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a b s t r a c t

Understanding the spatio-temporal variability of the solar resource is crucial to effectively support solar
power utilization. Unfortunately, long-term and high-resolved measurements of solar irradiance are
generally scarce, challenging the characterization for larger areas. In this paper, we propose a method-
ology to characterize the spatio-temporal variability of global horizontal irradiance (GHI) at a regional
scale using long-term satellite-derived data. Spatial functional data analysis (sFDA) is used to identify
areas with similar intra-annual variability patterns. The methodology is applied to a 21-year period data
on Ecuador retrieved from the National Solar Radiation Database. Being the first time that sFDA is used
for this purpose, the results indicate that it provides an appropriate basis for the interannual variability
and complementarity analyses. In Ecuador's mainland, twenty-two subregions with four seasonal pat-
terns are identified. The highest GHI potential (5.4 kWhm�2d�1) with the lowest variability (3.4%) is
found in the Inter-Andean valleys. Further, seasonal complementarities between the coast and western
Andes are identified. In Galapagos, high values are found over all islands (�4.8 kWhm�2d�1), charac-
terized by three subregions with one seasonal pattern. Our findings provide the first comprehensive
spatio-temporal characterization of GHI in Ecuador, which aims at supporting a sustainable energy
transition in the country.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Solar energy plays a leading role in the global renewable ca-
pacity expansion. In 2020, there was an annual increase of solar
capacity of 127 GW (þ22%) [1]. This growing expansion is a key
component that supports the energy transition towards decar-
bonization in many countries worldwide. However, due to the
varying nature of the solar resource, the optimal planning and
deployment of solar power applications requires detailed knowl-
edge of the spatial and temporal variability of solar irradiance.

Long-term variability analyses of solar irradiance provide
essential information to decision-makers for a valid selection of
suitable locations and optimal system design, as well as for the
Tapia).
assessment of risk and the financial viability of solar energy pro-
jects [2e7]. Historical datasets covering 30 years or longer are
needed to statistically characterize the solar irradiance at any
location [7]. Unfortunately, such long-term, high-quality solar
irradiance measurements are generally scarce and sparsely
distributed, which challenges the spatial characterization at a
country or regional level, especially over complex terrain. To
overcome this limitation, satellite-derived datasets are considered
a reliable and practical option that cover a wide spectrum of spatial
scales and are available for long time periods [6].

Previous studies have explored the spatio-temporal variability
at a regional scale using gridded satellite datasets [8e14].1 Some
authors used classical climatological classification to condense the
1 An overview of these studies can be found in the online Supplementary
Material.
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2 https://developer.nrel.gov/docs/solar/nsrdb/psm3-download/.
3 https://www.mmm.ucar.edu/weather-research-and-forecasting-model.
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large number of grid points into smaller groups [8], while other
studies applied data-driven methods based on regionalization
techniques to identify areas with similar solar radiation variability
[9e14]. A common approach used in the latter is the k-means al-
gorithm applied to a dimension-reduced dataset by Principal
Component Analysis (PCA). Reducing the data dimensionality
lowers the computational complexity; however, it might not
consider the inherent spatio-temporal dependencies of the data
[15,16].

Spatial functional data analysis (sFDA) represents an alternative
for analyzing high-dimensional gridded satellite data, which con-
siders the spatio-temporal dependencies of each grid point by
means of spatial autocorrelation and complete time functions
[16,17]. Although a spatial functional regionalization method was
previously applied to gridded satellite precipitation data in
Ref. [16], no studies have been found that applied spatial functional
regionalization methods to gridded satellite GHI data in order to
analyze the spatio-temporal variability of solar radiation.

In this paper, we propose a methodology to characterize the
spatio-temporal variability and complementarity of long-term
gridded satellite GHI data using sFDA. The methodology com-
prises multiple steps. First, a hierarchical regionalization method
for spatial functional data is used to identify homogeneous areas
with similar intra-annual variability patterns. Second, the charac-
terization of the interannual GHI variability is performed using the
coefficient of variation. Finally, the spatio-temporal complemen-
tarity between the resulting areas from the regionalization is
analyzed through correlation coefficients.

As a case study, this methodology is applied to a 21-year period
of gridded satellite GHI data on Ecuador's mainland and the Gal-
apagos Islands, which is retrieved from the National Solar Radiation
Database (NSRDB). This region features complex climatic charac-
teristics and topography [18,19], which may cause significant
spatio-temporal GHI variability [3,7,20], thus representing a rele-
vant case for the application of the proposed methodology.
Furthermore, Ecuador has an important solar energy potential,
since almost 55% of its territory shows solar radiation levels above
4.1 kWhm�2d�1 [21]. However, the share of solar technology in the
power mix is still minimal. In 2019, photovoltaic generation only
accounted for 0.1% of the total electric power production, while the
country continued relying on hydropower and fossil fuel thermal
power for electricity generation (76.3% and 21.9%, respectively)
[22].

Therefore, the relevance of this work is twofold. First, its novelty
lies in the use of the sFDA method for the regionalization of long-
term gridded satellite GHI data applied to a region characterized
by complex climate and terrain. Second, the case study provides the
first comprehensive spatio-temporal characterization of GHI in
Ecuador that aims at supporting the Ecuadorian energy sector for
the optimal planning and deployment of solar power systems in the
country.

The paper is structured as follows. Section 2 presents the study
area and data used. Section 3 describes the proposed methodology.
Section 4 presents the results of the case study in different sub-
sections: (4.1) GHI regionalization, (4.2) interannual spatio-
temporal variability, and (4.3) seasonal complementarity. Section
5 discusses the methodological approach and the practical contri-
bution of the findings. Finally, Section 6 presents the conclusions
and gives an outlook to future work.

