle parameter. 

The results are given in Section 5.B. Based on eq. (5.43), the stress-distribution can be ob-

tained as a function of the strains, for which the result is also given in Section 5.B. 
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Figure 5.12: Deformed leafsprings to evaluate two effects. a) Constrained anticlastic cur-

vature, b) Constrained torsion. Both with a Poisson ratio of 0.3. The colours indicate the 

Von Mises stress. 

In summary, after an equilibrium computation, the curvature at the clamp of a leafspring is 

obtained. Based on this curvature, the normalized curvature and Searle parameter can be 

computed. Next the four variation parameters are obtained using eq. (5.70) and based on 

these variation parameters the stress distribution is computed. 

 

Figure 5.13 shows the results for the dimensionless stress at the top surface of the leafspring 

that is shown in Figure 5.12(a). The results at 𝑥 𝑡⁄ = 50 represent the result of unclamped 

anticlastic curvature as described in Section 5.2.5. The errors with respect to the maximum 

stress are less than 1%.  

 

The results indicate that the refined computation is quite accurate. The only significant error 

appears in 𝜎𝑧𝑧
(𝑎𝑐)

 near the corners. The stress should fundamentally be zero at 𝑧 = ±𝑤 2⁄  but 

this is hard to capture in the approach used. 

Other cases with different dimensions and curvatures have been analyzed; the results are 

not included in this chapter. Based on the results it can be concluded that the Error1 in 𝜎𝑥𝑥
(𝑎𝑐)

, 

𝜎𝑧𝑧
(𝑎𝑐)

 and 𝜏𝑥𝑧
(𝑎𝑐)

 is less than 20% of the maximum stress in 𝜎𝑧𝑧
(𝑎𝑐)

 (with the exception of 𝜎𝑧𝑧 

near the corners) and Error2 is less than 10% of the maximum stress under the following 

restrictions: 

 The curvature is almost constant over the length of the leafspring. 

 The normalized curvature, 𝑡 𝑅⁄  is less than 0.01. Note that such a high curvature 

results in a strain of at least 0.005 which is very high in steel. 

 The normalized curvature is more than 0.002. However, if the normalized curvature 

is lower, then the anticlastic effect is almost negligible and the errors are still very 

low with respect to the total bending stress. 

 The normalized width, 𝑤 𝑡⁄ , is at least 10. For a smaller width, the stress of the 

anticlastic effect will be overestimated. But as the anticlastic effect is almost negli-

gible for this small width, the error with respect to the total bending stress is still 

small. 

 The length is not very small: 𝐿 𝑤⁄ ≥ 0.1,  𝐿 𝑡⁄ ≥ 10. 
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Figure 5.13: Stress of the upper surface of the bended leafspring in Figure 5.12(a). The 

finite element result is obtained by Ansys with 20,000 plate elements. The lines in the 

‘Error’ graphs are similar to the errors defined in eqs. (5.30) to (5.32). 

5.2.7 Clamped torsion 
For torsion, the end effects are already partly included in the stress computation, using the 

bimoment that results from the Vlasov theory, see eq. (5.3). This subsection evaluates and 

refines the resulting stresses. 

 

Figure 5.12(b) shows a leafspring with a torsional moment. The torsional curvature is small, 

such that the Wagner torsion 𝑊𝑥 can be ignored. Based on eqs. (5.1) and (5.2), the stress 

resultants for the first half of the leafspring (𝑥 𝑡⁄ < 10) can be approximated with: 

 

𝑇𝑥 = 𝑀𝑥(1 − exp(−𝜆𝑥)), 𝐵 = −
𝑀𝑥

𝜆
exp(−𝜆𝑥) , 𝜆 ≡ √

𝐺𝐼𝑡
𝐸𝐼𝜔

. (5.53) 

Figure 5.14 shows the resulting stress on the leafspring. The analytic result of 𝜎𝑥𝑥 is caused 

by the bimoment (eq. (5.3)), which decays exponentially from the clamped side. The shear 

stresses are caused by the Saint-Venant torsion, according to eqs. (5.7) and (5.9). 
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Figure 5.14: Normalized stresses for the torsion shown in Figure 5.12(b). The finite ele-

ment result is obtained by Ansys with 1.12 million quadratic solid elements in 14 layers 

over the thickness. σxx, σzz and τxz are given for the upper surface and τxy for the left 

edge of the leafspring. For better visualization, the z-axis of the shear stress plots have 

reversed direction. The lines in the ‘Error’ graphs are similar to the errors defined in eqs. 

(5.30) to (5.32). 

This analytical stress result is not totally accurate. Note that eq. (5.1) suggests that the deriv-

ative 𝐵′ should provide a torsional moment, but this moment is not provided by the resulting 

stresses in axial direction, 𝜎𝑥𝑥. However, Figure 5.14 indicates that at the surfaces the ana-

lytical results are close to the results obtained by a finite element model. This has also been 

validated for other dimensions and Poisson ratios. In general, the stresses 𝜎𝑥𝑥 and 𝜏𝑥𝑧 are 

over 90% accurate, especially at the upper and lower surface of the leafspring where the 

highest Von Mises stress usually occurs. The accuracy of the shear stress 𝜏𝑥𝑦 depends greatly 

on the Poisson ratio, but this stress is zero at the upper and lower surface. 

 

However, the analytical result does not give normal stress in the 𝑧-direction: 𝜎𝑧𝑧. Finite ele-

ment results indicate that this stress can be approximated with 𝜎𝑧𝑧 ≈ 𝜈𝜎𝑥𝑥. Based on eq. (5.3) 

and (5.5), this can be approximated for thin rectangular cross-sections with: 

 
𝜎𝑧𝑧 ≈ 𝜈𝜎𝑥𝑥 ≈ 𝜈

𝐵

𝐼𝜔
𝑦𝑧. (5.54) 

However, the stress 𝜎𝑧𝑧 should be zero at both edges of the leafspring: 𝜎𝑧𝑧(𝑧 = ±𝑤 2⁄ ) = 0, 

which is also indicated by the FEM result. Also the shear stresses 𝜏𝑥𝑧 and 𝜏𝑦𝑧 are zero at the 
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edges. From equilibrium in the 𝑧-direction follows that the derivative of 𝜎𝑧𝑧 should also be 

zero at the edges: 

 𝜕𝜏𝑥𝑧
𝜕𝑥

+
𝜕𝜏𝑥𝑦

𝜕𝑦
+
𝜕𝜎𝑧𝑧
𝜕𝑧

=
𝜕𝜎𝑧𝑧
𝜕𝑧

= 0       for     𝑧 = ±
𝑤

2
. (5.55) 

Therefore the distribution in the 𝑧-direction will be described by a function that was also used 

in Section 5.2.4.4 and that is shown in Figure 5.6(b): 

 
𝜎𝑧𝑧 = 𝜈

𝐵

𝐼𝜔
𝑦 ⋅ 𝑤 (

𝑧

𝑤
− 589 824 (

𝑧

𝑤
)
17

+ 2 097 152 (
𝑧

𝑤
)
19

). (5.56) 

The resulting stress is about 90% accurate. Note, however, that the stresses 𝜎𝑥𝑥 and 𝜎𝑧𝑧 of 

the FEM result in Figure 5.14 are slightly higher at 𝑥 = 0. This high increase of the stress 

very close to the clamp disappears if small fillets are used in the thickness direction. 

5.3 Results of combined load 
This section evaluates the maximum stress for six combined loading conditions, shown in 

Figure 5.15. The first three cases are combinations of large torsion and bending. In the last 

three cases, large forces in the in-plane directions are combined. In these three cases, fillets 

are added in the width direction to avoid stress singularities at the corners. The results are 

evaluated for three different leafsprings, the dimensions of which are shown in Table 5.2. 

The most important difference between these leafsprings is the ratio between the width and 

thickness. The leafsprings are made of steel with a Young’s modulus of 200 GPa and a Pois-

son ratio of 0.3. The finite element results are obtained using three layers of elements in the 

thickness direction; the in-plane mesh size is specified in Table 5.2. The results are compared 

with the classic stress computation in beams as described in Section 5.2.2. For the refined 

stress and the classic stress the same beam elements are used: the stiffness includes the 

Vlasov theory, Wagner torsion and the effect of anticlastic curvature. 

 

Figure 5.16 shows the maximum stress of case ‘a’ in which a constant bending moment 𝑀𝑧 

is applied and a force 𝐹𝑦 is applied gradually. The total displacement in the 𝑦-direction of the 

side where the force is applied is about zero for the maximum applied force of 75 N. For 

𝐹𝑦 = 0, the primary curvature is constant. This gives 99% accurate results for the two leaf-

springs with the highest widths, as expected from the results of Section 5.2.6. For the smallest 

width, there is a small error of 5.0%. 

As indicated in Figure 5.12(a), the clamping generally reduces the stress around the 

clamp. So for a constant curvature, the maximum Von Mises stress occurs away from the 

clamped sides. An increase of the force 𝐹𝑦 decreases the bending curvature away from the 

clamp. Therefore an increase of the force 𝐹𝑦 decreases the maximum Von Mises stress. This 

is partly captured by the refined stress computation. The maximum error is 5.3% which is 

only half of the maximum error of the classic stress computation. 
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Figure 5.15: Six cases with large combined loads, colours give an indication of the Von 

Mises stress distribution. 

 

Table 5.2: Dimensions for the three leafsprings, given in millimetres 

Annotation 𝒘 = 𝟏𝟎𝐦𝐦 𝒘 = 𝟒𝟎𝐦𝐦 𝒘 = 𝟖𝟎𝐦𝐦 

Width, 𝑤 10 40 80 

Length, 𝐿 20 80 160 

Thickness, 𝑡 1 1 1 

Radius fillet (cases ‘d’, ‘e’ and ‘f’) 1 4 8 

Mesh size 0.25 1.3 2.0 

Mesh size around fillets 0.075 0.3 0.6 

 

 

 
Figure 5.16: Maximum Von Mises stress of case ‘a’ bending with non-constant curvature. 
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Figure 5.17: Maximum Von Mises stress of case ‘b’, large torsion. 

 
Figure 5.18: Maximum Von Mises stress of case ‘c’, torsion and bending. 

Figure 5.17 shows the maximum stress for case ‘b’. This large torsion combines the stress 

due to Saint-Venant torsion, Wagner torque and constrained warping. However, the maxi-

mum stress always occurs at the clamps, and the stress due to Wagner torque is zero at the 

clamps. This means that the influence of the refinements of the stress computation on the 

maximum stress is negligible. 

The figure shows nonlinear behaviour, especially for the wider leafsprings. This is be-

cause the nonlinear Wagner torsion in the stiffness decreases the Saint-Venant torsion and 

bimoment. If this Wagner torsion is not included in the stiffness, the result is almost linear. 

The nonlinear behaviour is captured correctly by the beam element, for which the stress is 

over 95% accurate in relation to the finite element result. 

 

Figure 5.18 shows the maximum stress for case ‘c’ where bending and torsion are combined. 

Constant torsional moments 𝑀𝑥 are applied and the bending moment 𝑀𝑧 is applied gradually. 

For 𝑀𝑥 = 0, there is pure bending and the results of the two widest leafsprings are almost 

perfect. 
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The maximum Von Mises stress due to the torsional moment is caused by the bimoment, 

which gives a high normal stress 𝜎𝑥𝑥 at the corners of the leafspring. The constrained anti-

clastic bending typically results in a relatively low stress 𝜎𝑥𝑥 at the corners (see Figure 5.13), 

so these two effects counteract at the corner. The maximum stress of the combined loading 

occurs close to the corner. 

For the leafspring with a width of 40 mm, the refined stress computes this maximum 

stress accurately. In case of the leafspring with a width of 10 mm, an error of 13.5% occurs. 

This is because the stress of the anticlastic bending at the corners is not estimated very accu-

rately by the refined stress computation. However, for this leafspring the refined stress com-

putation always gives more accurate results than the classic stress computation. The leaf-

spring with a width of 80 mm shows errors of up to 16.5%. For this large width, the effect 

of the Wagner torque is significant. The combination of the nonlinear effects of anticlastic 

bending and Wagner torque cause some higher order effects. These effects are not captured 

with the refined stress computation, because the Wagner torque and anticlastic bending were 

modelled separately. 

 

Figure 5.19 shows results for combined high loads in the in-plane directions. The applied 

forces are given in Table 5.3. The refined stress computation gives the same results for all 

three leafsprings, but the results of FEM for the three leafsprings are slightly different from 

each other. Because the in-plane deformation is small, it is expected that the effects of the 

different forces can be linearly substituted and the results in the figure confirm this. The 

figure shows that the errors of the refined stress computation with respect to the finite element 

results are less than 8%. 

 

 
Figure 5.19: Maximum Von Mises stress for cases ‘d’ and ‘e’. The bottom graphs show 

the error of the refined stress computation with respect to FEM. 
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Table 5.3: Applied forces for cases ‘d’ and ‘e’. 

Width Const. 𝑭𝒙 (𝐍) Max. 𝑴𝒚 (𝐍𝐦) Const. 𝑴𝒚 (𝐍𝐦) Max. 𝑭𝒛 (𝐍) 

𝑤 = 10mm 1 000 5 5 500 

𝑤 = 40mm 4 000 80 80 2000 

𝑤 = 80mm 8 000 320 320 4000 

 

 
Figure 5.20: Maximum Von Mises stress of case ‘f’, bending combined with axial force. 

Figure 5.20 shows the results of case ‘f’. A constant force is applied in the axial direction. 

One side of the leafspring is displaced in the vertical direction. The rotation of this side is 

constrained. The results for zero axial force are over 90% accurate. This is slightly worse 

than the results of case ‘a’ because of the added fillet. 

For the results with an axial force, the error of the refined stress computation with respect 

to the finite element model is relatively high, up to 16%. This can be explained as follows. 

In the refined stress model, the anticlastic bending results in a relatively low axial stress at 

the corners. This low stress counteracts the effect of the high stress at the corners of the axial 

force. A closer look at the finite element result (not given in this chapter) shows that these 

two effects occur at a slightly different location at the fillet, such that the high stress of the 

axial force remains. In such cases, the stress may be underestimated in the refined computa-

tion while the classic stress computation may perform slightly better. 

5.4 Conclusion 
Calculating the stress in deformed leafsprings using classic beam elements can give inaccu-

rate results, even though the stiffness has been computed with sufficient accuracy. This is 

because the stress can vary locally in the beam elements, while the stiffness is an overall 

averaged value, and these local effects are not captured in the classic stress computation for 

beams. In this chapter, stress refinements for beam elements with wide rectangular cross-

sections are proposed. Analytical solutions are used to describe effects that occur in case of 

large deformation, i.e. Wagner torque and anticlastic bending. Refined stresses around 

clamped sides of the beams (end effects) are computed by adding extra stress fields. These 
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stress fields are explicit functions of beam dimensions, reaction forces and material proper-

ties, and can therefore be computed efficiently. The stress fields were obtained using the 

principle of minimal potential energy and the principle of minimal complementary energy. 

 

The results of the refined stress computation have been validated using finite element solu-

tions based on volume meshes, and the accuracy is compared with the accuracy of the classic 

theory. The refined stresses due to bending and torsion are generally over 95% accurate, 

while the classic theory often results in errors over 10%. An exception is the combination of 

large torsion and bending of a beam of which the width that was more than 40 times the 

thickness, which resulted in errors of up to 16.5% with the refined computation. 

Forces in the in-plane directions of the beams cause high local stresses near both corners 

of the clamped sides. The classic beam theory results in errors of up to 36% for these cases 

where the refined stress computation is over 90% accurate. The combination of large in-plane 

forces with bending results in errors of up to 16%. 

In summary, the refined stress computation is often over 90% accurate and the resulting 

errors are generally about two times smaller than errors with the classic theory. 

5.A Stiffness effect of the anticlastic curvature 
This section explains how the effect of anticlastic curvature on the stiffness has been imple-

mented in the beam element [103]. As described in refs. [45, 124], the effect of anticlastic 

curvature can be included by multiplying the bending stiffness with a factor 𝑃 that depends 

on the bending radius 𝑅. The bending moment 𝑀𝑧 can be expressed as: 

 
𝑀𝑧 = 𝑃(𝑅) 

𝐸𝐼𝑧
𝑅
, (5.57) 

where 𝐸 is the Young’s modulus and 𝐼𝑧 is the second moment of area. The factor 𝑃 is ex-

pressed as: 

 
𝑃(𝛼(𝑅)) =

1

1 − 𝜈2
(1 − 𝜈2 [

3

2𝛼𝑤

cosh 𝛼𝑤 − cos 𝛼𝑤

sinh 𝛼𝑤 + sin 𝛼𝑤
+

sinh 𝛼𝑤 sin 𝛼𝑤

(sinh 𝛼𝑤 + sin 𝛼𝑤)2
]), 

 

  𝛼(𝑅) =
1

𝑤
√3(1 − 𝜈2)
4

√𝛽 = √
3(1 − 𝜈2)

𝑡2𝑅2

4

, 

(5.58) 

where 𝑤 and 𝑡 are the width and thickness of the beam respectively and 𝜈 the Poisson ratio. 

The factor 𝑃 is given as a function of the Searle parameter, 𝛽 = 𝑤2 𝑅𝑡⁄ , in Figure 5.11. 

 

The stiffness of the beam element is expressed in terms of deformation modes. The general-

ized coordinates associated with the two relevant bending modes are 휀5 and 휀6, and the cor-

responding generalized forces are denoted by 𝜎5 and 𝜎6. The bending stiffness as given in 

ref. [103], multiplied by the factor 𝑃, is: 

 
{
𝜎5
𝜎6
} = 𝑃(𝑅) 

𝐸𝐼𝑧

𝐿0
3 [

4 −2
−2 4

] {
휀5
휀6
}, (5.59) 

where 𝐿0 is the undeformed length of the element. 
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This relation should be fully expressed in terms of the generalized coordinates 휀5, 휀6. There-

fore an average bending radius 𝑅 will be defined as a function of these generalized coordi-

nates. The bending curvature as a function of the normalized axial coordinate, 𝜉, is (see the 

bending modes defined in eq. 52 of [103]): 

 
𝜅𝑧(𝜉) =

1

𝐿0
2 ((−6𝜉 + 4)휀5 + (6𝜉 − 2)휀6), 𝜉 =

𝑥

𝐿0
. (5.60) 

The inverse of the average bending radius is defined using the 𝑙2-norm of this curvature: 

 1

𝑅
= (∫ (𝜅𝑧(𝜉))

2
𝑑𝜉

1

0

)

1 2⁄

=
2

𝐿0
2 √휀5

2 − 휀5휀6 + 휀6
2. (5.61) 

Based on this relation, the factor 𝑃 can be expressed in terms of the generalized coordinates. 

By substituting the relation into eq. (5.59), the generalized forces (𝜎5, 𝜎6) are expressed in 

terms of the generalized coordinates (휀5, 휀6). 

5.B Choice of the displacement field in anticlastic curvature 
around a clamp 

This section shows the displacement fields for the anticlastic curvature near the clamps. 

These displacements are a function of four variation parameters. Expressions for these vari-

ation parameters are obtained by minimizing the resulting potential energy and are given in 

this section. The section ends with the resulting expressions for the stress. 

 

The mid-plane displacement of the anticlastic curvature is denoted by �̃�(𝑥, 𝑧) =

{�̃�𝑥 , �̃�𝑦, �̃�𝑧}
𝑇
. Boundary conditions apply at both sides of a leafspring, i.e. at 𝑥 = 0 and at 

𝑥 = 𝐿. If a side is clamped, the anticlastic displacement should be zero and also the rotation 

around the 𝑧-axis equals zero: 

 
�̃�𝑥|clamp = 0, �̃�𝑦|clamp = 0, �̃�𝑧|clamp = 0,

𝜕�̃�𝑦

𝜕𝑥
|
clamp

= 0. (5.62) 

If a side is free to deform, the displacements at this side equal the unconstrained field as 

defined in eqs. (5.44) and (5.47), and the rotation around the 𝑧-axis is zero: 

 
�̃�𝑥|free = 0, �̃�𝑦|free = 𝑢𝑎𝑐(𝑧), �̃�𝑧|free =

𝜈

𝑅
∫ 𝑢𝑎𝑐(�̂�) 𝑑�̂�
𝑧

0

,

𝜕�̃�𝑦

𝜕𝑥
|
free

= 0. 

(5.63) 

This means that there are four boundary conditions at each side. In order to satisfy these eight 

boundary conditions a first displacement field is introduced as: 

 
�̃�𝑥
(1) = 0,      �̃�𝑦

(1) = (1 − 𝑓1(𝑥))𝑢𝑎𝑐(𝑧),      �̃�𝑧
(1) = −(1 − 𝑓1(𝑥))

𝜈

𝑅
∫ 𝑢𝑎𝑐(�̂�) 𝑑�̂�
𝑧

0

. (5.64) 
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The function 𝑓1(𝑥) is: 

 
𝑓1(𝑥) = 𝐴11 exp (−𝜆1

𝑥

𝑡
) + 𝐵11 exp (−𝜆1

𝐿 − 𝑥

𝑡
) + 𝐴12 exp (−2𝜆1

𝑥

𝑡
) 

+𝐵12 exp (−2𝜆1
𝐿 − 𝑥

𝑡
), 

(5.65) 

where 𝜆1 is a variation parameter, and the constants 𝐴11, 𝐴12, 𝐵11, 𝐵12 are obtained based on 

the boundary conditions. The boundary conditions are fulfilled if: 

 
𝑓1(0) = {

0  if free         
1  if clamped

,    
𝑑𝑓1
𝑑𝑥
|
𝑥=0

= 0,    𝑓1(𝐿) = {
0  if free         
1  if clamped

,    
𝑑𝑓1
𝑑𝑥
|
𝑥=𝐿

= 0. (5.66) 

The function 𝑓1(𝑥) is similar to the function 𝑔𝑘
(𝐵)(�̅�) that was introduced to define the in-

plane stress fields (see Figure 5.5), but this function is defined to have a zero slope at 𝑥 = 0 

and at 𝑥 = 𝐿. 

 

The displacement in the 𝑦-direction cannot be described with sufficient accuracy using this 

displacement field. Especially the curvature 𝜕2�̃�𝑦 𝜕𝑥2⁄  very close to the clamped side needs 

to be approximated more accurately. Therefore a second displacement-field is introduced: 

 
�̃�𝑥
(1) = 0, �̃�𝑦

(2) = 𝑓2(𝑥) ⋅ (𝐻21
𝑢𝑎𝑐
2

𝑡
+ 𝐻22𝑢𝑎𝑐) , �̃�𝑧

(1) = 0. (5.67) 

in which 𝐻21 and 𝐻22 are variation parameters and function 𝑓2(𝑥) tends to zero away from 

clamps. It is defined as:  

 
𝑓2(𝑥) = (𝐴21 + 𝐴22

𝑥

𝑡
+ 𝐴23 (

𝑥

𝑡
)
2

) exp (−𝜆2
𝑥

𝑡
)

+ (𝐵21 + 𝐵22
𝐿 − 𝑥 

𝑡
+ 𝐵23 (

𝐿 − 𝑥

𝑡
)
2

) exp (−𝜆2
𝐿 − 𝑥

𝑡
). 

(5.68) 

Where 𝜆2 is a variation parameter, the constants 𝐴𝑘 and 𝐵𝑘, are obtained based on the fol-

lowing boundary conditions: 

 
𝑓2(0) = 0,

𝑑𝑓2
𝑑𝑥
|
𝑥=0

= 0,
𝑑2𝑓2
𝑑𝑥2

|
𝑥=0

= {
0                  if free   
2𝜆2 𝑡2⁄        if clamp

 

 

𝑓2(1) = 0,
𝑑𝑓2
𝑑𝑥
|
𝑥=𝐿

= 0,
𝑑2𝑓2
𝑑𝑥2

|
𝑥=𝐿

= {
0                  if free   
2𝜆2 𝑡2⁄        if clamp

 

(5.69) 

This second displacement fields mainly influences the stress close to the clamp (due to the 

term 휀𝑥𝑥 = −𝑦 ⋅ 𝜕2�̃�𝑦 𝜕𝑥2⁄ ) and the stresses at both sides due to the strain term 휀𝑧𝑧 = −𝑦 ⋅

𝜕2�̃�𝑦 𝜕𝑧2⁄  

 

The total anticlastic displacement �̃�(𝑥, 𝑧) is the sum of these two displacement fields, which 

depend on four variation parameters. The variation parameters depend on the Searle param-

eter 𝛽 = 𝑤2 𝑅𝑡⁄ , the normalized curvature 𝑡 𝑅⁄  and the Poisson ratio. For a Poisson ratio of 

0.3 the parameters are: 
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 𝜆1 = 1.68√𝑡 𝑅⁄ ⋅ (1 + 1.99 exp(−0.81𝛽) − 0.0837 exp(−(0.060𝛽)3)), 
𝜆2 = 2.2599 𝜆1 ⋅ (1 + 0.131 exp(−0.15𝛽) − 0.0468 exp(−(0.050𝛽)

3)), 

𝐻21 = 11.8√𝑡 𝑅⁄ ⋅ (1 + 14.1 exp(−1.3𝛽) − 0.247 exp(−(0.065𝛽)3)), 

𝐻22 = −0.629√𝑡 𝑅⁄ ⋅ (1 − 0.403 exp(−0.22𝛽) − 0.634 exp(−(0.087𝛽)3)). 

(5.70) 

 

These values were estimated based on 24 optimizations with 𝑅 𝑡⁄ ∈ {50, 100, 200, 500} and 

𝛽 ∈ {1, 2, 5, 10, 25, 50}. Note that the dependency of 𝑡 𝑅⁄  and 𝛽 on these parameters is com-

pletely separated. Furthermore, all parameters were found to be almost proportional to √𝑡 𝑅⁄ . 

For 𝛽 > 25 the parameters are almost constant in 𝛽. 

 

In order to obtain the expressions for the stress, eq. (5.43) is substituted into (5.42) and eqs. 

(5.64) and (5.67) are used: 

 
𝜎𝑥𝑥 =

𝐸

1 − 𝜈2
[𝑇1 + 𝜈𝑇2 + 𝑦(𝑇3 + 𝜈𝑇4)], 

 

𝜎𝑧𝑧 =
𝐸

1 − 𝜈2
[𝑇2 + 𝜈𝑇1 + 𝑦(𝑇4 + 𝜈𝑇3)], 

 

𝜏𝑥𝑧 =
𝐸

2(1 + 𝜈)
[𝑇7 − 2𝑦𝑇8], 

(5.71) 

with the definitions: 

 
𝑇1 ≡

�̃�𝑦

𝑅
+
𝜕�̃�𝑥
𝜕𝑥

=
1

𝑅
(1 − 𝑓1(𝑥))𝑢𝑎𝑐(𝑧) +

1

𝑅
𝑓2(𝑥) (𝐻21

𝑢𝑎𝑐
2 (𝑧)

𝑡
+ 𝐻22𝑢𝑎𝑐(𝑧)), 

 

𝑇2 ≡
𝜕�̃�𝑧
𝜕𝑧

= −(1 − 𝑓1(𝑥)) ⋅
𝜈

𝑅
⋅  𝑢𝑎𝑐(𝑧), 

 

𝑇3 ≡
1

𝑅
−
𝜕2�̃�𝑦

𝜕𝑥2
=
1

𝑅
+
𝑑2𝑓1
𝑑𝑥2

𝑢𝑎𝑐(𝑧) −
𝑑2𝑓2
𝑑𝑥2

(𝐻21
𝑢𝑎𝑐
2 (𝑧)

𝑡
+ 𝐻22𝑢𝑎𝑐(𝑧)), 

 

𝑇4 ≡ −
𝜕2�̃�𝑦

𝜕𝑧2
= −(1 − 𝑓1(𝑥))

𝑑2𝑢𝑎𝑐
𝑑𝑧2

− 𝑓2(𝑥) (𝐻21
2

𝑡
((
𝑑𝑢𝑎𝑐
𝑑𝑧

)
2

+ 𝑢𝑎𝑐(𝑧)
𝑑2𝑢𝑎𝑐
𝑑𝑧2

) + 𝐻22
𝑑2𝑢𝑎𝑐
𝑑𝑧2

), 

 

𝑇5 ≡
𝜕�̃�𝑥
𝜕𝑧

+
𝜕�̃�𝑧
𝜕𝑥

=
𝑑𝑓1
𝑑𝑥

𝜈

𝑅
∫ 𝑢𝑎𝑐(�̂�) 𝑑�̂�
𝑧

0

, 

 

𝑇6 ≡
𝜕2�̃�𝑦

𝜕𝑥𝜕𝑧
= −

𝑑𝑓1
𝑑𝑥

𝑑𝑢𝑎𝑐
𝑑𝑧

+
𝑑𝑓2
𝑑𝑥

(𝐻21
2

𝑡
 𝑢𝑎𝑐(𝑧)

𝑑𝑢𝑎𝑐
𝑑𝑧

+ 𝐻22
𝑑𝑢𝑎𝑐
𝑑𝑧

). 

(5.72) 
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CHAPTER 6  
6 Beams with a varying cross-section in the generalized strain 

formulation for flexure modelling 

Abstract 
Flexure joints are rapidly gaining ground in precision engineering because of their 

predictable behaviour. However their range of motion is limited due to a stress limi-

tation and a loss of support stiffness in deformed configurations. The support stiff-

ness can be significantly increased by using leafsprings of which the width and thick-

ness vary over the length of the leafspring. 

This chapter presents formulations for two beam elements with a varying cross-

section that can be used for the efficient modelling of these types of leafsprings. One 

of these beam formulations includes the modelling of the warping due to torsion, 

which is shown to be essential for accurate modelling. The 90% accuracy in stiffness 

results and 80% accuracy in stress results, in comparison with results of finite ele-

ment analyses, are sufficient for the evaluation of concept designs. 

Optimizations shows that the support stiffness of two typical flexure joints can 

be increased by a factor of up to 4.0 keeping the same range of motion, by allowing 

the cross-section to vary over the length of the leafspring. In these two flexure joints, 

98% of this improvement can already be obtained by only varying the thickness, 

keeping a constant width. 

 

6.1 Introduction 
Flexure joints are rapidly gaining ground in precision applications [4, 82, 93, 135, 196]. Flex-

ure joints allow excellent predictable motion as they do not suffer from friction and backlash 

and have low hysteresis, in contrast to other bearings. However, their range of motion is 

limited due to loss of support stiffness under deformation. This limitation can potentially be 

reduced by using leafsprings of which the width and the thickness vary over the length. 

 

Notch hinges have been optimized using various shapes [61, 194, 205], often using topology 

optimizations [120, 207] . However, notch flexures are typically used for a small range of 

motion, so this research does not provide knowledge about flexure joints for large range of 

motion that generally contain long and slender leafsprings. A simple example of  leafsprings 

with varying cross-section is the commercial available Free-Flex Pivot from Riverhawk, of 

which the leafsprings are wider around their interfaces, see Figure. 6.1. 
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Figure. 6.1: The Free-Flex Pivot includes leafsprings with varying width. Left: full pivot, 

right: pivot with gap to show inside. 

A linear two-dimensional shape optimization was applied to reduce the stress in long and 

slender leafsprings in ref. [76]. Furthermore, Tschiersky et al. [186] showed that for a gravity 

compensation device with leafsprings the ratio between the elastic energy stored in the device 

and the weight could be increased by 94% by using a variable thickness of the leafsprings. 

To the best of the author’s knowledge no other literature exists on the optimization of the 

shape of leafsprings for compliant devices undergoing large deformation. 

