
Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Sentinel-2 cropland mapping using pixel-based and object-based time-
weighted dynamic time warping analysis

Mariana Belgiua,⁎, Ovidiu Csillikb,c

a Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
b Department of Geoinformatics – Z_GIS, University of Salzburg, Schillerstrasse 30, 5020 Salzburg, Austria
c Department of Environmental Sciences, Policy and Management, University of California, Berkeley, Berkeley, CA 94720-3114, United States

A R T I C L E I N F O

Keywords:
Remote sensing
Agriculture
Satellite image time series
Image segmentation
OBIA
Land use/land cover mapping
Random Forest

A B S T R A C T

Efficient methodologies for mapping croplands are an essential condition for the implementation of sustainable
agricultural practices and for monitoring crops periodically. The increasing spatial and temporal resolution of
globally available satellite images, such as those provided by Sentinel-2, creates new possibilities for generating
accurate datasets on available crop types, in ready-to-use vector data format. Existing solutions dedicated to
cropland mapping, based on high resolution remote sensing data, are mainly focused on pixel-based analysis of
time series data. This paper evaluates how a time-weighted dynamic time warping (TWDTW) method that uses
Sentinel-2 time series performs when applied to pixel-based and object-based classifications of various crop types
in three different study areas (in Romania, Italy and the USA). The classification outputs were compared to those
produced by Random Forest (RF) for both pixel- and object-based image analysis units. The sensitivity of these
two methods to the training samples was also evaluated. Object-based TWDTW outperformed pixel-based
TWDTW in all three study areas, with overall accuracies ranging between 78.05% and 96.19%; it also proved to
be more efficient in terms of computational time. TWDTW achieved comparable classification results to RF in
Romania and Italy, but RF achieved better results in the USA, where the classified crops present high intra-class
spectral variability. Additionally, TWDTW proved to be less sensitive in relation to the training samples. This is
an important asset in areas where inputs for training samples are limited.

1. Introduction

World population is expected to increase from 7.3 billion to 8.7
billion by 2030, 9.7 billion by 2050, and 11.2 billion by 2100 (United-
Nations, 2015a). This population growth impacts food supply systems
worldwide (Waldner et al., 2015), making urgent the development of
sustainable natural resources management programs. The increasing
role of agriculture in the management of sustainable natural resources
calls for the development of operational cropland mapping and mon-
itoring methodologies (Matton et al., 2015). The availability of such
methodologies represents a prerequisite for realising the United Nations
(UN) Sustainable Development Goals, including no poverty and zero
hunger (United-Nations, 2015b). The Agricultural Monitoring Com-
munity of Practice of the Group on Earth Observations (GEO), with its
Integrated Global Observing Strategy (IGOL), also calls for an opera-
tional system for monitoring global agriculture using remote sensing
images.

There are various studies, using supervised or unsupervised algo-
rithms, dedicated to cropland mapping from time series or single-date

remote sensing images (Petitjean et al., 2012b; Xiong et al., 2017; Yan
and Roy, 2015). The cropland mapping methods applied to time series
images have proven to perform better than single-date mapping
methods (Gómez et al., 2016; Long et al., 2013). For example, the
phenological patterns identified using 250 m MODIS-Terra/Enhanced
Vegetation Index (EVI) time series have been successfully used to
classify soybean, maize, cotton and non-commercial crops in Brazil
(Arvor et al., 2011). Patterns of vegetation dynamics identified from
MODIS EVI data were used by Maus et al. (2016) to map double
cropping, single cropping, forest and pasture. Senf et al. (2015) used
multi-seasonal MODIS and Landsat imagery to differentiate crops from
savannah, and Müller et al. (2015) successfully classified cropland and
pasture fields from Landsat time series. Jia et al. (2014) investigated the
efficacy of phenological features computed from the MODIS Normal-
ized Difference Vegetation Index (NDVI) time series fused with NDVI
data derived from Landsat 8 for land-cover mapping. This study con-
firmed that phenological features, including the maximum, minimum,
mean and standard deviation values computed from the fused NDVI
data, are relevant for classifying various vegetation categories such as
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forest, grass and crop classes.
The above-mentioned studies focused on the classification of multi-

temporal images at pixel level. Petitjean et al. (2012b) argue that the
increasing spatial resolution of available space-borne sensors, including
the Multispectral Imager sensor (MSI) carried on Sentinel-2, creates the
possibility of applying object-based image analysis (OBIA) to extract
crop types from multi-series data. OBIA is an iterative method that
starts with the segmentation of satellite imagery into homogeneous and
contiguous image segments (also called image objects) (Blaschke,
2010). The resulting image objects are then assigned to the target
classes using supervised or unsupervised classification strategies.
Lebourgeois et al. (2017) used OBIA for the mapping of smallholder
agriculture in Madagascar, using pan-sharpened Pléiades images (0.5 m
spatial resolution) for delineating the agricultural fields. The fields were
then further classified using reflectance and spectral indices computed
from Sentinel-2 (artificially created images from SPOT-5 images and
Landsat 8 OLI/TIRS images) and from Digital Elevation Model (DEM)-
based ancillary information, such as altitude or slope. Novelli et al.
(2016) used single-date Sentinel-2 and Landsat 8 data to classify
greenhouse segments from WorldView-2 images. Long et al. (2013)
described a multi-temporal object-based approach for mapping cereal
crops from Landsat SLC-off ETM+ imagery (without using gap-filling
schemes); they concluded that this approach allowed the accurate
classification of crops located partially within data gaps and avoided
the salt-and-pepper effect specific to a pixel-based approach, which
usually leads to mixed-crop classifications of fields. Castillejo-González
et al. (2009) showed that object-based analysis outperformed pixel-
based analysis for cropland mapping that uses QuickBird images.
Matton et al. (2015) and Li et al. (2015) also reported the advantages of
using object-based methods to classify various crop types from SPOT-
Landsat 8 time series and Landsat-MODIS data, respectively.

Despite the reported advantages of object-based methods to de-
lineate agricultural parcels (Castillejo-González et al., 2009; Matton
et al., 2015; Petitjean et al., 2012b), the implementation of object-based

frameworks for the spatio-temporal analysis of high-resolution satellite
imagery such as Sentinel-2 time series in order to delineate and classify
agricultural fields is very limited (Yan and Roy, 2016).