2. Study area and data

Ecuador is located in the northwest of South America between
Colombia to the north, Peru to the east and south, and the Pacific
Ocean to the west. The Galapagos Islands also belong to the country
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and are located about 1000 kmwest of Ecuador's mainland (Fig. 1).
From a climatic point of view, the study area is influenced by the
displacement of the Intertropical Convergence Zone (ITCZ), the
Pacific Ocean sea surface temperature fluctuations, the tradewinds,
the influence of Hadley and Walker circulation cells, and moisture
advection from the Amazon [16]. From a topographic point of view,
the Andes cross over the continental area from north to south
dividing it into three regions: the Pacific coastal plains, the Andean
highlands, and the Amazon lowlands.

For this study, the satellite-derived GHI data of the Physical Solar
Model (PSM) version 3 from the NSRDB [6] was used. The NSRDB is
produced and disseminated by the National Renewable Energy
Laboratory (NREL) and provides solar irradiance and other meteo-
rological data at a high spatio-temporal resolution (4� 4 km grid at
hourly and half-hourly intervals) covering a large part of the
American continent [6]. The comparison between GHI satellite es-
timations from the NSRDB and ground measurements from 53
stations across Ecuador's mainland was performed in Ref. [21].
According to their results, the hourly mean bias error (MBE) for
clear sky conditions was less than 5%, while for cloudy sky condi-
tions the MBE was found to be less than 10%, suggesting a good
agreement between measured and satellite-estimated data. Those
results were aligned with the findings from other comparisons at
locations throughout the continental United States [6,25].

A 21-year period of hourly GHI dataset from 1998 to 2018 cor-
responding to the study area was downloaded through the Appli-
cation Programming Interface (API)2 provided by NREL. Two
preprocessing steps were performed before applying the method-
ology described in section 3. First, the dataset was statistically
checked in order to search for possible data anomalies that could be
related to satellite artifacts. This analysis revealed that pixels at
longitudes 78.02�W and 77.98�W between latitudes 0.13�N and
1.71�S showed anomalies during the period 2008/11/24 to 2017/12/
31, whichmight be attributed to satellite artifacts (See Appendix A).
The nearest-neighbor interpolation method was applied to the
identified pixels to reduce the anomalies. Second, the spatial res-
olution of the dataset was increased from the native NSRDB reso-
lution to 3 � 3 km, applying the first order conservative remapping
method. Fig. 2 shows the long-term monthly mean GHI dataset
used in this study. The change in resolution was required for the
assessment of mutual complementarities between solar and wind
resources for the study area, which uses wind resource data at a
3 � 3 km resolution simulated by the WRF-ARW3 meso-scale
model. The assessment will be reported in a forthcoming
publication.

3. Methodology

Fig. 3 provides an overview of the proposed methodology. Each
block represents one of the different steps: regionalization, inter-
annual variability and complementarity analyses, which are
explained in detail in the following subsections.

3.1. Regionalization

The hierarchical regionalization method for spatial functional
data described in Ref. [26] is applied to the GHI dataset in order to
identify homogeneous spatial areas with similar intra-annual
variability patterns. This method combines hierarchical clustering
algorithms for both geographically referenced and functional data
in order to classify spatially correlated curves [26]. It requires a
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Fig. 1. Digital elevation map of Ecuador's mainland and the Galapagos Islands. The map of the continental area also shows the provincial boundaries. Source: Own representation,
data from Refs. [23,24].

Fig. 2. Long-term monthly mean daily total GHI in [Whm�2d�1] from 1998 to 2018 at a 3 � 3 km resolution on Ecuador's mainland (left) and the Galapagos Islands (right). Source:
Own representation, data retrieved from the NSRDB.
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weighted dissimilarity matrix based on the L2 norm that accounts
for the dissimilarities among curves and the so-called trace-vario-
gram function [27] that accounts for their spatial correlation. A
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detailed description of the method can be found in Refs. [16,26].
Here we summarize the required steps that are displayed in the
regionalization block of Fig. 3.



Fig. 3. Flowchart of the proposed methodology to characterize the spatio-temporal
variability and complementarity of long-term gridded satellite GHI data.
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� Convert time series to functional data: The discrete time series
of monthly mean daily total GHI (12-dimension vectors per grid
point) are converted into curves using a Fourier basis with 11
functions. The Fourier basis system is chosen as the smoothing
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method assuming the periodicity of the GHI time series [28].
The resulting dataset comprises functional curves for all grid
points (27,175 in Ecuador's mainland and 874 in the Galapagos
Islands).

� Weighted dissimilarity matrix: The weighted dissimilarity
measure is expressed as:

du
�
csiðtÞ;csjðtÞ

�
¼d

�
csiðtÞ;csjðtÞ

�
gsisjðhÞ (1)

where dðcsi ðtÞ;csj ðtÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
T ðcsi ðtÞ � csj ðtÞÞ2dt

q
is the L2 norm of the

distance between two curves, and gsisj ðhÞ is the trace-variogram

function calculated for the distance between locations si and sj
[16]. The method assumes that the spatial functional process is
second-order stationary [26]; however, this assumption no longer
holds true when there is a pronounced geographic trend in the
dataset [29], which is the case with solar radiation. For this reason,
it is necessary to remove the spatial trend before calculating the
trace-variogram function [26]. This is done by using a functional
regression model [28] with functional response (smoothed GHI
curves) and three scalar covariates (longitude, latitude and alti-
tude). Once the regression model is estimated, the functional re-
siduals are calculated to compute the empirical trace-variogram
function. Then, a parametric model is fitted to the empirical trace-
variogram following classical geostatistical estimation procedures
[26]. Finally, the trace-variogram gsisj ðhÞ is calculated by subtracting

the covariance function CðhÞ for the distance between each pair of
locations from the variance Cð0Þ obtained from the fitted para-
metric model [16].