 

A reason for not considering leafsprings with a varying cross-section is the lack of a fast and 

accurate modelling tool. Such a tool is essential as the shape of flexure joints can become 

relatively complex and design optimization is commonly used to optimize the designs of 

these joints [133, 198]. In order to perform these design optimizations, the flexure joint 

should be modelled in such a way that deformation, stress and stiffness properties over the 

full range of motion can be computed efficiently. It has been shown that leafsprings can be 

modelled accurately with spatial beam elements using the software SPACAR [100, 101]. The 

accuracy of the beam element in SPACAR is improved by explicitly accounting for nonlinear 

behaviour like foreshortening [105]. Also the warping due to torsion is modelled [103, 137], 

which is essential for the accurate modelling of leafsprings. However, the beam elements in 

SPACAR do not allow accurate modelling of leafsprings with varying cross-section. 

A modelling approach for the bending stiffness of beams with varying cross-section is to 

use the Euler-Bernoulli or Timoshenko beam equations, in which the variation of the stiffness 

coefficients is taken into account. In other words, the stiffness coefficients (e.g. 𝐸𝐼) are writ-

ten as functions of the axial coordinate. This approach is used for the two-dimensional static 

case [13, 65, 72, 115, 153] and to study vibration of beams [12, 56].  Rao and Gupta [151] 

used this approach for a three-dimensional rotating beam. Awtar and Sen [15] used this ap-

proach in the beam constraint model that takes nonlinear effects into account which arise 

from load equilibrium in deformed configurations. It should be noted that this modelling 

approach results in a small error as shown by Boley [36]. Therefore more accurate modelling 

methods are proposed [14, 18, 89], but these formulations are valid only in two dimensions, 

and the resulting beam elements do not account for constrained torsional warping, making 

the formulations less suitable for the modelling of leafsprings. For optimization purposes the 

simplified approach is sufficiently accurate as the error introduced by this approach is small 

for small variations of the cross-section. However, this approach has never been formulated 

in the generalized strain formulation that is used in SPACAR, hence it cannot be used for the 

numerically efficient design optimizations. 
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This chapter presents two beam formulations with varying cross-section in the generalized 

strain formulation, for beams with isotropic material properties. One of the formulations in-

cludes warping due to torsion. Both formulations are presented in Section 6.2 and include 

second order effects in the deformation. In Section 6.3 the accuracies of the formulations are 

verified and it is shown that the support stiffness of several flexure joints can be increased by 

varying the cross-section of leafsprings. The chapter ends with the most important conclu-

sions. 

6.2 Beam formulations 
Section 6.2.1 presents the relations between nodal forces and displacements for a beam with 

varying cross-section (hereinafter VC-beam) in local coordinates. These relations are used in 

Section 6.2.2 to obtain the stiffness in terms of deformation modes, so as to make the formu-

lation applicable in the generalized strain formulation. The corresponding deformation modes 

are derived in Section 6.2.3. In Section 6.2.4 warping due to torsion is included in this beam 

formulation (the resulting element will be referred to as the VCW-beam). Second order terms 

in the deformation are derived in Section 6.2.5 and the mass matrix of the beam is derived in 

section 6.2.6. 

6.2.1 Relations between nodal forces and nodal displacements 
In this section the relations between forces and displacements are derived by integrating the 

elasticity coefficients over the length of the beam. The resulting integrals will not be evalu-

ated analytically, although these integrals can be evaluated for many standard variations in 

the cross-section [56, 72, 153]. Evaluating the integrals numerically allows for more freedom 

in the variation of the cross-section and little computation time is required for this numerical 

integration. 

Axial deformation 
Figure. 6.2(a) shows a beam on which axial force is applied. The resulting axial displacement 

can be computed from: 

 
𝑢(𝜉) = 𝑢𝑝 + 𝐹𝑥𝐿0∫

1

𝐸𝐴(𝑠)
𝑑𝑠

𝜉

0

, (6.1) 

where 𝜉 is the natural 𝑥-coordinate of the undeformed configuration (𝜉 ≡ 𝑥 𝐿0⁄ ), 𝑢𝑝 is the 

displacement of the left node, 𝐹𝑥 is the axial force, 𝐿0 is the undeformed length of the beam, 

𝐸 is the elasticity, 𝐴 is the cross-sectional area which depends on the 𝑥-coordinate and 𝑠 is 

the integration variable. The integral term will be denoted by 𝑝1(𝜉): 

 
𝑝1(𝜉) ≡ ∫

1

𝐸𝐴(𝑠)
𝑑𝑠

ξ

0

. (6.2) 

The relation between the axial displacement of the left and right node and the forces on the 

nodes can therefore be expressed as: 

 𝑢𝑞 − 𝑢𝑝 = 𝐹𝑥𝐿0𝑝1(1), (6.3) 

where 𝑢𝑞 is the displacement of the right node. 
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Figure. 6.2: Forces on the VC-beam element. 

In the remainder of the derivation more integrals will be defined and be denoted by 𝑝𝑖 . The 

numbers in the subscript are related to the type of deformation. 𝑝2 is related to torsion, de-

formation in the 𝑥𝑧-plane is indicated by a subscript that starts with ‘3’ and deformation in 

the 𝑥𝑦-plane is indicated by a subscript that starts with ‘5’. This numbering is consistent with 

the numbering of the deformation modes in SPACAR, which will be defined in section 6.2.2. 

Hereinafter we write an integal, 𝑝𝑖 , evaluated at 𝜉 = 1 with capital 𝑃𝑖 , so 𝑃1 ≡ 𝑝1(1). 

Torsion 
Torsion is shown in Figure. 6.2(b) and can be computed by: 

 
𝜙𝑥(𝜉) = 𝜙𝑥

𝑝
+𝑀𝑥𝐿0∫

1

𝐺𝐼𝑡(𝑠)
𝑑𝑠

𝜉

0

, (6.4) 

where 𝜙𝑥
𝑝
 is the rotation around the local 𝑥-axis of the left node, 𝑀𝑥 is the applied moment, 

𝐺 is the shear modulus and 𝐼𝑡 is the Saint-Venant’s torsion constant. By introducing: 

 
𝑝2(𝜉) ≡ ∫

1

𝐺𝐼𝑡(𝑠)
𝑑𝑠

𝜉

0

, (6.5) 

we can write: 

 𝜙𝑥
𝑞
− 𝜙𝑥

𝑝
= 𝑀𝑥𝐿0𝑃2, (6.6) 

where 𝜙𝑥
𝑞
 is the rotation of the right node. 

Bending and shear in the 𝒙𝒛-plane 
Figure. 6.2(c) shows the deformation in the 𝑥𝑧-plane. The internal bending moment around 

the y-axis found by equilibrium: 

 𝑀𝑦(𝜉) = 𝑀𝑦
𝑝
− 𝐹𝑧𝐿0𝜉. (6.7) 

The rotation around the 𝑦-axis, 𝜙𝑦, in the beam is: 

 
𝜙𝑦(𝜉) = 𝜙𝑦

𝑝
+ 𝐿0∫

𝑀𝑦(𝑠)

𝐸𝐼𝑦(𝑠)
𝑑𝑠

𝜉

0

, (6.8) 
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where 𝜙𝑦
𝑝
 is the rotation of the left node and 𝐼𝑦  is the second moment of area around the 𝑦-

axis. By substituting eq. (6.7) we obtain: 

 𝜙𝑦(𝜉) = 𝜙𝑦
𝑝
+𝑀𝑦

𝑝
𝐿0𝑝31(𝜉) − 𝐹𝑧 𝐿0

2𝑝32(𝜉), (6.9) 

where: 

 
𝑝31(𝜉) ≡ ∫

1

𝐸𝐼𝑦(𝑠)
𝑑𝑠

𝜉

0

, 𝑝32(𝜉) ≡ ∫
𝑠

𝐸𝐼𝑦(𝑠)
𝑑𝑠

𝜉

0

. (6.10) 

The displacement 𝑤 in the 𝑧-direction can be obtained by integrating the 𝑦-rotation over the 

𝑥-coordinate and including the deformation due to shear: 

 
𝑤(𝜉) = 𝑤𝑝 − 𝐿0∫ 𝜙𝑦(𝑠)𝑑𝑠

𝜉

0

− 𝐹𝑧𝐿0∫
1

𝐺𝐴(𝑠)𝑘𝑦(𝑠)
𝑑𝑠

𝜉

0

, (6.11) 

where 𝑘𝑦 is the shear correction coefficient by Cowper [58] that accounts for the non-uniform 

distribution of the shear stress over the cross-section. By substituting the expression of 𝜙𝑦(𝜉) 

as defined in eq. (6.9) and defining: 

 
𝑝33(𝜉) ≡ ∫ 𝑝31(𝑠)𝑑𝑠

𝜉

0

, 𝑝34(𝜉) ≡ ∫ 𝑝32(𝑠)𝑑𝑠
𝜉

0

−
1

𝐿0
2 ∫

1

𝐺𝐴(𝑠)𝑘𝑦(𝑠)
𝑑𝑠

𝜉

0

, (6.12) 

we can express the displacement in the 𝑧-direction as: 

 𝑤(𝜉) = 𝑤𝑝 − 𝜙𝑦
𝑝
𝐿0𝜉 −𝑀𝑦

𝑝
𝐿0
2𝑝33(𝜉) + 𝐹𝑧𝐿0

3𝑝34(𝜉). (6.13) 

Eqs. (6.9) and (6.13) can be evaluated at the right node of the beam, i.e. at 𝜉 = 1, and com-

bined to: 

 
{

𝜙𝑦
𝑞
− 𝜙𝑦

𝑝

𝑤𝑞 − 𝑤𝑝 + 𝜙𝑦
𝑝
𝐿0
} = [

𝐿0𝑃31 −𝐿0
2𝑃32

−𝐿0
2𝑃33 𝐿0

3𝑃34
] {
𝑀𝑦
𝑝

𝐹𝑧
}. (6.14) 

This is a relation between the nodal displacements and nodal forces in the 𝑥𝑧-plane in terms 

of four integrals. However, the four integrals are not independent. A relation exists between 

three of these integrals, which means that only three integrals have to be evaluated to obtain 

the relation between nodal forces and displacements. To show this relation, the rule of partial 

integration can be used, which implies that for two arbitrary functions 𝑓(𝜉) and 𝑔(𝜉): 

 
∫ 𝑓(𝜉)𝑔′(𝜉)𝑑𝜉
1

0

= [𝑓(𝜉)𝑔(𝜉)]0
1 −∫ 𝑓′(𝜉)𝑔(𝜉)𝑑𝜉

1

0

. (6.15) 

By substituting 𝑓(𝜉) = 𝜉 and 𝑔(𝜉) = ∫ 1 𝐸𝐼𝑦(𝑠)⁄ 𝑑𝑠
𝜉

0
 we obtain: 

 
∫ 𝜉

1

𝐸𝐼𝑦(𝜉)
𝑑𝜉

1

0

= [𝜉 ∫
1

𝐸𝐼𝑦(𝑠)
𝑑𝑠

𝜉

0

]
0

1

−∫ 1∫
1

𝐸𝐼𝑦(𝑠)
𝑑𝑠

𝜉

0

𝑑𝜉
1

0

, (6.16) 

which is equivalent to 𝑃32 = 𝑃31 − 𝑃33. 
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Bending and shear in the 𝒙𝒚-plane 
The relation between forces and displacements in the 𝑥𝑦-plane can be obtained in a similar 

way to the derivation for the 𝑥𝑧-plane, resulting in: 

 
{

𝜙𝑧
𝑞
− 𝜙𝑧

𝑝

𝑣𝑞 − 𝑣𝑝 − 𝜙𝑧
𝑝
 𝐿0
} = [

𝐿0𝑃51 𝐿0
2𝑃52

𝐿0
2𝑃53 𝐿0

3𝑃54
] {
𝑀𝑧
𝑝

𝐹𝑦
}, (6.17) 

where 𝑃51 to 𝑃54 are similar to 𝑃31 to 𝑃34, except that 𝐼𝑦  and 𝑘𝑦 are replaced by 𝐼𝑧 and 𝑘𝑧 

respectively. 

 

This section shows the relation between nodal forces and nodal displacements in terms of 10 

integrals that depend only on the distribution of the elasticity coefficients over the length of 

the beam element. 

6.2.2 Stiffness in terms of deformation modes 
This section will define deformation modes and use the relations from the previous subsec-

tion to derive the stiffness matrix in terms of these deformation modes. The generalized co-

ordinates of these deformation modes are called generalized deformations (in other literature 

also referred to as ‘generalized strains’ although they are related to displacements instead of 

strain). The generalized deformations are denoted by 𝜺 and are directly related to the global 

nodal coordinates 𝒙: 

 𝜺 = 𝓓(𝒙). (6.18) 

The global coordinates are the global positions and orientations of both nodes; note that these 

coordinates are different from the local coordinates used in Section 6.2.1. In this chapter, the 

deformation modes will be chosen in such a way that this function 𝓓 is equivalent to that of 

Jonker and Meijaard [105]. Therefore this relation is not further detailed in this chapter. The 

relations between the generalized deformations and the local nodal displacements are called 

boundary conditions and listed in Figure 6.3. 

The generalized forces of the modes are called generalized stresses (although they are 

related to forces and moments instead of stress) and are denoted by 𝝈. According to the prin-

ciple of virtual work, the element is in state of equilibrium if: 

 𝛿𝜺𝑇𝝈 = 𝛿𝒖𝑇𝑭        ∀  𝛿𝜺, (6.19) 

where 𝒖 is the vector with the twelve local nodal displacements (the three translations, 𝑢, 𝑣 

and 𝑤 and the three rotations 𝜙𝑥, 𝜙𝑦 and 𝜙𝑧 for both nodes of the element) and 𝑭 is the vector 

with forces in the corresponding directions (the three force components 𝐹𝑥, 𝐹𝑦 and 𝐹𝑧 and 

three moment components 𝑀𝑥, 𝑀𝑦 and 𝑀𝑧 for both nodes of the element). Eq. (6.19) can be 

used to define relations between the stress resultants and nodal forces. The twelve boundary 

conditions can be rewritten to 𝒖 = 𝚽𝜺. By substituting this into the equation we obtain: 

 𝛿𝜺𝑇𝝈 = 𝛿𝒖𝑇𝑭 = 𝛿𝜺𝑇𝚽𝑇𝑭        ∀  𝛿𝜺     ⇒       𝝈 = 𝚽𝑇𝑭. (6.20) 

These are six relations, which are given in Figure 6.3 and referred to as stress relations. 
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(a) Axial deformation (b) Torsion 

 

 

 
 

B.C.:     𝑢𝑝 = 0, 

             𝑢𝑞 = 휀1 
B.C.:    𝜙𝑥

𝑝
= 0, 

             𝜙𝑥
𝑞
= 휀2 𝐿0⁄  

S.R.:     𝜎1 = 𝐹𝑥 S.R.:     𝜎2 = 𝑀𝑥 𝐿0⁄  

𝑆11 =
1

𝐿0𝑃1
 𝑆22 =

1

𝐿0
3𝑃2

 

(c) Bending and shear in the 𝒙𝒛-plane 

           

B.C.:     𝑤𝑝 = 0,                     𝑤𝑞 = 0, 

             𝜙𝑦
𝑝
= −휀3 𝐿⁄

0
,          𝜙𝑦

𝑞
= 휀4 𝐿0⁄  

S.R.:     𝜎3 = 𝑀𝑦
𝑝
𝐿0⁄ ,             𝜎4 = 𝑀𝑦

𝑞
𝐿0⁄  

[
𝑆33 𝑆34
𝑆43 𝑆44

] =
1

𝐿0
3𝐷34

[
−𝑃32 + 𝑃34 𝑃34

𝑃34 −𝑃31 + 𝑃32 + 𝑃34
] 

 

 

where 𝐷34 ≡ 𝑃31𝑃34 − 𝑃32𝑃31 + 𝑃32
2  

(d) Bending and shear in the 𝒙𝒚-plane 

          

B.C.:     𝑣𝑝 = 0,                     𝑣𝑞 = 0, 

             𝜙𝑧
𝑝
= −휀5 𝐿⁄

0
,         𝜙𝑧

𝑞
= 휀6 𝐿⁄

0
 

S.R.:     𝜎5 = 𝑀𝑧
𝑝
𝐿0⁄ ,           𝜎6 = 𝑀𝑧

𝑞
𝐿0⁄  

[
𝑆55 𝑆56
𝑆65 𝑆66

] =
1

𝐿0
3𝐷56

[
−𝑃52 + 𝑃54 𝑃54

𝑃54 −𝑃51 + 𝑃52 + 𝑃54
] 

 

 

where 𝐷56 = 𝑃51𝑃54 − 𝑃52𝑃51 + 𝑃52
2  

Figure 6.3: Deformation modes with boundary conditions (B.C.), stress relations (S.R.) 

and stiffness terms. 
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The stiffness relation between the generalized deformations and stress resultants can be ex-

pressed for a beam with a double symmetric cross-section by a stiffness matrix as: 

 

{
  
 

  
 
𝜎1

𝜎2

𝜎3

𝜎4

𝜎5

𝜎6}
  
 

  
 

=

[
 
 
 
 
 
 
 
𝑆11

𝑆22

𝑆33 𝑆34

𝑆43 𝑆44

𝑆55 𝑆56

𝑆65 𝑆66]
 
 
 
 
 
 
 

{
  
 

  
 
휀1

휀2

휀3

휀4

휀5

휀6}
  
 

  
 

. (6.21) 

The coefficients 𝑆𝑖𝑗  can be obtained by substituting the boundary conditions and stress rela-

tions in the equations of Section 6.2.1, as explained below. These coefficients are given in 

Figure 6.3. For the axial deformation, 𝑆11 can be obtained by substituting the boundary con-

ditions and stress relations of Figure 6.3(a) in eq. (6.3). The stiffness coefficient for torsion, 

𝑆22, can be obtained similarly, substituting the relations in Figure 6.3(b) into eq. (6.6). For 

bending and shear in the 𝑥𝑧-plane, the boundary conditions and stress relations can be sub-

stituted in eq. (6.14), and the result can be rewritten to: 

 
{
휀3
휀4
} = 𝐿0

3 [
𝑃31 − 𝑃32 − 𝑃34 𝑃34

𝑃34 𝑃32 − 𝑃34
] {
𝜎3
𝜎4
}, (6.22) 

where we used the relation 𝑃32 = 𝑃31 − 𝑃33 to substitute 𝑃33. Inverting this matrix results in 

the stiffness coefficients that are given in Figure 6.3(c). The stiffness coefficients for the 𝑥𝑦-

plane are obtained similarly. 

6.2.3 Mode shapes 
The local displacements can be expressed in terms of the generalized deformations using the 

mode shapes derived in this section. These mode shapes are visualized in Figure 6.3 and will 

be used in the following sections. 

 

The axial force 𝐹𝑥 can be expressed in terms of the displacements using eq. (6.3). Substituting 

the result in eq. (6.1) and using the boundary conditions from Figure 6.3(a) gives the axial 

mode shape 𝑁1(𝜉): 

 
𝑢(𝜉) = 𝑁1(𝜉)휀1, 𝑁1(𝜉) =

𝑝1(𝜉)

𝑃1
. (6.23) 

The torsional mode shape can be found similarly: 

 
𝜙𝑥(𝜉) =

1

𝐿0
𝑁2(𝜉)휀2, 𝑁2(𝜉) =

𝑝2(𝜉)

𝑃2
. (6.24) 

To obtain the displacement 𝑤, the force 𝐹𝑦 and moment 𝑀𝑧
𝑝
 can be expressed in terms of the 

nodal displacements by eq. (6.14) and then substituted in eq. (6.13). This gives an expression 

for the displacements in terms of the nodal displacements. After substituting the boundary 

conditions from Figure 6.3(c), the displacement is expressed in terms of 휀3 and 휀4: 

 𝑤(𝜉) = 𝑁3(𝜉)휀3 + 𝑁4(𝜉)휀4, (6.25) 

where: 
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𝑁3(𝜉) = 𝜉 +

(𝑃32 − 𝑃34)𝑝33(𝜉) − 𝑃32𝑝34(𝜉)

𝐷34
, 

𝑁4(𝜉) =
−𝑃34𝑝33(𝜉) + (𝑃31 − 𝑃32)𝑝34(𝜉)

𝐷34
. 

(6.26) 

𝐷34 is defined in Figure 6.3(c). The rotation can also be specified using mode shapes: 

 
𝜙𝑦(𝜉) =

1

𝐿0
(𝑁31(𝜉)휀3 + 𝑁41(𝜉)휀4), (6.27) 

where 

 
𝑁31(𝜉) = −1 +

(𝑃34 − 𝑃32)𝑝31(𝜉) + 𝑃32𝑝32(𝜉)

𝐷34
, 

𝑁41(𝜉) =
𝑃34𝑝31(𝜉) + (𝑃32 − 𝑃31)𝑝32(𝜉)

𝐷34
. 

(6.28) 

If the shear deformation is disregarded, 𝜙𝑦(𝜉) = −𝑤
′(𝜉) 𝐿0⁄  and then the mode shapes are 

also related: 𝑁31(𝜉) = −𝑁3
′(𝜉), 𝑁41(𝜉) = −𝑁4

′(𝜉). 
The mode shapes for deformation in the 𝑥𝑦-plane can be obtained similarly: 

 
𝑣(𝜉) = 𝑁5(𝜉)휀5 + 𝑁6(𝜉)휀6, 𝜙𝑧(𝜉) =

1

𝐿0
(𝑁51(𝜉)휀5 + 𝑁61(𝜉)휀6), (6.29) 

where: 

 
𝑁5(𝜉) = −𝜉 −

(𝑃52 − 𝑃54)𝑝53(𝜉) − 𝑃52𝑝54(𝜉)

𝐷56
, 

𝑁6(𝜉) = −
−𝑃54𝑝53(𝜉) + (𝑃51 − 𝑃52)𝑝54(𝜉)

𝐷56
, 

𝑁51(𝜉) = −1 +
(𝑃54 − 𝑃52)𝑝51(𝜉) + 𝑃52𝑝52(𝜉)

𝐷56
, 

𝑁61(𝜉) =
𝑃54𝑝51(𝜉) + (𝑃52 − 𝑃51)𝑝52(𝜉)

𝐷56
. 

(6.30) 

6.2.4 Warping due to torsion 
This subsection explains how the effect of warping can be taken into account for a beam with 

double symmetric cross-section; the resulting element will be referred to as a VCW-beam 

(variational cross-section warping beam). According to the Saint-Venant torsion theory, tor-

sion generally causes warping of the cross-section in axial direction, which can be obtained 

by: 

 𝑢𝑤 = 𝜔(𝑦, 𝑧)𝛼(𝑥), (6.31) 

where the warping coordinate 𝛼(𝑥) is the derivative of the torsion: 𝛼(𝑥) = 𝜙𝑥
′ (𝑥). The warp-

ing shape 𝜔(𝑦, 𝑧) depends on the shape of the cross-section. The resistance against this warp-

ing is modelled by a variable called the bimoment 𝐵: 
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𝐵(𝑥) = −𝐸𝐼𝜔(𝑥)

𝑑𝛼

𝑑𝑥
= −𝐸𝐼𝜔(𝑥)

𝑑2𝜙𝑥
𝑑𝑥2

, 𝐼𝜔(𝑥) = ∫𝜔2(𝑦, 𝑧)𝑑𝐴
𝐴

. (6.32) 

For thin rectangular cross-sections, with the local 𝑦-axis in the thickness direction, the warp-

ing shape equals 𝜔(𝑦, 𝑧) = 𝑦𝑧, such that the warping rigidity becomes 𝐼𝜔 = 𝑤
3𝑡3 144⁄  [11, 

184]. According to the Vlasov’s torsion theory [191] the total torsional moment, 𝑀𝑥, is com-

posed of the Saint-Venant torsion 𝑇𝑥 and the derivative of the bimoment: 

 
𝑀𝑥(𝑥) = 𝑇𝑥(𝑥) +

𝑑𝐵

𝑑𝑥
, 𝑇𝑥(𝑥) = 𝐺𝐼𝑡(𝑥)

𝑑𝜙𝑥
𝑑𝑥

. (6.33) 

In the previous subsections exact formulas for the stiffness and the mode shapes could be 

found for linear deformation. This is possible because the distribution of the internal forces 

can be expressed as a function of the forces on the nodes, based on equilibrium. 

The distribution of the Saint-Venant torsional moment and bimoment depends on the var-

iation of the cross-sectional dimensions over the beam axis and cannot be found easily. How-

ever, if the extra stiffness because of warping is small (which is usually the case far from the 

clamped areas), the mode shape is given by 𝑝2(𝜉) 𝑃2⁄  as defined in eq. (6.24). In order to 

include the effect of warping, this mode shape is split into three mode shapes, visualized in 

Figure 6.4: 

 𝑁2(𝜉) = 𝑝2(𝜉) 𝑃2⁄ ⋅ ((2 + 𝑧𝑞)𝜉 − (1 + 𝑧𝑞)𝜉2), 

𝑁7(𝜉) = 𝑝2(𝜉) 𝑃2⁄ ⋅ (1 − 2𝜉 + 𝜉2), 
𝑁8(𝜉) = 𝑝2(𝜉) 𝑃2⁄ ⋅ (−𝑧𝑞𝜉 + 𝑧𝑞𝜉2), 

(6.34) 

where: 

 
𝑧𝑝 =

𝑝2
′ (0)

𝑃2
=

1

𝑃2 𝐺𝐼𝑡(0)
, 𝑧𝑞 =

𝑝2
′ (1)

𝑃2
=

1

𝑃2 𝐺𝐼𝑡(1)
. (6.35) 

Note that the sum of these mode shapes equals the old mode shape of torsion: 𝑁2(𝜉) +
𝑁7(𝜉) + 𝑁8(𝜉) = 𝑝2(𝜉) 𝑃2⁄ . Instead of the relations given in Figure 6.3(b), the torsional an-

gle and warping are now expressed as: 

 
𝜙𝑥(𝜉) =

1

𝐿0
𝑵278(𝜉) 𝜺278, 𝛼(𝜉) =

1

𝐿0
2 𝑵278

′ (𝜉) 𝜺278, (6.36) 

with: 

 
𝑵278(𝜉) ≡ [𝑁2(𝜉) 𝑁7(𝜉) 𝑁8(𝜉)], 𝜺278 ≡ {

휀2
휀7
휀8
}. (6.37) 

The following boundary conditions follow from these mode shapes: 

 𝜙𝑥
𝑝
= 0, 𝜙𝑥

𝑞
= 휀2 𝐿0⁄  , 𝛼𝑝 = 𝑧𝑝 휀7 𝐿0

2⁄ , 𝛼𝑞 = 𝑧𝑞 휀8 𝐿0
2⁄ , (6.38) 

where 𝛼𝑝 and 𝛼𝑞 are the warping coordinates. These coordinates can be used to couple the 

warping of two connected beam elements or to constrain the warping at the fixed side of a 

beam element. 
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Figure 6.4: Mode shapes of VCW beam with 𝑝2(𝜉) = 0.6𝜉 + 0.4𝜉
2. 

The stress relations are: 

 𝜎2 = 𝑀𝑥 𝐿0⁄ , 𝜎7 = 𝑧
𝑝 𝐵𝑥

𝑝
𝐿0
2⁄ , 𝜎8 = 𝑧𝑞 𝐵𝑥

𝑞
𝐿0
2⁄ . (6.39) 

The stiffness matrix of the deformation modes for the VCW-beam is: 

 

{
 
 
 
 

 
 
 
 
𝜎1

𝜎2

𝜎3

𝜎4

𝜎5

𝜎6

𝜎7

𝜎8}
 
 
 
 

 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
𝑆11

𝑆22 𝑆27 𝑆28

𝑆33 𝑆34

𝑆43 𝑆44

𝑆55 𝑆56

𝑆65 𝑆66

𝑆72 𝑆77 𝑆78

𝑆82 𝑆87 𝑆88]
 
 
 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 
휀1

휀2

휀3

휀4

휀5

휀6

휀7

휀8}
 
 
 
 

 
 
 
 

. (6.40) 

All the terms that are not related to torsion or warping are not changed and have the values 

given in Figure 6.3. The terms related to torsion (deformation modes 2, 7 and 8) can be found 

from the energy potential of these terms: 

 
𝐸𝑝𝑜𝑡
𝑡𝑜𝑟 =

1

2
∫ (𝐺𝐼𝑡  𝜙𝑥,𝑥

2 + 𝐸𝐼𝜔  𝜙𝑥,𝑥𝑥
2 )𝑑𝜉

𝐿0

0

. (6.41) 

The derivatives of 𝜙𝑥 can be expressed in terms of 𝜺278 using the mode shapes in eq. (6.36). 

By substituting these mode shapes, the potential energy of torsion can be written as: 

 

𝐸𝑝𝑜𝑡
𝑡𝑜𝑟 =

1

2
𝜺278
𝑇 𝑺278𝜺278, 𝑺278 ≡ [

𝑆22 𝑆27 𝑆28
𝑆72 𝑆77 𝑆78
𝑆82 𝑆87 𝑆88

], (6.42) 

where the stiffness matrix is: 

 
𝑺278 =

1

𝐿0
∫ [𝑵278

′ (𝜉)]𝑇 𝐺𝐼𝑡  [𝑵278
′ (𝜉)]𝑑𝜉

1

0

+
1

𝐿0
3 ∫ [𝑵278

′′ (𝜉)]𝑇 𝐸𝐼𝜔  [𝑵278
′′ (𝜉)]𝑑𝜉

1

0

. (6.43) 

The values inside the integral are obtained by numerical integration of these mode shapes. 
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6.2.5 Second order expression 
The axial elongation is influenced by bending; this effect is called foreshortening. The tra-

peze effect (also Wagner term) [90, 195] couples the axial elongation to the twist. A better 

approximation for the axial deformation as defined in the first generalized deformation is 

therefore [27, 102]: 

 
휀1̂ = ∫ [

𝑑𝑢

𝑑𝑥
+
1

2
(
𝑑𝑣

𝑑𝑥
)
2

+
1

2
(
𝑑𝑤

𝑑𝑥
)
2

+
1

2
𝐼𝑡𝑒 (

𝑑𝜙𝑥
𝑑𝑥

)
2

] 𝑑𝑥
𝐿

0

. (6.44) 

where 𝐼𝑡𝑒 = (𝑡
2 + 𝑤2) 12⁄  for thin rectangular cross-sections. The evaluation of the first 

term in this integral equals the earlier introduced generalized deformation 휀1. The two other 

terms can be expressed in terms of the generalized deformations that define the bending by 

substituting the derivatives of the mode shapes of eqs. (6.26) and (6.30), such that the modi-

fied first generalized deformation can be written as: 

 휀1̂ = 휀1 

+
1

2𝐿0
[𝐻33

(1)휀3
2 + 2𝐻34

(1)휀3휀4 +𝐻44
(1)휀4

2 + 𝐻55
(1)휀5

2 + 2𝐻56
(1)휀5휀6 + 𝐻66

(1)휀6
2] 

+
𝐼𝑡𝑒

2𝐿0
3 [𝐻22

(1)휀2
2 + 2𝐻27

(1)휀2휀7 + 2𝐻28
(1)휀2휀8 + 𝐻77

(1)휀7
2 + 2𝐻78

(1)휀7휀8 + 𝐻88
(1)휀8

2] 

(6.45) 

where 

 
𝐻𝑖𝑗
(1) ≡ ∫ 𝑁𝑖

′(𝜉) 𝑁𝑗
′(𝜉)

1

0

𝑑𝜉. (6.46) 

This is the expression for the VCW-beam. For the VC-beam the terms that depend on 휀7 and 

휀8 do not exist, such that only the term 𝐻22
(1)휀2

2 remains in the trapeze effect. 