According to Petitjean et al. (2012a), cropland mapping based on
time series analysis is challenged by (i) the lack of samples used to train
the supervised algorithm; (ii) missing temporal data caused by clouds
obscuration; (iii) annual changes of phenological cycles caused by
weather or by variations in the agricultural practices. Dynamic Time
Warping (DTW) (Sakoe and Chiba, 1978) proved to be an efficient so-
lution to handle these challenges (Baumann et al., 2017; Petitjean et al.,
2012a). Maus et al. (2016) proposed a time-weighted version of the
DTW method (TWDTW) able to classify crops with various vegetation
dynamics. The TWDTW analysis performed well in identifying single
cropping, double cropping, forest and pasture from EVI derived from
MODIS data (Maus et al., 2016). The method has, however, been ap-
plied only at pixel level. Given the fact that agricultural management
decisions are generally made at the level of agricultural parcels (Forster
et al., 2010; Long et al., 2013), and given the increasing spatial re-
solution of Sentinel-2 data, it is worth investigating how this method
performs when applied within an OBIA framework.

The overall objective of this study is to evaluate the performance of
the TWDTW method for cropland mapping, based on freely available
Sentinel-2 time series and using pixels and objects as spatial analysis
units. Specifically, the performance of the TWDTW method is evaluated
in three different agrosystem regions, in Romania, Italy and the USA.
Subsequently, the classification results produced by TWDTW are com-
pared with those achieved by a Random Forest (RF) classifier (Breiman,
2001). RF was successfully used in previous remote sensing studies
dedicated to land use/land cover mapping from time series (Pelletier
et al., 2016).

This paper is structured as follows: Section 2 describes the study
areas and the data; Section 3 presents the proposed methodology;
Section 4 is dedicated to the results; Section 5 highlights the main
findings and the implications of this study, and is followed by our

Fig. 1. Study areas located in Romania (Test Area 1 – TA1), Italy (Test Area 2 – TA2) and California, USA (Test Area 3 – TA3). On the lower part, the three subsets are illustrated using a
false color combination (near-infrared, red, green bands) for the dates of August 6th (TA1), July 18th (TA2) and June 15th 2016 (TA3). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Conclusion.

2. Study areas and data

2.1. Study areas

The TWDTW method was applied to three study areas from diverse
climate regions and with different crops, field geometries, cropping
calendars and background soils (Fig. 1).

The first test area (TA1) is situated in south-eastern Brăila County,
Romania, at 45°00′N, 27°90′E (Fig. 1). TA1 covers 63,877 ha (Table 1)
and is situated in the Bărăgan Plain, one of the most fertile and pro-
ductive agricultural areas in the country. The agricultural landscape is
very fragmented in the western part of TA1, while in the eastern part
the parcels are larger and more compact, making them suitable for
intensive agricultural production. Situated in a steppe area with a
temperate continental climate, this region is well known for cold win-
ters and hot summers, which make it one of the most inhospitable areas
in Romania (for the 2016, the annual mean temperature was 16.9 °C,
with great variations in temperature, and precipitation of around
615 mm/year) (Table 1). However, the fertile soils represented by
Calcic Chernozems and Calcaric Fluvisols (FAO-UNESCO, 1981) make
this region attractive for various crops, including wheat (common
wheat and durum wheat), maize, rice and sunflowers.

The second test area (TA2) is situated in southern Lombardy and
northern Emilia-Romagna (Italy), at 45°10′N, 9°85′E (Fig. 1); it covers
24,256 ha (Table 1), and the major soils are Eutric Cambisols and
Orthic Luvisols (FAO-UNESCO, 1981). The climate is classified as
Mediterranean, with precipitation of 1078.2 mm/year, an average an-
nual maximum temperature of 20.8 °C, and average annual minimum
temperature of 13.1 °C for 2016. The major crops in the region are

maize, permanent and temporary meadow for forage, and winter cer-
eals (e.g. winter wheat, winter barley); double cropping is practised
(i.e. winter crops followed by maize, or winter crops followed by
forage) (Azar et al., 2016).

Test area 3 (TA3) is located in central Imperial County, southern
California, at 33°05′N and −115°50′W (Fig. 1). Covering 58,890 ha
with low altitudes in the Colorado Desert, the area is characterized by
high agricultural productivity and a hot desert climate (Table 1).
Within California, Imperial County is one of the highest-producing
counties for hay (alfalfa, over 15%), onions and lettuce (CDFA, 2016).
The agriculture is heavily reliant on irrigation: for the year 2016, the
average precipitation was below 50 mm, and the annual mean tem-
perature was above 27 °C (Table 1). The predominant soils are Calcaric
Fluvisols with associated Solonchaks, with a hyperthermic soil tem-
perature regime; the area is intensively managed for the production of
irrigated crops (FAO-UNESCO, 1975). Seven land use/land cover
classes were selected for analysis, each of them occupying at least 2% of
the study area: durum wheat, alfalfa, other hay/non-alfalfa, sugar beets,
onions, fallow/idle cropland and lettuce.

2.2. Data collection and pre-processing

The available Sentinel-2 satellite images (Level-1C S2) for the three
test areas were downloaded from the European Space Agency's (ESA)
Sentinel Scientific Data Hub (Fig. 2). Using sen2cor plugin v2.3.1
(Muller-Wilm et al., 2013), available on the Sentinel Application Plat-
form (SNAP) v5.0 and distributed under the GNU GPL license, we
processed reflectance images from Top-Of-Atmosphere (TOA) Level 1C
S2, to Bottom-Of-Atmosphere (BOA) Level 2A.

We selected temporal images with zero or close to zero (< 10%)
cloud coverage, taken between February and September for TA1 (13
images), January and October for TA2 (13 images), and January and
December 2016 for TA3 (21 images) (Fig. 2). Only visible bands 2, 3
and 4 and the near-infrared band (band 8) of Sentinel-2 data were used.
The images from the three test areas were projected in WGS 1984 UTM
Zone 35 N (TA1), Zone 32 N (TA2), and Zone 11 N (TA3).

3. Methodology

The methodological workflow consists of the following steps: (1)
data pre-processing to create BOA-corrected reflectance images (Level
2A) from TOA (Level 1C) input data (see section 2.2 for more details);
(2) data processing, which involves the creation of the NDVI time
series, the generation of training and validation samples, and multi-
temporal image segmentation; (3) data classification, where both
TWDTW and RF are used to map the target classes; (4) evaluation, for
assessing the classification accuracies obtained by pixel-based TWDTW
(PB-TWDTW) and object-based TWDTW (OB-TWDTW), and for com-
parison of the results with those obtained by RF (Fig. 3).

Table 1
Characteristics of the three test areas: location, extent, climate and soils.

