
TRACEABILITY

OF

REQUIREMENTS AND SOFTWARE ARCHITECTURE

FOR

CHANGE MANAGEMENT

ARDA GÖKNIL

Ph.D. dissertation committee:
 Chairman and secretary:
 Prof. Dr. Ir. Anton J. Mouthaan, University of Twente, The Netherlands
 Promoter:
 Prof. Dr. Ir. Mehmet Akşit, University of Twente, The Netherlands
 Assistant promoter:
 Dr. Ivan Kurtev, University of Twente, The Netherlands
 Members:
 Prof. Dr. Roel Wieringa, University of Twente, The Netherlands
 Prof. Dr. Ir. Arend Rensink, University of Twente, The Netherlands
 Prof. Dr. Richard Paige, University of York, United Kingdom
 Prof. Dr. Antonio Vallecillo, University of Malaga, Spain
 Prof. Dr. Ir. Paris Avgeriou, University of Groningen, The Netherlands
 Dr. Laurent Balmelli, IBM, United States

CTIT Ph.D. thesis series no. 11-192. Centre for Telematics and Information Technology (CTIT),
P.O. Box 217 – 7500 AE Enschede, The Netherlands.
ISSN: 1381-3617

This work has been carried out as part of the QuadREAD project. This project is supported by
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) under the Software
Engineering Jacquard program.

ISBN: 978-90-365-3175-7
ISSN: 1381-3617 (CTIT Ph.D. thesis series no. 11-192)
DOI: http://dx.doi.org/10.3990/1.9789036531757

Cover design by Kardelen Hatun
Printed by Ipskamp Drukkers B.V., Enschede, The Netherlands
Copyright © Arda Göknil, Enschede, The Netherlands

TRACEABILITY OF REQUIREMENTS AND SOFTWARE
ARCHITECTURE FOR CHANGE MANAGEMENT

DISSERTATION

to obtain
the degree of doctor at the University of Twente,

on the authority of the rector magnificus,
Prof. Dr. H. Brinksma,

on account of the decision of the graduation committee,
to be publicly defended

on Friday the 7th of October 2011 at 16.45

by

Arda Göknil

Born on the 24th of December 1980
In Izmir, Turkey

This dissertation is approved by

 Prof. Dr. Ir. Mehmet Akşit (promoter)
 Dr. Ivan Kurtev (assistant promoter)

v

Acknowledgments

I would like to thank to my promotor Mehmet Aksit for giving me a chance for Ph.D. I
would like to thank to my supervisors Ivan Kurtev and Klaas van den Berg for having the
weekly research meetings during my Ph.D.

I would like to thank to the members of my Ph.D. committee: Paris Avgeriou, Laurent
Balmelli, Richard Paige, Arend Rensink, Antonio Vallecillo, and Roel Wieringa for spending
their time to evaluate my work.

I would like to thank to the members of the software engineering group for the working
environment I have had. I am grateful to our secretary Jeanette Rebel-de Boer for her
administrative support.

I would like to thank to all friends I have in the Netherlands. They have helped me not to
feel homesick. I would like to thank all the people who have contributed to our football
matches in TUFAT.

I would like to thank my parents and my sister who stood by me regardless of many
obstacles.

Arda Goknil

Enschede, September 2011

vii

Abstract

At the present day, software systems get more and more complex. The requirements of
software systems change continuously and new requirements emerge frequently. New
and/or modified requirements are integrated with the existing ones, and adaptations to the
architecture and source code of the system are made. The process of integration of the
new/modified requirements and adaptations to the software system is called change
management. The size and complexity of software systems make change management costly
and time consuming. To reduce the cost of changes, it is important to apply change
management as early as possible in the software development cycle. Requirements
traceability is considered crucial in change management for establishing and maintaining
consistency between software development artifacts. It is the ability to link requirements
back to stakeholders’ rationales and forward to corresponding design artifacts, code, and test
cases. When changes for the requirements of the software system are proposed, the impact
of these changes on other requirements, design elements and source code should be traced
in order to determine parts of the software system to be changed. Determining the impact of
changes on the parts of development artifacts is called change impact analysis. Change impact
analysis is applicable to many development artifacts like requirements documents, detailed
design, source code and test cases. Our focus is change impact analysis in requirements and
software architecture.

The need for change impact analysis is observed in both requirements and software
architecture. When a change is introduced to a requirement, the requirements engineer needs
to find out if any other requirement related to the changed requirement is impacted. After
determining the impacted requirements, the software architect needs to identify the impacted
architectural elements by tracing the changed requirements to software architecture. It is
hard, expensive and error prone to manually trace impacted requirements and architectural
elements from the changed requirements. There are tools and approaches that automate
change impact analysis like IBM Rational RequisitePro and DOORS. In most of these tools,

viii

traces are just simple relations and their semantics is not considered. Due to the lack of
semantics of traces in these tools, all requirements and architectural elements directly or
indirectly traced from the changed requirement are candidate impacted. The requirements
engineer has to inspect all these candidate impacted requirements and architectural elements
to identify changes if there are any. In this thesis we address the following problems which
arise in performing change impact analysis for requirements and software architecture.

Explosion of impacts in requirements after a change in requirements. In practice, requirements
documents are often textual artifacts with implicit structure. Most of the relations among
requirements are not given explicitly. There is a lack of precise definition of relations among
requirements in most tools and approaches. Due to the lack of semantics of requirements
relations, change impact analysis may produce high number of false positive and false
negative impacted requirements. A requirements engineer may have to analyze all
requirements in the requirements document for a single change. This may result in
neglecting the actual impact of a change.

Manual, expensive and error prone trace establishment. Considerable research has been devoted to
relating requirements and design artifacts with source code. Less attention has been paid to
relating Requirements (R) with Architecture (A) by using well-defined semantics of traces.
Designing architecture based on requirements is a problem solving process that relies on
human experience and creativity, and is mainly manual. The software architect may need to
manually assign traces between R&A. Manual trace assignment is time-consuming, expensive
and error prone. The assigned traces might be incomplete and invalid.

Explosion of impacts in software architecture after a change in requirements. Due to the lack of
semantics of traces between R&A, change impact analysis may produce high number of false
positive and false negative impacted architectural elements. A software architect may have to
analyze all architectural elements in the architecture for a single requirements change.

In this thesis we propose an approach that reduces the explosion of impacts in R&A. The
approach employs semantic information of traces and is supported by tools. We consider
that every relation between software development artifacts or between elements in these
artifacts can play the role of a trace for a certain traceability purpose like change impact
analysis. We choose Model Driven Engineering (MDE) as a solution platform for our approach.
MDE provides a uniform treatment of software artifacts (e.g. requirements documents,
software design and test documents) as models. It also enables using different formalisms to
reason about development artifacts described as models. To give an explicit structure to
requirements documents and treat requirements, architecture and traces in a uniform way,

ix

we use metamodels and models with formally defined semantics. The thesis provides the
following contributions:

A modeling language for definition of requirements models with formal semantics. The language is
defined according to the MDE principles by defining a metamodel. It is based on a survey
about the most commonly found requirements types and relation types. With this language,
the requirements engineer can explicitly specify the requirements and the relations among
them. The semantics of these entities is given in First Order Logic (FOL) and allows two
activities. First, new relations among requirements can be inferred from the initial set of
relations. Second, requirements models can be automatically checked for consistency of the
relations. Tool for Requirements Inferencing and Consistency Checking (TRIC) is developed
to support both activities. The defined semantics is used in a technique for change impact
analysis in requirements models.

A change impact analysis technique for requirements using semantics of requirements relations and
requirements change types. The technique aims at solving the problem of explosion of impacts in
requirements when semantics of requirements relations is missing. The technique uses
formal semantics of requirements relations and requirements change types. A classification
of requirements changes based on the structure of a textual requirement is given and
formalized. The semantics of requirements change types is based on FOL. We support three
activities for impact analysis. First, the requirements engineer proposes changes according to
the change classification before implementing the actual changes. Second, the requirements
engineer indentifies the propagation of the changes to related requirements. The change
alternatives in the propagation are determined based on the semantics of change types and
requirements relations. Third, possible contradicting changes are identified. We extend TRIC
with a support for these activities. The tool automatically determines the change propagation
paths, checks the consistency of the changes, and suggests alternatives for implementing the
change.

A technique that provides trace establishment between R&A by using architecture verification and semantics
of traces. It is hard, expensive and error prone to manually establish traces between R&A. We
present an approach that provides trace establishment by using architecture verification
together with semantics of requirements relations and traces. We use a trace metamodel with
commonly used trace types. The semantics of traces is formalized in FOL. Software
architectures are expressed in the Architecture Analysis and Design Language (AADL).
AADL is provided with a formal semantics expressed in Maude. The Maude tool set allows
simulation and verification of architectures. The first way to establish traces is to use
architecture verification techniques. A given requirement is reformulated as a property in

x

terms of the architecture. The architecture is executed and a state space is produced. This
execution simulates the behavior of the system on the architectural level. The property
derived from the requirement is checked by the Maude model checker. Traces are generated
between the requirement and the architectural components used in the verification of the
property. The second way to establish traces is to use the requirements relations together
with the semantics of traces. Requirements relations are reflected in the connections among
the traced architectural elements based on the semantics of traces. Therefore, new traces are
inferred from existing traces by using requirements relations. We use semantics of
requirements relations and traces to both generate/validate traces and generate/validate
requirements relations. There is a tool support for our approach. The tool provides the
following: (1) generation/validation of traces by using requirements relations and/or
verification of architecture, (2) generation/validation of requirements relations by using
traces.

A change impact analysis technique for software architecture using architecture verification and semantics of
traces between R&A. The software architect needs to identify the impacted architectural
elements after requirements change. We present a change impact analysis technique for
software architecture using architecture verification and semantics of traces. The technique is
semi-automatic and requires participation of the software architect. Our technique has two
parts. The first part is to identify the architectural elements that implement the system
properties to which proposed requirements changes are introduced. By having the formal
semantics of requirements relations and traces, we identify which parts of software
architecture are impacted by a proposed change in requirements. We have extended TRIC
for determining candidate impacted architectural elements. The second part of our technique
is to propose possible changes for software architecture when the software architecture does
not satisfy the new and/or changed requirements. The technique is based on architecture
verification. The output of verification is a counter example if the requirements are not
satisfied. The counter example is used with a classification of architectural changes in order
to propose changes in the software architecture. These changes produce a new version of
the architecture that possibly satisfies the new or the changed requirements.

xi

Contents

Table of Figures xix

Table of Tables xxiv

Abbreviations xxv

1 Introduction 1

1.1 Context .. 1

1.2 Problem Statement .. 2

1.3 Research Questions ... 3

1.4 Research Methodology ... 4

1.5 Approach .. 5

1.6 Contributions ... 7

1.7 Outline of the Thesis .. 9

2 Background and Definitions 13

2.1 Introduction ...13

2.2 Requirements Engineering ...14

2.2.1 Software Requirements ..14

2.2.2 Requirements Engineering Processes ..15

2.2.3 Software Requirements Specification and Documentation16

xii

2.3 Software Architecture ...17

2.3.1 Definitions of Software Architecture ..18

2.3.2 Software Architecture Analysis ...20

2.3.3 Architectural Patterns and Styles ..21

2.3.4 Modeling Software Architecture ..21

2.4 Software Change Management ..23

2.4.1 Strategies for Software Change Management ..24

2.4.2 Software Maintenance ..24

2.4.3 Requirements Evolution ..26

2.4.4 Change Impact Analysis ..26

2.5 Traceability ...28

2.5.1 Definitions of Traceability ...28

2.5.2 Core Concepts of Traceability ..29

2.5.3 Classification of Traces ..30

2.6 Model Driven Engineering ..32

2.6.1 Model Driven Architecture ...32

2.6.2 Model Driven Engineering ..34

2.7 Survey of Traceability in MDE ...35

2.7.1 Traceability Approaches in MDE ..35

2.7.2 Evaluation of the Approaches ..40

2.7.3 Open Issues for Traceability in MDE ...44

2.8 Conclusions ..46

3 Analysis of Impacts Explosion in Traceability 47

3.1 Introduction ...47

3.2 Impacts Explosion Problem ..48

3.3 Impacts Explosion in Requirements and Software Architecture50

3.4 Change Scenarios for Change Impact Analysis ..54

3.4.1 Scenario 1: Requirements Evolve ..55

3.4.2 Scenario 2: Requirements and Software Architecture Evolve55

3.5 Summary of the Problems ...56

xiii

3.6 Conclusions ..57

4 Semantics of Requirements Relations 59

4.1 Introduction ...59

4.2 Approach ..61

4.3 Requirements Metamodel ..61

4.4 Formalization of Requirements and Relations ...64

4.4.1 Formalization of Requirements ..64

4.4.2 Formalization of Requirements Relations ..66

4.4.3 Discussion on the Chosen Formalization ...75

4.5 Inferencing and Consistency Checking ...76

4.6 Tool Support ..88

4.6.1 The Modeling Process ..88

4.6.2 Tool Architecture ..89

4.6.3 Tool Features ...91

4.7 Example: Course Management System ...98

4.7.1 Modeling the Requirements ..99

4.7.2 Inferring Requirements Relations ... 101

4.7.3 Checking Consistency ... 102

4.8 Related Work ... 103

4.8.1 Requirements Relations .. 103

4.8.2 Requirements Metamodeling ... 105

4.8.3 Requirements Reasoning .. 107

4.8.4 Tool Support ... 108

4.9 Conclusions ... 109

5 Change Impact Analysis in Requirements Models 113

5.1 Introduction .. 113

5.2 Approach ... 115

5.3 Classification of Changes in Requirements .. 116

5.3.1 Structure of a Textual Requirement .. 116

xiv

5.3.2 Change Types for Requirements Models ... 119

5.3.3 Rationale of Changes ... 127

5.4 Change Propagation and Change Consistency Checking .. 130

5.5 Discussion on the Approach .. 143

5.6 Tool Support ... 144

5.6.1 The Modeling Process ... 144

5.6.2 Tool Architecture ... 146

5.6.3 Tool Features .. 147

5.7 Example: Course Management System .. 156

5.7.1 Proposing and Propagating Requirements Changes .. 156

5.7.2 Checking Consistency ... 159

5.8 Evaluation of the Approach ... 160

5.9 Related Work ... 165

5.9.1 Change Classification with Formal Semantics .. 165

5.9.2 Change Impact Analysis in Requirements ... 166

5.9.3 Tool Support ... 168

5.10 Conclusions ... 169

6 Traces between Requirements and Software Architecture 171

6.1 Introduction .. 171

6.2 Overview of the Approach ... 174

6.3 Trace Metamodel .. 176

6.4 Formalization of Trace Types .. 178

6.4.1 Formalization of Requirements ... 179

6.4.2 Formalization of Architecture ... 179

6.4.3 Formalization of Satisfies and AllocatedTo Trace Types 179

6.5 Example: Remote Patient Monitoring System .. 181

6.6 Generating and Validating Traces ... 184

6.6.1 Verification of Architecture for Functional Requirements 184

6.6.2 Generating Traces .. 188

6.6.3 Validating Traces .. 193

xv

6.7 Tool Support ... 196

6.7.1 The Modeling Process ... 196

6.7.2 Tool Architecture ... 198

6.7.3 Tool Features .. 200

6.7.4 Evaluation of the Tool .. 204

6.8 Discussion on the Approach .. 209

6.9 Example for Trace Generation and Validation ... 210

6.9.1 Verification of Architecture for Functional Requirements 210

6.9.2 Generating Traces .. 211

6.9.3 Validating Traces .. 213

6.10 Related Work ... 217

6.10.1 Types and Semantics of Traces ... 217

6.10.2 Generating and Validating Traces ... 218

6.10.3 Conformance Assessment .. 219

6.10.4 Architecture Analysis ... 219

6.10.5 Analyzing AADL Models ... 220

6.10.6 Tool Support ... 221

6.11 Conclusions ... 222

7 Change Impact Analysis in Software Architecture 225

7.1 Introduction .. 225

7.2 Approach ... 227

7.3 Identifying Candidate Impacted Architectural Elements .. 228

7.3.1 Candidate Impacts for ‘Add Requirement’ .. 230

7.3.2 Candidate Impacts for Other Changes .. 235

7.4 Proposing Architectural Changes .. 243

7.5 Tool Support ... 254

7.5.1 The Modeling Process ... 254

7.5.2 Tool Features .. 257

7.6 Related Work ... 260

7.6.1 Change Impact Analysis in Software Architectures ... 260

xvi

7.6.2 Tool Support ... 261

7.7 Conclusions ... 262

8 Conclusions 265

8.1 Introduction .. 265

8.2 Problems .. 265

8.3 Solutions ... 266

8.4 Future Research Directions .. 269

Samenvatting 271

REFERENCES 275

APPENDIX 289

A Definition of a model in FOL 291

B Part of the CMS Requirements Document 293

C Inference Rules in JENA 297

D Consistency Checking Rules in JENA 303

E Formal Semantics and Analysis of Behavioral AADL Models in Maude 307

F Part of the RPM Requirements Document 323

G Graphical Notation for Elements in AADL 325

H Abbreviations of Elements in the RPM System 327

I Change Impact Analysis Function for Identifying Candidate Impacted
Architectural Elements 331

xvii

J The Complete Analysis of Counter Example for Proposing Architectural
Changes 337

xix

Table of Figures

Figure 1.1 Research Methodology ... 5

Figure 1.2 Within-Model and Between-Model Traces with Trace Types for Requirements
and Architectural Models ... 6

Figure 1.3 Thesis Map ...10

Figure 2.1 The Requirements Engineering Process [233] ...15

Figure 2.2 Basic Concepts of Architecture Description (IEEE 1471 [172])19

Figure 2.3 An Overview of the Maintenance Process [233] ...25

Figure 2.4 Requirements Evolution [233] ..26

Figure 2.5 Software Change Impact Analysis Process [25] ...27

Figure 2.6 Core Concepts of a Tracing Approach [142] ...30

Figure 2.7 Directions of Traces [142] ...31

Figure 2.8 Meta-modeling Architecture ...33

Figure 2.9 Transformation Pattern ..34

Figure 3.1 Simple Directed Graph of Software Life-Cycle Objects [23]48

Figure 3.2 Impacts Explosion without Semantics [25] ..50

Figure 3.3 Requirements and Architectural Models with Traces ...51

Figure 3.4 Part of Requirements and Architectural Models for Course Management System
 ..53

Figure 3.5 Requirements and Architectural Models with Traces for Requirements Evolution
 ..54

Figure 4.1 Within-Model and Between-Model Traces with Requirements Relation Types for
Requirements and Architectural Models ...60

Figure 4.2 Requirements Metamodel ..62

xx

Figure 4.3 Modeling Process with Consistency Checking and Inferencing89

Figure 4.4 Layered Architecture of the Tool ...90

Figure 4.5 GUI for Managing Requirements and Relations ...92

Figure 4.6 Matrix View for Managing Requirements and Relations ...93

Figure 4.7 Visual Editor for Managing Requirements and Relations ..93

Figure 4.8 Output of the Inferencing Activity ..94

Figure 4.9 Output of the Consistency Checking Activity ...95

Figure 4.10 Explanation of the Inferred Conflicts Relation between R8 and R5996

Figure 4.11 Explanation of the Inconsistency for R11 and R48 ..96

Figure 4.12 Explanation of the Inferred Conflicts Relation in the Inconsistency97

Figure 4.13 Visualization of the Related Requirements for R5 with Depth 298

Figure 4.14 Example with Inferred Requires Relation ... 101

Figure 4.15 Analysis of the Inferred Relation to Identify Invalid Given Relations 102

Figure 4.16 Inconsistent Part in the Example Model ... 103

Figure 4.17 Analysis of the Inferred Relation in the Inconsistent Part of the Model 103

Figure 5.1 Requirements and Architectural Models Showing Within-model and Between-
model Trace Relations ... 114

Figure 5.2 Wasson’s Primitives for Structure of a Textual Requirement 117

Figure 5.3 Structure of a Textual Requirement based on the Definition of a Requirement in
Chapter 4 ... 118

Figure 5.4 Example Requirements Model and Traversing the Model for the Proposed
Change ... 134

Figure 5.5 Decision Trees for the Example Requirements Model ... 135

Figure 5.6 Requirements Modeling Process with Change Propagation and Change
Consistency Checking ... 145

xxi

Figure 5.7 Layered Architecture of the Tool .. 146

Figure 5.8 GUI for Proposing Changes .. 148

Figure 5.9 Output of the Proposing Change Activity ... 148

Figure 5.10 GUI for Propagating Proposed Changes ... 149

Figure 5.11 Matrix View for Propagating Proposed Changes ... 150

Figure 5.12 Interactive Decision Tree Builder for Propagating Proposed Changes 151

Figure 5.13 Output of the Checking Change Consistency Activity .. 152

Figure 5.14 Explanation of the Proposed Change of R16 Causing the Inconsistency 152

Figure 5.15 GUI for Implementing Proposed Changes ... 153

Figure 5.16 GUI for Implementing Propagated Proposed Changes .. 153

Figure 5.17 Output of the Impact Prediction for the Proposed Change in R7 154

Figure 5.18 Output of the Prediction Investigation for the Proposed Change in R16 155

Figure 5.19 GUI for the Visualization of the Propagation Paths in Impact Prediction 155

Figure 5.20 Requirements Related to R7 with Depth 2 .. 157

Figure 5.21 Requirements Related to R16 with Depth 2 ... 158

Figure 5.22 Propagation Path of the Proposed Change for R16 in the Inconsistency 159

Figure 5.23 Requirements Related to R7 with Depth 2 in IBM Rational RequisitePro 161

Figure 5.24 Suspended Relations for Impacted Requirements by the Change in R7 162

Figure 5.25 Some of the Requirements Directly/Indirectly Related to R7 in RequisitePro 164

Figure 6.1 Within-Model and Between-Model Traces with Requirements Relation Types and
Trace Types between Requirements and Software Architectures 172

Figure 6.2 Overview of the Approach ... 175

Figure 6.3 Trace Metamodel for Requirements and Architecture .. 177

Figure 6.4 Schematic View of the Relation between PR and PA .. 180

xxii

Figure 6.5 Part of Requirements Model for RPM System ... 182

Figure 6.6 Overview of the RPM Architecture .. 182

Figure 6.7 Verification of Architecture for Functional Requirements 185

Figure 6.8 Part of the RPM Architecture .. 186

Figure 6.9 Constraints based on Semantics of Traces and Requirements Relations 190

Figure 6.10 Generated ‘Satisfies’ Trace for Requirement 5 by Using Verification Results .. 192

Figure 6.11 Venn Diagram for Generated and Actual Satisfies Traces for a Requirement . 192

Figure 6.12 Venn Diagram for Generated ‘Satisfies’ and Assigned ‘AllocatedTo’ Traces for a
Requirement .. 194

Figure 6.13 Venn Diagram for Generated and Assigned ‘AllocatedTo’ Traces for a
Requirement .. 195

Figure 6.14 Generated ‘Satisfies’ and Assigned ‘AllocatedTo’ Traces for Requirement 5 ... 196

Figure 6.15 Modeling Process with Trace Generation and Validation 197

Figure 6.16 Overview of the Tool .. 199

Figure 6.17 OSATE with AADL-Maude Plugin ... 201

Figure 6.18 Maude Editor in Eclipse for Verifying Architecture ... 202

Figure 6.19 Output of the Generating Trace Activity .. 203

Figure 6.20 Output of the Validating Trace Activity .. 204

Figure 6.21 Simulation Time as the Function of the Number of Architectural Elements ... 207

Figure 6.22 Simulation Time vs. Number of States in Alloy and Maude 209

Figure 6.23 Generated ‘Satisfies’ Traces by Using Verification Results 211

Figure 6.24 Generated ‘Satisfies’ Traces by Using Requirements Relations 212

Figure 6.25 Generated Requirements Relation by Using Traces .. 213

Figure 6.26 Generated ‘Satisfies’ and Assigned ‘AllocatedTo’ Traces for Requirement 6 ... 214

xxiii

Figure 6.27 Assigned ‘AllocatedTo’ Traces with Requirements Relation 214

Figure 6.28 Assigned ‘AllocatedTo’ Traces with an Invalid Requirements Relation 215

Figure 6.29 Given and Inferred Relations for Requirement 10 .. 216

Figure 7.1 Within-Model and Between-Model Traces with Requirements Relation Types and
Trace Types between Requirements and Software Architectures 226

Figure 7.2 Candidate Impacted Architectural Elements for the Added Requirement 232

Figure 7.3 Part of the RPM Architecture for Storing Blood Pressure 232

Figure 7.4 Changed Part of the RPM Architecture for Storing Blood Pressure 233

Figure 7.5 Part of the RPM Requirements Model ... 239

Figure 7.6 Propagation Path of the Proposed Change for Requirement 14 240

Figure 7.7 Candidate Impacted Architectural Elements for the Constraint Added to
Requirement 14 .. 241

Figure 7.8 Changed Part of the RPM Architecture for Stroring Blood Pressure 245

Figure 7.9 Assigned and Generated ‘AllocatedTo’ Traces for the Added Requirement 246

Figure 7.10 Last State of the Counter Example in the First Check .. 246

Figure 7.11 Last State of the Execution Trace ... 250

Figure 7.12 Another RPM Architecture for Storing CV Pressure .. 250

Figure 7.13 Venn Diagram for Generated and Assigned ‘AllocatedTo’ Traces for a
Requirement .. 251

Figure 7.14 Requirements Modeling and Architectural Design Process with Change Impact
Analysis .. 256

Figure 7.15 GUI for Selecting the Proposed Requirements Change 258

Figure 7.16 Output of Traversing the Propagation Path of the Proposed Requirements
Change ... 258

Figure 7.17 Output of the Identifying Candidate Impacted Architectural Elements Activity
 ... 259

xxiv

Table of Tables

Table 1.1 Mapping the Research Questions to the Chapters of the Thesis11

Table 2.1 Representation of Trace Information in Traceability Approaches in MDE40

Table 2.2 Mapping, Change Impact Analysis and Tool Support in Traceability Approaches 42

Table 3.1 Connectivity Matrix of Traces [23] ..48

Table 3.2 Reachability Matrix of Traces [23] ...49

Table 3.3 Some Requirements for a Course Management System ..51

Table 4.1 Number of Relations and Inconsistencies in the Example 100

Table 5.1 Requirements Change Types ... 119

Table 5.2 Change Impact Alternatives for Domain Changes .. 136

Table 5.3 Contradicting Changes based on Semantics of Domain Changes and Change
Types .. 140

Table 5.4 Part of Change Impact Alternatives for Our Approach and IBM Rational
RequisitePro .. 160

Table 6.1 Confusion Matrix of Generated and Actual Traces for Satisfies Relation 193

Table 6.2 Simulation Times in the Performance Test ... 206

Table 6.3 Simulation Times in the Scalability Test .. 208

Table 7.1 Change Impact Rules for the Change Type “Add Requirement” 230

Table 7.2 Traversal Rules for Change Types “Delete Requirement” and “Update
Requirement” .. 238

Table 7.3 Categories of the State Transition Rules in AADL with the Right-hand Side
Patterns .. 252

Table 7.4 Right-hand Side Patterns of the State Transition Rules for Dispatching Thread T1
with Proposed Architectural Changes in AADL .. 253

xxv

Table J.1 Categories of the State Transition Rules in AADL with the Right-hand Side
Patterns .. 337

Table J.2 Architectural Change Types ... 338

Table J.3 Right-hand Side Patterns of the State Transition Rules for Passing Message M1
with Proposed Architectural Changes .. 338

Table J.4 Right-hand Side Patterns of the Transition Rules for Dispatching Thread
T1/Executing Thread T1/Switching the Mode of Thread T1 with Proposed
Architectural Changes ... 340

Abbreviations

AADL Architecture Analysis and Design Language

ATL Atlas Transformation Language

CMS Course Management System

FOL First-Order Logic

LTL Linear Temporal Logic

OWL Web Ontology Language

QuadREAD Quality-Driven Requirements Engineeering and Architectural Design

R&A Requirements & Architecture

RPM Remote Patient Monitoring

TRIC Tool for Requirements Inferencing and Consistency Checking

1

Chapter 1

1 Introduction

In this chapter, we describe the problem addressed in this thesis, together with our contributions and an
outline of the thesis.

1.1 Context

At the present day, software systems get more and more complex. The requirements of
software systems change continuously and new requirements emerge frequently. New
and/or modified requirements are integrated with the existing ones, and adaptations to the
architecture and source code of the software system are made. Integration of the
new/modified requirements and adaptations to the software system are called change
management. The size and complexity of software systems make change management costly
and time consuming. 85 to 90 percent of software system budgets goes to operation and
maintenance of software systems [74]. To reduce the cost of changes, it is important to apply
change management as early as possible in the software development cycle. Requirements
traceability is considered crucial in change management for establishing and maintaining
consistency between software development artifacts. It is the ability to link requirements
back to stakeholders’ rationales and forward to corresponding design artifacts, code, and test
cases [100]. When changes for the requirements of the software system are proposed, the
impact of these changes on other requirements, design elements and source code is traced in
order to determine parts of the software system to be changed. Determining the impact of
changes on other parts of development artifacts is called change impact analysis.

This thesis is conducted within the context of the Quality-Driven Requirements Engineering
and Architectural Design (QuadREAD) project [213]. The QuadREAD project aims to

2 Chapter 1 Introduction

bridge the gap between requirements engineer and software architect. In the project, we
focus on tracing between user requirements and software architecture for change
management, and in particular for change impact analysis.

In the remainder of the present chapter we introduce traceability of requirements and
software architectures for change management. In the next section the problems this thesis
addresses are explained. Research objective and research questions related to the problem
statement are given in Section 1.3. Section 1.4 presents the research methodology that we
follow in this thesis. Our solution approach is described and the contributions of the thesis
are introduced in Section 1.5 and Section 1.6. Finally, we provide the outline of the thesis in
Section 1.7.

1.2 Problem Statement

The need for change impact analysis is observed in both requirements and software
architecture. When a change is introduced to a requirement, the requirements engineer needs
to find out if any other requirement related to the changed requirement is impacted. After
determining the impacted requirements, the software architect needs to identify impacted
architectural elements by tracing the changed requirements to software architecture. It is
hard, expensive and error prone to manually trace impacted requirements and architectural
elements from the changed requirements. There are tools and approaches to automate
tracing for change impact analysis like IBM Rational RequisitePro [119] and DOORS [120].
When a requirement is changed in RequisitePro, traces of the changed requirement are
marked as suspect by the tool. RequisitePro provides two general trace types without any
semantics: traceFrom and traceTo. These trace types do not say anything about the dependency
between elements except the direction of the dependency. Therefore, all requirements and
architectural elements directly or indirectly traced from the changed requirement (with traces
marked as suspect) are candidate impacted. The requirements engineer has to inspect all these
candidate impacted requirements and architectural elements to identify changes if there is
any.

In case semantic information is missing to determine precisely how requirements and
software architecture are related to each other, the requirements engineers and software
architects generally have to assume the worst case dependencies based on the available
syntactic information only. This generally results in a perception that a change has a wider
impact on the artifacts than it is. As a result, the requirements engineers and software
architects cannot precisely locate the impacted requirements and architectural elements and
as such traces become useless.

1.3 Research Questions 3

Bohner [22] [23] [25] formulates the situation where all elements might be impacted, as
explosion of impacts without semantics. He states that change impact analysis must employ
additional semantic information to increase the accuracy by finding more valid impacts and
excluding the invalid ones. In this thesis we tackle explosion of impacts in requirements and
software architecture. Below we present an overview of the problems addressed by this
thesis:

 Explosion of Impacts in Requirements for Requirements Changes. In practice,
requirements documents are often textual artifacts with implicit structure. Most of
the relations among requirements are not given explicitly. There is a lack of precise
definition of relations among requirements in most tools and approaches. Due to the
lack of semantics of requirements relations, change impact analysis may produce high
number of false positive and false negative impacted requirements. A requirements
engineer may have to analyze all requirements in the requirements document for a
single change. This may result in neglecting the actual impact of a change.

 Manual, Expensive and Error Prone Trace Establishment. Considerable
research has been devoted to relating requirements and design artifacts with source
code. Less attention has been paid to relating Requirements (R) with Architecture (A)
by using well-defined semantics of traces. Designing architecture based on
requirements is a problem solving process that relies on human experience and
creativity, and is mainly manual. The software architect may need to manually assign
traces between R&A. Manual trace assignment is time-consuming, expensive and
error prone. The assigned traces might be incomplete and invalid.

 Explosion of Impacts in Software Architecture for Requirements Changes.
Due to the lack of semantics of traces between R&A, change impact analysis may
produce high number of false positive and false negative impacted architectural
elements. A software architect may have to analyze all architectural elements in the
software architecture for a single requirements change.

1.3 Research Questions

The objective of this thesis is to investigate to what extent and how traceability can be used
to support change management for requirements and software architecture by enhancing
traces with semantics. Within the context of this objective, we provide a traceability
framework of requirements and software architectures for change management. A number

4 Chapter 1 Introduction

of research questions need to be answered. Answering these questions will give us a better
understanding of the problem domain and the deficiencies of the current solutions.

 Research Question 1: What does traceability mean? Can every relation between software
development artifacts or between elements in the artifacts be a trace? What is the
criterion for a relation to be a trace?

 Research Question 2: What are the current traceability approaches for change
management? What are their deficiencies? Which solutions and technologies have
been proposed to address these deficiencies?

 Research Question 3: What are the change scenarios for requirements and software
architecture? What is necessary for these change scenarios to be handled? Which
solutions can be used?

 Research Question 4: How to model requirements, software architecture and traces with
their semantics for change management? What aspects of requirements, software
architecture and traces should be modeled and how? How can we use the modeled
aspects to reason about requirements, software architecture and traces?

 Research Question 5: How can a change in a requirement be propagated to other
requirements and to software architecture? How can we support the requirements
engineer and software architect for performing changes? How can we formally check
if the evolved architecture satisfies evolved requirements? How can we become sure
that traces are up-to-date?

These questions guide the research presented in this thesis. In Section 1.7, we give the
outline of the thesis and a table that relates the research questions to the chapters in which
we provide answers to the questions (see Table 1.1).

1.4 Research Methodology

In this thesis, we try to solve two types of problems: knowledge problems and design problems
[259] [260] [261]. The difference between the current and desired knowledge states is the
knowledge problem. The difference between the current and desired state of the world is a
design problem.

Our research methodology has three phases – problem analysis, solution design and solution
validation (see Figure 1.1).

1.5 Approach 5

In the first phase, we solve a knowledge problem, for instance, we want to understand what
traceability means, what the criterion for a relation to be a trace is, what the current
traceability approaches for change management are, and what the deficiencies of the current
approaches are. For that purpose, we analyze the literature about traceability from different
research areas (Change Management, Model Driven Engineering and Requirements Engineering) to
discover possible change management problems in current traceability approaches for
requirements and software architectures.

Figure 1.1 Research Methodology

In the second phase, the results of the first phase are used to design a new solution. We
solve a design problem, that is, we provide a traceability framework of requirements and
software architectures for change management. Our goal is to improve change management
for requirements and software architectures by providing semantics of traces.

Finally, in the third phase, we validate our solution by investigating its availability for the
problems discovered in the problem analysis phase. This is a knowledge problem since we
want to gain knowledge about the properties of our solution, and the relation between the
solution and the problems. The outcome of the solution validation phase is fed back to the
solution design phase in order to improve the solution.

1.5 Approach

We choose Model Driven Engineering (MDE) as a solution platform for our approach.
MDE provides a uniform treatment of software artifacts, such as requirements documents,
software design and test documents, as models. It also enables using different formalisms to
reason about development artifacts described as models. To give an explicit structure to
requirements documents and treat requirements, architecture and traces in a uniform way,
we use metamodels and models within the context of MDE. Figure 1.2 gives requirements
model, architecture model and traces between Requirements (R) and Architecture (A).
Traces between R&A are also described as a model although the trace model is not explicitly
shown in Figure 1.2.

6 Chapter 1 Introduction

To cope with the problem of impact explosion in requirements and software architectures
due to the lack of semantic information, we study modeling of requirements, software
architectures and traces with semantic information. We distinguish types of traces between
requirements, and between requirements and software architectures (see Figure 1.2). We
provide a traceability approach for change management for requirements and software
architectures by using semantics of traces.

To provide an explicit structure to requirements documents, we present a requirements
metamodel with most commonly found entities in literature. The most important elements
of the requirements metamodel are requirements relations and their types. We give formal
requirements relation types to be able to reason about requirements and their relations.

To be able to use the semantics of requirements relations for change impact analysis in
requirements, we give a classification of requirements changes based on the structure of a
textual requirement provided with formal semantics. The formalization of requirements
relations and changes are used in order to overcome the explosion of impacts in
requirements.

Figure 1.2 Within-Model and Between-Model Traces1 with Trace Types for Requirements and Architectural
Models

For the evolution of requirements, we provide techniques for analyzing the impact of
requirements changes on architecture design. We need techniques for trace establishment
between R&A. Therefore, we give trace types and their semantics in order to link

1 See [142] For the terminology of Within-Model and Between-Model traces

1.6 Contributions 7

requirements to software architectures in a similar way used for requirements relations.
Requirements relations and architecture verification techniques are used for trace
establishment between R&A.

In order to perform change impact analysis in software architectures, we combine the
architecture verification techniques and their output (counter example) with the use of
semantics of traces between R&A.

1.6 Contributions

This thesis provides the following contributions:

 A modeling language for definition of requirements models with formal semantics

Chapter 4 presents a modeling language for definition of requirements models with formal
semantics. The language is defined according to the MDE principles by defining a
metamodel. It is based on a survey about the most commonly found requirements types and
relation types. With this language, the requirements engineer can explicitly specify the
requirements and the relations among them. The semantics of these entities is given in First
Order Logic (FOL) and allows two activities. First, new relations among requirements can be
inferred from the initial set of relations. Second, requirements models can be automatically
checked for consistency of the relations. Tool for Requirements Inferencing and
Consistency Checking (TRIC) is developed to support both activities. The defined semantics
is used in a technique for change impact analysis in requirements models.

 A change impact analysis technique for requirements using semantics of requirements
relations and requirements change types

Chapter 5 addresses the problem of explosion of impacts in requirements when semantics of
requirements relations is missing. The technique uses formal semantics of requirements
relations and requirements change types. A classification of requirements changes based on
the structure of a textual requirement is given and formalized. The semantics of
requirements change types is based on FOL. We support three activities for impact analysis.
First, the requirements engineer proposes changes according to the change classification
before implementing the actual changes. Second, the requirements engineer indentifies the
propagation of the changes to related requirements. The change alternatives in the
propagation are determined based on the semantics of change types and requirements
relations. Third, possible contradicting changes are identified. We extend TRIC with a
support for these activities. The tool automatically determines the change propagation paths,

8 Chapter 1 Introduction

checks the consistency of the changes, and suggests alternatives for implementing the
change. With change alternatives and propagation paths we eliminate some false positive
impacted requirements. We provide a more precise change impact analysis in requirements
models than requirements management tools like RequisitePro.

 A technique that provides trace establishment between R&A by using architecture
verification and semantics of traces

Chapter 6 presents an approach that provides trace establishment by using architecture
verification together with semantics of requirements relations and traces. We use a trace
metamodel with commonly used trace types. The semantics of traces is formalized in FOL.
Software architectures are expressed in the Architecture Analysis and Design Language
(AADL) [225]. AADL is provided with a formal semantics expressed in Maude [198] [197].
The Maude tool set allows simulation and verification of architectures. The first way to
establish traces is to use architecture verification techniques. A given requirement is
reformulated as a property in terms of the architecture. The architecture is executed and a
state space is produced. This execution simulates the behavior of the system on the
architectural level. The property derived from the requirement is checked by the Maude
model checker. Traces are generated between the requirement and the architectural
components used in the verification of the property. The second way to establish traces is to
use the requirements relations together with the semantics of traces. Requirements relations
are reflected in the connections among the traced architectural elements based on the
semantics of traces. Therefore, new traces are inferred from existing traces by using
requirements relations. We use semantics of requirements relations and traces to both
generate/validate traces and generate/validate requirements relations. There is a tool support
for our approach. The tool provides the following: (1) generation/validation of traces by
using requirements relations and/or verification of architecture, (2) generation/validation of
requirements relations by using traces. We improve trace establishment between R&A with
automation and trace validation.