� Hierarchical clustering algorithm: Once the weighted dissim-
ilarity matrix is calculated, the Ward hierarchical agglomerative
clustering method is applied. This method forms hierarchical
groups of mutually exclusive subsets on the basis of their sim-
ilarity with respect to specified characteristics [30].

� Cluster validity assessment: The optimal number of clusters is
selected based on both the analysis of the average silhouette
width (ASW) [31] and the analysis of the functional boxplots of
the resulting clusters. The ASW provides a score based on how
similar a curve is to all the curves in its respective cluster
compared to curves in other clusters [16], whereas the func-
tional boxplots provide a visual comparison of the similarities/
dissimilarities of the curves grouped in each cluster.
3.2. Interannual spatio-temporal variability

The coefficient of variation (CV) is used to analyze the interan-
nual GHI variability during the 21-year period at yearly and
monthly timescales. The CV is defined as the ratio of the standard
deviation to the mean value [9]. The results are expressed as per-
centages and represent ameasure of the GHI variability over time at
the cell's geographical location [3]. For the analysis of the yearly
interannual variability, the annual coefficient of variation ðCVyÞ is
calculated as:

CVyð%Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
PN

i¼1
�
GHIyi � GHIy

�2q

GHIy
� 100 (2)

whereN is the number of years, GHIyi is the annual mean daily total



Table 1
Interpretation of negative correlation coefficient values for the complemen-
tarity analysis (Based on [32]).

Correlation coefficient Complementarity level

� 0:3< r<0:0 Weak
� 0:6< r � �0:3 Moderate
� 0:9< r � �0:6 Strong
� 1:0 � r � � 0:9 Very strong
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GHI of each individual i year, and GHIy is themean of themean daily
total GHI during the 21-year period [8].

Similarly, for the analysis of the monthly interannual variability,
the monthly coefficient of variation ðCVmÞ is calculated based on
monthly bins of data (e.g., Januaries, Februaries, etc.) as:

CVmð%Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
PN

i¼1ðGHImi � GHImÞ2
q

GHIm
� 100 (3)

where N is the number of years, GHImi is the monthly mean daily
total GHI of each individual i year, and GHIm is the 21-year monthly
mean daily total GHI for the corresponding month [3,8].

Both CVy and CVm are aggregated by the resulting clusters from
the regionalization to facilitate the intercomparison among the
spatial areas.
3.3. Complementarity

The Pearson product-moment correlation coefficient ðrÞ is used
to assess the spatio-temporal complementarity among the different
clusters and is calculated as:

rij ¼
Covði; jÞ
si sj

(4)

where Covði; jÞ is the covariance between the monthly time series
corresponding to the representative points of the clusters i and j,
and si is the standard deviation of the monthly time series of the
representative point of cluster i. The correlation coefficient can
range from �1 to 1. Complementarity is associated to the negative
values, whereas similarity is related to the positive values. The level
of complementarity is evaluated according to the interpretation
given in Table 1 [32].
3.4. Implementation

The methodology for this study was implemented in R [33],
using the packages fda [34] and geofd [35], among others.
4. Results

4.1. Regionalization results

This section presents the regionalization of GHI in Ecuador's
mainland and the Galapagos Islands, described and analyzed in
relation to the climate characteristics of the resulting spatial areas.
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4.1.1. Regionalization of GHI in Ecuador's mainland
Twenty-two clusters are selected as the optimal partition for

Ecuador's mainland according to the cluster validity assessment
explained in Appendix B. These clusters (hereafter called sub-
regions) represent spatially homogeneous areas featured with
similar intra-annual GHI variability. From the functional boxplots of
the subregions (Appendix C), four main seasonal patterns are
identified; consequently, the subregions are grouped into four
spatial areas (hereafter called regions) according to the corre-
sponding seasonal pattern. The spatial distribution of the 4 regions
and their respective subregions is shown in Fig. 4, where it can be
seen that the regions are spatially contiguous and compact areas,
distributed longitudinally through Ecuador's mainland. From east
to west, region A is located in the Ecuadorian Amazon, regions EH
and WH are located in the eastern and the western side of the
Andean highlands, respectively, and region C is located in the
coastal area. The Ecuadorian Andes consist of two parallel moun-
tain ranges (the Eastern and Western Cordilleras) separated by the
tectonic Inter-Andean Depression [36]. They are the major climate
divide that separates the humid lowland forests of the Amazon
basin from the coastal areas [37]. These topographical and climate
characteristics are reflected in the spatial distribution of the 4 re-
gions, where the borders of regions C and A closely match the
contour of the highlands. Furthermore, the spatial location of re-
gions EH and WH resembles the distribution of the Andean
highlands.

Fig. 5 shows the intra-annual GHI variability of each region.
Fig. 5a shows the dispersion of the functional curves per region,
whereas Fig. 5b compares their monthly and annual means. High
GHI values are found in region WH, which shows a unimodal
pattern with a peak in September. Region A displays a bimodal
pattern with the annual maxima occurring in SeptembereOctober
and a peak of smaller magnitude in April. Region EH shows a similar
seasonal pattern to region A but of smaller GHImagnitude, with the
annual maxima occurring in October. In contrast to the previous
regions, region C shows a bimodal pattern with a high peak in
March and another of smaller magnitude in September. The annual
minima of GHI in all regions (except for WH) occur in JuneeJuly,
following the mid-year low sun elevation that corresponds to the
austral winter. From Fig. 5b (left) it is evident that seasonal com-
plementarities exists between region C and the other regions.