Test area TA1 TA2 TA3

Country Romania Italy California, USA
Lat/Long 45°00′N

27°90′E
45°10′N
9°85′E

33.05′N
−115°50′W

Extent (pixels) 2738 × 2333 1898 × 1278 2336 × 2521
Extent (ha) 63,877 24,256 58,890
Climate Temperate

continental
Mediterranean Hot desert

Average annual
temperature
(°C) – 2016a

max. 19.5
mean 16.9
min. 13.2

max. 20.8
mean 17.7
min. 13.1

max. 32.0
mean 27.5
min. 19.4

Precipitation (mm)
– 2016a

615.4 1078.2 49.3

Soilsb Calcic
Chernozems and
Calcaric Fluvisols

Eutric Cambisols
and Orthic
Luvisols

Calcaric Fluvisols
with associated
Solonchaks

a Data provided by WorldWeatherOnline.com
b Soil information extracted from FAO-UNESCO (1981) (TA1 and TA2) and FAO-

UNESCO (1975) (TA3).

Fig. 2. Temporal coverage of the three Sentinel-2 time series data used in this study: TA1 (Romania), TA2 (Italy) and TA3 (California). The black-outlined symbols indicate the images
used in the segmentation process.
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3.1. Training and validation samples

For TA1 and TA2, we randomly generated samples across the sites
and classified them using visual interpretation keys based on expert
knowledge and information about crop types from the European Land
Use and Coverage Area Frame Survey (LUCAS). LUCAS is an in-situ data
survey carried out by EUROSTAT to identify changes in land use and
cover across the European Union. For TA3, we made use of CropScape –
Cropland Data Layer (CDL) for 2016, provided by the United States
Department of Agriculture, National Agricultural Statistics Service
(Boryan et al., 2011; Han et al., 2012), in order to classify randomly
generated samples. In all three test areas, the reference samples were
split into two sets of disjoint training and validation samples. This was
done at the polygon level to guarantee that training samples and vali-
dation samples were located in different agricultural parcels (Table 2).

3.2. Temporal phenological patterns

The temporal phenological patterns of the target classes were
computed using the NDVI (Tucker, 1979) generated from 10 m re-
solution red and near-infrared spectral bands:

=
−

+

NDVI NIR RED
NIR RED

NDVI is one of the most-used vegetation indices for studying vege-
tation phenology (Yan and Roy, 2014); it reduces the spectral noise
caused by certain illumination conditions, topographic variations or
cloud shadows (Huete et al., 2002). Additional vegetation indices or
spectral bands (such as red-edge spectral bands) are not considered in
this study.

The crops available in the three test areas have different temporal
patterns because of the diverse climate conditions and agricultural
practices (Fig. 4). For TA1, the wheat crop has its period of maximum
growth in May through June, and is harvested at the end of June
(Croitoru et al., 2012; Sima et al., 2015). Maize emerges in May, has the
highest values of NDVI from late June to late August, and is harvested
in September. Rice is partially covered by water in June, thus lowering
the NDVI values, and reaches peak NDVI values in late August/early
September. Sunflower reaches its peak growing period in July and is
harvested from early August. The last class investigated, namely the
(deciduous) forest class, has green vegetation from late April through to
late September. The decrease in NDVI values for maize and forest in
July is due to this being a very dry month, with precipitation below
5 mm (Fig. 4).

In TA2, the winter cereals reach the peak of their vegetative phase
in April–May, and is harvested in May–June; the maize reaches its
highest vegetative phase in July, and is harvested between the end of
August and late September; the forage crops (rye grasses, alfalfa or
clovers) are harvested several times per year (Azar et al., 2016). The
double-cropping class consists of the winter crops and maize, and of
winter crops and the ‘other crops’ class. As the phenological dynamics
of these two variations on double cropping are similar (Fig. 4), we
decided to merge them in our classification approach.

Because TA3 comprises intensively managed agricultural parcels for
the production of irrigated cash crops, the crops in TA3 show complex
temporal patterns. Durum wheat and onions have similar temporal
patterns, with the highest NDVI values in March, followed by reduced
greenness for the rest of the year. Alfalfa and other hay (non-alfalfa)
have the most irregular temporal patterns, since these crops are pro-
duced and harvested periodically throughout the whole year. However,
increased greenness is seen in the first half of the year. Lettuce have two
greenness peaks, in April and June–July, followed by bare soil after-
wards. Sugar beet reaches its peak greenness in the first three months of
the year, with low NDVI values after that, until the end of October,
when the values start to increase again. The most individualized class is
the fallow/idle cropland, with values of NDVI below 0.2 throughout the
entire year. Fig. 4 illustrates the phenological patterns of the target
crops identified in the Sentinel-2 time series for 2016.

Fig. 3. The workflow of pixel-based and object-based TWDTW and RF approaches.

Table 2
Number of training and validation samples, for each class investigated.

Test area 1 Test area 2 Test area 3

Class Train. Valid. Class Train. Valid. Class Train. Valid.

Wheat 38 89 Double
cropping

59 124 Durum
wheat

26 60

Maize 32 73 Forage 45 80 Alfalfa 69 160
Rice 24 57 Forest 41 102 Other

hay/
Non
alfalfa

50 116

Sunflower 30 71 Maize 42 147 Sugar
beets

38 89

Forest 32 73 Water 33 68 Onions 21 49
Water 25 57 Winter

cereals
31 84 Fallow/

Idle
cropland

33 76

Lettuce 24 56
Total 181 420 Total 251 605 Total 261 606
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Note that these patterns might vary from year to year because of
changes in agricultural practices and/or varying meteorological con-
ditions (Petitjean et al., 2012a); these changes might impact the “ca-
nonical temporal profiles” (Petitjean et al., 2012a) of the target crops,
challenging most of the existing image classification methods, which
are usually unable to deal with irregular temporal phenological sig-
natures (Maus et al., 2016).

3.3. Segmentation of multi-temporal images

Sentinel-2 images were segmented into homogeneous objects using
one of the most popular segmentation algorithms in OBIA, namely
multi-resolution segmentation (MRS) (Baatz and Schäpe, 2000), im-
plemented in the eCognition Developer (v9.2.1, Trimble Geospatial).
MRS is a region-growing algorithm that starts from the pixel level and
iteratively aggregates pixels into objects until some conditions of
homogeneity imposed by the user are met. MRS relies on several
parameters, which need to be tuned. These include the scale parameter
(SP), which dictates the size and homogeneity of the resultant objects.