 A change impact analysis technique for software architecture using architecture
verification and semantics of traces between R&A

Chapter 7 presents a change impact analysis technique for software architecture using
architecture verification and semantics of traces. The technique is semi-automatic and
requires participation of the software architect. Our technique has two parts. The first part is
to identify the architectural elements that implement the system properties to which
proposed requirements changes are introduced. By having the formal semantics of

1.7 Outline of the Thesis 9

requirements relations and traces, we identify which parts of software architecture are
impacted by a proposed change in requirements. We eliminate some false positive impacted
architectural elements. We have extended TRIC for determining candidate impacted
architectural elements. The second part of our technique is to propose possible changes for
software architecture when the software architecture does not satisfy the new and/or
changed requirements. The technique is based on architecture verification. The output of
verification is a counter example if the requirements are not satisfied. The counter example is
used with a classification of architectural changes in order to propose changes in the
software architecture. These changes produce a new version of the architecture that possibly
satisfies the new or the changed requirements. By eliminating some false positive impacts
and proposing architectural changes, we provide a more precise change impact analysis in
software architecture than requirements management tools like RequisitePro.

1.7 Outline of the Thesis

Figure 1.3 shows the map of the thesis with chapters and relations among them.

The thesis consists of the following chapters:

Chapter 2 Background and Definitions. This chapter describes the concepts used in the
thesis. It introduces concepts and techniques from the areas of Requirements Engineering,
Software Architecture, Traceability, Software Change Management and Model Driven
Engineering as they are described in literature. Furthermore, the literature survey for existing
traceability approaches in MDE is given in general and also in particular for change impact
analysis. The literature survey is based on work published in [87].

Chapter 3 Analysis of Impacts Explosion in Traceability. This chapter motivates the
need for semantics of traces between requirements, and requirements & architecture for
change management by addressing the impacts explosion problem with some change
scenarios.

Chapter 4 Semantics of Requirements Relations. This chapter studies formal definitions
of requirements relation types in order to enable reasoning about requirements relations. The
requirements metamodel with commonly used relation types and their semantics are given in
this chapter. The features of TRIC for requirements inferencing and consistency checking
are presented. We illustrate our approach in an example which shows that the formal
semantics of relation types enables new relations to be inferred and contradicting relations in
requirements documents to be determined. This chapter is based on work published in [96]
and [98].

10 Chapter 1 Introduction

Chapter 5 Change Impact Analysis in Requirements. This chapter discusses problems
related to change impact analysis in requirements and provides the approach for the
discussed problems by using formal semantics of requirements relations in Chapter 4 and
requirements change types. The features of TRIC for change impact analysis are presented.
We illustrate our approach in an example which shows that the formal semantics of relation
types and change types enables proposed changes to be propagated and contradicting
proposed changes in requirements to be determined. This chapter is an enhancement of
results published in [95] and [243].

Figure 1.3 Thesis Map

Chapter 6 Traces between Requirements and Software Architecture. This chapter
presents the approach that provides trace establishment by using semantics of traces
between Requirements (R) and Architecture (A). Requirements relations and architecture

1.7 Outline of the Thesis 11

verification techniques are used in the approach. The trace metamodel with commonly used
trace types are presented in this chapter. The tool support for trace establishment is
presented. We illustrate our approach in an example which shows that the formal semantics
of trace types with architecture verification techniques enables traces between R&A to be
generated and contradicting traces to be determined. This chapter is an enhancement of
results published in [97].

Chapter 7 Change Impact Analysis in Software Architecture. This chapter presents the
approach on how to perform change impact analysis in software architectures by using
architecture verification techniques and traces between R&A. The tool support for change
impact analysis in software architectures is presented. We illustrate our approach in an
example which shows that the formal semantics of trace types with architecture verification
techniques enables impacted architectural elements for requirements changes to be
determined.

Chapter 8 Conclusions. This chapter gives conclusions and an evaluation of the
contributions in this thesis, and describes directions for future work.

Table 1.1 relates the research questions to the chapters in which we provide answers to the
questions.

Table 1.1 Mapping the Research Questions to the Chapters of the Thesis

 Chapter

 1 2 3 4 5 6 7 8

Research
Question 1 +

Research
Question 2 +

Research
Question 3 +

Research
Question 4 + + +

Research
Question 5 + + +

13

Chapter 2

2 Background and Definitions

In our work, we utilize concepts and techniques from the areas of requirements engineering, software
architectures, software change management, traceability and Model Driven Engineering (MDE). In this
chapter, we provide background information on these areas and introduce a set of definitions used throughout
the thesis.

2.1 Introduction

This chapter gives an overview of basic concepts used in the thesis. Various definitions of
these concepts are found in literature. We aim at selecting a consistent set of definitions that
support the understanding of the thesis.

In this chapter we answer Research Question 1 (What does traceability mean? Can every relation
between software development artifacts or between elements in the artifacts be a trace? What is the criterion for
a relation to be a trace?) and Research Question 2 (What are the current traceability approaches for
change management? What are their deficiencies? Which solutions and technologies have been proposed to
address these deficiencies?) raised in Chapter 1. With the definitions in this chapter we explain
traceability within the context of change management for requirements and software
architecture. This chapter also presents a survey of traceability techniques in MDE in which
we study the current approaches for traceability with their deficiencies.

The structure of the chapter is as follows. Section 2.2 describes Requirements Engineering
by mentioning about fundamentals of Requirements Engineering such as requirements
engineering process and requirements documentation. Section 2.3 gives the basic concepts
of software architecture design and analysis. Section 2.4 gives the details of software change
management. Section 2.5 discusses definitions of trace with traceability types. Section 2.6

14 Chapter 2 Background and Definitions

describes the notion of Model Driven Engineering (MDE) as an enhancement of Model
Driven Architecture (MDA). Section 2.7 discusses the state-of-the-art in traceability
approaches in MDE.

2.2 Requirements Engineering

Requirements engineering is the process of finding out, analyzing, documenting and
checking the services and constraints for the system to be built [233]. Requirements are the
descriptions of these services and constraints for the system. Van Lamsweerde [151]
describes requirements engineering as “a coordinated set of activities for exploring,
evaluating, documenting, consolidating, revising and adapting the objectives, capabilities,
qualities, constraints and assumptions that the system-to-be should meet based on problems
raised by the system-as-is and opportunities provided by new technologies”.

In this section, we begin with presentation of the key terms of the field of requirements
engineering and concepts related to these terms. The definitions of software requirement are
explored. We introduce the requirements engineering process. Then, approaches for
software requirements specification and documentation are presented.

2.2.1 Software Requirements
There are a number of definitions and classifications of requirement in literature.
Sommerville [233] defines a requirement as “the descriptions of the services and constraints
for the system”. In SWEBook [239], a property which must be exhibited by a system is
called a requirement. We use this definition as our working definition for requirements in the
thesis.

Different terms such as user requirements, system requirements, software requirements
functional/non-functional requirements and quality requirements are used to classify
requirements in literature. For instance, user requirements mean the high-level abstract
requirements and system requirements mean the detailed description of what the system
should do [233]. We consider software requirements or software system requirements
synonyms and as a specialization of system requirements for software systems in this thesis.
Software requirements are often classified as functional, non-functional and domain
requirements [233].

 Functional Requirements. The functional requirements for a system describe the
functionality or services that the system is expected to provide.

2.2 Requirements Engineering 15

 Non-Functional Requirements. These requirements are related to emergent system
properties such as reliability, performance or adaptability, or they define constraints
on the system such as capabilities of I/O devices.

 Domain Requirements. These requirements are derived from the application
domain of the system. They might be functional or non-functional.

2.2.2 Requirements Engineering Processes
Requirements engineering can be described as a process of a collection of activities to create
and maintain a requirements document [233]. There are four activities involved in
requirements engineering process [233]: (a) feasibility study, (b) requirements elicitation and
analysis, (c) requirements specification and documentation, and (d) requirements validation
(see Figure 2.1). In addition to these activities, there is an additional requirements
engineering activity not listed in Figure 2.1, which is requirements management.
Requirements management is concerned with managing requirements change.

Figure 2.1 The Requirements Engineering Process [233]

 Feasibility Study. A feasibility study investigates the system contribution to the
organization objectives, integration of the system with current systems, and the
feasibility of the implementation of the system by using current technology within
given constraints [233]. The outline of the system is the input of the feasibility study
and the output is a report which recommends whether or not it is worth carrying on
with the requirements engineering and system development process.

 Requirements Elicitation and Analysis. Requirements engineers and software
architects work with system stakeholders and end-users to find out about the

16 Chapter 2 Background and Definitions

application domain, what services the system should provide, the required
performance of the system, hardware constraints and so on [233]. The output of
requirements elicitation and analysis is general objectives, system requirements,
software requirements, user requirements, relevant domain properties and concept
definitions.

 Requirements Specification. The results of the elicitation and analysis activity need
to be precisely defined and documented. The output of the requirements
specification activity is the first version of the requirements document. Requirements
specification provides an assessment of requirements with a basis for estimating
product costs, risks, and schedules before design begins [239].

 Requirements Validation. Requirements are checked if they actually define the
system which customer wants. Requirements validation has much in common with
requirements elicitation and analysis but they are distinct since requirements
validation is concerned with complete version of the requirements document whereas
elicitation and analysis works on incomplete requirements.

 Requirements Management. The requirements of software systems are mostly
changing in time. Requirements management is about understanding and controlling
changes to system requirements. The input of the requirements management is the
changes in understanding of the system to be built and the output is the revised
requirements in the requirements document. Requirements management has itself
sub-activities: problem analysis and change specification, change analysis and costing,
and change implementation.

In this thesis, we provide techniques and tools for change management in requirements and
software architecture. Our work mostly supports the requirements management activity.

2.2.3 Software Requirements Specification and Documentation
Software requirements specification is an agreement among stakeholders of the system on
what the software system is to do, as well as what it is not expected to do.

For non-technical readers, the software requirements specification document is often
accompanied by a software requirements definition document. Software requirements are
often written in natural language in requirements document, but this may be supplemented
by formal or semi-formal descriptions [239]. Requirements specification and documentation
techniques are the following [151]: (a) Documentation in Natural Language, (b) Use of
Diagrammatic Notations, and (c) Formal Specification.

2.3 Software Architecture 17

 Documentation in Natural Language. Agreed statements in requirements
elicitation and analysis can be documents in natural language. The first option is to
see free documentation in unrestricted natural language. There are no limitations in
expressiveness on what requirements engineer can specify in natural language
whereas unrestricted use of natural language might cause ambiguities, forward
references, unmeasurable statements and opacity in requirements document [151].
Disciplined documentation in structured natural language can be used to overcome
these defects in requirements documents. Use of predefined statements templates,
requirements document templates, and decision tables are examples of disciplined
documentation in structured natural language.

 Use of Diagrammatic Notations. Semi-formal specification languages can be used
to complement the use of natural language. Here, semi-formal means that the entities
in requirements document and their relations are declared in some machine-
processable form with well-defined language syntax whereas the statements about
these entities are informally specified in natural language [151]. The use of context,
problem, frame, dataflow, use-case and entity-relationship diagrams is example of the
use of diagrammatic notations.

 Formal Specification. Formal specification provides the formalization of statements
which are left informal in the use of diagrammatic notations. The benefits of the use
of formal specification is high degree of precision of requirements, precise rules for
interpretation of requirements and sophisticated forms of validation and verification
of requirements that can be automated by tools [151]. On the other hand, formal
specification requires knowledge on formal methods and high effort for the
formulation of requirements from requirements engineers.

In this thesis, requirements and their relations are defined by using a requirements
metamodel. In the requirements metamodel, requirements are captured in a requirements
model. A requirements model contains requirements and their relationships. The
descriptions of requirements are informally specified in natural language. The approach that
we follow for documentation of requirements in this thesis can be considered as the use of
diagrammatic notations.

2.3 Software Architecture

We begin presentation of the key terms in the field of software architecture and concepts
related to these terms. The definitions of software architecture are explored. We give major

18 Chapter 2 Background and Definitions

constituent elements of architectures, including architecture patterns and styles. Then,
approaches for modeling software architectures are presented.

2.3.1 Definitions of Software Architecture
Architecture is a popular term in the computing community and it is used in various
contexts to mean the software components in a software system, the structure of the central
processing unit, or the organizational structure of the information systems. There are also
different interpretations and definitions of the term architecture within the context of
software components of a software system.

Bas et al. [16] define software architecture as: “the structure or structures of a program or
computing system, which comprise elements, the properties of those elements, and the
relationships among them”.

Perry and Wolf [210] formulate the definition of software architecture as a triple where
Software Architecture = {elements, form, rationale}. Similar to Bas et al., Perry and Wolf considers
the architecture as the systems’ key elements, and their relationships to each other and to
their environment. Elements are the system’s building blocks where the form is the
organization of system elements in the architecture. Rationale captures the software
architect’s intent, assumptions, decisions, and constraints effecting the architect’s decisions
for the architecture. Different than Bas et al., Perry and Wolf explicitly consider the rationale
of the software architect in the definition of software architecture.

Another definition of software architecture which is mainly about design decisions which is
part of rationale is given by Taylor et al. [242]. Taylor et al. define the architecture as: “the
set of principal design decisions made about the system”. The notion of design decision is
central to software architecture and to all of the concepts based on it [242].

Klusener et al. [141] provide a different perspective on how to define a software architecture.
They define software architecture in the following: “the software architecture of deployed
software is determined by those aspects that are the hardest to change”.

One more definition of software architecture is from the IEEE 1471 standard [172] which is
a recommended practice for architectural description of software–intensive systems.
According to IEEE 1471 standard, architecture is a fundamental organization of a system,
embodied in its components, their relationships to each other and the environment, and the
principles governing its design and evolution. Like Perry et al. and Bas et al., IEEE 1471
standard considers the elements of the system and their relations among the elements as
architecture. However, the definition in IEEE 1471 standard does not specifically refer to

2.3 Software Architecture 19

software. IEEE 1471 standard introduces basic concepts in software architecture and
relationships among them within the context of software architecture description (see Figure
2.2). An architecture description is a collection of documents to describe a system’s
architecture [172].

Figure 2.2 Basic Concepts of Architecture Description (IEEE 1471 [172])

An individual, team, or organization with interests in, or concerns relative to, a system are
called stakeholders. These might include end users, operators, software architects, developers,
subcontractors, and maintainers. A concern is a stakeholder’s interest which pertains to the
development, operation, or other key characteristics of the system such as run-time
behavior, performance, reliability, security, evolvability, or distribution. Stakeholders may
have different and possibly conflicting concerns. A view is a representation of the whole
system from the perspective of a related set of concerns. The architectural views are the
actual description of the system. A viewpoint determines the resources and rules for
constructing a view.

20 Chapter 2 Background and Definitions

2.3.2 Software Architecture Analysis
Software architecture is one of the important artifacts of software development since it
enables reasoning about the system by capturing early design decisions. Therefore, it is
important that software architecture reflect a certain abstraction of the system which enables
to focus on the relevant parts of the system for analysis. Software architecture analysis helps
reducing unnecessary maintenance costs by providing reasoning about the system before it is
built. Software architecture analysis techniques are divided into three categories [242]: (a)
inspection- and review- based, (b) model-based, and (c) simulation-based.

 Inspections and Reviews. They are manual analysis techniques used by different
stakeholders to ensure a variety of properties in a software architecture such as
scalability, or adaptability. Since these techniques are manual, they are very human
intensive and they can be very costly. On the other hand, they have the advantage of
being useful in the case of informal or partial architectural descriptions [242].
Examples of inspection- and review-based methods are the Architectural Trade-Off
Analysis Method (ATAM) and the Scenario-based Architecture Analysis Method
(SAAM) [53].

 Model-Based Analysis. It is usually automatic where models are used to analyze
system properties in architectural level such as structural properties, behavioral
properties and non-functional properties. Compared to inspection and reviews,
model-based techniques are less human intensive and less costly. However, they can
only be used to analyze properties which can be encoded in the architectural model
[242]. They are not for implicit properties which are inferred by human from the non
modeled existing information. Architecture description languages such as Wright [9],
Aesop [89], and MetaH [115] support model-based analysis.

 Simulation-Based Analysis. It is used to analyze the behavior of software
architectures by using an executable architecture model of a given system. The results
of the simulation can be manually or automatically inspected. Since software
architecture abstracts some details of the system, simulation of the architecture may
not produce identical results to the system’s execution. The output of simulation
might be observed only for event sequences, general trends, or range of values rather
than specific results [242]. An example simulation analysis platform is the eXtensible
Tool-chain for Evaluation of Architectural Models (XTEAM) [68] which is a model
driven architectural description and simulation environment for mobile software
systems. Not all architectural models are available for simulation-based analysis.
Available architectural models mostly need to be mapped to an external formalism

2.3 Software Architecture 21

such as discrete event system simulation formalism or queueing network in order to
enable simulation.

In this thesis, we map AADL architecture models to rewriting logic [48] [49] in order to
perform simulation-based analysis.

2.3.3 Architectural Patterns and Styles
An architectural pattern is a description of an element and relation types together with a set
of constraints on how they may be used [16]. Similar to design pattern [88], an architectural
pattern provides a common vocabulary to build an architecture. This common vocabulary is
used for communication between stakeholders and software architects. A synonym for
architectural pattern is architectural style. A pattern restricts many of the possible design
choices and prevents possible design errors in the architecture. Examples of architectural
patterns are clients and servers, pipes and filters, and layered architectural patterns. For
instance, layered architectural pattern [42] restricts a system with two or more layers stacked
upon each other. A layer n is only allowed to communicate with the layers it has direct
contact with.

2.3.4 Modeling Software Architecture
As stated in definitions of software architecture in Section 2.3.1, software architecture can be
considered as the set of design decisions made about a software system. An architectural
model is an artifact that captures some or all of the design decisions that comprise a system’s
architecture [242]. Architecture modeling is the reification and documentation of those
design decisions. In the thesis, architectural models are our primary interest. Taylor et al.
[242] classifies architecture modeling techniques as following: (a) generic techniques, (b) early
architecture description techniques, (c) domain- and style-specific ADLs, and (d) extensible
ADLs.

2.3.4.1 Generic Techniques
These techniques are not specifically developed to describe a software architecture. Natural
language, informal graphical PowerPoint-style modeling and the Unified Modeling Language
(UML) are considered as generic techniques for modeling software architecture. Natural
languages are expressive but they are ambiguous and nonrigorous since they have inprecise
semantics about software architecture [242]. They can only be checked by humans.
Ambiguity problems in natural languages can be limited by using a restricted form of natural
languages with consistent dictionary of software architecture terms. Tools like Microsoft
PowerPoint provide users graphical diagrams to model software architectures. These
diagrams are good to capture early ideas but it is difficult to interpret their meaning since

22 Chapter 2 Background and Definitions

they have inprecise semantics. UML is more precise than arbitrary diagrams that would be
produced in PowerPoint [242]. However, most constructs in UML are still semantically
ambigious. Stakeholders should make agreements about how to interpret UML diagrams in
order to model software architecture in UML. Stereotypes, tagged values and Object
Constraint Language (OCL) can be used to extend UML for architecture modeling purposes
such as avoiding ambiguities in software architecture models.

2.3.4.2 Early Architecture Description Techniques
The research in 1990s on how to best capture software architectures result in architecture
description languages (ADLs) developed specifically for modeling software architecture.
Medvidovic and Taylor [175] survey early ADLs and provide a classification framework for
these ADLs consisting of the following four common architectural elements: components,
connectors, interfaces and configurations.

Apart from generic techniques, these architecture description languages are semantically
precise but they are not flexible. Examples of first generation languages and their scopes are
as follows [242]:

Darwin [169]. It is used to model architectures of highly-distributed systems whose
dynamism is guided by strict formal underpinnings.

Rapide [165]. It is used for modeling and simulation of dynamic behavior of software
architecture.

Wright [9]. It is for modeling and analysis (specifically deadlock analysis) of dynamic
behavior of concurrent systems.

2.3.4.3 Domain- and Style-Specific ADLs
Early architecture description languages are used to model a wide variety of software
systems. However, they can not be tailored to stakeholder needs since they do not target a
particular group of stakeholders. Domain- and style specific ADLs are proposed to avoid
this kind of problems encountered in early ADLs. Examples of domain- and style- specific
ADLs are as follows [242]:

Koala [203]. It was developed by Philips Electronics to model the architecture of consumer
electronics devices such as televisions and DVD players.

Weaves [99]. It is used to model data-flows characterized by high-volume of data and real-
time requirements.

2.4 Software Change Management 23

The Architecture Analysis and Design Language (AADL) [225] [79]. It is developed by
Software Engineering Institute in Carnegie Mellon University to specify system architectures
for a wide variety of embedded and real-time systems such as automotive, avionics and
medical systems. In this thesis, we use AADL to specify software architectures.

2.3.4.4 Extensible ADLs
Extensible ADLs are proposed to combine the flexibility of early ADLs and expressivity of
domain- and style-specific languages with the analyzability and precision of semantically rich
languages. These languages provide basic constructs for describing common architectural
elements with extending these elements for user-defined constructs [242]. Examples of
extensible ADLs are as follows [242]:

Acme [90]. It is designed to be an interchange language for several existing ADLs. It has a
base of constructs to be extended: components, connectors, ports, roles, attachments,
systems, and representations.

The Architecture Description Markup Language (ADML) [234]. It is an XML based
ADL. It provides meta-properties which are used to specify user-defined properties and
property types.

xADL [60]. It is build upon XML and schemas. The default schema provides the basic
elements: component, connector, interface and configuration. The default schema is
extended for modeling different types of systems.

In this thesis, we use the definition of software architecture by Bas et al. [16]. Software
architectures are expressed in Architecture Analysis and Design Language (AADL). We use
formal dynamic semantics for part of AADL given in rewriting logic used in Maude language
and tools. Formal semantics of AADL enables performing simulation and verification of
AADL models (simulation-based analysis). It is used to analyze the behavior of software
architectures by using an executable architecture model of a given system.

2.4 Software Change Management

In this section we first introduce the strategies for software change management. Software
maintenance, one of the strategies for change management, is explored in detail. We then
give the details of requirements evolution within the context of software maintenance. In the
end, change impact analysis, an activity in software maintenance, is introduced since our
focus in the thesis is to determine the impacted requirements and architectural elements in
response to changes in requirements of the software system.

24 Chapter 2 Background and Definitions

2.4.1 Strategies for Software Change Management
Generally, systems of any size need to be changed. Changes might happen in different
contexts such as new requirements may emerge, existing requirements might change, coding
and design errors might arise. Different changes require different strategies to be handled.
Types of strategies for software change management are the following [257]:

 Software Maintenance. This is the strategy for handling changes in a software
system after the system has been put into use [233]. Changes within the context of
software maintenance are fixing coding and design errors, adapting software systems
for a new operating system, and modifying system functionality in response to
changes in organizational or business needs.

 Architectural Transformation. It is the software change strategy for significant
changes in the architecture of the software system. An example is that the software
system evolves from a client-server architecture to a broker architecture. There might
be different reasons for architectural changes like hardware costs, user interface
expectations and distributed access to systems [233].

 Software Re-engineering. This strategy involves changes made to make the
software system easier to understand and improve the quality of the software system.
The software re-engineering strategy consists of the activities source code translation,
reverse engineering, program structure improvement, program modularization and data reengineering.

These strategies are not mutually exclusive [233]. Software re-engineering could be
performed before architectural transformation in order to make software system easier to
understand for architectural changes. The thesis focuses on modifying system functionality
in response to changes in organizational or business needs. Therefore, we give more details
about software maintenance in the next section.

2.4.2 Software Maintenance
Software maintenance is the process of changing a software system after it has been put into
use [233]. Changes within the context of software maintenance could be correcting coding
errors, correcting design errors, correcting requirements errors, simply implementing new
system features or modifying existing system features. Types of software maintenance are
the following [233]:

 Maintenance to Repair Software Faults. This type of maintenance is to repair
coding, design and requirements errors.

2.4 Software Change Management 25

 Maintenance to Adapt the Software to a Different Operating System. This type
of maintenance is necessary to adapt the software system to cope with changes in
hardware, operating system or other supporting software.

 Maintenance to Add to or Modify the System’s Functionality. This type of
maintenance is required to add or modify system features in case of changes in
business and organizational needs, which cause changes in software system
requirements.

Swanson [237] addresses the types of maintenance as corrective, adaptive and perfective
maintenance. Corrective maintenance is performed in response to processing, performance
and implementation failures. Changes in data environment or in processing environment
cause adaptive maintenance. Perfective maintenance is performed to enhance performance,
or improve maintainability [237].

The maintenance has activities such as change impact analysis, release planning, and change
implementation. Change requests from stakeholders of the system, such as system users,
project managers or programmers, trigger the maintenance. The cost and impact of the
changes are assessed in change impact analysis to see which part of the system is affected
and to estimate the cost of changes [233].

Figure 2.3 An Overview of the Maintenance Process [233]

Based on the output of change impact analysis, changes to implement for the next release of
the software system are described in the release planning. Finally, the decided changes are
implemented during change implementation.

This thesis addresses the type of maintenance to add to or to modify the system’s
functionality where requirements of the system evolve in case of changes in business and
organizational needs. We do not address cost estimation, release planning or
implementation. In the thesis, we focus only on change impact analysis.

26 Chapter 2 Background and Definitions

2.4.3 Requirements Evolution
Requirements evolve during the development life cycle as a result of changes in business and
organizational needs (see Figure 2.4). If evolution of requirements is not managed properly,
there might be requirements that are not implemented as they are described in the final
release of the software system. This increases the cost of software system and leads to invalid
systems.

Figure 2.4 Requirements Evolution [233]

From requirements evolution perspective, requirements are classified as enduring requirements
and volatile requirements [233].

 Enduring Requirements. They are core requirements about the domain of the
system, such as requirements about students, lecturers for a course management
system.

 Volatile Requirements. They are requirements changing while the system is being
developed or after the system has been put into operations. For example,
requirements about student registration regulation, which depend on yearly school
policies, are volatile requirements.

In the thesis, we address volatile requirements within the scope of software maintenance and
in particular, in change impact analysis. New requirements may emerge or existing
requirements might change. Techniques for the analysis of the impact of these requirements
changes on other requirements and architectural elements are developed in this thesis.

2.4.4 Change Impact Analysis
Change impact analysis is defined as “identifying the potential consequences of a change, or
estimating what needs to be modified to accomplish a change” [24] [23] [22] [25]. The first
part of the definition, identifying the potential consequences of a change, addresses research

2.4 Software Change Management 27

issues such as predicting the effort required to modify work products [196]. The second part
of the definition adresses analyzing source code dependencies and traces between
development artifacts to determine impacted elements. This thesis focuses on analyzing
traces between requirements and between requirements & software architecture in order to
determine the impacted parts of requirements documents and software architecture for
requirements changes. Figure 2.5 depicts the software change impact analysis as a process.

Figure 2.5 Software Change Impact Analysis Process [25]

The process for change impact analysis is iterative. The requirements engineer or software
architect receives the software change proposals as a change specification from the
stakeholders of the software system. The change specification contains a series of change
requests for the software system. Software system and change specification are examined in
order to determine the starting impact set (SIS). The SIS is the initial set of elements thought
to be affected by a change. After tracing the potential impacts, the set of elements to be
affected is estimated (the candidate impact set - CIS). The actual impact set (AIS) is the set
of elements actually modified. There might be more impacts discovered (the discovered
impact set – DIS) during performing software change. The false-positive impact set (FPIS) is
the set of over-estimate of impacts. Then, we have AIS = CIS + DIS – FPIS.

There are change impact analysis techniques that determine the sets of impacted elements.
Bohner and Arnold [24] describe two types of change impact analysis techniques, traceability
and dependency change impact analysis. Kilpinen [139] describes a third type, experimental impact
analysis.

 Traceability Impact Analysis. In traceability impact analysis, traces between
requirements, software design, source code and tests, which are the main artifacts of
software development life-cycle, are used in order to determine the impacted
elements in these artifacts [24].

28 Chapter 2 Background and Definitions

 Dependency Impact Analysis. The dependency impact analysis focuses on low-
level design, compared to the traceability impact analysis. Dependencies in detailed-
design and source code are used in order to determine the impacted parts of source
code or detailed design. Program slicing [85] and impact analysis on UML models
[35] [36] are examples of dependency impact analysis.

 Experimental Impact Analysis. Review processes, informal discussions and the
application of engineering judgement are defined as experimental impact analysis by
Kilpinen [139]. Implicit design dependencies and mechanisms for change propagation
can be identified by using expert knowledge in informal discussions. Kilpinen
considers experimental impact analysis as unsystematic since there is no tool support
and formal methods provided in order to determine the impacted elements.

In the thesis we develop techniques and tools for change impact analysis of requirements
and software architecture. Since dependency impact analysis concerns detailed-design and
source code, our work is not in the scope of the dependency impact analysis. Our work can
be considered within the context of the traceability impact analysis techniques.

2.5 Traceability

In this section we analyze the concepts of traceability from various perspectives. We focus
on definitions of traceability in requirements engineering and Model Driven Engineering
(MDE) (Section 2.5.1). We summarize core concepts of traceability given by von Knethen
[142] in order to give the fundamentals of traceability techniques (Section 2.5.2).

2.5.1 Definitions of Traceability
We start with definitions found in literature that considers traceability in general. Next, we
give definitions for specific areas.

Traceability is defined in the IEEE Standard Glossary of Software Engineering Terminology
[123] as: “the degree to which a relationship can be established between two or more
products of the development process, especially products having a predecessor–successor or
master–subordinate relationship to one another” and “the degree to which each element in a
software development product establishes its reason for existing”. In addition to that the
IEEE Standard Glossary [123] simply defines a trace as “a relationship between two or more
products of the development process”.

In the domain of requirements engineering, the term traceability is usually used for the ability
to follow the traces to and from requirements [262]. One common definition of

2.5 Traceability 29

requirements traceability is given by Pinheiro [211] as “the ability to define, capture, and
follow the traces left by requirements on other elements of the software development
environment and the traces left by those elements on requirements”. Similar to this
definition, Gotel and Finkelstein [100] define requirements traceability as “the ability to
describe and follow the life of a requirement, in both a forwards and backwards direction
(i.e., from its origins, through its development and specification, to its subsequent
deployment and use, and through periods of on-going refinement and iteration in any of
these phases)”. Paige et al. [208] describe traceability as “the ability to chronologically
interrelate uniquely identifiable entities in a way that matters. Traceability refers to the
capability for tracing artifacts along a set of chained (manual or automated) operations”.

Winkler and Pilgrim [262] discus the definitions of traceability from perspectives of both
requirements engineering and model driven engineering domains in more detail.

We use the definition in the IEEE Standard Glossary of Software Engineering Terminology
[123] as our working definition for traceability in the thesis. In this respect our working
definition of the term trace is that every relation between software development artifacts or
between elements in these artifacts can be a trace for a certain traceability purpose like
change impact analysis.

2.5.2 Core Concepts of Traceability
In this section we summarize the core concepts of tracing approaches identified by von
Knethen et al. [142]. The four core concepts of tracing approaches are the following: (a)
purpose, (b) conceptual trace model, (c) process, and (d) tools (see Figure 2.6).

30 Chapter 2 Background and Definitions

Figure 2.6 Core Concepts of a Tracing Approach [142]

Every trace technique has a purpose such as change impact analysis (see the entity “purpose”
in Figure 2.6). The purpose of tracing technique depends on the stakeholder who needs the
traceability information and the task of the stakeholder that uses the traceability information.

A conceptual trace model defines what trace entities are and what kind of trace should be
captured. The subconcept “entities” characterize different trace techniques according to the
kind, granularity and attributes of the entities traced. The characterization of trace techniques
in the subconcept “relationship” is based on the kind, direction, attributes, setting and
representation of relationships captured as trace. For instance, most of the classification of
traceability given in Section 2.5.3 is based on the direction of relationships. The concept
“tool support” characterizes trace tools according to what kind of traceability techniques are
supported by trace tools.

2.5.3 Classification of Traces
Over the years, various classifications of traces are proposed and emphasized by different
sources in literature. The most common ones are pre-requirements specification, post-requirements
specification, forwards, backwards, horizontal, vertical, within-level, and between-level traceability (see
Figure 2.7).

Gotel and Finkelstein [100] have introduced pre-requirements specification (pre-RS) traceability and
post-requirements specification (post-RS) traceability. Whereas Pre-RS traceability is concerned with

2.5 Traceability 31

tracing back from requirements to user needs, Post-RS traceability is concerned with tracing
from requirements to design and coding where requirements are realized.

The ANSI/IEEE Std 830–1984 [122] gives the terms backward traceability and forward
traceability. Backward traceability refers to the ability to follow the traceability links from an
artifact back to its sources from which it has been derived. Forward traceability describes
following the traceability links to the artifacts that have been derived from the artifact under
consideration.

Ramesh and Edwards [214] introduce the distinction between horizontal and vertical traceability.
These terms differentiate between traces of artifacts belonging to the same development
phase or level of abstraction, and traces between artifacts belonging to different ones.

von Knethen et al. [142] describe a classification which is similar to horizontal-vertical
traceability from refinement point of view. They distinguish two types of traces between
artifacts on different abstractions as between-level refinement traces and within-level refinement traces.
Within-level refinement traces are between artifact entities at different refinement levels on a
certain abstraction level. Such traces are between two system use-cases or between two
requirements in the same requirements document. Between-level refinement traces are
between entities at different refinement levels on different abstraction levels eg., between a
requirement in requirements document and a software component in software architecture
design. In the thesis we interpret between-level and within-level refinement traceability as
between-model and within-model traces.

Figure 2.7 Directions of Traces [142]

According to our working definition of trace given in Section 2.5.1, a relation, which is
considered as a trace for a traceability purpose, might not be considered as a trace for
another traceability purpose. In the thesis we do not use any classifications given above since

32 Chapter 2 Background and Definitions

a relation which is considered a trace in above classifications might not be a trace for change
impact analysis in the thesis.

2.6 Model Driven Engineering

The concept of Model Driven Engineering (MDE) was introduced as a generalization of the
Model Driven Architecture (MDA) for software development. In this section we first
introduce MDA and then explain MDE.

2.6.1 Model Driven Architecture
MDA is a software development approach proposed by Object Management Group
(OMG). The MDA Guide [199] provides definitions of concepts used in MDA.

MDA aims at solving the problem of continuous change of software technologies that forces
software development companies to port their solutions every time a new technology
appears. For instance, Java platform [129] was announced as an object-oriented software
development environment in 1990s and many software development companies developed
their solutions in this platform. .Net platform [190] was proposed as a competitor of Java
platform in 2000s. As a result of market trends, some software companies switched to .Net
platform and had to port their implemented solutions for .Net platform. Such kind of
changes in technologies creates a problem with portability which may require significant
efforts. MDA proposes the use of models of the same system at different abstraction levels
with convertions between the models to solve the portability problem.

To cope with the portability problem MDA uses a set of concepts such as model, metamodel
and transformation with a classification of models as Computation Independent Models
(CIMs), Platform Independent Models (PIMs) and Platform Specific Models (PSMs). A CIM
is a view of a system from the computation independent viewpoint. The PIM focuses on the
operation of a system while it still hides the details necessary for the implementation of the
system in a particular platform. The PIM specifies a degree of platform independency to be
suitable for use with a number of different platforms of similar type. On the other hand the
PSM includes details of the platform implementation.

The MDA Guide [199] defines model as “a model of a system is a description or
specification of that system and its environment for some certain purpose. A model is often
presented as a combination of drawing and text. The text may be in a modeling language or
in a natural language”. The MDA Guide defines metamodel as “model of models”. A more
detailed definition of metamodel by FRISCO report is that “metamodel is a model of the
conceptual foundation of a language, consisting of a set of basic concepts, and a set of rules

2.6 Model Driven Engineering 33

determining the set of possible models denotable in that language” [76]. Seidewitz [230]
defines a metamodel as “a model of models expressed in a given modeling language”. We
use the definition by Seidewitz as our working definition for metamodel in the thesis.

Models are organized in a hierarchy that spans multiple levels. The organization of levels is
referred to as meta-modeling architecture. Figure 2.8 gives an example of meta-modeling
architecture with three levels. At the bottom level there are models expressed in various
modeling languages. This level is called model level. An example model in this level is ModelL
expressed in a modeling language called L. Metamodels of the languages form the second
level in the stack called metamodel level. The metamodel of L, LModelML, is expressed in
another language called Metalanguage (ML). The metamodels of the languages that express
metamodels form the third level called metametamodel level. There is InstanceOf relation between
a metamodel of a language and models expressed in that language. The levels can be formed
infinitely with InstanceOf relation. However, in practice only three levels are used. The top
level contains a self-reflective model. The model MLModelML in Figure 2.8 is expressed in the
ML language itself (the self InstanceOf relation).

Figure 2.8 Meta-modeling Architecture

The basic operation applied on models in MDA is model transformation. The MDA guide
defines model transformation as “the process of converting one model to another model of
the same system”. The transformation pattern between models is given in Figure 2.9.

34 Chapter 2 Background and Definitions

Figure 2.9 Transformation Pattern

A transformation definition is capable of transforming a set of source models. A
transformation that transforms source models expressed in a source metamodel to models
expressed in a target metamodel uses the meta-entities defined in the source and target
metamodels.

2.6.2 Model Driven Engineering
Model Driven Engineering (MDE) is a generalization of MDA by adding the notion of
software development process to MDA.

MDA considers the classification of models based on only the level of model abstraction.
CIMs and PIMs can be considered at a higher abstraction level than PSMs. MDE utilizes the
use of Domain Specific Modeling Languages (DSL) on the base of different distinctions of
models such as the subject area models belong to or organizational issues. The number of
distinctions of models is not limited and depends on the needs in a software development
project. MDE technologies combine the following [227]:

 Domain Specific Modeling Languages. They are used to model the application
structure, behavior and requirements within particular domains such as financial
services, embedded systems [227]. Similar to MDA, metamodels are used to describe
DSMLs by defining the entities for the concepts and relationships between these
concepts in the domain with clear semantics and constraints.

 Transformation Engines and Generators. Definition of metamodels is required
but not sufficient for a complete MDE. We have to define transformations between
metamodels of DSMLs to obtain the main artifacts of MDE: target models. In
addition to that transformation engines and generators are used to analyze certain

2.7 Survey of Traceability in MDE 35

aspects of models and synthesize various artifacts like design models and source
codes [227].

With these two techniques above, MDE aims at detecting and preventing errors early in the
software development life cycle by using domain specific constraints and performing model
checking.

2.7 Survey of Traceability in MDE

In this section, we discuss the state-of-the-art in traceability approaches in MDE and
appraise them with respect to four general comparison criteria: representation, mapping, change
impact analysis and tool support. These comparison criteria are influenced by the core concepts
of tracing approaches (purpose, conceptual trace model, process, and tools) provided by van Knethen
[142]. Change impact analysis is our tracing purpose in the thesis. Mapping and
representation are considered as a part of the conceptual trace model to characterize trace
techniques for entities and relations to be traced.

2.7.1 Traceability Approaches in MDE
The traceability approaches we analyze are classified into three categories: requirements-driven
approaches, modeling approaches and transformation approaches. The requirements-driven approaches
consider requirements of the system as a starting point for traceability. The modeling
approaches investigate how metamodels and models are involved in tracing processes.
Transformation approaches make use of model transformation mechanisms for generating
trace information.

2.7.1.1 Requirements-Driven Approaches
In the field of Requirements Engineering, Gotel and Finkelstein [100] define traceability as
the ability to describe and follow the life of a requirement, in both forward and backward
specification, to its subsequent deployment and use, and through periods of ongoing
refinement and iteration in any of these phases. Tracing requirements in both forward and
backward directions helps stakeholders and developers to understand requirements in more
detail. The following subsections present five requirements-driven approaches.

2.7.1.1.1 	Requirements	Traceability	and	Transformation	Conformance	(RTTC)	
Almeida et al. [11] aim at simplifying the management of traces between requirements and
various design artifacts. They propose a framework as a basis for tracing requirements,
assessing the quality of model transformation specifications, metamodels and models. The

36 Chapter 2 Background and Definitions

framework allows designers to relate requirements in the early stage of the development to
the various products of the model-driven design process.

Traceability cross-tables are used for representing relationships between application
requirements and models, considering different model granularities. Since model-driven
techniques consist of different abstraction levels like platform-independent and platform
specific levels, Almeida et al. propose a notion of conformance between models to trace
requirements throughout abstraction levels. Change impact analysis in requirements is
deferred to future work.

2.7.1.1.2 	Event	Based	Traceability	(EBT)	
Event-Based Traceability (EBT) [50] is a method for automating trace generation and
maintenance. In EBT, requirements and other traceable artifacts, such as design models, are
no longer directly related, but linked through publish-subscribe relationship based on
Observer design pattern [88].