Another nonlinear effect is caused by the fact that a rotation matrix is not linear in the 

local rotations 𝜙𝑥, 𝜙𝑦 and 𝜙𝑧. This couples the torsion and bending deformations. Section 

6.A shows how this effect can be included up to the second order. All second order general-

ized deformations are expressed in terms of the first order generalized deformations, and can 

therefore be included by modifying the relation between the absolute nodal coordinates and 

the generalized deformations: 

 �̂� = �̂�(𝒙) = 𝒇(𝓓(𝒙)). (6.47) 

Section 6.3.4 evaluates the significance of these second order effects. 

6.2.6 Mass matrix 
The mass matrix can be derived based on the kinetic energy. The kinetic energy of a beam 

element can be expressed as: 

 

𝐸𝑘𝑖𝑛 =
1

2
∫ {

�̇�(𝜉)

𝐿0�̇�(𝜉)

𝐿0
2𝛼(𝜉)

}

𝑇

[𝑸(𝜉)] {

�̇�(𝜉)

𝐿0�̇�(𝜉)

𝐿0
2𝛼(𝜉)

} 𝑑𝑉
𝑉

, (6.48) 

where �̇� and �̇� are the local velocity and rotational velocity of the beam respectively and 
[𝑸(𝜉)] contains the inertia properties of the cross-section: 
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 [𝑸(𝜉)] = 𝜌 ⋅ diag([𝐴(𝜉) 𝐴(𝜉) 𝐴(𝜉) 𝐼𝑝(𝜉) 𝐼𝑦(𝜉) 𝐼𝑧(𝜉) 𝐼𝜔(𝜉)]), (6.49) 

where 𝜌 is the density of the material and 𝐼𝑝(𝜉) is the polar moment of area. The terms related 

to 𝐼𝑦(𝜉) and 𝐼𝑧(𝜉) are usually smaller than the terms related to 𝐴(𝜉) and can therefore be 

ignored. 

The local (rotational) velocities in the beam can be expressed in terms of the (rotational) 

velocities of both nodes using the Craig-Bampton boundary modes, 𝚿(𝜉): 

 

{

�̇�(𝜉)

𝐿0�̇�(𝜉)

𝐿0
2𝛼(𝜉)

} = 𝚿(𝜉)𝑼, 𝑼 ≡

{
  
 

  
 
�̇�𝑝

𝐿0�̇�
𝑝

𝐿0
2𝛼𝑝

�̇�𝑞

𝐿0�̇�
𝑞

𝐿0
2𝛼𝑞}

  
 

  
 

. (6.50) 

The matrix with Craig-Bampton boundary modes is closely related to the deformation modes 

defined in Sections 6.2.3 and 6.2.4 and can be written as: 

 𝚿(𝜉) = 

[
 
 
 
 
 
 
𝜓1 0 0 0 0 0 0 𝜓2 0 0 0 0 0 0
0 𝜓3 0 0 0 𝜓4 0 0 𝜓5 0 0 0 𝜓6 0
0 0 𝜓7 0 𝜓8 0 0 0 0 𝜓9 0 𝜓10 0 0
0 0 0 𝜓11 0 0 𝜓21 0 0 0 𝜓12 0 0 𝜓22
0 0 𝜓13 0 𝜓14 0 0 0 0 𝜓15 0 𝜓16 0 0
0 𝜓17 0 0 0 𝜓18 0 0 𝜓19 0 0 0 𝜓20 0
0 0 0 𝜓23 0 0 𝜓24 0 0 0 𝜓25 0 0 𝜓26]

 
 
 
 
 
 

, 
(6.51) 

where: 

 𝜓1   = 1 − 𝑁1(𝜉), 
𝜓2   = 𝑁1(𝜉), 
𝜓3   = 1 − 𝜉 − 𝑁5(𝜉) + 𝑁6(𝜉), 
𝜓4   = −𝑁5(𝜉), 
𝜓5   = 𝜉 + 𝑁5(𝜉) − 𝑁6(𝜉), 
𝜓6   = 𝑁6(𝜉), 
𝜓7   = 1 − 𝜉 + 𝑁3(𝜉) − 𝑁4(𝜉), 
𝜓8   = −𝑁3(𝜉), 
𝜓9   = 𝜉 − 𝑁3(𝜉) + 𝑁4(𝜉), 
𝜓10 = 𝑁4(𝜉), 
𝜓11 = 1 − 𝑁2(𝜉), 
𝜓12 = 𝑁2(𝜉), 
𝜓13 = 1 + 𝑁31(𝜉) − 𝑁41(𝜉), 

𝜓14  = −𝑁31(𝜉), 
𝜓15  = −1 − 𝑁31(𝜉) + 𝑁41(𝜉), 
𝜓16  = 𝑁41(𝜉), 
𝜓17  = −1 − 𝑁51(𝜉) + 𝑁61(𝜉), 
𝜓18  = −𝑁51(𝜉), 
𝜓19  = 1 + 𝑁51(𝜉) − 𝑁61(𝜉), 
𝜓20  = 𝑁61(𝜉), 
𝜓21  = 𝑁7(𝜉), 
𝜓22  = 𝑁8(𝜉), 
𝜓23  = −𝑁21(𝜉), 
𝜓24  = 𝑁71(𝜉), 
𝜓25  = 𝑁21(𝜉), 
𝜓26  = 𝑁8(𝜉). 

(6.52) 

These are the mode shapes for the VCW-beam. For the VC-beam we can ignore the row 

corresponding to 𝛼(𝜉) and the columns corresponding to 𝛼𝑝 and 𝛼𝑞, and use 𝑁2(𝜉) as de-

fined in Figure 6.3(b). 

 

By substituting the mode shapes into eq. (6.48) the kinetic energy can be expressed in terms 

of the local mass matrix: 
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1

0

. (6.53) 

The global mass matrix can be obtained by rotation: 

 

𝑴 = 𝑩�̅�𝑩𝑇 , 𝑩 =

[
 
 
 
 
 
 
𝑹𝑝

𝐿0𝑹
𝑝

𝐿0
2

𝑹𝑞

𝐿0𝑹
𝑞

𝐿0
2]
 
 
 
 
 
 

, (6.54) 

where rotation matrices 𝑹𝑝 and 𝑹𝑞 define the orientations of both nodes. 

6.3 Validation 
In Section 6.3.1, both beam formulations are validated by the analysis of a single leafspring. 

In Sections 0 and 6.3.3 two flexure joints are optimized and the optimization results are ana-

lysed. The CMA-ES algorithm [81] (a genetic algorithm) is used for the optimizations, with 

a population size of ten. All optimizations are run two times. These optimization pairs always 

converge to the same design, indicating that global optima were found. The computation of 

the maximum Von Mises stress in these two sections is explained in Section 6.B. In all these 

results, the second order terms as derived in Section 6.2.5 were included. These second order 

terms are evaluated in Section 6.3.4. 

6.3.1 Analysis of a leafspring in bending 
The accuracy of the stiffness computed by the beam element is analysed by a single leaf-

spring, shown in Figure 6.5. The leafspring is clamped at the base. The tip is displaced out 

of plane ( in the y-direction) and, in this case study, the rotation about the x-axis and the z-

axis are prescribed to be zero. The leafspring is modelled by ten serial connected VC-beams 

or VCW-beams. A model in ANSYS is used as a reference, where the leafsprings were mod-

elled by about 15,000 solid-shell elements (SOLSH190), with three layers of elements in the 

thickness-direction. The length of the leafspring is 100 mm and is made of steel with a 

Young’s modulus of 200 GPa and a Poisson ratio of 0.3. Three different designs are consid-

ered, one design with a constant cross-section and two designs where the width or thickness 

is varied linear from the base to the tip: 

 

C: Width: 40 mm, thickness: 0.5 mm; 

W: Width: from 60 to 40 mm, thickness: 0.5 mm; 

T: Width: 40 mm, thickness: from 1.0 to 0.4 mm. 

 

Figure 6.6 shows the axial stiffness and in-plane stiffness during the tip displacement. The 

axial stiffness is computed more than 93% accurately by both beam elements. For the in-

plane direction the results of the VC-beam become less accurate for increasing displace-

ments, but the resulting errors of the VCW-beam in comparison with ANSYS are small. The 

stiffness at zero displacement is more than 99% accurate for the C-design and T-design, but 

it deviates 4% for the W-design. This 4% deviation is mainly because the variation of the 

width is significant with respect to the length of the leafspring, which is known to result in a  
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Figure 6.5: Leafspring with out-of-plane bending. 

 
Figure 6.6: Support stiffness of leafspring in bending. 

 
Figure 6.7: Leafspring, with a highlighted cross-section. The stress boundary condition 

indicates that the normal stress is not exclusively in the axial direction. 

small error, as shown by Boley [36]. This is because the assumption that the cross-section 

does not deform, which was used in the derivation of the Timoshenko beam theory, is not 

valid for highly varying cross-sections. Another way to view this is that the Timoshenko 

beam theory implies that the normal stress in case of bending and extension is exclusively in 

axial direction. However the boundary conditions at the top and bottom surface imply a dif-

ferent stress, see Figure 6.7. According to [18, 89] the resulting axial stiffness of a cross-

section is therefore a factor of 𝑤′2 6⁄  too high and the bending stiffness is about a factor of 

0.3𝑤′2 too high. 
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Table 6.1: Driving stiffness of the leafspring in undeformed configuration. 

 C W T 

VCW-beam (N/mm) 1.00 1.24 2.43 

ANSYS (N/mm) 1.06 1.32 2.57 

Error w.r.t. ANSYS (%) 5.7 6.5 5.4 

 

Table 6.1 shows the driving stiffness in undeformed configuration. This stiffness is not af-

fected by the warping from torsion, so the model with the VC-beam and that with the VCW-

beam give the same result. There is a difference of about 5% between the beam elements and 

ANSYS. This difference is caused almost completely by the constrained anticlastic bending 

effect at both sides of the leafspring, which is not modelled by the beam elements. This was 

verified by computations with a Poisson ratio of zero, which give almost identical results. 

For a deflection of 8% of the beam length, the stiffness can generally be modelled with 

90% accuracy with the new beam elements with respect to finite elements, an exception is 

the in-plane stiffness of the W-design, which is about 85% accurate. Using beam elements 

the computation time to compute this deflection is more than 100 times shorter. 

6.3.2 Optimization of a parallel flexure guidance 
A parallel flexure guidance is optimized for support stiffness to study the value of varying 

the cross-section of leafsprings. Figure 6.8 shows the dimensions of the mechanism. The 

elasticity of the leafsprings is 200 GPa and the Poisson ratio 0.3. Each leafspring is modelled 

using six flexible VCW-beam elements. The thick parts are assumed to be infinitely stiff. 

The mechanism is specified to be able to move 20 mm without exceeding the stress limit of 

600 MPa. The thickness of the leafsprings is specified to be at least 0.3 mm. The support 

stiffness is evaluated in the deformed configuration, in the initial centre of compliance, where 

the displacement in the 𝑥-direction was constrained and the motions in all other directions 

were free to move. 

Some initial design optimizations were run in which leafsprings without reinforcements 

were considered, the varying thickness of which was optimized. The leafsprings in the re-

sulting optimized designs were, however, typically reinforced leafsprings, i.e. the middle 

parts of the leafsprings became very thick. This is because deflection of the inner parts typi- 

 

 

Figure 6.8: Dimensions of the parallel flexure guidance; 𝑡𝑖 indicates the thickness. 
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Figure 6.9: Optimized support stiffness of the parallel flexure guidance for the five design 

types. 

cally does not contribute significantly to the motion, but their thickness has significant influ-

ence on the support stiffness. Therefore six designs are considered in more detail, of which 

five designs have reinforced leafsprings. For the first four designs the width of the leafsprings 

is constant: 50 mm. The thickness is always a function of design parameters: 

 

C:  Leafsprings without reinforcement, with a constant cross-section with thick-

ness 𝑡1. 

R: Reinforced leafsprings of which the reinforced part has length 𝑑𝑟, the slender 

parts have a constant thickness, 𝑡1. 

TLR: Reinforced leafsprings of which the thickness of the slender parts varies line-

arly over the length, determined by thickness 𝑡1 (at the base) and 𝑡3 (at the 

reinforced part). 

TQR: Reinforced leafsprings of which the thickness of the slender parts varies quad-

ratic over the length, determined by thickness 𝑡1, 𝑡3 and 𝑡2 (at the centre of the 

slender parts). 

 

WLR: Reinforced leafsprings of which the width of the slender parts varies linearly 

over the length, determined by the width at the base (which is 50 mm) and 𝑤3 

(at the reinforced part). 

TQWLR: Reinforced leafsprings of which the thickness of the slender parts varies quad-

ratic over the length and the width varies linearly. 

 

The support stiffness in three directions has been optimized: for the 𝑦-direction, for the 𝑧-

direction and for rotation around the 𝑥-axis. Figure 6.9 shows the optimized support stiff-

nesses and Table 6.2 shows the corresponding design variables. The resulting designs for all 

three directions of the support stiffness were similar, except for the WLR-design as indicated 

in the table. 

To understand the results, it should be noted that thicker leafsprings will result in extra 

support stiffness, but also in a higher stress in the deformed configuration. Therefore, in the 

designs with a varying thickness or width, the stress over the whole length of the deforming 

parts in deformed configuration is close to the maximum allowed value. 
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Table 6.2: Design parameters of the parallel flexure guidance, optimized for support stiff-

ness. 

Design Design parameters (𝐦𝐦) 

 𝒕𝟏 𝒅𝒓 𝒕𝟑 𝒕𝟐 𝒘𝟑 

C 0.49     

R 0.30 73.3    

TLR 0.35 75.1 0.30   

TQR 0.35 75.1 0.30 0.32  

WLR - 𝑘𝑦, 𝑘𝑧 0.30 77.2   38.5 

WLR - 𝑘𝜃𝑥 0.3 74.03   47.8 

TQWLR 0.35 75.1 0.30 0.32 50.0 

 

Table 6.3: Support stiffness in undeformed configuration and stress results. (The WLR-

design is the design that is optimized for rotational stiffness around the 𝑥-axis.) 

 C R TLR WLR 

𝑘𝜃𝑥 – VCW-beam (kNm/rad) 20.5 46.8 54.1 41.5 

𝑘𝜃𝑥 – ANSYS (kNm/rad) 20.8 47.7 54.9 45.8 

𝑘𝜃𝑥 – error w.r.t. ANSYS (%) 1.3 1.8 1.6 9.3 

Stress ANSYS (MPa) 647 698 707 680 

 

 

The support stiffness with respect to the reinforced design (R-design) can be increased by a 

factor of 1.3 by allowing a varying thickness of the slender part of the leafsprings. Using a 

quadratic thickness variation only marginally increases the support stiffness with respect to 

a linear thickness variation. 

The WLR-design shows that reducing the width at the reinforced part results in a higher 

support stiffness. This is because this results in more deformation near the reinforced part, 

reducing the stress near the base and the guided body, allowing additional thickness to in-

crease the overall stiffness. In the TQWLR-design the width becomes maximal and the result 

is the same as the TQR-design. 

 

The results are validated in ANSYS, where the leafsprings were modelled by about 15,000 

solid-shell elements (SOLSH190) in total, with three layers of elements in the thickness di-

rection. Table 6.3 shows the stiffness in the rotational stiffness around the x-axis computed 

in the undeformed configuration with the beam elements and with ANSYS. The results show 

a significant error of the stiffness only for the case where the width is varied; this error is 

about 10%. 
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Figure 6.10: Stress distribution of the optimized support stiffness in the y-direction for 

the R-design (left) and the TQR-design (right). 

Figure 6.10 shows the stress distribution for the R-design and the TQR-design, indicating 

that the stress distribution over the length of the beam becomes almost constant for the TQR-

design. Table 6.3 shows the maximum stress computed by ANSYS, which is up to 20% 

higher than the maximum stress of 600 MPa computed by the beam elements. This is mainly 

because the beam element does not account for the anticlastic curvature effects, as can be 

observed in Figure 6.10: the TQR-design in this figure shows that the stress is about 600 MPa 

over the whole area of the leafsprings, except from the sides. 

6.3.3 Optimization of a spherical joint with folded leafsprings 
Naves et al. [132] proposed multiple configurations for a spherical flexure joint with folded 

leafsprings. This section shows the extent to which variation of the cross-section of leaf-

springs can improve the performance for two of these configurations, shown in Figure 6.11: 

 

FL: The single spherical joint, consisting of three folded leafsprings. These folded 

leafsprings are placed in such a way that lines through the folds coincide in the 

centre of the joint. In this way, the deformation of the leafsprings allows a large 

rotation of the end-effector around all three axis through this centre point. This 

is the most simple design constraining three translations and having three ro-

tational degrees of freedom shown in [132]. 

SFL: The serial stacked spherical joint, consisting of two FL-joints. The six folded 

leafsprings are placed in such a way that lines through the folds coincide in the 

centre of the joint. This is the best performing design in [132]. 

 

The support stiffness in the z-direction is optimized, when considering a range of motion of 

30∘ tip-tilt angle (any rotation angle perpendicular to the z-axis). The maximum allowable 

stress in the material due to deformation is 600 MPa, the elasticity of the material is 200 GPa 

and the Poisson ratio is 0.3. The build space for the mechanism is limited to a cylinder aligned 

with the z-axis with a radius of 75 mm. The algorithm presented in [131] was used to detect 

collision of the leafsprings. At least five design parameters were used, which are shown in 

Figure 6.11 (the length 𝐿 is computed based on the build space and the other design parame-

ters). 

 

  



122 6.  Beam elements with varying cross-section 

 

 

       
Figure 6.11: Spherical joint, ‘E’ represents the connections with the end-effector, ‘I’ the 

connections with the rigid intermediate stage. a) Leafsprings FL-joint. b) Leafsprings 

SFL-joint. c) SFL-joint with frame-parts, d) SFL-joint – exploded view. 

Table 6.4: Design parameters spherical joint, optimized with VCW-beams. 

 Case Design parameters 

Con-
fig. 

De-
sign  

𝑳 
(mm) 

𝒓 
(mm) 

𝝍 
(°) 

𝜽𝟏 
(°) 

𝒘𝟏 
(mm) 

𝒘𝟐 
(mm) 

𝒘𝟑 
(mm) 

𝒕𝟏 
(mm) 

𝒕𝟐 
(mm) 

𝒕𝟑 
(mm) 

FL 

C 72.3 27.3 83 45 23.5   0.30   

W 67.7 26.0 76 40 39.9 21.5 25.1 0.42   

T 70.3 30.7 82 45 29.8   0.62 0.42 0.47 

WT 70.9 30.6 83 45 27.5 30.8 29.4 0.66 0.42 0.48 

SFL 

C 69.2 29.4 97 39 28.1   0.56   

W 62.8 30.7 87 36 50.2 25.2 28.3 0.77   

T 66.2 35.3 92 39 32.9   1.20 0.76 0.81 

WT 65.3 35.1 92 39 36.5 32.4 32.9 1.11 0.75 0.80 

 

 

Four different designs for each of the two mentioned configurations are considered: 

 

C: Leafsprings with constant cross-section (so exactly the same design as in 

[132]). 

W: The thickness of the leafsprings is kept constant, while the width is varied 

quadratically. The width is determined by the width at the base (𝑤1), the width 

at the centre (𝑤2) and the width at the fold (𝑤3). 

T:  A constant width and a quadratically varying thickness, which is determined 

by 𝑡1, 𝑡2 and 𝑡3, defined at the same positions as in the W-design. 

WT:  The width and the thickness are both varied quadratically. 
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The flexure joints are optimized with VC-beams and with VCW-beams, with four elements 

per side of each folded leafspring. Table 6.4 shows the resulting dimensions for the latter 

case. Figure 6.12 shows the optimized support stiffnesses. The results of the VCW-beam are 

up to a factor of five worse than the results of the VC-beam. This is mainly because the extra 

stress due to the constrained warping. This indicates the importance of the modelling of warp-

ing in beam elements that are used to model leafsprings. 

The results of the VCW-beam show that the support stiffness of the SFL-joint can be 

increased by a factor of 4.0. The reason for this large factor is that the extra stress due to the 

constrained warping is decreased by making the leafsprings thicker around the clamped in-

terfaces. The T-design in this case results in about 98% of the support stiffness of the WT-

design. This indicates that large part of the improvement can already be achieved by only 

varying one dimension, which may simplify manufacturing. 

Figure 6.13 shows the resulting support stiffness over the full range of motion. It indicates 

that the error of the VCW-beam with respect to the finite element simulation is less than 10%. 

 

 

Figure 6.12: Optimized support stiffness in 𝑧-direction of the spherical joint in deformed 

configuration. 

 

Figure 6.13: Spherical joint, vertical support stiffness, 𝑘𝑧, of the SFL-joint. The design 

that was obtained using the VC-beams is evaluated, the stiffness is obtained using VCW-

beam elements. The tip-tilt rotation axis is initial the 𝑥-axis and this axis rotates by angle 

𝜙 around the z-axis (so for 𝜙 = 90∘ it rotates around the 𝑦-axis). 
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Figure 6.14: Stiffness and accuracy of the parallel flexure guidance (PFG) and the serial 

stacked folded leafspring based spherical flexure joint (SFL) using the first or second 

order deformation functions.  

6.3.4 Evaluation of second order terms 
The second order terms derived in Section 6.2.5 increase the accuracy, but including these 

terms increases the computation time, especially the time to obtain the generalized defor-

mations as a function of the absolute nodal coordinates, i.e. �̂�(𝒙). Figure 6.14 shows results 

for one design of the parallel flexure guidance and one design of the folded leafspring based 

spherical joint, both modelled using VCW-beams. Both cases show a significant improve-

ment of the accuracy of the support stiffness. The foreshortening effect is the only relevant 

second order term for the parallel flexure guidance. The torsion-bending coupling is the most 

significant term for the spherical joint. The simulation time increases by about 30%, but the 

increase in accuracy is generally more than 30%. This indicates that it is beneficial to include 

the second order terms. 

6.4 Conclusions 
Two beam elements with varying cross-section have been formulated in the generalized strain 

formulation. The formulation is based on the Timoshenko beam equations in which the var-

iation of the stiffness coefficients is taken into account. In one of the elements, the effect of 

warping due to torsion has been included by exploiting Vlasov’s warping theory. The beam 

elements are applied to model leafsprings, which have a thin rectangular cross-section. If the 

variation of the cross-section is small compared to the length (which is always the case for 

thickness variations), the errors in stiffness are typically below 10% and errors in stress below 

20%. 

The new beam elements are used to optimize the support stiffness of several flexure joints 

that should allow a certain large motion without exceeding stress limits. The maximum stress 

computed by the VC-beam (in which the constrained torsional warping is not modelled), is 

typically much lower than the stress computed by the VCW-beam. Therefore the optimized 

support stiffness of a spherical flexure joint was about a factor of five lower by modelling 

the constrained warping. This highlights the importance of modelling constrained warping. 

The results indicate that the support stiffness of a parallel flexure guidance can be in-

creased up to a factor of 1.3 by allowing a variation of the width and the thickness of its 

leafsprings. The support stiffness of a spherical joint can be increased by a factor of about 

4.0. This large improvement factor is because the warping causes extra stresses at the clamp 
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which can be reduced by locally increasing the cross-section near the clamp. In all the cases 

that were modelled with the VCW-beam, more than 98% of the support stiffness could al-

ready be obtained by only varying the thickness of the leaf-springs, keeping the width con-

stant. 

6.A Second order term – torsion-bending coupling 
This section derives the second order term in the deformation functions that couples torsion 

and bending modes. This effect occurs because the local rotation matrix is not a linear func-

tion of the local rotations. The effect has been derived in [102, 105] for beams with a constant 

cross-section. The second order expression of the rotation matrix is (see eq. 45 of [102]): 

 

𝑹(𝜉) = [

1 − 𝜙𝑦
2 2⁄ − 𝜙𝑧

2 2⁄ −𝜙𝑧 + 𝜙𝑥𝜙𝑦 𝜙𝑦 + 𝜙𝑥𝜙𝑧

𝜙𝑧 1 − 𝜙𝑥
2 2⁄ − 𝜙𝑧

2 2⁄ −𝜙𝑥 + 𝜙𝑦𝜙𝑧

−𝜙𝑦 𝜙𝑥 1 − 𝜙𝑥
2 2⁄ − 𝜙𝑦

2 2⁄

]. (6.55) 

The relation between the second order generalized deformations and the global coordinates, 

�̂� = �̂�(𝒙) is based on the global rotation matrices of both nodes. This relation can also be 

expressed in terms of the local coordinates using eq. (6.55). The second order expression is 

(see eq. 54 of [102]): 

 
휀2 = 𝐿0𝜙𝑥

𝑞
+

1

2𝐿0
(휀3 − 휀4)(휀5 + 휀6), 

휀3 = −𝐿0𝜙𝑦
𝑝
, 

휀4 = 𝐿0𝜙𝑦
𝑞
+
1

𝐿0
휀2휀6, 

휀5 = −𝐿0𝜙𝑧
𝑝
, 

휀6 = 𝐿0𝜙𝑧
𝑞
−
1

𝐿0
휀2휀4. 

(6.56) 

The local displacements can be expressed in terms of the local rotations of the nodes using 

the mode shapes defined in Sections 6.2.3 and 6.2.4: 

 𝑣(𝜉)    = −𝑁3(𝜉) 𝐿0𝜙𝑦
𝑝
+ 𝑁4(𝜉) 𝐿0𝜙𝑦

𝑞
, 

𝑤(𝜉)   = −𝑁5(𝜉) 𝐿0𝜙𝑧
𝑝
+𝑁6(𝜉) 𝐿0𝜙𝑧

𝑞
, 

𝜙𝑥(𝜉) = 𝑁2(𝜉)𝜙𝑥
𝑞
+ 𝑁7(𝜉) 휀7 𝐿0⁄ + 𝑁8(𝜉) 휀8 𝐿0⁄ , 

𝜙𝑦(𝜉) = −𝑁31(𝜉)𝜙𝑦
𝑝
+ 𝑁41(𝜉)𝜙𝑦

𝑞
, 

𝜙𝑧(𝜉) = −𝑁51(𝜉)𝜙𝑧
𝑝
+ 𝑁61(𝜉)𝜙𝑧

𝑞
. 

(6.57) 

A second order expression for the torsional curvature can be obtained based on the second 

order rotation matrix in eq. (6.55). The second order definition of the second generalized 

deformation is the integration of this curvature over the beam (see also eqs. 47 and 63 of 

[102]): 

 
휀2̂ = 𝐿0∫ 𝜅𝑥(𝑠) 𝑑𝑠

𝐿0

0

= 𝐿0∫ (𝜙𝑥
′ (𝜉) − 𝜙𝑦(𝜉)𝜙𝑧

′(𝜉)) 𝑑𝜉
1

0

. (6.58) 
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By substituting the local displacements of eq. (6.57) and using eq. (6.56) to express this in 

terms of the old generalized deformations we obtain: 

 휀2̂ = 휀2 + 

1

𝐿0
((𝐻35

(2) −
1

2
) 휀3휀5 + (𝐻36

(2) −
1

2
) 휀3휀6 + (𝐻45

(2) +
1

2
) 휀4휀5 + (𝐻46

(2) +
1

2
) 휀4휀6), 

(6.59) 

with: 

 
𝐻𝑖𝑘
(2) ≡ ∫ 𝑁𝑖

′(𝜉) 𝑁𝑘
′′(𝜉)𝑑𝜉

1

0

. (6.60) 

The second order expressions for the bending modes can be obtained similarly (see also eq. 

64 of [102]): 

 

휀3̂ = 휀3 +
1

𝐿0
∑(𝐻𝑖5

(3)휀𝑖휀5 +𝐻𝑖6
(3)휀𝑖휀6)

2,7,8

𝑖

, 

휀4̂ = 휀4 +
1

𝐿0
∑(𝐻𝑖5

(4)휀𝑖휀5 +𝐻𝑖6
(4)휀𝑖휀6)

2,7,8

𝑖

− 휀2휀6, 

휀5̂ = 휀5 +
1

𝐿0
∑(𝐻𝑖3

(5)휀𝑖휀3 +𝐻𝑖4
(5)휀𝑖휀4)

2,7,8

𝑖

, 

휀6̂ = 휀6 +
1

𝐿0
∑(𝐻𝑖3

(6)휀𝑖휀3 +𝐻𝑖4
(6)휀𝑖휀4)

2,7,8

𝑖

+ 휀2휀4, 

(6.61) 

with: 

 
𝐻𝑖𝑘
(𝑠) ≡ ∫ (1 − 𝜉) 𝑁𝑖(𝜉) 𝑁𝑘

′′(𝜉)𝑑𝜉
1

0

, 𝑠 = 3,5, 

𝐻𝑖𝑘
(𝑠) ≡ ∫ 𝜉 𝑁𝑖(𝜉) 𝑁𝑘

′′(𝜉)𝑑𝜉
1

0

, 𝑠 = 4,6. 

(6.62) 

This defines the torsion-bending coupling for VCW-beams. The result for the VC-beam is 

very similar. The only difference is that the terms that depend on 휀7 or 휀8 in eq. (6.62) do not 

exist, so instead of the summation term we can use 𝑖 = 2. 

6.B Stress computation 
This appendix explains how the maximum Von Mises stress has been computed in the results 

of Sections 6.3.2 and 6.3.3. The default method in classical beam theory is used. After com-

puting the static deformed equilibrium configuration, the deformation and the reaction forces 

at both nodes of each beam element are known, see Figure 6.15. From this, the internal forces 

and internal moments at a cross section are computed based on equilibrium considerations. 
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Figure 6.15: Deformed beam element. The internal forces and moments at the cross sec-

tion can be computed based on the reaction forces at both nodes using equilibrium con-

siderations. 

For the VCW-beam, the bimoment is linearly interpolated between its values at both nodes. 

The Saint-Venant-torsion in the VCW-beam is derived based on the local torsional rotation, 

which is obtained based on the mode-shapes: 

 
𝑇𝑥(𝑥) = 𝐺𝐼𝑡

𝑑𝜙𝑥
𝑑𝑥

. (6.63) 

For the VC-beam we use 𝑇𝑥 = 𝑀𝑥 and 𝐵 = 0. The axial stress is computed by: 

 
𝜎𝑥𝑥(𝑥, 𝑦, 𝑧) =

𝐹𝑥
𝐴
+
𝑀𝑦𝑧

𝐼𝑦
+
𝑀𝑧𝑦

𝐼𝑧
+
𝐵 𝜔(𝑦, 𝑧)

𝐼𝜔
. (6.64) 

The shear stress in the 𝑥𝑧-direction is caused by the shear force in 𝑧-direction and Saint-

Venant torsion. The stress due to the torsion is obtained using Prandtl’s membrane analogy  

[181], resulting in an infinite series of which only the first terms have to be computed for 

reasonable accuracy: 

 

𝜏𝑥𝑧 =
𝐹𝑧
𝐼𝑦
(
𝑤2

8
−
𝑧2

2
) −

8𝑇𝑥𝑤

𝜋2𝐼𝑡
∑

(−1)
𝑛−1
2

𝑛2
 
sinh (

𝑛𝜋𝑦
𝑤
)

cosh (
𝑛𝜋𝑡
2𝑤

)
 cos (

𝑛𝜋𝑧

𝑤
)

∞

𝑛=1,3,5,…

. (6.65) 

The shear stress in the 𝑥𝑦-direction is caused by the shear force in 𝑦-direction and torsion: 

 

𝜏𝑥𝑦 =
𝐹𝑦

𝐼𝑧
(
𝑡2

8
−
𝑦2

2
) +

8𝑇𝑥𝑤

𝜋2𝐼𝑡
∑

(−1)
𝑛−1
2

𝑛2
(1 −

cosh (
𝑛𝜋𝑦
𝑤
)

cosh (
𝑛𝜋𝑡
2𝑤

)
) sin (

𝑛𝜋𝑧

𝑤
)

∞

𝑛=1,3,5,…

 (6.66) 

The other stress-components are zero, so the Von Mises stress can be obtained by: 

 
𝜎𝑀𝑖𝑠𝑒𝑠 = √𝜎𝑥𝑥

2 + 3𝜏𝑥𝑦
2 + 3𝜏𝑥𝑧

2 . (6.67) 
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CHAPTER 7  
7 A multi-node superelement in the generalized strain formulation 

Abstract 
Design and optimization of flexure mechanisms and real time high bandwidth con-

trol of flexure based mechanisms require efficient but accurate models. The flexures 

can be modelled using sophisticated beam elements that are implemented in the gen-

eralized strain formulation. However, complex shaped frame parts of the flexure 

mechanisms could not be modelled in this formulation. The generalized strain for-

mulation for flexible multibody analysis defines the configuration of elements using 

a combination of absolute nodal coordinates and deformation modes. 