To avoid time-consuming trial-and-error and subjective selection of the
SP (Drǎguţ et al., 2010), we used an automated tool for assisting the
segmentation procedure, namely Estimation of Scale Parameter 2
(ESP2) (Drăguţ et al., 2014). ESP2 relies on the concept of local var-
iance across scales to automatically identify three suitable SPs for MRS.
We used a hierarchical segmentation approach, meaning that each new
level of segmentation is based on the previous level. In the end, the
finest level of the hierarchy was chosen because it better reflected the
boundaries within the site, avoiding an undesirable high degree of
under-segmentation. For segmentation purposes, we used the red,
green, blue and near-infrared spectral bands for 6 images of TA1, 6
images of TA2, and 12 images of TA3 (Fig. 2). The images selected for
segmentation are distributed across the entire agricultural calendar,
resulting in stacks of 24, 24 and 48 layers for TAs 1, 2 and 3 respec-
tively, to be used as input in the segmentation process for the test areas.
Finally, a number of raster datasets were exported, representing the
mean NDVI values for each object, for each temporal image used (13 for
TA1 and TA2; 21 for TA3). The resulting raster datasets were then
stacked for each test area, ready to be analysed using the TWDTW
method.

3.4. Time-weighted dynamic time warping

We used the TWDTW method as implemented in the R (v3.3.3)
package dtwSat v0.2.1 (Maus et al., 2016). The method consists of three
main steps: (1) generating the temporal patterns of the ground truth
samples based on the NDVI time series; (2) applying the TWDTW
analysis; (3) classifying the raster time series.

3.4.1. Retrieval of phenological stages
We used the pixel-based stack of NDVI datasets extracted from

Sentinel-2 imagery and the training samples (Table 2) to extract their
average NDVI signal for the complete agricultural calendars studied.
We defined the temporal patterns using the function dtwSat::create-
Patterns (Maus, 2016), which uses a Generalized Additive Model (GAM)
(Wood, 2011) to create a smoothed temporal pattern for the NDVI. The
sampling frequency of the output patterns was set to 8 days, in order to
create a smoothed line. The resulting temporal patterns were further
used in the PB- and OB-TWDTW classifications.

3.4.2. TWDTW classifications
The Dynamic Time Warping (DTW) method was originally devel-

oped for speech recognition (Sakoe and Chiba, 1978) and later in-
troduced in the analysis of time series images (Maus et al., 2016;
Petitjean et al., 2012a; Petitjean and Weber, 2014). DTW works by
comparing the similarity between two temporal sequences and finds
their optimal alignment, resulting in a dissimilarity measure (Rabiner
and Juang, 1993; Sakoe and Chiba, 1978). In the case of remote sensing
data, DTW can deal with temporal distortions, and can compare shifted
evolution profiles and irregular sampling thanks to its ability to align
radiometric profiles in an optimal manner (Petitjean et al., 2012a).

To distinguish between different types of land use and land cover,
Maus et al. (2016) introduced a time constraint to DTW that accounts
for seasonality of land cover types, improving the classification accu-
racy when compared to traditional DTW. They implemented their
method, Time-Weighted Dynamic Time Warping (TWDTW), into an
open-source R package, dtwSat (Maus, 2016). We applied a logistic
TWDTW, since it has been shown that this gives more accurate results
than a linear TWDTW: logistic TWDTW has a low penalty for small time
warps and significant costs for large time warps, which is different from
the linear approach, which has large costs for small time warps, redu-
cing the sensitivity of classification (Maus et al., 2016). As re-
commended in Maus et al. (2016), we used the function dtwSat::twdt-
wApply with α= −0.1 and β = 50, which means that we added a
time-weight to the DTW, with a low penalty for time warps smaller than
50 days and a higher penalty for larger time warps. Different values of α

Fig. 4. Temporal patterns of NDVI for all classes mapped in the three test areas.
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(α =−0.2, −0.1, 0.1 or 0.2) and β (β = 50 or 100) were tested for
smaller subsets of the test areas, but the best classification results were
obtained with the α =−0.1 and β = 50 parameters. For the logistic
weights, α and β represent the steepness and the midpoint, respectively.
The α and β values are highly important when analysing time series
from different years and when the phenological cycles of crops differ
from one season to another. The dtwSat::twdtwApply function takes
each pixel location in the NDVI time series and analyses it in con-
junction with the temporal patterns identified for training samples. The
output is a dtwSat::twdtwRaster with layers containing the dissimilarity
measure for each of the temporal patterns (Maus, 2016). In the final
step, the function dtwSat::twdtwClassify generates the categorical land
cover map, based on the previously obtained dissimilarities, by as-
signing each pixel to the class with the lowest dissimilarity value.

3.5. Random Forest

RF is an ensemble learning classifier (Breiman, 2001) that has
achieved efficient classification results in various remote sensing stu-
dies, including cropland mapping (Hao et al., 2015; Li et al., 2015;
Novelli et al., 2016; Pelletier et al., 2016). A detailed review of RF and
its efficiency in remote sensing can be found in Belgiu and Drăguţ
(2016) and Gislason et al. (2006). In our study, RF was run using the
randomForest (v.4.6–12) R package-based script published by Millard
and Richardson (2015). Two parameters need to be tuned for RF,
namely the number of trees which will be created by randomly se-
lecting samples from the training samples (ntree parameter), and the
number of variables used for tree nodes splitting (mtry parameter). In
all three study areas, the ntree parameter was set up at 1000, because
previous studies proved that there is no increase in the number of errors
beyond the creation of 1000 classification trees from randomly selected
samples (Lawrence et al., 2006). Following the RF classification results
reported in previous studies and reviewed in Belgiu and Drăguţ (2016)
and Gislason et al. (2006), the mtry parameter was established as the
square root of the number of the available layers. Only the NDVI values
computed from multi-temporal images were used as input variables in
the RF classifier.

3.6. Classification accuracy assessment

The accuracies of the pixel- and object-based classifications ob-
tained were evaluated in terms of overall accuracy, producer's accu-
racy, user's accuracy metrics (Congalton, 1991), and kappa coefficient
(Cohen, 1960). The validation samples available for all three study

areas are shown in Table 2. The differences between the classification
results obtained by TWDTW and RF were evaluated using McNemar's
test (Bradley, 1968).