Figs. 6 and 7 show the spatial distribution and intra-annual GHI
variability of the 22 subregions grouped by their corresponding
region. Here it is noticeable that the subregions in the corre-
sponding region share similar seasonal patterns, but they differ in
the magnitude of GHI. This can also be seen in Table 2, which
summarizes the annual mean daily total GHI per subregion.

Similar to the spatial variability, the intra-annual GHI variability
may be explained by the climate characteristicsemainly cloud and
rainfall dynamics e occurring in the different subregions that can
affect GHI in complex ways. In Ecuador's mainland, the climatic
regimes closely depend on the characteristics of the air masses,
which in turn are influenced or produced by three main factors: (i)
the seasonal displacement of the ITCZ towards the north or south
that determines the input of air masses with different temperature
and humidity conditions; (ii) the mountain ranges that play a
fundamental role in the formation, displacement and isolation of
local or regional air masses; and (iii) the Pacific Ocean currents and



Fig. 4. Spatial distribution of the 22 subregions in Ecuador's mainland after applying the sFDA regionalization method. The subregions are grouped and named according to their
corresponding region: Amazon (A), Eastern highlands (EH), Western highlands (WH), and Coast (C). The white line depicts the altitudinal contour at 1000 meters above sea level
(m.a.s.l.). The black points represent the location of the median curve of each subregion.

Fig. 5. Intra-annual variability of the four regions: Amazon (A), Eastern highlands (EH), Western highlands (WH), and Coast (C). The functional boxplots on a) show the dispersion of
the functional curves per region, where the colored shapes represent the interquartile range, the gray external lines depict the minimum and maximum curves, and the black lines
are the median curves interpreted as the main seasonal patterns in each region. The black dotted line in region A represents the outlier curve in the region. The left side of b) shows
the comparison of the four main seasonal patterns. The right side of b) shows the dispersion of the annual mean daily total GHI per region, where the black points represent the
values of the median curve for each region, and the black circles are the outliers.

M. Tapia, D. Heinemann, D. Ballari et al. Renewable Energy 189 (2022) 1176e1193
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Fig. 6. Spatial and temporal variability of the subregions in regions: Amazon (A), Eastern highlands (EH), and Western highlands (WH). The maps on a), c) and e) show the spatial
distribution of the subregions within each region (gray polygons depict the province boundaries). The left sides of b), d) and f) show the comparison of the main GHI seasonal
patterns for the corresponding region (dotted black lines) and the median curves obtained from the functional boxplot of each subregion (Fig. C.1). The right sides of b), d) and f)
show the dispersion of the annual mean daily total GHI for each subregion, where the black points represent the values of the median curve of each subregion.
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the maritime air masses that influence the rainfall patterns in the
Coast and the Andean region [18,38]. The influence of these factors
on the spatio-temporal GHI variability will become more evident
when describing the subregions of each region in the following
subsections.

4.1.1.1. Amazon. One subregion (A1) is identified over the Amazon
lowlands (Fig. 6a). Interestingly, this homogeneous subregion
covers an extended geographical area and it is characterized by
high annual mean values (4.6 kWhm�2d�1) and low intra-annual
variability (Fig. 6b). This may be attributed to the high specific
humidity and convective activity throughout the year in the area
[39], which results in low total annual sunshine hours [18].

4.1.1.2. Eastern Andean Highlands. Six subregions (EH.1 e EH.6) are
identified along the eastern Andean highlands and partly over the
Inter-Andean valleys (Fig. 6c). The highest annual mean values are
found in EH.1, followed by EH.2 and EH.4 (5.0, 4.5, 4.1 kWhm�2d�1,
respectively) (Fig. 6d), which are located along the Inter-Andean
valleys. In contrast, the lowest annual values are found in EH.6,
followed by EH.5 (3.4, 3.8 kWhm�2d�1, respectively), located along
the eastern Andean flanks.

The low GHI values and low intra-annual variability found in
EH.5 and EH.6 may be explained by the influence of a high cloud-
iness and precipitation band called Andes-Occurring System (AOS)
[40]. This area is dominated by moisture-bearing easterlies that
originate over the tropical Atlantic and Amazon basin [41,42]. Most
of the moisture is precipitated in the form of long duration drizzle
due to orographic lifting [37].

The higher values of GHI seen in EH.1 and EH.2 may be attrib-
uted to lower rainfall amounts occurring in the Inter-Andean val-
leys because air masses transported from the Amazon and the
Pacific lose much of their humidity on the eastern and western
flanks of the Andes [41]. EH.3 is partly located along the outer
eastern Andean flanks, and therefore shows a similar seasonal
pattern to EH.5 and EH.6, but of higher GHI magnitude, since EH.3
covers part of the Amazon lowlands.

All the EH subregions depict annual maxima in OctobereNo-
vember. This is aligned to ground measurements from stations
located in southern Ecuador that found November as the month
with the greatest clear sky probability [43]. The annual minima
occur in JuneeAugust, which coincides with the lowest sun
elevation of the year and more persistent overcast skies brought in
by the strong easterlies [43].

4.1.1.3. Western Andean Highlands. Six subregions (WH.1 e WH.6)
are identified along the western Andean highlands and the Inter-
Andean valleys (Fig. 6e). WH.1 shows the highest annual mean
values (5.4 kWhm�2d�1) and low intra-annual variability. WH.2
shows high annual mean values (5.1 kWhm�2d�1) as well; how-
ever, the intra-annual variability is higher compared to WH.1
(Fig. 6f). WH.3 is located at high elevations of the Western and
Eastern Cordillera and shows a similar seasonal pattern to WH.1,
but of lower GHI magnitude (Fig. 6f).