The main components of the system are the event server, requirements manager and subscriber
manager. The requirements manager is responsible for triggering change events by publishing
an event message when a change occurs. Event messages carry structural and semantic
information concerning the change context. The event server is primarily responsible for
managing subscriptions, receiving event messages from the requirements manager, and
forwarding customized event messages to the subscriber manager. The subscriber manager
resolves event notifications and restores related artifacts and traces to a new state if
necessary.

2.7.1.1.3 	Goal	Centric	Traceability	(GCT)	
Cleland-Huang et al. [52] introduce a goal-centric approach for managing impact of a change
in non-functional requirements. Goal Centric Traceability (GCT) models non-functional
requirements and their dependencies using a Softgoal Interdependency Graph (SIG).

The approach has four steps to analyze and implement changes on dependent artifacts: goal
modeling, impact detection, goal analysis, and decision making. In goal modeling, goals are
decomposed into subgoals to reflect the fact that dependencies exist between various non-
functional requirements (represented by softgoals). To understand the trade-offs among
non-functional requirements, the subgoals are decomposed into operationalizations
providing candidate solutions for the goal. In the impact detection, when a change occurs in
non-functional requirements, a probabilistic retrieval algorithm dynamically returns related
traces in the SIG. In the goal analysis the user modifies the contributions, from the impacted
goal elements to their parents. For each impacted element, changes are propagated

2.7 Survey of Traceability in MDE 37

throughout the SIG to identify potentially impacted goals. In the decision making it is
determined if the change should be implemented or not. Stakeholders evaluate the impact of
the proposed change in non-functional requirement goals.

2.7.1.1.4 	Event	Based	Traceability	with	Design	patterns	(EBT‐DP)	
In [51], Cleland-Huang and Schmelzer introduce another requirements-driven traceability
approach. Their work is based on EBT [50] but they describe a different process for
dynamically tracing non-functional requirements to design patterns. The process is divided
into two phases.

During the initial phase, user-defined traces are established. Design elements are traced to a
cluster, which is the application of the design pattern. Then, a trace is established between
the non-functional requirement and the cluster. Therefore, the number of traces between
design artifacts and non-functional requirements is decreased. In the second phase, the well
established descriptions and invariant rules of a design pattern permit the automatic and
dynamic generation of code (from the pattern to specific class implementations). By
establishing traces between requirements and the cluster, the approach aims at minimizing
the cost and effort of establishing and maintaining traceability links.

2.7.1.1.5 	Reference	Models	for	Requirements	Traceability	(RMRT)	
Ramesh and Jarke [215] provide an empirical approach and focus on interviews conducted in
software organizations to study a wide range of traceability practices. As a result of the study,
Ramesh and Jarke constitute reference models that include the most important kinds of
traces for various software development artifacts.

One of the main motivations behind the study is to capture traceability needs of
stakeholders and present reference models for each need. Ramesh and Jarke classify the
participants of the study as high-end and low-end users of traceability practices. Trace
models are presented to reflect the trace entities captured by high-end and low-end users,
and then a set of five reference models is customized. Requirements are considered as
traceable entities in all these reference models.

2.7.1.2 Modeling Approaches
In MDE, trace metamodels are crucial to store and represent traces, derived from
dependencies between source and target elements. Modeling approaches represent trace
information as models. As an instance, the UML profile mechanism gives a solution to store
and represent traces. There is also a standard stereotype for traceability in UML [201].

38 Chapter 2 Background and Definitions

2.7.1.2.1 	Scenario	Driven	Approach	to	Trace	Dependency	Analysis	(SDTDA)	
Egyed [70] presents an automated approach for generating and validating traces. He
addresses the problem that the absence of trace information or the uncertainty of trace
correctness limits the usefulness of software models. The proposed approach reduces the
complexity of trace generation and validation by using test scenarios and hypothesized
traces. The approach requires an observable and executable software system, design artifacts,
scenarios describing test cases, and a set of initial hypothesized traces linking development
artifacts and scenarios.

Executing test scenarios in the running system leads to traces between scenarios and source
code. The runtime behavior of the scenarios is translated into a footprint graph. Traces are
generated and validated by using the rules that characterize how the footprint graph relates
to the hypothesized traces and artifacts to which they are linked.

2.7.1.2.2 	Operational	Semantics	for	Traceability	(OST)	
Aizenbud-Reshef et al. [6] present an approach which defines an operational semantics for
traceability in UML. Three main issues for traceability are stated: querying (e.g. impact
analysis, coverage queries), following traces along the life-cycle of a project, and keeping the
system and its documentation up to date. Two types of semantics based on these issues are
presented: preventative semantics and reactive semantics. Preventative semantics describes things
that should not happen; reactive semantics describes what should be triggered when
something happens to one or more of the related elements or to the relationship itself.

Operational semantics of a trace is defined by a set of semantic properties. A semantic
property is a triplet (event, condition, and actions). Event involves an element of the trace.
Condition is a logical constraint and actions can be either preventative or reactive actions.

2.7.1.2.3 	Unifying	Traceability	Specification	Scheme	(UTSS)	
Limon and Garbajosa [156] analyze current traceability schemes in order to obtain relevant
features and identify overlaps and inconsistencies among the approaches. Based on the
analysis, they propose a traceability scheme specification approach to facilitate traceability
specification for a given project, to improve the traceability management, and to automate
some trace management processes.

2.7.1.2.4 	Precise	Transformation	Traceability	Metadata	(PTTM)	
Vanhooff and Berbers [252] provide a UML profile for transformation traceability metadata
in order to reason about past transformations. Transformation traceability links provide a
complete or partial history of model changes caused by the transformations. Transformation

2.7 Survey of Traceability in MDE 39

traceability metadata are used to make individual transformation units more modular and
easier to maintain.

Vanhooff and Berbers list four important requirements for their approach. At first, the
transformation traceability information should be kept by all transformation units. Secondly,
traces should be extended with transformation unit specific information. Another
requirement is that all information should be kept in a UML model itself and, at last, it
should be possible to easily add traces manually for non-automatic transformations.

2.7.1.3 Transformation Approaches
Model transformations are considered as a mechanism which supports automating both
generation and validation of traces between models. Hence, most of the transformation
languages support automatic generation of traces.

2.7.1.3.1 	Loosely	Coupled	Traceability	(LCT)	
Jouault [134] shows how traceability can be added to transformation programs written in the
ATLAS Transformation Language (ATL) [136] in order to overcome the limits of implicit
traceability. The trace generation mechanism of ATL is implicit. Such a form of traceability
does not persist after executing a transformation.

Jouault considers the traceability information as an additional target model of a
transformation program. His approach supports generating traces in the same way other
target model elements are generated. Jouault provides a higher-order transformation (HOT)
that transforms ATL transformations to insert the trace creation code to the
transformations. One of the advantages of the solution is that trace generation code is not
tightly coupled to transformation logic.

2.7.1.3.2 	On	Demand	Merging	of	Traceability	(ODMT)	
Kolovos et al. [145] present an approach for merging trace models with other software
development models. The correspondences between elements of the source models are
established and then corresponded elements are merged. The Epsilon Merging Language
(EML) [144] is used to implement model merging with traces. EML is a plug-in for the
Eclipse and supports managing EMF and MOF models as well as XML documents.

2.7.1.3.3 	Traceability	Framework	for	Model	Transformations	(TFMT)	
Falleri et al. [77] proposes a traceability framework, implemented in Kermeta [176]. The
framework allows tracing transformation chains within Kermeta, by means of the
specification and implementation of a language independent trace metamodel. Falleri et al.
have implemented the following features of the traceability framework [77]: generic

40 Chapter 2 Background and Definitions

traceability items, trace serialization, and a simple transformation for trace visualization using
Graphviz [101] (in order to visualize the resulted transformation trace chain).

2.7.2 Evaluation of the Approaches
In this section we present a comparative analysis of traceability approaches for MDE with
respect to the following comparison criteria: representation of traceability information, mapping
models, change impact analysis, and tool support.

2.7.2.1 Representation
The capability of the approaches to represent traces is evaluated in Table 2.1.

Table 2.1 Representation of Trace Information in Traceability Approaches in MDE

 Representation

R
eq

u
ir

em
en

ts
-D

ri
ve

n

A
p

p
ro

ac
h

es

RTTC Traceability cross-table

EBT Event-based subscriptions

GCT Softgoal Interdependency Graph (goals, operationalizations and
contribution links) and traceability matrix

EBT-DP Softgoal Interdependency Graph and event-based subscriptions

RMRT Traceability metamodels

M
od

el
in

g
A

p
p

ro
ac

h
es

SDTDA Footprint graphs

OST Rules, conditions and actions

UTSS Traceability Scheme (TS)

PTTM UML models

T
ra

n
sf

or
m

at
io

n

A
p

p
ro

ac
h

es

LCT Trace model

ODMT EML (the metamodel) and UML (the trace model)

TFMT Kermeta models (the proposed metamodel) and XMI (the serialized
instances of transformation chain)

RTTC: Almeida et al. [11] represent traceability information for application requirements by
using cross-tables. Assesment activities or conformant transformations between models are
necessary to justify check marks in cross-tables.

2.7 Survey of Traceability in MDE 41

EBT and EBT-DP: Event-based subscriptions are used to represent traces in EBT [50]
and EBTDB [51]. The notification of the events carries structural and semantic information
concerning a change context. As EBT-DB [51] considers SIG models, traces are also
represented by interdependencies between softgoals (non-functional requirements) and
operationalizations (representing design patterns).

GCT: GCT [52] uses softgoal interdependency graphs in order to trace between goals and
their operationalizations. A traceability matrix is also constructed to relate SIG elements with
classes.

RMRT: In RMRT [215], traceability reference models are used to represent traces.
Granularity of traces depends on the expectations of the stakeholders. RMRT represents
simple or more detailed traces across the low-use and high-use reference models.
Implementations of the reference models present distinct ways to embody traceability
information.

SDTDA: In [70] , traces are represented in traceability matrix and a graph structure called
footprint graph. The runtime behavior of test scenarios is translated into a footprint graph.
The footprintgraph is interpreted via a set of rules in order to generated new trace
information. Final representation of generated traces is done in traceability matrix.

OST: In [6], semantic properties (events, conditions and actions) are used to capture and
represent traces.

UTSS: In [156], Limon and Garbajosa analyze several traceability approaches and propose a
unified Traceability Scheme (TS) specification. TS is composed of a dataset, a type set, a
minimal set of traces, and a metrics set for the minimal set of traces.

PTTM: Vanhooff and Berbers [252] provides a UML profile to represent traces. Using
stereotypes and tagged values, they add trace semantics to existing UML elements.

LCT: Jouault [134] considers traceability information as a model and extends ATL programs
to provide trace generation during model transformations. Traces generated by model
transformations are represented as Ecore models.

ODMT: Kolovos et al. [144] use an EML trace metamodel for merging, which is compliant
with Meta-Object Facility (MOF). UML diagrams are used as example models in the
approach.

TFMT: In TFMT [77], traces are represented as Kermeta models and instances of resulting
transformation trace chains are serialized as XMI.

42 Chapter 2 Background and Definitions

2.7.2.2 Mapping
The mapping criterion analyzes whether the approach is capable of supporting traces among
models at different levels of abstraction. The traceability approaches are evaluated for
mapping, based on intra-level relationships (traces among artifacts of the same abstraction level),
inter-level relationships (traces among artifacts of different abstraction levels), or both intra and
inter-level relationships (see Table 2.2).

Table 2.2 Mapping, Change Impact Analysis and Tool Support in Traceability Approaches

M
ap

p
in

g

C
h

an
ge

Im

p
ac

t
A

n
al

ys
is

T
oo

l

Su
p

p
or

t

R
eq

u
ir

em
en

ts
-D

ri
ve

n

A
p

p
ro

ac
h

es

RTTC inter no no

EBT inter yes yes

GCT intra & inter yes partially

EBT-DP intra & inter yes yes

RMRT intra & inter yes yes

M
od

el
in

g
A

p
p

ro
ac

h
es

SDTDA intra & inter no partially

OST inter no no

UTSS intra & inter no no

PTTM intra & inter no no

T
ra

n
sf

or
m

at
io

n

A
p

p
ro

ac
h

es
 LCT intra & inter no yes

ODMT inter no yes

TFMT intra & inter no yes

RTTC: RTTC [11] supports traces from requirements models to other models at different
levels of abstraction.

EBT and EBT-DP: Both EBT [50] and EBT-DB [51] support mapping requirements to
other artifacts, by using event-based mechanism.

2.7 Survey of Traceability in MDE 43

GCT: GCT [52] provides traces between softgoals and operationalizations at the
requirements level, by using the softgoal interdependency graph. Requirements are traced to
source code by using traceability matrix.

RMRT: In RMRT [215], intra-level and inter-level traceability are supported by the low and
high-use metamodels, which provide mappings between requirements and many other
elements (system objectives, system components, functions, etc).

SDTDA: The trace types in [70] provide both intra-level and inter-level mapping. SDTDA
supports both forward and reverse engineering.

OST: The approach in [6] is proposed for UML models but there is no indication about
supporting traces for UML models at different abstraction levels.

UTSS: In [156], it is stated that the minimal set of traces of the unified traceability schema
must consider traces among artifacts themselves, as well as traces among a set of artifacts
and the artifacts of a previous (or next) development phase.

PTTM: In PTTM [252], a transformation traceability metamodel is mapped to UML
profiles. UML models at different abstraction levels can be traced.

LCT: The trace metamodel presented in [134] allows establishing traces between models at
the same abstraction level or different abstraction levels.

ODMT: The approach in [144] only presents a traceability method for unidirectional and
inter-level traces.

TFMT: The approach in [77] supports forward, backward, intra-level and inter-level
traceability, depending on the definition of source and target models in the transformation.

2.7.2.3 Change Impact Analysis
The change impact analysis criterion checks whether an approach determines the effect of
change on the entire system and on the artifacts across the software development lifecycle.
Table 2.2 shows evaluation of the approaches for change impact analysis.

EBT: A set of standard change events is defined for recognition and publication of change
events [50]. A method for monitoring user’s actions is proposed.

GCT: The GCT [52] provides change impact analysis among functional and non-functional
requirements, represented by using softgoal interdependency graphs.

44 Chapter 2 Background and Definitions

EBT-DB: EBT-DB [51] supports the identification of critical elements that should remain
in the system for keeping the integrity of a traceable non-functional requirement.

RMRT: Ramesh and Jarke [215] provide change impact analysis based on the description of
the rationale submodel.

Other approaches [6] [11] [70] [77] [134] [144] [156] [252] do not support change impact
analysis.

2.7.2.4 Tool Support
Tool support is fundamental for application of a traceability method, not only for
visualization and management of manually or automatically traces, but also for proper
reasoning support on trace information. Table 2.2 summarizes tool support of the
approaches.

EBT: EBT [50] has a client-server architecture using Observer design pattern. The event
trigger mechanism is implemented on top of DOORS [120] to capture change events.

GCT: The GCT model [52] has partial tool support. Despite of the fact that the retrieval
algorithm uses probability to return traces, user’s appraisal is required to manage traces.

EBT-DP: A few features of EBT-DP [51] (generation of traces) are implemented.

RMRT: The reference metamodels for traceability by Ramesh and Jarke [215] are encoded
in a knowledge-based meta database management system called ConceptBase. The
metamodels are also adopted in several commercial tools, such as SLATE [240].

SDTDA: The activities for scenario-testing and finding hypothesized traces in [70] are
manual; trace analysis and result interpretation are automated.

LCT: LCT [134] is implemented in ATL [134] [136].

ODMT: ODMT [144] is implemented in EML. EML [145] is used to implement merging
models with trace models.

TFMT: The transformation chain trace metamodel is supported by Kermeta [176] and
graphical visualization of traces is provided in Graphviz [101].

The other evaluated approaches [6] [11] [156] [252] do not provide any tool support.

2.7.3 Open Issues for Traceability in MDE
From the comparative analysis of the approaches we identify the following open issues:

2.7 Survey of Traceability in MDE 45

 Open Issue 1: Automation in the early development stages. In the early development stages
like requirements analysis and architectural design, less automation is provided to
cope with traceability.

 Open Issue 2: Trace semantics. Most of the approaches that we surveyed do not focus
on the use of trace semantics. How can trace semantics be formalized and
represented? How can trace semantics be used to achieve traceability goals such as
change impact analysis?

 Open Issue 3: Incremental model transformation. Incremental model transformation [65]
[110] [132] [146] is an active research topic in MDE. The use of traces with
incremental model transformations is partially known. There are still some questions
not answered. For instance, how can traces between source and target models be
used to determine parts of incremental transformation to be re-executed in case of a
change?

 Open Issue 4: Trace generation from implicit trace information. Trace information may not
always be encoded in a dedicated structure (implicit trace information). Most of the
approaches do not explore mechanisms for generating traces from implicit trace
information.

 Open Issue 5: Scalability of traceability tools. Since software projects become larger
during their development, and the software specification contains heterogeneous
artefacts, scalability is an important criterion to be considered when evaluating the
use of traceability approaches. However, most of the traceability tools are research
prototypes and scalability of these tools is not explored.

 Open Issue 6: Maintenance of traces. Most of the approaches investigate the use of
traceability to determine the model elements impacted by a change. However,
maintenance of existing traces after changes to artifacts is still an open issue for most
of the approaches. Trace maintenance is very important to ensure correctness of
traces.

Some of the open issues (Open Issues 1, 2, 4 and 6) are detailed further in Chapter 3; some
open issues (Open Issue 3 and Open Issue 5) are not addressed in the thesis at all.

46 Chapter 2 Background and Definitions

2.8 Conclusions

In this chapter we introduced the basic concepts in requirements engineering, software
architecture design and analysis, software change management, traceability and MDE. Our
approach for change management for requirements and software architecture is based on
definitions found in literature and selection of those definitions that suit the objectives of the
thesis.

This chapter also presented a survey of traceability techniques in MDE in which we
identified some open issues. Some of these open issues are addressed in the rest of the
thesis. One of the open issues addressed is trace semantics. We explore the possible
applications of trace semantics in change impact analysis for requirements and software
architecture.

In this chapter we answered Research Question 1 (What does traceability mean? Can every relation
between software development artifacts or between elements in the artifacts be a trace? What is the criterion for
a relation to be a trace?) and Research Question 2 (What are the current traceability approaches for
change management? What are their deficiencies? Which solutions and technologies have been proposed to
address these deficiencies?) raised in Chapter 1. Our working definition of the term trace is that
every relation between software development artifacts or between elements in these artifacts
can be a trace for a certain traceability purpose like change impact analysis. In Section 2.7,
we presented current traceability approaches with a comparative analysis. The open issues
for traceability in MDE in Section 2.7 are based on the deficiencies of the current traceability
approaches.

47

Chapter 3

3 Analysis of Impacts Explosion in Traceability

In this chapter, we motivate the need for semantics of traces between requirements, and requirements &
architecture for change management by exploring impacts explosion problem with some change scenarios.

3.1 Introduction

This chapter gives a detailed analysis of the impacts explosion problem that we address in
the thesis. Our traceability goal is change impact analysis for requirements and software
architecture, for example, determining which requirements and architectural elements are
impacted by a change of requirements. Impacts explosion problem is originally formulated in
the general case for software life-cycle objects by Bohner [22] [23] [24] [25].

In this chapter we answer Research Question 3 raised in Chapter 1: What are the change scenarios
for requirements and software architecture? What is necessary for these change scenarios to be handled? Which
solutions can be used? We first explain the impacts explosion problem for requirements and
software architecture. We identify some change scenarios where we may have change
impacts explosion.

The structure of the chapter is as follows. Section 3.2 describes impacts explosion problem,
in general, as formulated by Bohner. In Section 3.3 we illustrate specifics of the impacts
explosion problem for requirements and software architecture. Section 3.4 discusses the
change scenarios. In Section 3.5, the summary of the problems is given. Section 3.6
concludes the chapter.

48 Chapter 3 Analysis of Impacts Explosion in Traceability

3.2 Impacts Explosion Problem

Change impact analysis is defined by Bohner [22] [23] [24] [25] as “identifying the potential
consequences of a change, or estimating what needs to be modified to accomplish a
change”. A change in a software system may affect other parts of the system and the change
may trigger ripple-effects which cause direct and indirect impacts on other elements [24].
The relationships between elements are considered as traces. A direct impact occurs when
the affected element in the artifact is directly linked with one trace to the changed element.
An indirect impact occurs when the affected element in the artifact is indirectly linked with
more than one trace to the changed element. Figure 3.1 shows an example directed graph of
software life-cycle objects (SLO) with traces. Software life-cycle objects stand for elements in
development artifacts (e.g. requirements in requirements documents, classes & methods in
code, components in architecture).

Figure 3.1 Simple Directed Graph of Software Life-Cycle Objects [23]

When a change occurs in SLO1 in Figure 3.1, SLO2 has a direct impact and SLO3 has an
indirect impact by the change. Table 3.1 gives the traces between software life-cycle objects
in Figure 3.1 in a connectivity matrix.

Table 3.1 Connectivity Matrix of Traces [23]

 SL
O

0

SL
O

1

SL
O

2

SL
O

3

SL
O

4

SL
O

5

SL
O

6

SL
O

7

SL
O

8

SL
O

9

SLO0   

SLO1   

3.2 Impacts Explosion Problem 49

SLO2   

SLO3   

SLO4   

SLO5   

SLO6   

SLO7   

SLO8   

SLO9   

Connectivity matrix of traces is transformed into a reachability matrix where the objects,
which can potentially be affected by a change to a particular SLO, are indicated [23] (see
Table 3.2). Reachability matrix denotes traces inferred by using transitive closure of traces in
the connectivity matrix.

Table 3.2 Reachability Matrix of Traces [23]

 SL
O

0

SL
O

1

SL
O

2

SL
O

3

SL
O

4

SL
O

5

SL
O

6

SL
O

7

SL
O

8

SL
O

9

SLO0         

SLO1         

SLO2         

SLO3         

SLO4         

SLO5         

SLO6         

SLO7         

SLO8         

SLO9         

50 Chapter 3 Analysis of Impacts Explosion in Traceability

The reachability matrix indicates both direct and indirect impacts on software life-cycle
objects. For instance, the direct impact in SLO2 and the indirect impact in SLO3 of the
change in SLO1 in Figure 3.1 can be inferred in the reachability matrix in Table 3.2.
However, transforming the connectivity matrix into a reachability matrix does not gain any
additional information since every object is related directly or indirectly to every other object
in the matrix. Bohner suggests the use of the notion of distance between SLOs in order to
limit the detection of impacts (see Figure 3.2). The notion of distance in Figure 3.2 explains
how the number of impacts explodes.

Figure 3.2 Impacts Explosion without Semantics [25]

After a change is introduced to SLO0, 3 impacts are introduced at a distance of 1. The
number of impacts jumps to 10, 115, 1132 and 46203 at the distances of 2, 3, 4, 5 and 6 with
only approximately nine traces per SLO [25]. Bohner [24] states that change impact analysis
must employ additional semantic information to increase the accuracy by finding more valid
impacts and reducing the number of false-positive impacts. The use of trace semantics in
impact analysis can identify some of the unimpacted software life-cycle objects at the initial
distances and this prevents impact explosion at the later distances.

3.3 Impacts Explosion in Requirements and Software Architecture

Requirements and architectural elements are considered as Software Life-cycle Objects
(SLO). In current practice, requirements are textual artifacts with structure often not
explicitly specified. Relations between requirements are mostly not documented. Table 3.3
represents a part of a requirements document for a Course Management System (CMS). The

3.3 Impacts Explosion in Requirements and Software Architecture 51

requirements are about the CMS for a school which has features such as notification of
students about exam grades and messaging for communication at school.

Table 3.3 Some Requirements for a Course Management System

R1: The system shall notify students about exam grades.

R2: The system shall provide e-mail messaging.

R3: The system shall provide sms messaging.

R4: The system shall provide sms and e-mail messaging.

R5: The system shall allow lecturers to create courses.

R6: The system shall allow lecturers to specify enrolment policies based on grade.

R7: The system shall allow lecturers to manage course information.

R8: The system shall allow lecturers to specify enrolment policies based on grade.

There are implicit relations between requirements in Table 3.3. For instance, the system
needs messaging in order to notify students about exam grades. The system property given
in R1 requires the system property given in R4.

Figure 3.3 Requirements and Architectural Models with Traces

We need explicit structure of requirements and requirements relations in order to do change
impact analysis. Requirements metamodels and models can be used to provide an explicit
structure to requirements documents with relations between requirements. Requirements in

52 Chapter 3 Analysis of Impacts Explosion in Traceability

a requirements model can be linked to architectural elements in an architectural model with
traces. Figure 3.3 shows requirements and architectural models with traces.

Any relation between requirements, architectural elements, and requirements & architectural
elements plays a role of trace in change impact analysis. For example in Figure 3.3, a change
in requirement R3 has a direct impact on architectural component C4, and an indirect impact
on component C6 through the relation of R3 and Rn. The general impacts explosion
problem described for the software life-cycle objects by Bohner [24] is valid for elements in
requirements and architectural models. There might be multiple reasons of impacts
explosion in requirements and software architecture:

 Impacts explosion might happen due to large highly connected systems having bad
decomposition. The requirements and architecture of the system might be
decomposed in such a way that every element in the requirements and architectural
models is connected. Therefore, changing a requirement might affect every element
in the models.

 Impacts explosion might happen due to the lack of semantic information. Every
requirement and architectural element directly/indirectly related to the changed
requirement might be identified as a candidate impacted element due to the lack of
trace semantics. Some of the candidate impacts might be false positives which cause
the impacts explosion. In the thesis, we address the impacts explosion in
requirements and software architecture due to the lack of semantic information.

When a change is introduced to a requirement, we first want to determine if there is any
other impacted requirement. After we find out all impacted requirements, we need to
identify the architectural elements impacted by the change in the requirement.

In order to determine the impacted requirements in the requirements model, we can form a
connectivity matrix and then a reachability matrix for requirements relations. The
reachability matrix for requirements relations will be mostly the same with the one in Table
3.2 which indicates every SLO might be impacted.

In a reachability matrix like the one in Table 3.2, the requirements engineer may have to
analyze all requirements in the model for a single change. This may result in neglecting the
actual impact of a change in the requirements model. Manual inspection is error-prone and
time consuming. Consequently, the cost of implementing a change in the requirements
model may become several times higher than expected.

3.3 Impacts Explosion in Requirements and Software Architecture 53

After identifying impacted requirements in the requirements model, impact analysis is
applied to the architectural model in order to determine architectural elements impacted by
the requirements change. Then, we form a connectivity matrix and a reachability matrix for
traces between requirements and software architecture. Again, like the one in Table 3.2 there
is a high possibility of having a reachability matrix which indicates that every architectural
element in the software architecture might be impacted. The consequences of change impact
analysis indicated for requirements models are also valid for change impact analysis in
software architecture.

Figure 3.4 Part of Requirements and Architectural Models for Course Management System

In Figure 3.4, we give example requirements and architectural models of the CMS. Four
requirements (notifying students, e-mail messaging, sms messaging, and e-mail & sms
messaging) in the requirements document in Table 3.3 are given with their relations in the
requirements model. Assume that there is a change request for the CMS. Audio messaging is
requested for communication at school. The requirement R4 (E-mail and Messaging System)
in Figure 3.4 is updated for the change request. By following direct and indirect requirements
relations without using any semantic information, it is found that all requirements (R1, R2,

54 Chapter 3 Analysis of Impacts Explosion in Traceability

R3 and R4) and architectural elements (C1, C2, C3, C4 and C5) satisfying these requirements
are candidate impacted.

By knowing the semantics of the requirements change and traces, we can eliminate some of
the false positive candidate impacted requirements and architectural elements. For instance,
the change for the requirements in Figure 3.4 is adding a new property (an audio messsaging)
to R4 which does not have any impact on existing system properties. R1, R2 and R3 are not
impacted by the change in R4. Only the architectural elements (C3, C4 and C5) are candidate
impacted. Without making the semantics of changes and traces explicit in the models, the
requirements engineer and software architect have to make these reasoning by themselves.
The traceability tools and techniques employing additional semantic information can assist
the requirements engineer and software architect to do impact analysis on models.

3.4 Change Scenarios for Change Impact Analysis

In this section we explain when we have the impacts explosion problem in change
management for requirements and software architecture. We identified two change scenarios
in which requirements evolve and then software architecture is updated for the changes in
requirements. Figure 3.5 shows the requirements and architectural models with traces for
requirements evolution.

Figure 3.5 Requirements and Architectural Models with Traces for Requirements Evolution

Section 3.4.1 and Section 3.4.2 explain the change scenarios by using requirements and
architectural models with traces in Figure 3.5.

3.4 Change Scenarios for Change Impact Analysis 55

3.4.1 Scenario 1: Requirements Evolve
The steps in Scenario 1 are the following:

 Receiving the change request: The change request for requirements in the Requirements
Model RM in Figure 3.5 is received by the requirements engineer.

 Performing change impact analysis in the Requirements Model RM: The requirements engineer
interprets the change request as a set of changes in the RM. The impact of each
change is analyzed by propagating the change in the RM.

During the change propagation, the requirements engineer may have to encounter explosion
of impacts where he has to investigate all requirements in the model RM.

 Updating the Requirements Model RM: After the impact analysis, it is decided which
changes will be applied to the RM. If any, then the RM is updated (New
Requirements Model – RM`).

 Verifying the Architectural Model AM: After updating the RM, the software architecture
(Architectural Model - AM) is verified in order to determine if it satisfies the
new/changed requirements

 Updating the Architectural Model - AM: If there is any requirement not satisfied by the
Architectural Model AM, the AM is updated to make the new/changed requirements
being satisfied (New Architectural Model – AM`).

The software architect might analyze the impact of the requirements change in the
Architectural Model AM to update the AM where he might encounter impacts explosion.

3.4.2 Scenario 2: Requirements and Software Architecture Evolve
The steps in Scenario 2 are the following:

 Receiving the change request: The change request for requirements in the Requirements
Model RM in Figure 3.5 is received by the requirements engineer.

 Performing impact analysis in the Requirements Model RM and Architectural Model AM: After
the change request for requirements is received, the change impact analysis is applied
to the RM and AM in Figure 3.5 sequentially. The impacted requirements and
architectural elements are identified.

Impacts explosion occurs in change impact analysis in the RM and AM.

56 Chapter 3 Analysis of Impacts Explosion in Traceability

 Updating the Requirements Model RM and Architectural Model AM: After the impact
analysis, it is decided which changes will be applied to the RM and AM. If any, then
the RM and AM are modified (New Requirements Model – RM` and New
Architectural Model- AM` in Figure 3.5).

 Verifying the New Architectural Model AM`: After updating the RM and AM, the new
software architecture (New Architectural Model AM`) is verified in order to
determine if it satisfies the new/changed requirements.

 Updating the Architectural Model - AM: If there is any requirement not satisfied by the
New Architectural Model AM`, the AM` is updated to make the new/changed
requirements being satisfied.

The software architect might re-analyze the impact of the requirements change in the New
Architectural Model AM` to update the AM` where he might encounter impacts explosion.

3.5 Summary of the Problems

The need for change impact analysis is observed in both requirements and software
architecture. In the following, we give a summary of the problems in change impact analysis
for requirements and software architecture discussed so far. They are tackled in the
subsequent chapters.

 Explosion of Impacts in Requirements for Requirements Changes. When a
change is introduced to a requirement, the requirements engineer needs to find out if
any other requirement related to the changed requirement is impacted. In practice,
requirements documents are often textual artifacts with implicit structure and analysis
of requirements is mostly manual (see Open Issue 1 – Automation in the early development
stages in Chapter 2). Most of the relations among requirements are not given explicitly.
There is a lack of precise definition of relations among requirements in most tools
and approaches. Due to the lack of semantics of requirements relations, change
impact analysis may produce high number of false positive and false negative
impacted requirements. As Bohner stated in [24], semantic information should be
employed to overcome the impacts explosion problem (see Open Issue 2 – Trace
Semantics in Chapter 2). The use of trace semantics reduces the number of false
positive impacts. Chapter 4 focusses on the analysis of requirements models for
inferencing and consistency checking of requirements relations that are considered as
traces. Chapter 4 also provides the formalization of semantics of requirements

3.6 Conclusions 57

relations, which is used to overcome the impacts explosion problem in requirements
(see Chapter 5).

 Manual, Expensive and Error Prone Trace Establishment. After determining
the impacted requirements, the software architect needs to identify impacted
architectural elements by tracing the changed requirements to software architecture.
Designing architecture based on requirements is a problem solving process that relies
on human experience and creativity, and is mainly manual. Therefore, trace
information may remain implicit and the software architect may need to manually
assign traces between R&A (see Open Issue 4 – Trace generation from imlicit trace
information and Open Issue 6 – Maintenance of traces in Chapter 2). Manual trace
establishment is time-consuming, expensive and error prone. The assigned traces
might be incomplete and invalid. Chapter 6 improves trace establishment between
R&A with automation and trace validation.

 Explosion of Impacts in Software Architecture for Requirements Changes.
There is a lack of precise definition of traces between R&A in most tools and
approaches. By using only structural information of traces, the software architect may
conclude that all architectural elements in the architecture are impacted. Without
considering semantics of traces, change impact analysis may produce high number of
false positive impacts in the architecture. Chapter 6 formalizes the semantics of traces
between R&A. The semantics is used in Chapter 7 to overcome the impacts
explosion problem in software architecture (see Open Issue 2 – Trace semantics in
Chapter 2).

3.6 Conclusions

In this chapter we answered Research Question 3 raised in Chapter 1: What are the change scenarios
for requirements and software architecture? What is necessary for these change scenarios to be handled? Which
solutions can be used? We addressed the impacts explosion problem in requirements and
software architecture with two change scenarios. Impacts explosion described by Bohner
[22] [23] [24] [25] was explained and the specifics of impacts explosion for requirements and
software architecture were given. With change scenarios we explained where we might have
the impacts explosion for requirements and software architecture.

Bohner [24] states that change impact analysis must employ additional semantic information
to increase the accuracy by finding more valid impacts and reducing the number of false-
positive impacts. The use of trace semantics in change impact analysis can identify some of

58 Chapter 3 Analysis of Impacts Explosion in Traceability

the unimpacted software life-cycle objects at the initial distances and this prevents impact
explosion at later distances.

In the thesis we use semantics of requirements and software architecture to prevent impacts
explosion. Reasoning about requirements with semantics of requirements relations provided
in Chapter 4 supports requirements modeling. Chapter 5 provides a change impact analysis
approach to prevent impacts explosion in requirements models. The approach in Chapter 7
uses traces between R&A generated and validated by the approach in Chapter 6 to prevent
impacts explosion in software architecture.

59

Chapter 4

4 Semantics of Requirements Relations

In practice, requirements documents are often textual artifacts with implicit structure. Most of the relations
among requirements are not given explicitly. There is a lack of precise definition of relations among
requirements in most tools and approaches. In this respect change impact analysis in requirements may
produce deficient results. In this chapter, we aim at formal definitions of relation types in order to enable
reasoning about requirements relations. We give a requirements metamodel with commonly used relation
types. The semantics of the relations is formalized in first-order logic. We use the formalization for consistency
checking of relations and for inferring new relations. A tool has been built to support both reasoning activities.
We illustrate our approach in an example which shows that the formal semantics of relation types enables
new relations to be inferred and contradicting relations in requirements documents to be determined. The
results from this chapter are used in Chapter 5 to perform change impact analysis in requirements models.

4.1 Introduction

In Chapter 3, we observed that additional semantic information should be employed to
overcome the impacts explosion in requirements and software architecture. Furthermore,
there is a need of semantics of requirements and requirements relations to increase the
accuracy by finding more valid impacts and reducing the number of false-positive impacts.
However, requirements documents are often textual artifacts with structure not explicitly
specified. In most tools and approaches there is a lack of precise definition of requirements
relations. In this chapter, we aim at identifying requirements relations (see Figure 4.1) and
defining their semantics. Within the context of Model Driven Engineering (MDE), we
construct metamodels and models for all artifacts in software development. We give a
requirements metamodel with formal relation types. The semantics of these relations is
based on First-Order Logic (FOL). This formalization is used for consistency checking of

60 Chapter 4 Semantics of Requirements Relations

relations and inferencing. Here, inferencing is the activity of deducing new relations based
solely on the relations which the requirements engineer has already specified. Consistency
checking is the activity of identifying the relations whose existence causes a contradiction.
Tool for Requirements Inferencing and Consistency Checking (TRIC) is developed to
support both activities. The main features of the tool are managing requirements and
relations (add, update, delete), displaying consistency checking and inferencing, and
explaining the results of reasoning.

Figure 4.1 Within-Model and Between-Model Traces with Requirements Relation Types for Requirements
and Architectural Models

In this chapter we answer Research Question 4 raised in Chapter 1: How to model requirements,
software architecture and traces with their semantics for change management? What aspects of requirements,
software architecture and traces should be modeled and how? How can we use the modeled aspects to reason
about requirements, software architecture and traces? With the requirements metamodel and
semantics of requirements relations we address the need for modeling requirements and
reasoning about requirements.

Change impact analysis requires semantics of requirements relations which are not given
explicitly in most of the approaches. The results in this chapter are used in Chapter 5 to
perform change impact analysis in requirements models.

This chapter is structured as follows. Section 4.2 describes the approach. Section 4.3
presents the requirements metamodel and definitions of the requirements relations. The
formalization of the relations is provided in Section 4.4. Section 4.5 describes the use of the

4.3 Approach 61

formalization for consistency checking and inferencing followed by the details of the tool
support in Section 4.6. Section 4.7 illustrates the approach by an example. Section 4.8
describes the related work, and Section 4.9 concludes the chapter.

4.2 Approach

We aim at providing requirements relations with formal semantics. In order to achieve this,
we successively take the following steps:

 Requirements metamodel. To provide an explicit structure to requirements
documents, we define a requirements metamodel. This metamodel includes mostly
commonly found entities in the literature. The most important elements of the
requirements metamodel are requirements relations and their types (Section 4.3).

 Semantics of relations. Since we aim at providing requirements relations with well-
defined semantics, we formalize the requirements relations by using FOL (Section
4.4).

 Consistency checking and inferencing. We use the formalization for consistency
checking of relations and inferring new relations (Section 4.5).

 Tool support. We describe the design and implementation of a tool for managing
requirements, displaying consistency checking & inferencing, and explaining results of
reasoning (Section 4.6).

 Running example. We illustrate the approach with an example (Section 4.7). The
example is about requirements for a Course Management System (CMS). This system
provides a lecturer with a set of tools that allows the creation of online course
content and the subsequent teaching and management of that course including
interactions with students taking the course. A CMS requirements document was put
together for illustration in this chapter as a running example. Part of this document is
given in Appendix B.

4.3 Requirements Metamodel

Our requirements metamodel contains common entities identified in the literature for
requirements models. There are several commonly used approaches to define and represent
requirements: goal-oriented [250] [186], aspect-driven [216], variability management [183],
use-case [54], domain-specific [200] [143], and reuse-driven techniques [164]. Goal-oriented

62 Chapter 4 Semantics of Requirements Relations

requirements engineering [250] [186] defines a model for decomposing a system goal into
requirements with goal trees, and offers some decision methods based on this
decomposition. The aspect-oriented approach [216] gives a requirements model for the
separation of crosscutting functional and non-functional properties in the requirements
analysis phase. The System Modeling Language (SysML) [200] is a domain-specific modeling
language for system engineering. It provides modeling constructs to represent text-based
requirements and relate them to other modeling elements with stereotypes. The variability
management approach [183] deals with producing requirements that can be considered as a
core asset in a product line.

Figure 4.2 Requirements Metamodel

Since we aim at using requirements relations as trace relations, we focused in our survey on
the requirement entity with its attributes and relations between requirements. We left out
other entities such as goals, stakeholders, and test cases. Figure 4.2 gives the requirements
metamodel used in our approach.

In the requirements metamodel, requirements are captured in a requirements model. A
requirements model contains requirements and their relationships. Based on [239], we define a
requirement as follows:

4.3 Requirements Metamodel 63

 Definition 4.1. Requirement: A requirement is a description of a system property or
properties which need to be fulfilled.

Requirements relations are defined as follows:

 Definition 4.2. Requires relation: A requirement R1 requires a requirement R2 if R1 is
fulfilled only when R2 is fulfilled.

The required requirement can be seen as a pre-condition for the requiring requirement [255].

 Definition 4.3. Refines relation: A requirement R1 refines a requirement R2 if R1 is
derived from R2 by adding more details to its properties.

The refined requirement can be seen as an abstraction of the detailed requirements [59]
[250].

 Definition 4.4. Partially refines relation: A requirement R1 partially refines a requirement
R2 if R1 is derived from R2 by adding more details to properties of R2 and excluding
the unrefined properties of R2.