4. Results

4.1. Computational resources for applying TWDTW analysis

One of the biggest challenges in applying TWDTW is the computa-
tional time required. For a speedy application of the algorithm, the
NDVI stacks were split into 9 tiles for TA1, 6 for TA2, and 9 for TA3,
which were processed in a parallelized approach. NDVI stack-splitting
did not influence the classification results, because each pixel is treated
independently and additional information such as topological relations
is not required. TWDTW analysis was run on a configuration using 3 out
of 4 cores, with 3.20 GHz and 16-GB memory. The processing time
varied between 25 h for TA1, 9 h for TA2, and 30 h for TA3 for the PB-
TWDTW, and 3 min for the OB-TWDTW. The computational time de-
pends on the number of layers in the NDVI stack and the number of
classes being investigated. RF classifications required about 1 h for 25
iterations (for both pixel- and object-based RF). For segmentation
purposes, we used the same configuration used for the TWDTW analysis
(see above). The processing time varied between 44 min for TA1 (using
6 temporal images with 4 spectral bands each), 16 min for TA2 (using
also 6 temporal images with 4 spectral bands each) and 2h34m for TA3
(using 12 temporal images with 4 spectral bands each).

4.2. Segmentation results

For the segmentation task, the finest level of a hierarchical MRS
segmentation using ESP2 was chosen. The MRS algorithm was run using
a shape parameter of 0.1 and a compactness parameter of 0.5 for all
three areas. For TA1, ESP2 identified a SP of 205, resulting in 5198
objects with a mean area of 1229 pixels of 10 m resolution (Fig. 5). For
TA2, the final SP was 123, resulting in 6044 objects with a mean area of
401 pixels (Fig. 5). For TA3, we obtained 12,543 objects with a SP of
129 (Fig. 5). In TA1 and TA3, agricultural fields are over-segmented
because of the high spectral variability of individual crop parcels,
whereas the segmentation results obtained in TA2 follow the field
boundaries. Multiple temporal images well distributed across the agri-
cultural calendar need to be used as input in the segmentation process
in order to extract field boundaries that may appear on a certain date,
due to crop management, irrigation practices or weather influences
(Fig. 6). For example, using 6 out of 13 temporal images for TA1 in the

Fig. 5. Subsets of the three test areas segmented into 5198 (TA1), 6044 (TA2) and 12,543 (TA3) objects using MRS and ESP2. The objects boundaries are depicted in black, overlaid on a
false color combination (NIR, R, G). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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segmentation process ensured the extraction of the irrigated circle
parcels, which appeared in the landscape at the end of June (Fig. 6).

4.3. Classification results

4.3.1. Overall accuracies of TWDTW
TWDTW achieved good classification results in all three test areas

(Table 3 and Fig.7), the highest overall accuracy being obtained in TA1
(96.19% for OB-TWDTW; 94.76% for PB-TWDTW), followed by TA2
(89.75% for OB-TWDTW; 87.11% for PB-TWDTW). In TA3, OB-
TWDTW achieved an accuracy of 78.05%, whereas PB-TWDTW ob-
tained 74.92%. OB-TWDTW performed better than PB-TWDTW in all
test areas (Table 3).

4.3.2. TWDTW and RF classification comparisons using McNemar's test
The differences between the classification outcomes achieved by

TWDTW and RF were assessed using the McNemar's Chi-squared test
(Table 4). In TA1, PB-RF yielded comparable results to OB-TWDTW and
OB-RF, while PB-TWDTW achieved statistically different results. The
performance of PB-TWDTW was similar to that of OB-RF and PB-RF in
TA2, while the classification outputs obtained by OB-TWDTW were
statistically different from those produced by PB-TWDTW and OB-RF.
In TA3, all classifications are statistically different, except for the pair
PB-RF and OB-RF.

4.3.3. User's and Producer's accuracies
In the case of TA1, the UA and PA for wheat, water and forest

achieved the highest values (100%, or slightly lower (98.65% for
forest)), for both PB and OB-TWDTW. For the sunflower class, the
highest UA was reached by PB-TWDTW (98.41%). However, the same
approach produced the lowest PA for sunflower, 87.32%, due to con-
fusion with the maize class. For the rice class, both OB approaches
achieved higher UA than PB classifications (a difference of 5.35% for

TWDTW and of 6.01% for RF). The lower accuracy of the PB classifi-
cations was due to confusion with the maize class. Although the tem-
poral patterns of the two classes are distinct (the rice class having a
temporally-shifted high peak in NDVI), the internal variability of the
temporal pattern for the rice class is high. Some rice parcels have an
earlier growing pattern, showing a closer resemblance to the maize
pattern. OB classifications efficiently addressed the intra-class varia-
bility problem specific to rice crops in TA1.

The PA for the rice class was higher for both RF approaches than for
TWDTW, with a maximum difference of 12.28% between PB-RF and
PB-TWDTW, as a result of reduced confusion with the maize class. The
lowest UA value was obtained by the PB-TWDTW approach for maize
(82.72%), because of confusion with the rice and sunflower classes. The
temporal patterns of these three classes have overlapping phases, with
sunflower and maize sharing a similar pattern for the first half of the
period investigated, while maize and rice are similar at the beginning
and in the late-middle part of the agricultural calendar (Fig. 4). How-
ever, in the case of the PA for maize, both PB- and OB-TWDTW have the
same value (91.78%), which is superior to the PB-RF approach
(89.04%), but lower than the OB-RF classification (94.52%) (Fig. 8).

In TA2, TWDTW achieved the highest UA for the water class, for
both PB and OB classifications (100%), followed by winter cereals with
a UA of 89.36% for PB-TWDTW and 95.45% for OB-TWDTW (Fig. 9).
Thus, the OB-TWDTW reduced the confusion between winter cereals on
the one hand and cereals found in the double-cropping and forage
classes, which occurred in the case of PB-TWDTW.

The maize class was also well classified: UA of 87.01% for PB-
TWDTW, and 89.26% for OB-TWDTW. Similar results were obtained for
the double-cropping class (UA of 87.5% for PB-TWDTW; 88.28% for
OB-TWDTW). The forage class achieved the lowest UA, namely 75.86%
for PB-TWDTW and 83.08% for OB-TWDTW, because of confusion with
the forest class.

Generally, OB-TWDTW performed better than PB-TWDTW for all
classes in TA2, the highest difference being for the forage class, where
OB-TWDTW performed much better than PB-TWDTW (about 7% dif-
ference obtained for UA, and 12.5% difference for PA). OB-TWDTW
classified the winter cereals class with a higher confidence than PB-
TWDTW (about 5% higher value for the UA metric) (Fig. 9).

TWDTW outperformed RF in identifying the double-cropping class
(for both PB and OB approaches), achieving a PA of 90.32% for PB-
TWDTW and 91.13% for OB-TWDTW, whereas RF yielded PAs of
80.65% and 76.61% for PB and OB respectively. Furthermore, TWDTW
also achieved better classification results for the winter cereals. RF on
the other hand performed better in classifying the forage class. RF also
obtained the highest PA for the maize class (95.24% for PB-RF).