WH.4, WH.5 and WH.6 are spatially distributed along the
western Andean slopes towards the coastal area (Fig. 6e) and show
lower annual mean values (4.5, 4.0 and 3.7 kWhm�2d�1, respec-
tively) (Fig. 6f). The reduced GHI magnitude in this area may be
attributed to the influence of the ITCZ over the eastern Pacific,
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which is responsible for continuous moisture in the form of rainfall,
clouds and fog due to orographic uplift [42]. These aspects are
especially reflected in the lower intra-annual GHI variability of
WH.6 (Fig. 6f).

As mentioned above, the annual minima in the WH region do
not match the lowest sun elevation of the year and vary from
December to March among the subregions. This singularity was
analyzed in Ref. [43] using measured data from stations located in
southern Ecuador. The author concluded that the barrier effect
produced by the eastern mountains benefits the leeward flanks,
because in JuneeAugust the share of the water vapor and the
clouds retained by the mountain range increases. Consequently,
extended times of direct insolation compensate for the lowest
annual solar radiation [43].

4.1.1.4. Coast. Nine subregions with three slightly different sea-
sonal patterns are identified in the coastal area and grouped
accordingly as C.1.1, C.1.2, C.2.1, C.2.2, C.3.1 e C.3.5 (Fig. 7). In gen-
eral, all the subregions show annual maxima in MarcheApril and
another peak of reduced intensity in SeptembereOctober. Fig. 7b
shows the first type of seasonal pattern found in C.1.1 and C.1.2. The
highest annual mean value is found in C.1.1 (4.8 kWhm�2d�1)
located in the lowlands near the coastline. This area is particularly
dry with low rainfall rates (in the form of drizzle) due to the in-
fluence of the cold Humboldt current [18]. C.1.2 has a similar sea-
sonal pattern to C.1.1, but of lower GHI magnitude due to the spatial
dispersion and the humidity level of the three partitions that
comprised this subregion (ranging from arid and dry to super-
humid and sub-humid [44]).

Fig. 7c shows the second type of seasonal pattern that is found in
C.2.1 and C.2.2, characterized by low intra-annual variability and
low GHI values. This may be attributed to the influence of the ITCZ
[45] and the location of the subregions along the lower slopes of the
western Andes, where orographic rainfall occurs.

Fig. 7d shows the third seasonal pattern that is found in C.3.1 e

C.3.5, where a gradual decrease of GHI magnitude can be seen.
From Fig. 7a, it is noticeable that this gradient occurred fromwest to
east and is related to the geographical location and altitude of the
subregions, since rainfall increases between the low-altitude
coastal Cordillera and the Andean foothills [46].

4.1.2. Regionalization of GHI in the Galapagos Islands
Three subregions are selected as the optimal partition for the

Galapagos Islands according to the cluster validity assessment
explained in Appendix B. Fig. 8a shows the spatial distribution of
the subregions (G.1.1, G.1.2 and G.1.3), which depict a bimodal
pattern, but they differ in GHI magnitude (Fig. 8b). G.1.1 shows the
highest annual mean value (6.0 kWhm�2d�1) with the annual
maxima in October. G.1.2 and G.1.3 show lower values (5.5 and
4.8 kWhm�2d�1, respectively) with the annual maxima in March.
The minima of all subregions occur in JuneeJuly.

Similar to Ecuador's mainland, the spatio-temporal variability of
GHI in Galapagos may be explained by the climate characteristics in
this area, which result from a complex interaction of oceanic cur-
rents that surround the islands and the predominant trade winds
from the southeast [47]. During January to May (hot season), G.1.1
and G.1.2 show similar patterns and high GHI values. In contrast,
from June to December (cool season) a difference in GHI magnitude
can be seen (Fig. 8b). On the one hand, G.1.2 is located along the



Fig. 7. Spatial and temporal variability of the subregions in the Coast region (C). The map on a) shows the spatial distribution of the subregions (gray polygons depict the province
boundaries). The left sides of b) e d) show the comparison of the main GHI seasonal pattern of region C (dotted black lines) and the median curves obtained from the functional
boxplot of each subregion (Fig. C.1). The right sides of b) e d) show the dispersion of the annual mean daily total GHI for each subregion, where the black points represent the values
of the median curve of each subregion.
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windward side of both the islands and the volcanoes, which are
more humid during the cool season [47], thus reducing the
incoming radiation in these areas. On the other hand, G.1.1 com-
prises the lowlands and the tops of higher volcanoes, areas that
remain dry during the cool season [47], thus showing higher GHI
values. G.1.3 shows lower GHI values throughout the year
compared to the other subregions. This may be attributed to its
location over the highlands and south-facing slopes, since humidity
and rainfall increase considerably with altitude due to the influence
of the Humboldt Current [18].
4.2. Interannual spatio-temporal variability

Fig. 9 shows the annual coefficient of variation CVy, where it can
be seen that the highest yearly interannual variabilities are along
the eastern and western flanks of the Andes, the northwest
coastline, and over the south-facing slopes of the Galapagos Islands.
In contrast, the Amazon lowlands and the Inter-Andean valleys
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show the lowest variabilities. Table 2 and Fig. 10 show the vari-
ability per subregion in detail. The highest mean CVy values (>6.0%)
are found in EH.6, G.1.3, C.3.5, EH.5, and C.2.2, while the lowest
mean values (<4.0%) are found inWH.1 and A.1. Fig.10 also reveals a
clear trend of increasing variability among the subregions within
their corresponding regions, meaning that the subregions that
show higher CVy values are those with lower GHI magnitude in
their respective region.