Our assumption here is that R2 can be decomposed into other requirements and that R1
refines a subset of these decomposed requirements. This relation can be described as a
special combination of decomposition and refinement. It is mainly drawn from the
decomposition of goals in goal-oriented requirements engineering [250].

 Definition 4.5. Contains relation: A requirement R1 contains requirements R2 ... Rn if R2

... Rn are parts of the whole R1 (part-whole hierarchy).

This relationship enables a complex requirement to be decomposed into parts [200]. A
composite requirement may state that the system shall do A and B and C, which can be
decomposed into the requirements that the system shall do A, the system shall do B, and the
system shall do C. For this relation, all parts are required in order to fulfill the composing
requirement.

 Definition 4.6. Conflicts relation: A requirement R1 conflicts with a requirement R2 if the
fulfillment of R1 excludes the fulfillment of R2 and vice versa.

The conflicts relation addresses a contradiction between requirements. This relation may be
modeled explicitly by the requirements engineer. In this thesis, we consider conflicts as a
binary relation [251]. Our approach can be extended to n-ary conflicts relations, that is,

64 Chapter 4 Semantics of Requirements Relations

conflicts among multiple requirements, as a whole without excluding pairs of requirements
to be fulfilled.

The conflicts relation should be distinguished from inconsistencies in requirements relations.
In our terminology, an inconsistency is a situation where the co-existence of certain relations
among requirements causes a contradiction in the context of the semantics given in this
chapter. When we use the term consistency checking, we refer to finding inconsistencies among
requirements relations (more on this in Section 4.5).

There are other classifications of inconsistencies between requirements. For example, Van
Lamsweerde et al. [251] distinguish conflicts (excluding the simultaneous fulfillment of
requirements), divergence (boundary cases make requirements contradict – a weaker form of
conflict), competition (a particular case of divergence), obstruction (a borderline case of
divergence), and terminology clash (using different syntactic names for a single real-world
concept).

The definitions given above are informal and present an intuitive meaning (and sometimes
ambiguous). Since we aim at precise semantics, we formalize requirements and requirements
relations in FOL.

4.4 Formalization of Requirements and Relations

In this section we provide formalization of requirements and relation types. Section 4.4.1
gives the formalization of requirements. Section 4.4.2 presents the formalization of
requirements relations. We chose a formalization of requirements in first-order logic (FOL).
We discuss this choice in Section 4.4.3.

4.4.1 Formalization of Requirements
We assume the general notion of requirement being “a property which must be exhibited by
a system”. We express the property as a formula P in FOL. We assume that requirements
can always be expressed in the universal fragment of FOL and a requirement is expressed as
a formula x with  in conjunctive normal form (CNF). If the formula  is a closed

formula, then the universal quantifiers can be dropped. It is also possible that the formula
contains free variables.

According to the model theoretic semantics of FOL the truth value of P is determined in a
model M by using an interpretation for the function and predicate symbols in P.

4.4 Formalization of Requirements and Relations 65

Let F be a set of function symbols and P a set of predicate symbols, each symbol with a
fixed arity. A model M of the pair (F, P) consists of the following items [118]:

 a non-empty set A, the universe of concrete values

 for each f  F with n arguments, a function f M : An  A

 for each P  P with n arguments, a set PM  An.

The details of the definition of a model in FOL can be found in Appendix A. A satisfaction
relation between the model M and the formula P holds:

(1) M  l P

if P evaluates to True in the model M with respect to the environment l (i.e., a look-up table
for free variables in P). The model M together with l in which P is true represents a system s
that satisfies the requirement. From now on, all the formulae P that express properties will
be in the form where (x = 1x 2x … kx):

(2) P = x (p1  …  pn), where n ≥ 1

pn is a disjunction of literals which are atomic formulas (atoms) or their negation. An atomic
formula is a predicate symbol applied over terms. In the rest of the thesis we use the
notation (p1 … pn) for (p1  …  pn).

Example: Interpretation of a Requirement as a Formula

Although the interpretation of requirements as formulas in FOL is not within the scope of
our work, we give an intuition of how to map requirements expressed in natural text to our
formalization in FOL. Assume that we have the following requirement: “The system shall
provide security facilities for login”.

We can represent the requirement as a formula provide(x, login)  security_ mechanism(x). The
intuition behind x is that x is a free variable ranging over possible security solutions (since
security can be supported in different ways, e.g. SSL certification, TLS certification). login is a
constant. An example system for this requirement supports SSL certification for users to log
in.

66 Chapter 4 Semantics of Requirements Relations

Let F {login} and P {provide, security_mechanism}, where login is a constant symbol;
and where provide is a predicate with two arguments and security_ mechanism is a predicate with
just one argument. We choose as a model M the following:

 A {ssl_certification, tls_certification, socket_communication, login_feature}

 loginM login_feature

 provideM {(ssl_certification, login_feature)}

 security_ mechanismM {ssl_certification, tls_certification}

We have the following satisfaction relation between the model M and the formula stated in
the requirement:

(3) M  l[x ssl_certification] provide(x, login)  security_ mechanism(x)

where l maps the free variable x to the value ssl_certification in the set A and login is the
constant. The model M together with l can be considered as a part of the system s that
satisfies the requirement.

The model may express both modeling choices and universal truths (domain knowledge).
The relation security_mechanismM refers to a universal truth for available security
mechanisms. The relation provideM refers to modeling choices like providing login feature
with ssl certification. In a different model, login feature might be provided with tls

certification or just with an unsecure socket communication. Consider the relation provideM`

in the model M` (A, loginM` and security_ mechanismM` are kept same with the model M):

 provideM` {(socket_communication, login_feature)}

The formula is not satisfied in the model M` and the environment l which maps the variable
x to the value socket_communication in the set A.

(4) M`  l[x socket_communication] provide(x, login)  security_ mechanism(x)

The system provides a login feature with an unsecure socket communication.

4.4.2 Formalization of Requirements Relations
We formalize the informal definitions of the requirements relations in the requirements
metamodel.

4.4 Formalization of Requirements and Relations 67

4.4.2.1 Formalization of Requires
Let R1 and R2 be requirements where P1 and P2 are formulas in CNF for R1 and R2.

R1 requires R2 iff the following two statements hold:

(5) (P1 → P2)

(6) ( (P2 → P1)) is satisfiable

Please note that if the requirements R1 and R2 are written as formulas x and x with

 and  in CNF, we understand the following: R1 requires R2 iff (x ( → )) and

( (x ( → ))) is satisfiable. This is also valid for other relations.

From the definition we conclude that (S1  S2) where S1 is the set of systems that satisfy R1
and S2 is the set of systems that satisfy R2. The requires relation is non-reflexive, non-symmetric,
and transitive.

Example: Requires Relation

We explain the requires relation with the following two requirements from the CMS
requirements document explained in Section 4.7.

R24: The system shall notify students about events (new messages posted, etc.).

R7: The system shall provide a messaging facility.

We formalize the requirements R7 and R24 as follows:

(7) P7 = provide_msg(x)

(8) P24 = notify_students(x, std_events)

where x is a free variable over the values in A and std_events is a constant. Let

F {std_events} and P {provide_msg, notify_students}, where std_events is a constant
symbol; and where provide_msg is a predicate with one argument and notify_students is a
predicate with two arguments. From the domain knowledge we know that for all models if

((x, std_events)  notify_studentsM), then (x  provide_msgM). We choose as a model M
the following:

 A {individual_msg, team_msg, participant_msg, lecturer_msg, student_events}

 std_eventsM student_events

68 Chapter 4 Semantics of Requirements Relations

 provide_msgM {individual_msg, team_msg, participant_msg, lecturer_msg}

 notify_studentsM {(individual_msg, student_events), (team_msg, student_events),

(participant_msg, student_events)}

Then we have the following:

(9) M  l notify_students(x, std_events) → provide_msg(x)

(notify_students(x, std_events) → provide_msg(x)) holds for all bindings of x in the

environment l since for all models if ((x, std_events)  notify_studentsM), then (x 
provide_msgM). ( (provide_msg(x) → notify_students(x, std_events))) is satisfiable:

(10) M  l[x lecturer_msg] ( (provide_msg(x) → notify_students(x, std_events)))

Therefore, we conclude that R24 requires R7 to be fulfilled.

4.4.2.2 Formalization of Refines
Let R1 and R2 be requirements. P1 and P2 are formulas for R1 and R2. The conjunctive
normal form of P2 is:

(11) P2 = x ((p1 ... pn)  (q1 ... qm)); n ≥ 1, m ≥ 0

Let p1l, p2l, …, pn–1l, pnl be disjunction of literals such that x (pjl → pj) for all j  1..n

R1 refines R2 iff P1 is derived from P2 by replacing every pj in P2 with pjl for j  1..n such that
the following two statements hold:

(12) P1 = x ((p1l ... pnl)  (q1 ... qm)); n ≥ 1, m ≥ 0

(13) ( (x (pj → pjl))) is satisfiable for all j  1..n

From the definition we conclude that (P1 → P2) holds for every model where R1 refines R2
and ( (P2 → P1)) is satisfiable. Therefore, (S1  S2) where S1 is the set of systems that
satisfy R1 and S2 is the set of systems that satisfy R2. Similarly to the previous relation we
have the properties non-reflexive, non-symmetric, and transitive for the refines relation. Obviously,
if R1 refines R2 then R1 requires R2.

Example: Refines Relation

We explain the refines relation with the following two requirements.

4.4 Formalization of Requirements and Relations 69

R7: The system shall provide a messaging facility.

R16: The system shall allow messages to be sent to individuals, teams, or all course
participants at once.

We formalize the requirements R7 and R16 as follows:

(14) P7 = provide_msg(x)

(15) P16 = course_msg(x)

where x is a free variable over the values in A. Let P {provide_msg, course_msg} where
provide_msg and course_msg are predicates with one argument. From the domain knowledge we
are interested only in those models for which (16) holds:

(16) course_msgM  provide_msgM

We choose as a model M the following:

 A {individual_msg, team_msg, participant_msg, lecturer_msg}

 provide_msgM {individual_msg, team_msg, participant_msg, lecturer_msg}

 course_msgM {individual_msg, team_msg, participant_msg}

Then we have the following:

(17) M  l course_msg(x) → provide_msg(x)

(course_msg(x) → provide_msg(x)) holds for each model M since (course_msgM 

provide_msgM) for all models. ( (provide_msg(x) → course_msg(x))) is satisfiable like in
the following:

(18) M  l[x lecturer_msg] ( (provide_msg(x) → course_msg(x)))

R7 states only the need for a messaging property in the system. However, R16 explains the
details of the messaging property: the messaging shall allow messages to be sent to
individuals, teams, or all course participants at once, excluding lecturers. Therefore, we
conclude that R16 refines R7. Note also that R16 requires R7 to be fulfilled.

70 Chapter 4 Semantics of Requirements Relations

4.4.2.3 Formalization of Partially Refines
Let R1 and R2 be requirements. P1 and P2 are formulas for R1 and R2. The conjunctive
normal form of P2 is:

(19) P2 = x ((p1 … pn)  (q1 … qm)); m, n ≥ 1

Let q1l, q2l, …, qm–1l, qml be disjunction of literals such that x (qil → qi) for all i  1..m

R1 partially refines R2 iff P1 is derived from P2 by replacing every qi in P2 with qil for i  1..m

and excluding others (pi for all i  1..n) such that the following two statements hold:

(20) P1 = x (q1l ... qml)

(21) ( (x (qi → qil))) is satisfiable for all i  1..m

The partially refines relation is non-reflexive, non-symmetric, and transitive.

Example: Partially Refines Relation

We explain the partially refines relation with the following two requirements.

R97: The system shall allow only the administration to manage courses.

R102: The system shall allow only the administration to specify the minimum number of
students for a course. If there are too few subscriptions in a semester, that course will not be
given during that semester.

In the glossary of the CMS requirements document in Appendix B, it is stated that
managing courses means creating, updating, deleting, and reading course information. We formalize R97
and R102 as follows:

(22) P97 = x y (( courses(x)  numbers(y)  allow_admin_create(x, y)) 

( courses(x)  numbers(y)  allow_admin_delete(x, y))  ( courses(x) 

numbers(y)  allow_admin_update(x, y))  ( courses(x)  numbers(y) 

allow_admin_read(x, y)))

(23) P102 = x y ( courses(x)  numbers(y)  allow_admin_specify(x, y, z))

where x is a universally quantified variable for the courses, y is a universally quantified
variable for the number of students registered to the course and z is a free variable for the
minimum number of students that should be registered to the course.

4.4 Formalization of Requirements and Relations 71

Let P {allow_admin_create, allow_admin_delete, allow_admin_update, allow_admin_read,
allow_admin_specify, courses, numbers} where courses and numbers are predicates with one
argument, allow_admin_create, allow_admin_delete, allow_admin_update and allow_admin_read are
predicates with two arguments, and allow_admin_specify is a predicate with three arguments.
From the domain knowledge we are interested only in those models that satisfy the

following condition: If ((x, y, z)  allow_admin_specifyM), then ((x, y) 
allow_admin_createM).

We choose as a model M the following:

 The universe of concrete values A consists of the elements that correspond to the

courses and the positive natural numbers. The elements for the courses are mathematics,

physics, chemistry, biology and literature.

 allow_admin_createM {(x, y) | x  {mathematics, physics, chemistry, biology,

literature}, y  N+}

 allow_admin_deleteM {(x, y) | x  {mathematics, physics, chemistry, biology,

literature}, y  N+}

 allow_admin_updateM {(x, y) | x  {mathematics, physics, chemistry, biology,

literature}, y  N+}

 allow_admin_readM {(x, y) | x  {mathematics, physics, chemistry, biology,

literature}, y  N+}

 allow_admin_specifyM {(x, y, z) | (x, y)  allow_admin_createM, z  N+, y  z}

 coursesM { x | x  {mathematics, physics, chemistry, biology, literature}}

 numbersM { y | y  N+}

We interpret P102 as assigning the minimum number of students for a created course.
Then we have the following:

(24) M  l x y (( courses(x)  numbers(y)  allow_admin_specify(x, y, z)) →

( courses(x)  numbers(y)  allow_admin_create(x, y)))

72 Chapter 4 Semantics of Requirements Relations

The formula holds for each model since for all models if ((x, y, z)  allow_admin_specifyM),

then ((x, y)  allow_admin_createM).

( (x y (( courses(x)  numbers(y)  allow_admin_create(x, y)) → ( courses(x) 

numbers(y)  allow_admin_specify(x, y, z))))) is satisfiable:

(25) M  l ( (x y (( courses(x)  numbers(y)  allow_admin_create(x, y)) →

( courses(x)  numbers(y)  allow_admin_specify(x, y, z)))))

There is at least a value of the variable z where y < z. Therefore, R102 partially refines R97.

4.4.2.4 Formalization of Contains
Let R1, R2, …, Rk be requirements where k ≥ 2. P1, P2, P3, …, Pk are formulas for R1, R2, …
, Rk in conjunctive normal form as follows:

(26) Pi = x (p1i … pmii); mi ≥ 1, i  2 ... k

R1 contains R2, …, Rk iff P1 is derived from P2, P3, …, Pk such that the following two
statements hold:

(27) P1 = P2  P3 … Pk  Pl

(28) ( (P2 → P1)), ( (P3 → P1)), …, ( (Pk → P1)) are satisfiable

where Pl denotes properties that are not captured in P2, P3, …, Pk

For the formulas P1, P2, …, Pk, if any variable universally quantified in one of the formulas
appears free in any other formulas, the free variable is renamed. If any variable in one of the
formulas appears in any other formulas with a different valuation, the variable with the
different valuation is renamed. Please note that if the requirements R1, R2, …, Rk are written
as formulas 1x , 2x , …, kx with 1 , 2 , …, k in CNF and Pl is expressed as x

with  in CNF, we understand the following: R1 contains R2, …, Rk iff (P1 = x (2  3

… k  )) and ( (x (2 → 1))), ( (x (3 → 1))), …, ( (x (k → 1))) are

satisfiable.

In the definition, we do not assume completeness of the decomposition [250]. From the
definition we conclude that (P1 → P2), (P1 → P3), …, and (P1 → Pk) hold for every model
where R1 contains R2, …, Rk. Therefore, S1  S2, S1  S3, …, and S1  Sk where S1, S2, S3,…,

4.4 Formalization of Requirements and Relations 73

and Sk are the set of systems that satisfy R1, R2, R3,…, and Rk. The contains relation is non-
reflexive, non-symmetric, and transitive. Obviously, if R1 contains R2 then R1 requires R2.

Example: Contains Relation

We explain the contains relation with the following two requirements.

R61: The system shall allow lecturers to specify enrolment policies based on grade, first-
come first-serve (fcfs), and department.

R62: The system shall allow lecturers to specify enrolment policies based on grade.

We formalize R61 and R62 as follows

(29) P61 = allow_policy(grade_enrl_policy)  allow_policy(fcfs_enrl_policy) 

 allow_policy(department_enrl_policy)

(30) P62 = allow_policy(grade_enrl_policy)

where grade_enrl_policy, fcfs_enrl_policy, and department_enrl_policy are constants. We have the

following:

(31) P61 = P62  allow_policy(fcfs_enrl_policy)  allow_policy(department_enrl_policy)

Let F {fcfs_enrl_policy, department_enrl_policy, grade_enrl_policy} and P
{allow_policy}, where fcfs_enrl_policy, department_enrl_policy and grade_enrl_policy are constant
symbols; and where allow_policy is a predicate with one argument. We choose as a model M
the following:

 A {fcfs_enrolment_policy, department_enrolment_policy, grade_enrolment_policy}

 fcfs_enrl_policyM fcfs_enrolment_policy

 department_enrl_policyM department_enrolment_policy

 grade_enrl_policyM grade_enrolment_policy

 allow_policyM {fcfs_enrolment_policy, grade_enrolment_policy}

Then we have the following:

(32) M   (allow_policy(grade_enrl_policy) → (allow_policy(grade_enrl_policy) 

allow_policy(fcfs_enrl_policy)  allow_policy(department_enrl_policy)))

74 Chapter 4 Semantics of Requirements Relations

R61 states that the system shall allow lecturers to specify three different enrollment policies.
The requirement can be interpreted as three different properties for the system, like specifying
enrollment policies based on grade, specifying enrollment policies based on first come first serve, and specifying
enrollment policies based on department. R62 states only one of these properties, which is specifying
enrollment policies based on grade. Therefore, we conclude that R62 is one of the decomposed
requirements of R61 (R61 contains R62). It is also noted that R61 requires R62 to be
fulfilled.

4.4.2.5 Formalization of Conflicts
Let R1 and R2 be requirements. P1 and P2 are formulas for R1 and R2.

R1 conflicts with R2 iff (P1 → P2)  (P2 → P1)

Please note that if the requirements R1 and R2 are written as formulas x and x with

 and  in CNF, we understand the following: R1 conflicts R2 iff (x ( → ))  (x (

→  )).

From the definition we conclude that (S1  S2) =  where S1 is the set of systems that
satisfy R1 and S2 is the set of systems that satisfy R2. The binary conflicts relation is symmetric
and non-reflexive. It is not transitive.

Example: Conflicts Relation

We explain the conflicts relation with the following two requirements.

R60: The system shall allow lecturers to limit the number of students subscribing to a
course.

R103: The system shall have no maximum limit on the number of course participants ever.

We formalize R60 and R103 as follows:

(33) P60 = x y ( courses(x)  numbers(y)  allow_lecturer_limit(x, y))

(34) P103 = x y ( courses(x)  numbers(y)  has_limit(x, y))

where x is a universally quantified variable for the courses and y is a universally quantified
variable for the limit of the number of students that should be registered to the course.

Let P {allow_lecturer_limit, has_limit, courses, numbers} where courses and numbers are
predicates with one argument, allow_lecturer_limit and has_limit are predicates with two

4.4 Formalization of Requirements and Relations 75

arguments. From the domain knowledge we are interested only in those models where the
following statement is valid:

(35) allow_lecturer_limitM = has_limitM

We choose as a model M the following:

 The universe of concrete values A consists of the elements that correspond to the

courses and the positive natural numbers. The elements for the courses are mathematics,

physics, chemistry, biology and literature.

 allow_lecturer_limitM {(x, y) | x  {mathematics, physics, chemistry, biology,

literature}, y  N+}

 has_limitM {(x, y) | x  {mathematics, physics, chemistry, biology, literature}, y 

N+}

 coursesM { x | x  {mathematics, physics, chemistry, biology, literature}}

 numbersM { y | y  N+}

Then we have the following:

(36) M  l x y (( courses(x)  numbers(y)  allow_lecturer_limit(x, y)) →

( ( courses(x)  numbers(y)  has_limit(x, y))))

(37) M  l x y (( courses(x)  numbers(y)  has_limit(x, y)) →

( ( courses(x)  numbers(y)  allow_lecturer_limit(x, y))))

The formulas in (36) and (37) hold for each model since (allow_lecturer_limitM =
has_limitM) for all models. The satisfaction of R60 excludes the satisfaction of R103 and vice
versa. The limit on the number of students and absence of a maximum limit on the number
of course participants cannot exist at the same time. Therefore, we conclude that R60
conflicts with R103.

4.4.3 Discussion on the Chosen Formalization
We chose a formalization of requirements and their relations in FOL. There are other
formalizations of requirements, for example, in modal logic and deontic logic [177]. The
formalization in FOL allows the expression of commonly occurring requirement

76 Chapter 4 Semantics of Requirements Relations

descriptions. However, there are limitations of the expressivity of FOL. For instance,
imperfect requirements can be modeled by fuzzy sets [191]. Dealing with imperfection is out
of scope of our formalization. We also do not cover modalities in requirements like
possibility, probability, and necessity or logic operators like “in the next state” and “some
time in the future” which can be used to describe the evolution of requirements. Our
formalization should be extended with temporal logic, modal logic or fuzzy sets in order to
cover these types of requirements. Under these limitations, the expressiveness of FOL is
sufficient for inferencing and consistency checking.

As we stated in Section 4.4.1, the interpretation of requirements as formulas in FOL is not
within the scope of our approach. The modeling of requirements and their relations is
carried out by requirements engineers. However, the requirements engineer does not need to
know the details of the formalization. He/she can be guided by tutorials [94] that provide an
informal explanation of the relations. The requirements model is used to obtain new
knowledge about the requirements relations by automated reasoning, for example, inferred
relations and/or inconsistencies. These results – supported by the visualization – are
presented to the requirements engineer, who should give his/her own interpretation. Since
the requirements engineer may make mistakes in the modeling, the approach may produce
incorrect results. However, by interpreting the results, the requirements engineer may
improve his initial requirements model. Also the consistency checking may detect errors.

4.5 Inferencing and Consistency Checking

Inferencing and consistency checking aim at deriving new relations based on given relations
and determining contradictions among relations. Rules can be derived for the combinations
of relations where new relations are inferred and contradictions are determined. Some of the
inference rules are as follows:

 (R1 refines R2)  (R2 contains R3) → (R1 requires R3)

 (R1 refines R2)  (R2 contains R3) → (R1 requires R3)

 (R1 partially-refines R2)  (R1 contains R3) → (R3 partially-refines R2)

 (R1 contains R2) → (R1 requires R2)

 (R1 refines R2) →  (R2 requires R1)

It is not easy to ensure the completeness of the rules. Instead of exploring combinations of
requirements relations, requirements relations are represented as facts derived from their

4.5 Inferencing and Consistency Checking 77

definitions. The inferencing and consistency checking are implemented in a reasoner
supporting a form of logic programming based on these facts. The first type of facts
concerns relations among sets, and the second encodes relations between formulas.
Transitive and disjoint properties of the set and formula relations are used together with
some inferencing rules. The formula relations are defined for formulas in CNF.

Since the rules of set theory and formula relations can be directly mapped to the Web
Ontology Language (OWL) [62], we use an OWL reasoner called Jena [130] in our
implementation. The Web Ontology Language (OWL) is a family of knowledge
representation languages for specifying ontologies. OWL ontologies are serialized using
RDF/XML syntax. Our formalization is directly mapped to the language features of OWL
like transitivity and symmetry of properties. Reasoning on requirements models is done on
OWL ontologies. We used Jena [130], a programmatic environment for processing OWL
data, with a rule-based inference engine. The engine performs consistency checking and
inferencing. The details of the tool support with OWL for inferencing and consistency
checking are given in Section 4.6. In the following, we illustrate how to map requirements
relations to facts and the use of the facts for inferencing and consistency checking.

Mapping Requirements Relations to Set Theoretic Relations. The set theoretic
relations with their properties like transitivity are natively supported in OWL and OWL
reasoners. Therefore, based on the formalization of the relations, we map the requirements
relations (requires, refines, contains, and conflicts) to the set theoretic relations for the set of
systems.

Let R1 and R2 be requirements. P1 and P2 are formulas for R1 and R2. S1 is the set of systems
that satisfy R1 and S2 is the set of systems that satisfy R2.

 (S1  S2) iff (R1 requires R2)

 (S1  S2) if (R1 refines R2)

 (S1  S2) if (R1 contains R2)

 ((S1  S2) = ) iff (R1 conflicts R2)

To map the partially refines relation to the set theoretic relations for a set of systems, we
decompose this relation to the combination of contains and refines relations. We define a
temporary requirement named RT12 to decompose the partially refines relation between R1

and R2 into refines and contains relations. The partially refines relation can be decomposed
into the contains and refines relations in two different combinations:

78 Chapter 4 Semantics of Requirements Relations

 (R2 contains RT12)  (R1 refines RT12) iff (R1 partially-refines R2)

 (RT12 refines R2)  (RT12 contains R1) iff (R1 partially-refines R2)

The combinations given above exist at the same time. Each combination is mapped to set
theoretic relations.

 (S2  ST12)  (S1  ST12) if (R1 partially-refines R2)

 (ST12  S2)  (ST12  S1) if (R1 partially-refines R2)

The mappings are implemented by using the Jena reasoner rule language. The Jena rules for
the mappings can be found in Appendix C. An informal description of the simplified text
rule syntax [130] is:

Rule := bare-rule .

 or [bare-rule]

 or [ruleName : bare-rule]

bare-rule := term, ... term -> hterm, ... hterm // forward rule

 or bhterm <- term, ... term // backward rule

hterm := term

 or [bare-rule]

term := (node, node, node) // triple pattern

 or (node, node, functor) // extended triple pattern

 or builtin(node, ... node) // invoke procedural primitive

bhterm := (node, node, node) // triple pattern

functor := functorName(node, ... node) // structured literal

node := uri-ref // e.g. http://foo.com/eg

4.5 Inferencing and Consistency Checking 79

 or prefix:localname // e.g. rdf:type

 or <uri-ref> // e.g. <myscheme:myuri>

 or ?varname // variable

 or 'a literal' // a plain string literal

 or 'lex'^^typeURI // a typed literal, xsd:* type names supported

 or number // e.g. 42 or 25.5

If terms are matched by the first part of the rule, the terms following ’->’ are concluded
(inferred). Variables are denoted with a ’?’. Variables are not typed. A variable will match
with any node in the model, which could be requirements or systems (resources in OWL) or
relations (object properties in OWL). In our model, requirements are related through object
properties. To ensure a variable has a certain type we could have added the following line to
our mapping rules:

(?r1 rdf:type Requirement)

However in our case we know that when the following term matches:

(?r1 refines ?r2)

the variables ?r1 and ?r2 must be instances of Requirement. In our rules only requirements
can be related through a requires relation. Analogously we assume that if a ‘satisfies’ is
matched in a triple, the left-hand side ?s1 is an instance for set of systems, and the right-hand
side ?r1 is a requirement instance:

(?s1 satisfies ?r1)

Therefore, we do not need to check explicitly for the variable’s type in the reasoner rules.
The following is the rule in Jena that maps the requires relation to the set theoretic relations:

@include <OWL> .

[requires_to_subclass:

 (?r1 mm:requires ?r2)

 (?s1 inf:satisfies ?r1)

 (?s2 inf:satisfies ?r2) -> (?s1 inf:subClassOf ?s2)]

80 Chapter 4 Semantics of Requirements Relations

The first line starts with “@include <OWL>.”, which tells the reasoner to import the rules
for OWL. This enables the reasoner to reason on OWL and RDF constructs such as
transitive object properties. The object properties in the rule’s terms are prefixed with ’inf:’.
This prefix refers to the inference model. The rule states that if ?r1 requires ?r2, ?s1 satisfies
?r1, and ?s2 satisfies ?r2, then we have (?s1 is a sub set of ?s2). The subset relation between
the sets of systems are represented by the subClassOf construct in OWL. The following Jena
rule maps the subset relation to the requires relation:

[subclass_to_requires:

 (?s1 inf:subClassOf ?s2)

 (?s1 inf:satisfies ?r1)

 (?s2 inf:satisfies ?r2) -> (?r1 mm:requires ?r2)]

If there exists a conflicts relation between two requirements, then their sets of systems are
disjoint (i.e. there is no system satisfying both requirements). The other way around also
holds: if sets of systems are disjoint, the requirements they satisfy are conflicting. Two rules
are listed in the following:

[conflicts_to_disjoint: (?r1 mm:conflicts ?r2)

 (?s1 inf:satisfies ?r1)

 (?s2 inf:satisfies ?r2) -> (?s1 inf:disjointWith ?s2)

 (?s2 inf:disjointWith ?s1)]

[disjoint_to_conflicts: (?s1 inf:disjointWith ?s2)

 (?s1 inf:satisfies ?r1)

 (?s2 inf:satisfies ?r2) -> (?r1 mm:conflicts ?r2)]

The concluding terms of the first rule (conflicts_to_disjoint) are stating a disjointWith relation
in both directions because the symmetry of the disjointWith property is not handled properly
by the JENA reasoner.

We need an additional rule to ensure the so-called ‘permeation of disjointness’, which states
that subsets of disjoint sets are also disjoint:

4.5 Inferencing and Consistency Checking 81

[subclass_also_disjoint:

 (?s1 inf:subClassOf ?s2)

 (?s2 inf:disjointWith ?s3) -> (?s1 inf:disjointWith ?s3)]

The partially refines relation needs a specific approach since it is a special combination of the
refines and contains relations. Two rules for the partially refines relation are the following:

[temp_req_to_p_ref1: (? r1 partially_refines ? r2)

 <- (?r1 refines ?rt)

 (?r2 contains ?rt)

 (?rt isTemporary ’ true ’^^ xsd:boolean)]

[temp_req_to_p_ref2: (?r1 partially_refines ?r2)

 <- (?rt contains ?r1)

 (?rt refines ?r2)

 (?rt isTemporary ’ true ’^^ xsd:boolean)]

Since we need to distinguish the temporary requirement from the given requirements, we
added a data type property named isTemporary to the Requirement type. By using the term
(?rt isTemporary ’true’^^xsd:boolean) we make sure the variable ?rt is bound to a temporary
requirement.

The rules above only match on a temporary requirement. These two rules are of a different
type than the other rules. They use ’<-’, and have the concluding terms before the matching
terms. This type of rule is called a backward rule, as opposed to the forward rules. Backward
rules can be seen as ‘goal-driven’ rules because they match and execute when the reasoning
engine queries to satisfy a certain goal. Forward rules are ‘data-driven’. They trigger on given
data to infer new triples.

Mapping Requirements Relations to Relations between Formulas. We map the
requirements relations contains, refines, and partially refines to the relations between the
formulas. First we define the relations all-in-part, all-in-whole, some-implies-in, all-implies-in, all-
equals-in between formulas. We would like to capture the relations among clauses: implication

82 Chapter 4 Semantics of Requirements Relations

and just repetition, and also the coverage among clauses: either all clauses are related or part
of them. Let xs and ys be sets of clauses in conjunctive normal form.

(38) all-in-part(xs, ys)

=def For each clause cxs in CNF of xs, there is a distinct clause cys in CNF of ys where

either cxs is equal2 to cys or cxs implies3 cys. The number of clauses in CNF of xs is

smaller than the number of clauses in CNF of ys.

(39) all-in-whole(xs, ys)

=def For each clause cxs in CNF of xs, there is a distinct clause cys in CNF of ys where

either cxs is equal to cys or cxs implies cys. The number of clauses in CNF of xs is equal

to the number of clauses in CNF of ys.

(40) some-implies-in(xs, ys)

=def There is at least one clause cxs in CNF of xs where cxs implies a clause cys in

CNF of ys and cxs is not equal to cys.

(41) all-implies-in(xs, ys)

=def For each clause cxs in CNF of xs, there is a distinct clause cys in CNF of ys where

cxs implies cys and cxs is not equal to cys.

(42) all-equals-in(xs, ys)

=def For each clause cxs in CNF of xs, there is a distinct clause cys in CNF of ys where

cxs is equal to cys.

We have the following mappings:

all-in-whole(P1, P2)  some-implies-in(P1, P2) iff R1 refines R2

all-in-part(P1, P2)  all-implies-in(P1, P2) iff R1 partially-refines R2

all-in-part(P2, P1)  all-equals-in(P2, P1) iff R1 contains R2

2 If two formulas have the same predicate symbols and arguments, these two formulas are equal.
3 The logical connective implies in first-order logic.

4.5 Inferencing and Consistency Checking 83

The following is the Jena rule that maps the refines relation to the all-in-whole and some-implies-in
formula relations:

[map_refines_to_formulas:

 (?r1 mm:refines ?r2)

 (?p1 inf:formulas ?r1)

 (?p2 inf:formulas ?r2) -> (?p1 cons:all_in_whole ?p2)

 (?p1 cons:some_implies_in ?p2)]

The rule states that if ?r1 refines ?r2, ?p1 is a formula of ?r1 and ?p2 is a formula of ?r2, then
we have (?p1 all-in-whole ?p2) and (?p1 some-implies-in ?p2). Another rule maps the all-in-
whole and some-implies-in formula relations to the refines relation:

[map_formulas_to_refines:

 (?p1 cons:all_in_whole ?p2)

 (?p1 cons:some_implies_in ?p2)

 (?p1 inf:formulas ?r1)

 (?p2 inf:formulas ?r2) -> (?r1 mm:refines ?r2)]

The rule states that if we have (?p1 all-in-whole ?p2) and (?p1 some-implies-in ?p2) where ?p1
is a formula of ?r1 and ?p2 is a formula of ?r2, then ?r1 refines ?r2.

The following is the Jena rule that maps the partially refines relation to the all-in-part and all-
implies-in formula relations:

[map_part_ref_to_formulas:

 (?r1 mm:partially_refines ?r2)

 (?p1 inf:formulas ?r1)

 (?p2 inf:formulas ?r2) -> (?p1 cons:all_in_part ?p2)

 (?p1 cons:all_implies_in ?p2)]

84 Chapter 4 Semantics of Requirements Relations

The rule states that if ?r1 partially refines ?r2, ?p1 is a formula of ?r1 and ?p2 is a formula of
?r2, then we have (?p1 all-in-part ?p2) and (?p1 all-implies-in ?p2). Another rule maps the all-
in-part and all-implies-in formula relations to the partially refines relation:

[map_formulas_to_part_ref:

 (?p1 cons:all_in_part ?p2)

 (?p1 cons:all_implies_in ?p2)

 (?p1 inf:formulas ?r1)

 (?p2 inf:formulas ?r2) -> (?r1 mm:partially_refines ?r2)]

The rule states that if we have (?p1 all-in-part ?p2) and (?p1 all-implies-in ?p2) where ?p1 is a
formula of ?r1 and ?p2 is a formula of ?r2, then ?r1 partially refines ?r2.

The following is the Jena rule that maps the contains relation to the all-in-part and all-equals-in
formula relations:

[map_contains_to_formulas:

 (?r1 mm:contains ?r2)

 (?p1 inf:formulas ?r1)

 (?p2 inf:formulas ?r2) -> (?p2 cons:all_in_part ?p1)

 (?p2 cons:all_equals_in ?p1)]

The rule states that if ?r1 contains ?r2, ?p1 is a formula of ?r1 and ?p2 is a formula of ?r2,
then we have (?p2 all-in-part ?p1) and (?p2 all-equals-in ?p1). Another rule maps the all-in-part
and all-equals-in formula relations to the contains relation:

[map_formulas_to_contains:

 (?p2 cons:all_in_part ?p1)

 (?p2 cons:all_equals_in ?p1)

 (?p1 inf:formulas ?r1)

 (?p2 inf:formulas ?r2) -> (?r1 mm:contains ?r2)]

4.5 Inferencing and Consistency Checking 85

The rule states that if we have (?p2 all-in-part ?p1) and (?p2 all-equals-in ?p1) where ?p1 is a
formula of ?r1 and ?p2 is a formula of ?r2, then ?r1 contains ?r2.

We have the following properties for the formula relations:

all-in-whole, all-in-part, all-implies-in, and some-implies-in relations are transitive

all-in-part and all-in-whole relations are disjoint

all-equals-in and some-implies-in are disjoint

all-equals-in and all-implies-in are disjoint

We have the following inferences for the relations between formulas:

(P1 all-in-part P2)  (P2 all-in-whole P3)  (P1 all-in-part P3)

(P1 all-in-whole P2)  (P2 all-in-part P3)  (P1 all-in-part P3)

(P1 some-implies-in P2)  (P2 all-implies-in P3)  (P1 all-implies-in P3)

(P1 all-implies-in P2)  (P2 some-implies-in P3)  (P1 all-implies-in P3)

(P1 some-implies-in P2)  (P2 all-equals-in P3)  (P1 some-implies-in P3)

(P1 all-implies-in P2)  (P2 all-equals-in P3)  (P1 all-implies-in P3)

(P1 all-equals-in P2)  (P2 all-implies-in P3)  (P1 all-implies-in P3)

We manually check the combinations of the formula relations to derive the inferences given
above and to check the completeness of the inferences. The properties and inferences for
the formula relations are implemented with the Jena rule language like in the following:

[formula_rule_1: (?p1 cons:all_in_part ?p2)

 (?p2 cons:all_in_whole ?p3) -> (?p1 cons:all_in_part ?p3)]

The rule states that if (?p1 all-in-part ?p2) and (?p2 all-in-whole ?p3), then we have (?p1 all-in-
part ?p3). The rest of the Jena rules for the properties and inferences for the formula
relations can be found in Appendix C.

Inferencing. The requirements relations are mapped to facts which concern set and formula
relations. The Jena reasoner is capable of automatically inferring new facts based on the
properties of the facts and inferences encoded in the Jena rule language. The inferred facts

86 Chapter 4 Semantics of Requirements Relations

are mapped back to the requirements relations. For the following inference rule we show
how new facts are automatically inferred and mapped back to the relations.

 (R1 partially-refines R2)  (R1 contains R3) → (R3 partially-refines R2)

(R1 partially refines R2) is mapped to facts which concern formula relations with the
following Jena rule:

[map_part_ref_to_formulas:

 (?r1 mm:partially_refines ?r2)

 (?p1 inf:formulas ?r1)

 (?p2 inf:formulas ?r2) -> (?p1 cons:all_in_part ?p2)

 (?p1 cons:all_implies_in ?p2)]

Since R1 partially refines R2, we have (p1 all-in-part p2) and (p1 all-implies-in p2) where p1 is a
formula of R1 and p2 is a formula of R2. (R1 contains R3) is mapped to the formula relations
with the following Jena rule:

[map_contains_to_formulas:

 (?r1 mm:contains ?r2)

 (?p1 inf:formulas ?r1)

 (?p2 inf:formulas ?r2) -> (?p2 cons:all_in_part ?p1)

 (?p2 cons:all_equals_in ?p1)]

Since R1 contains R3, we have (p3 all-in-part p1) and (p3 all-equals-in p1) where p1 is a formula
of R1 and p3 is a formula of R3. The all-in-part relation is transitive. The reasoner takes (p3 all-
in-part p1) and (p1 all-in-part p2), and infers (p3 all-in-part p2). The facts (p3 all-equals-in p1)
and (p1 all-implies-in p2) are matched by the following Jena rule:

[formula_rule_7: (?p1 cons:all_equals_in ?p2)

 (?p2 cons:all_implies_in ?p3) -> (?p1 cons:all_implies_in ?p3)]

(p3 all-implies-in p2) is inferred. We have (p3 all-in-part p2) and (p3 all-implies-in p2) as
inferred facts. These inferred facts are mapped to the partially refines relation by the following
rule:

4.5 Inferencing and Consistency Checking 87

[map_formulas_to_part_ref:

 (?p1 cons:all_in_part ?p2)

 (?p1 cons:all_implies_in ?p2)

 (?p1 inf:formulas ?r1)

 (?p2 inf:formulas ?r2) -> (?r1 mm:partially_refines ?r2)]

We have (R3 partially-refines R2) as inferred.

Consistency Checking. The reasoner is capable of automatically identifying contradicting
facts. The following is a proof of one of the consistency checks that uses the formula
relations.