Fig. 6. Using multiple temporal images in the same segmentation process is useful in depicting the boundaries that may appear along the agricultural calendar. In this example, the
irrigated circle parcels are extracted in the final segmentation (black lines), although they appear in the landscape at the end of June. The images are shown in false color composite (NIR,
R, G). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Overall accuracy (OA) and kappa coefficient of TWDTW and RF applied to all three test
areas using both pixels and objects as the image analysis units.

TA1 TA2 TA3

OA (%) Kappa OA (%) Kappa OA (%) Kappa

PB-TWDTW 94.76 0.93 87.11 0.84 74.92 0.70
OB-TWDTW 96.19 0.95 89.75 0.87 78.05 0.74
PB-RF 97.14 0.97 87.44 0.84 88.78 0.87
OB-RF 97.62 0.97 86.28 0.84 88.28 0.86
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However, the UA obtained for this class by RF is much lower than that
obtained by TWDTW.

In TA3, alfalfa and the other hay class achieved better UA for both
TWDTW approaches, when compared to RF. In the case of alfalfa, the
biggest UA difference, 13.26%, was between OB-TWDTW and OB-RF, as
greater confusion occurred with sugar beet, onion and lettuce in the
case of the latter approach (Fig. 10). On the other hand, durum wheat
and lettuce achieved the lowest UA for TWDTW, of 51.35% for lettuce

using PB-TWDTW, and 57.45% for durum wheat using OB-TWDTW. In
the case of wheat, there were confusions with sugar beets and onions,
while lettuce was confused with alfalfa and the other hay class. In the
case of PB- and OB-TWDTW, the PA values for durum wheat were
higher than in the corresponding RF approach. For alfalfa and other
hay, the PA values for the TWDTW classification are lower than for RF,
because of confusions with sugar beets and lettuce. The PB-RF classi-
fication obtained the highest PA for sugar beets (88.76%) and onions

Fig. 7. Pixel-based and object-based categorical maps of crops using TWDTW and RF. The grey values represent the settlement areas.

Table 4
Summary of the classification comparisons using McNemar's Chi-squared test.

TA1 TA2 TA3

χ2 p χ2 p χ2 p

PB-TWDTW OB-TWDTW 4.167 0.041 11.25 < 0.001 17.053 < 0.001
PB-RF 5.786 0.0162 0.023 0.880 71.76 < 0.001
OB-RF 10.083 0.002 0.34 0.56 79.012 < 0.001

OB-TWDTW PB-RF 1.125 0.289 3.841 0.05 47.08 < 0.001
OB-RF 4.167 0.041 8.511 0.004 58.141 < 0.001

PB-RF OB-RF 0.167 0.683 1.565 0.211 0.129 0.719
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(87.76%); there was a small amount of confusion of sugar beets and
onions with wheat and alfalfa. For all classes, the OB-TWDTW obtained
higher or equal UAs and PAs when compared to PB-TWDTW, with the
highest difference, 8.17%, for PA for onions (Fig. 10).

PB- and OB-TWDTW obtained lower UA than PB- and OB-RF for

durum wheat, but the PA was higher for this class. This means that
TWDTW correctly identified more ground truth pixels/objects as durum
wheat, but the commission error for this class is much higher. In the
case of alfalfa, the confidence for pixels and objects classified as alfalfa
by TWDTW was greater than that obtained by RF, but the PA was lower
for TWDTW than RF.

4.3.4. TWDTW dissimilarity measures
Complementary to a classification map, the TWDTW dissimilarity

map shows how similar a classified pixel or object was to the temporal
pattern of their assigned class (the closer to 0, the better) (Fig. 11). The
crops mapped in TA3, for example, present the highest dissimilarity
values due to the high intra-class spectral variance, which proved to
have a great impact on the classification outputs yielded by TWDTW.
The dissimilarity measure values of PB-TWDTW ranged between 0.45
and 12.37 for TA1, 0.69 and 26.81 for TA2, and 0.36 and 13.20 for TA3,
while for OB-TWDTW the values ranged between 0.53 and 9.25 for
TA1, 0.71 and 16.21 for TA2, and 0.37 and 8.09 for TA3 (Fig. 11).

The difference between the upper bounds of the PB- and OB-
TWDTW approaches is an indication that grouping the pixels into ob-
jects helps reduce the salt-and-pepper effect characteristic of PB clas-
sification, by averaging the NDVI values inside each object. This is also
apparent from Fig. 12, which shows that OB classification delivers a
spatially homogeneous agricultural mapping product, avoiding the
noise introduced by pixels inside a crop parcel that do not share the
same properties as the parcel as a whole, which can be due to variations
in the crop growth or different amounts of water retained by the soil,
for example.

4.3.5. Area of the crop fields mapped
The estimated areas of the crop fields mapped were adjusted to the

magnitude of the classification errors. We used the approach described
by Olofsson et al. (2013) to compute the error-adjusted area estimates
(at 95% confidence interval). In TA1, there are no significant differ-
ences between adjusted and mapped areas for the wheat, forest and

Fig. 8. User's and Producer's accuracy for TA1 represented together with the confidence
interval (95% confidence level).

Fig. 9. User's and Producer's accuracy for TA2 represented together with the confidence
interval (95% confidence level).

Fig. 10. User's and Producer's accuracy for TA3 represented together with the confidence
interval (95% confidence level).
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water classes, due to their distinctive temporal patterns, which assure
good classification results (Fig. 13). The RF approaches mapped larger
areas of sunflower, with the biggest difference, of 3353 ha, for the
adjusted area for both RF classifications, when compared to the PB-
TWDTW results. By contrast, the TWDTW approaches mapped larger
areas of maize than RF. For rice, the adjusted areas are greater than the
mapped areas (except for the PB-RF), the greatest difference being of
1473 ha for the OB-TWDTW classification. The margin of error is
greater for the TWDTW classification compared to RF, due to the higher
UA obtained by the latter approach for rice (Fig. 13).

In TA2, the greatest difference between adjusted and mapped areas
is produced by RF for the maize class, where the adjusted area is with
1655 ha smaller for PB-RF, and 1574 ha smaller for OB-RF. A high
discrepancy occurred also for the double-cropping class, where the
adjusted areas were higher, with 862 ha for PB-RF and 1113 ha for the
OB-RF. TWDTW produced the highest discrepancy between mapped
and adjusted areas for the maize and forage classes. In the case of
maize, the adjusted area was 849 ha smaller for PB-TWDTW, and
551 ha smaller for the OB-TWDTW. In the case of the forage class, the
adjusted area was with 681 ha greater for the PB-TWDTW, and 639 ha
greater for the OB-TWDTW (Fig. 13).