Figs. 11 and 12 show the monthly coefficient of variation CVm,
where it is notable that the highest monthly interannual variabil-
ities are along the eastern flanks of the Andes, the western coast-
line, and over the south-facing slopes of the Galapagos Islands.
Fig. 13 takes a more detailed look at these findings, aggregated per
subregions. The highest mean CVm values are in the EH region
(especially in EH.6) during two intervals: December to February
and July to September. On the coast, C.1.2 shows high variabilities
from May to December. Further, in Galapagos, G.1.3 shows the
highest variabilities from December to January. In contrast, the



Table 2
Annual mean daily total GHI [kWhm�2d�1], yearly coefficient of variation (CVy) [%]
and summary statistics of elevation [m.a.s.l.] in each subregion. Note that the sub-
regions are named and sorted in decreasing order according to the GHI value in their
respective region.

Subregion GHI CVy Elevation min Elevation mean Elevation max

A.1 4.6 3.8 184.2 312.3 1109.2
EH.1 5.0 4.0 1015.1 2645.5 4190.7
EH.2 4.5 4.9 1636.1 3186.4 4820.1
EH.3 4.2 4.8 346.1 951.7 1884.8
EH.4 4.1 5.4 787.3 2120.0 5253.3
EH.5 3.8 6.2 533.0 2016.7 4799.2
EH.6 3.4 8.0 1118.1 2685.9 4192.9
WH.1 5.4 3.4 146.8 1763.1 4577.3
WH.2 5.1 4.5 330.3 1148.2 2418.2
WH.3 5.1 4.7 1877.8 3414.7 5302.4
WH.4 4.5 5.3 403.6 2546.0 4870.9
WH.5 4.0 6.1 923.2 2243.8 3984.0
WH.6 3.7 6.0 214.2 1790.8 3993.0
C.1.1 4.8 4.4 0.3 31.2 176.5
C.1.2 4.1 6.0 0.0 101.5 523.9
C.2.1 4.0 4.9 17.1 140.0 488.3
C.2.2 3.6 6.2 4.9 319.2 1313.5
C.3.1 4.6 4.0 0.0 52.0 400.4
C.3.2 4.3 4.2 24.5 246.3 706.0
C.3.3 4.2 4.5 1.9 98.7 833.8
C.3.4 3.8 5.5 6.0 176.9 837.4
C.3.5 3.3 7.0 8.5 956.4 2989.1
G.1.1 6.0 3.9 2.8 259.1 1373.0
G.1.2 5.5 5.7 5.6 212.8 1321.2
G.1.3 4.8 7.3 15.9 292.2 900.9
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lowest variabilities with minimum changes during the twelve
months are in WH.1, located in the Inter-Andean valleys.

The high variability in EH.6 is associated with the AOS band of
clouds and precipitation, as mentioned in section 4.1.1.2. However,
from Fig. 9 it can be inferred that this variability may also be
attributed to the satellite image artifact (Appendix A), which
particularly affects this subregion. Further, the high variability in
Fig. 8. Spatial and temporal variability of the subregions in the Galapagos Islands (region
distribution of the subregions. The left side of b) shows the comparison of the main GHI sea
functional boxplot of each subregion (Fig. C.1). The right side of b) shows the dispersion of th
values of the median curve of each subregion.
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subregions C.2.2, C.3.5, WH.4, WH.5, WH.6 and G.1.3 may be
attributed to the effect of climatic phenomena occurring in the area,
such as El Ni~noeSouthern Oscillation (ENSO). This phenomenon,
recognized in its cold phase as La Ni~na and its warm phase as El
Ni~no, influences the rainfall interannual variability on the Pacific
coast [48]. El Ni~no triggers convection that leads to large rainfall
events along the coast of Ecuador and Peru [19,49] and the western
Andean slopes between 1� and 3�S [41]. Similarly, the surface ocean
around the Galapagos Islands warms substantially during El Ni~no
events, producing significantly more rainfall compared to normal
years [50]. Studies regarding the effects of ENSO on solar radiation
in Ecuador were not found in the literature. Nevertheless, Henao
et al. [51] found that solar radiation anomalies in Colombia increase
during El Ni~no and decrease during La Ni~na, which are related to
the absence and excess of convective clouds. Similar dynamics
might be expected in Ecuador; however, further investigation is
needed to determine the underlying factors of the interannual GHI
variability in Ecuador.
4.3. Seasonal complementarity

The correlation matrix for all the pairs of subregions in Ecua-
dor's mainland and the Galapagos Islands is shown in Fig. 14. The
negative coefficients highlight that the region C and the other re-
gions are complementary, since their seasonal patterns are oppo-
site (Fig. 5). Different levels of complementarity are identified: (i)
strong complementarity between C.1.2 and all WH subregions, as
well as between C.2.2 and WH.3, WH.4 and WH.5; (ii) moderate
complementarity between subregions in C (except C.3.1 and C.3.2)
and E.1 and WH subregions; and (iii) weak complementarity be-
tween C and A, and the other subregions in EH and WH. From the
positive correlation coefficients, it is also evident that all subregions
within each respective region show high similarities, thus high-
lighting the ability of the sFDA regionalization method to find
groups with similar temporal patterns.
G) after applying the sFDA regionalization method. The map on a) shows the spatial
sonal pattern of region G (dotted black lines) and the median curves obtained from the
e annual mean daily total GHI for each subregion, where the black points represent the



Fig. 9. Annual coefficient of variation CVy (%) of mean daily total GHI during 1998e2018 over Ecuador's mainland and the Galapagos Islands. The white line over the continental part
depicts the altitudinal contour at 1000 m.a.s.l.