Inconsistency: (R1 refines R2)  (R1 contains R2)

Proof: Let R1 refines R2.

= {By mapping the refines relation to all-in-whole and some-implies-in relations}

(P1 all-in-whole P2)  (P1 some-implies-in P2) (a)

Let R1 contains R2.

= {By mapping the contains relation to part-of and not-imply relations}

(P2 all-in-part P1)  (P2 all-equals-in P1) (b)

The all-in-whole relation in (a) and all-in-part relation in (b) are disjoint. They cannot
exist between the same formulas together. The all-equals-in relation is symmetric and it
contradicts the some-implies-in relation for the same formulas. Therefore, (R1 refines R2)
and (R1 contains R2) contradict one another.

The Jena rules for consistency checking can be found in Appendix D. We manually check
the combinations of the formula relations to derive the consistency checking rules and to
check the completeness of the rules. The following is one of the Jena rules for consistency
checking:

[all_in_whole__contradicts__all_in_part:

 (?p1 cons:all_in_whole ?p2)

88 Chapter 4 Semantics of Requirements Relations

 (?p2 cons:all_in_part ?p1) -> addInconsistency('all-in-whole_all_in_part', ?p1, ?p2)]

The rule states that if (?p1 all-in-whole ?p2) and (?p2 all-in-part ?p1), then there is an
inconsistency.

4.6 Tool Support

We built a tool named TRIC (Tool for Requirements Inferencing and Consistency checking)
for automatic inferencing and consistency checking [254]. TRIC and an example
requirements model can be downloaded from [245]. In this section, we give the details of the
tool. In Section 4.6.1, we describe the usage of the tool in the context of a modeling process.
Section 4.6.2 gives the architecture of the tool. Section 4.6.3 describes the main features of
the tool with some screenshots.

4.6.1 The Modeling Process
We depict the usage of the tool in a modeling process with inferencing and consistency
checking. This process is based on the analysis of activities during modeling of requirements
and their relations. Figure 4.3 gives a UML activity diagram of the process.

The process consists of the following activities:

Modeling. This activity takes the requirements document as input and produces the
requirements model which is an instance of the requirements metamodel. The requirements
model contains requirements and their relations. The definitions given in Section 4.3 are
used to specify the requirements relations.

Inferencing and Consistency Checking. The modeling process is forked into two
activities: consistency checking and inferencing. These two activities are processed in parallel. The
requirements model is updated with inferred relations. Inconsistent parts of the model are
determined, if there are any. Inferencing and consistency checking enrich the set of
requirements relations in the requirements model. These two activities are combined because
the consistency checking uses the machinery for inferencing and also checks the
inconsistencies among inferred relations as well as among given relations.

4.6 Tool Support 89

Figure 4.3 Modeling Process with Consistency Checking and Inferencing

Iterating. The process given in Figure 4.3 is iterative: the requirements engineer may return
to the modeling activity in order to fix inconsistencies and/or input new requirements and
relations. If there is no need to update the model, the process is terminated.

4.6.2 Tool Architecture
The tool architecture is composed of three layers (see Figure 4.4): a) the User Interface (UI)
layer, b) the Application Layer, and c) the Data Layer.

User Interface (UI) Layer. This layer supports the modeling activity. The user interface is
implemented by using the Eclipse Rich Client Platform (RCP) [218]. The output of the
consistency checking and inferencing is represented in a table form. The JGraph library [131]
is used for the graphical visualization of this output. The layer provides the following:

 A form-based editor to enter and modify requirements

 An editor to enter and modify relations between requirements

 A matrix view of requirements in the model

 The control of the services provided by the application layer

90 Chapter 4 Semantics of Requirements Relations

Figure 4.4 Layered Architecture of the Tool

Application Layer. This layer performs the main activities given in Figure 4.3: consistency
checking and inferencing. It contains the components Modeling Environment, Inferencing Engine,
Consistency Checking Engine, and Visualization Engine. The components provide the following
functionalities:

 Modeling Environment: allows the creation, storage, and retrieval of requirements
models, and bridging the User Interface layer with the Data layer.

 Inferencing Engine: infers all implicit relations between requirements, and keeps track of
given and inferred relations.

 Consistency Checking Engine: allows checking consistency of relations.

4.6 Tool Support 91

 Visualization Engine: accesses the Data layer in order to get requirements and relations
to be visualized in diagrams. The visualization is done by JGraph in the User
Interface layer.

The Inferencing Engine component also implements the mappings between requirements
relations and their definitions in the formalization. These mappings are required to
implement consistency checking and inferencing.

Data Layer. The entered requirements and their relations are stored as an OWL ontology
[62] which consists of the requirements metamodel and its instance model in the same file.
Therefore, we can use the existing reasoners developed for the semantic web environment.
Our formalization is directly mapped to the language features of OWL like transitivity and
symmetry of properties. Reasoning on requirements models is done on OWL ontologies. We
used Jena [130], a programmatic environment for processing OWL data, with a rule-based
inference engine. The engine performs consistency checking and inferencing. One of the
advantages of Jena is that it provides derivation trace analysis. The analysis is used in one of
the main facilities of the tool: explaining results of inferencing and consistency checking. We reason on
copies of the given ontology in order to prevent the pollution of the given requirements
ontology with inferred relations and inconsistencies. The Data Access Objects (DAO)
component is responsible for reading and manipulating models without any dependency on
data format.

4.6.3 Tool Features
We describe the most important features of the tool: managing requirements (add, update, delete
requirements and relations), displaying inconsistencies & inferred relations, and explaining the results of
reasoning.

Managing requirements. We can add new requirements and update or delete existing
requirements. Figure 4.5 gives the GUI for managing requirements which supports the
modeling activity in Figure 4.3.

92 Chapter 4 Semantics of Requirements Relations

Figure 4.5 GUI for Managing Requirements and Relations

The left-hand side of the window lists the entered requirements. The right-hand side of the
window shows details of the selected requirement (R3). The tool gives a warning if a deleted
given relation is inferred by the inferencing engine. The Relate requirements window opened by
the Add new relation(s) button is used to select related requirements and relation types.

The tool provides a matrix view in order to represent and manage requirements and
relations. Such a view is also available in commercial requirements management tools, such
as RequisitePro. Figure 4.6 illustrates the matrix view feature of our tool.

4.6 Tool Support 93

Figure 4.6 Matrix View for Managing Requirements and Relations

Figure 4.7 Visual Editor for Managing Requirements and Relations

94 Chapter 4 Semantics of Requirements Relations

The arrows with direction in the cells denote the existence of requirements relations with
their directions. Since there might be multiple relations between two requirements, the tool
provides the Relate requirements window, which is similar to the window in Figure 4.5.

The matrix view is less usable for large models. We provide a visual editor (see Figure 4.7) in
order to improve the usability of the tool for large models. The requirements engineer can
select a smaller set of requirements to be shown in a graph.

Displaying inconsistencies and inferred relations. Figure 4.8 gives the screenshot of the
tool for output of the inferencing activity.

Figure 4.8 Output of the Inferencing Activity

The highlighted relations (conflicts and requires) in the right part of the window are the inferred
relations for the requirement R18. The tool detects contradictions in the model. Figure 4.9
gives the screenshot of output of the consistency checking activity.

4.6 Tool Support 95

Figure 4.9 Output of the Consistency Checking Activity

The left part of the window gives descriptions of the inconsistencies; the right part gives the
contradicting relations.

Explaining results of reasoning. The requirements engineer may need further explanation
of the result from the reasoning in order to update the requirements model. The tool
visualizes how inferred relations are derived (see Figure 4.10).

In Figure 4.10, the derivation of the conflicts relation between requirements R8 and R59
(dashed arrow) is visualized. Note that this conflicts relation is not an inconsistency itself.
The solid arrows indicate the given relations used in the derivation.

The tool also provides an explanation of contradicting relations, for example the
inconsistency for requirements R11 and R48 (see Figure 4.11).

96 Chapter 4 Semantics of Requirements Relations

Figure 4.10 Explanation of the Inferred Conflicts Relation between R8 and R59

Figure 4.11 Explanation of the Inconsistency for R11 and R48

4.6 Tool Support 97

The solid arrow (the requires relation) indicates the given relation in the inconsistency; the
dashed arrow (the conflicts relation) denotes the inferred relation in the inconsistency. The
Show visualization button is used to visualize the derivation of the inferred conflicts relation
(see Figure 4.12). Since the set of contradicting relations like in Figure 4.11 may contain
inferred relations, the visualization in Figure 4.12 helps the requirements engineer to resolve
contradictions by identifying all given relations causing the inconsistency.

Figure 4.12 Explanation of the Inferred Conflicts Relation in the Inconsistency

Another visualization option provided by the tool is to visualize the requirements related to a
selected requirement at a given depth. Depth is the maximum number of relations between
the requirement and its related requirements in the shortest path. Figure 4.13 shows the
requirements related to the requirement R5 at depth 2.

98 Chapter 4 Semantics of Requirements Relations

Figure 4.13 Visualization of the Related Requirements for R5 with Depth 2

This visualization option allows showing only a part of the requirements model. It is useful
for large models where the matrix view does not scale well.

4.7 Example: Course Management System

In this section, we illustrate our approach and tool support with the CMS example. The
CMS requirements document was prepared as a result of a discussion by QuadREAD
project members who took the role of stakeholders. No particular inconsistencies and
conflicts were inserted intentionally. We aimed at detecting inconsistencies and conflicts as a
result of the modeling process. All requirements used in this chapter can be found in
Appendix B. We performed two iterations of the modeling process for the example.

 In the first iteration, we modeled the textual requirements and their relations
according to the semantics of relation types. We analyzed given and inferred relations
and inconsistencies by using the outputs of the tool. The requirements engineer

4.7 Example: Course Management System 99

identifies which relations are valid or invalid based on his/her knowledge of the
application domain and the semantics of the relations. He or she decides how to
correct invalid given relations by using the feature for explaining the output of
reasoning.

 In the second iteration, we updated the model in order to correct the invalid
relations. The validity of relations in the model was checked according to the
semantics of the relation types. This checking is dependent on the requirements
engineer’s interpretation of the semantics of the relations.

It should be noted that the conclusions from the example cannot be generalized for our
approach, since we still need to apply the approach to a number of industrial and academic
case studies with empirical results. The example illustrates potential benefits and limitations
of the approach for larger case studies. Section 4.7.1 presents the overall results of the two
iterations. Section 4.7.2 gives some inferred relations in the example. In Section 4.7.3, we
show some inconsistencies detected in the example requirements model.

4.7.1 Modeling the Requirements
The requirements in the document are grouped by their stakeholders, which are Student,
Lecturer, System Maintainer, and Administration. The functional and non-functional
requirements are separated in the requirements document. There are 122 requirements (94
functional and 28 non-functional requirements). In the document, relations between
requirements are not stated explicitly.

In the first iteration, we modeled the document according to our relation types by
interpreting the requirements in the document. The execution of the inference engine
inferred new relations based on the given relations. As a second step, we run the consistency
checker for the requirements model.

The tool reported 32 inconsistent parts in the requirements model. An inconsistent part is a
set of relations whose existence causes a contradiction. For example, the conflicts and requires
relations between R29 and R97 cause a contradiction. The output for one of the inconsistent
parts is given below:

Inconsistency

Description: “Both conflicts and requires relations”

Contradicting relations:

 R29 requires R97 (inferred relation)

100 Chapter 4 Semantics of Requirements Relations

 R29 conflicts R97 (inferred relation)

In the second iteration, we used the tool feature for explaining the results of reasoning. The
feature provides derivation trace analysis of inconsistent parts of the model. Based on this
information, we discovered that there are five invalid given requires relations, one refines
relation is actually a contains relation, and one contains relation is actually a partially refines
relation in the example. Deleting and updating these relations results in a consistent
requirements model. The number of inferred relations is reduced. Table 4.1 gives the
number of given and inferred relations, and the number of inconsistencies in the first and
second iteration for the CMS example.

Table 4.1 Number of Relations and Inconsistencies in the Example

 Number of Relations per Relation Type Number

of

Inconsistencies

Refines Partially
Refines

Requires Contains Conflicts Total

First

Iteration

Given 41 9 42 14 17 123 32

Inferred 3 10 122 0 103 238

Second

Iteration

Given 40 10 37 14 17 118 0

Inferred 3 10 86 0 13 112

In the first iteration there are 225 conflicts and requires relations of 238 inferred relations.
Updating the model in the second iteration in order to fix the inconsistencies eliminates the
inferred invalid conflicts and requires relations.

In the second iteration, reasoning on the requirements model resulted in 112 inferred
relations from 118 given relations. There are 86 requires relations of 112 inferred relations.
From the formalization of relation types, we know that the contains and refines relations imply
the requires relation in the requirements model. Therefore, we were expecting that the
number of inferred requires relations would be more than the total number of given contains
and refines relations. Fifty-four of these 86 inferred requires relations are inferred from the
given contains and refines relations. Other requires relations are inferred by using the transitive
property of the requires relation and the combination of the requires relation with contains and
refines relations.

4.7 Example: Course Management System 101

As a result of reasoning, we have 13 inferred conflicts relations from 17 given conflicts relations.
All these conflicts relations are inferred because of the combination of the conflicts relation with
the requires and contains relations.

In the requirements document, the containment hierarchy has only one level. Since the
transitive property of the contains relation is the only way to infer the contains relation
according to its semantics, the tool does not infer any new contains relations. We have only
three inferred refines relations from 40 given refines relations by using the transitive property
of the refines relation. On the other hand, 10 partially refines relations are inferred from 10
given partially refines relations.

4.7.2 Inferring Requirements Relations
In this section, we describe some inferred relations in the example. The example in Figure
4.14 illustrates the inferencing for the following requirements:

R5: The system shall be able to store dynamic course information.

R6: The system shall be able to represent dynamic course information.

R26: The system shall allow students to view course grade statistics per semester.

In the glossary of the requirements document (see Appendix B), dynamic course
information is expressed as information (news messages, archived files, and roster) about a
course which changes while a course is given. In the requirements model, the following
relations are given: (R26 refines R6) and (R6 requires R5). When we run our tool over the
requirements model, the relation (R26 requires R5) is inferred (dashed line in Figure 4.14).

Figure 4.14 Example with Inferred Requires Relation

Grade statistics are dynamic course information. The system needs to store dynamic course
information in order to allow students to view course grade statistics per semester.
Therefore, we confirm that the inferred relation (R26 requires R5) is a valid relation in the
model.

102 Chapter 4 Semantics of Requirements Relations

The interpretation of requirements depends on the requirements engineer. In the example,
we discovered some invalid given relations. The tool feature for explaining the inferencing
results supports our analysis of (in)valid given relations based on inferred relations. Figure
4.15 depicts the analysis of one inferred relation to identify invalid given relations.

Figure 4.15 Analysis of the Inferred Relation to Identify Invalid Given Relations

Although there is an inferred conflicts relation between requirements R8 and R59, these two
requirements are not in conflict. These requirements are the following:

R8: The system shall enable students to retrieve contact information of students and
lecturers of subscribed courses.

R59: The system shall allow lecturers to manage static course information.

When we analyzed the given relations used to infer conflicts relations in Figure 4.15, we
concluded that the given relation (R11 requires R97) is not a valid relation. These two
requirements are the following:

R11: The system shall enable students to subscribe to and unsubscribe from courses.

R97: The system shall allow only the administration to manage courses.

R11 does not require R97 to be fulfilled. The invalid input causes the invalid output of the
inferencing. The tool helps to identify candidate invalid given relations in the example.

4.7.3 Checking Consistency
In the previous section we treated conflicts relations, which are modeled by the requirements
engineer. Here, we discuss inconsistencies, that is, contradictions among relations which are
detected by our tool. We will depict how we fix an inconsistent part by using the output of
our tool. The example in Figure 4.16 illustrates this part. The requirements are:

R11: The system shall enable students to subscribe to and unsubscribe from courses.

R48: The system shall allow lecturers to create courses.

The consistency checking engine reports that conflicts and requires relations between R11
and R48 cause a contradiction. The relation (R11 requires R48) is a given relation. When we

4.8 Related Work 103

re-analyzed requirements R11 and R48, we concluded that this requires relation is an invalid
relation. Since there might be hard coded courses in the system, the students can subscribe
to and unsubscribe from these courses without any need to create courses.

Figure 4.16 Inconsistent Part in the Example Model

Since the relation (R11 conflicts R48) is an inferred relation, we need derivation trace
analysis for this relation. Figure 4.17 gives the analysis of the inferred relation in the
inconsistent part of the model.

Figure 4.17 Analysis of the Inferred Relation in the Inconsistent Part of the Model

When we checked the given relations in Figure 4.17, we found that the given relation (R11
requires R97) is an invalid relation, modeled incorrectly in the first iteration. This is the same
relation we identify in the analysis of the inferred relation in Figure 4.15. We removed the
requires relation between R11 and R97 to fix the inconsistent part in Figure 4.16. This
example illustrates how the tool helps localizing invalid relations.

4.8 Related Work

We classify the related work in four categories: Requirements Relations, Requirements
Metamodeling, Requirements Reasoning, and Tool Support.

4.8.1 Requirements Relations
We studied literature about requirements relation types and their semantics. Dahlstedt and
Persson [59] address requirements relations (they call a relation an “interdependency”) from
a traceability perspective. They give an overview of requirements relations research and
present a model of fundamental relation types. There is a classification (structural, constrain,
and cost/value interdependencies) of fundamental interdependency types which includes some of
the relations (refines, requires, and conflicts) we also use in our approach. The need to
understand the nature of requirements relations and their influence on software

104 Chapter 4 Semantics of Requirements Relations

development activities such as change management are stated. However, there is no formal
semantics for the relations. Carlshamre et al. [43] run an industrial survey of requirements in
software product release planning. Their aim is to learn about the nature of
interdependencies in general, to be able to classify them, and to assess the relative frequency
of different classes. The results show that roughly 20% of the requirements are responsible
for 75% of the interdependencies and only a few requirements are singular. It is expected to
find conflicting requirements in the survey, since this relation is common in the literature.
However, no such dependencies are identified. Apparently conflicts had already been
eliminated in the documents.

Although the two studies mentioned above motivate the need for requirements relations, no
much attention is paid for how to give formal semantics of the relations. Aizenbud-Reshef et
al. [6] state the need for semantics of traceability links in general. They present an approach
to defining operational semantics for traceability in UML which captures more precisely the
intended meaning of various types of traceability. The main goal is achieving automated
consistency management of UML models. The semantic property of a traceability
relationship is a triplet (event, condition, and actions). This triplet is very much dependent on
change impact analysis. For instance, an event indicates a change in a model. Conditions help
to differentiate between events. Actions describe what should and should not be done when
a specific event has occurred. Therefore, it is hard to use the semantics in [6] for other
purposes like inferencing and consistency checking of trace relations. On the other hand, the
semantics formalized with FOL in this chapter can be considered as more general and
suitable for different purposes. In [96] and [95], we use our semantics for inferencing,
consistency checking, and change impact analysis in requirements models.

Lee et al. [152] studies relationships between soft functional requirements based on fuzzy
logic. The types of relations between soft functional requirements are classified as conflicting,
irrelevant, cooperative, counterbalance and independent. These relation types are formalized by using
fuzzy logic. Contrary to our approach, the relation types in [152] are specialized for
imprecise requirements and they are used for trade-off analysis.

The survey in [222] introduces Requirements Interaction Management (RIM), which is
concerned with the analysis and management of dependencies among the requirements. One
of the activities in RIM, is reasoning on requirements interactions. Conflict detection
methods for reasoning are introduced in five categories: domain model, theorem model, scenario
analysis, modeling checking and executing monitoring methods. We consider our work in the scope
of the domain model method. The domain model method is summarized in the survey that a
domain model of system requirements interactions is used to identify interactions at the

4.8 Related Work 105

requirement level. We consider that our requirements metamodel is our domain model of
requirements relations which stand for requirements interactions to identify relations
between requirements.

4.8.2 Requirements Metamodeling
A number of approaches in MDE address modeling requirements and their relations from a
traceability perspective. Vicente-Chicote et al. [255] describe a requirements metamodel and
a modeling environment. The environment supports: graphical requirements models, their
validation against the metamodel and against a set of constraints written in Object
Constraint Language (OCL), and automatic generation of a navigable Software
Requirements Specification document (SRS). In the requirements metamodel, there are three
types of trace links between requirements: DependenceTrace, InfluenceTrace, and ParentChildTrace.
The relations are defined informally.

Baudry et al. [17] introduce a metamodel for requirements and present how they use it on
top of a constrained natural language for requirements definitions. The requirements
metamodel captures functional requirements as use cases with pre-conditions and post-
conditions that constrain the activation of use cases. Operations are added in the metamodel
in order to simulate requirements models. The goal of the simulation is to instantiate the use
cases, replacing the formal parameters with actual values defined in an initial configuration.
The metamodel does not capture the static part of requirements. It does not have the notion
of requirements relations. On the other hand, our approach covers the static aspects of
requirements including non-functional requirements and reasoning on requirements
relations. In [37], a model-driven mechanism is proposed to merge different requirement
specifications and reveal inconsistencies between them by using a requirements metamodel.
The requirements metamodel is mainly used to produce a requirements model from a given
requirements document. Requirements relations are not typed and lack semantics.
Consistency checking and inferencing for requirements relations are not supported.

Some authors [111] [236] use the UML profiling mechanism in a goal-oriented requirements
engineering approach. Heaven et al. [111] introduce a profile that allows the KAOS model
[250] to be represented in UML. They also provide an integration of requirements models
with lower level design models. Supakkul et al. [236] use the UML profiling mechanism to
provide an integrated modeling language for functional and non-functional requirements
that are mostly specified by using different notations. These two works aim at a metamodel
for goal-oriented requirements engineering rather than reasoning over requirements.

SysML [200] [231] uses the UML profiling mechanism to provide modeling constructs that
represent text-based requirements and relate them to other modeling elements. The relation

106 Chapter 4 Semantics of Requirements Relations

types for requirements in SysML are derive, copy, and contain. SysML also provides a stereotype
mechanism that allows the requirements engineer to specify their own relation types. The
main goal of SysML requirements diagrams is to represent the requirements and their
relations. Formal semantics of relation types is not considered. The definitions of the
relations tend to be ambiguous. No reasoning facility for requirements is provided.

Vogel and Mantell [256] provides a UML profile that allows the modeling of stakeholders,
requirements and test cases. The profile has two parts: Stakeholders and Requirements. The first
part includes entities for types of stakeholders such as User, Project Stakeholder, Supplier and
Customer. The second part of the profile contains entities for TestCase and types of
requirements such as Performance Requirement and Functional Requirement. The profile contains
entities similar to entities in our requirements metamodel. However, there is no requirements
relation in [256].

COMET [55], a requirements modeling method, provides a requirements metamodel which
is an extension to the use case concept of UML. COMET considers the UML use cases as
the only requirements specification method. The requirements metamodel includes a use
case entity with interacting roles, scenario which is the detailed description of the use case,
goal entity, and the requirement entity represented by the use case. Requirements relations
are not represented in the requirements metamodel of COMET.

Navarro et al. [189] propose a customization approach for requirements metamodels. They
propose a core requirements metamodel which is generic and considers only Artifact and
Dependency as core entities. The metamodel does not contain concrete types for requirements
relations. This disallows the application of inference rules for the core relations to
customized entities. The Requirements Interchange Format (RIF) [220] structures
requirements and their attributes, types, access permissions, and relationships. It is defined as
an XML schema. Its data model has generic entities and relations like Information Type,
Association, and Generalization. These entities can be formalized to reason about requirements
and their relations. Ramesh et al. [215] propose reference models for requirements
traceability. The models include basic entities like Stakeholder, Object, and Source. Relations
between different software artifacts and requirements are captured.

Some papers address domain-specific requirements models. Koch et al. [143] propose a
requirements metamodel specialized for Web systems. They identify the general structure of
Web systems in order to define the requirements metamodel. The requirements metamodel
for web requirements, presented by Escalona and Aragon [75], is divided into two packages:
the Behavior and the Structure. In the behavior package, concepts such as WebActor and
WebUseCase related to the behavior of the system presented. In the structure package, any

4.8 Related Work 107

information storage for the system is represented. Molina et al. [180] [181] propose another
web engineering requirements metamodel as an extension that can be integrated with
existing web engineering methodologies. A tool is provided as an eclipse plug-in that
accompanies the metamodel presented in [180] [181]. The metamodel is extended with
general security concepts in [226] in order to define a domain specific language for security
requirements. In [178], Molina presents a measurable requirements metamodel which
extends the requirements metamodel in [180] [181]. The measurable requirements
metamodel supports the elicitation of measurable requirements based on the explicit
connection of goals, requirements, and measures. Moon et al. [183] propose a methodology
for producing requirements that can be considered as a core asset in the product line. Ceron
et al. [44] discuss requirements modeling in the context of product lines. They propose a
metamodel for requirements that contains both the common and variable parts. Lopez et al.
[164] propose a metamodel for requirements reuse as a conceptual schema to integrate
semiformal requirement diagrams into a reuse strategy. The requirements metamodel is used
to integrate different abstraction levels for requirements definitions. All these domain-
specific approaches aim at providing a structure for representing requirements and their
relations. Some of them do not contain types of requirements relations and most of them
only provide informal definitions of their relations.

In [179] there is a review of requirements metamodels in literature. Loniewski et al. [162]
presents a review of the use of requirements engineering techniques in Model-Driven
Engineering. They do not focus on requirements metamodels but MDE approaches that use
requirements metamodels are summarized and reviewed.

4.8.3 Requirements Reasoning
A number of approaches describe reasoning about requirements. Giorgini et al. [93] propose
a formal framework for reasoning with goal models. A precise semantics is given for all goal
relationships in a qualitative and numerical form. Label propagation algorithms that are
shown to be sound and complete with respect to the axiomatization are introduced. Two
main limitations are stated. One concerns the definition of contribution links and the labels
assignment; the second is that the conflicts relation is not resolved. In general, the idea in
[93] is similar to our approach. However, the presented reasoning framework is very specific
to goal models. No reasoning facility and tool support is introduced.

Zowghi et al. [268] [267] propose a logical framework for modeling and reasoning about the
evolution of requirements. They characterize the properties correctness, completeness, and
consistency of requirements in an evolutionary framework. The interaction of consistency
and completeness with correctness during requirements evolution is discussed. Duffy et al.

108 Chapter 4 Semantics of Requirements Relations

[67] propose a logic-based framework for reasoning about requirements specifications based
on goal-tree structures. The framework is based on goal decomposition supported by
automated reasoning. Rodrigues et al. [223] propose a framework for the analysis of evolving
specifications that enables reasoning in the presence of inconsistency. The work is
complementary to our formalization since a tool that translates requirements given in the
form of “if then else” rules into the disjunctive normal form for classical logic reasoning and
cluster prioritization is provided.

Heitmeyer et al. [113] propose consistency checking in requirements specifications for
automatic detection of errors, such as type errors, non-determinism, missing cases, and
circular definitions. The technique is based on requirements specifications expressed in the
SCR (Software Cost Reduction) tabular notation. A formal requirements model that
represents the system to be built as a finite-state automaton is provided. It defines a system
state in terms of entities, a condition as a predicate on the system state, and an input event as
a change which triggers a new system state. There are some consistency checks derived from
the formal requirements model such as type correctness. Contrary to our approach, the
formal requirements model requires modeling requirements in a very formal way in order to
detect inconsistencies. The main focus is determining inconsistencies among requirements
instead of inconsistencies among requirements relations.

Finkelstein et al. [81] [194] describe a technique for inconsistency handling in requirements
documents developed using multiple methods and notations for the same system. They
combine the ViewPoints framework for perspective development and a logic-based
approach to inconsistency handling. Partial specification knowledge in each ViewPoint is
translated into first-order logic. Logical inconsistencies are identified. Then, some temporal
logic rules are combined with the identified inconsistencies to specify inconsistency handling
actions. Hunter et al. [117] present an adaptation of classical logic, which they term quasi-
classical (QC) logic that allows reasoning in the presence of inconsistency. This facilitates an
analysis of inconsistent information. In our approach, inconsistencies are explained based on
the derivation trace of relations.

4.8.4 Tool Support
Some requirements management tools support multiple requirements relation types. The
INCOSE management tool survey [124] evaluates these tools according to the criterion
traceability analysis, that is, what kinds of trace links the tools provide and what kinds of
analyses are performed by the tools. According to the responses of tool vendors in the
survey, current industrial tools mostly do not support reasoning about requirements
relations.

4.9 Conclusions 109

IBM Rational RequisitePro [119] provides only two relation types between requirements:
traceFrom and traceTo. Since these two relations indicate only the direction, they are very
generic relations. In IBM Telelogic Doors [120], there is no predefined requirements
relation. The requirements engineer can specify his or her own relation type. However, it is
not possible to assign semantics to relation types created by the requirements engineer. The
tool provides basic support for change impact analysis. It shows suspected relations when a
requirement is updated. Borland Caliber [27] provides only one generic relation type for
requirements. This type can be used for different purposes such as part-whole and
refinement. The reasoning facilities of the tools IBM Rational RequisitePro, IBM Telelogic
Doors, and Borland Caliber are based only on the transitivity property of the relations.
These tools do not support consistency checking of the relations.

In TopTeam Analyst [246], there are four relation types. Three of these relations (traces into,
impact, used in) are directed and one of the relations (trace) is undirected. This undirected
relation is considered as a generic relation type for the other relation types. None of these
relation types have formal semantics. The tool does not support any reasoning.

We may conclude that some common industrial requirements tools do not support
reasoning about relations between requirements or provide formal semantics for relation
types.

4.9 Conclusions

There has recently been a growing interest in requirements traceability in the software
engineering community and industry. Although considerable research has been devoted to
linking requirements in both forward and backward directions, less attention has been paid
to linking requirements with other requirements. In this chapter, we focused on
requirements and requirements relations from a traceability perspective. A requirements
metamodel including relation types with formal semantics was proposed. Existing
requirements engineering approaches were surveyed in order to extract the metamodel. We
provided semantics of trace relations with formalization in first-order logic. The
formalization of relations was used in tool support for inferencing and consistency checking.
We illustrated the approach and the tool in the Course Management System requirements
document.

The usage of the formal semantics of relation types enables new relations to be inferred and
contradicting relations to be determined in requirements documents. There are still open
issues. In some cases, relations do not cause any contradiction but violate some of the

110 Chapter 4 Semantics of Requirements Relations

constraints in the requirements engineering domain such as “every non-functional
requirement should be related with at least one functional requirement”. These constraints
may be valid only for a specific requirements engineering approach like goal-oriented
requirements engineering. OCL could be used in order to specify these kinds of constraints
in the requirements metamodel. However, further research is needed to specify these
constraints. Apart from specifying constraints, there might be updates in the requirements
metamodel. In the formalization of relations, we stated that the refines and contains relations
imply the requires relation. This might be interpreted as a specialization relation between the
requires, refines, and contains relations.

Our approach uses the semantic web technologies OWL and Jena instead of MDE
technologies such as model transformation languages and engines. OWL and Jena directly
support inferencing by using basic properties like symmetry and transitivity. In contrast, in
model transformation languages, we have to encode all basic properties and the logic behind
them in order to have the same inferencing capability.

Our current support is for textual requirements. We do not have any support for other
requirements artifacts like use case or activity diagrams. We improved the usability of the
tool for large models with the visual editor which enables selecting requirements to be
shown. However, there is still a need to test the usability of the tool for large requirements
documents.

In [96], we presented an approach for reusing the formalization of requirements relations for
customization of the requirements metamodel. The main focus of the work in [96] is to
customize the core requirements metamodel and to apply the inference rules written for the
core relations to the customized relations. We showed how we could benefit from this
approach by applying it to current requirements modeling approaches like SysML. Our tool
needs to be extended to support this customization.

The requirements attributes like priority and status can be included in our reasoning engine.
For instance, we may define the constraint that a requirement cannot require another
requirement whose priority is lower.

In this chapter we answered Research Question 4 raised in Chapter 1: How to model requirements,
software architecture and traces with their semantics for change management? What aspects of requirements,
software architecture and traces should be modeled and how? How can we use the modeled aspects to reason
about requirements, software architecture and traces? The entities Requirement and Relation in the
requirements metamodel are the aspects of requirements to be modeled. These entities with

4.9 Conclusions 111

their semantics are used in inferencing and consistency checking to reason about
requirements.

The results in this chapter like requirements relation types, relation semantics, inferencing
and consistency checking is the input for change impact analysis in requirements models.
Chapter 5 presents an approach for using requirements relations and their semantics for
change impact analysis in requirements models. TRIC is extended with features in order to
apply semantics of relations in change impact analysis. For the evolution of requirements, we
want to analyze the impact of requirements changes on software architectures. Chapter 6
defines trace relations and their semantics in order to link requirements models to software
architecture models with a similar approach presented in this chapter.

113

Chapter 5

5 Change Impact Analysis in Requirements
Models

In this chapter, we provide an approach for change impact analysis in requirements models by using formal
semantics of requirements relations and requirements change types. The classification of requirements changes
is based on the structure of a textual requirement with formal semantics. The formalization of requirements
relations and changes is used for propagating proposed changes and consistency checking of proposed changes in
requirements models. Tool support for the approach is an extension of our Tool for Requirements Inferencing
and Consistency Checking (TRIC). The main features of the tool are proposing changes, propagating
proposed changes, checking consistency of proposed changes, and generating decision trees for reasoning about
proposed changes. We illustrate our approach in an example which shows that the formal semantics of
requirements relations and change classification provides more precise change impact analysis in requirements
models.

5.1 Introduction

In Chapter 3 we analyzed the impacts explosion problem. It is observed that additional
semantic information for requirements should be employed to increase the accuracy of
impact analysis in requirements models. Chapter 4 focused on relations between
requirements in requirements models (see Figure 5.1). Formal definitions of the relation
types were provided in order to enable reasoning about requirements relations.

When a change is introduced to a requirement, the requirements engineer determines if there
is any impacted requirement. By using only the transitive closure of relations, the
requirements engineer may conclude that all requirements in the model are impacted.
Without any additional semantic information about the requirements relations and change,

114 Chapter 5 Change Impact Analysis in Requirements Models

he may have to analyze the whole requirements model for a single change. Furthermore,
without considering semantics, change impact analysis may produce high numbers of false
positives and false negatives. Consequently, the cost of implementing a change may become
several times higher than expected. Assume that a change is introduced to Rn in Figure 5.1.
The introduced change in Rn can be traced to other requirements R1, R2, and R3 by following
the requirements relations. The requirements engineer has to inspect all these requirements
to identify what to change in the requirements model.

Figure 5.1 Requirements and Architectural Models Showing Within-model and Between-model Trace
Relations

In this chapter we provide a change impact analysis approach in requirements models based
on formal semantics of requirements relations and requirements change types. Our approach
increases the accuracy of impact analysis since it provides change alternatives in change
propagation, elimination of false positives and consistency checking of changes.

The classification of requirements changes is based on the structure of a textual requirement.
Changes are formalized by giving their effects in terms of formula changes in the
requirement. The rationale of changes affects the impact of a change. The rationale of
changes is formalized in terms of formula changes in the requirements model. The
formalization of requirements relations, changes and change rationale is used for propagating
and consistency checking of proposed changes. Here, propagating proposed changes is the activity
of deducing new proposed changes for requirements related to the requirement having a
proposed change. Consistency checking is the activity of identifying the proposed changes
whose existence may cause a contradiction. Change alternatives in change propagation and

5.2 Approach 115

consistency rules for proposed changes are determined based on the semantics of change
types, requirements relations and rationale of changes.

TRIC supports change impact analysis in requirements models. The tool supports three
activities for impact analysis. First, the requirements engineer proposes changes according to
the change classification before implementing the actual changes. Second, the requirements
engineer indentifies the propagation of the changes to related requirements. Third, possible
contradicting changes are identified.

In this chapter we answer Research Question 5 raised in Chapter 1: How can a change in a
requirement be propagated to other requirements and to software architecture? How can we support the
requirements engineer and software architect for performing changes? How can we formally check if the evolved
architecture satisfies evolved requirements? How can we become sure that traces are up-to-date? With the
approach for change impact analysis in requirements models we address the issues about
propagation of changes from a requirement to other related requirements.

The chapter is structured as follows. Section 5.2 describes the approach. Section 5.3 presents
classification of requirements changes with formal semantics. In Section 5.4, we describe the
use of the formalization of requirements relations and requirements change types for change
propagation and change consistency checking. The approach is discussed for the open issues
in Section 5.5. Section 5.6 gives details about the tool support. Section 5.7 illustrates the
approach by an example. Section 5.8 evaluates the approach. Section 5.9 summarizes the
related work, and Section 5.10 concludes the chapter.

5.2 Approach

We provide an approach for more precise change impact analysis in requirements models by
using formal semantics of requirements relations and requirements change types. We rely on
the previously defined requirements metamodel with formal semantics. In addition, in this
chapter the followings are elaborated:

 Classification of requirements changes. To determine the granularity of change
that can be applied to requirements, we use the structure of a textual requirement.
With this structure, parts of the requirement to which a change is proposed are
identified (Section 5.3).

 Semantics of requirements changes. Changes are formalized by giving their effects
in terms of formula changes in the requirement (Section 5.3).

116 Chapter 5 Change Impact Analysis in Requirements Models

 Rationale of requirements changes. Requirements changes might happen because
of different reasons. Rationale of changes affects the change impact. Rationale of
changes is formalized in terms of formula changes in the requirements model
(Section 5.3).

 Change propagation and change consistency checking. The approach identifies
change alternatives in the propagation and consistency rules for proposed changes.
Change alternatives and consistency rules are determined based on the semantics of
change types, requirements relations and rationale of changes (Section 5.4).

We provide tool support and illustrate the feasibility of our approach in an example.

 Tool support. We describe the design and implementation of a prototype tool for
proposing changes, propagating proposed changes, checking consistency of proposed
changes, and implementing proposed changes in the requirements model (Section
5.6).

 Running example. The approach is illustrated with an example through the whole
chapter (Section 5.7 is a complete example section). The example is about
requirements for the Course Management System (CMS) that is also used in Chapter
4. Part of this document is given in Appendix B.

5.3 Classification of Changes in Requirements

In this section, the structure of a textual requirement is mapped to our formalization of a
requirement. Requirements changes are classified based on the textual requirement structure.
Then, change types are formalized by giving their effects in terms of formula changes in the
requirement. We discuss rationale of changes at the end of the section.

5.3.1 Structure of a Textual Requirement
We need to consider the structure of a requirement to determine the granularity of changes
that can be applied. Heninger [114] mentions about six criteria which a software
requirements document should satisfy:

 It should only specify external system behavior

 It should specify constraints on the implementation

 It should be easy to change

5.3 Classification of Changes in Requirements 117

 It should serve as a reference document for system maintainers

 It should record forethought about the life-cycle of the system

 It should characterize acceptable responses to undesired events

The last four criteria can be regarded as quality criteria for the requirements document. The
first two criteria explicitly mention external behaviour and constraints on this behaviour
respectively.

Wasson [258] further refines external behavior and constraints in order to explain the
structure of a textual requirement. He states that a textual requirement should be interpreted
by identifying key elements of the requirement, the so-called requirement primitives. The
requirement primitives in [258] are the following:

 Capability to be provided

 Relational operators

 Thresholds, boundary constraints, tolerances or conditions

Each requirement describes one or more capability that the system should provide. This is
the main functionality. This functionality can be further refined by adding additional
information which makes the capability more specific. It is done by thresholds, boundary
constraints and other limitations such as tolerances. Compared to Heninger, Wasson
explains in further detail how a threshold is related to a capability. This is done through the
relational operator, which describes how additional information is related to the capability.
Using Wasson’s primitives, we present the structure of a textual requirement with a UML
diagram (see Figure 5.2).

Figure 5.2 Wasson’s Primitives for Structure of a Textual Requirement

Example: Structure of Requirement based on Wasson’s Primitives

Consider the following requirement.

R98: The system shall allow only the administration to create new courses.

We give the following structure of R98 by using Wasson’s primitives in Figure 5.2:

118 Chapter 5 Change Impact Analysis in Requirements Models

Capability: The system shall provide the functionality of creating new courses

Relational operator: Limited by user type

Threshold: Only by the administration

The definition of a requirement used in Chapter 4 is that “a textual requirement is a
description of a property or properties which must be exhibited by the system”. The notion
of Property corresponds to the capability where relational operator and threshold in
Wasson’s definitions can be classified as constraints over properties (see Figure 5.3).