In TA3, the complexity of the temporal patterns created many dis-
crepancies between the adjusted and mapped areas. For durum wheat,
sugar beets, fallow and lettuce, both TWDTW approaches mapped
larger areas than the values of the adjusted areas, the biggest differ-
ences being recorded for the fallow/idle cropland class (3026 ha for PB-
TWDTW results). Larger adjusted areas than mapped areas were ob-
tained using TWDTW for alfalfa and the other hay class, with a 4783 ha
difference for PB-TWDTW results. The area of alfalfa was under-
estimated because of the confusion between it and sugar beets, lettuce

and the other hay class. This is also reflected in the lower PA for alfalfa,
namely 63.13% for PB-TWDTW and 65.63% for OB-TWDTW. The
fallow area was overestimated because pixels/objects belonging to al-
most all other crops types (except for the other hay class) were mis-
classified as fallow; UA for this class is about 81.72% for both PB-
TWDTW and OB-TWDTW. For RF classifications, the biggest difference
between adjusted and mapped areas is for lettuce: adjusted areas
measure 1932 ha more for PB-RF, and 966 ha for OB-RF. The largest
error margins were obtained for alfalfa, fallow and lettuce, with a
maximum of 1397 ha for PB-TWDTW in the case of lettuce, and 1083 ha
for OB-RF for alfalfa (Fig. 13).

5. Discussion

This study evaluated the performance of the TWDTW method (Maus
et al., 2016) in identifying various cropland classes from Sentinel-2
NDVI time series, using both pixels and objects as spatial analysis units.
The method was applied in three different study areas situated in Ro-
mania, Italy and the USA. OB-TWDTW outperformed PB-TWDTW in all
three study areas. OB-TWDTW proved to be computationally less in-
tensive, since it was applied only on the centroids of the objects, thus
reducing the number of analysis units from, e.g., 6,387,754 pixels to
5198 objects for TA1. Furthermore, the crops mapped using the object-
based approach are spatially more consistent than those mapped using
the pixel as the smallest analysis unit (Fig. 12). Our results are similar to
those obtained by Castillejo-González et al. (2009), who reported that
OBIA outperformed pixel-based approaches for cropland mapping
based on QuickBird images.

Fig. 11. TWDTW dissimilarity measure maps of the final PB and OB classifications, for all three test areas. Grey represents the built-up areas, while white areas are waterbodies (lakes,
rivers) which remained unclassified.
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5.1. Segmentation of multi-temporal remote sensing images

Image segmentation is a challenging task in OBIA as it requires the
user's intervention to define the optimal segmentation parameters for
delineating the objects of interest (Belgiu and Drǎguţ, 2014; Drǎguţ
et al., 2010). To deal with this challenge, we used the ESP2 tool (Drăguţ
et al., 2014) to automatically identify the scale parameter of the MRS
algorithm which would be applied to the Sentinel-2 time series. ESP2
was used as it is a data-driven, unsupervised segmentation evaluation
approach that relies exclusively on image statistics to identify the op-
timal SP. Therefore, it works independently of any reference data re-
quired when supervised segmentation evaluation approaches are used
(Li et al., 2015). The quality of the segmentation results is influenced by
the field geometry (Yan and Roy, 2016). For example, larger parcels
and rectangular parcels situated in the eastern part of TA1, in TA2 and
TA3 were well delineated in all three study areas (Fig. 5). However, the
fields with a high internal variation were over-segmented (especially in
TA1 and TA3), and the narrower adjacent fields with more complex

geometries were under-segmented (in TA1) (Fig. 5). The classification
errors caused by over-segmentation can be overcome by applying post-
classification rules for merging objects belonging to the same class
(Johnson and Xie, 2011). Under-segmentation occurred especially in
TA1, because of the high spatial fragmentation of the fields in the
western part of the study area, where in addition the boundaries be-
tween these and neighbouring fields are not very distinct. Smaller fields
which are merged into larger heterogeneous segments can be decom-
posed using morphological decomposition algorithms (Yan and Roy,
2016). As the three test areas do not include the full range of possible
field geometries, we recommend further investigation on how image
segmentation and TWDTW perform in agricultural areas with irregular
geometries, with less distinct boundaries between neighbouring fields
(Yan and Roy, 2016), with high confusion between agricultural fields
and natural vegetation, and where large trees are present within fields
(Debats et al., 2016).

Image segmentation has traditionally been applied to single-date
satellite images (Desclée et al., 2006). Several studies report the

Fig. 12. A subset of TA1 showing the removal of salt-and-pepper effect from PB classification using objects as spatial analysis units in TWDTW and RF, respectively.
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advantages of satellite time series segmentation, such as consistent
delineation of agricultural fields from Web Enabled Landsat Data
(WELD) (Yan and Roy, 2014), better and faster forest change analysis
from SPOT images (Desclée et al., 2006), robustness against shadowing
and registration errors (Desclée et al., 2006; Mäkelä and Pekkarinen,
2001), and reduced salt-and-pepper effect apparent in per-pixel classi-
fications (Matton et al., 2015). In our study, segmentation of multi-
temporal images proved to be an efficient approach for delineating crop
fields, including fields whose boundaries are influenced by irrigation
systems (Fig. 6). Furthermore, within-field heterogeneity (i.e. the pre-
sence of several crops within an individual field) specific to several
crops present in the investigated areas was reduced by aggregating
pixels into homogeneous spatial units through segmentation. Conse-
quently, OB-TWDTW performed better than PB-TWDTW in identifying
crops with high within-field heterogeneity such as forage in TA2, and
lettuce, onions or sugar beets present in TA3.

5.2. TWDTW and Random Forest

The highest differences between the TWDTW and RF classification
results were obtained for TA3. In this study area, TWDTW produced
lower PA and UA for crop classes such as alfalfa, sugar beet or lettuce
(see Table 3). The high intra-class spectral heterogeneity, coupled with
the fact that the time series for TA3 do not cover the phenological cycle
for some crops (e.g. sugar beets and lettuce) may contribute to these
low values. Therefore, to ensure the best results for TWDTW, the time
series should correspond with the phenological cycles of the crop types
investigated, and further research is required to improve the efficiency
of TWDTW under such conditions. On the other hand, TWDTW
achieved better results than RF in TA2 for double-cropping and winter
cereals. Despite the differences between TWDTW and RF presented
above, RF achieved good classification results in all three study areas.
Therefore, our study confirmed the efficiency of this classifier for
cropland mapping already reported in the literature (Hao et al., 2015;
Li et al., 2015; Novelli et al., 2016; Pelletier et al., 2016).