This chapter defines a multi-node superelement in this formulation, i.e. an ele-

ment of which the properties are derived from a reduced linear finite element model. 

This is accomplished by defining a local element frame of which the coordinates 

depend on the absolute nodal coordinates. The linear elastic deformation is defined 

with respect to this frame, where rotational displacements are defined using the off-

diagonal terms of local rotation matrices. The element frame can be defined in mul-

tiple ways, the most accurate results are obtained if the resulting elastic rotations are 

as small as possible. The inertia is defined in two different ways: the so-called ‘full 

approach’ gives more accurate results than the so-called ‘corotational approach’ but 

requires a special term that is not available from standard finite element models. 

Simulations show that (flexure based) mechanisms can be modelled accurately using 

smart combinations of superelements and beam elements 

 

7.1 Introduction 
Design and optimization of flexure mechanisms and real time high bandwidth control of flex-

ure based mechanisms require efficient but accurate models. The flexures can be modelled 

using beam elements [40, 132, 198]. Sophisticated beam elements [105, 140] for the model-

ling of flexures have been derived and implemented in the generalized strain formulation 

[25]. However, the frame parts of flexure mechanisms can have complex shapes (see for 

example the spherical joint [132] in Figure 7.11) and can therefore not be modelled with 

beam elements. 
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Efficient modelling of arbitrarily shaped parts requires reduced order models. Reduced order 

models are finite element models of which the (linear) deformation is reduced to a few gen-

eralized coordinates [59, 167] (also referred to as component mode synthesis [63]). By using 

these models arbitrarily shaped bodies can be defined by a single element with few degrees 

of freedom. In several formulations such an arbitrary shaped element is called a superelement 

[33, 34, 48, 49]. 

A two-node superelement is derived in the generalized strain formulation  [33, 34]. How-

ever, many frame parts are connected to more than two other components such that these 

frame parts cannot be modelled using the two-node superelement. This chapter introduces a 

superelement with an arbitrarily amount of interfaces, which will be referred to as General-

ized-strain Multi-node Superelement (GMS). 

 

Figure 7.1 gives an overview of the geometrically nonlinear multibody formulations and non-

linear finite element formulations in order to show the relation of the GMS with respect to 

existing formulations, as detailed below. All formulations define the configuration with re-

spect to a global reference frame (also: inertial frame). The formulations are categorized 

based on the type of coordinates that are used as degrees of freedom. In this chapter the term 

‘degrees of freedom’ refers to the unknown coordinates that appear in the equation of motion. 

Other overviews of the different formulations can be found in [156, 168, 197, 209]. In con-

trast to these papers, the current overview does not distinguish between multibody analysis 

(i.e. modelling physical components as a whole) and finite element analysis (i.e. partioning 

physical components in multiple standard elements) as most formulations can be used for 

both analysis types. The terminology in the literature about these two analysis types is slightly 

different from each other, in this chapter the following terms are used: ‘element’ is used for 

modelling parts, ‘node’ for the connections between the elements and ‘element frame’ is the 

local frame that defines the position and orientation of an element. ‘Absolute coordinates’ 

are coordinates with respect to the global frame, where ‘local coordinates’ are coordinates 

defined with respect to the element frame. 

 

Two categories of the formulations can be distinguished based on the degrees of freedom that 

are used to define the large motion of an element (the two columns in Figure 7.1). One cate-

gory uses the absolute nodal coordinates  of the elements, i.e. the position (and orientation) 

of the nodes with respect to the global frame. The formulations in the other category use an 

element frame for each element to define its large motion. In these formulations the element 

frame is typically referred to as floating frame and the formulations are referred to as the 

floating frame formulation, see e.g. [170]. An advantage of using absolute nodal coordinates 

is that constraints can be easily applied: elements can be connected to each other by sharing 

nodes and the displacement of some nodes can be prescribed. In other words, applying con-

straints eliminates degrees of freedom. In the floating frame formulations, the constraint 

equations are generally nonlinear relations between the coordinates of the element frames 

and the deformation coordinates of the elements. These equations are generally solved using 

the Lagrange multiplier method, increasing the total number of unknowns in the equation of 

motion. An advantage of the floating frame formulation is that small elastic deformation of 

the element can be described linearly, relative to the element frame. This facilitates the use 

of arbitrarily shaped reduced order models in the formulation, see e.g. [43, 74, 210]. In [190], 

a slightly modified floating frame formulation was proposed, based on the model order re-

duction described in [144], which results in a constant mass matrix at the expense of addi-

tional deformation modes. The use of reduced order models is also possible for all formula-

tions that use an element frame, as indicated in Figure 7.1. 
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Figure 7.1: Overview of formulations for finite element and multibody analysis, catego-

rized based on the coordinates that are used as degrees of freedom. 

Because of this potential to model arbitrary shaped bodies, the floating frame formulation is 

most often used in multibody simulations if the displacements due to elastic deformation of 

the physical components are small. The absolute nodal coordinate formulations are the pre-

ferred method for (nonlinear) finite element simulations, the finite element models generally 

contain many (standard) elements making it important to keep the number of degrees of free-

dom as low as possible. 

 

The second division of the categories in Figure 7.1 defines whether an element based on 

absolute nodal coordinates uses an element frame (often called corotational frame in these 

formulations) to describe the rigid rotation and to define the elastic deformation relative to 

this frame. In contrast to the floating frame formulation, the coordinates of these frames are 

not necessarily degrees of freedom (i.e. they do not appear as unknowns in the equation of 

motion) but its coordinates are implicitly defined as function of the degrees of freedom. The 

method that applies this approach is the corotational formulation, see e.g. [60, 70, 127]. Be-

cause the elastic deformation can be described linearly to this frame, reduced order models 
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can be used in the corotational formulation, see e.g. [48, 69, 75]. The inertial frame formu-

lation, see e.g. [62] does not use element frames to distinguishes the rigid motion from the 

flexible motion. Therefore the nonlinear Green-Lagrange strain definition is used, which is 

valid under large rigid motions. An ‘absolute nodal coordinate formulation’ that is developed 

by Shabana [169] is a formulation in terms of absolute nodal coordinates that defines the 

orientations of the nodes using slopes. In this formulation corotational elements [169, 171] 

as well as inertial frame elements [142] can be developed. 

 

The two rows in Figure 7.1 define whether the degrees of freedom contain generalized coor-

dinates related to deformation modes in order to define the stiffness. In case of the floating 

frame formulation, the inclusion of these deformation modes is the only way to include flex-

ibility of the elements. In the absolute nodal coordinate formulations, the deformation of el-

ements is already implicitly defined by the displacements of the nodes. 

 

The generalized strain formulation [25-27] (also referred to as natural modes approach [7-

9]) defines the deformation of an element using deformation modes. The generalized coordi-

nates associated to these modes are expressed as analytical functions of the absolute nodal 

coordinates. These generalized coordinates are called ‘generalized deformations’ (in other 

literature also referred to as ‘generalized strains’ although they are related to displacements 

instead of strain). The generalized deformations remain constant under rigid body motion. 

Using proper definitions, the deformation modes can be given a physical meaning like the 

elongation of a beam element. The constitutive law is expressed in terms of the deformation 

modes. Because the generalized deformations are independent of rigid motions, the resulting 

constitutive equations are linear or relatively simple nonlinear equations, in contrast to the 

inertial frame formulation. Rigid elements can be modelled by applying constraints on all the 

deformation modes. Also part of the deformation modes can be constrained to keep only the 

most important flexibility. This is an advantage compared to the inertial frame and corota-

tional frame formulations which only allow the modelling of flexible elements. The inertia 

forces of the element are defined using the absolute nodal coordinates. 

 

A challenge in the generalized strain formulation is the definition of suitable deformation 

modes. For many default elements deformation modes are defined, like trusses, beams [101, 

105], hinges [101] and wheels [162]. Also a two-node superelement [33, 34] was formulated, 

based on the deformation modes of beam elements. However a superelement with more than 

two interface nodes has not been derived. Therefore arbitrarily shaped bodies that are con-

nected to more than two other parts cannot be easily modelled in the generalized strain for-

mulation. 

 

This chapter presents a multi-node superelement by introducing an implicit element frame, 

using the relations derived for the corotational superelement in [69]. The coordinates of the 

element frame are not part of the degrees of freedom, but the coordinates can be obtained 

from the degrees of freedom with a Newton-Raphson iteration. Deformation modes are de-

fined using the local coordinates of the nodes to make the superelement applicable in the 

generalized strain formulation. Section 7.2 summarizes the generalized strain formulation 

and introduces the notation used throughout the chapter. Section 7.3 formulates the superel-

ement. An expression for the deformation modes can be chosen by the user, Section 7.4 

shows three general ways to define these modes. The superelement is validated with exam-

ples in section 7.5. 
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Figure 7.2: Generalized strain formulation of a two-dimensional beam element, 𝐿0 is the 

undeformed length, 휀1 defines the elongation and 휀2, 휀3 define the bending. 

7.2 Summary of the generalized strain formulation 
This section presents the generalized strain formulation, using the two dimensional beam 

element in Figure 7.2 as an example. Detailed derivations for this specific element will not 

be given as the purpose of this section is only to give an impression of the generalized strain 

formulation in general. The details for many element types can be found in the literature cited 

in the introduction. 

7.2.1 Notation for coordinates 
The vector 𝒓𝑝

𝑂,𝑂
 defines position of interface node 𝑝 (lower index) with respect to the global 

frame 𝑂 (second upper index) expressed in the orientation of global frame 𝑂 (first upper 

index). The global orientation of 𝑝 is denoted by 𝜙𝑝
𝑂. In the two dimensional case this is the 

in-plane rotation. 𝒒𝑝
𝑂,𝑂

 denotes all the absolute coordinates of node 𝑝: 

 
𝒒𝑝
𝑂,𝑂 = {

𝒓𝑝
𝑂,𝑂

𝜙𝑝
𝑂
}. (7.1) 

The lower index ‘𝐴𝑙𝑙’ will be used to define all coordinates that define the configuration of 

an element. These coordinates are also denoted by 𝒙: 

 
𝒙 = 𝒒𝐴𝑙𝑙

𝑂,𝑂 = {
𝒒𝑝
𝑂,𝑂

𝒒𝑞
𝑂,𝑂}. (7.2) 

In the three-dimensional case 𝒙 and 𝒒𝐴𝑙𝑙
𝑂,𝑂

 have a slightly different meaning: in 𝒒𝐴𝑙𝑙
𝑂,𝑂

 the ori-

entations are expressed as the finite rotations around the 𝑥, 𝑦 and 𝑧-axis where the orienta-

tions in 𝒙 are expressed using Euler parameters [37]. Note that due to the non-vectorial nature 

of rotations, the vector 𝒒𝐴𝑙𝑙
𝑂,𝑂

 does not exist in three dimensions. However, only the virtual 

change of this vector is used in the derivations. 

7.2.2 Stiffness in terms of deformation modes 
The generalized strain formulation defines the deformation of the element using deformation 

modes. The generalized coordinates associated to these deformation modes are called gener-

alized deformations and denoted by 𝜺. In case of the two-dimensional beam, three defor-

mation modes can be defined of which one defines the elongation and two define the bending 

(see Figure 7.2). The generalized deformations are explicit functions of the nodal coordinates: 
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𝜺 = {

휀1
휀2
휀3
} = 𝓓(𝒙). (7.3) 

The generalized force associated to the deformation modes is denoted by 𝝈 and is related to 

the generalized deformations by the constitutive law. If this relation is linear, it can be written 

as: 

 𝝈 = 𝑺𝜺, (7.4) 

where 𝑺 is a constant stiffness matrix. 

7.2.3 Inertia 
The inertia is modelled based on the coordinates 𝒙, such that we can write for the resulting 

forces 𝒇 on all nodes: 

 𝒇 = 𝑴(𝒙) �̈� + 𝒉(𝒙, �̇�), (7.5) 

where 𝑴(𝒙) is the mass matrix and 𝒉(𝒙, �̇�) contains the convective inertia terms. The dot 

and double dots on 𝒙 define the first and second derivative to time respectively. 

7.2.4 Equation of motion 
Using the principle of virtual work we obtain: 

 𝛿𝒙𝑇(𝑴�̈� + 𝒉) + 𝛿𝜺𝑇𝑺𝜺 = 𝛿𝒙𝑇𝒇𝑎, 𝜺 = 𝓓(𝒙)      ∀      𝛿𝒙, (7.6) 

where 𝒇𝑎 is the force that is applied on the nodes, or the reaction force in case of prescribed 

coordinates, and (… )𝑇 defines the transpose. 𝛿 denotes the virtual change of a variable. This 

is the equation of motion of one element in terms of the absolute nodal coordinates in com-

bination with the generalized deformations. One way to solve this is by substituting 𝛿𝜺 =
𝓓,𝒙𝛿𝒙, in which 𝓓,𝒙 defines the derivatives of the generalized deformations which can be 

obtained analytically for each element: 

 𝑴�̈� + 𝒉 +𝓓,𝒙
𝑇𝑺𝓓(𝒙) = 𝒇𝑎. (7.7) 

In this case the generalized deformations are only used implicitly. The equation of motion 

can also be defined for a set of degrees of freedom that include (part of) the generalized 

deformations. In this way (part of) the generalized deformations of the element can be con-

strained which allows the modelling of (partly) rigid bodies. This is detailed in [100, 104] 

and appendix A of [162]. 

7.3 Derivation of the superelement 
This section derives the GMS. The configuration of the GMS is defined by the absolute co-

ordinates of the interface nodes and by generalized coordinates of any internal modes. To-

gether these are the configuration coordinates. An element frame 𝑗 defines the rigid body 

motion. The coordinates of the element frame are not part of the configuration coordinates. 

They do not appear in the equation of motion, but they can be determined for a given set of 

absolute configuration coordinates. Once the position of the element frame is computed, the 



7.3.  Derivation of the superelement 135 

  

 

other element-dependent functions and matrices can be derived, e.g. the generalized defor-

mations (which are a function of the local nodal coordinates) and the mass matrix. 

 

Table 7.1 shows an overview of the steps in derivation of the GMS in this section. Section 

7.3.1 relates the local configuration coordinates (i.e. the coordinates with respect to the ele-

ment frame) to the absolute configuration coordinates and the position of the element-frame. 

Section 7.3.2 defines the displacements in terms of these local coordinates. In section 7.3.3 

these displacements are used to define the generalized deformations and the position of the 

element frame. Sections 7.3.4 and 7.3.5 present some relations between the virtual change of 

the different coordinate types. The stiffness and inertia terms are derived in sections 7.3.6 

and 7.3.7 respectively. 

Table 7.1: Overview of the derivation of the Generalized-strain Multi-node Superelement. 

Section Description Resulting relations 

7.3.1 Define the virtual change of the local 

configuration coordinates in terms of the 

virtual change of absolute configuration 

coordinates 

𝛿𝒒𝐴𝑙𝑙
𝑗,𝑗
= 𝛿𝒒𝐴𝑙𝑙

𝑗,𝑗
(𝛿𝒒𝑗

𝑂,𝑂, 𝛿𝒒𝐴𝑙𝑙
𝑂,𝑂) 

7.3.2 Define the displacements as function of 

the local configuration coordinates 

  𝒑𝐴𝑙𝑙
𝑗,𝑗
= 𝒑𝐴𝑙𝑙

𝑗,𝑗
(𝒒𝐴𝑙𝑙

𝑗,𝑗
) 

𝛿𝒑𝐴𝑙𝑙
𝑗
= [𝑯𝑗]𝛿𝒒𝐴𝑙𝑙

𝑗,𝑗
 

7.3.3 Define relations for the generalized de-

formations, combined with six con-

straints on the displacements that define 

the position of the element frame. 

[
[𝑽𝑟𝑖𝑔

𝑗
]

[𝑽𝑓𝑙𝑒𝑥
𝑗

]
] = [[𝚽𝑟𝑖𝑔0

𝑗
] [𝚽𝑓𝑙𝑒𝑥

𝑗
]]
−1

 

 

𝜺 = [𝑽𝑓𝑙𝑒𝑥
𝑗

]𝒑𝐴𝑙𝑙
𝑗

 

𝟎 =  [𝑽𝑟𝑖𝑔
𝑗
]𝒑𝐴𝑙𝑙

𝑗
 

 

𝒒𝑗
𝑂,𝑂 = 𝒒𝑗

𝑂,𝑂(𝒒𝐴𝑙𝑙
𝑂,𝑂) 

7.3.4 Derive a relation between the virtual 

change of the element frame and local 

configuration coordinates in terms of ab-

solute configuration coordinates 

𝛿𝒒𝑗
𝑂,𝑂 = [𝑹𝑗

𝑂][𝒁𝑗][�̅�𝑂
𝑗
]𝛿𝒒𝐴𝑙𝑙

𝑂,𝑂
 

𝛿𝒒𝐴𝑙𝑙
𝑂,𝑂 = [𝑻𝑗][�̅�𝑂

𝑗
]𝛿𝒒𝐴𝑙𝑙

𝑂,𝑂
 

7.3.5 Derive a relation between the virtual 

change of the generalized deformations 

and the absolute  configuration coordi-

nates 

𝛿𝜺 = 𝓓,𝒙𝛿𝒙 

7.3.6 Derive the stiffness matrix 𝑺 = [𝚽𝑓𝑙𝑒𝑥
𝑗

]
𝑇
[𝑲𝐴𝑙𝑙

𝑗
][𝚽𝑓𝑙𝑒𝑥

𝑗
] 

7.3.7 Derive the inertia 𝑴 = [𝑮𝑗]𝑇[�̅�𝑗
𝑂][𝑴𝐴𝑙𝑙

𝑗
][�̅�𝑂

𝑗
][𝑮𝑗] 

𝒉 = 𝒉(𝒒𝐴𝑙𝑙
𝑂,𝑂, �̇�𝐴𝑙𝑙

𝑂,𝑂) 
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Figure 7.3: Absolute positions and orientations of the deformed and undeformed element. 

The position of the undeformed element is defined by element frame 𝑗. 

7.3.1 Local configuration coordinates in terms of absolute configuration coor-
dinates 

Figure 7.3 shows a GMS with three interface nodes 𝑘, 𝑙 and 𝑚. The vector 𝒓𝑘
𝑂,𝑂

 defines the 

position of interface node 𝑘 with respect to the global frame 𝑂. The rotation matrix 𝑹𝑘
𝑂  de-

fines the orientation of node 𝑘 with respect to the global frame. The virtual change of a rota-

tion matrix can be expressed as: 

 𝛿𝑹𝑘
𝑂 = 𝛿�̃�𝑘

𝑂,𝑂𝑹𝑘
𝑂 , (7.8) 

where 𝛿𝜽𝑗
𝑂,𝑂

 is the virtual change of the orientation of frame 𝑘 and the tilde defines the skew-

symmetric matrix: 

 

𝒂 = {

𝑎1
𝑎2
𝑎3
}    ⇔    �̃� = [

0 −𝑎3 𝑎2
𝑎3 0 −𝑎1
−𝑎2 𝑎1 0

]. (7.9) 

The virtual change of the absolute position and orientation of node 𝑘 can be expressed in 

terms of the local coordinates and the change of the element frame. This is derived in Section 

7.A.1. Combining eqs. (7.63) and (7.64) gives: 

 𝛿𝒒𝑘
𝑂,𝑂 = [𝑹𝑗

𝑂][−�̃�𝑘
𝑗,𝑗
][𝑹𝑂

𝑗
] 𝛿𝒒𝑗

𝑂,𝑂 + [𝑹𝑗
𝑂] 𝛿𝒒𝑘

𝑗,𝑗
, (7.10) 

with the definitions: 

 
𝛿𝒒𝑘

𝑂,𝑂 ≡ {
𝛿𝒓𝑘

𝑂,𝑂

𝛿𝜽𝑘
𝑂,𝑂} , 𝛿𝒒𝑗

𝑂,𝑂 ≡ {
𝛿𝒓𝑗

𝑂,𝑂

𝛿𝜽𝑗
𝑂,𝑂} , 𝛿𝒒𝑘

𝑗,𝑗
≡ {

𝛿𝒓𝑘
𝑗,𝑗

𝛿𝜽𝑘
𝑗,𝑗
}, 

[𝑹𝑗
𝑂] ≡ [

𝑹𝑗
𝑂 𝟎

𝟎 𝑹𝑗
𝑂],      [−�̃�𝑘

𝑗,𝑗
] ≡ [𝟏 −�̃�𝑘

𝑗,𝑗

𝟎 𝟏
]. 

(7.11) 

Note that terms between square brackets can have a slightly different meaning than the same 

term without bracket in this chapter. Combining eq. (7.10) for all interface nodes gives 
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 𝛿𝒒𝐼𝐹
𝑂,𝑂 = [�̂�𝑗

𝑂][�̂�𝑟𝑖𝑔
𝑗
][𝑹𝑂

𝑗
]𝛿𝒒𝑗

𝑂,𝑂 + [�̂�𝑗
𝑂] 𝛿𝒒𝐼𝐹

𝑗,𝑗
, (7.12) 

where subscript ‘𝐼𝐹’ refers to the coordinates of all interface nodes, and: 

 

𝛿𝒒𝐼𝐹
𝑂,𝑂 ≡ {

𝛿𝒒𝐼𝐹 1
𝑂,𝑂

⋮

𝛿𝒒𝐼𝐹 𝑁
𝑂,𝑂

},    [�̂�𝑗
𝑂] ≡ [

[𝑹𝑗
𝑂]   

 ⋱  
  [𝑹𝑗

𝑂]
],    [�̂�𝑟𝑖𝑔

𝑗
] ≡ [

[−�̃�𝐼𝐹 1
𝑗,𝑗
]

⋮

[−�̃�𝐼𝐹 𝑁
𝑗,𝑗

]

]. (7.13) 

Hereinafter a single upper index, as used in [�̂�𝑟𝑖𝑔
𝑗
] defines the frame in which the variable is 

expressed, unless the index is explicitly specified differently. 

 

In Figure 7.3, the deformation of the most right part of the GMS is typically not affected by 

the positions of the interface nodes. This deformation can be described using internal modes 

with generalized coordinates 𝒒𝑖𝑛𝑡. The generalized coordinates of internal modes are not ex-

pressed in the orientation of a specific frame such that their values in local and absolute co-

ordinates are equal. These coordinates can be added to the vector with all interface coordi-

nates in eq. (7.12): 

 𝛿𝒒𝐴𝑙𝑙
𝑂,𝑂 = [�̅�𝑗

𝑂][𝚽𝑟𝑖𝑔
𝑗
][𝑹𝑂

𝑗
]𝛿𝒒𝑗

𝑂,𝑂 + [�̅�𝑗
𝑂] 𝛿𝒒𝐴𝑙𝑙

𝑗,𝑗
, (7.14) 

where the subscript ‘All’ refers to the configuration coordinates, and: 

 
𝛿𝒒𝐴𝑙𝑙

𝑂,𝑂 = {
𝛿𝒒𝐼𝐹

𝑂,𝑂

𝛿𝒒𝑖𝑛𝑡
} , 𝛿𝒒𝐴𝑙𝑙

𝑗,𝑗
= {

𝛿𝒒𝐼𝐹
𝑗,𝑗

𝛿𝒒𝑖𝑛𝑡
}, 

[�̅�𝑗
𝑂] ≡ [

[�̂�𝑗
𝑂] 𝟎

𝟎 𝟏
] , [𝚽𝑟𝑖𝑔

𝑗
] ≡ [

[�̂�𝑟𝑖𝑔
𝑗
]

𝟎
]. 

(7.15) 

This equation relates the absolute configuration coordinates to their local coordinates through 

the coordinates of the element frame. Eq. (7.14) can also be rewritten to express the local 

coordinates in terms of absolute coordinates: 

 𝛿𝒒𝐴𝑙𝑙
𝑗,𝑗
= [�̅�𝑂

𝑗
]𝛿𝒒𝐴𝑙𝑙

𝑂,𝑂 − [𝚽𝑟𝑖𝑔
𝑗
][𝑹𝑂

𝑗
]𝛿𝒒𝑗

𝑂,𝑂. (7.16) 

7.3.2 Displacements in terms of local configuration coordinates 
The displacement of interface node 𝑘, expressed in the orientation of element frame 𝑗, is 

denoted by 𝒑𝑘
𝑗,𝑗

, see Figure 7.3. It is composed of displacements and rotations: 

 
𝒑𝑘
𝑗,𝑗
≡ {

𝒓𝑘
𝑗,𝑗
− 𝒓𝑘

𝑗,𝑗

𝝍𝑘
𝑗,𝑗

}, (7.17) 

where 𝒓𝑘
𝑗,𝑗

 is the undeformed position of 𝑘 with respect to the element frame and 𝝍𝑘
𝑗,𝑗

 defines 

the orientation of 𝑘. In the undeformed configuration the local orientations of the interface 

nodes are defined to be zero. The rotation 𝝍𝑘
𝑗,𝑗

 will be specified by means of the local rotation 

matrix. A rotation matrix can be defined as the matrix exponential of the skew symmetric 

matrix of the rotation vector [47]: 
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 𝑹𝑘
𝑗
= exp(�̃�𝑘

𝑗,𝑗
) , 𝝓𝑘

𝑗,𝑗
≡ 𝒏𝑘

𝑗,𝑗
 𝜙𝑘

𝑗
, (7.18) 

where 𝒏𝑘
𝑗,𝑗

 is the unit rotation axis and 𝜙𝑘
𝑗
 the magnitude of the rotation 𝑘 with respect to 

element frame 𝑗. By assuming that the elastic rotation of node 𝑘 is small, the rotation matrix 

can be approximated by the first order Taylor expansion: 

 𝑹𝑘
𝑗
= exp(�̃�𝑘

𝑗,𝑗
) ≈ 1 + �̃�𝑘

𝑗,𝑗
. (7.19) 

Based on this approximation, the rotation 𝝍𝑘
𝑗,𝑗

 will be implicitly defined using the off-diag-

onal terms of this local rotation matrix: 

 
�̃�𝑘
𝑗,𝑗
=
1

2
(𝑹𝑘

𝑗
− 𝑹𝑘

𝑗 𝑇
) =

1

2
(𝑹𝑘

𝑗
− 𝑹𝑗

𝑘). (7.20) 

The virtual change of this rotation can be related to the virtual change of the local coordinates 

of node 𝑘, see Section 7.A.2. Based on eq. (7.67), the virtual change of the displacement 𝒑𝑘
𝑗,𝑗

 

can be expressed as: 

 
𝛿𝒑𝑘

𝑗,𝑗
= [𝑯𝑘

𝑗
]𝛿𝒒𝑘

𝑗,𝑗
, [𝑯𝑘

𝑗
] ≡ [

𝟏 𝟎

𝟎 𝑯𝑘
𝑗 ]. (7.21) 

The matrix 𝑯𝑘
𝑗
 is defined in the Section 7.A.2 and equals the identity matrix for zero rotation 

of the node 𝑘. This equation can be combined for all interface nodes: 

 

𝛿𝒑𝐼𝐹
𝑗,𝑗
= [�̂�𝑗] 𝛿𝒒𝐼𝐹

𝑗,𝑗
,      𝒑𝐼𝐹

𝑗,𝑗
≡ {

𝒑𝐼𝐹 1
𝑗,𝑗

⋮

𝒑𝐼𝐹 𝑁
𝑗,𝑗

},     [�̂�𝑗] ≡ [
[𝑯𝐼𝐹 1

𝑗
]   

 ⋱  

  [𝑯𝐼𝐹 𝑁
𝑗

]

]. (7.22) 

The displacements of the internal modes are defined by their corresponding coordinates 𝒒𝑖𝑛𝑡. 
Combining this relation with eq. (7.22) gives an expression for the virtual change of all dis-

placements in terms of the change of the local configuration coordinates: 

 
𝛿𝒑𝐴𝑙𝑙

𝑗,𝑗
= [𝑯𝑗] 𝛿𝒒𝐴𝑙𝑙

𝑗,𝑗
, 𝒑𝐴𝑙𝑙

𝑗,𝑗
≡ {𝒑𝐼𝐹

𝑗,𝑗

𝒒𝑖𝑛𝑡
} , [𝑯𝑗] ≡ [

[�̂�𝑗] 𝟎

𝟎 𝟏
]. (7.23) 

7.3.3 Generalized deformations and the position of the element frame 
This section relates the generalized deformations 𝜺 to the displacements that are derived in 

Section 7.3.2. This will also result in a relation for the coordinates of the element frame. 

 

The displacement vector, 𝒑𝐴𝑙𝑙
𝑗,𝑗

 describe the elastic deformation. However, it also describes 

the six rigid body motions as it includes the displacements of all interface nodes. Therefore 

𝒑𝐴𝑙𝑙
𝑗,𝑗

 can be linearly related to six rigid body motions in combination with the elastic defor-

mations that are described by 𝜺: 

 𝒑𝐴𝑙𝑙
𝑗,𝑗
= [[𝚽𝑟𝑖𝑔0

𝑗
] [𝚽𝑓𝑙𝑒𝑥

𝑗
]] {
𝜼𝑟𝑖𝑔
𝜺
}, (7.24) 
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where 𝜼𝑟𝑖𝑔 are the six coordinates of the six rigid body motions and the constant matrix 

[𝚽𝑟𝑖𝑔0
𝑗

] is [𝚽𝑟𝑖𝑔
𝑗
] in the undeformed configuration. The constant matrix [𝚽𝑓𝑙𝑒𝑥

𝑗
] describes the 

deformation modes evaluated on the interface nodes. The deformation modes should be cho-

sen in such way that all modes are independent, which means that the matrix in eq. (7.24) is 

invertible: 

 
{
𝜼𝑟𝑖𝑔
𝜺
} = [

[𝑽𝑟𝑖𝑔
𝑗
]

[𝑽𝑓𝑙𝑒𝑥
𝑗

]
] 𝒑𝐴𝑙𝑙

𝑗
,       [

[𝑽𝑟𝑖𝑔
𝑗
]

[𝑽𝑓𝑙𝑒𝑥
𝑗

]
] ≡ [[𝚽𝑟𝑖𝑔0

𝑗
] [𝚽𝑓𝑙𝑒𝑥

𝑗
]]
−1
. (7.25) 

The matrix with deformation modes, [𝚽𝑓𝑙𝑒𝑥
𝑗

], can be defined by the user. Section 7.4 de-

scribes three general methods to define these deformation modes. In the remaining part of 

this section we will assume that this matrix is known. Also the matrix [𝚽𝑟𝑖𝑔0
𝑗

] is known at 

the start of the simulation as it can be computed based on the local positions of the interfaces 

of the undeformed element. This means that also the matrices [𝑽𝑟𝑖𝑔
𝑗
] and [𝑽𝑓𝑙𝑒𝑥

𝑗
] are known 

and all these four matrices are constant. The number of modes in [𝚽𝑓𝑙𝑒𝑥
𝑗

] equals: 

 𝑁𝑚𝑜𝑑 = 𝑁𝐴𝑙𝑙 − 6 = 6𝑁𝐼𝐹 + 𝑁𝑖𝑛𝑡 − 6, (7.26) 

where 𝑁𝐴𝑙𝑙 is the number of configuration coordinates, 𝑁𝐼𝐹 is the number of interface nodes 

and 𝑁𝑖𝑛𝑡 is the number of internal modes. 