Figure 5.3 Structure of a Textual Requirement based on the Definition of a Requirement in Chapter 4

In Chapter 4, we formalized requirements as formulas in conjunctive normal form (CNF).
The properties and constraints in the requirement can be mapped to any conjunct in
conjunctive normal form of P. The mapping depends on the interpretation of the
requirement as a formula.

Example: Structure of Requirement based on the Definition of a Requirement in Chapter 4

We explain the structure of a textual requirement with the following example.

R98: The system shall allow only the administration to create new courses.

We give the following structure of R98 by using structure of a textual requirement in
Figure 5.3:

Property: The system shall provide the functionality of creating courses to only the
administration

Constraint: Only the administrator users can create courses

We formalize R98 follows:

(43) P98 = x y ( courses(x)  numbers(y)  create(x, y, z))

where x is a universally quantified variable for the courses, y is a universally quantified
variable for the number of students registered to the course, and z is a free variable for the

administrators of the system who creates the courses. Let P {create, courses, numbers},
where create is a predicate with three arguments; and where courses and numbers are predicates
with one argument.

5.3 Classification of Changes in Requirements 119

Both the property and its constraint in R98 are mapped to the conjunct ( courses(x) 
numbers(y)  create(x, y, z)). Different mappings can be defined with different formulas
for R98. As a second encoding we formalize R98 as follows:

(44) P98 = x y (( courses(x)  numbers(y)  create(x, y))  administrator(z)))

where x is a universally quantified variable for the courses, y is a universally quantified
variable for the number of students registered to the course, and z is a free variable for the

administrators of the system who creates the courses. Let P {create, courses, numbers,
administrator}, where create is a predicate with three arguments; and where administrator,
courses and numbers are predicates with one argument.

The property in R98 is mapped to the conjuncts ( courses(x)  numbers(y) 
create(x, y)) and (administrator(z)) while its constraint is mapped to the conjunct
(administrator(z)).

5.3.2 Change Types for Requirements Models
Change types for requirements models are derived from the structure in Figure 5.3 and from
the requirements metamodel in Chapter 4. Table 5.1 gives the requirements change types.

Table 5.1 Requirements Change Types

Change Types

 Add a New Requirements Relation
 Delete Requirements Relation
 Update Requirements Relation
 Add a New Requirement
 Delete Requirement
 Update Requirement

o Add Property to Requirement
o Add Constraint to Property of Requirement
o Change Property of Requirement
o Change Constraint of Property of Requirement
o Delete Property of Requirement
o Delete Constraint of Property of Requirement

The first five change types in Table 5.1 are obvious manipulations over the requirements
model. The subtypes of ‘Update Requirement’ are obtained from the structure of a textual
requirement in Section 5.3.1. We formalize only the subtypes of ‘Update Requirement’ by
giving their effects in terms of formula changes in the requirement.

120 Chapter 5 Change Impact Analysis in Requirements Models

Add a New Requirements Relation
A new requirements relation is added between two requirements Ri and Rk.

Delete Requirements Relation
A requirements relation between two requirements Ri and Rk is removed.

Update Requirements Relation
The type or direction of a requirements relation between two requirements Ri and Rk is
changed.

Add a New Requirement
Create a new requirement R to be added to the requirements model.

Delete Requirement
Delete a requirement R from the requirements model.

Update Requirement
We use the symbol  , to denote updates in requirements in the following way: R  Rl
denotes a change where R is the requirement before the change and Rl is the requirement
after the change. Change types are denoted by using a notation over the symbol  . Update
of a requirement R is done:

 By adding a property pt to the requirement R, denoted as R
pt

 Rl.

 By deleting a property pt of the requirement R, denoted as R
pt

 Rl.

 By changing a property pt of the requirement R with a property ptl, denoted as

R
lptpt

 Rl.

 By adding a constraint ct to a property pt of the requirement R, denoted as R
ct

 Rl.

 By deleting a constraint ct of a property pt of the requirement R, denoted as R
ct

 Rl.

 By changing a constraint ct of a property pt of the requirement R with a constraint ctl,

denoted as R
lctct

 Rl.

5.3 Classification of Changes in Requirements 121

We assume that the change ‘Update Requirement’ always changes the set of systems that
satisfy the properties in the updated requirement. For instance, for adding a property pt to
the requirement R we assume that the added property pt is always different than the existing
properties in the requirement R. There is always a system s that satisfies pt and does not
satisfy the existing properties in the requirement R. Therefore, the set of systems that satisfy
the requirement R is different after adding the property pt to the requirement R.

In the following we describe the effect of the changes over the formulas.

Add Property to Requirement

Let R be the requirement before adding the property pt, and Rl be the requirement after
adding the property pt. P and Pl are formulas for R and Rl. P is in conjunctive normal form
as follows:

(45) P = x (p1 … pi); i ≥ 1

R
pt

 Rl iff Pl is derived from P such that the following two statements hold:

(46) Pl = P  Ppt

(47) ( (P → Pl)) is satisfiable

where Ppt denotes the property that is captured in pt

For the formulas P and Ppt, if any variable universally quantified in one of the formulas
appears free in the second formula, the free variable is renamed. If any variable in P appears
in Ppt with a different valuation, the variable in Ppt is renamed. Please note that if the
requirements Rl and R are written as formulas 1x and 2x with 1 and 2 in CNF and

Ppt is expressed as x with  in CNF, we understand the following: R
pt

 Rl iff (Pl =

x (2  )), and ( (x (2 → 1))) is satisfiable.

From the definition we conclude that (Pl → P) and (Pl → Ppt) hold for every model where R
pt

 Rl. We assume that the change ‘Update Requirement’ always changes the set of systems
that satisfy the properties in the updated requirement. P and Ppt always describe different
system properties. Sl is a proper subset of S (Sl  S) where Sl is the set of systems that satisfy
Rl and S is the set of systems that satisfy R.

122 Chapter 5 Change Impact Analysis in Requirements Models

Example: Add Property to Requirement

Consider the following requirement.

R62: The system shall allow lecturers to specify enrolment policies based on grade.

We formalize R62 as follows

(48) P62 = allow(grade_enrl_policy).

where grade_enrl_policy is a constant. We add a property pt to the requirement R62 (R62
pt


R62l) where we have a new requirement as follows.

R621: The system shall allow lecturers to specify enrolment policies based on grade and first
come-first serve.

We formalize R62l as follows

(49) P62l = allow(grade_enrl_policy)  allow(fcfs_enrl_policy)

where grade_enrl_policy, and fcfs_enrl_policy are constants. We have the following:

(50) P62l = P62  allow(fcfs_enrl_policy)

Let F {fcfs_enrl_policy, department_enrl_policy, grade_enrl_policy} and P
{allow_policy}, where fcfs_enrl_policy, department_enrl_policy and grade_enrl_policy are constant
symbols; and where allow_policy is a predicate with one argument. We choose as a model M
the following:

 A {fcfs_enrolment_policy, department_enrolment_policy, grade_enrolment_policy}

 fcfs_enrl_policyM fcfs_enrolment_policy

 department_enrl_policyM department_enrolment_policy

 grade_enrl_policyM grade_enrolment_policy

 allow_policyM {department_enrolment_policy, grade_enrolment_policy}

Then we have the following:

(51) M   (allow_policy(grade_enrl_policy) → (allow_policy(grade_enrl_policy) 

allow_policy(fcfs_enrl_policy)))

5.3 Classification of Changes in Requirements 123

R621 states that the system shall allow lecturers to specify two different enrollment policies.
The requirement can be interpreted as two different properties for the system, like specifying
enrolment policies based on grade, and specifying enrolment policies based on first come first serve. R62
states only one of these properties, which is specifying enrolment policies based on grade. Therefore,
the property specifying enrolment policies based on first come first serve is added to the requirement
R62.

Delete Property of Requirement

Let R be the requirement before deleting the property pt, and Rl be the requirement after
deleting the property pt. P and Pl are formulas for R and Rl. P is in conjunctive normal form
as follows:

(52) P = x ((p1 … pn)  (q1 … qm)); m, n ≥ 1

R
pt

 Rl iff Pl is derived from P such that the following two statements hold:

(53) Pl = x (p1 ... pn); n ≥ 1

(54) ( (Pl → P)) is satisfiable

where x (q1 … qm) denotes the property that is captured in pt.

If every bounded occurence of a variable is removed by deleting the property, then the
quantifier for the variable is removed as well. Please note that if the requirement R is written
as a formula x (  ) with (  ) in CNF and Ppt (for the property captured in pt) is

expressed as x with  in CNF, we understand the following: R
pt

 Rl iff (Pl = x ),

and ( (x ( → (  )))) is satisfiable.

From the definition we conclude that (P → Pl) and (P → Ppt) hold for every model where R
pt

 Rl. We assumed that the change ‘Update Requirement’ always changes the set of systems
that satisfy the properties in the updated requirement. x (p1 ... pn) and x (q1 … qm) always
describe different system properties. S is a proper subset of Sl (S  Sl) where S is the set of
systems that satisfy R and Sl is the set of systems that satisfy Rl.

Change Property of Requirement

Let R be the requirement before changing the property pt with the property ptl, and Rl be the
requirement after changing the property pt with the property ptl. P and Pl are formulas for R
and Rl. P is in conjunctive normal form as follows:

124 Chapter 5 Change Impact Analysis in Requirements Models

(55) P = x ((p1 … pn)  (q1 … qm)); n ≥ 1, m ≥ 0

R
lptpt

 Rl iff Pl is derived from P as follows:

(56) Pl = x ((t1 ... tz)  (q1 … qm)); z ≥ 1, m ≥ 0

where x (p1 … pn) denotes the property captured in pt and x (t1 … tz) denotes the
property captured in ptl.

If every bounded occurence of a variable is removed by changing the property, then the
quantifier for the variable is removed as well. For the formulas x (t1 … tz) and x (q1 …
qm), if any variable universally quantified in one of the formulas appears free in the second
formula, the free variable is renamed. If any variable in x (q1 … qm) appears in x (t1 … tz)
with a different valuation, the variable in x (t1 … tz) is renamed.

Add Constraint to Property of Requirement

Let R be the requirement before adding the constraint ct to the property pt, and Rl be the
requirement after adding the constraint ct to the property pt. P and Pl are formulas for R and
Rl. P is in conjunctive normal form as follows:

(57) P = x ((p1 ... pn)  (q1 ... qm)); n ≥ 1, m ≥ 0

Let p1l, p2l, …, pn–1l, pnl be disjunction of literals such that x (pjl → pj) for all j  1..n

R
ct

 Rl iff Pl is derived from P by replacing every pj in P with pjl for j  1..n such that the
following two statements hold:

(58) Pl = x ((p1l ... pnl)  (q1 ... qm)); n ≥ 1, m ≥ 0

(59) ( (x (pj → pjl))) is satisfiable for all j  1..n

For the formulas x (p1l ... pnl) and x (q1 … qm), if any variable universally quantified in one
of the formulas appears free in the second formula, the free variable is renamed. If any
variable in x (q1 … qm) appears in x (p1l ... pnl) with a different valuation, the variable in
x (p1l ... pnl) is renamed.

This change is similar to refining a requirement (see the refines relation in Chapter 4). The
idea behind the change is to make the requirement more restrictive by adding constraint.
Therefore, the requirement after the change is a refinement of the requirement before the
change. From the definition of the refines relation we conclude that (Pl → P) holds for every

5.3 Classification of Changes in Requirements 125

model where R
ct

 Rl and ( (P → Pl)) is satisfiable. (Sl  S) where Sl is the set of systems
that satisfy Rl and S is the set of systems that satisfy R. Extensionally, the changes ‘Add
Property to Requirement’ and ‘Add Constraint to Property of Requirement’ are the same
since these two changes cause a proper subsetting between the sets of systems (Sl  S).
Intensionally, they are different, i.e. they have different effects on formulas. The different
effects on formulas are the reason of having different propagations for these changes (see
Section 5.4 for change propagation).

Example: Add Constraint to Property of Requirement

Consider the following requirement.

R7: The system shall provide a messaging facility.

We add a constraint ct to the property pt of the requirement R7 (R7
ct

 R7l) where we have a
new requirement as follows.

R71: The system shall allow messages to be sent to individuals, teams, or all course
participants at once.

We formalize the requirements R7 and R7l as follows:

(60) P7 = provide_msg(x)

(61) P7l = course_msg(x)

where x is a free variable over the values in A. Let P {provide_msg, course_msg} where
provide_msg and course_msg are predicates with one argument. From the domain knowledge we
know that the following statement is valid for all models:

(62) course_msgM  provide_msgM

We choose as a model M the following:

 A {individual_msg, team_msg, participant_msg, lecturer_msg}

 provide_msgM {individual_msg, team_msg, participant_msg, lecturer_msg}

 course_msgM {individual_msg, team_msg, participant_msg}

Then we have the following:

126 Chapter 5 Change Impact Analysis in Requirements Models

(63) M  l course_msg(x) → provide_msg(x)

The relation course_msgM is a subset of the relation provide_msgM. Therefore,
(course_msg(x) → provide_msg(x)) holds for each l with the model M. ( (provide_msg(x)
→ course_msg(x))) is satisfiable like in the following:

(64) M  l[x lecturer_msg] ( (provide_msg(x) → course_msg(x)))

R7 states only the need for a messaging property in the system. However, R7l explains the
details of the messaging property: the messaging shall allow messages to be sent to
individuals, teams, or all course participants at once, excluding lecturers.

Please note that as we saw in the example in Section 5.3.1 there might be other encodings of
R7.

Delete Constraint of Property of Requirement

Let R be the requirement before deleting the constraint ct from the property pt, and Rl be the
requirement after deleting the constraint ct from the property pt. P and Pl are formulas for R
and Rl. P is in conjunctive normal form as follows:

(65) P = x ((p1l ... pnl)  (q1 ... qm)); n ≥ 1, m ≥ 0

Let p1, p2, …, pn–1, pn be disjunction of literals such that pjl → pj for all j  1..n

R
ct

 Rl iff Pl is derived from P by replacing every pjl in P with pj for j  1..n such that the
following two statements hold:

(66) Pl = x ((p1 ... pn)  (q1 ... qm)); n ≥ 1, m ≥ 0

(67) ( (x (pj → pjl))) is satisfiable for all j  1..n

If every bounded occurence of a variable is removed by deleting the constraint of the
property, then the quantifier for the variable is removed as well. For the formulas x (p1 ...
pn) and x (q1 … qm), if any variable universally quantified in one of the formulas appears
free in the second formula, the free variable is renamed. If any variable in x (q1 … qm)
appears in x (p1 ... pn) with a different valuation, the variable in x (p1 ... pn) is renamed.

This change is similar to refining a requirement (see the refines relation in Chapter 4). The
idea behind the change is to make the requirement less restrictive by removing constraint.
From the definition of the refines relation we conclude that (P → Pl) holds for every model

5.3 Classification of Changes in Requirements 127

where R
ct

 Rl and ( (Pl → P)) is satisfiable. (S  Sl) where S is the set of systems that
satisfy R and Sl is the set of systems that satisfy Rl. Extensionally, the changes ‘Delete
Property of Requirement’ and ‘Delete Constraint of Property of Requirement’ are the same
since for these two changes there is a proper subsetting between the sets of systems (S  Sl).
Intensionally, they are different, i.e. they have different effects on formulas. The different
effects on formulas are the reason of having different propagations for these two changes
(see Section 5.4 for change propagation).

Change Constraint of Property of Requirement

Let R be the requirement before changing the constraint ct with the constraint ctl, and Rl be
the requirement after changing the constraint ct with the constraint ctl. P and Pl are formulas
for R and Rl. P is a formula in conjunctive normal form as follows:

(68) P = x ((p1 … pn)  (q1 … qm)); m, n ≥ 1

R
lctct

 Rl iff Pl is derived from P as follows:

(69) Pl = x ((t1 ... tz)  (q1 … qm)); m, z ≥ 1

where x (p1 … pn) denotes the constraint captured in ct and x (t1 … tz) denotes the
constraint captured in ctl.

If every bounded occurence of a variable is removed by changing the constraint of the
property, then the quantifier for the variable is removed as well. For the formulas x (t1 ... tz)
and x (q1 … qm), if any variable universally quantified in one of the formulas appears free in
the second formula, the free variable is renamed. If any variable in x (q1 … qm) appears in
x (t1 ... tz) with a different valuation, the variable in x (t1 ... tz) is renamed.

The effects of the changes “Change constraint” and “Change Property” in terms of formula
changes in the formalization are the same. In these two changes some of the conjuncts in the
formula are replaced by new conjuncts.

5.3.3 Rationale of Changes
The semantics of requirements changes in Section 5.3.2 does not explain why a change needs
to be performed in the requirements model, that is, what is the rationale of changes. The
impact of changes depends on their rationale. For instance, the requirements engineer may
delete a property of a requirement because this property is not required any more from
business/stakeholder point of view. The property may be in other requirements in the model
and it also has to be deleted from them. The requirements engineer may delete a property of

128 Chapter 5 Change Impact Analysis in Requirements Models

a requirement in the requirements model to improve the structure of the model without
modifying overall system properties. This property still must hold in the requirements model
after the change. The property has to be kept at least in one of the requirements in the
model. Therefore, we need to know rationale of requirements changes in order to determine
the impact of changes in the whole requirements model. We classify rationale of
requirements changes as refactoring and domain changes.

Buckley et al. [40] classifies changes in general as semantics-preserving and semantics-modifying.
However, they focus more on semantics of software components, such as type hierarchy,
scoping, visibility, accessibility, and overriding relationships, rather than changes in
requirements. We adapt the classification proposed by Buckley for requirements changes.
Van Lamsweerde [151] introduces requirements description qualities such as good
structuring and modifiability. The requirements engineer may change the requirements
model to improve the quality of requirements description. For instance, a requirement may
be decomposed to multiple requirements. These changes are semantics-preserving according to
[40] and we consider their rationale as refactoring (see [82] for refactoring). Evolution of
requirements also fosters changes to the requirements model. We name these changes and
their rationale domain changes. With the term ‘domain’ we mean problem/business domain.
Consider a requirements model that contains a set of requirements for online banking in
Europe. Here, the domain is banking and a change request for adapting the system to the
USA is received. Then, all currency requirements in the domain of banking are changed and
these changes should be reflected in the requirements model.

In order to formalize domain changes and refactoring, we first formalize the requirements
model in the following.

We define a requirements model RM as a property (or properties). We express the property
(or properties) as a formula PRM in CNF. PRM can be represented in a conjunctive normal
form (CNF) in the following way:

(70) PRM = x (p1  …  pn), where n ≥ 1 and pn is disjunction of literals

The requirements model RM from Chapter 4 contains a set of requirements formalized as
R1, R2, … , Rk where k ≥ 1. P1, P2, P3, …, Pk are formulas for R1, R2, … , Rk in conjunctive
normal form. Therefore, PRM can also be represented in the following way.

(71) PRM = P1  P2  …  Pk

5.3 Classification of Changes in Requirements 129

Please note that if the requirements R1, R2, …, Rk are written as formulas 1x , 2x , …,

kx with 1 , 2 , …, k in CNF, we have the following: (PRM = x (1  2  3 …

k)).

Refactoring
Refactoring is a change (changes) in the requirements model in order to improve the
structure of the model without modifying overall system properties [82]. Changes to the
model caused by refactoring do not affect the properties in the whole requirements model.
We formalize the refactoring in the following.

RM  RMl denotes a series of changes for model refactoring where RM is the requirement
model before the changes and RMl is the requirement model after the changes. PRM and PRMl
are formulas for RM and RMl. PRM and PRMl are described in the conjunctive normal form in
the following.

(72) PRM = PRMl = x (p1  …  pn), where n ≥ 1 and pn is disjunction of literals

In refactoring, changes to the model do not affect the conjunctive normal form (CNF) of
the formula of the requirements model although the CNFs of formulas of some
requirements in the model are changed. (SRM = SRMl) where SRM is the set of systems that
satisfy PRM and SRMl is the set of systems that satisfy PRMl.

Domain Changes
Domain changes are the changes in the requirements model in order to modify overall
system properties. Changes to the model caused by domain changes do affect the properties
in the whole requirements model and usually alter the set of systems that satisfy the
requirements. We formalize the domain changes in the following.

RM  RMl denotes a series of changes caused by domain change where RM is the
requirement model before the changes and RMl is the requirement model after the changes.
PRM and PRMl are formulas for RM and RMl. We have the following.

(73)  equals(PRM, PRMl)

If two formulas have the same predicate symbols and arguments, and they both have either
negation or not, these two formulas are equal. If there are contradicting requirements in the
model, SRM = 0 where SRM is the set of systems that satisfy PRM. Domain changes will not

130 Chapter 5 Change Impact Analysis in Requirements Models

change the set of systems that satisfy the requirements in the model unless the conflicts in

the model are resolved. For domain changes (SRM  SRMl) where SRM  0.

Rationale of changes is important since it is a factor in order to determine the change
alternatives for change propagation (see the example derivation of change alternatives for
change propagation in Section 5.4).

5.4 Change Propagation and Change Consistency Checking

Change propagation aims at deducing new proposed changes based on an initial set. Change
consistency checking identifies contradicting proposed changes. We provide change
propagation defined as a change impact function. Only domain changes are considered in
the approach. Given the type of changes, we individually describe rules to determine the
impact of each change type. By using the formal semantics of requirements, relations and
changes, it is possible to derive whether or not (possible) impacts are caused by a change.
The change impact function takes a change type and a requirement to which the change is
introduced as input, and produces a set of decision trees as output. A decision tree contains
decisions taken for propagating changes by traversing the requirements model. The
following is the definition of the change impact function:

impact : SCT  SR  SSRR  SSDT

where SCT is the set of change types, SR is the set of requirements, SSRR is the set of sets
of requirements relations, and SSDT is the set of sets of decision trees for changes.

A decision tree is expressed as a sentence in a language with the following grammar.

<DT-C> ::= <Change > | <Change > <And>“(” <DT-C> “)” |

 <DT-C> <Boolean-Operator> <DT-C> | “(” <DT-C> “)”

<Change> ::= <Change-Type> ID

<Change-Type> ::= “No Impact in” | “Delete Requirement” |

 “Delete Property of Requirement” |

 “Delete Constraint of Property of Requirement” |

 “Add Requirement” | “Add Property to Requirement” |

 “Add Constraint to Property of Requirement” |

5.4 Change Propagation and Change Consistency Checking 131

 “Change Property of Requirement” |

 “Change Constraint of Property of Requirement” |

 “Add Relation” | “Delete Relation”

<Boolean-Operator> ::= <Exclusive-or>|<And>

<Exclusive-or> ::= “|”

<And> ::= “&”

ID denotes identifiers.

The algorithm for the change impact function is based on traversing the requirements model
and propagating change from one requirement to another related requirement. The impact
function propagates change from one requirement to other related requirements and returns
the set of decision trees. We give the overview of the algorithm for the change impact
function in the following:

1 Set sdt = empty-set
2
3 impact(ChangeType c, Requirement r, Set srl): Set {
4
5 Set visited = empty-set // set of visited requirements
6 DecisionTree dt = empty
7 Requirement rq = empty
8
9 dt = createDT(r, c)
10
11 visited = addVisited(r, visited)
12
13 If (srl is an empty-set) { Return empty-set }
14
15 ForEach relation rl  srl {
16 rq = getRequirement(r, rl)
17
18 If (Not rq  visited) { propagateChange(rq, rl, dt, visited) }
19 }
20
21 Return sdt
22 } //End of the impact function

The variable declerations are done in line 1 and lines 5-7. sdt is a variable for the set of
decision trees and it is global for the functions impact, propagateChange and expandDecisionTrees

132 Chapter 5 Change Impact Analysis in Requirements Models

(see line 1). The requirement to which the change is proposed is the starting requirement
(Requirement r in line 3). The algorithm creates a decision tree for each unvisited
requirement directly related to the starting requirement (see line 9). Once the algorithm is
initiated, only the starting requirement is visited (see line 11). If there is no requirement
related to the starting requirement, there is no impacted requirement and the function
returns an empty set (see line 13). Each decision tree has a root node including the proposed
change and the starting requirement. For each unvisited related requirement, the change is
propagated (see lines 15-19). If the related requirement is not visited before, then the
propagateChange function is called (see line 18). The impact function returns the set of decision
trees (see line 21). The propagateChange function propagates the change from the starting
requirement to the unvisited related requirement by expanding the decision tree. The
overview of the algorithm for the propagateChange function is the following:

1 propagateChange(Requirement rq, Relation rl, DecisionTree dt, Set visited) {
2
3 Set cvisited = empty-set // copy of the set of visited requirements
4 DecisionTree cdt = empty // copy of the decision tree
5 Set srl = empty-set // set of relations
6 Requirement req = empty
7 Relation rlt = empty
8
9 cdt = copyDT(dt)
10
11 expandDecisionTree(cdt, rq, rl)
12
13 cvisited = addVisited(rq, visited)
14
15 srl = getRelations(rq)
16
17 ForEach relation rlt  srl {
18 req = getRequirement(rq, rlt)
19
20 If (Not req  cvisited) { propagateChange(req, rlt, cdt, cvisited) }
21 }
22
23 If No requirement rqt such that
24 (getRelation(rqt, rq)  srl)  (rqt  cvisited) {
25 addDT(cdt, sdt)
26 }
27 } //End of the propagateChange function

First the decision tree is copied (see line 9). Alternative proposed changes are identified for
the unvisited related requirement. The change alternatives in the propagation are determined

5.4 Change Propagation and Change Consistency Checking 133

based on the semantics of change type and the requirements relation (see Table 5.2 which is
explained later). The copied decision tree is expanded with the change alternatives (see line
11). The requirement to which the change is propagated is marked as visited (see line 13).
The algorithm is iterative (see lines 15-21). For each decision tree, the set of visited
requirements is copied and the directly related requirement to which the change alternatives
are introduced becomes the starting requirement. Changes are propagated for each unvisited
requirement directly related to the new starting requirement. If there is more than one
unvisited related requirement, the decision tree is copied. If there is no unvisited requirement
directly related to the starting requirement, the decision tree is added to the set of decision
trees (see lines 23-26). Please note that the impact function returns the set of decision trees.
The algorithm for the expandDecisionTree function is the following:

1 expandDecisionTree(DecisionTree dt, Requirement rq, Relation rl) {
2
3 Set sct = empty-set // set of change types
4
5 ForEach leaf node ln in dt {
6 sct = getChangeTypes(ln, rq, rl)
7
8 ForEach change type ct  sct {
9 addChild(ln, rq, ct)
10 }
11 }
12 } //End of the expandDecisionTree function

Decision trees are expanded with a set of alternative proposed changes based on BNF given
before. For each leaf node of the decision tree, a set of alternative proposed changes is
identified for the unvisited related requirement (see line 6). Each alternative becomes a node
in the decision tree (see lines 8-10).

Figure 5.4(a) gives an example requirements model where the change ‘Delete Property of
Requirement’ is proposed for requirement R2. Figure 5.4(b) shows the four paths created
while the change impact algorithm traverses the requirements model for the proposed
change in requirement R2.

Figure 5.5 illustrates the decision trees created for the example model in Figure 5.4(a). The
operator Exclusive-or in the grammar is represented as branches of the decision trees in
Figure 5.5 while the operator And in the grammar is the “&” in the nodes of the decision
trees.

134 Chapter 5 Change Impact Analysis in Requirements Models

Figure 5.4 Example Requirements Model and Traversing the Model for the Proposed Change

The main steps in the change impact function algorithm are the following:

 Creating a Decision Tree for Each Unvisited Requirement Related to Starting Requirement (see
the impact function). In Figure 5.4(b), the change ‘Delete Property of Requirement’ is
introduced to the requirement R2. The algorithm creates a decision tree (Decision Tree
for Path 1, Decision Tree for Path 2 and Decision Tree for Path 4 in Figure 5.5) for each
unvisited directly related requirement (R1, R3 and R4 in Figure 5.4(b)). Decision trees
have a starting node ‘Delete Property of Requirement R2’.

 Propagating Change for Each Unvisited Related Requirement (see the propagateChange
function). Change alternatives are identified for unvisited requirements (R1, R3 and
R4) directly related to R2 in Figure 5.4(b). For instance, R1 is related to R2 through
the requires relation. The alternatives for propagating the change ‘Delete Property of
Requirement R2’ from R2 to R1 are ‘No impact in R1’, ‘Delete Relation’ and ‘Delete
R1 & Delete Relation’ (the Decision Tree for Path 1 in Figure 5.5). These alternatives are

given in Table 5.2 where (Ri
pt

 Ril) and (Ri requires Rk).

 Expanding Decision Tree for Each Unvisited Related Requirement (see the expandDecisionTree
function). Each decision tree created for directly related requirements (the Decision
Tree for Path 1 for requirement R2, the Decision Tree for Path 2 for requirement R3 and
the Decision Tree for Path 4 for requirement R4 in Figure 5.5) is expanded with
alternative proposed changes. For instance, the change alternatives ‘No impact in R1’,
‘Delete Relation’ and ‘Delete R1 & Delete Relation’ for R1 become the nodes of the
Decision Tree for Path 1 in Figure 5.5.

5.4 Change Propagation and Change Consistency Checking 135

Figure 5.5 Decision Trees for the Example Requirements Model

136 Chapter 5 Change Impact Analysis in Requirements Models

 Iterating (see the propagateChange function). Directly related requirements (R1, R3 and
R4 in Figure 5.4(b)) become the starting requirement and the algorithm is reinitiated
for each of them. For R1, there is no unvisited directly related requirement and the
Decision Tree for Path 1 in Figure 5.5 is not expanded further. For R3, there are two
unvisited directly related requirements (R4 and R5) and the Decision Tree for Path 2 is
copied (see the Decision Tree for Path 3). The Decision Tree for Path 2 is expanded with
change alternatives for R5 and the Decision Tree for Path 3 is expanded with change
alternatives for R4.

The output of the change impact function is a set of decision trees that contains all
alternatives for a change to be propagated in the whole model. For instance, the output of
the change impact function for the proposed change in the example requirements model in
in Figure 5.4(a) is the set of decision trees in Figure 5.5. The requirements engineer can also
select among the change alternatives to propagate the change from one requirement to
another step by step. Our tool (see Section 5.6) supports both the decision tree generation
and step by step propagation. In the following we explain how change alternatives are
derived for change propagation based on the semantics of change types, rationale of changes
and requirements relations.

Change Propagation. This is the activity of deducing new proposed changes for
requirements related to the requirement which already has a proposed change. The change
alternatives are determined based on the semantics of change types, rationale of changes and
requirements relations. Table 5.2 gives the change impact alternatives for domain changes.
Each cell in the table gives change alternatives in order to propagate the changes in the rows
by using the relations in the columns. Please note that both directions of the relations are
explored in Table 5.2.

Table 5.2 Change Impact Alternatives for Domain Changes

Changes

Requirements Relation Types

Ri contains Rk Ri refines Rk Ri partially refines Rk Ri requires Rk Ri conflicts Rk

Add Rx No impact No impact No impact No impact No impact
Delete
Relation

No impact No impact No impact No impact No impact

Delete Ri

Delete Rk &
Delete relation

Delete Rk &
Delete relation Delete property of Rk

Delete relation
| (Delete Rk &
Delete relation)

Delete relation

Ri
pt

 Ri
l

No impact

Add property to
Rk | Delete Delete relation No impact

No impact

5.4 Change Propagation and Change Consistency Checking 137

relation

Ri
pt

 Ri
l

No impact |
Delete relation
| (Delete Rk &
Delete relation)
| Delete
property of Rk

Delete property
of Rk | (Delete
property of Rk &
Delete relation)

Delete property of Rk

No impact |
Delete relation
| (Delete Rk &
Delete relation)

No impact |
Delete relation

Ri

lptpt

 Ri
l

No impact |
Change
property of Rk

Change property
of Rk | (Change
property of Rk &
Delete relation)

Change property of Rk

| (Change property of
Rk & Delete relation)

No impact |
Delete relation
| (Delete Rk &
Delete relation)

No impact |
Delete relation

Ri
ct

 Ri
l

No impact |
Add constraint
to property of
Rk | Delete
relation

No impact

No impact

No impact

No impact

Ri
ct

 Ri
l

No impact |
Delete
constraint of
property of Rk

No impact |
Delete relation |
Delete constraint
of property of Rk
| (Delete
constraint of
property of Rk &
Delete relation)

No impact |
Delete relation |
Delete constraint of
property of Rk |
(Delete constraint of
property of Rk &
Delete relation)

No impact |
Delete relation
| (Delete Rk &
Delete relation)

No impact |
Delete relation

Ri
lctct

 Ri
l

No impact |
Change
constraint of
property of Rk

No impact |
Change
constraint of
property of Rk

No impact |
Change constraint of
property of Rk

No impact |
Delete relation
| (Delete Rk &
Delete relation)

No impact |
Delete relation

Delete Rk

Delete property
of Ri

Delete Ri &
Delete relation

Delete Ri & Delete
relation

Delete relation
| (Delete Ri &
Delete relation)

Delete relation

Rk
pt

 Rk
l

Add property
to Ri | Delete
relation

Add property to
Ri | Delete
relation

No impact No impact

No impact

Rk
pt

 Rk
l

Delete property
of Ri

Delete property
of Ri | (Delete
property of Ri &
Delete relation)

No impact | Delete
relation | Delete
property of Ri |
(Delete Ri & Delete
relation)

No impact |
Delete relation
| (Delete Ri &
Delete relation)

No impact |
Delete relation

Rk

lptpt

 Rk
l

Change
property of Ri

Change property
of Ri | (Change
property of Ri &
Delete relation)

No impact | Change
property of Ri |
 (Change property of
Ri & Delete relation)

No impact |
Delete relation
| (Delete Ri &
Delete relation)

No impact |
Delete relation

Rk
ct

 Rk
l

Add constraint
to property of
Ri | Delete
relation

Add constraint to
property of Ri |
Delete relation

No impact |
Add constraint to
property of Ri

No impact

No impact

Rk
ct

 Rk
l

Delete
constraint of
property of Ri

Delete constraint
of property of Ri
| (Delete
constraint of
property of Ri &
Delete relation)

No impact | Delete
constraint of Ri |
(Delete constraint of
property of Ri &
Delete relation)

No impact |
Delete relation
| (Delete Ri &
Delete relation)

No impact |
Delete relation

Rk
lctct

 Rk
l

Change
constraint of

Change
constraint of

No impact |
Change constraint of

No impact |
Delete relation

No impact |

138 Chapter 5 Change Impact Analysis in Requirements Models

property of Ri property of Ri property of Ri | (Delete Ri &
Delete relation)

Delete relation

The following is a change propagation example.

Change Propagation Example

In the following there are two requirements for the course management system:

R61: The system shall allow lecturers to specify enrolment policies based on grade, first-
come first-serve (fcfs), and department.

R62: The system shall allow lecturers to specify enrolment policies based on grade.

where R61 contains R62.

For the course management system the stakeholder needs a change. Specifying enrolment
policies based on grade is not needed any more. One of the properties given in requirement
R61 is allowing lecturers specifying enrolment policies based on grade. Therefore, we
propose the change ‘Delete property of Requirement’ for R61.

Proposed Change: Delete Property of Requirement R61

Description of Change: Specifying enrolment policies based on grade is not needed any
more.

The proposed change is propagated from R61 to R62 through the contains relation in the
following:

Propagation from R61 to R62: According to Table 5.2 the alternatives to propagate the
proposed change `Delete Property of Requirement R61` to requirement R62 are (No impact
| Delete Requirement R62 | Delete Property of Requirement R62).

The property to be deleted from requirement R61 is specifying enrolment policies based on
grade. It should also be deleted from requirement R62. Since this property is the only
property given in requirement R62, we choose the change ‘Delete Requirement R62’ among
the change alternatives.

The following is the derivation of change alternatives for change propagation where Ri
pt


Ril and Ri contains Rk.

Change Alternatives:

 Change alternatives for Rk where (Ri
pt

 Ril) and (Ri contains Rk)

 = No impact | Delete Rk | Delete Property of Rk

5.4 Change Propagation and Change Consistency Checking 139

Derivation:

 Let Ri and Rk be requirements. Pi and Pk are formulas for Ri and Rk.

= {By using formalization of the contains relation}

 Ri contains Rk iff Pi is derived from Pk as follows:

 Pi = Pk  Pl

 where Pi = x ((p1 … pn)  (q1 … qm)); m, n ≥ 1 and Pl denotes properties that are not
captured in Pk

= {By using formalization of the change type}

 Ri
pt

 Ril iff Pil is derived from Pi as follows:

 Pil = x (p1 ... pn); n ≥ 1

 where x (q1 … qm) denotes properties that are captured in pt.

= {By using the formalization of domain changes}

 Properties x (q1 … qm) that are captured in pt should be deleted from the requirements
model RM.

= {By using formalization of the contains relation}

 There are three alternatives for Pk and impact on Rk

 (i) Pk = x (z1 … zt); z ≥ 1, {z1, … , zt}{p1, … , pn} then No Impact

 (ii) Pk = x (q1 … qm); m ≥ 1 then x (q1 … qm) should also be deleted. It means Delete
Rk & Delete Relation

 (iii) Pk = x ((z1 … zt) (q1 … qm)); t, m ≥ 1 then x (q1 … qm) should also be deleted.
It means Delete Property of Rk

All change alternatives given in Table 5.2 are derived from the semantics of change types,
requirements relations and rationale of changes as shown above. Change propagation is
implemented in a rule based form in TRIC (see Section 5.6). Not all derivations are given
due to their size.

Proposed changes and propagated proposed changes may cause a conflict. In the following
we explain how conflicts between proposed changes are identified.

Change Consistency Checking. This is the activity of identifying the proposed changes
whose existence may cause a contradiction. Stakeholders may require changes that contradict
with each other or the requirements engineer may propagate multiple changes to the same
requirement in which the propagations cause a contradiction. Table 5.3 gives the
contradicting changes based on semantics of domain changes and change types. The rows

140 Chapter 5 Change Impact Analysis in Requirements Models

and columns of the table are change types. Two changes for the same requirement might
cause a contradiction (cells marked as maybe in Table 5.3) and these changes should be
inspected, or there is an ensured contradiction (cells marked as yes) caused by these changes.
Cells in Table 5.3 are marked as no if there is no contradiction caused by these changes.

Table 5.3 Contradicting Changes based on Semantics of Domain Changes and Change Types

Change
Type

Delete R R

pt

 Rl R
pt

 Rl R

lptpt

 Rl R
ct

 Rl R
ct

 Rl R
lctct

 Rl

No impact

Delete R

no yes no yes yes no yes no

R
pt

 Rl
yes no no no no no no no

R
pt

 Rl
no no no maybe maybe no maybe no

R

lptpt

 Rl
yes no maybe maybe maybe maybe maybe no

R
ct

 Rl
yes no maybe maybe no maybe maybe no

R
ct

 Rl

no no no maybe maybe no maybe no

R
lctct

 Rl
yes no maybe maybe maybe maybe maybe no

No impact no no no no no no no no

The following is an ensured inconsistency example.

Ensured Inconsistency Example

The following is one of the requirements for the course management system:

R7: The system shall provide a messaging facility.

There are two changes in stakeholders’ needs for requirement R7. The first change is that
there is no need for a messaging facility any more. The second one is that sms messaging
should be provided. The followings are two proposed changes for requirement R7 based on
the changes in the stakeholders’ needs.

Proposed Change 1: Delete Requirement R7

Description of Proposed Change 1: There is no need for a messaging facility any more.

Proposed Change 2: Add Constraint to Property of Requirement R7

Description of Proposed Change 2: Sms messaging should be provided.

5.4 Change Propagation and Change Consistency Checking 141

The second change is stating sms messaging as a new constraint while the first change states
messaging facility is not needed at all. Therefore, there is an ensured inconsistency for these
two proposed changes (see Table 5.3).

The following is a proof of this ensured inconsistency.

Ensured Inconsistency: (R
ct

 Rl)  (Delete R)

Proof Sketch: Let R
ct

 Rl.

= {By using the semantics of domain changes and the change type ‘Add Constraint to Property of
Requirement’}

Pl = x ((p1l ... pnl)  (q1 ... qm)); n ≥ 1, m ≥ 0 and (Pl → P) holds (a)

Let Delete R.

= {By using the semantics of domain changes and the change type ‘Delete Requirement’}

P = x ((p1 ... pn)  (q1 ... qm)) and P does not hold for the whole model (b)

Pl in (a) states x ((p1l ... pnl)  (q1 ... qm)) holds although x ((p1 ... pn)  (q1 ... qm)) does

not hold because P in (b) does not hold any more. Therefore, (R
ct

 Rl) and (Delete R)
contradict one another.

The following is a possible inconsistency example.

Possible Inconsistency Example

Consider the following requirement.