Fig. 10. Annual coefficient of variation CVy (%) of mean daily total GHI during 1998e2018 per subregion and grouped by region: Amazon (A) Eastern highlands (EH), Western
highlands (WH), Coast (C), and Galapagos (G).

Fig. 11. Monthly coefficient of variation CVm (%) of mean daily total GHI during 1998e2018 over Ecuador's mainland.
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Fig. 12. Monthly coefficient of variation CVm (%) of mean daily total GHI during 1998e2018 over the Galapagos Islands.
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5. Discussion

The results from our case study indicate that the sFDA region-
alization method applied to gridded satellite GHI data effectively
identifies spatially homogeneous areas featured by similar GHI
intra-annual variability patterns. The variation of the magnitude of
GHI among areas that share similar patterns can also be identified.
This approach differs from previous studies dealing with the
analysis of the spatio-temporal variability of solar resource in a
number of respects. Firstly, the sFDA regionalization is a data-
driven method that allows for the classification of the dataset
considering its inherent spatio-temporal characteristics. This
objective classification differs from classical climatological classi-
fications based on temperature and precipitation. Habte et al. [8]
used the K€oppen-Geiger (KG) climate classification [52] to analyze
the variability of the solar resource over America. Other studies
used also the KG classification in various solar applications at a
global scale [53,54]. Such an approach may be appropriate for the
analysis over large geographical areas; however, misclassifications
could be expected due to the global focus and coarser resolution of
the KG [55], or because misclassifications in mountainous regions
in South America could not be corrected due to lack of data [56].
Therefore, the KG classification might not be suitable for the anal-
ysis over smaller areas, since solar irradiance can vary significantly
over relatively small distances due to microclimate effects of
topography and the general behavior of regional weather patterns
[3,7,20].

Secondly, unlike previous GHI regionalization approaches that
applied clustering algorithms after reducing the dimensionality of
the satellite-derived datasets [9e14], the sFDA method classifies
the dataset based on the dissimilarities between the curves from
each grid point weighted by the dissimilarities throughout space.
By considering the existing spatial correlation, themethod is able to
find groups of curves that are spatially homogeneous, since the
weighting function increases the dissimilarities among distant
points [57]. In addition, the sFDA method provides tools such as
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functional boxplots in which the dispersion of the curves within
each subregion can be explored in both spatial and temporal di-
mensions [16].

Thirdly, the regionalization results from our case study indicate
that the sFDA method captures the GHI variability due to micro-
climate effects. This ability is reflected for example in the spatial
classification of the subregions along the Andes (section 4.1.1.2).
This outcome is contrary to that of Ballari et al. [16], who applied
the same regionalization approach for precipitation data but local
variabilities along the eastern Andes were not captured. The au-
thors attributed this limitation to the low resolution of the input
satellite-derived dataset, which is confirmed by our findings, since
we use data at higher resolution (3 � 3 km grid resolution instead
of 27 � 27 km used in Ref. [16]).

Finally, the variabilities due to the topographic effects are also
captured by the sFDA. The interannual variability results of our case
study are in line with those of Habte et al. [8], who found high
spatial variabilities over western South America. The authors
attributed this finding to the complex topography and large ranges
of elevation change over small areas. Our results support this as-
sociation; however, we further identify that the variabilities not
only account for the change of elevation, but also the microclimate
effects in the different subregions. In addition, the high variabilities
in the eastern Andes may also be attributed to the satellite image
artifact (Appendix A).
5.1. Practical contributions

This work contributes to the better understanding of the avail-
ability and variability of GHI in Ecuador. Previous studies have only
provided information regarding the magnitude of the solar
resource in Ecuador [21,58,59], but not a comprehensive analysis
about its spatio-temporal variability. Ordo~nez et al. [21] built an
updated solar atlas using the typical meteorological year (TMY)
dataset from the NSRDB and highlighted those provinces with good
solar potential. However, TMY datasets represent typical rather



Fig. 13. Boxplots of the monthly coefficient of variation CVm (%) of mean daily total GHI during 1998e2018 per subregion and grouped by region: Amazon (A) Eastern highlands
(EH), Western highlands (WH), Coast (C), and Galapagos (G). The outliers are excluded for clarity.
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Fig. 14. Correlation matrix of monthly mean daily total GHI time series of the median
curves of each subregion. Negative correlation coefficients (r) are highlighted in red.
Complementarity levels: strong: �0.9< r � �0.6, moderate: �0.6< r � �0.3,
weak �0.3< r < 0.0.
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than extreme conditions, therefore they are not suitable to
completely understand the resource variability [7]. In contrast, our
study uses a 21-year period dataset from the NSRDB that enables
both the identification of spatial areas with the best potential, and
the evaluation of the variability of GHI over time, which is highly
relevant for the design and financial feasibility of solar energy
projects [3].

Another important finding is that the subregions on the coast
and the western Andean highlands show significant seasonal
complementarities. This aspect raises the possibility for exploring
planning and operation strategies, known as geographical
smoothing effect [12,60e62], to smooth out the intra-annual GHI
variability and consequently the solar production in these areas.
Nevertheless, according to the statistical analysis of the interannual
variability, high variabilities from May to December are found in
C.1.2 and C.2.2. Since these subregions show strong complemen-
tarity to the WH region, further investigation is needed for
assessing the complementarities during ENSO events, which could
have an effect on the solar resource, as previously investigated in
Colombia [51,63].