 

The rigid body motion of the element is described by the coordinates of its element frame. It 

can therefore not also be described by the rigid modes as this will result in a singular system. 

This means that 𝜼𝑟𝑖𝑔 should be zero which defines six constraints on 𝒑𝐴𝑙𝑙
𝑗

: 

 𝜼𝑟𝑖𝑔 = [𝑽𝑟𝑖𝑔
𝑗
]𝒑𝐴𝑙𝑙

𝑗,𝑗
= 𝟎. (7.27) 

Based on these six constraints we can find the position and orientation of the element frame 

for a given set of absolute configuration coordinates 𝒒𝐴𝑙𝑙
𝑂,𝑂

. However an explicit relation does 

not exist in general such that it has to be solved based on a Newton-Raphson iteration. Sub-

stituting eq. (7.23) in the virtual change of the constraint in eq. (7.27) gives: 

 𝛿𝜼𝑟𝑖𝑔 = [𝑽𝑟𝑖𝑔
𝑗
] 𝛿𝒑𝐴𝑙𝑙

𝑗,𝑗
= [𝑽𝑟𝑖𝑔

𝑗
][𝑯𝑗] 𝛿𝒒𝐴𝑙𝑙

𝑗,𝑗
. (7.28) 

We want to find the position of the element frame for a given set of absolute coordinates, i.e. 

𝛿𝒒𝐴𝑙𝑙
𝑂,𝑂 = 𝟎. Therefore eq. (7.16) can be used to obtain: 

 𝛿𝜼𝑟𝑖𝑔 = [𝑽𝑟𝑖𝑔
𝑗
][𝑯𝑗] 𝛿𝒒𝐴𝑙𝑙

𝑗,𝑗
= −[𝑽𝑟𝑖𝑔

𝑗
][𝑯𝑗][𝚽𝑟𝑖𝑔

𝑗
][𝑹𝑂

𝑗
]𝛿𝒒𝑗

𝑂,𝑂. (7.29) 

Using this equation we can update the position of the element frame using the following 

Newton-Raphson procedure: 

 

(�̂�𝑗
𝑂,𝑂)

𝑖+1
= (�̂�𝑗

𝑂,𝑂)
𝑖
− (

𝜕𝜼𝑟𝑖𝑔

𝜕𝒒𝑗
𝑂,𝑂)

−1

𝜼𝑟𝑖𝑔 ,   

(
𝜕𝜼𝑟𝑖𝑔

𝜕𝒒𝑗
𝑂,𝑂)

−1

= −[𝑹𝑗
𝑂]([𝑽𝑟𝑖𝑔

𝑗
][𝑯𝑗][𝚽𝑟𝑖𝑔

𝑗
])
−1
. 

(7.30) 
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The hat on 𝒒𝑗
𝑂,𝑂

 emphasizes that this vector does fundamentally not exist. As noted in Section 

7.2.1, the rotation in this vector is parameterized by finite rotations. This does not work for 

large rotations in three dimensions. However, the orientation can be defined by a rotation 

matrix or Euler-parameters and the vector can be updated in an equivalent way. 

Once the position of the element frame is found, the displacements 𝒑𝐴𝑙𝑙
𝑗,𝑗

 can be obtained using 

eq. (7.17) after which the generalized deformation is obtained from eq. (7.25): 

 𝜺 = [𝑽𝑓𝑙𝑒𝑥
𝑗

]𝒑𝐴𝑙𝑙
𝑗,𝑗
. (7.31) 

7.3.4 Virtual change of the element frame and local configuration coordinates 
as function of absolute configuration coordinate 

Section 7.3.3 defined the position of the element frame based on the absolute coordinates 

using the six constraints in eq. (7.27). Once the element frame is in the right position and 

orientation, these constraints can also be used to write the virtual change of the element frame 

as function of the virtual change of the absolute coordinates. The constraints imply that also 

their virtual change should stay zero as defined in eq. (7.28). By substituting eq. (7.16) into 

this relation we obtain: 

 𝛿𝜼𝑟𝑖𝑔 = [𝑽𝑟𝑖𝑔
𝑗
][𝑯𝑗] 𝛿𝒒𝐴𝑙𝑙

𝑗,𝑗
 

= [𝑽𝑟𝑖𝑔
𝑗
][𝑯𝑗][�̅�𝑂

𝑗
]𝛿𝒒𝐴𝑙𝑙

𝑂,𝑂 − [𝑽𝑟𝑖𝑔
𝑗
][𝑯𝑗][𝚽𝑟𝑖𝑔

𝑗
][𝑹𝑂

𝑗
]𝛿𝒒𝑗

𝑂,𝑂 = 𝟎. 
(7.32) 

In undeformed configuration [𝑯𝑗] = 𝟏, see Section 7.3.2. Therefore [𝑽𝑟𝑖𝑔
𝑗
][𝑯𝑗][𝚽𝑟𝑖𝑔

𝑗
] =

[𝑽𝑟𝑖𝑔
𝑗
][𝚽𝑟𝑖𝑔

𝑗
] = 𝟏 in undeformed configuration, see eq. (7.25). The deformation of the GMS 

is assumed to be small, for these small deformation, the matrices [𝑯𝑗] and [𝚽𝑟𝑖𝑔
𝑗
] will typi-

cally only change slightly. This indicates that the term [𝑽𝑟𝑖𝑔
𝑗
][𝑯𝑗][𝚽𝑟𝑖𝑔

𝑗
] is close to the iden-

tity matrix, which implies that it is invertible. Therefore the equation can be rewritten to relate 

the virtual change of the element frame to the virtual change of the absolute configuration 

coordinates: 

 𝛿𝒒𝑗
𝑂,𝑂 = [𝑹𝑗

𝑂][𝒁𝑗][�̅�𝑂
𝑗
]𝛿𝒒𝐴𝑙𝑙

𝑂,𝑂, [𝒁𝑗] ≡ ([𝑽𝑟𝑖𝑔
𝑗
][𝑯𝑗][𝚽𝑟𝑖𝑔

𝑗
])
−1
[𝑽𝑟𝑖𝑔

𝑗
][𝑯𝑗]. (7.33) 

A physical interpretation of the 6 × 6𝑁𝐼𝐹 matrix [𝒁𝑗] is that it defines the rigid body motion 

as function of an arbitrary motion expressed in the local frame. By substituting eq. (7.33) into 

eq. (7.16) we obtain the change of the local configuration coordinates as function of the ab-

solute configuration coordinates: 

 𝛿𝒒𝐴𝑙𝑙
𝑗,𝑗
= [𝑻𝑗][�̅�𝑂

𝑗
]𝛿𝒒𝐴𝑙𝑙

𝑂,𝑂, [𝑻𝑗] ≡ 𝟏 − [𝚽𝑟𝑖𝑔
𝑗
][𝒁𝑗]. (7.34) 

A physical interpretation of [𝑻𝑗] is that it removes the rigid body motion from an arbitrary 

motion, leaving the flexible motion of the coordinates. More elaborate geometric interpreta-

tions of the matrices [𝚽𝑟𝑖𝑔
𝑗
], [𝒁𝑗] and [𝑻𝑗] are given in [159]. 



7.3.  Derivation of the superelement 141 

  

 

7.3.5 First derivative of the generalized coordinates 
This section defines the change of the deformation coordinates 𝜺 as function of the change 

of the elements absolute coordinates 𝒙. This results in the matrix 𝓓,𝒙 that is used in the equa-

tion of motion as defined in eq. (7.7). 

 

The virtual change of the generalized deformation can be obtained as function of virtual 

change of the absolute coordinates by substituting eqs. (7.23) and (7.34) into the definition 

of the generalized deformation from eq. (7.31): 

 𝛿𝜺 = [𝑽𝑓𝑙𝑒𝑥
𝑗

]𝛿𝒑𝐴𝑙𝑙
𝑗,𝑗
= [𝑽𝑓𝑙𝑒𝑥

𝑗
][𝑯𝑗] 𝛿𝒒𝐴𝑙𝑙

𝑗,𝑗
= [𝑽𝑓𝑙𝑒𝑥

𝑗
][𝑯𝑗][𝑻𝑗][�̅�𝑂

𝑗
]𝛿𝒒𝐴𝑙𝑙

𝑂,𝑂 . (7.35) 

Note that 𝛿𝒒𝐴𝑙𝑙
𝑂,𝑂

 contains the virtual change of finite rotations for each interface node. Rota-

tions in three dimension should be specified using a parameterization like Euler angles or 

Euler parameters. In this chapter Euler parameters are used. The orientation of node 𝑘 with 

respect to frame 𝑂 will be parameterized by 𝝀𝑘
𝑂. The absolute coordinates with this parame-

terization are given by 𝒙: 

 

𝒙 = {

𝒙𝐼𝐹 1
⋮

𝒙𝐼𝐹 𝑁
𝒒𝑖𝑛𝑡

} , 𝒙𝑘 = {
𝒓𝑘
𝑂,𝑂

𝝀𝑘
𝑂
}. (7.36) 

The virtual change of finite rotations can be related to the virtual change of the parameteri-

zation (see e.g. [163]) resulting in an equation as: 

 𝛿𝜽𝑘
𝑂,𝑂 = 𝓖(𝝀𝑘

𝑂) 𝛿𝝀𝑘
𝑂, (7.37) 

where 𝓖 is a function that is in case of Euler parameters: 

 

𝓖(𝝀) ≡ 2 [

−𝜆1 𝜆0 −𝜆3 𝜆2
−𝜆2 𝜆3 𝜆0 −𝜆1
−𝜆3 −𝜆2 𝜆1 𝜆0

]. (7.38) 

Based on this relation for each interface node, the virtual change 𝛿𝒒𝐴𝑙𝑙
𝑂,𝑂

 can easily be related 

to the virtual change of 𝒙 resulting in an equation as: 

 𝛿𝒒𝐴𝑙𝑙
𝑂,𝑂 = [𝑮]𝛿𝒙. (7.39) 

Using eq. (7.35), the derivative of the generalized deformations to the coordinates becomes: 

 
𝓓,𝒙 =

𝜕𝜺

𝜕𝒙
= [𝑽𝑓𝑙𝑒𝑥

𝑗
][𝑯𝑗][𝑻𝑗][�̅�𝑂

𝑗
][𝑮]. (7.40) 

7.3.6 Stiffness matrix 
The GMS uses the stiffness and mass matrix of a linear finite element model that is reduced 

using Craig-Bampton modes [59] (i.e. boundary modes and internal modes). Note that the 

vector with displacements, 𝒑𝐴𝑙𝑙
𝑗,𝑗
, indeed consist of these boundary displacements and internal 

modes. The result of the reduced model, expressed in the orientation of element frame 𝑗 is 

expressed as: 
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 [𝑴𝐴𝑙𝑙
𝑗
]�̈�𝐴𝑙𝑙

𝑗,𝑗
+ [𝑲𝐴𝑙𝑙

𝑗
]𝒑𝐴𝑙𝑙

𝑗,𝑗
= 𝒇𝐴𝑙𝑙

𝑗
, (7.41) 

where [𝑴𝐴𝑙𝑙
𝑗
] is the constant reduced mass matrix, [𝑲𝐴𝑙𝑙

𝑗
] the constant reduced stiffness ma-

trix and 𝒇𝐴𝑙𝑙
𝑗

 defines applied forces on the modes. The potential energy of this model is: 

 
𝐸𝑝𝑜𝑡 =

1

2
{𝒑𝐴𝑙𝑙

𝑗,𝑗
}
𝑇
[𝑲𝐴𝑙𝑙

𝑗
]𝒑𝐴𝑙𝑙

𝑗,𝑗
. (7.42) 

By substituting eq. (7.24) with 𝜼𝑟𝑖𝑔 = 𝟎, the stiffness matrix in terms of the deformation 

modes, 𝑺, can be obtained, which can be used in the equation of motion, eq. (7.7): 

 
𝐸𝑝𝑜𝑡 =

1

2
𝜺𝑇𝑺𝜺, 𝑺 ≡ [𝚽𝑓𝑙𝑒𝑥

𝑗
]
𝑇
[𝑲𝐴𝑙𝑙

𝑗
][𝚽𝑓𝑙𝑒𝑥

𝑗
]. (7.43) 

7.3.7 Inertia terms 
The inertia terms can be derived in different ways. This chapter presents two approaches: the 

‘corotational inertia’ defines the energy based on the corotated mass matrix and derives the 

inertia vector using Lagrange’s equation. The ‘full inertia’ derives the global acceleration of 

the material points in the body and obtains the inertia terms by integrating these accelerations 

over the volume. Both approaches neglect the higher order terms in deformation and result 

in the same mass matrix, but a different convective inertia. The approaches are consistent to 

two of the approaches described in [49]. 

7.3.7.1 Corotational inertia 
The kinetic energy of the reduced linearized finite element model is: 

 
𝐸𝑘𝑖𝑛 =

1

2
(�̇�𝐴𝑙𝑙

𝑂,𝑂)
𝑇
[�̅�𝑗

𝑂][𝑴𝐴𝑙𝑙
𝑗
][�̅�𝑂

𝑗
]�̇�𝐴𝑙𝑙

𝑂,𝑂 . (7.44) 

Substituting eq. (7.39) defines the global mass matrix, 𝑴, of the element, which appears in 

the equation of motion, eq. (7.7): 

 
𝐸𝑘𝑖𝑛 =

1

2
�̇�𝑇𝑴�̇�, 𝑴 ≡ [𝑩]𝑇[𝑴𝐴𝑙𝑙

𝑗
][𝑩], [𝑩] ≡ [�̅�𝑂

𝑗
][𝑮]. (7.45) 

Based on Lagrange’s equation the total inertia forces, 𝓗, can be defined as function of the 

kinetic energy. These inertia forces should equal the inertia forces defined in eq. (7.5): 

 
𝓗 =

𝑑

𝑑𝑡
(
𝜕𝐸𝑘𝑖𝑛
𝜕�̇�

)
𝑇

− (
𝜕𝐸𝑘𝑖𝑛
𝜕𝒙

)
𝑇

= 𝑴�̈� + 𝒉𝑐𝑜𝑟𝑜𝑡 . (7.46) 

Substituting eq. (7.45)  and rewriting gives the convective inertia to be: 

 
𝒉𝑐𝑜𝑟𝑜𝑡 = 𝓗−𝑴�̈� =

𝑑𝑴

𝑑𝑡
�̇� −

1

2
(
𝜕(�̇�𝑇𝑴�̇�)

𝜕𝒙
)

𝑇

 

= [�̇�]
𝑇
[𝑴𝐴𝑙𝑙

𝑗
][𝑩]�̇� + [𝑩]𝑇[𝑴𝐴𝑙𝑙

𝑗
][�̇�]�̇� − (

𝜕[𝑩]�̇�

𝜕𝒙
)

𝑇

[𝑴𝐴𝑙𝑙
𝑗
][𝑩]�̇�. 

(7.47) 
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The full expression is derived in Section 7.A.3. This result is similar to the result obtained in 

the superelement of [34]. 

7.3.7.2 Full inertia 
For an initial undeformed configuration, the global velocity or virtual change of an arbitrary 

point 𝑠 in the GMS can be written in terms of its absolute nodal coordinates: 

 �̇�𝑠
𝑂,𝑂 = 𝑹𝑗

𝑂𝚽𝐴𝑙𝑙,𝑠
𝑗

[�̅�𝑂
𝑗
]�̇�𝐴𝑙𝑙

𝑂,𝑂, 𝛿𝒓𝑠
𝑂,𝑂 = 𝑹𝑗

𝑂𝚽𝐴𝑙𝑙,𝑠
𝑗

[�̅�𝑂
𝑗
] 𝛿𝒒𝐴𝑙𝑙

𝑂,𝑂 , (7.48) 

where the 3 × 𝑁𝐴𝑙𝑙  matrix 𝚽𝐴𝑙𝑙,𝑠
𝑗

 defines the mode shapes evaluated at position 𝑠. Note that 

the mode shapes contain a linear combination of all the Craig-Bampton boundary modes such 

that rigid body motion is also included. 

 

Based on the principle of virtual work, the total inertia force is implicitly defined by the 

volume integral: 

 
𝛿𝒙𝑇𝓗 = ∫(𝛿𝒓𝑠

𝑂,𝑂)
𝑇
�̈�𝑠
𝑂,𝑂𝜌 𝑑𝑉

𝑉

    ∀   𝛿𝒙, (7.49) 

where 𝜌 is the material density. The resulting total inertial is derived in Section 7.A.4, result-

ing in eq. (7.92): 

 𝓗 = [𝑩]𝑇[𝑴𝐴𝑙𝑙
𝑗
][𝑩]�̈� + [𝑩]𝑇[𝑵𝐴𝑙𝑙

𝑗
][𝑩]�̇� − [𝑩]𝑇[𝑴𝐴𝑙𝑙

𝑗
][�̃�𝑗

𝑗,𝑂
][𝑩]�̇�. (7.50) 

The first term in this expression is the global mass matrix times the acceleration, see eq. 

(7.45). The convective inertia vector according to the full approach is: 

 𝒉𝑓𝑢𝑙𝑙 = 𝓗−𝑴�̈� = [𝑩]𝑇[𝑵𝐴𝑙𝑙
𝑗
][𝑩]�̇� − [𝑩]𝑇[𝑴𝐴𝑙𝑙

𝑗
][�̃�𝑗

𝑗,𝑂
][𝑩]�̇�, (7.51) 

where expressions for [𝑵𝐴𝑙𝑙
𝑗
] and [�̃�𝑗

𝑗,𝑂
] are given in Section 7.A.4. Matrix [𝑵𝐴𝑙𝑙

𝑗
] is given in 

eq. (7.89) in which it can be seen that it involves an integral that cannot be computed from 

the finite element matrices that are commonly available in a linear finite element analysis. 

The consistent derivation of this integral requires to evaluate a specific term for each element 

in the finite element model, but the integral can also be estimated by using a lumped mass 

approximation. 

7.3.7.3 Comparison 
The second terms of the convective inertias of both approaches as defined in eqs. (7.47) and 

(7.51) are equivalent: [𝑩]𝑇[𝑴𝐴𝑙𝑙
𝑗
][�̇�]�̇� = −[𝑩]𝑇[𝑴𝐴𝑙𝑙

𝑗
][�̃�𝑗

𝑗,𝑂
][𝑩]�̇�, see eq. (7.71). However 

the remaining terms in both approaches is different. This difference exist because the coro-

tational approach uses the energy in the discretized, reduced form to obtain the inertia forces, 

where the full approach derives the inertia forces from the continuum and applies the model 

order reduction afterwards. Figure 7.4 visualizes this. In both approaches the total energy is 

conserved. However, the corotational approach implicitly assumes that the inertia-forces can 

be written in terms of the reduced mass matrix [𝑴𝐴𝑙𝑙
𝑗
]. The full approach shows that the exact 

evaluation of the inertia forces requires the term [𝑵𝐴𝑙𝑙
𝑗
] which cannot be expressed in terms 

of the reduced mass matrix. Sections 7.5.1 and 7.5.2 of this chapter further evaluate the dif-

ferences. In [68] (section 5.3) a more elaborate derivation of the inertia terms is given, which 

also shows that the inertia terms cannot be written in terms of the finite element mass matrix. 
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Figure 7.4: Two different approaches to obtain the inertia. The main difference is the 

order in which both steps are applied, 𝒓𝑠 represents a position in the element, 𝒙 are the 

absolute configuration coordinates. 

7.4 General methods to define the position of the element 
frame and flexible modes 

This section defines three general methods to define the matrix with flexible modes, [𝚽𝑓𝑙𝑒𝑥
𝑗

], 

that was introduced in Section 7.3.3. The matrix defines the displacements, 𝒑𝐴𝑙𝑙
𝑗,𝑗

, as function 

of the generalized deformations, 𝜺. Also default choices for the position of the element frame 

are given. The three methods are illustrated in Figure 7.5. 

7.4.1 Local interface displacements 
The first option directly relates the generalized deformations, 𝜺, to the local displacements of 

all interface nodes except one. If we for example exclude the first interface node, the matrix 

with flexible modes becomes: 

 
[𝚽𝑓𝑙𝑒𝑥

𝑗
] = [

𝟎6×𝑁𝑚𝑜𝑑
𝟏𝑁𝑚𝑜𝑑×𝑁𝑚𝑜𝑑

]. (7.52) 

This choice causes the orientation of the frame to be the orientation of the remaining interface 

node. Therefore a logical choice in combination with these deformation modes is to place the 

element frame in the remaining interface node. A disadvantage of this option is that the result 

will depend on the interface node chosen. An advantage is that the position of the element 

frame does not have to be found by the Newton Raphson iteration outlined in section 7.3.3 

as its coordinates are simply the coordinates of the related interface node. This also simplifies 

some of the other relations that have been defined in Section 7.3. 

7.4.2 Natural modes of the free body 
For this option the natural modes are extracted from the reduced model with free motion by 

solving the eigenvalue problem: 

 ([𝑲𝐴𝑙𝑙
𝑗
] − 𝚲[𝑴𝐴𝑙𝑙

𝑗
])[[𝚽𝑓𝑟𝑒𝑒−𝑟𝑖𝑔

𝑗
] [𝚽𝑓𝑟𝑒𝑒−𝑓𝑙𝑒𝑥

𝑗
]] = 𝟎. (7.53) 
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Figure 7.5: Three general definitions for the flexible modes (illustrated for a beamlike 

GMS, but the definitions are also applicable to other shapes). 

The vector [𝚽𝑓𝑟𝑒𝑒−𝑟𝑖𝑔
𝑗

] defines the first six eigen modes, which are rigid body modes with 

zero eigenvalues. Note that this matrix is not necessarily exactly the same as [𝚽𝑟𝑖𝑔0
𝑗

], but is 

spans the same space. The modes [𝚽𝑓𝑟𝑒𝑒−𝑓𝑙𝑒𝑥
𝑗

] are defined to be [𝚽𝑓𝑙𝑒𝑥
𝑗

]. An advantage of 

this choice is that the mode shapes define the natural modes which means that the modes with 

the higher natural frequencies can be constrained in the GMS. Another advantage is that the 

stiffness matrix as derived in eq. (7.43) becomes diagonal, which simplifies the evaluation of 

the stiffness equation (eq. (7.4)): 

 𝑺 = [𝚽𝑓𝑟𝑒𝑒−𝑓𝑙𝑒𝑥
𝑗

]
𝑇
[𝑲𝐴𝑙𝑙

𝑗
][𝚽𝑓𝑟𝑒𝑒−𝑓𝑙𝑒𝑥

𝑗
] = diag(𝝎2), (7.54) 

where the vector 𝝎 defines the eigen frequencies, and the matrix diag(𝝎2) is part of the 

diagonal matrix 𝚲. The element frame can be positioned anywhere, and its position will not 

affect the results. A classic choice is to place it in the centre of mass. 

7.4.3 Frame attached to a material point 
This option gives the position of the element frame a physical meaning, it is attached to a 

material point. This option was also used in [69]. The frame is chosen to be in the centre of 

mass. Based on the finite element model the displacement and rotation of the material point 

that is located at the position of the element frame, 𝒑𝐹𝐹𝑅
𝑗,𝑗

, can be expressed as function of the 

displacements 𝒑𝐴𝑙𝑙
𝑗,𝑗

. This displacement should be zero if the element frame is attached to this 

material point: 

 𝒑𝐹𝐹𝑅
𝑗,𝑗

= [𝑽𝐹𝐹𝑅
𝑗

]𝒑𝐴𝑙𝑙
𝑗,𝑗
= 𝟎, (7.55) 

where [𝑽𝐹𝐹𝑅
𝑗

] are the Craig-Bampton boundary modes, evaluated at the location of the ele-

ment frame. This means that [𝑽𝑟𝑖𝑔
𝑗
] in eq. (7.27) equals [𝑽𝐹𝐹𝑅

𝑗
]. Using the inverse relation in 

eq. (7.25) the following should hold: 
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[
[𝑽𝐹𝐹𝑅

𝑗
]

[𝑽𝑓𝑙𝑒𝑥
𝑗

]
] [[𝚽𝑟𝑖𝑔0

𝑗
] [𝚽𝑓𝑙𝑒𝑥

𝑗
]] = [

[𝑽𝐹𝐹𝑅
𝑗

][𝚽𝑟𝑖𝑔0
𝑗

] [𝑽𝐹𝐹𝑅
𝑗

][𝚽𝑓𝑙𝑒𝑥
𝑗

]

[𝑽𝑓𝑙𝑒𝑥
𝑗

][𝚽𝑟𝑖𝑔0
𝑗

] [𝑽𝑓𝑙𝑒𝑥
𝑗

][𝚽𝑓𝑙𝑒𝑥
𝑗

]
] = [

𝟏 𝟎
𝟎 𝟏

]. (7.56) 

From a physical interpretation it follows that [𝑽𝐹𝐹𝑅
𝑗

][𝚽𝑟𝑖𝑔0
𝑗

] indeed always equals the iden-

tity-matrix: [𝚽𝑟𝑖𝑔0
𝑗

] computes the virtual change of the displacements 𝒑𝐴𝑙𝑙
𝑗,𝑗

 for unit displace-

ments of the element frame, where [𝑽𝐹𝐹𝑅
𝑗

] computes the displacements of the element frame 

as function of the displacements 𝒑𝐴𝑙𝑙
𝑗,𝑗

. So the product of both matrices computes the virtual 

change of the element frame as function of the virtual change of itself. 

 

The matrix [𝚽𝑓𝑙𝑒𝑥
𝑗

] should be defined in such way that the remaining part of eq. (7.56) holds. 

The natural modes of the free motion, [𝚽𝑓𝑟𝑒𝑒−𝑓𝑙𝑒𝑥
𝑗

], will be used to define this flexible modes. 

However, in order to make sure that the top right term of eq. (7.56) holds, the effect of rigid 

body motion should be subtracted from this modes. Note that the matrix [𝑻𝑗] as defined in 

eq. (7.34) subtracts the rigid body motion from an arbitrary motion. The flexible modes will 

therefore be defined using this matrix in undeformed configuration: 

 [𝚽𝑓𝑙𝑒𝑥
𝑗

] = (𝟏 − [𝚽𝑟𝑖𝑔0
𝑗

][𝑽𝐹𝐹𝑅
𝑗

])[𝚽𝑓𝑟𝑒𝑒−𝑓𝑙𝑒𝑥
𝑗

]. (7.57) 

By using the relation [𝑽𝐹𝐹𝑅
𝑗

][𝚽𝑟𝑖𝑔0
𝑗

] = 𝟏, it can be shown that this indeed satisfies the right-

upper part of eq. (7.56): 

 [𝑽𝐹𝐹𝑅
𝑗

][𝚽𝑓𝑙𝑒𝑥
𝑗

] = [𝑽𝐹𝐹𝑅
𝑗

](𝟏 − [𝚽𝑟𝑖𝑔0
𝑗

][𝑽𝐹𝐹𝑅
𝑗

])[𝚽𝑓𝑟𝑒𝑒−𝑓𝑙𝑒𝑥
𝑗

] 

= ([𝑽𝐹𝐹𝑅
𝑗

] − [𝑽𝐹𝐹𝑅
𝑗

][𝚽𝑟𝑖𝑔0
𝑗

][𝑽𝐹𝐹𝑅
𝑗

])[𝚽𝑓𝑟𝑒𝑒−𝑓𝑙𝑒𝑥
𝑗

] 

= ([𝑽𝐹𝐹𝑅
𝑗

] − [𝑽𝐹𝐹𝑅
𝑗

])[𝚽𝑓𝑟𝑒𝑒−𝑓𝑙𝑒𝑥
𝑗

] 

= 𝟎 

(7.58) 

The stiffness matrix of this method equals the stiffness matrix of the method in Section 7.4.2. 

This can be shown by the fact that the stiffness matrix multiplied by rigid body modes equals 

zero: [𝑲𝐴𝑙𝑙
𝑗
][𝚽𝑟𝑖𝑔0

𝑗
] = 𝟎, and using eq. (7.57): 

 𝑺 = [𝚽𝑓𝑙𝑒𝑥
𝑗

]
𝑇
[𝑲𝐴𝑙𝑙

𝑗
][𝚽𝑓𝑙𝑒𝑥

𝑗
] = [𝚽𝑓𝑟𝑒𝑒−𝑓𝑙𝑒𝑥

𝑗
]
𝑇
[𝑲𝐴𝑙𝑙

𝑗
][𝚽𝑓𝑟𝑒𝑒−𝑓𝑙𝑒𝑥

𝑗
]. (7.59) 

This means that this method shares the advantages with the method in Section 7.4.2: the mode 

shapes are related to the natural modes and the stiffness matrix is diagonal. However, the 

mass matrix of this method is different from the mass matrix in Section 7.4.2. 

7.5 Validation 
The GMS is validated using the multibody software SPACAR [101, 104]. A rigid rotating 

beam demonstrates the importance of the convective inertia terms. The application of the 

GMS in dynamic simulation is shown by a slider-crank case. A static cantilever beam shows 

the effect of different definitions of the element frame. In these first three examples, the mass 

and stiffness of the GMS are obtained using a finite element model of beam elements. These 

examples are validated using the beam elements defined in ref. [105]. Deformation due to 
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shear is neglected in these examples. In the fourth and fifth case, the GMS is used in a spher-

ical flexure joint and a misaligned cross flexure to show the usefulness in flexure based mech-

anisms. The flexures are modelled with the beam element described in [103]. 

7.5.1 Rigid rotating beam 
This section shows an example to evaluate the convective inertia terms. Figure 7.6 shows a 

beam that rigidly rotates around point 𝐴. Point 𝐴 moves with a constant velocity 𝑣 in the 𝑥-

direction. The beam is modelled using a single GMS with either one or two interface nodes. 

The first interface node is positioned in point 𝐴, the second optionally in point 𝐵 or 𝐶. The 

element frame is fixed to the material point in the centre of the beam (see Section 7.4.3). 

Table 7.2 shows the required force 𝐹 on the beam when it is horizontally oriented (i.e. the 

position shown in figure). The results obtained with the corotational inertia and the full inertia 

correspond to the centrifugal force on a rotating beam, i.e. 𝑚𝐿𝜔2 2⁄ . In absolute nodal coor-

dinates based finite element simulations, the convective inertia is generally neglected. For 

some element-types this gives exact results, for other elements this only results in a small 

error if the elements are small. However, in this rotating beam example, using no convective 

inertia, (i.e. using only the mass matrix times the accelerations), does only give correct results 

if the centre of mass is exactly in the centre of both interface nodes. This illustrates the im-

portance of the convective inertia term. 