R61: The system shall allow lecturers to specify enrolment policies based on grade, first-
come first-serve (fcfs), and department.

There are three properties in requirement R61: (i) allow lecturers to specify enrolment
policies based on grade, (ii) allow lecturers to specify enrolment policies based on first-come
first-serve (fcfs), and (iii) allow lecturers to specify enrolment policies based on department.

There are two changes in stakeholders’ needs for requirement R61. The first change is that
there is no need of specifying enrolment policies based on grade any more. The second one
is that lecturers should be allowed to specify enrolment policies based on department only
which they are affiliated with. The following are two proposed changes for requirement R61
based on the changes in stakeholders’ needs.

142 Chapter 5 Change Impact Analysis in Requirements Models

Proposed Change 1: Delete Property of Requirement R61

Description of Proposed Change 1: There is no need of specifying enrolment policies
based on grade any more.

Proposed Change 2: Add Constraint to Property of Requirement R61

Description of Proposed Change 2: Lecturers should be allowed to specify enrolment
policies based on department only which they are affiliated with.

The first change states specifying enrolment policies based on grade is not needed any more.
The second change states a constraint about departments for enrolment policies. There is a
need of checking if changes are referring to the same property or not. Since two changes
refer to different properties, there is no inconsistency.

The following is a proof of this possible inconsistency.

Possible Inconsistency: (R
pt

 Rl)  (R
ct

 Rl)

Proof Sketch: Let R
pt

 Rl.

= {By using the semantics of domain changes and the change type ‘‘Delete Property of Requirement’}

 Pl = x ((p1 ... pn)); m, n ≥ 1 and x (q1 ... qm) does not hold any more (a)

Let R
ct

 Rl.

= {By using the semantics of domain changes and the change type ‘Add Constraint to Property of
Requirement’}

There are two alternatives for applying the change type ‘Add Constraint to Property of
Requirement’ with the change type ‘Delete Property of Requirement’

Pll = x (p1l ... pkl ... pn) where p1l, p2l, …, pk–1l, pkl are disjunction of literals

 such that pul → pu for all u  1..k and k  n (b)

Pll = x ((p1 ... pn) (q1l ... qkl ... qm)) where q1l, q2l, …, qk–1l, qkl are disjunction of literals

 such that qul → qu for all u  1..k and k  m (c)

5.5 Discussion on the Approach 143

Pl in (a) and Pll in (b) do not have any contradiction. The change type ‘Add Constraint to
Property of Requirement’ can be applied to requirement R with the change type ‘Delete Property of
Requirement’ if these two changes are applied to different properties in requirement R.

Pl in (a) and Pll in (c) have a contradiction since the change type ‘Add Constraint to Property
of Requirement’ is applied to x (q1 ... qm) which are not valid anymore (see (a)). Therefore, (R
pt

 Rl)  (R
ct

 Rl) may contradict one another.

Table 5.3 is implemented in a rule based form in TRIC. The consistency rules are checked
for proposed and propagated changes (see Section 5.6).

5.5 Discussion on the Approach

The formalization of changes relies on FOL and therefore the limitations discussed in
Chapter 4 are also valid here.

As we stated in Chapter 4, the requirements engineer does not need to know the details of
the formalization since he/she can be guided by tutorials [94] that provide an informal
explanation of the relations. Similar to tutorials for requirements relations, tutorials can be
provided for the interpretation of informal change request based on our formal change
classification. The requirements engineer receives the change request from the stakeholder
who might be a user of the system, system developer or the project manager. Then, he/she
interprets the informal change request based on the tutorial in order to propose and
propagate changes over the requirements model.

Our approach has limitations for some change types and relation types. Change alternatives
in Table 5.2 are used only if there is any requirement related to the changed requirement. For
instance, adding a new requirement (Add Rx) has no impact on other requirements in the
requirements models according to Table 5.2. The requirements engineer has to determine
relations for the added requirement and find if there is any impact on other requirements.
Also, there may be relations that are missed by the requirements engineer during modeling
but appear later (see Chapter 6).

There might be multiple relations between two requirements. The priority is given to the
intensionally defined relations for propagation of changes through multiple relations. For
instance, we stated that the refines and contains relations imply the requires relation. Since refines
and contains are given in intensional terms, our approach uses refines and contains to determine
change alternatives.

144 Chapter 5 Change Impact Analysis in Requirements Models

In the implementation of change propagation and change consistency checking, change
impact alternatives in Table 5.2 and contradicting changes in Table 5.3 are hard-coded.
When there is a new relation and/or change type, additional manual proofs have to be
implemented in the current tool support.

5.6 Tool Support

In Chapter 4, we described the Tool for Requirements Inferencing and Consistency
Checking (TRIC). We extended TRIC with features for change impact analysis in
requirements [235]. In this section, we give the details of the extension. In Section 5.6.1, we
depict the usage of the tool in the context of a requirements modeling process. Section 5.6.2
gives the architecture of the tool. Section 5.6.3 describes the main features of the tool with
some screenshots.

5.6.1 The Modeling Process
We depict the usage of the tool in a requirements modeling process with change propagation
and change consistency checking. This process is based on an analysis of activities during
change impact analysis. Figure 5.6 gives a UML activity diagram of the process.

The process consists of the following activities.

Modeling Requirements. This activity takes the requirements document as input and
produces the requirements model which is an instance of the requirements metamodel.

The modeling process is forked into three activities: proposing change, propagating change and
checking change consistency.

Proposing Change. This activity takes the requirements model as input and produces the
proposed changes in the requirements model as output. The requirements engineer proposes
changes based on the interpretation of the changes in stakeholder’s needs. The activity
denotes proposing a single change in the model. The modeling process is iterative and the
requirements engineer may introduce multiple changes consecutively without propagating
the proposed changes.

Propagating Change. The activity takes the requirements model with proposed changes as
input and produces the propagated changes in the requirements model as output. The
activity is semi-automatic. Propagation alternatives described in Table 5.2 are applied. The
requirements engineer has to select one of the propagation alternatives proposed by the tool.
The activity denotes one step propagation of a single change in the model. The modeling

5.6 Tool Support 145

process is iterative and the requirements engineer may propagate multiple changes multiple
times consecutively.

Figure 5.6 Requirements Modeling Process with Change Propagation and Change Consistency Checking

Checking Change Consistency. The activity takes the requirements model including the
proposed changes and gives inconsistencies between proposed changes as output.

If there is no need to propose, propagate or update any changes further, the requirements
engineer starts updating the requirements model according to proposed changes.

Updating Model with Changes. This activity takes the requirements model with proposed
changes as input and produces the updated requirements model as output. The activity is
manual. The requirements engineer changes requirements according to proposed changes.

146 Chapter 5 Change Impact Analysis in Requirements Models

Iterating. The process given in Figure 5.6 is iterative: the requirements engineer may return
to the modeling activity in order to propose/propagate changes and/or update changes. If
there is no need to update the model, the process is terminated.

5.6.2 Tool Architecture
The tool is composed of three layers as already given in Chapter 4: a) the User Interface (UI)
layer, b) the Application Layer, and c) the Data Layer. Figure 5.7 gives the extended version of
the layered architecture. We extended some of the existing components (Consistency
Checking Engine, Visualization Engine, and Modeling Environment) in the architecture of
TRIC and added some new components (Change Propagation Engine and XML file) for
change impact analysis features. In this section, we explain only the extended and added
components (colored gray in Figure 5.7).

D
at

a
la

ye
r

A
pp

lic
at

io
n

la
ye

r
U

I l
ay

er

Figure 5.7 Layered Architecture of the Tool

Change Proposing & Propagation Engine. It supports the proposing change and propagating
change activities. The engine asks the requirements engineer to give the relevant change type
for the selected requirement. Change propagation is done by the engine based on the
semantics of the proposed change and the requirements relations.

5.6 Tool Support 147

Consistency Checking Engine. This component allows checking consistency of
requirements relations based on semantics of relations (see Chapter 4). It is extended to
support the checking change consistency activity.

Visualization Engine. It accesses the Data layer in order to get requirements and relations
to be visualized in diagrams (see Chapter 4). In addition to that, the visualization engine is
used to show the results of change impact analysis such as the propagation path of a change.

Modeling Environment. This component allows the creation, storage, and retrieval of
requirements models and bridging the User Interface layer with the Data layer (see Chapter
4). It is extended for the updating model with changes activity in Figure 5.6.

XML File. The proposed and propagated changes are stored in XML format. We split up
the requirements model in OWL ontology and proposed & propagated changes in XML file
for separation of concerns. The XML file always refers to the relevant OWL ontology to
relate the changes with the requirements model. Therefore, we can have different versions of
proposed & propagated changes for the same requirements model.

5.6.3 Tool Features
We describe the most important features of the tool: proposing changes, propagating changes,
displaying inconsistencies in proposed changes, implementing proposed changes in the requirements model, and
predicting impact of proposed changes.

Proposing changes. Figure 5.8 gives the GUI for proposing changes. The left-hand side of
the window lists the requirements in the model. The right-hand side of the window shows
the details of the selected requirement (R7). The Propose Change window opened by right
clicking on the selected requirement (R7) is used to propose a change with a type and
description of the change.

After proposing a change, the tool lists the requirements related to the changed requirement.
These requirements are candidate impacted (CI) requirements in which the requirements
engineer can propagate the change (see Figure 5.9).

148 Chapter 5 Change Impact Analysis in Requirements Models

Figure 5.8 GUI for Proposing Changes

Figure 5.9 Output of the Proposing Change Activity

5.6 Tool Support 149

The left-hand side of the window lists the requirements in the model with the proposed
change requirement (R7) tagged as Starting Impacted (SI) and related requirements (R16,
R18, and R24) tagged as Candidate Impacted (CI). The requirements engineer can select the
candidate impacted requirements (R16, R18, and R24) to propagate the proposed change to
them. At the bottom of the left-hand side of the window, the numbers about change impact
analysis such as numbers of impacted requirements and uninspected requirements are listed.

Propagating changes. Figure 5.10 gives the GUI for propagating proposed changes which
supports the propagating change activity in Figure 5.6.

Figure 5.10 GUI for Propagating Proposed Changes

The Determine Proposed Impact window is opened by clicking on one of the candidate impacted
requirements (R16). The tool asks the type of the proposed change for candidate impacted
requirement with a change description.

We support a matrix view in order to represent and propagate changes. Such a view is also
available in commercial requirements management tools, such as RequisitePro in order to
determine the impacted requirements. Figure 5.11 illustrates the matrix view.

150 Chapter 5 Change Impact Analysis in Requirements Models

Figure 5.11 Matrix View for Propagating Proposed Changes

The arrows (green and red) with direction in the cells denote the existence of requirements
relations with their directions. In addition to that, the red arrows indicate the candidate
impacted requirements for the proposed change in the selected requirement (R7) listed at the
top of the window. By clicking the red arrows, the tool provides the Determine Proposed
Impact window, which is similar to the window in Figure 5.10. Since there can be multiple
proposed changes in the requirements model, the tool has a different matrix view for each
proposed change.

The GUI for propagating proposed changes in Figure 5.10 and the Impact Matrix view in
Figure 5.11 do not allow analysis of multiple proposed changes simultaneously. To support
simultaneous analysis of multiple impact propagations, tool support for building decision
trees is provided. Figure 5.12 shows the interactive decision tree builder for propagating
changes.

5.6 Tool Support 151

Figure 5.12 Interactive Decision Tree Builder for Propagating Proposed Changes

Each arrow in Figure 5.12 indicates a decision captured by the target node of the arrow. The
decision tree can be expanded by making decisions (the Make Decision button in Figure 5.12).
Once the analysis of the interactive decision tree is concluded, the requirements engineer can
select a node and apply decisions captured by the path from the tree root to the selected
node (the Use Analysis button in Figure 5.12).

Displaying inconsistencies in proposed changes. Figure 5.13 gives the screenshot of the
tool for the output of the checking change consistency activity. The window in Figure 5.13 has a
list view including three columns. The first column of the list view gives the requirements
that have contradicting proposed changes. The second column shows if the inconsistency is
ensured or possible. The third column lists proposed changes that cause the inconsistency for
the given requirement.

The tool provides an explanation of contradicting proposed changes, for example, the
contradicting proposed changes “Add Constraint to Property of Requirement” and “Delete
Requirement” for requirement R16 (see Figure 5.14).

152 Chapter 5 Change Impact Analysis in Requirements Models

Figure 5.13 Output of the Checking Change Consistency Activity

Figure 5.14 Explanation of the Proposed Change of R16 Causing the Inconsistency

Figure 5.14 shows the propagation path for the proposed change “Add Constraint to
Property of Requirement” in R16. R7 is the requirement where first the change is proposed
and this change is propagated to R16 as “Add Constraint to Property of Requirement” by
using the refines relation between R7 and R16.

Implementing proposed changes in the requirements model. The tool allows the
requirements engineer to implement proposed and propagated proposed changes according
to the propagation path. The first proposed change in the path is implemented first (see
Figure 5.15). Then, propagated proposed changes are implemented (see Figure 5.16).

5.6 Tool Support 153

Figure 5.15 GUI for Implementing Proposed Changes

Figure 5.16 GUI for Implementing Propagated Proposed Changes

154 Chapter 5 Change Impact Analysis in Requirements Models

Predicting impact of proposed changes. The tool provides impact prediction for a
proposed change. All possible propagation paths in the requirements model are traversed in
order to determine alternative change types for the propagation. Figure 5.17 gives the output
of the impact prediction for the proposed change “Add Constraint to Property of
Requirement” in R7.

The window in Figure 5.17 has a list view including three columns. The first column of the
list view gives requirements in the model. The second column shows if the requirement is
impacted (no, yes, or maybe). The third column lists the impact type if there is any impact. For
instance, in Figure 5.17, R16 might be impacted by the proposed change “Add Constraint to
Property of Requirement” in R7 and the type of change for the possible impact in R16 is
“Add Constraint to Property of Requirement”.

The tool also provides the propagation paths for the impacts listed in Figure 5.17. Figure
5.18 gives the propagation paths for the impact in R16. The first part of the window in
Figure 5.18 gives the types of impact for R16. There are two change types to be propagated
for R16: “Add Constraint to Property of Requirement” or “No Impact”. The second part of
the window shows the requirements in the propagation path.

Figure 5.17 Output of the Impact Prediction for the Proposed Change in R7

5.6 Tool Support 155

Figure 5.18 Output of the Prediction Investigation for the Proposed Change in R16

Figure 5.19 GUI for the Visualization of the Propagation Paths in Impact Prediction

156 Chapter 5 Change Impact Analysis in Requirements Models

Change propagation paths generated by the impact prediction are visualized by the tool. For
instance, the first row in Figure 5.18 lists the propagation path from R7 to R16 with the
change “Add Constraint to Property of Requirement” for R16. The visualization of this path
is in Figure 5.19.

The impact prediction option allows showing the impact of the proposed change for the
whole model. It is useful for large models where the matrix view does not scale well.

5.7 Example: Course Management System

In this section, we illustrate our approach and tool support with the CMS example which we
also use in Chapter 4. All requirements used in this chapter can be found in Appendix B. We
performed two iterations of the modeling process for the example.

 In the first iteration, we modeled the textual requirements and their relations. This is
the modeling activity given in Chapter 4. Then, we proposed changes and propagated
changes with the help of the tool.

 In the second iteration, we updated the model in order to correct the inconsistent
proposed changes. We implemented the approved changes in the requirements
model.

The example illustrates potential benefits and limitations of the approach for larger case
studies. Change impact alternatives, elimination of false positive impacts in change
propagation and consistency checking of changes are the potential benefits of the approach
illustrated in this section. The main limitation is that the approach heavily depends on the
requirements relations. False requirements relations assigned by the requirements engineer
cause wrong propagation alternatives. Section 5.7.1 gives some proposed and propagated
changes in the example. In Section 5.7.2, we show some inconsistent proposed changes
detected in the example requirements model.

5.7.1 Proposing and Propagating Requirements Changes
Consider the following change to R7.

R7: The system shall provide a messaging facility.

Proposed Change is the following.

 Change: Add constraint to property of requirement

 Description of Change: Messaging facility should also contains sms and e-mail features

5.7 Example: Course Management System 157

R7 states a messaging facility where sms and e-mail features are introduced as types of
messages for messaging facility in the description of change. Since these features are
constrains for the property messaging facility, the type of change is ‘Add constraint to
Property of Requirement’. Then, the proposed change is propagated to requirements related
to R7. Figure 5.20 gives requirements related to R7 with depth 2 (dotted arrows are inferred
relations).

Figure 5.20 Requirements Related to R7 with Depth 2

R16: The system shall allow messages to be sent to individuals, teams, or all course
participants at once.

R18: Teams are created by students inviting other students in the same course using the
messaging system.

R24: The system shall notify students about events (new messages posted, etc.).

R25: The system shall allow students to customize the notification behavior.

R117: The system shall allow the administration to evaluate courses through students by
means of a web-survey.

According to Table 5.2 in Section 5.4, there is no impact for R18, R24, R25 and R117, which
require R7, for the proposed change in R7. Then, we do not have to check R17, R74 and R72
since they are indirectly related to R7 through R18.

158 Chapter 5 Change Impact Analysis in Requirements Models

There are two change alternatives to propagate the proposed change from R7 to R16 via the
refines relation: ‘Add Constraint to Property of Requirement’ or ‘Delete Relation’. The change
type ‘Add Constraint to Property of Requirement’ is chosen among these two to be
proposed for R16 since the constraint added to R7 is also a constraint for R16.

Proposed Change for the requirement R16 is the following.

 Change: Add constraint to property of requirement

 Description of Change: Messages to be sent to individuals, teams, or all course
participants at once with both sms and e-mail.

The next propagation of proposed change is from R16 to related requirements. Figure 5.21
gives requirements related to R16 with depth 2 (inferred relations are not shown for
simplicity).

Figure 5.21 Requirements Related to R16 with Depth 2

R8: The system shall enable students to retrieve contact information of students and
lecturers of subscribed courses.

According to Table 5.2, for the proposed change in R16, there is no impact for R8 and R18
which are related to R16 with the requires relation. Then, we do not have to check R5, R6,

5.7 Example: Course Management System 159

R9, R12, R20, R97, R110 and R116 since they are indirectly related to R7 through R18.
There are no other requirements related to R16 and the change propagation is over.

5.7.2 Checking Consistency
In this section, we discuss inconsistencies which are detected by our tool. R16 is the
requirement which has the inconsistent proposed changes. They are the following:

Change 1: Add Constraint to Property of Requirement R16

Description of Change 1: Messages to be sent to individuals, teams, or all course
participants at once with sms and e-mail.

Change 2: Delete Requirement R16

Description of Change 2: Messaging individuals, teams, or all course participants is not
required any more.

According to Table 5.3, changes “Add Constraint to Property of Requirement” and “Delete
Requirement” cause an ensured inconsistency. Since the change “Add Constraint to Property
of Requirement” is a propagated proposed change, we also need to analyze change
propagation path of this change. Figure 5.22 gives the propagation path of the proposed
change for R16 in the inconsistency.

Figure 5.22 Propagation Path of the Proposed Change for R16 in the Inconsistency

According to the propagation path in Figure 5.22, the proposed change in R16 is caused by
propagating the change in R7 via the refines relation. In order to fix the inconsistency, the
requirements engineer has three options. He/she might decide that the proposed change
“Delete Requirement” in R16 is not valid, or the proposed change “Add Constraint to
Property of Requirement” in R7 is not valid. The third option is that the change alternative
“Delete Relation” is chosen to propagate the proposed change “Add Constraint to Property
of Requirement” in R7 to R16 (see Section 5.7.1). This decision has to be made as a result of
negotiation between the requirements engineer and the stakeholder who has the change
request.

160 Chapter 5 Change Impact Analysis in Requirements Models

5.8 Evaluation of the Approach

In this section we compare our approach with one of the industrial requirements
management tools IBM Rational RequisitePro. As we discuss in Section 5.9, most of the
approaches and tools like IBM Rational RequisitePro [119] do not focus on formal
semantics of requirements relations and change types. By using formal semantics we provide
a more precise change impact analysis in requirements models because we have the
following features in our approach:

 change alternatives in change propagation,

 elimination of false positive impacts in change propagation,

 consistency checking of changes.

In the following we compare our approach with RequisitePro based on these features.

Change Alternatives in Change Propagation. Our approach provides a classification of
changes in requirements models (see Table 5.1 in Section 5.3). The requirements engineer
proposes a change with a type before implementing the change in the model. The main
advantage of our approach with change types is that propagation alternatives are provided to
be choosen by the requirements engineer. Change alternatives provide information to the
requirements engineer about what to change in impacted requirements. Table 5.4 gives a part
of change impact alternatives for our approach and RequisitePro.

Table 5.4 Part of Change Impact Alternatives for Our Approach and IBM Rational RequisitePro

Changes

Requirements Relation Types

Relation Types in Our Approach Relation Type in
RequisitePro

Ri contains Rk

Ri refines Rk Ri partially

refines Rk
Ri requires Rk Ri conflicts Rk

Ri trace
from Rk

Ri trace to
Rk

Ri
pt

 Ri
l

No impact

Add
property to
Rk |
Delete
relation

Delete
relation

No impact

No impact

No impact
|Change
Rk

No impact
|Change Rk

Ri
pt

 Ri
l

No impact |
Delete
relation |
(Delete Rk &
Delete
relation)|

Delete
property of
Rk | (Delete
property of
Rk & Delete

Delete
property
of Rk

No impact |
Delete
relation |
(Delete Rk &
Delete

No impact |
Delete
relation

No impact
|Change
Rk

No impact
|Change Rk

5.8 Evaluation of the Approach 161

Delete
property of
Rk

relation) relation)

Rk

lptpt


Rk

l

No impact |
Change
property of
Rk

Change
property of
Rk |
(Change
property of
Rk & Delete
relation)

Change
property in
Rk |
(Change
property
of Rk &
Delete
relation)

No impact |
Delete
relation |
(Delete Rk &
Delete
relation)

No impact |
Delete
relation

No impact
|Change
Rk

No impact
|Change Rk

In Table 5.4 there are three change types and their propagation alternatives provided by our
approach and RequisitePro. RequisitePro has only two relation types (traceFrom and traceTo)
with informal definitions. As shown in Table 5.4, for each change type, RequisitePro
provides two alternatives (No impact or Change Rk) since there is only one change type (Change
requirement). In RequisitePro, the requirements engineer has to inspect the impacted
requirement in order to determine the type of change without any semantic information. In
our approach, the requirements engineer inspects the impacted requirement based on the
change alternatives derived from the semantics of requirements relations and change types.
On the other hand, the requirements engineer has to spend some effort to model
requirements and to determine their relations before performing change impact analysis in
our approach. Figure 5.23 gives the requirements related to R7 in the CMS requirements
model with depth 2 in RequisitePro (see Figure 5.20 in Section 5.7.1 for the correspondence
model in TRIC).

Figure 5.23 Requirements Related to R7 with Depth 2 in IBM Rational RequisitePro

162 Chapter 5 Change Impact Analysis in Requirements Models

Please note that RequisitePro does not provide visualization like the one in Figure 5.23. We
converted the part of the matrix view of the CMS requirements model in RequisitePro to the
graph visualization. Consider the following change to R7.

R7: The system shall provide a messaging facility.

Description of Change: Messaging facility should also contain sms and e-mail features

Since RequisitePro does not support proposing changes based on a change classification, the
change is implemented by updating R7. Requirements relations for R7 get suspended after
implementing the change in R7 in RequisitePro. Figure 5.24 shows the suspended relations
in the matrix view.

R16: The system shall allow messages to be sent to individuals, teams, or all course
participants at once.

R18: Teams are created by students inviting other students in the same course using the
messaging system.

R24: The system shall notify students about events (new messages posted, etc.).

R25: The system shall allow students to customize the notification behavior.

R117: The system shall allow the administration to evaluate courses through students by
means of a web-survey.

Figure 5.24 Suspended Relations for Impacted Requirements by the Change in R7

All requirements directly related to R7 with the suspended relations (R16, R18, R24, R25 and
R117) are candidate impacted. The requirements engineer has to inspect the candidate
impacted requirements to identify changes if there is any. When the same change is
proposed with the change type ‘Add Constraint to Property of Requirement’ in our
approach, ‘no impact’ is automatically identified for R18, R24, R25 and R117 (see Section

5.8 Evaluation of the Approach 163

5.7.1). Our approach provides two change alternatives to propagate the proposed change
from R7 to R16 via the refines relation: ‘Add Constraint to Property of Requirement’ or
‘Delete Relation’. The requirements engineer inspects R16 to propose a change among these
two alternatives.

Elimination of False Positive Impacts in Change Propagation. Without employing any
semantics information about relations and change types, all requirements directly related to
the changed requirement are identified as candidate impacted. The requirements engineer
has to check all these requirements manually to identify which requirements are actually not
impacted (false positive impacts). For some change and relation types, our approach
identifies ‘no impact’ for the related requirements. For instance, for the change in R7, all
requirements (R16, R18, R24, R25 and R117) related to R7 are identified as candidate
impacted by RequisitePro. All of these requirements are checked to identify the change
although there is no impact for R18, R24, R25 and R117. When the change in R7 is
proposed with the change type ‘Add Constraint to Property of Requirement’ in our
approach, ‘no impact’ is automatically identified for R18, R24, R25 and R117 which are false
positive impacts (see Section 5.7.1).

Apart from directly related requirements, there might be other candidate impacted
requirements indirectly related to the changed requirement. Figure 5.25 shows some of the
requirements directly/indirectly related to R7 at a distance of 1, 2, 3 and 4. Here, distance is
the number of relations between two related requirements [24].

The requirements indirectly related to R7 at a distance of 2, 3 and 4 (see Figure 5.25(b), (c)
and (d)) are candidate impacted to be inspected in RequisitePro. By following directly and
indirectly related requirements like in Figure 5.25, the number of impacted requirements
might explode at some distance [24].

164 Chapter 5 Change Impact Analysis in Requirements Models

Figure 5.25 Some of the Requirements Directly/Indirectly Related to R7 in RequisitePro

Our approach provides impact prediction for a proposed change (see Section 5.6.3). The
output of the impact prediction is the impacted requirements including both directly and
indirectly requirements with change alternatives. For instance, for the change in R7, the
output of the impact prediction is that only R16 might be impacted with the change type
‘Add Constraint to Property of Requirement’ (see Figure 5.17 in Section 5.6.3). All other
impacts identified by following directly and indirectly related requirements in RequisitePro
are false positives. In this way we reduce the number of elements to be inspected.

Consistency Checking of Changes. Our approach provides consistency checking of
changes based on the formal semantics of requirements, relations and changes (see Section
5.7.2 for the example of consistency checking). RequisitePro does not support any
consistency checking activity for requirements changes.

5.9 Related Work 165

5.9 Related Work

We classify the related work in three categories: Change Classification with Formal Semantics,
Change Impact Analysis in Requirements, and Tool Support.

5.9.1 Change Classification with Formal Semantics
We studied literature about requirements change classification and semantics of change
types. Buckley et al. [40] propose a taxonomy of software change based on characterizing the
mechanisms of change and the factors that influence these mechanisms. In this taxonomy,
change type is one of the characterizing and influencing factors for mechanisms of change.
Change types in [40] are defined as structural and semantic changes. Structural changes are
changes that alter the structure of software. Another distinction for changes is semantics-
preserving and semantics-modifying changes. This distinction is very much similar to our
classification of change rationale named as domain changes and refactoring. Buckley et al.,
however, focus more on semantics of software components, such as type hierarchy, scoping,
visibility, accessibility, and overriding relationships, rather than on changes in requirements.

Kitchenham et al. [140] propose an ontology to identify a number of factors that influence
maintenance. The ontology has Modification Activity as an entity, specialized by Enhancement
and Correction entities. In Corrections, a defect such a discrepancy between the required
behaviour of a product/application and the observed behaviour is corrected [140].
Enhancements might be the changes in the implementation or they might be requirements
changes which are adding new requirements or changing existing requirements. According to
Kitchenham, “Add a new Requirement” and “Update an Existing Requirement” can be
aquated to Swanson’s adaptive and perfective maintenance change types [237] [238] in turn.
The difference with our work is that requirements change types in [140] have no formal
semantics.

Aizenbud-Reshef et al. [6] present an approach to defining operational semantics for a trace
in UML. The semantic property of a trace is a triplet (event, condition and actions). An event
indicates a change. Conditions help to differentiate among events. Actions describe what
should and should not be done when a specific event has occurred. There are event types
(delete events, update events, and create events) which can be considered as change types. The main
goal is to achieve automated consistency management of UML class diagrams. Therefore, it
is hard to use the semantics in [6] for different models like requirements models.

Lee et al. [154] provide a change impact analysis approach using a goal-driven traceability-
based techniques. There is no explicit requirements change classification in the approach
although change types such as modify an existing requirement and add a new requirement are

166 Chapter 5 Change Impact Analysis in Requirements Models

introduced in the example section of [154]. Instead of providing a requirements change
classification, Nurmuliani et al. [192] focus on establishing how practitioners classify
requirements change requests. The Card Sorting, a knowledge elicitation method, is used to
identify categories of change requests in practice. For instance, requirements changes are
categorized as high effort, medium effort, low effort and no effort changes based on the magnitude of
effort involved criterion by the practitioners. Harker et al. [107] describe a classification of
changing requirements where each changing requirement type could be reformulated as a
change type. Lam et al. [150] propose a change maturity model that reflects an organization’s
capability at managing change. In this maturity model, a change classification is provided
with three main types of change: screen change, report change and data change. The change
classification in [150] is specialized for Customer Complaints Systems (CCCs). Ackermann
and Lindvall [5] classify change requests as data flow change, program flow change and application
domain change. Contrary to our approach, none of these change classifications given above
except the work in [6] has formal semantics.

5.9.2 Change Impact Analysis in Requirements
A number of approaches in the literature address change impact analysis in requirements.
Jonsson and Lindvall [133] present common strategies for change impact analysis from a
requirements engineering perspective. They categorize strategies as automatable
(traceability/dependency analysis and slicing techniques) and manual (design documentation
and interviews). Automatable impact analysis strategies often employ algorithmic methods
for change propagation [133]. Traceability analysis is an automatable strategy that examines
relations among all types of software development artifacts. Since our approach analyzes
requirements relations for change impact, it can be considered as traceability analysis.

Event-Based Traceability (EBT) [50] supports change impact analysis with automating trace
generation and maintenance. In EBT, requirements and other traceable artifacts, such as
design models, are linked through publish-subscribe relationship based on the Observer design
pattern [88]. The main purpose of EBT is to determine the candidate impacted elements and
maintain traces for these elements. Contrary to our approach, in EBT all elements
directly/indirectly related to the changed element are candidate impacted. EBT does not
support change impact alternatives, identification of false positives and consistency checking
of changes.

A goal-driven requirements traceability approach is proposed by Lee et al. [154] to analyze
requirements change impacts through goals and use cases. Traces among goals and use cases
are established and evaluated. Lee et al. provide trace types with definitions but with no
formal semantics. Contrary to our approach, this approach does not focus on change

5.9 Related Work 167

alternatives for propagating a change from one requirement to another. Cleland-Huang et al.
[52] introduce another goal-centric approach for managing impact of a change in non-
functional requirements. Non-functional requirements and their dependencies are modeled
with a Softgoal Interdependency Graph (SIG). The impact detection in [52] is limited to
identifying a set of directly impacted SIG elements without any change type.

Ibrahim et al. [121] present an approach for change impact analysis of object oriented
software. Change impact analysis is performed from requirements to design, test case or
source code. Ibrahim et al., however, do not explain how to propagate a change from one
requirement to another requirement. Turver et al. [247] describe a technique dealing with the
ripple effects of a change based on a graph-theoretic model. This technique can be applied
not only for source code but also for design and requirements documents. The technique,
however, calculates the ripple effects by using relations without any semantic information.

O’Neal [195] [196] proposes a change impact analysis method to evaluate requirement
changes. Complementary to our approach, O’Neal addresses the identification of the
consequences of a change, such as how much change should be done. Hassine et al. [108]
provide change impact analysis approach for requirements described as detailed scenarios.
Dependencies between scenarios are used to identify the impacted scenarios. However, the
approach does not provide any change alternatives for propagation of change. The
requirements engineer has to inspect requirements to identify the type of impact without any
proposed alternatives.

Cheng et al. [45] propose a method of requirements change management based on keyword
mapping. Each requirement is defined as a keyword and a keyword sentence is used to
arrange all the keywords according to certain kind of order. When a change request is
received for a keyword, the relations of keywords are analyzed for impact analysis. However,
the requirements engineer is not supported in how the change is propagated.

Lock et al. [159] [160] [161] provide an approach that integrates different traceability
extraction methods (pre-recorded traceability, dependency, plain experience, extrapolation
and certainty analysis) to determine impacted requirements. Impact propagation structure,
similar to propagation path in our approach, is used with propagation probability to
propagate a proposed change from one requirement to another. Contrary to our approach,
the only output is the candidate impacted requirements in the impact propagation structure.
In addition to candidate impacted requirements, our approach provides change alternatives
to be chosen by the requirements engineer.

168 Chapter 5 Change Impact Analysis in Requirements Models

Lai et al. [148] [149] provide a model-based approach for propagating changes between
requirements and design models (particularly activity and sequence diagrams). A change
propagation algorithm is proposed to identify and localize the effects of change across
requirements and design models. Our approach mainly focuses on change impact analysis in
requirements models based on semantics of requirements relations. None of the approaches
given above supports consistency checking of requirements changes.

5.9.3 Tool Support
Some requirements management tools support change impact analysis in requirements. The
selection of tools is based on INCOSE management tool survey [124].

IBM Rational RequisitePro [119] provides a matrix view to show the requirements relations
and their direction between two requirements, or requirements and design elements. When a
requirement is changed, relations of the changed requirement are marked as suspect. All
requirements directly or indirectly related to the changed requirement are candidate
impacted. The requirements engineer has to inspect the candidate impacted requirements to
identify changes if there is any. In Borland Caliber [27] change impact analysis is manual.
Similar to RequisitePro, Borland Caliber provides traceability matrix and traceability diagram
to represent traces where requirements relations are also considered as a trace. Therefore,
the requirements engineer should inspect the impacted requirements by using traceability
matrix and diagram manually.

TopTeam Analyst [246] supports suspected relations for change impact analysis. However,
requirements relations should be manually marked as suspect when a requirement is
changed. On the other hand, it is possible to get subscribed to specific elements in artifacts.
When one of these elements such as a requirement is changed, the subscribers get a message.
The message contains the name of the element, the user who changed the element and a link
to the element for a quick inspection.

IBM Telelogic Doors [120] supports a manual analysis of the relations and requirements
affected by a change. When a requirement is changed, its relations are marked as suspect
automatically. DOORS provides a Change Proposal System (CPS) similar to change impact
analysis feature of TRIC. It allows the requirements engineer to investigate, allow or deny
change proposals. The requirements engineer can keep an overview of proposed changes
and can determine the effect of these changes. However, DOORS does not provide
elimination of false positive impacts and any change alternatives for change propagation.
None of the industrial tools given above supports consistency checking of requirements
changes.

5.10 Conclusions 169

5.10 Conclusions

We presented an approach for change impact analysis in requirements. We provided a
classification of requirements changes. The usage of the formal semantics of relations and
change types enables new proposed changes to be deduced and contradicting proposed
changes to be determined in the requirements model. Most of the approaches and tools like
IBM Rational RequisitePro do not focus on formal semantics of requirements relations and
change types. With having formal semantics, we provide a more precise change impact
analysis in requirements models by supporting change alternatives in change propagation,
elimination of false positive impacts and consistency checking of changes. None of the
industrial requirements management tools support change impact alternatives and
consistency checking of changes. The main advantage of our approach is that propagation
alternatives are provided to be chosen by the requirements engineer. By providing change
alternatives with impact prediction we determine some of the false positive impacts occurred
in most of the industrial tools like IBM RequisitePro.

In this chapter, we answered the part of Research Question 5 raised in Chapter 1: How can a
change in a requirement be propagated to other requirements and to software architecture? How can we
support the requirements engineer and software architect for performing changes? How can we formally check
if the evolved architecture satisfies evolved requirements? How can we become sure that traces are up-to-date?
The use of semantics of relations and change types with tool support addresses the
propagation of a change from a requirement to other requirements.

There are still open issues. Since we applied the approach to a limited number of
requirements in the Course Management System requirements document, the results may
not be generalizable. We aim at empirical evaluation of our approach [249] with a quasi-
experiment, comparing TRIC with other tools (Microsoft Excel and RequisitePro) for
change impact analysis. However, the results of the empirical evaluation are subject to
limitations such as low participant representativeness, small sample size, limited
comparability of software tools, low participant reliability and training for a new tool.

The definitions of the requirements relations do not give information about the structure of
properties in a requirement. For instance, the contains relation does not state exactly which
property is contained by the containing requirement. The requirements engineer has to
inspect the requirements to know this. Therefore, our approach provides change alternatives
in change propagation to be choosen by the requirements engineer.

In the current tool support, change propagation alternatives (see Table 5.2) and
inconsistencies (see Table 5.3) are implemented in a rule based form. It might be possible to

170 Chapter 5 Change Impact Analysis in Requirements Models

derive change propagation alternatives and inconsistencies automatically. One possible
future work is automatically deriving these propagation alternatives and inconsistencies.

The output of this chapter (requirements change types, proposed changes and propagated
proposed changes) is the input for change impact analysis in software architectures. For the
evolution of requirements, we will analyze the impact of requirements changes on software
architectures. Complete and valid traces between requirements and software architecture are
needed in order to propagate changes in requirements to software architectures. In Chapter
6, we provide an approach for generation and validation of traces between requirements and
architecture with a tool support. The change impact analysis approach for software
architectures is given in Chapter 7. The approach uses the traces with the output of this
chapter in order to determine the impacted architectural elements and to fix the software
architecture for changed requirements.

171

Chapter 6

6 Traces between Requirements and Software
Architecture

In this chapter, we present an approach for trace establishment based on semantics of traces between
Requirements (R) & Architecture (A). Requirements relations and architecture verification techniques are
used. We provide a trace metamodel with commonly used trace types. The semantics of traces is formalized in
first-order logic. We use the semantics of traces and requirements relations for generating and validating traces
with a tool support. The tool provides the following: (1) generation and validation of traces by using
requirements relations and/or verification of architecture, (2) generation and validation of requirements
relations by using traces. The tool is based on model transformations in ATL and term-rewriting logic in
Maude. We illustrate our approach in an example.

6.1 Introduction

In Chapter 5, we presented a change impact analysis approach in requirements models. To
overcome the explosion of impacts addressed in [23], we provide semantics of requirements
changes together with formal semantics of requirements relations given in Chapter 4. We use
the formalization of relations and changes for propagating and consistency checking of
proposed changes. Once we analyze the impact of a change in requirements, we need to
determine the impact of this change in software architecture by using traces between
Requirements (R) and Software Architecture (A). For example, in Figure 6.1, a change in
requirement R2 has a direct impact on architectural component C2 through the trace between
R2 and C2. It may also have an indirect impact on component C1 through the refines relation
between R2 and R1, and the trace between R1 and C1. We need complete and valid traces
between R&A in order to identify impacted architectural elements for requirements changes.

172 Chapter 6 Traces between Requirements and Software Architecture

Figure 6.1 Within-Model and Between-Model Traces with Requirements Relation Types and Trace Types
between Requirements and Software Architectures

Considerable research has been devoted to relating requirements and design artifacts with
source code. Most approaches focus on generating traces between requirements and source
code or between design and source code [13] [70] [102] [109]. Less attention has been paid
to relating requirements with architecture by using well-defined semantics of traces.
Designing architecture based on requirements is a creative and manual process. The software
architect can manually assign traces between R&A. Manual trace assignment is time-
consuming, expensive and error prone. In most approaches, there is a lack of precise
definition of traces between R&A. This lack may cause incomplete and invalid trace
establishment for requirements and architecture, thus prohibiting accurate change impact
analysis.

In this chapter, we present an approach that provides trace establishment by using semantics
of traces between R&A (Requirements and Architecture). Our approach for trace
establishment includes trace generation and validation. Generating traces is the activity of
deducing traces between requirements and architecture based solely on verification of
architecture and/or the requirements relations. Validating traces is the activity of identifying
traces which do not obey trace semantics. We use a trace metamodel with commonly used
trace types: Satisfies and AllocatedTo (see Section 6.3 for details of trace types). The semantics
of the traces is provided with a formalization in first-order logic. Software architectures are
expressed in Architecture Analysis and Design Language (AADL) [225]. We use dynamic
semantics for part of AADL [197] [198] expressed in rewriting logic supported by the Maude
language and tools [48] [49]. Semantics of AADL given in Maude enables simulation and

6.1 Introduction 173

verification of AADL models [221]. For verification of AADL models, we use model
checking of the systems’ behavior with respect to selected properties [264].