The validation of the NSRDB dataset over the study area was
beyond the scope of this study. In that respect, Ordo~nez et al. [21]
found a good agreement between the satellite estimates and
ground-measured solar radiation data from 53 stations in Ecuador's
mainland. However, due to the sparse monitoring systems across
the country, no measurements from the eastern and southern
Ecuadorian Amazon, nor from the Galapagos Islands were used in
the mentioned study. Therefore, it is recommended to perform
further validations supported by the findings from our study. The
geographical location of the median curve of each subregion, which
is considered the most representative temporal pattern of the
subregion, could be used for the placement of ground-based sen-
sors and thus establish an optimal measurement network. The
subregions with low interannual variability would require shorter
measurement periods to characterize the solar resource [3].

The regionalization of GHI in our case study is performed using
monthly averaged data to understand the intra-annual variabilities
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and seasonal complementarities. Nevertheless, the proposed
methodology can be used at different temporal scales (e.g., daily or
hourly), as well as to analyze other renewable resources, or energy
production data. We use the Fourier basis system as the smoothing
method assuming that the monthly time series are periodic, how-
ever, for nonperiodic data (e.g., hourly wind speed data), the spline
basis would be recommended (further details can be found in
Ref. [64]). A practical limitation for using the sFDA regionalization
method might be, however, the high computation cost in the case
of a larger number of grid points or data at a high temporal
resolution.

6. Conclusions

In this work we present a methodology to characterize the
spatio-temporal variability and complementarity of long-term
gridded satellite GHI data using spatial functional data analysis.
The methodology is implemented over Ecuador's mainland and the
Galapagos Islands to demonstrate its applicability over a region
characterized by complex climate and terrain. The results indicate
that the regionalization method identifies coherent areas with
similar intra-annual variability patterns and effectively captures
the GHI variations influenced by microclimate and topographic
effects. Further, the resulting subregions provide an appropriate
basis for the regional analysis of the interannual variability and
complementarity. The proposed methodology can be applied to
other regions or countries and adapted to analyze the spatio-
temporal variability of other renewable resources or energy yield.

The findings from this study provide the first comprehensive
spatio-temporal characterization of GHI in Ecuador, which is of
particular relevance to support the optimal planning and deploy-
ment of solar power systems in the country. The regionalization
map and the variability statistics provide explicit information to
identify optimal locations for the deployment of irradiance mea-
surement networks and solar power plants. In the continental area,
WH.1 is one of the most suitable subregions, since it shows the
highest annual mean values (5.4 kWhm�2d�1) and the lowest
annual coefficient of variation (3.4%). Further areas with high po-
tential (�4.5 kWhm�2d�1) are located in the Inter-Andean valleys,
the Amazon lowlands and along the coastline. In Galapagos, all
islands show great potential (�4.8 kWhm�2d�1), especially the
subregion G.1.1, which has the highest annual mean values
(6.0 kWhm�2d�1) and the lowest annual coefficient of variation
(3.9%).

Moreover, the newly identified seasonal complementary
behavior between the coast and the Andean Highlands lays the
foundation for planning geographically-dispersed solar power
plants, with the goal of smoothing the solar resource variability.
Future research should explore the variability of other renewable
resources and the complementarity between them. This analysis
will support the development of strategies to diversify the power
mix in order to compensate for the seasonal variability of hydro-
logical resources and thus reduce dependencies on fossil fuel
thermal power in Ecuador. The impact of ENSO on energy resources
should also be investigated to support the design of long-term
strategies for the Ecuadorian power sector.
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Appendix A

Fig. A.1. Standard deviation of the annual mean daily total GHI during 1998e2018 at
4 � 4 km spatial resolution over Ecuador's mainland. Pixels at longitudes 78.02�Wand
77.98�W between latitudes 0.13�N and 1.71�S showed anomalies during the period
2008/11/24 to 2017/12/31. Source: Own representation, data from the NSRDB.
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Appendix B

Fig. B.1. Average silhouette width (AWS) values against the number of clusters for the
regionalization of GHI in Ecuador's mainland. 22 clusters (vertical dotted line) are
selected as optimal partition because the AWS value decreases significantly for higher
number of partitions. In addition, as seen in Fig. C.1, the functional boxplots of the 22
subregions display a uniform dispersion of the functional curves with a minimum
number of outliers curves, which suggests a coherent spatial classification.

Fig. B.2. Average silhouette width (AWS) values against the number of clusters for the
regionalization of GHI in the Galapagos Islands. Three clusters (vertical dotted line) are
selected as optimal partition. Although the AWS at 2 is higher, 3 clusters are selected
because the spatial distribution of the clusters is aligned to the climatic zones
described in Ref. [47]. In addition, as seen in Fig. C.1, the functional boxplots of the 3
subregions display a uniform dispersion of the functional curves without outlier
curves, which suggests a coherent spatial classification.

https://nsrdb.nrel.gov
https://doi.org/10.1016/j.renene.2022.03.049
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Appendix C
Fig. C.1. Functional boxplots that show the dispersion of the GHI functional curves per su
corresponding region: Amazon (A), Eastern highlands (EH), Western highlands (WH), Coast
external lines depict the minimum and maximum curves, the black lines are the median c
dotted lines in A.1, EH.1, EH.4 represent the outlier curves. (For interpretation of the referenc

1191
bregion in Ecuador's mainland and the Galapagos Islands, named according to their
(C), and Galapagos (G). The colored shapes represent the interquartile range, the gray
urves interpreted as the representative temporal pattern of each subregion. The black
es to color in this figure legend, the reader is referred to the Web version of this article.)
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