 

Table 7.3 shows inertia terms to compare the corotational inertia with the full inertia. These 

are the terms in two dimensions, so the inertia forces on each interface point contains three 

terms: for the translational 𝑥-direction, the 𝑦-direction and the rotational direction around the 

𝑧-axis. The total inertia force 𝓗 in the 𝑥-direction always equals −𝑚𝐿𝜔2 2⁄  for both ap-

proaches as also given in Table 7.2. The corotational inertia results in a rotational term which 

 

 

 
Figure 7.6: Rigid rotating beam, modelled by a GMS with either one or two interface 

nodes. 

Table 7.2: Force on the rotating beam. 

 No conv. iner Corot. iner. Full iner. 

One interface node 0 𝑚𝐿𝜔2 2⁄  𝑚𝐿𝜔2 2⁄  

Second interface at 
location B 

3𝑚𝐿𝜔2 8⁄  𝑚𝐿𝜔2 2⁄  𝑚𝐿𝜔2 2⁄  

Second interface at 
location C 

𝑚𝐿𝜔2 2⁄  𝑚𝐿𝜔2 2⁄  𝑚𝐿𝜔2 2⁄  
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Table 7.3: Inertia terms on the rotating beam, 𝓗 = 𝑴�̈� + 𝒉. 

 𝑴�̈� 𝒉𝑐𝑜𝑟𝑜𝑡 𝒉𝑓𝑢𝑙𝑙  

One interface node 
{
0
0
0
} {

− 𝐿𝑚𝜔2 2⁄
0
0

} {
− 𝐿𝑚𝜔2 2⁄

0
0

} 

Second interface at 
location B 

{
 
 

 
 
−𝑚𝐿𝜔2 24⁄

0
0

−𝑚𝐿𝜔2 3⁄
0
0 }

 
 

 
 

 

{
 
 

 
 

𝑚𝐿𝜔2 240⁄
0

−𝑚𝐿𝜔𝑣 48⁄

−31𝑚𝐿𝜔2 240⁄
0

𝑚𝐿𝜔𝑣 48⁄ }
 
 

 
 

 

{
 
 

 
 

0
0
0

−𝑚𝐿𝜔2 8⁄
0
0 }

 
 

 
 

 

Second interface at 
location C 

{
 
 

 
 
−𝑚𝐿𝜔2 6⁄

0
0

−𝑚𝐿𝜔2 3⁄
0
0 }

 
 

 
 

 

{
 
 

 
 
𝑚𝐿𝜔2 60⁄

0
−𝑚𝐿𝜔𝑣 12⁄

−𝑚𝐿𝜔2 60⁄
0

𝑚𝐿𝜔𝑣 12⁄ }
 
 

 
 

 

{
 
 

 
 
0
0
0
0
0
0}
 
 

 
 

 

 

dependents on the overall velocity 𝑣. This is a nonphysical result, in the first place because 

the overall velocity of a mechanism should not affect the inertia forces. Secondly because a 

rigid rotating component should only experience centrifugal inertia forces. In this case with 

a rigid beam there is no effect as the extra bending moments at both interface nodes cancel 

each other. However, in a flexible beam element, the extra bending moments will affect the 

bending deformation of the element as shown in Section 7.5.2. The full inertia only results 

in inertia in the 𝑥-direction and is independent of the overall velocity 𝑣. 

7.5.2 Two-dimensional slider-crank 
This example evaluates the accuracy of the GMS in a dynamic simulation. A two-dimen-

sional slider-crank problem that was also analyzed in [69, 100, 107] is shown in Figure 7.7. 

Its physical properties are given in Table 7.4. The rigid crank is initially horizontally oriented 

to the right, and rotates with a constant angular velocity of 150 rad⁄s. The flexible connector 

between the crank and slider is initially undeformed and has an initial velocity corresponding 

to the velocity of the crank (i.e. its initial velocity is a clockwise rotation of 75 rad⁄s around 

the slider). The mass of the slider is half of the mass of the connector. Figure 7.8 shows the 

midpoint deflection of the connector perpendicular to the undeformed connector divided by 

the length of the connector. The connector is modelled in seven different ways 

a. 10 serial connected beam elements, this serves as reference-case; 

b. 2 serial connected beam elements; 

c. 2 GMSs with full inertia, the result is identical to the case where no convective 

inertia is modeled; 

d. 2 GMSs with corotational inertia; 

e. 4 GMSs with corotational inertia; 

f. 2 corotational superelements with no convective inertia. This result is copied from 

[69]. 
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Figure 7.7: Two-dimensional slider-crank. 

Table 7.4: Properties of the two-dimensional slider-crank. 

Property Value 

Length crank 0.15 m 

Length connector 0.3 m 

Diameter connector 0.006 m 

Young’s modulus connector 200 GPa 

Density connector 8 780 kg m3⁄  

Mass slider 0.0334 kg 

 

 
Figure 7.8: Displacement-results of the two-dimensional slider-crank. 

The following observations can be made: 

 The GMS with full inertia gives almost the same results as the GMS without con-

vective inertia (plotted by a single line). This indicates (together with the results in 

the rotating beam problem) that the convective inertia terms can be neglected in 

beam-like components; 

 The errors of the GSM with full inertia and without convective inertia (case ‘c’) 

with respect to the reference case, are in the same order as the errors obtained by 

beam elements and the corotational superelement (cases ‘b’ and ‘f’). 
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The GMS with corotational inertia gives a significant different deflection compared to the 

other results. Using four elements instead of two, the results are much closer to that of the 

other simulations. This indicates that the corotational inertia method gives small inaccuracies 

if the elements are large. 

7.5.3 Static equilibrium of a cantilever beam 
This example evaluates the influence of the frame position on the accuracy and computation 

time. A hollow circular cantilever beam is subjected to a vertical tip force. The length of the 

beam is 1 m, the outer radius of the cross-section 0.01 m and the wall thickness 0.001 m. 

The Young’s modulus is 70 GPa. Figure 7.9 shows configurations obtained by three different 

methods: the GMS, a beam element [105] and the corotational superelement of [69]. In all 

three cases, the beam is modelled using three serial connected elements, a reference is ob-

tained by ten serial connected beam elements. The modes of the GMS are defined using the 

option described in Section 7.4.3: ‘frame attached to a material point’ and the frame is located 

in the centre of the element. For a force of 10 000N, the result for the GMS did not converge 

due to the large deformation in the most left element. In general all three methods give the 

same results. Small differences are visible for the larger deformations because this results in 

large deformation per element. The difference in the results between the GMS and the coro-

tational superelement are caused by the matrix [𝑯𝑗] that was introduced in eq. (7.21). In the 

derivation of the corotational superelement, this matrix was neglected by assuming small 

deformations. 

 

One of the advantages of the GMS is that the position of the element frame can be defined in 

different ways, see Section 7.4. Figure 7.10 shows results to study the effect of different 

positions. In the first three frame-options, the frame is placed in an interface point and the 

modes are chosen by the option of Section 7.4.1: ‘local interface displacements’, in the fourth 

frame-option the method is Section 7.4.3 is used: ‘frame attached to a material point’. 

 

 

 
Figure 7.9: Configurations of cantilever beam, modelled by three elements, subjected to 

different forces. 
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Figure 7.10: Errors and computation times and number of element frame updates of static 

cantilever beam, modelled by 1 till 10 GMSs. Some results could not be computed. The 

computation times are averaged from 25 simulations. 

The results indicate that positioning the frame at the centre of the element gives the most 

accurate results. The most important reason is that the elastic rotational displacements are the 

smallest in this case. Defining an extra interface node in the centre of the elements increases 

the number of degrees of freedom and significantly increases the computation time, espe-

cially when many elements are used. 

Placing the element frame in the centre without defining an extra interface node requires 

to update the frame in each loadstep using the Newton-Raphson procedure defined in Section 

7.3.3, but this only slightly increases the computation time. Figure 7.10 gives the total com-

putation time that was required for these Newton-Raphson updates. These times are approx-

imately the same as the time difference between the total computation time of case ‘d’ and 

the total computation time of the cases ‘a’ and ‘b’. On average 3.8 iteration steps were re-

quired to find the coordinates of an element frame. Figure 7.10 shows the total number of 

iteration steps in one simulation, where one step took on average 7.3 ⋅ 10−5 s. 
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7.5.4 Spherical joint 
Figure 7.11 shows the serial stacked spherical joint that was introduced in [2]. The most 

important dimensions of this flexure joint are given in Table 7.5. The flexure joint consist of 

six folded flexures which are connected to three frame parts. These folded flexures are placed 

in such way that lines through the folds coincide in the centre of the joint. In this way, the 

deformation of the flexures allows a large rotation of the end-effector around all three axis 

through this centre point. The joint is stiff in the translational directions. The flexures are 

modelled using beam elements, each of the three frame parts is modelled by a GMS. 

 

 

 
Figure 7.11: Spherical joint. a) flexures, showing the connections with ring (R), base (B) 

and End-effector (E). b) flexures and frame-parts, c) side view, d) top view, e) exploded 

view. 

Table 7.5: Properties of the spherical joint. 

Property Value 

𝐿 32.7 mm 

𝑟 18.5 mm 

𝜓 103.3∘ 

𝜃1 38.6∘ 

𝑤 16.6 mm 

𝑡 0.48 mm 
 

Property Value 

𝑆 111 mm 

𝐷 75 mm 

𝐻 76 mm 

Mass ring 0.306 kg 

Mass base / End-effector 0.287 kg 

Young’s modulus 200 GPa 

Poisson ratio 0.3 
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Figure 7.12: Support stiffness in vertical direction of the spherical joints as function of 

rotation around the 𝑥-axis. The connecting parts are modelled either rigid or flexible. The 

joint is either modelled by three GMSs in combination with beam elements for the leaf-

springs or by a finite element model. 

 
Figure 7.13: Eigen frequencies of the spherical joint modelled with rigid or flexible con-

necting parts. The joint is either modelled by three GMSs in combination with beam ele-

ments for the leafsprings or by a finite element model. 

Figure 7.12 shows the support-stiffness in vertical direction (z-direction). The results indicate 

that compliance of the frame parts is significant with respect to the total compliance and that 

this compliance can be modelled accurately using the GMS. Figure 7.13 shows eigen fre-

quencies for the case that the base and end effector are fixed to the ground at their triangular-

shaped face. The first three eigen frequencies are rotations of the ring. These eigenfrequen-

cies are related to a low stiffness and therefore almost not influenced by the flexibility of the 

connecting parts. The other three eigen frequencies are influenced by the flexibility of the 

connecting parts which is modelled accurately using the GMS. 
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7.5.5 Misaligned cross flexure 
Figure 7.14 shows an overconstrained cross flexure with a misalignment in the overcon-

strained direction, that was described in [137, 138]. The two flexures are each modelled using 

eight beam elements with torsional warping (as defined in ref. [103]) to model the thin part 

and one beam element to model the thick part which is used for attachment to the frame parts. 

The flexures are made of steel (Young’s modulus 200 GPa, Poisson ratio 0.3), have a thick-

ness of 0.3 mm and a width of 30 mm. The upper flexure is on one side attached to the fixed 

world. The lower flexure also has a fixed side, however at this side a misalignment in vertical 

direction can be prescribed.  

Both flexures are connected to the shuttle, allowing a rotation of the shuttle around the 

indicated rotation axis. The shuttle is modelled by a GMS and is made of aluminium (E-

modulus 69 GPa, Poisson ratio 0.3). The element frame is defined according to the free-

body-modes definition (see Section 7.4.2). 

Figure 7.15 shows the first natural frequency (in which the shuttle rotates around the in-

dicated rotation axis) as function of the misalignment. The results show that the compliance 

of the shuttle has significant influence on the result and this effect can be modelled with the 

GMS. Also the shear deformation in the beam elements has a significant effect. The exclusion 

of shear has a similar effect as a rigid shuttle on the first natural frequency. 

 

 

 

 
Figure 7.14: Misaligned cross flexure, a) three-dimensional view, b) top view, c) side 

view. Dimensions are given in millimeters. 
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Figure 7.15: First natural frequency of the misaligned cross flexure, the results of the 

experiment and the finite element model are copied from [138]. 

7.6 Conclusions 
A superelement has been presented which can be used to model arbitrarily shaped parts with 

multiple interface nodes in the generalized strain formulation. The deformation is defined 

linearly with respect to a local frame, where rotational displacements are defined using the 

off-diagonal terms of local rotation matrices. The coordinates of the frame is not part of the 

degrees of freedom, but can be obtained by a Newton-Raphson iteration, as function of the 

degrees of freedom. This frame can be defined in multiple ways. Simulations show that this 

definition of the frame can have significant influence on the results. More accurate results 

are obtained if the elastic rotations with respect to the element frame are small. Two methods 

are presented to define the inertia: simulations show that the ‘full approach’ gives more ac-

curate results than the ‘corotational approach’, however the full approach includes terms that 

cannot be derived from a standard reduced finite element model. The chapter shows that 

complex components with slender parts can be modelled accurately using a proper combina-

tion superelements and beam elements. 

7.A Derivations 
This section shows some derivations for the formulation presented in Section 7.3. 

7.A.1 Relating the virtual change of absolute and local coordinates of an inter-
face node 

This section shows how the virtual change of the absolute position and orientation of an 

interface node can be expressed in terms of the virtual change of its local coordinates and the 

virtual change of the coordinates of the element frame. 
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An absolute position 𝒓𝑘
𝑂,𝑂

 of node 𝑘 can be defined by means of the coordinates of the element 

frame (see Figure 7.3): 

 𝒓𝑘
𝑂,𝑂 = 𝒓𝑗

𝑂,𝑂 + 𝒓𝑘
𝑂,𝑗
= 𝒓𝑗

𝑂,𝑂 + 𝑹𝑗
𝑂𝒓𝑘

𝑗,𝑗
, (7.60) 

where 𝑹𝑗
𝑂 defines the absolute orientation of element frame 𝑗. The virtual change of a rotation 

matrix can be expressed as: 

 𝛿𝑹𝑗
𝑂 = 𝛿�̃�𝑗

𝑂,𝑂  𝑹𝑗
𝑂 = 𝑹𝑗

𝑂 𝛿�̃�𝑗
𝑗,𝑂
= −𝑹𝑗

𝑂  𝛿�̃�𝑂
𝑗,𝑗
, (7.61) 

where 𝛿𝜽𝑗
𝑂,𝑂

 defines the virtual change in finite rotations of frame 𝑗 with respect to the global 

frame 𝑂. The tilde defines the skew symmetric matrix of a vector which is related to the cross 

product, such that for two arbitrary 3 × 1 vectors 𝒂 and 𝒃, the following relations hold: 

 

�̃� ≡ [

0 −𝑎3 𝑎2
𝑎3 0 −𝑎1
−𝑎2 𝑎1 0

] , �̃�𝒃 = 𝒂 × 𝒃 = −�̃�𝒂. (7.62) 

The virtual change of the absolute position 𝒓𝑘
𝑂,𝑂

 can be rewritten by substituting eq. (7.61) 

into the virtual change of eq. (7.60), after which the relations in eq. (7.62) are used to rewrite 

the result: 

 𝛿𝒓𝑘
𝑂,𝑂 = 𝛿𝒓𝑗

𝑂,𝑂 + 𝑹𝑗
𝑂𝛿�̃�𝑗

𝑗,𝑂
 𝒓𝑘
𝑗,𝑗
+ 𝑹𝑗

𝑂 𝛿𝒓𝑘
𝑗,𝑗

 

            = 𝛿𝒓𝑗
𝑂,𝑂 − 𝑹𝑗

𝑂�̃�𝑘
𝑗,𝑗
𝛿𝜽𝑗

𝑗,𝑂
+ 𝑹𝑗

𝑂 𝛿𝒓𝑘
𝑗,𝑗

 

            = 𝛿𝒓𝑗
𝑂,𝑂 − 𝑹𝑗

𝑂�̃�𝑘
𝑗,𝑗
𝑹𝑂
𝑗
 𝛿𝜽𝑗

𝑂,𝑂 + 𝑹𝑗
𝑂 𝛿𝒓𝑘

𝑗,𝑗
. 

(7.63) 

This defines the virtual change of the absolute position of node 𝑘 as function of the virtual 

change of element frame 𝑗 and the local position of 𝑘. Also the virtual change in the orienta-

tion of node 𝑘 can be defined through the element frame. 

 𝛿𝜽𝑘
𝑂,𝑂 = 𝛿𝜽𝑗

𝑂,𝑂 + 𝑹𝑗
𝑂𝛿𝜽𝑘

𝑗,𝑗
. (7.64) 

7.A.2  Virtual change of rotational displacements 
This section defines how the virtual change of the displacements of an interface point 𝑘 can 

be related to the virtual change of the local coordinates of this interface point. The rotation 

was defined by means of the off-diagonal terms of the local rotation matrix, eq. (7.20): 

 

�̃�𝑘
𝑗,𝑗
=

1

2
(𝑹𝑘

𝑗
− 𝑹𝑗

𝑘)     ⇔    𝝍𝑘
𝑗,𝑗
=

1

2
{

𝒏𝑧
𝑇𝑹𝑘

𝑗
𝒏𝑦 − 𝒏𝑦

𝑇𝑹𝑘
𝑗
𝒏𝑧

𝒏𝑥
𝑇𝑹𝑘

𝑗
𝒏𝑧 − 𝒏𝑧

𝑇𝑹𝑘
𝑗
𝒏𝑥

𝒏𝑦
𝑇𝑹𝑘

𝑗
𝒏𝑥 − 𝒏𝑥

𝑇𝑹𝑘
𝑗
𝒏𝑦

}. (7.65) 

𝒏𝑥, 𝒏𝑦 and 𝒏𝑧 are unit-vectors in the 𝑥, 𝑦 and 𝑧-direction respectively. The virtual change of 

the first term can be expressed using the virtual change of a rotation matrix as defined in eq. 

(7.61): 

 𝛿(𝒏𝑧
𝑇𝑹𝑘

𝑗
𝒏𝑦) = 𝒏𝑧

𝑇 𝛿�̃�𝑘
𝑗,𝑗
 𝑹𝑘
𝑗
𝒏𝑦 = −𝒏𝑧

𝑇 𝑹𝑘
𝑗
𝒏𝑦

̃ 𝛿𝜽𝑘
𝑗,𝑗

 (7.66) 
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Similar relations can be obtained for the other five terms. Using this relations, the virtual 

change of the rotation 𝝍𝑘
𝑗,𝑗

 can be related to the virtual change of the local finite rotations 

𝜽𝑘
𝑗,𝑗

: 

 

𝛿𝝍𝑘
𝑗,𝑗
= 𝑯𝑘

𝑗
 𝛿𝜽𝑘

𝑗,𝑗
, 𝑯𝑘

𝑗
=
1

2
[
 
 
 −𝒏𝑧

𝑇 𝑹𝑘
𝑗
𝒏𝑦

̃ +𝒏𝑦
𝑇 𝑹𝑘

𝑗
𝒏𝑧

̃

−𝒏𝑥
𝑇 𝑹𝑘

𝑗
𝒏𝑧

̃ +𝒏𝑧
𝑇 𝑹𝑘

𝑗
𝒏𝑥

̃

−𝒏𝑦
𝑇  𝑹𝑘

𝑗
𝒏𝑥

̃ +𝒏𝑥
𝑇 𝑹𝑘

𝑗
𝒏𝑦

̃]
 
 
 

. (7.67) 

For undeformed elements, the matrix 𝑹𝑘
𝑗
 equals the identity matrix which means that the 

matrix 𝑯𝑘
𝑗
 also equals identity for undeformed elements. 

7.A.3 Derivation of the corotational inertia 
This section derives the full expression for the corotational convective inertia as given in 

Section 7.3.7.1. The corotational convective inertia vector, as defined in eq. (7.47) is: 

 
𝒉𝑐𝑜𝑟𝑜𝑡 = [�̇�]

𝑇
[𝑴𝐴𝑙𝑙

𝑗
][𝑩]�̇� + [𝑩]𝑇[𝑴𝐴𝑙𝑙

𝑗
][�̇�]�̇� − (

𝜕[𝑩]�̇�

𝜕𝒙
)

𝑇

[𝑴𝐴𝑙𝑙
𝑗
][𝑩]�̇�, 

[𝑩] ≡ [�̅�𝑂
𝑗
][𝑮], 

(7.68) 

which includes two derivatives of the matrix [𝑩] that need to be derived. The time-derivative 

can be written as: 

 [�̇�] = −[�̃�𝑗
𝑗,𝑂
][�̅�𝑂

𝑗
][𝑮] + [�̅�𝑂

𝑗
][�̇�]. (7.69) 

The product [�̇�]�̇� only consist of the term �̇�𝑘
𝑂�̇�𝑘

𝑂 for each interface node which is zero if Euler 

parameters are used to define the rotation in 𝒙, as can be easily verified using eq. (7.37): 

 [�̇�]�̇� = 𝟎. (7.70) 

This means that we can write: 

 [�̇�]�̇� = −[�̃�𝑗
𝑗,𝑂
][�̅�𝑂

𝑗
][𝑮]�̇� = −[�̃�𝑗

𝑗,𝑂
][𝑩]�̇�. (7.71) 

 

In order to obtain the derivative of [𝑩]�̇� to 𝒙, we obtain the virtual change of [𝑩]�̇� in terms 

of 𝛿𝒙. The vector �̇� does not depend on 𝒙 so can be considered to be constant. The change of 
[𝑩] can be split into two terms by using its definition in eq. (7.68): 

 𝛿([𝑩]�̇�) = 𝛿([�̅�𝑂
𝑗
][𝑮]) �̇� = 𝛿[�̅�𝑂

𝑗
] [𝑮]�̇� + [�̅�𝑂

𝑗
] 𝛿[𝑮] �̇�. (7.72) 
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The first term defines the virtual change of the rotation matrix, which can be rewritten using 

eq. (7.61): 

 𝛿[�̅�𝑂
𝑗
] [𝑮]�̇� = 𝛿[�̃�𝑂

𝑗,𝑗
] [�̅�𝑂

𝑗
][𝑮]�̇� = −𝛿[�̃�𝑗

𝑗,𝑂
] [�̅�𝑂

𝑗
][𝑮]�̇� = −𝛿[�̃�𝑗

𝑗,𝑂
] 𝒘𝑗 , 

𝒘𝑗 ≡ [�̅�𝑂
𝑗
][𝑮]�̇�. 

(7.73) 

𝒘𝑗 can be interpreted to be the absolute velocity of the nodes, expressed in the coordinates 

of the local frame 𝑗. [𝛿�̃�𝑗
𝑗,𝑂
] is a matrix with 2𝑁𝐼𝐹 times 𝛿�̃�𝑗

𝑗,𝑂
: 

 

[𝛿�̃�𝑗
𝑗,𝑂
] =

[
 
 
 
 𝛿�̃�𝑗

𝑗,𝑂

⋱

𝛿�̃�𝑗
𝑗,𝑂

𝟎 ]
 
 
 
 

 (7.74) 

Each 𝛿�̃�𝑗
𝑗,𝑂

 is related to three components of the vector 𝒘𝑗, therefore we can use the relation 

in eq. (7.62) to rewrite: 

 

−𝛿[�̃�𝑗
𝑗,𝑂
] 𝒘𝑗 = [

�̃�1

⋮
�̃�2𝑁𝐼𝐹

] 𝛿𝜽𝑗
𝑗,𝑂
= [

�̃�1

⋮
�̃�2𝑁𝐼𝐹

] 𝑹𝑂
𝑗
𝛿𝜽𝑗

𝑂,𝑂, (7.75) 

where �̃�𝑘 applies the tilde-operator on the 𝑘𝑡ℎ set of three components of 𝒘𝑗. Because 𝛿𝜽𝑗
𝑂,𝑂

 

is part of 𝛿𝒒𝑗
𝑂,𝑂

, we can write the equation in terms of 𝛿𝒒𝑗
𝑂,𝑂

: 

 

−𝛿[�̃�𝑗
𝑗,𝑂
] 𝒘𝑗 = [�̂�𝑗][𝑹𝑂

𝑗
]𝛿𝒒𝑗

𝑂,𝑂 , [�̂�𝑗] ≡ [

𝟎 �̃�1

⋮ ⋮
𝟎 �̃�2𝑁𝐼𝐹

]. (7.76) 

Eqs. (7.33) and (7.39) are used to rewrite this in terms of 𝛿𝒙: 

 𝛿[�̅�𝑂
𝑗
] [𝑮]�̇� = −𝛿[�̃�𝑗

𝑗,𝑂
] 𝒘𝑗 = [�̂�𝑗][𝒁𝑗][�̅�𝑂

𝑗
][𝑮]𝛿𝒙 = [�̂�𝑗][𝒁𝑗][𝑩]𝛿𝒙. (7.77) 

 

The second term in the virtual change of [𝑩]�̇� is related to the virtual change of [𝑮]. Note 

that [𝑮] relates the virtual change in finite rotations to the virtual change of Euler parameters. 
[𝑮] only contains terms associated with these rotations. For each interface node we can write, 

based on eq. (7.38): 

 𝛿𝑮𝑘
𝑂  �̇�𝐺

𝑂 = 𝝆(�̇�𝑘
𝑂)  𝛿𝝀𝑘

𝑂 , (7.78) 

where 𝝆 is a function: 

 

𝝆(�̇�) ≡ 2 [

�̇�1 −�̇�0 �̇�3 −�̇�2
�̇�2 −�̇�3 −�̇�0 �̇�1
�̇�3 �̇�2 −�̇�1 −�̇�0

]. (7.79) 

The terms for the individual interface rotations can be combined for the full matrix into a 

single equation, such that the second term in 𝛿[𝑩]�̇� becomes: 
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 [�̅�𝑂
𝑗
] 𝛿[𝑮] �̇� = [�̅�𝑂

𝑗
] 𝛿[𝑮] ⋅ �̇� = [�̅�𝑂

𝑗
][𝝆]𝛿𝒙. (7.80) 

 

By substituting eqs. (7.71), (7.77) and (7.80) in eq. (7.68), the convective inertia can be writ-

ten as: 

 𝒉𝑐𝑜𝑟𝑜𝑡 = [�̇�]
𝑇
[𝑴𝐴𝑙𝑙

𝑗
][𝑩]�̇� − [𝑩]𝑇[𝑴𝐴𝑙𝑙

𝑗
][�̃�𝑗

𝑗,𝑂
][𝑩]�̇� 

−([𝑩]𝑇[𝒁𝑗]𝑇[�̂�𝑗]
𝑇
+ [𝝆]𝑇[�̅�𝑗

𝑂]) [𝑴𝐴𝑙𝑙
𝑗
][𝑩]�̇�. 

(7.81) 

7.A.4 Derivation of the full inertia 
This section derives the full inertia, which was implicitly defined in Section 7.3.7.2, eq. 

(7.49): 

 
𝛿𝒙𝑇𝓗 = ∫(𝛿𝒓𝑠

𝑂,𝑂)
𝑇
�̈�𝑠
𝑂,𝑂𝜌 𝑑𝑉

𝑉

    ∀   𝛿𝒙. (7.82) 

The velocity and virtual change of the position 𝒓𝑠
𝑂,𝑂

 were defined in eq. (7.48): 

 �̇�𝑠
𝑂,𝑂 = 𝑹𝑗

𝑂𝚽𝐴𝑙𝑙,𝑠
𝑗

[�̅�𝑂
𝑗
]�̇�𝐴𝑙𝑙

𝑂,𝑂, 𝛿𝒓𝑠
𝑂,𝑂 = 𝑹𝑗

𝑂𝚽𝐴𝑙𝑙,𝑠
𝑗

[�̅�𝑂
𝑗
] 𝛿𝒒𝐴𝑙𝑙

𝑂,𝑂 , (7.83) 

in which the 3 × 𝑁𝐴𝑙𝑙  matrix 𝚽𝐴𝑙𝑙,𝑠
𝑗

 contains the mode shapes evaluated at point 𝑠: 

 𝚽𝐴𝑙𝑙,𝑠
𝑗

= [𝚽1,𝑠
𝑗

… 𝚽𝑁𝐴𝑙𝑙,𝑠
𝑗

]. (7.84) 

The acceleration of point 𝑠 is obtained by differentiation of the velocity: 

 �̈�𝑠
𝑂,𝑂 = 𝑹𝑗

𝑂𝚽𝐴𝑙𝑙,𝑠
𝑗

[�̅�𝑂
𝑗
]�̈�𝐴𝑙𝑙

𝑂,𝑂 + 𝑹𝑗
𝑂�̃�𝑗

𝑗,𝑂
𝚽𝐴𝑙𝑙,𝑠
𝑗

[�̅�𝑂
𝑗
]�̇�𝐴𝑙𝑙

𝑂,𝑂 − 𝑹𝑗
𝑂𝚽𝐴𝑙𝑙,𝑠

𝑗
�̃�𝑗
𝑗,𝑂
[�̅�𝑂

𝑗
]�̇�𝐴𝑙𝑙

𝑂,𝑂. (7.85) 

By substituting eqs. (7.39), (7.83) and (7.85) into eq. (7.82) we find an expression for the full 

inertia: 

 𝓗 = [𝑮]𝑇[�̅�𝑗
𝑂][𝑴𝐴𝑙𝑙

𝑗
][�̅�𝑂

𝑗
]�̈�𝐴𝑙𝑙

𝑂,𝑂 + [𝑮]𝑇[�̅�𝑗
𝑂]([𝑵𝐴𝑙𝑙

𝑗
] − [𝑴𝐴𝑙𝑙

𝑗
][�̃�𝑗

𝑗,𝑂
])[�̅�𝑂

𝑗
]�̇�𝐴𝑙𝑙

𝑂,𝑂, (7.86) 

with  

 
[𝑴𝐴𝑙𝑙

𝑗
] = ∫(𝚽𝐴𝑙𝑙,𝑠

𝑗
)
𝑇
𝚽𝐴𝑙𝑙,𝑠
𝑗

 𝜌𝑑𝑉
𝑉

,   

[𝑵𝐴𝑙𝑙
𝑗
] = ∫(𝚽𝐴𝑙𝑙,𝑠

𝑗
)
𝑇
�̃�𝑗
𝑗,𝑂
𝚽𝐴𝑙𝑙,𝑠
𝑗

 𝜌𝑑𝑉
𝑉

. 
(7.87) 

Note that [𝑴𝐴𝑙𝑙
𝑗
] is equal to the reduced local mass matrix obtained by the finite element 

model as also used in eq. (7.44). The integral [𝑵𝐴𝑙𝑙
𝑗
] depends on the velocity which would 

require to compute this integral at every time step. However, according to eq. (7.62), the last 

two terms in the integral can be rewritten for each mode 𝑘 in 𝚽𝐴𝑙𝑙,𝑠
𝑗

: 

 �̃�𝑗
𝑗,𝑂
𝚽𝑘,𝑠
𝑗
= −�̃�𝑘,𝑠

𝑗
𝝎𝑗
𝑗,𝑂
. (7.88) 
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This means that 𝝎𝑗
𝑗,𝑂

 can be taken outside the integral and [𝑵𝐴𝑙𝑙
𝑗
] is therefore rewritten to: 

 
[𝑵𝐴𝑙𝑙

𝑗
] = −∫𝜌(𝚽𝐴𝑙𝑙,𝑠

𝑗
)
𝑇
�̃�𝐴𝑙𝑙,𝑠
𝑗

𝑑𝑉
𝑉

[𝝎𝑗
𝑗,𝑂
], (7.89) 

where the 3 × 3𝑁𝐴𝑙𝑙  matrix  �̃�𝐴𝑙𝑙,𝑠
𝑗

 defines the skew-symmetric matrices for each of the modes 

of point 𝑠 and the 3𝑁𝐴𝑙𝑙 × 𝑁𝐴𝑙𝑙 matrix [𝝎𝑗
𝑗,𝑂
] consist of 𝑁𝐴𝑙𝑙  times the vector 𝝎𝑗

𝑗,𝑂
: 

 

�̃�𝐴𝑙𝑙,𝑠
𝑗

≡ [�̃�1,𝑠
𝑗

… �̃�𝑁𝐴𝑙𝑙,𝑠
𝑗

], [𝝎𝑗
𝑗,𝑂
] ≡ [

𝝎𝑗
𝑗,𝑂

  

 ⋱  

  𝝎𝑗
𝑗,𝑂
]. (7.90) 

The integral in eq. (7.89) is independent of the velocity. However, it cannot be computed 

based on default finite element matrices as it requires to evaluate this integral for each ele-

ment in the finite element model. 