Fig. 13. Area uncertainty: mapped area and adjusted area using the information from error matrix (at 95% confidence interval) of classified crops for the three test areas and the four
approaches: pixels-based (PB) and object-based (OB) TWDTW and RF, respectively.
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Given the similar classification results obtained by RF and TWDTW
(except for TA3, where RF outperformed TWDTW), we decided to
evaluate the sensitivity of these methods to the number of training
samples. These samples, three per class of crop, were taken from all
three test areas, randomly selected from among those presented in
Table 2. TWDTW produced good classification outputs also with a small
number of training samples in TA1 and TA2 (Table 5). In TA3, TWDTW
obtained lower classification accuracies. For RF, however, the overall
accuracy of the classification results was lower in all three study areas.
Previous studies have also reported that RF achieves less accurate re-
sults when a small number of training samples is used (Millard and
Richardson, 2015; Valero et al., 2016). The ability of TWDTW to
achieve good classification results with a small number of training
samples is a huge advantage which should be taken into account when
regional and global cropland mapping projects are planned, especially
in countries which lack input training samples (King et al., 2017;
Matton et al., 2015; Petitjean et al., 2012a). Petitjean et al. (2012a)
stated that TWDTW has also the advantage of being robust to irregular
temporal sampling and to the annual changes of vegetation phenolo-
gical cycles. These are important assets, especially in regions with high
meteorological variability and where agricultural practices vary from
one year to another. However, further research is required to test the
sensitivity of TWDTW to the year-to-year variability of vegetation
phenology. Additionally, the remote sensing community interested in
developing automated methods for crop fields mapping would greatly
benefit from the availability of an online, readily accessible crop ca-
lendar similar to those developed by FAO (goo.gl/zo4jpY). This crop
calendar could guide the selection of time series that correspond with
the phenological cycles of the target crop types.

5.3. Potential of Sentinel-2 images for cropland mapping

Our work took advantage of the increasing spatial and temporal
resolution of Sentinel-2 imagery for cropland mapping. The increasing
spatial resolution of the MSI sensor allowed us to successfully delineate
crop field boundaries in all test areas, including where the agricultural
landscape is very fragmented and hence the fields are smaller (see TA1).
Other studies have also reported the added-value of the improved
Sentinel-2 spatial resolution for mapping built-up areas (Pesaresi et al.,
2016) and smallholdings (Lebourgeois et al., 2017), and for identifying
greenhouses (Novelli et al., 2016). Novelli et al. (2016) showed that
Sentinel-2 in combination with WorldView-2 images (used for seg-
mentation) facilitate the accurate identification of greenhouses,
whereas Lebourgeois et al. (2017) used very-high resolution Pléiades
images to segment fields, which were further classified using spectral
features and indices computed from Sentinel-2 data.

The higher temporal resolution of the freely available satellite
imagery (with revisiting times of 16 days for Landsat, 10 days for
Sentinel-2 in 2016, and 5 days for Sentinel-2B, launched in March
2017) is expected to increase the chance of finding cloud-free data
(Gómez et al., 2016; Yan and Roy, 2015). In this study, a reduced
number of cloud-free images were available, especially in TA1 and TA2
(both areas situated in Europe). Nevertheless, the images available
proved to be sufficient for describing the temporal behaviour of the

target crops and for achieving satisfactory classification results. In re-
gions with few Sentinel-2 images, RADARSAT-2 (Fisette et al., 2013) or
Sentinel-1 data (Satalino et al., 2012) could be combined with multi-
spectral Sentinel-2 images.

We used NDVI in our study because this vegetation index proved to
be “sufficiently stable to permit meaningful comparisons of seasonal
and inter-annual changes in vegetation growth and activity” (Huete
et al., 2002). However, the soil background might cause variations in
the computed phenological profile (Montandon and Small, 2008). Fu-
ture research to investigate the soil spectra interactions with the NDVI
index is therefore required. A potential solution to this problem is the
utilization of alternative indices, such as the Soil Adjusted Vegetation
Index (SAVI) (Huete, 1988), transformed SAVI (Baret and Guyot, 1991),
or the generalized SAVI (Gilabert et al., 2002).

The potential of the Sentinel-2 spectral configuration has been
evaluated in various studies dedicated to identifying water bodies (Du
et al., 2016); mapping agricultural fields from single-date Sentinel-2
images (Immitzer et al., 2016); predicting leaf nitrogen concentration in
vegetation (Ramoelo et al., 2015); estimating canopy chlorophyll con-
tent, leaf area index (LAI) and leaf chlorophyll concentration (LCC)
(Frampton et al., 2013); evaluating burn severity (Fernández-Manso
et al., 2016), or identifying Prosopis and Vachellia tree species (Ng et al.,
2017). We limited this study to the utilization of 10 m resolution red
and near-infrared spectral bands in the classification procedure. Future
work to consider spectral indices such as the Enhanced Vegetation
Index (EVI) or Normalized Difference Water Index (NDWI) (McFeeters,
1996), and the vegetation red-edge bands (bands 5, 6, 7 and 8a) for
cropland mapping is recommended.

6. Conclusion

In this study, Sentinel-2 time series served as data input for cropland
mapping using the TWDTW method. The analysis was applied on pixels
and objects, in three test areas with different agricultural calendars,
geometry of parcels and climate conditions. OB-TWDTW outperformed
PB-TWDTW in all test areas in terms of the quality of the classification
outputs, as measured by the overall accuracy metric and in terms of
computational time. TWDTW performed less accurately, especially
when the mapped crops presented a high intra-class variability or the
yearly-based time series did not overlap with the phenological cycles of
the crops. When compared to the RF classifier, TWDTW obtained si-
milar classification outputs in two test areas. RF performed better in the
third, where the within-field heterogeneity was very high. TWDTW
proved to be more robust than RF when applied to the number of
training samples. Automated segmentation of multi-temporal images
using ESP2 and the MRS algorithm generated a satisfactory delineation
of the agricultural parcels.

Given the high classification accuracy obtained without human in-
tervention and the reduced computational time, the TWDTW method
applied to objects could be integrated into operational programs dedi-
cated to cropland mapping and monitoring based on satellite image
time series.
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