 

The acceleration of the absolute interface coordinates can be expressed in terms of �̈�, using 

eqs. (7.39) and (7.70): 

 
�̈�𝐴𝑙𝑙
𝑂,𝑂 =

𝑑

𝑑𝑡
([𝑮]�̇�) = [�̇�]�̇� + [𝑮]�̈� = [𝑮]�̈�. (7.91) 

By substituting this equation and using the definition of [𝑩] (see eq. (7.68)), we can write the 

total inertia as: 

 𝓗 = [𝑩]𝑇[𝑴𝐴𝑙𝑙
𝑗
][𝑩]�̈� + [𝑩]𝑇[𝑵𝐴𝑙𝑙

𝑗
][𝑩]�̇� − [𝑩]𝑇[𝑴𝐴𝑙𝑙

𝑗
][�̃�𝑗

𝑗,𝑂
][𝑩]�̇�. (7.92) 
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Superelement with deformable interfaces 

CHAPTER 8  
8 Derivation of a superelement with deformable interfaces – 

applied to model flexure joints 

Abstract 
Design and optimization as well as real time control of flexure mechanisms require 

efficient but accurate models. The flexures can be modelled using beam elements 

and the frame parts can be modelled using superelements. Such a superelement effi-

ciently models arbitrarily shaped bodies by few coordinates, using models obtained 

by model order reduction. The interfaces between the frame parts and the flexures 

often experience considerable deformation which affects the stiffness. To define the 

interface deformation in a reduced order model, this chapter derives a multipoint 

constraint formulation, which relates the nodes on the deformable interface surface 

of a finite element model to a few coordinates. The multipoint constraints are im-

posed using a combination of the Lagrange multiplier method and master-slave elim-

ination for efficient model order reduction. The resulting reduced order models are 

used in the Generalized-strain multi-node superelement (GMS) that was defined in 

Chapter 7. The interface deformations can be coupled to the cross-sectional defor-

mation of higher order beam elements (i.e. beam elements of which the deformation 

of the cross-sections is explicitly taken into account). 

This chapter applies this technique to model flexure joints, where the flexures 

are modelled with beam elements, and the frame components and critical connec-

tions using the GMS. This approach gives generally over 94% accurate stiffness, 

compared to nonlinear finite element models. The errors were often more than 50% 

lower than errors of models which only contain beam elements. 

 

8.1 Introduction 
Design and optimization as well as real-time high bandwidth control of flexure mechanisms 

require efficient but accurate models. The often long and slender flexures can be modelled 

using beam models. Sophisticated beam elements [105, 140] for the modelling of flexures 

have been derived and implemented in the generalized strain formulation [25]. The frame 

parts in flexure mechanisms, which often have a complex shape, can be modelled efficiently 

using superelements. A superelement linearly describes deformation of arbitrarily shaped 

parts with only a few coordinates. In Chapter 7, a superelement has been formulated in the 

generalized strain formulation, referred to as the Generalized-strain Multi-node Superele-

ment (GMS). It has been applied to model the frame parts of flexure mechanisms, showing 
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efficient modelling with relatively good accuracy. However, the interfaces of the GMS were 

defined to be rigid, whereas in reality the interfaces between frame parts and the flexures 

often experience considerable deformation. For better accuracy, the deformation of the inter-

faces of the frame parts that are modelled using the superelement should be taken into ac-

count. 

 

The stiffness and inertia properties of superelements are generally obtained using model or-

der reduction methods. These methods reduce the number of degrees of freedom in the finite 

element model of a component by describing the deformation using a limited number of de-

formation modes. Overviews of the different methods can be found in [5, 63, 167]. The sur-

faces of the component to which other components are connected are called interface sur-

faces. The deformation of an interface surface in the finite element model is described by the 

displacements of all the nodes on the surface. Most conventional model order reduction tech-

niques (e.g. the techniques proposed by Hurty [95] and Craig and Bampton [59]) take all 

these displacements into account in the reduced model. However, this results in large reduced 

order models if there are a lot of nodes on the interface surface. 

Interface reduction methods can be used to reduce these models further. They describe 

the deformations of the interface surfaces using a limited number of modes. Overviews of 

the different methods can be found in [46, 108]. The most radical method of reducing the 

interface is by assuming it to be rigid. This makes it possible to describe the displacement of 

the interface by the displacement and rotation of a single master node, which is often called 

the condensation node. The existence of the condensation node in this approach makes the 

resulting reduced order models suitable for use in multibody analysis (see e.g. [44]), because 

the positions of the condensation nodes of two connected components can be coupled in a 

geometrically nonlinear analysis. This approach was also applied in Chapter 7. 

The ‘prior basis function method’ [46, 91] extends this method by adding a linear combi-

nation of deformation fields to the rigid interfaces in order to describe interface surface de-

formation. These fields are hereinafter called interface deformation fields. The generalized 

coordinates that describe the amount of this deformation, together with the six coordinates of 

the condensation node, are called the condensation coordinates. 

If two components are coupled, their interfaces should deform identically. This compati-

bility can be imposed by choosing the same interface deformation fields for both components 

and relating the corresponding condensation coordinates. This approach has been applied on 

a two-node superelement [34]. However, apart from in this paper, interface deformation in 

geometrically nonlinear multibody simulations has rarely been investigated in literature. 

 

The relation between the nodes on the interface surface and the condensation coordinates is 

called a multipoint constraint. References [2, 3, 29, 44, 86, 112, 121] show formulations for 

a multipoint constraint without interface deformation fields. Two types are considered: the 

‘rigid multipoint constraint’ and the ‘interpolation multipoint constraint’ (sometimes referred 

to as ‘RBE2’ and ‘RBE3’ respectively). Both types are extended in this chapter in order to 

apply them for deformable interfaces. The results of the interpolation multipoint constraint 

are compared with the results of existing literature. The rigid multipoint constraint will be 

referred to as ‘exact multipoint constraint’ because the term ‘rigid’ is confusing in this con-

text. 

 Exact multipoint constraint (EMPC): The interface surface displaces and deforms 

exactly as prescribed by the displacements of the condensation node and interface 

deformation fields. 

 Interpolation multipoint constraint (IMPC): The interface surface is completely free 

to deform. The condensation coordinates follow the average motion of the surface. 



8.1.  Introduction 163 

  

 

The multipoint constraints can be imposed using the penalty function method, the Lagrange 

multiplier method and master-slave elimination [86, 112]. 

 A disadvantage of the penalty function method is that it requires the selection of a 

suitable penalty factor. This selection is nontrivial, compromising between accuracy 

and computational stability [112, 176]. 

 A disadvantage of the Lagrange multiplier method is that it increases the number of 

unknowns, whereas master-slave elimination decreases the number of unknowns, 

both in proportion to the number of constraint equations. This is not a big issue for 

the IMPC as the number of constraint equations of this constraint is much lower 

than the number of degrees of freedom in the finite element model. However, for 

the EMPC, the number of constraint equations can be much higher as it scales with 

the number of nodes on the interface surface. 

 A disadvantage of master-slave elimination is that it requires a suitable selection of 

a set of dependent coordinates to avoid singularity in the equations. For the EMPC 

all nodes on the interface surface are dependent. However, the selection is nontrivial 

in case of the IMPC. For the IMPC the selection can be based on physical insights 

[2, 86], but this is shown only for multipoint constraints without interface defor-

mation fields. The selection can also be avoided by computing the null-space of the 

constraint relations [44]. However, this may require a lot of computation time and 

has a negative effect on the sparsity of the constrained finite element matrices. 

To a large extent, all these disadvantages can be avoided by using master-slave elimination 

to impose the EMPCs and the Lagrange multiplier method to impose the IMPCs, which will 

be detailed in this chapter. 

 

In higher order beam theories the deformation of the cross-section of the beam is taken into 

account [51, 66, 67, 97]. This deformation can be interpreted as interface deformation. The 

cross-sectional deformation is especially important in thin-walled beams with an open profile 

[94, 103, 174, 191]. The resulting beam elements have extra degrees of freedom at both nodes 

that define the amount of cross-sectional deformation. This deformation can be coupled to 

the deformation of the interface surface of a superelement if the deformation fields are equal. 

This method was applied in the linear structural analysis of frames [109, 177] and for concept 

modelling of vehicles [128, 136]. 

  

This chapter shows how interface deformation can be defined in the geometrically nonlinear 

superelement (GMS). To obtain a reduced order model for the GMS, a multipoint constraint 

for deformable interfaces is derived and imposed efficiently, using a combination of La-

grange multipliers and master-slave elimination. The interface deformation of the GMS can 

be defined consistently with that of the cross-sectional deformation of connected higher order 

beam elements. This is applied in order to analyze flexure joints using a combination of 

GMSs and beam elements. 

 

Section 8.2 shows how a reduced order finite element model with deformation of interfaces 

can be obtained using multipoint constraints. Section 8.3 summarizes the GMS formulation 

and explains how the reduced order model can be used in this superelement. Section 8.4 

briefly introduces higher order beam theory, to show how the cross-sectional deformation is 

related to interface deformation of the superelement. The formulation is validated with four 

examples in Section 8.5. 
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8.2 Reduced finite element model 
This section defines how the Craig-Bampton reduced order model including interface defor-

mation is obtained. Section 8.2.1 defines the multipoint constraints and Section 8.2.2 derives 

the constraint equilibrium equation from which the reduced order model is obtained. 

8.2.1 Multipoint constraints 
Figure 8.1 shows a finite element model (Hereinafter FE model), with three interfaces. The 

nodes of the model will be referred to as FE nodes. The frame 𝑖 is the global reference frame 

of the FE model. The interface surfaces are coloured dark grey and to each interface a con-

densation node is attached, visualized by a frame. The vector 𝒓𝑔
𝑖,𝑘

 defines the undeformed 

position of an FE node 𝑔 (lower index) with respect to condensation node 𝑘 (second upper 

index), defined in the orientation of frame 𝑖 (first upper index). The vector 𝒖𝑘
𝑖,𝑖

 defines the 

global displacement of node 𝑘, and 𝝍𝑘
𝑖,𝑖

 defines its rotation.  

 

For a rigid interface the displacement of each FE node, 𝑔, on the interface surface can be 

predicted linearly based on the displacement of the condensation node. This predicted dis-

placement �̂�𝑔
𝑖,𝑖

 can be expressed as: 

 �̂�𝑔
𝑖,𝑖 = 𝒖𝑘

𝑖,𝑖 − �̃�𝑔
𝑖,𝑘𝝍𝑘

𝑖,𝑖 . (8.1) 

The tilde defines the skew-symmetric matrix which is related to the cross product, such that 

for two arbitrary  3 × 1 vectors 𝒂 and 𝒃, the following relations hold: 

 

�̃� ≡ [

0 −𝑎3 𝑎2
𝑎3 0 −𝑎1
−𝑎2 𝑎1 0

] , �̃�𝒃 = 𝒂 × 𝒃. (8.2) 

 

 

 

Figure 8.1: Reducing a finite element model of an I-profile connection. Frame 𝑖 is the 

global reference frame of the finite element model, the other frames are condensation 

nodes defining the orientation of the interfaces. 𝑔 is a FE node on the interface surface 

that is related to condensation node 𝑘.  For visualization, the mesh is coarser than the 

mesh used to obtain the results in Section 8.5.1. 



8.2.  Reduced finite element model 165 

  

 

 
Figure 8.2: Overview of the multipoint constraints for an example of a one-dimensional 

interface with seven nodes. The predicted displacements are obtained based on the dis-

placement of the condensation node and the deformation fields. These predicted displace-

ments are used to obtain an EMPC or IMPC. 

Deformation of the interface surface can be added to this predicted displacement using inter-

face deformation fields 𝝎(𝒓𝑔
𝑘,𝑘). These fields are a user-defined function of the position on 

the interface surface. The fields are multiplied by coordinates, collected in the vector 𝜶𝑘. The 

resulting predicted displacement can be written as: 

 
�̂�𝑔
𝑖,𝑖 = 𝒖𝑘

𝑖,𝑖 − �̃�𝑔
𝑖,𝑘𝝍𝑘

𝑖,𝑖 + 𝑹𝑘
𝑖  𝝎(𝒓𝑔

𝑘,𝑘) 𝜶𝑘 = 𝑨𝑔 {
𝒑𝑘
𝑖,𝑖

𝜶𝑘
}, (8.3) 

where 𝑹𝑘
𝑖  is the rotation matrix that defines the rotation of node 𝑘 with respect to the global 

frame, and: 

 
𝑨𝑔 ≡ [𝟏 −�̃�𝑔

𝑖,𝑘 𝑹𝑘
𝑖  𝝎(𝒓𝑔

𝑘,𝑘)], 𝒑𝑘
𝑖,𝑖 ≡ {

𝒖𝑘
𝑖,𝑖

𝝍𝑘
𝑖,𝑖
}. (8.4) 

 

This is summarized in Figure 8.2: The effect of the displacement of the condensation node 

and the deformation fields is combined to obtain the predicted displacements. These pre-

dicted displacements can be used to define two types of multipoint constraints. The first type, 

the exact multipoint constraint (EMPC), implies that the displacements on the interface sur-

face should equal the predicted displacement, resulting in three constraint equations for each 

FE node on the interface surface: 

 
𝒖𝑔
𝑖,𝑖 = 𝑨𝑔 {

𝒑𝑘
𝑖,𝑖

𝜶𝑘
}     ∶      𝑔 ∈ Face. (8.5) 

 

The second type of multipoint constraint is the interpolation multipoint constraint (IMPC). It 

is defined as follows: the interface surface is free to deform and the condensation coordinates 
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are defined such that the squared error between the expected displacements and the real dis-

placements of all FE nodes on the interface surface is minimized. The squared error is defined 

in a cost function as: 

 

𝑉(𝒑𝑘
𝑖,𝑖 , 𝜶𝑘) =

1

2
∑ 𝑤𝑔(𝒖𝑔

𝑖,𝑖 − �̂�𝑔
𝑖,𝑖)

𝑇
(𝒖𝑔

𝑖,𝑖 − �̂�𝑔
𝑖,𝑖)

Face

𝑔

, (8.6) 

where 𝑤𝑔 is a weighting factor for the FE node, which should be chosen proportional to the 

part of the interface surface that the node represents. The constraints that minimize this cost 

function are obtained by substituting eq. (8.3) and then enforcing the derivative to be zero: 

 

(

 
 𝜕𝑉

𝜕 {
𝒑𝑘
𝑖,𝑖

𝜶𝑘
}
)

 
 

𝑇

= (∑ 𝑤𝑔𝑨𝑔
𝑇𝑨𝑔

Face

𝑔

) {
𝒑𝑘
𝑖,𝑖

𝜶𝑘
} − ∑ 𝑤𝑔𝑨𝑔

𝑇𝒖𝑔
𝑖,𝑖

Face

𝑔

= 𝟎. (8.7) 

The IMPC will typically underestimate the stiffness and is the most logical choice if the 

interface is connected to a component which is more flexible around the interface. On the 

other hand, the EMPC will typically overestimate the stiffness and is the most logical choice 

if the interface is connected to a component which is much stiffer around its interface. This 

difference between the two types of multipoint constraints was also noted in [86]. 

 

Equations for the IMPC without interface deformation fields are also given in [29, 38]. These 

results are derived by assuming a relation between the forces on the FE nodes on the interface 

surface and the forces and moments on the condensation node. The result is a quite long 

expression which is slightly different from eq. (8.7). Another simplified relation for the IMPC 

is given in [2, 3, 86, 121, 150]. In these papers, the condensation node is placed in the centre 

of the interface surface and the translational displacement and rotation of the condensation 

node is written as: 

 
𝒖𝑘
𝑖,𝑖 ≈

∑ 𝑤𝑔𝒖𝑔
𝑖,𝑖Face

𝑔

∑ 𝑤𝑔
Face
𝑔

, 𝝍𝑘
𝑖,𝑖 ≈

∑ 𝑤𝑔(�̃�𝑔
𝑖,𝑘𝒖𝑔

𝑖,𝑖)Face
𝑔

∑ 𝑤𝑔
Face
𝑔 |𝒓𝑔

𝑖,𝑘|
2 . (8.8) 

It can be shown that the translational displacement of the condensation node for these both 

methods corresponds to the constraint in eq. (8.7), but the resulting rotation is different. To 

evaluate this difference, Figure 8.3 shows two interface surfaces, both with four FE nodes 

that have equal weighting. Condensation node 𝑘 is placed in the centre of the interface sur-

faces. The four FE nodes are displaced in the 𝑥-direction, according to a rigid rotation 𝛽 

around the 𝑧-axis. The resulting rotations of condensation node 𝑘 are given in Table 8.1. The 

IMPC of eq. (8.7) as used in this chapter gives the expected rotation 𝛽 around the 𝑧-axis for 

both shapes, whereas the equations used in the other literature give results that depend on the 

width 𝑏. 

8.2.2 Model reduction 
This subsection derives the constrained equilibrium equation of the FE model with the mul-

tipoint constraints. Then the Craig Bampton method [59] is applied to obtain the reduced 

order model. 
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Figure 8.3: Two interface surfaces with rigid rotation 𝛽. 

Table 8.1: Rotations of condensation node 𝑘 for the displaced interfaces of Figure 8.3. 

Case Current 
Eq. (8.7) 

refs. [29, 38] Refs. [2, 3, 86, 121, 150] 
Eq. (8.8) 

Rectangle 𝝍𝑘
𝑖,𝑖 = {

0
0
𝛽
} 𝝍𝑘

𝑖,𝑖 = {
0
0
𝛽
} 𝝍𝑘

𝑖,𝑖 = {
0
0

𝛽 (𝑏2 + 1)⁄
} 

Parallelogram 𝝍𝑘
𝑖,𝑖 = {

0
0
𝛽
} 𝝍𝑘

𝑖,𝑖 = {

0
−𝛽 𝑏⁄

𝛽
} 𝝍𝑘

𝑖,𝑖 = {

0
−𝑏𝛽 (𝑏2 + 2)⁄

2𝛽 (𝑏2 + 2)⁄
} 

 

8.2.2.1 Unconstrained static equation 
The equations of an unconstrained FE model can be written as: 

 [𝑴𝐹𝐸𝑀
𝑖 ]�̈�𝐹𝐸𝑀

𝑖,𝑖 + [𝑲𝐹𝐸𝑀
𝑖 ]𝒖𝐹𝐸𝑀

𝑖,𝑖 = 𝑭𝐹𝐸𝑀
𝑖 , (8.9) 

where [𝑴𝐹𝐸𝑀
𝑖 ] and [𝑲𝐹𝐸𝑀

𝑖 ] are the mass and stiffness matrix of the FE model. 𝒖𝐹𝐸𝑀
𝑖,𝑖

, �̈�𝐹𝐸𝑀
𝑖  

and 𝑭𝐹𝐸𝑀
𝑖  are the displacements, accelerations and forces of the FE nodes respectively, all 

expressed in the orientation of the global frame 𝑖 of the FE model. Besides the displacements 

of the FE nodes, there are also condensation coordinates. The displacements of these coordi-

nates will become the boundary displacements in the reduced method and are defined in a 

vector as: 

 

𝒑𝑏𝑛𝑑
𝑖,𝑖 ≡ {

𝒑𝐼𝐹
𝑖,𝑖

𝒑𝛼
} , 𝒑𝐼𝐹

𝑖,𝑖 ≡ {
𝒑𝐼𝐹 1
𝑖,𝑖

⋮

𝒑𝐼𝐹 𝑁
𝑖,𝑖

} , 𝒑𝛼 ≡ {

𝜶𝐼𝐹 1
⋮

𝜶𝐼𝐹 𝑁
}. (8.10) 

The unconstrained static equation in terms of all displacements can be written as: 

 
[
𝟎 𝟎
𝟎 [𝑲𝐹𝐸𝑀

𝑖 ]
] {
𝒑𝑏𝑛𝑑
𝑖,𝑖

𝒖𝐹𝐸𝑀
𝑖,𝑖

} = {
𝑭𝑏𝑛𝑑
𝑖

𝑭𝐹𝐸𝑀
𝑖

} = {𝑭𝑏𝑛𝑑
𝑖

𝟎
}, (8.11) 

where 𝑭𝑏𝑛𝑑
𝑖  are the loads on the boundary coordinates. The forces applied to the FE nodes, 

𝑭𝐹𝐸𝑀
𝑖 , are zero in the derivation of the Craig-Bampton reduced model. 
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8.2.2.2 Constrained static equation 
The model can contain EMPCs and IMPCs. The equations for all IMPCs in the model, as 

defined in eq. (8.7), are combined to: 

 
[𝚽A 𝚽𝐵] {

𝒑𝑏𝑛𝑑
𝑖,𝑖

𝒖𝐹𝐸𝑀
𝑖,𝑖

} = 𝟎. (8.12) 

These constraints are applied to eq. (8.11) using the Lagrange multiplier method: 

 

[

𝟎 𝟎 𝚽𝐴
𝑇

𝟎 [𝑲𝐹𝐸𝑀
𝑖 ] 𝚽𝐵

𝑇

𝚽A 𝚽𝐵 𝟎

] {
𝒑𝑏𝑛𝑑
𝑖,𝑖

𝒖𝐹𝐸𝑀
𝑖,𝑖

𝝀

} = {
𝑭𝑏𝑛𝑑
𝑖

𝟎
𝟎

}, (8.13) 

where 𝝀 are the Lagrange multipliers. 

 

The EMPCs will be solved using master-slave elimination. The equations of all EMPCs are 

combined to: 

 𝒖𝐹𝐸𝑀
𝑖,𝑖 = 𝑩𝐴𝒑𝑏𝑛𝑑

𝑖,𝑖 + 𝑩𝐵𝒖𝑓
𝑖,𝑖 , (8.14) 

where the terms in 𝑩𝐴 come from the constraint equations as defined in eq. (8.5). The vector 

𝒖𝑓
𝑖,𝑖

 contains the displacements of the FE nodes that are not on the interface surface of an 

EMPC, so 𝑩𝐵 is just a Boolean matrix that relates these displacements in 𝒖𝐹𝐸𝑀
𝑖,𝑖

 to 𝒖𝑓
𝑖,𝑖

. Eq. 

(8.14) can be used to write a relation in terms of all displacements and Lagrange mulitpliers: 

 

{
𝒑𝑏𝑛𝑑
𝑖,𝑖

𝒖𝐹𝐸𝑀
𝑖,𝑖

𝝀

} = [𝒀𝑖] {

𝒑𝑏𝑛𝑑
𝑖,𝑖

𝒖𝑓
𝑖,𝑖

𝝀

} , [𝒀𝑖] ≡ [
𝟏 𝟎 𝟎
𝑩𝐴 𝑩𝐵 𝟎
𝟎 𝟎 𝟏

]. (8.15) 

Applying this coordinate transformation to eq. (8.13) gives: 

 

[𝒀𝑖]𝑇 [

𝟎 𝟎 𝚽𝐴
𝑇

𝟎 [𝑲𝐹𝐸𝑀
𝑖 ] 𝚽𝐵

𝑇

𝚽A 𝚽𝐵 𝟎

] [𝒀𝑖] {

𝒑𝑏𝑛𝑑
𝑖,𝑖

𝒖𝑓
𝑖,𝑖

𝝀

} = [𝒀𝑖]𝑇 {
𝑭𝑏𝑛𝑑
𝑖

𝟎
𝟎

}. (8.16) 

Computing the matrix products results in the constrained static equation: 

 

[

𝑩𝐴
𝑇[𝑲𝐹𝐸𝑀

𝑖 ]𝑩𝐴 𝑩𝐴
𝑇[𝑲𝐹𝐸𝑀

𝑖 ]𝑩𝐵 𝚽𝐴
𝑇 +𝑩𝐴

𝑇𝚽𝐵
𝑇

𝑩𝐵
𝑇 [𝑲𝐹𝐸𝑀

𝑖 ]𝑩𝐴 𝑩𝐵
𝑇 [𝑲𝐹𝐸𝑀

𝑖 ]𝑩𝐵 𝑩𝐵
𝑇𝚽𝐵

𝑇

𝚽A +𝚽𝐵𝑩𝐴 𝚽𝐵𝑩𝐵 𝟎

] {

𝒑𝑏𝑛𝑑
𝑖,𝑖

𝒖𝑓
𝑖,𝑖

𝝀

} = {
𝑭𝑏𝑛𝑑
𝑖

𝟎
𝟎

}. (8.17) 
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8.2.2.3 Craig-Bampton reduction 
A Craig-Bampton reduced model contains boundary modes and internal modes. The bound-

ary modes are related to the boundary-displacements 𝒑𝑏𝑛𝑑
𝑖,𝑖

 and can be obtained by Guyan 

reduction. The internal displacements can be expressed in terms of the boundary displace-

ments using the last two rows of eq. (8.17): 

 
{
𝒖𝑓
𝑖,𝑖

𝝀
} = 𝚽𝑓𝜆

𝑖 𝒑𝑏𝑛𝑑
𝑖 , 𝚽𝑓𝜆

𝑖 ≡ −[
𝑩𝐵
𝑇 [𝑲𝐹𝐸𝑀

𝑖 ]𝑩𝐵 𝑩𝐵
𝑇𝚽𝐵

𝑇

𝚽𝐵𝑩𝐵 𝟎
]

−1

[
𝑩𝐵
𝑇[𝑲𝐹𝐸𝑀

𝑖 ]𝑩𝐴
𝚽A +𝚽𝐵𝑩𝐴

]. (8.18) 

This result can be substituted into eq. (8.14) by which the boundary modes are obtained that 

relate the boundary displacements to the displacements of the FE nodes: 

 
𝒖𝐹𝐸𝑀
𝑖,𝑖 = 𝑩𝐴𝒑𝑏𝑛𝑑

𝑖,𝑖 + [𝑩𝐵 𝟎] {
𝒖𝑓
𝑖

𝝀
} = [𝚽𝑏𝑛𝑑

𝑖 ]𝒑𝑏𝑛𝑑
𝑖,𝑖 ,   

[𝚽𝑏𝑛𝑑
𝑖 ]   ≡ 𝑩𝐴 + [𝑩𝐵 𝟎]𝚽𝑓𝜆

𝑖 . 
(8.19) 

 

The internal Craig-Bampton modes are the natural modes of the component where the bound-

ary coordinates are fixed. These are obtained by solving the constrained eigenvalue problem 

of the inner part of the stiffness and mass matrix: 

 
[
𝑩𝐵
𝑇[𝑲𝐹𝐸𝑀

𝑖 ]𝑩𝐵 𝑩𝐵
𝑇𝚽𝐵

𝑇

𝚽𝐵𝑩𝐵 𝟎
] {
𝝓𝑖
𝝀
} = 𝜔2 [

𝑩𝐵
𝑇 [𝑴𝐹𝐸𝑀

𝑖 ]𝑩𝐵 𝟎

𝟎 𝟎
] {
𝝓𝑖
𝝀
}. (8.20) 

Only the internal modes in the desired frequency range have to be selected. The internal 

modes for all FE displacements are obtained using eq. (8.14) by noting that the displacements 

𝒑𝑏𝑛𝑑
𝑖  are zero for the internal modes: 

 𝒖𝐹𝐸𝑀
𝑖,𝑖 = 𝑩𝐵𝒖𝑓

𝑖,𝑖 = [𝚽𝑖𝑛𝑡
𝑖 ]𝜼𝑖𝑛𝑡 , [𝚽𝑖𝑛𝑡

𝑖 ] ≡ 𝑩𝐵𝝓𝑖,𝑑𝑒𝑠𝑖𝑟𝑒𝑑 , (8.21) 

where 𝝓𝑖,𝑑𝑒𝑠𝑖𝑟𝑒𝑑 are the modes 𝝓𝑖  in the desired frequency range and 𝜼𝑖𝑛𝑡 is the vector with 

the generalized coordinates of the internal modes. 

 

All the Craig-Bampton modes (eqs. (8.19) and (8.21)) are combined into: 

 𝒖𝐹𝐸𝑀
𝑖,𝑖 = [𝚽𝐴𝑙𝑙

𝑖 ]𝒑𝐴𝑙𝑙
𝑖,𝑖 , (8.22) 

in which 

 
[𝚽𝐴𝑙𝑙

𝑖 ] = [[𝚽𝑏𝑛𝑑
𝑖 ] [𝚽𝑖𝑛𝑡

𝑖 ]], 𝒑𝐴𝑙𝑙
𝑖,𝑖 = {

𝒑𝑏𝑛𝑑
𝑖,𝑖

𝜼𝑖𝑛𝑡
}. (8.23) 

Using these modes, the reduced stiffness and mass matrices in the orientation of the global 

frame of the FE model can be written as: 

 [𝑲𝐴𝑙𝑙
𝑖 ] = [𝚽𝐴𝑙𝑙

𝑖 ]
𝑇
[𝑲𝐹𝐸𝑀

𝑖 ][𝚽𝐴𝑙𝑙
𝑖 ], [𝑴𝐴𝑙𝑙

𝑖 ] = [𝚽𝐴𝑙𝑙
𝑖 ]

𝑇
[𝑴𝐹𝐸𝑀

𝑖 ][𝚽𝐴𝑙𝑙
𝑖 ]. (8.24) 
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8.3 Implementation in the superelement formulation 
This section summarizes the coordinates by which the configuration of the GMS (Chapter 7) 

is defined and shows how the reduced model of the previous section can be used for this 

superelement. 

 

Figure 8.4 shows a GMS with four interface nodes. It is defined with respect to global frame 

𝑂. Note that this frame is different from the global frame in the FE model that was used to 

obtain the reduced order model. The global position of a node 𝑘 is defined by vector 𝒓𝑘
𝑂,𝑂

 

(indices are defined in a similar way to the undeformed positions 𝒓𝑔
𝑖,𝑘

 of the FE model in 

Section 8.2.1). The rotation matrix 𝑹𝑘
𝑂 defines the orientation of node 𝑘 (lower index) with 

respect to global frame 𝑂 (upper index). It depends on three independent parameters. The 

exact parameterization is not relevant to this overview and is therefore not detailed. The six 

independent parameters that define the global position and orientation of node 𝑘 are stored 

in vector 𝒒𝑘
𝑂,𝑂

. The configuration of the GMS is fully defined by the absolute nodal coordi-

nates of all interface nodes, {𝒒𝐼𝐹 1
𝑂,𝑂 , … , 𝒒𝐼𝐹 𝑁

𝑂,𝑂 }, in combination with the generalized coordinates 

of the internal deformations, 𝒒𝑖𝑛𝑡. 
 

The undeformed position and orientation of the GMS is defined by its element frame 𝑗. The 

coordinates of the element frame are dependent coordinates, i.e. they do not appear in the 

equation of motion. The user can define six relations that define the position and orientation 

of the frame as functions of the absolute nodal coordinates and internal coordinates: 

 𝒒𝑗
𝑂,𝑂 = 𝒒𝑗

𝑂,𝑂(𝒒𝐼𝐹 1
𝑂,𝑂 , … , 𝒒𝐼𝐹 𝑁

𝑂,𝑂 , 𝒒𝑖𝑛𝑡). (8.25) 

The simplest option is to define the frame in one of the interface nodes, but other options are 

also possible as detailed in Section 7.4. 

 

After the position of the element frame is obtained, the local coordinates of each interface 

node can be obtained from its global coordinates: 

 𝒒𝑘
𝑗,𝑗
= 𝒒𝑘

𝑗,𝑗
(𝒒𝑘

𝑂,𝑂 , 𝒒𝑗
𝑂,𝑂). (8.26) 

The elastic displacement of an interface node can then be obtained by subtracting the unde-

formed position from the local coordinates. The elastic displacement of the internal defor-

mation modes equals the generalized coordinates: 

 𝒑𝑘
𝑗,𝑗
= 𝒑𝑘

𝑗,𝑗
(𝒒𝑘

𝑗,𝑗
). (8.27) 

 

These displacements define the deformation of a GMS and should be related to the displace-

ments of the reduced model, 𝒑𝐴𝑙𝑙
𝑖,𝑖

, which are defined in Section 8.2.1. The displacements of 

the interface nodes, 𝒑𝑘
𝑗,𝑗

, are the displacements of the condensation nodes in the reduced 

model. The displacements of the internal deformation modes in the reduced model, 𝜼𝑖𝑛𝑡, are 

part of the internal deformation modes in the GMS. The displacements related to interface 

deformation fields, 𝒑𝛼, do not explicitly appear in the displacements of the GMS. 
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Figure 8.4: Coordinates in a GMS. 

However, the values of the warping coordinates do not depend on the position of the element 

frame, therefore they can be treated as internal displacements. The vector with all displace-

ments can be written as: 

 

𝒑𝐴𝑙𝑙
𝑗,𝑗
≡ {𝒑𝐼𝐹

𝑗,𝑗

𝒒𝑖𝑛𝑡
} , 𝒑𝐼𝐹

𝑗,𝑗
= {

𝒑𝐼𝐹 1
𝑗,𝑗

⋮

𝒑𝐼𝐹 𝑁
𝑗,𝑗

} , 𝒒𝑖𝑛𝑡 = {
𝒑𝛼
𝜼𝑖𝑛𝑡

}. (8.28) 

These are the same displacements as in the reduced model in eq. (8.23). However, they are 

defined in the orientation of a different frame. The displacements are related by a rotation 

matrix: 

 

𝒑𝐴𝑙𝑙
𝑖,𝑖 = [�̅�𝑗

𝑖]𝒑𝐴𝑙𝑙
𝑗,𝑗
, [�̅�𝑗

𝑖] ≡

[
 
 
 
 
𝑹𝑗
𝑖

⋱
𝑹𝑗
𝑖

𝟏 ]
 
 
 
 

, (8.29) 

in which [�̅�𝑗
𝑖] consist of 2𝑁𝐼𝐹 times the 3 × 3 rotation matrix 𝑹𝑗

𝑖 and an identity matrix cor-

responding to the length of vector 𝒒𝑖𝑛𝑡. The reduced stiffness and mass matrix can be ex-

pressed in the orientation of the element frame by applying this rotation to the matrices of eq. 

(8.24): 

 [𝑲𝐴𝑙𝑙
𝑗
] = [�̅�𝑖

𝑗
][𝑲𝐴𝑙𝑙

𝑖 ][�̅�𝑗
𝑖], [𝑴𝐴𝑙𝑙

𝑗
] = [�̅�𝑖

𝑗
][𝑴𝐴𝑙𝑙

𝑖 ][�̅�𝑗
𝑖]. (8.30) 

These matrices, in combination with the local positions of the condensation nodes in unde-

formed configuration are the required input to define a GMS. The displacements, 𝒑𝐴𝑙𝑙
𝑗

, are a 

result of the multibody simulation. These displacements can be applied to the constrained FE 

model to obtain strain and stress results. 

 

To ensure that the interface surfaces of two connected bodies in the multibody simulation 

match, the condensation nodes of their reduced order models should be defined in the same 

position with respect to the surface. Furthermore, the interface deformation fields of both 

reduced order models should be defined equivalent to ensure that the interface deformations 

of both components match. 
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8.4 Summary of higher order beam elements 
In conventional beam theory, the cross-section is assumed to be undeformed. Therefore, the 

global position of each point on the cross-section can be obtained by the coordinates of its 

elastic line. The position, 𝒓𝑔
𝑂,𝑂

 of a node 𝑔 at the cross-section at side 𝑝 can be written as (see 

Figure 8.5): 

 𝒓𝑔
𝑂,𝑂 = 𝒓𝑝

𝑂,𝑂 + 𝑹𝑝
𝑂 𝒓𝑔

𝑝,𝑝
. (8.31) 

In the higher order beam elements, deformation of the cross-section is typically added using 

multiple deformation fields which are functions of the position in the cross-section 𝝎(𝒓𝑔
𝑝,𝑝
), 

multiplied by axial coordinates 𝜶(𝑠). The values of these coordinates at node 𝑝 are denoted 

by 𝜶𝑝. These coordinates are extra degrees of freedom at this node, which can be coupled to 

a connected beam element. The position at the cross-section on interface 𝑝 can be defined by 

adding this deformation to eq. (8.31): 

 𝒓𝑔
𝑂,𝑂 = 𝒓𝑝

𝑂,𝑂 + 𝑹𝑝
𝑂 𝒓𝑔

𝑝,𝑝
+ 𝑹𝑝

𝑂  𝝎(𝒓𝑔
𝑝,𝑝
) 𝜶𝑝. (8.32) 

This formulation of the positions is similar to the expected displacement on the interface 

surface of a superelement, as defined in eq. (8.3). These elements can be connected by cou-

pling the node of the beam element to the interface node of the GMS. In order to enforce the 

compatibility of the interface surface deformation, the same interface deformation fields 

𝝎(𝒓𝑔
𝑝,𝑝
) should be chosen for both interfaces. 

 

In this chapter we will only use one deformation field for the beam elements, namely the 

axial warping caused by torsion. The corresponding warping fields for a thin rectangular 

cross-section and an I-profile are given in Figure 8.6. 

 

 

 
Figure 8.5: Higher order beam element. 
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Figure 8.6: Warping fields of a thin rectangular cross-section and an I-shaped cross-sec-

tion; the latter is an approximation based on thin-walled beam theory. 

8.5 Validation 
The GMS is validated using the multibody software SPACAR [100, 101] with traditional 

beam elements [105] and beam elements in which warping due to torsion is included [103], 

referred to as warping beam elements. In this section the GMS does not allow interface de-

formation when it is connected to a traditional beam element The GMS connected to a warp-

ing beam element contains interface deformation according to the connected element. 

 

First, the connection of two I-profiles gives an example of thin-walled beams where the mod-

elling of cross-sectional deformation is essential to obtain accurate stiffness results. Sec-

ondly, the GMS is used to study the clamping of a flexure. Next, examples of a folded flexure 

and a cartwheel joint show how the GMS can be used to accurately model the connection 

between multiple flexures. 

8.5.1 Connection of I-profiles 
Torsional warping is especially important in thin-walled beams with an open profile [191]. 

Figure 8.7 shows a horizontal I-profile that is connected to a vertical I-profile. Using only 

beam elements, the warping of the horizontal profile at this connection can only be consid-

ered either completely constrained or completely free. The use of a GMS allows a more pre-

cise analysis. 

 

 
Figure 8.7: Connection of two I-profiles modelled by a GMS and 10 beam elements. Di-

mensions are given in mm. Displacements are magnified by a factor of 10. 
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Table 8.2: Results of I-beam connection, including error with respect to the finite element 

model. 

Simulation 
Rotation  
angle (deg) 

Maximum 
stress (MPa) 

a. Linear finite element model (ANSYS) 2.62 325 

b. Full structure modelled by a single GMS 2.62  (0.0%) 320  (1.4%) 

c. GMS and 10 traditional beams 2.90  (11%) 231  (29%) 

d. GMS and 10 warping beams 2.54  (3.2%) 322  (0.8%) 

e. Only horizontal beam modelled using 8 traditional 

beam elements 
3.08 (18%)  

f. Only horizontal beam modelled using 8 warping 

beam elements with constrained warping at the left 

side. 

1.07  (59%)  

 

 

The profiles are made of steel (Young’s modulus 200 GPa, Poisson ratio 0.3) and a torsional 

moment of 1 000 Nm is applied to the horizontal profile. The vertical profile is exactly con-

strained: the global 𝑥 and 𝑦-displacement of both ends are constrained and at the upper node 

the axial displacement and torsional rotation are constrained. The construction is modelled 

in six different ways, listed in Table 8.2. The meshes are all generated using ANSYS with 

quadratic tetrahedrons with a size of 5 mm. The 15 flexible modes of the GMS are defined 

using the free-modes option described in Section 7.4.2, and the interface constraints are im-

posed using IMPCs. 

 

Table 8.2 shows the resulting rotation angle at the position of the applied moment and the 

maximum stress, based on which the following observations are made: 

 Modelling the structure with a single GMS (case ‘b’) gives almost the same results 

as the linear finite element model (case ‘a’), because the GMS is based on the same 

finite element model. 

 The stiffness cannot be computed accurately by modelling the horizontal I-profile 

using only beam elements, where the warping at the connection is either completely 

constrained or completely released (case ‘e’ and ‘f’ respectively). 

 Using the GMS in combination with warping beam elements (case ‘d’) gives more 

than 96% accuracy in stress and stiffness, which is over three times more accurate 

than the result obtained with the GMS with traditional beam elements (case ‘c’). 

This indicates that connecting the torsional warping of beam elements to the defor-

mation of the interfaces of the GMS can increase the accuracy significantly. 

 

The stiffness of the GMS with 10 warping beams (case ‘d’) is slightly too high. This is caused 

by the fact that the part of the horizontal I-profile modelled with the GMS is relatively small 

compared to the size of the cross-section. Some deformation is present close to this connec-

tion that is not modelled with the warping beam element. 
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Figure 8.8: Modelling the clamping of a flexure subjected to a torsional moment. 

8.5.2 The clamping of a flexure 
To investigate the warping behaviour of the interface between the GMS and a warping beam 

element, the clamping of a flexure is modelled, see Figure 8.8. The flexure is made of steel 

(Young’s modulus 200 GPa, Poisson ratio 0.3), has a length of 12 mm, a width of 10 mm 

and a thickness of 0.5 mm. A torsional moment of 0.25 Nm is applied at the unclamped side. 

The first 10 mm of the unclamped side of the flexure is modelled with five beam elements. 

The clamped side is modelled in six different ways, see Figure 8.8: 

a. A sixth beam element of which the torsional warping at the clamping is not con-

strained 

b. A sixth beam element of which the torsional warping at the clamping is constrained 

c. The clamped element is a GMS of which the warping at the clamping is constrained 

d. The clamping and 0.2 mm of the flexure are modelled by a GMS to which a sixth 

beam element is connected 

e. A block and 2 mm of the flexure are modelled by a single GMS 

f. A block and 2 mm of the flexure are modelled by a single GMS where a fillet with 

a radius of 1 mm is added. 

 

Three nonlinear finite element models are used as reference: 

g. A model without a block 

h. A model with a block 

i. A model with a block and a fillet with a radius of 1 mm. 

 



176 8.  Superelement with deformable interfaces 

 

 

 
Figure 8.9: Rotation and maximum Von Mises stress of the clamped flexure. 

The GMSs and finite element models are modelled by quadratic tetrahedrons with a mesh 

size of 0.125 mm for the part of the flexure and 0.5 mm for the part of the block. The left 

side of the GMS is always imposed with an EMPC, the side that is connected to a beam 

element is imposed using an EMPC or an IMPC. Figure 8.9 shows the resulting rotation and 

maximum stress based on which the following observations can be made: 

 Constraining the torsional warping has a significant influence on the torsional stiff-

ness, as the rotation in case ‘a’ is about 20% higher than the other cases. 

 There is only a small difference of about 2% between the rotation of the cases with-

out a block (case ‘b’, ‘c’ and ‘g’) and the cases with the block (case ‘d’, ‘e’, and 

‘h’). This indicates that the warping at such an interface can be considered to be 

fully constrained. The fillet (case ‘f’ and ‘i’) does add about 8% stiffness. 

 Comparing case ‘b’ with ‘c’ and case ‘d’ with ‘e’ indicates that modelling part of 

the flexure with a GMS gives about the same stiffness as the beam element. 

 Comparing the rotation of case ‘c’ with ‘g’, case ‘e’ with ‘g’ and case ‘f’ with ‘i’ 

shows that the rotation of the finite element model is consistently about 0.1 degrees 

higher than the rotation obtained using the GMS and beams. This is mainly because 

the finite element model is slightly more compliant at the side where the moment is 

applied. After compensating for this, the resulting stiffness obtained using the su-

perelement with warping beams is more than 97% accurate. 

 The distribution of the stress around the clamp is very similar in all cases, except 

for case ‘a’. The stress distribution of the finite element models at the side where 

the moment is applied does not correspond to the stress of the beam elements, be-

cause the multipoint constraint used in the finite element model causes some defor-

mation which does not correspond to the beam model 

 

The stress in the sharp corners of the block without fillet (case ‘d’, ‘e’ and ‘h’) becomes, in 

theory, infinitely high, therefore the maximum stress obtained by the GMS differs signifi-

cantly from the stress of the finite element model. For the other two shapes, the maximum 

stress of the GMS is closer to that of the finite element model: the errors with an EMPC are 

lower than 3%, the errors with an IMPC are lower than 13% 
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Figure 8.10: Folded flexure. For visualization, the mesh is coarser than the mesh used to 

obtain the results, and the sides show only three warping beam elements where 20 warp-

ing beam elements per side were used to obtain the results. 

8.5.3 Folded flexure 
A folded flexure (see Figure 8.10) has a high stiffness in the vertical translational direction 

and is compliant in the other five directions. Contrary to what its name suggests, a folded 

flexure is not necessarily manufactured by folding a flat strip. The folded flexure in Figure 

8.10 is made of steel (Young’s modulus 200 GPa, Poisson ratio 0.3), the fold is modelled 

using a GMS and both sides by warping beam elements. The GMS is modelled with quadratic 

tetrahedrons with a mesh size of 0.18 mm, and the interface constraints are imposed with 

EMPCs. The fold is modelled with a radius or a thickening, as shown in Figure 8.11. The 

radius is also approximated using six very short beam elements. The thickening could not be 

modelled using beam elements. A finite element model of the full folded flexure is used as a 

reference. 

 

Figure 8.11 shows the compliance in two directions. The compliance in the support direc-

tion of the flexure (the 𝑧-direction) increases significantly with the radius. This increase in 

compliance can be obtained with about 80% accuracy by the GMS, and also using six 

warping beams to approximate the fold. An applied moment around the 𝑥-axis causes tor-

sion of the clamped side of the folded flexure. This is because the torsion of the two sides 

of the folded flexure interact through the warping around the fold. This effect is affected by 

the size of the thickening, mainly because the thickening increases the resistance against 

warping. The effect is modelled with 95% accuracy using the GMS 
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Figure 8.11: Compliance of folded flexure. 

8.5.4 Cartwheel joint 
Figure 8.12 shows a cartwheel joint. The flexure is made of steel (Young’s modulus 200 GPa, 

Poisson ratio 0.3). The warping of each of the four flexures interact with each other at the 

connection. This part is modelled using a GMS built from quadratic tetrahedrons with a mesh 

size of 0.18 mm. The interface constraints of the GMS are imposed with EMPCs. The result 

with only beam elements is obtained by assuming completely constrained warping of the four 

flexures in the connection. A finite element model of the full flexure is used as a reference. 

 

 

 

 
Figure 8.12: Cartwheel flexure. For visualization, the mesh is coarser than the mesh used 

to obtain the results. 
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Figure 8.13: Rotational compliance around the z-axis of the cartwheel. 

Figure 8.13 shows the rotational compliance around the global 𝑧-axis as a function of the 

rotation. After some rotation, this compliance depends on the torsional stiffness of the flex-

ures and therefore also depends on the modelling of the warping around the connection. After 

20 degrees rotation around the 𝑦-direction, the resulting error for the GMS is about 50% 

smaller than the error obtained by only using warping beam elements. 

8.6 Conclusions 
Superelements compute the small deformation of arbitrarily shaped components efficiently, 

using the results of model order reduction techniques. A multipoint constraint has been de-

rived that can be used to obtain a reduced order model with deformable interfaces. The for-

mulation gives more consistent results than other multipoint constraint formulations for rigid 

interfaces in literature. The multipoint constraint is imposed using a combination of the La-

grange multiplier method and master-slave elimination to allow for efficient model order 

reduction. 

 

The resulting reduced order models with deformable interfaces are used in the GMS, a su-

perelement in the generalized strain formulation. The interface deformation can be defined 

consistent to the deformation of the cross-section of higher order beam elements. In this way, 

structures with slender parts can be modelled efficiently and accurately using beam elements 

in combination with GMSs. 

 

This chapter combined the GMS with beam elements in which the axial warping due to tor-

sion is included. In this way, the stiffness of a frame consisting of two I-profiles was modelled 

96% accurately, and the maximum stress over 98% accurately. The GMS was also applied to 

model the critical parts of a single clamped flexure, a folded flexure and a cartwheel joint. In 

these models the errors in the stiffness were below 6%, typically at least twice as accurate as 

the stiffness modelled using only beam elements. 
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9 Conclusions and recommendations 

 

 

The main objective of this thesis is to improve the computational efficiency, accuracy and 

design freedom in beam-based simulation models of flexure mechanisms for large range of 

motion. This is addressed by introducing a new method to compute deformation, refinements 

on stress calculation and by defining two new elements. The conclusions related to these 

methods and elements are summarized in Section 9.1, from which two overarching conclu-

sions are drawn in Section 9.2. This chapter ends with some remaining issues that are left for 

new research directions. 

9.1 Conclusions research objectives 

9.1.1 Develop a method for the efficient computation of large deformed con-
figurations of flexure mechanisms in design optimizations 

The kinematically started deformation method, introduced in Chapters 2 and 3 computes 

static deformed configurations efficiently by first approximating this configuration using kin-

ematic relations, which are often well known by design. The mechanism is considered to be 

a combination of flexure joints and stiff links. The flexure joints are designed to allow spe-

cific large motion which is largely independent of its dimensions. This allows the motion to 

be approximated kinematically in design optimizations. 

The well-defined kinematic behaviour of flexure joints makes it possible to store data of 

commonly used joints that define this behaviour. However, Chapter 3 shows that these data 

are not strictly required to use the KSD-method. 

The KSD-method decreases the required computation time significantly. Chapter 3 shows 

that one of the variants, namely KSD-it1, is 21 times faster than SPACAR to compute the 

deformed configuration of a complex manipulator, while the errors of the resulting stiffness 

and stress were less than 1% in comparison with SPACAR. The computational efficiency 

increases in particular for complex mechanisms with large deformation. These are typically 

the cases that have the greatest need of this time reduction as their computation time is very 

high using conventional techniques. 

9.1.2 Increase the accuracy of the stress computation in beam-based flexure 
models 

Stress in beam elements is derived from stress resultants. Chapter 4 compares the accuracy 

of multiple methods to obtain these resultants. The resultants related to bending, shear and 

axial deformation can be obtained most accurately based on equilibrium. For torsion, an ac-

curate solution was obtained using the differential equation that relates total torsion moment 

to the Saint-Venant torsion moment and the bimoment. 
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Chapter 5 refined the classic stress computation in beam elements with typical flexure di-

mensions, reducing the error with respect to finite element results by about 50%. The maxi-

mum Von Mises stress due to torsion and bending is generally over 95% accurate, while 

stresses due to large in-plane reaction forces can be obtained with about 90% accuracy. 

9.1.3 Enable the beam-based modelling of flexures with a varying cross-sec-
tion and investigate potential improvements with respect to flexures 
with constant cross-section. 

In Chapter 6 a beam element with varying cross-section was implemented in the generalized 

strain formulation. This allows the modelling of flexures with varying cross-section in the 

generalized strain formulation, increasing the design freedom of beam-based flexure model-

ling. 

The value of this extra design freedom is shown by the optimization of several flexure 

joints. By allowing a varying cross-section, the support stiffness of flexures with a specified 

range of motion could be increased by a factor of 4.9 without exceeding a specified maximum 

stress. 

9.1.4 Enable the modelling of complex, deformable frame parts 
Chapter 7 shows the development of a superelement in the generalized strain formulation. 

This allows the efficient modelling of the small deformation of arbitrarily shaped frame parts, 

which significantly improves the modelling of the support stiffness of several flexure joints. 

Chapter 8 shows how interface deformation of the superelements can be taken into ac-

count. This deformation can be coupled to the (torsional) warping of beam elements which 

allows the effect of the frame stiffness on the warping to be included. 

9.2 Overarching conclusions 

9.2.1 Distinguish intended motion from unintended motion 
The motion in flexure mechanisms can be separated in the large, intended motion and the 

small, unintended motion. This thesis has shown that this knowledge can be exploited in 

many ways. 

The KSD-method uses this for efficient computation. The deformed configuration of a 

full mechanism is approximated by first considering only the intended motion. Similarly, the 

internal configurations in the individual flexure joints are approximated by considering only 

the motion direction, using the element-orientation-based body. Several variants also distin-

guish these two directions explicitly during the update of the configuration of the flexure 

joints: displacements are used to define deformation in the intended motion directions, 

whereas reaction forces are used for the unintended directions. 

In the refinements of the stress computation, large deformation had to be considered only 

in the intended directions, i.e. bending and torsion. The stress refinements around the 

clamped sides due to deformation in the unintended directions were assumed to be linearly 

dependent on the reaction forces. 

The deformation of the frame-parts of flexure joints is unintended, which implies that this 

deformation is typically so small that it could be modelled linearly in the superelements. 
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In summary: motion in intended directions can typically be approximated without con-

sidering the effects in the unintended directions. The unintended directions can typically be 

modelled linearly, preferably as function of the reaction forces. 

9.2.2 Potential of beam-based flexure modelling 
This thesis emphasizes the usefulness of modelling flexures with beam elements. 

Beam-based modelling allows to model only the effects in stiffness and stress which are 

typically relevant for flexures, such as Wagner torque, anticlastic bending and constrained 

torsional warping. This makes the computation very efficient as well as accurate. 

Beam-based modelling also gives a lot of insight in a design. This is especially clear from 

the stress computation of Chapter 5. It can be identified exactly how the stress distribution 

depends on the deformation and reaction forces of a flexure. 

The beam-based modelling limits the diversity in geometry that can be analysed. This 

limitation is addressed by introducing the beam with varying cross-section to model nonlin-

ear deformation of flexures and the superelement to model the linear deformation of frame 

parts. 

 

Using the methods and elements that are introduced in this thesis, very complex flexure-

based mechanisms can be analyzed efficiently and accurately. This may help the develop-

ment of new flexure mechanisms, increasing the potency of using flexure mechanisms in 

practice. 

9.3 Recommendations 
The insights that emerge from this thesis have led to four new research directions. 

9.3.1 Derive maximum Von Mises stress 
Chapter 5 improves the stress computation of wide rectangular beam elements by adding 

terms to the conventional beam theory. To obtain the maximum equivalent stress, the Von 

Mises stress is derived over the whole volume of the beam element and the maximum value 

is selected. This approach is a logical extension of the conventional beam theory and gives 

the user a lot of insight in the stress distribution and its dependency on the deformations, 

reaction forces and beam dimensions. 

However, during a design optimization typically only the maximum equivalent stress is 

required and not the complete stress distribution. This means that computing the whole stress 

distribution is actually a waste of computation time. Although the computation of the de-

formed configurations generally requires most computation time, the stress computation can 

also take significant time, especially if the KSD-method is used to compute the deformation 

efficiently. 

Moreover, Chapter 5 shows that it is quite difficult to obtain the maximum stress based 

on the stress distributions, mainly because the stress of all the different effects cannot be 

added linearly. 

An approach that may be worth investigating is to obtain the maximum Von Mises stress 

only in a beam element instead of computing the stress for all points in the element. At least 

two options can be considered. 

 

The first option is to approximate the maximum stress as a function of the internal stress 

resultants and the dimensions of the cross-section. As a starting point, the conventional beam 
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theory can be used. To illustrate this, the maximum stress is estimated below. The most im-

portant stress is typically the stress due to forces in the motion directions: bending, Saint-

Venant torsion and the bimoment for which the maximum stress can be derived using eqs. 

(5.3) and (5.7): 

 
𝜎𝑥𝑥
(𝑚𝑎𝑥 𝑏𝑒𝑛𝑑) =

6𝑀𝑧

𝑤𝑡2
, 𝜏𝑥𝑧

(𝑚𝑎𝑥 𝑆𝑉) =
3𝑇𝑥
𝑤𝑡2

, 𝜎𝑥𝑥
(𝑚𝑎𝑥 𝑏𝑖𝑚𝑜𝑚) =

36𝐵

𝑤2𝑡2
. (9.1) 

The maximum occurs typically at the corner, due to a combination of the bending and the 

bimoment or at the centre of the width-direction due to bending and torsion: 

 

𝜎𝑚𝑖𝑠𝑒𝑠
(𝑚𝑎𝑥) = max (√𝜎𝑥𝑥

2 + 3𝜏𝑥𝑧
2 ) = max(

6𝑀𝑧

𝑤𝑡2
+
36𝐵

𝑤2𝑡2
, √(

6𝑀𝑧

𝑤𝑡2
)
2

+ 3(
3𝑇𝑥
𝑤𝑡2

)
2

) (9.2) 

A more advanced model can be made by adding more terms and refinements. An advantage 

of this option is that it will result in a relatively simple model, where the stress can be obtained 

based on about nine parameters (i.e. the width-thickness ratio, normalized internal stress re-

sultants and the Poisson ratio). Disadvantages of this first option are that all the internal stress 

resultants still need to be computed and that it may be difficult to include the clamping ef-

fects. 

 

The second option is to estimate the maximum stress based on the reaction forces on a full 

beam element and its dimensions. This meightresult in a more complex model than in option 

1. However, it may be possible to obtain an accurate model using interpolation techniques, 

based on results of many finite element simulations. The advantage is that it might lead to a 

very efficient and accurate model of the maximum stress in a flexure. 

9.3.2 Modelling the stiffness of folded leafsprings 
The beam model with the refinements specified in Chapter 5 allows accurate modelling of 

flexures which are clamped on both sides. However, the stiffness of folded leafsprings is 

typically less accurate modelled by beams. More precisely, the modelling of torsion requires 

some more investigation. 

According to the beam model, the total torsional moment (𝑀𝑥) in a beam can be derived 

by the sum of the effects of the Saint-Venant torsion (𝑇𝑥), the bimoment (𝐵) and the Wagner 

torque (𝑊𝑥), all as a function of the torsional rotation 𝜙𝑥 and the axial coordinate 𝑥: 

 
𝑀𝑥(𝑥) = 𝑇𝑥 +

𝑑𝐵

𝑑𝑥
+𝑊𝑥 = 𝐺𝐼𝑡

𝑑𝜙𝑥
𝑑𝑥

+ 𝐸𝐼𝜔
𝑑3𝜙𝑥
𝑑𝑥3

+
1

2
𝐸𝐼𝑛 (

𝑑𝜙𝑥
𝑑𝑥

)
3

, (9.3) 

where 𝐺𝐼𝑡, 𝐸𝐼𝜔 and 𝐸𝐼𝑛 are stiffness coefficients, specified in Chapter 5. The Saint-Venant 

torsion and bimoment are linear effects and the Wagner torque is nonlinear. The beam-based 

modelling of torsional stiffness of each side of the folded leafspring may be improved signif-

icantly by considering two effects, as stated below. 

 

In the first place, the torsional warping at the fold can be considered to continue from the first 

side of the folded leafspring to the other, as shown in Section 8.5.3. As a result, an applied 

torsion at one side of the folded leafspring also causes some torsion of the other side, as 

shown in Figure 9.1(b). This effect should be explained physically to make this observation 

more plausible. 
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Figure 9.1: Leafsprings under torsion, modelled by beam elements. a) Single leafspring, 

showing the outer and inner fibres. b) Folded leafspring, showing effect of continuous 

warping at the fold. 

 
Figure 9.2: Required moment to apply a rotation on a single leafspring and a folded leaf-

spring. 

Secondly, the effect of Wagner torque in folded leafsprings is less than what is predicted 

from the beam model. This is illustrated by Figure 9.2, which shows the required moment for 

an applied torsion of the two flexures in Figure 9.1. The results are obtained using beam 

elements and a full finite element model is used as reference. The results are clearly nonlin-

ear, which is virtually only because of the Wagner torque according to eq. (9.3). The results 

of the beam model of the single leafspring correspond to that of the finite element model. 

However, for the folded leafspring, the result of the finite element model is in between the 

beam-based results obtained with and without Wagner torque (the latter indicated by ‘In=0’). 

The reduction of the Wagner torque can be explained physically. The Wagner torque is 

caused by the fact that the outer fibres have to elongate relative to the inner fibres during 

large torsion, see Figure 9.1(a). The derivation of the Wagner torque as given in eq. (9.3) is 

based on the assumption that this effect will not cause deformation of the cross-sections. This 

assumption works very well in case of a single leafspring that is connected to two stiff inter-

faces. However, the cross-section of a folded leafspring can easily deform in axial direction 

close to the fold. This deformation will reduce the relative elongation of the outer fibres, 

which in turn reduces the Wagner torque. 

Further research should investigate how this effect can be modelled in beam elements. 
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9.3.3 Initially curved flexures with a varying cross-section 
Chapter 6 shows that the support stiffness of flexure joints can be increased significantly by 

allowing a varying cross-section of initially straight flexures instead of a constant cross-sec-

tion. References [32, 154] have shown that the performance of flexure joints can be improved 

by allowing flexures to be curved rather than straight in the undeformed state. However, the 

performance of initially curved flexures with a varying cross-section in flexure joints for a 

large range of motion has never been analysed thoroughly. 

Further research should investigate the advantages of using initially curved flexures with 

varying cross-section. If this increases the performance, a beam element should be imple-

mented in the generalized strain formulation for the efficient modelling of these kinds of 

flexures. 

9.3.4 Developing an algorithm for the efficient use of superelements in design 
optimizations 

Superelements (as developed in Chapters 7 and 8) allow very efficient modelling of small 

deformation of complex shaped elements once their full finite element model is reduced. 

However the reduction of a large finite element model may require a lot of computation time. 

For many applications this does not matter because this reduction step only has to be applied 

once, after which the reduced model can be saved, which is typically useful for dynamic 

simulations and control purposes. 

However, in design optimizations, the shape of the parts which are modelled with a su-

perelement will often depend on the design parameters. This implies that, for each design, a 

full finite element model of these parts should be obtained and reduced. The related required 

computation time may be too high for use in design optimizations, even though it will still 

be much more efficient than solving a nonlinear finite element model of the full joint. 

Therefore further research should investigate how the superelement can be used in the 

design optimizations of flexure-based joints without the need to obtain and reduce a finite 

element model of the frame parts for each new design. At least two options can be investi-

gated: 

 Surrogate model: the first option is to obtain the reduced models of the required part 

for multiple designs in the design space. Based on these models, a surrogate model 

for the mass and stiffness properties of the required part can be made, as a function 

of the design parameters. This surrogate model can be used in the actual design 

optimization. 

 Updating the design parameters related to the dimensions of the required part only 

occasionally instead of in each design iteration. The performance of a flexure joint 

is typically most sensitive to the thickness of the flexures. The geometry of the frame 

parts, modelled by the superelements, will typically be independent of the thick-

nesses. Therefore it makes sense to update the thicknesses more often than the other 

design parameters during the design optimization. 
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