We propose two mechanisms to generate traces between R&A. The first mechanism uses
architecture verification techniques. A given requirement is reformulated as a property in
terms of the architecture. The architecture is executed and a state space is produced. This
execution simulates the behavior of the system on the architecture level. The property
derived from the requirement is checked by the Maude model checker. Traces are generated
between the requirement and the architectural components used in the verification of the
property.

The second mechanism uses the requirements relations together with the semantics of
traces. We ensure that the relations between requirements are preserved in their
implementation in the architecture. This preservation is also used in the concept of software
reflexion models where relations between elements in high-level models are preserved in their
implementations [185]. Requirements relations are reflected in the connections among the
traced architectural elements based on the semantics of traces. Therefore, new traces are
inferred from existing traces by using requirements relations. We use semantics of
requirements relations and traces to both generate/validate traces and generate/validate
requirements relations.

In this chapter, we answer Research Question 4 (How to model requirements, software architecture and
traces with their semantics for change management?) and Research Question 5 (How can we formally check
if the evolved architecture satisfies evolved requirements? How can we become sure that traces are up-to-date?)
raised in Chapter 1. With the approach for trace establishment we address the issues about
the use of formal semantics to reason about traces.

Our approach is supported by a tool that uses ATL model transformations [135] [136] in
combination with Maude. The tool provides the following: (1) generation and validation of
traces by using requirements relations and/or verification of architecture, (2) generation and
validation of requirements relations by using traces. We illustrate our approach in an
example.

This chapter is structured as follows. Section 6.2 describes the approach. Section 6.3
presents the trace metamodel and definitions of the trace. In Section 6.4, we provide the
formalization of the relations. Section 6.5 introduces the example. Section 6.6 describes
generating and validating traces based on formal trace semantics. Section 6.7 explains the
tool support. Section 6.8 discusses on the approach for the open issues. In Section 6.9, we

174 Chapter 6 Traces between Requirements and Software Architecture

illustrate the approach with the Remote Patient Monitoring (RPM) example. Section 6.10
describes the related work, and Section 6.11 concludes the chapter.

6.2 Overview of the Approach

Our approach supports several scenarios with different degrees of automation of trace
generation and validation. Figure 6.2 gives the overview of the approach.

Scenario 1: Generating/Validating traces by using requirements relations. This scenario takes the
requirements model, an initial trace model and constraints in Figure 6.2 as input. The initial
traces are assigned by the architect in the input trace model. Traces are generated for
requirements which do not have any assigned traces but which are related to requirements
with assigned traces. The semantics of trace and requirements relations is used to deduce the
new traces. The output trace model contains the generated traces. The requirements relations
and the constraints are used to check the validity of the assigned traces in the input trace
model. Invalid traces are reported in the output error model.

Scenario 2: Generating/Validating traces by using verification of architecture. We check if the
requirements are satisfied by the architecture. This is done by reformulating the
requirements in terms of logical formulas over the architecture. This scenario takes the
reformulated requirement(s), the input trace model and the architectural model as input. To
check the formulas we perform architecture simulation and verification in Maude. If the
result of the verification is positive, all the architectural elements used in the execution trace4
are considered to be related to the requirement with the Satisfies traces. Traces are generated
accordingly in the output trace model. If a counter example is found, all the architectural
elements used in the counter example are considered to be related to the requirement with
the AllocatedTo traces. The software architect should inspect the input models for errors. The
validation phase compares the assigned traces in the input trace model with the architectural
elements in the verification output. The invalid assigned traces are reported in the output
error model.

Scenario 3: Generating/Validating traces by using requirements relations and verification of architecture.
This scenario is the combination of the first two scenarios and takes the reformulated
requirement(s), the input trace model, the requirements model and the architectural model as
input. First, initial traces are generated for the reformulated requirement(s) by using
verification of architecture. Then, requirements relations in the input requirements model are
used to generate traces for other requirements. The newly generated traces are placed in the

4 Execution traces should not be confused with the R&A traces

6.2 Overview of the Approach 175

output trace model. The validation step considers two cases. In the first case, the input trace
model is empty. Then, traces generated from the verification output are validated by using
the requirements relations. The output is the error model which contains invalid generated
traces. In the second case, the input trace model contains assigned traces. New traces are
generated from the verification output. The assigned and generated traces are compared for
validation with the help of requirements relations. The output error model contains the
invalid assigned traces.

Figure 6.2 Overview of the Approach

Scenario 4: Generating/Validating requirements relations by using traces. The input trace model
contains traces which might be either assigned or generated. The relations among
architectural elements may reveal new relations, or the lack of relations between the traced
requirements according to the constraints based on semantics of traces and requirements
relations. For instance, one of the constraints is that if one requirement requires another
requirement, there should be, at least, an architectural element that satisfies both
requirements. The output requirements model contains the generated requirements relations.
The output error model contains the invalid requirements relations in the input requirements
model.

We have to note that all generated/invalid traces and requirements relations are suggestions
for the architect. They have to be checked by the architect for the final decision. In order to

176 Chapter 6 Traces between Requirements and Software Architecture

facilitate the scenarios, we rely on the semantics of requirements and relations previously
given in Chapter 4. In addition, in this chapter we successively provide the followings:

 Trace metamodel. We use a trace metamodel [66] to structure the traces. The
metamodel includes most commonly found entities in literature, and requirements &
architecture specific traces (Section 6.3).

 Semantics of traces. We formalize traces between R&A by using FOL (Section 6.4).

 Architecture description and verification facilities. Software architectures are
expressed in Architecture Analysis and Design Language (AADL) [225]. We use
formal dynamic semantics for part of AADL [197] [198] given in rewriting logic used
in Maude language and tools [48] [49]. The details of the formal semantics of AADL
models in Maude can be found in Appendix E. Formal semantics of AADL enables
performing simulation and verification of AADL models [221]. For the verification,
architectural significant functional requirements are reformulated as formalized
scenarios and then properties are checked using linear temporal logic (LTL) [14].
Application of verification techniques for requirements is not the main focus of this
chapter. The details can be found in [212].

 Generating and validating traces. We use semantics of traces and requirements
relations with architecture verification techniques for generating and validating traces
(Section 6.6).

We provide tool support and illustrate the feasibility of our approach in an example.

 Tool support. We describe the design and implementation of a prototype tool for
generating and validating traces based on formal trace semantics (Section 6.7).

 Running example. We illustrate the approach with an example (Section 6.9). The
example is about requirements and architecture of a Remote Patient Monitoring
(RPM) system developed by a company in the Netherlands. An RPM requirements
document is used in this chapter as a running example.

6.3 Trace Metamodel

Our trace metamodel defines trace types between requirements and architecture identified in
the literature. There are several approaches about transition from requirements to
architecture which define trace types. Some of these approaches are summarized in [86] as:

6.3 Trace Metamodel 177

goal-oriented [250], model bridging [103], problem frames [105], use case maps [41], rule-based decision
making [158], architecting requirements [157], object-oriented transition [137], and weaving requirements
and architecture processes [193]. For example, goal-oriented requirements engineering [250]
defines a model for decomposing a system goal into requirements and operationalizations
with goal-trees. Operationalizations can be considered as traces between requirements and
architecture. Von Knethen at al. [142] classifies traces as within-model and between-model. Our
trace metamodel consists of between-model traces. Figure 6.3 shows our trace metamodel
together with parts of requirements and architecture metamodels. The requirements
metamodel is the one described in Chapter 4. In the terminology of Von Knethen,
requirements relations are within-model traces.

Figure 6.3 Trace Metamodel for Requirements and Architecture

We assume the following definition of software architecture: A software architecture is a
description of the structure of a system, which comprise the software elements, the externally visible properties

178 Chapter 6 Traces between Requirements and Software Architecture

of those elements, and the relationships among them [229]. We use AADL to model the architecture.
A fragment of the AADL metamodel is given in Figure 6.3.

We use two types of traces between requirements and architecture: AllocatedTo and Satisfies.
In the literature, these relations are informally defined as follows [200] [215] [258]:

Definition 6.1 AllocatedTo trace: A requirement R is allocated to a set of architectural elements
E if the system properties related to E are supposed to fulfill the system properties given in
R.

The architect can track which component will take care of what requirement by using
AllocatedTo traces [215].

Definition 6.2 Satisfies trace: A set of architectural elements E satisfies a requirement R if the
system properties related to E fulfill the system properties given in R.

A Satisfies trace addresses an implication dependency between the system properties given in
the requirement and system properties designed in the architecture. The architecture satisfies
the requirement where the fulfillment of system properties described in the architecture
implies the fulfillment of the system properties given in the requirement.

An AllocatedTo trace is assigned when the fulfillment of the requirement is expected. A
Satisfies trace is assigned or generated when the fulfillment of the requirement is present.

The literature proposes several types of traces, which are similar to Satisfies and AllocatedTo
but named differently. For example, Khan et al. [138] propose six types of traces. They differ
only in the type of the source requirement. In our approach we abstract from this detail thus
keeping the generic types Satisfies and AllocatedTo. Section 6.10.1 further discusses the trace
types found in the literature.

The definitions given above are informal and can be interpreted differently. Since we aim at
precise semantics, we formalize trace types in FOL.

6.4 Formalization of Trace Types

In this section we formalize the trace types. In Section 6.4.1 we briefly repeat the definition
of requirements as found in Chapter 4. Section 6.4.2 presents the formalization of software
architectures. In Section 6.4.3, we introduce the formalization for trace types between
requirements and architecture.

6.4 Formalization of Trace Types 179

6.4.1 Formalization of Requirements
We assume the general notion of requirement being “a property which must be exhibited by
a system”. We assume that requirements can always be expressed as a formula in the
universal fragment of FOL as x with  in conjunctive normal form (CNF). If the

formula  is a closed formula, then the universal quantifiers can be dropped. It is also

possible that the formula contains free variables.

6.4.2 Formalization of Architecture
A software architecture model AM is a model conforming to the AADL metamodel. There
are different works in the literature [12] [28] [29] [221] that provide a formal semantics of the
following notions: metamodel, model, and conformance of a model to its metamodel. We do not repeat
the formalization of these notions in this thesis.

We consider the software architecture model AM as an implementation of a property or
properties which must be exhibited by a system. The software architecture model AM has
architectural elements - the computational units which collectively constitute an architecture.
The architectural elements in the subset of AADL that we use are System, Process, Thread
Group, Thread, SubProgram, Data Store, Port, Data Access and Connector. For a given property PA,
we are interested in identifying the set of architectural elements EA that are responsible for
fulfilling PA. We express the property as a formula PA in any suitable logic such as Linear
Temporal Logic (LTL) or Computation-Tree Logic (CTL). The property PA can be checked over
the architecture model AM by using architecture verification techniques.

6.4.3 Formalization of Satisfies and AllocatedTo Trace Types
Traces are generally subsets of Cartesian products of sets. We define Satisfies and AllocatedTo
trace types as follows:

(74) SRSAESatisfies )(and)(SAESRoAllocatedT 

where SR is the set of requirements in the requirements model RM and SAE is the set of
architectural elements in the software architecture model AM. The definition of the
AllocatedTo trace type formalizes the intuition that a part of software architecture is planned
to be an implementation of a set of requirements.

Let R be a requirement and EA be a set of architectural elements where PR is a formula in
CNF for R and PA is a formula in LTL. Figure 6.4 gives the schematic view of the relation
between PR and PA.

We require the following for the Satisfies trace type:

180 Chapter 6 Traces between Requirements and Software Architecture

EA Satisfies R iff the following statement holds:

(75) The fulfillment of PA implies the fulfillment of PR

This definition of the Satisfies trace type formalizes the intuition that a part of software
architecture is an implementation of a set of requirements. The set of architectural elements
(EA) fulfills a property (PA) which is a refinement of a property (PR) given in a requirement
(R). The architectural elements in EA are in the execution trace of checking PA. This is
explained later. The refinement of PR to PA and modeling of the architecture are manual. PA
is considered a refinement because in the general case the software architect makes certain
design decisions that narrow the set of systems that satisfy the requirements.

Figure 6.4 Schematic View of the Relation between PR and PA

The whole software architecture model implements all the architecturally significant
requirements in the requirements model. Architecturally significant requirements play an
important role in determining the architecture of the system. Not all requirements have equal
significance with regards to the architecture. According to [173], architecturally significant
requirements are those that (1) capture essential functionality of the system, (2) exercise
many architectural elements, (3) challenge the architecture, (4) highlight identified
issues/risks, (5) exemplify stringent demands on the architecture (e.g. performance
requirements), (6) are likely to change, and (7) involve communication and synchronization
with external systems. Every architecturally significant requirement should be satisfied and

6.5 Example: Remote Patient Monitoring System 181

every architectural element should contribute to at least one requirement. We define the
Satisfies relation between the requirements model RM and the architecture model AM:

The Architecture Model AM satisfies the Requirements Model RM iff the following two
statements hold where R is a requirement, SAR is the set of architecturally significant
requirements in the requirements model RM, AE is an architectural element and SAE is the
set of architectural elements in the architecture model AM:

(76)))),()(((RESatisfiesEAESAEERESAEAEAE AAAA 

(77)))),()(())(((RESatisfiesSAEEERrefinedSARRR AAA 

refined(R) is true iff R is refined by one or more requirements. The most refined requirements
in the requirements model are the most concrete requirements satisfied by the software
architecture.

6.5 Example: Remote Patient Monitoring System

In this section, we introduce the Remote Patient Monitoring (RPM) system as a running
example. The example is about requirements and architecture of a RPM system. The RPM
system has the following stakeholders: patients, doctors, and the system administrator. The
main goal of the RPM system is to monitor the patients’ condition such as blood pressure,
heart rate and temperature. For instance, the system has to perform a temperature
measurement at the patient. The patient carries a sensor for the measurement. Each
temperature measurement is transferred to a central system which stores the measurements.

The example system was developed by a company in the Netherlands. The system had
already been implemented and running when we started studying the system. The artifacts of
the development of the system are the requirements document, source code and test cases.
To deploy the example for our approach, we modeled the textual requirements in the RPM
requirements document and their relations according to the semantics of requirements
relation types.

The requirements model of the RPM system was created in TRIC (see Chapter 4). Some of
the requirements in the RPM requirements document can be found in Appendix F. In the
following, two requirements are shown: Requirement 6 requires Requirement 3.

Requirement 3 The system shall measure blood pressure and temperature from a patient.

Requirement 6 The system shall store data measured by sensors in the central storage.

182 Chapter 6 Traces between Requirements and Software Architecture

Figure 6.5 shows the part of the requirements model that we created from the RPM
requirements document.

Figure 6.5 Part of Requirements Model for RPM System

The solid arrows indicate the requirements relations given by the requirements engineer. For
simplicity, we did not include the inferred requirements relations in Figure 6.5. We
constructed the architecture of the system from the source code by reverse engineering.
Figure 6.6 gives the overview of the RPM architecture in AADL visual syntax. The graphical
notation for architectural elements in AADL is explained in Appendix G. The complete
explanations of the abbreviations of the components used in this chapter are given in
Appendix H.

Figure 6.6 Overview of the RPM Architecture

6.5 Example: Remote Patient Monitoring System 183

The architecture in Figure 6.6 shows the most abstract components (system and process in
AADL). These components contain other components which we do not represent in Figure
6.6. The SD (Sensor Device) system component contains the sensors carried by the patient.
The sensors perform measurements at a regular interval. If required, the SD sends the
measurements to the HPC (Host Personal Computer) system component through the SDC
(Sensor Device Coordinator) system component. The SDC is the ZigBee network coordinator.
The details of the real coordinating tasks are omitted in the architecture description. The
HPC consists of the SDM (Sensor Device Manager), AS (Alarm Service) and WS (Web Server)
process subcomponents. The SDM stores the measurements and generated alarms in the
data stores (Temp_alarms and Temp_Meas for temperature alarms and measuraments). The WS
serves as a web-interface for the doctors. The AS forwards the alarms to the CPC (Client
Personal Computer) system component. The CPC is used by the doctors to monitor patients.
The AR (Alarm Receiver) process subcomponent in the CPC receives the alarms from the AS
and notifies the doctor about the alarms. The WC (Web Client) process subcomponent uses
the WS to retrieve the measurements and alarms stored by the SDM.

Figure 6.6 shows only systems and processes in the RPM architecture. AADL provides also
support for thread and subprogram components. The computation of the system is modeled as
subprogram and thread behaviour. The current version of the AADL semantics [197] [198]
in Maude that we use allows us to model subprogram and thread behaviour by using
AADL’s behavioral annex with a finite set of states and a set of state variables. The RPM
architecture has behavioral annexes for dynamic behaviour of threads in each system
component.

The following presents the implementation of the thread in the SDM component
(SDM_Thread) for storing blood pressure measurements. It shows a transition system with
state variables where each transition contains a guard ([sdm_blood_edp2?(inMessage)] in line 17)
on the existence of events/data in the input ports (sdm_blood_edp2 in line 17), and on the
value of the data receieved (inMessage in line 17).

1 thread SDM_Thread

2 features

3 sdm_blood_edp2: in event data port Behavior::integer;

4 sdm_blood_strg: out event data port Behavior::integer;

5 properties

6 Dispatch_Protocol => aperiodic;

7 end SDM_Thread;

8

184 Chapter 6 Traces between Requirements and Software Architecture

9 thread implementation SDM_Thread.i

10 annex behavior_specification {**

11 states

12 s0: initial complete state;

13 bloodStored: complete state;

14 state variables

15 inMessage: Behavior::integer;

16 transitions

17 s0 -[sdm_blood_edp2?(inMessage)]-> bloodStored { sdm_blood_strg!(inMessage); };

18 **};

19 end SDM_Thread.i;

The thread above has event data ports SDM_BLOOD_EDP2 in line 3 and
SDM_BLOOD_STRG in line 4 for blood measurements. Since the Dispatch_Protocol of the
thread is aperiodic (see line 6), this thread is activated upon receiving input. The thread has
states s0 as the initial state in line 12 and bloodStored as the complete state in line 13. If the
thread is in the s0 state and receives the measurement data at the SDM_BLOOD_EDP2
event data port, then the received data is stored in the SDM_BLOOD_STRG data port and
the bloodStored state is reached (see line 17).

6.6 Generating and Validating Traces

An important element of our approach is the ability to verify architectures thanks to the
semantics definition of AADL in Maude. Both the generation and validation activities
depend on it. This section describes how the results from the verification together with
semantics of traces and requirements relations are used. Section 6.6.1 explains the
verification of architecture for functional requirements in Maude. Section 6.6.2 gives the
details of the trace generation by using requirements relations and verification results. In
Section 6.6.3, we illustrate trace validation.

6.6.1 Verification of Architecture for Functional Requirements
We limit ourselves to verification of functional requirements only. The purpose of the
verification is to check if requirements are correctly implemented in the architecture. We use
model checking for verification of AADL models (see [264] for model checking).
Verification results are used in both trace generation and trace validation as an input
(Scenario 2 and Scenario 3 in Section 6.2). Figure 6.7 illustrates the verification of
architecture for functional requirements.

6.6 Generating and Validating Traces 185

Figure 6.7 Verification of Architecture for Functional Requirements

The output of the verification is represented by the Satisfies and ConformsTo relations in
Figure 6.7. ConformsTo implies that the state space captures the specified properties. We have
the following artifacts in the process of verification of architecture:

 Functional Requirements. Requirements which describe the functions that the system is
to execute; for example, formatting some text or receiving data.

 Architecture in AADL. The architecture of the system to be built. It plays the role of
the solution for the problem defined by the requirements.

 Property Specifications in Maude. The formal description of the required behavior of the
architecture. The requirements are reformulated as properties in terms of the
solution, which is the architecture (reformulate and uses in Figure 6.7). These properties
are checked for the architecture by the model checker. The requirement is first
described as a formalized scenario, and then described as property specification [32]
[209] [212]. The formalized scenario is a pair of predicates <pre, post> encoding the
precondition pre and the postcondition post for the architecture. The property
specification uses any logic such as Linear Temporal Logic (LTL), First-Order Logic
(FOL), or Computation-Tree Logic (CTL). In the tool, we use the formal analysis features
of Maude. Maude provides model checking with LTL which is a logical formalism
that is suited for specifying Linear-Time properties (see [14] for the details of Linear-
Time properties and LTL). In our approach, linear-time properties are formalized
first as a scenario and then as an LTL formula.

 State Space in Maude. The presence of a dynamic semantics specification of AADL in
Maude makes the architectural models executable. The architecture is executed and a
state space is produced (simulate in Figure 6.7). This execution simulates the behavior

186 Chapter 6 Traces between Requirements and Software Architecture

of the system on the architecture level so that it can be studied to see how the system
will work. Discrete event simulation, which introduces the notion of events, states,
and state space, is used. A state describes the loci of data values within the
architecture. Two states are connected by a transition and all states are captured by
the state space. The result of the verification, which might be a counter example or an
execution trace, is used to generate and validate traces. An execution trace is the
ordered set of states which are generated where the reformulated requirement is
satisfied. Counter example is the ordered set of states which are generated where the
reformulated requirement is not satisfied.

We use the formal semantics of behavioral AADL models in Maude implemented by
Olveczky et al. [197] [198]. Since the focus of this chapter is not verification and simulation,
we do not give details of the AADL semantics in this chapter. This is itself a non-trivial topic
and subject of another work. The AADL semantics in [197] [198] can be found in Appendix
E.

Example: Reformulation of Requirements

We explain the reformulation of requirements as property specifications in Maude with the
following requirement from the RPM requirements document explained in Section 6.9 and
given in Appendix F.

Requirement 5 The system shall store patient blood pressure measured by the sensor in the central storage.

The reformulation of Requirement 5 has two steps. Requirement 5 is first reformulated
(reformulate in Figure 6.7) as a formalized scenario in terms of solution domain – the RPM
architecture (uses in Figure 6.7). The formalized scenario is a pair of predicates <pre, post>
encoding the precondition pre and the postcondition post for a dataflow in the architecture
(see Figure 6.6 in Section 6.5). Figure 6.8 is the part of the RPM architecture developed for
the system property given in Requirement 5.

Figure 6.8 Part of the RPM Architecture

6.6 Generating and Validating Traces 187

Requirement 5 is reformulated as a formalized scenario in terms of solution domain.

Formalized Scenario: (contains(SD_BLOOD_EDP1, DI)), (contains(SDM_BLOOD_STRG,
DI))

According to the formalized scenario, if the data instance DI is contained by the data port
SD_BLOOD_EDP1 of Sensor 2 (SD component in Figure 6.8), then the data instance DI is
stored in the data store SDM_BLOOD_STRG of the component SDM after executing the
architecture (see Figure 6.8).

The dynamic behavior of a thread is defined in AADL using AADL’s behavioral annex
with a finite set of states and a set of state variables. In the RPM architecture, the
subprogram execution for storing the blood pressure data in the central storage is
implemented as a state transition system in the thread sdmTh (see Section 6.5). The sdmTh
thread has states bloodStored, temperatureStored, highTemperature, lowTemperature and idle. When the
data instance DI is stored in the data store SDM_BLOOD_STRG of the component SDM,
the state of the sdmTh thread in the state transition system is set to the bloodStored state.

The formalized scenario is the first step to reformulate the requirement in terms of
solution domain. The next step is to construct the appropriate logic expression for the
formal analysis in Maude. The following is the LTL formula derived from the formalized
scenario:

LTL formula in Maude: (mc initializeThreads({ MAIN system Wholesys . imp }) |=u <>
((MAIN -> hpc -> sdm -> sdmTh) @ bloodStored) .)

The formula states that if the data instance DI is contained by the data port
SD_BLOOD_EDP1 of Sensor 2, then eventually in the future the state in the state transition
system in the sdmTh thread is set to the bloodStored state (the data instance DI is stored by the
data store SDM_BLOOD_STRG of the SDM component). Please note that the data instance
DI is created in the initial state by a test thread in the RPM model. Therefore, the LTL
formula does not explicitly indicate the data instance DI and the data port
SD_BLOOD_EDP1 of Sensor 2. The formula creates the initial state instead.

The initializeThreads({ MAIN system Wholesys . imp }) creates the initial state where the data
instance DI is contained by the data port SD_BLOOD_EDP1 of Sensor 2. The MAIN ->
hpc -> sdm -> sdmTh denotes the full component name of the sdmTh thread component. The
@bloodStored states that the state of the sdmTh thread is the bloodStored. The ‘<>’ in the LTL
formula states ‘eventually in the future’. The LTL formula can be checked on the generated state
space in Maude.

188 Chapter 6 Traces between Requirements and Software Architecture

The LTL formula derived from the formalized scenario (contains(SD_BLOOD_EDP1,
DI)), (contains(SDM_BLOOD_STRG, DI)) is the property PA in our formalization of
architecture. From the formalization we know that if PA holds, then PR given in the
requirement also holds.

6.6.2 Generating Traces
Generating traces aims at deducing traces between requirements and architecture based
solely on verification of architecture and/or the requirements relations in the requirements
model. The approach does not need initial traces to generate new traces (see Scenario 2 in
Section 6.2).

The approach uses the result of the verification of architecture. If the verification is
successful, the architecture satisfies the requirement. According to the semantics of trace
types, the Satisfies trace is generated between the architectural elements in the execution trace
and the requirement. These elements collectively satisfy the requirement and form the part
of the architecture to which the requirement is traced. A counter example means that
although the requirement is allocated to the architectural elements, the architecture does not
satisfy it. The AllocatedTo trace can be generated but the Satisfies does not hold. We modified
the transition rules in Maude to be able to record the architectural elements matched by the
transition rules. These matched elements are the used architectural elements during the
verification of architecture. These elements correspond to EA in the formalization of
architecture. We modified the AADL metamodel and included an attribute called Used to the
component classes in the AADL metamodel. Each transition rule sets the attribute Used of
the architectural element matched in the transition rule to True. The details of the
implementation of the approach are given in Section 6.7.

The output of the verification for an LTL formula is true or false with a counter example. If
the verification returns false with a counter example, the field used of the architectural
elements matched by the transition rules is set to true in the last state of the counter example.
To get the execution trace where the requirement is satisfied, we use the search command in
Maude which allows exploring the reachable state space. The search command returns the
execution trace where the requirement is satisfied. There might be multiple execution traces
where the requirement is satisfied. In this case, the Satisfies trace is generated between the
architectural elements in each execution trace and the requirement.

A requirement may describe multiple system properties and/or a complex system property
amenable to decomposition. In our approach it is not possible to explicitly state which
property in the complex requirement fails. The requirements engineer should decompose the

6.6 Generating and Validating Traces 189

requirement into sub-parts (by using the Contains relation) until each requirement describes
only one property which can be given as a single LTL formula.

The second way to generate traces is to use the requirements relations (see Scenario 1 and
Scenario 3 in Section 6.2). The constraints about traces in Figure 6.9 are derived from the
intuition about the semantics of trace types and semantics of requirements relations. The
constraints ensure that requirements relations are preserved in the architecture by the
satisfying elements. The constraints are also used to generate requirements relations from
traces (see Scenario 4 in Section 6.2).

Please note that the constraints are given for the Satisfies traces in Figure 6.9. The same
constraints are valid also for the assigned AllocatedTo traces. The constraint in Figure 6.9(a)
states that the intersection of sets of architectural elements that satisfy two requirements
where one requires another one is non-empty. In Figure 6.9(b), it is stated that architectural
elements that satisfy the refining requirements also satisfy the refined requirement.
Constraints similar to the one in Figure 6.9(b) are valid for traces with the Contains and
Partially Refines relations (see Figure 6.9(c) and Figure 6.9(d)).

In order to generate the Satisfies traces for R1 in Figure 6.9(b)(c) and (d), all other
requirements (R2, R3, …, Rk) should be satisfied by the architecture. For instance, if one of
the refining requirements (R2, R3, …, Rk) in Figure 6.9(d) is not satisfied by the architecture,
the refined requirement (R1) is also not satisfied by the architecture. Therefore, there is no
Satisfies trace for the refined requirement. The partial refinement might not be complete. In
this case, even if all refining requirements are satisfied, the Satisfies trace is generated only if it
is confirmed that the unrefined properties are also satisfied. The Satisfies trace is generated
for the unrefined properties in R1 by using the verification of architecture.

190 Chapter 6 Traces between Requirements and Software Architecture

Figure 6.9 Constraints based on Semantics of Traces and Requirements Relations

The following is an example for generation of traces by using verification of architecture.

Example: Generation of Traces by Using Verification of Architecture

In Section 6.6.1, we give an example about the reformulation of requirements as property
specifications in Maude for Requirement 5. In this section, we explain how to generate traces

6.6 Generating and Validating Traces 191

by using the verification of architecture for Requirement 5 (see Scenario 2). The output of
the reformulation of Requirement 5 is an LTL formula given below.

LTL formula in Maude: (mc initializeThreads({ MAIN system Wholesys . imp }) |=u <>
((MAIN -> hpc -> sdm -> sdmTh) @ bloodStored) .)

After executing Maude, the formula is true which means that Requirement 5 is satisfied by
the architecture. As we explained before, the LTL formula does not return the execution
trace where the requirement is satisfied. Therefore, we run the search command in Maude in
order to get the execution trace for Requirement 5:

Search Command in Maude:

 (utsearch [1]

 initializeThreads({ MAIN system Wholesys . imp }) =>* {C:Configuration}

 such that

 ((location of component (MAIN -> hpc -> sdm -> sdmTh) in C:Configuration) == bloodStored .)

In the search command above, the initializeThreads({ MAIN system Wholesys . imp }) creates
the initial state where the data instance DI is contained by the data port SD_BLOOD_EDP1
of Sensor 2. The (location of component (MAIN -> hpc -> sdm -> sdmTh) in C:Configuration)
returns the state in the transition system in the sdmTh thread, which should be the bloodStored
state (‘== bloodStored’). ‘=>*’ in the command indicates the form of the rewriting proof from
the initial state until the state where the state in the transition system in the sdmTh thread is
the bloodStored state. Then, the search command tries to reach that state from the initial state.

The search command returns the execution trace where the reformulated requirement is
satisfied. The field used of the architectural elements matched by the transition rules is set to
true in the last state of the counter example. Therefore, our tool (explained in Section 6.7)
generates the Satisfies trace between Requirement 5 and the architectural elements used in the
execution trace. Figure 6.10 shows the generated Satisfies trace for Requirement 5.

192 Chapter 6 Traces between Requirements and Software Architecture

Figure 6.10 Generated ‘Satisfies’ Trace for Requirement 5 by Using Verification Results

In this example, we only explained trace generation by using verification results. Other
trace generation scenarios in Section 6.2 are illustrated with other examples in Section 6.9.

The verification result, and therefore the traces, depends on the reformulation of the
requirement to be checked. The architect needs to consider potential false positive and
missed traces. Such traces are defined in relation to the set of actual traces, which is the golden
standard for a pair of requirements and architecture. Figure 6.11 gives the classification of
traces based on the relation between the actual and the generated traces for a requirement.

Figure 6.11 Venn Diagram for Generated and Actual Satisfies Traces for a Requirement

The interpretation of Figure 6.11 is given in a confusion matrix [78] in Table 6.1.

6.6 Generating and Validating Traces 193

Table 6.1 Confusion Matrix of Generated and Actual Traces for Satisfies Relation

 Actual ‘Satisfies’ Traces (AST)

Generated ‘Satisfies’ Traces (GST) True Positive False Positive

False Negative True Negative

 (GST  AST) is True Positive. Generated traces which are also actual.

 (GST \ AST) is False Positive. Generated traces which are not actual.

 (AST \ GST) is False Negative. Actual traces which are not generated.

 (PST \ (GST  AST)) is True Negative. Traces which are not actual and not generated.

Misinterpretation of the requirement and wrong reformulation are the causes for false
positive and false negative traces. In case of ideal models and correct reformulation the
generated traces are the actual traces.

6.6.3 Validating Traces
Validation aims at identifying the traces which do not obey the trace semantics. This helps
the elimination of false positive traces in Table 6.1. The approach identifies traces or
requirements relations which violate the constraints in Figure 6.9. Validation by using
requirements relations can be used in two ways (see Scenario 1 and Scenario 4). First, the
architect may conclude that an invalid trace is a true positive and then he reconsiders the
requirements relations (Scenario 4). Second, the architect concludes that requirements
relations are all valid, then, he/she identifies the invalid traces (Scenario 1).

Our approach also provides validation of traces by using verification results (see Scenario 2
and Scenario 3). The architect assigns some AllocatedTo traces while creating the architecture
(Scenario 2). In order to ensure that the architecture satisfies the requirements, the
verification of architecture is performed. For the requirements satisfied by the architecture,
the Satisfies traces are generated. The assigned AllocatedTo traces and the generated Satisfies
traces for a requirement are validated based on the comparison of traces in Figure 6.12.

194 Chapter 6 Traces between Requirements and Software Architecture

GST AAT

Assigned ‘AllocatedTo’
Traces (AAT)

Generated ‘Satisfies’
Traces (GST)

All Possible Traces (APT)

GST \ AAT AAT \ GST

APT \ [GST AAT]

Figure 6.12 Venn Diagram for Generated ‘Satisfies’ and Assigned ‘AllocatedTo’ Traces for a Requirement

The software architect should check the difference of the sets (GST \ AAT and AAT \
GST) and conclude about the validity of traces.

 If (GST \ AAT) is non-empty, then either some of the generated Satisfies traces (GST
\ AAT) are false positives or some of the traces are missed while assigning the
AllocatedTo traces. If the software architect concludes that some of the generated
Satisfies traces (GST \ AAT) are false positives, then misinterpretation of the
requirement and/or wrong reformulation might be the causes of invalid trace
generation.

 If (AAT \ GST) is non-empty, then either some of the assigned AllocatedTo traces
(AAT \ GST) are false positives or some of the Satisfies traces are missed while
generating the Satisfies traces. If the software architect concludes that some of the
traces (AAT \ GST) are missed while generating the Satisfies traces, misinterpretation
of the requirement and wrong reformulation are the causes of the missing Satisfies
traces.

For the requirements which are not satisfied by the architecture, the AllocatedTo traces are
generated from the counter example. The assigned and generated AllocatedTo traces for a
requirement are validated based on the comparison of traces in Figure 6.13 which is similar
to the comparison table in Figure 6.12.

6.6 Generating and Validating Traces 195

Figure 6.13 Venn Diagram for Generated and Assigned ‘AllocatedTo’ Traces for a Requirement

The software architect should check the difference of the sets (GAT \ AAT and AAT \
GAT) and conclude about the validity of traces.

 If (GAT \ AAT) is non-empty, then some of the generated AllocatedTo traces (GAT \
AAT) are false positives or some of the traces are missed while assigning the
AllocatedTo traces. If the software architect concludes that some of the generated
AllocatedTo traces (GAT \ AAT) are false positives, then misinterpretation of the
requirement and/or wrong reformulation might be the causes of having a counter
example and invalid trace generation.

 If (AAT \ GAT) is non-empty, then either some of the assigned AllocatedTo traces
(AAT \ GAT) are false positive or some of the traces are missed in the trace
generation. If some of the traces are missed in the trace generation, then
misinterpretation of the requirement and/or wrong reformulation might be the
causes of having a counter example and missing traces.

The following is an example of validation of traces by using verification of architecture.

Example: Validation of Traces by Using Verification of Architecture

In Sections 6.6.1 and 6.6.2, we give examples about the reformulation of requirements and
generation of traces for Requirement 5. In this section, we explain how to validate traces by
using the verification of architecture for Requirement 5 (see Scenario 2).

The example in Section 6.6.2 shows the generated Satisfies traces for Requirement 5. Figure
6.14 gives the generated Satisfies and assigned AllocatedTo traces for Requirement 5.

196 Chapter 6 Traces between Requirements and Software Architecture

Figure 6.14 Generated ‘Satisfies’ and Assigned ‘AllocatedTo’ Traces for Requirement 5

The traces in Figure 6.14 are validated according to the Venn diagram in Figure 6.12 (see
Scenario 2). Although Requirement 5 is allocated to the components AS and CPC_AR,
these components are not involved in the Satisfies traces. We concluded that the two
AllocatedTo traces to the components AS and CPC_AR are false positives.

In this example, we only explained trace validation by using verification results. Other
trace validation scenarios in Section 6.2 are illustrated in Section 6.9.

6.7 Tool Support

We built a tool for generating and validating traces between R&A based on formal trace
semantics. In this section, we give the details of the tool. In Section 6.7.1, we depict the
usage of the tool in the context of a modeling process. Section 6.7.2 gives the architecture of
the tool. Section 6.7.3 describes the main features of the tool with some screenshots. Section
6.7.4 evaluates the tool.

6.7.1 The Modeling Process
The tool is used in the context of a modeling process for trace generation and validation.
Figure 6.15 gives a UML activity diagram of the process.

6.7 Tool Support 197

Figure 6.15 Modeling Process with Trace Generation and Validation

The process in Figure 6.15 consists of the following activities:

Modeling Requirements & Designing Architecture: This activity takes the requirements
document and produces the input requirements model, input architecture model and input
trace model. The software architect assigns some initial traces between requirements and
architecture.

The modeling process is separated into three activities: reformulating requirements, generating trace
and validating trace.

Reformulating Requirements: This activity takes the input requirements model and input
architectural model and produces the reformulated requirement as output. The software
architect reformulates the requirements in terms of logical formulas over the architecture.

198 Chapter 6 Traces between Requirements and Software Architecture

Verifying Architecture: This activity takes the input architectural model and the
reformulated requirement, and produces an execution trace or a counter example (see
Section 6.6.1). The activity checks whether the requirements are satisfied by the architecture.
It is done automatically in Maude.

Generating Trace: This activity takes the input trace, requirements and architecture models
with the output of verifying the architecture and produces the output trace model and
requirements model. The activity is automatic. If the activity uses only requirements relations
in the requirements model and initial traces in the input trace model, the activity is
performed after the activity modeling requirements & designing architecture.

Validating Trace: This activity takes the input trace model, input requirements model,
input architecture model and produces an output error model. The activity is automatic.
However, the interpretation of the errors in the trace model should be done manually by the
software architect.

Iterating: The process given in Figure 6.15 is iterative. The requirements engineer and/or
the software architect may return to the modeling requirements & designing architecture
activity in order to fix requirements relations and/or traces in the output models. If there is
no need to update the models, the process is terminated.

6.7.2 Tool Architecture
The tool contains five components (rounded boxes in Figure 6.16): (a) the Model Checker in
Maude, (b) the Trace Generator using Verification Results in ATL, (c) the Trace Generator using
Requirements Relations in ATL, (d) the Trace Validator in ATL, and (d) the Requirements Relation
Generator using Traces in ATL.

Model Checker in Maude: The input for architecture verification component is the input
architecture model and the requirement(s) reformulated in LTL. This component is used in
the trace generation part of Scenario 2 and Scenario 3 (see Section 6.2). The verification and
simulation are performed by the model checker and the rule execution engine of Maude. The
architectural model originally expressed in AADL is transformed to a Maude term [182]. The
AADL metamodel is encoded as a set of sorts. The dynamic semantics of AADL is given in
rewriting rules [197] [198]. Requirements are reformulated as LTL formulas, the language
supported by Maude checker.

6.7 Tool Support 199

Figure 6.16 Overview of the Tool

Trace Generator using Verification Result in ATL: The input of the component is the
execution trace and counter example. The component is implemented as an ATL
transformation. If the verification result is an execution trace, the Satisfies traces are
generated between the checked requirement(s) and the architectural elements in the
execution trace. If the verification result is a counter example, the AllocatedTo traces are
generated between the checked requirement(s) and the architectural elements marked in the
counter example. The result is the Output Trace Model 1.

Trace Generator using Requirements Relations in ATL: The input of the component is
the Input Architecture Model, the Input Trace Model, and the Input Requirements Model. The
component is used in the trace generation part of Scenario 1 and Scenario 3. It is
implemented as an ATL transformation. The component generates new traces based on the
requirements relations in the Input Requirements Model and the constraints in Figure 6.9. The
output is the Output Trace Model 2.

For output of the two trace generator components, we use two different output trace models
in order to state that the outputs do not have to be the same. In the generation part of
Scenario 3 which is generating traces by using requirements relations and verification of architecture, the
three components above are used. First, the traces are generated in the output trace model 1

200 Chapter 6 Traces between Requirements and Software Architecture

by the component trace generator by using verification result. Then the output trace model 1 is
used as an input trace model by the component trace generator by using requirements relations to
generate traces based on requirements relations in the input requirements model.

Trace Validator in ATL: The input of the component is the Input Architecture Model, the
Input Trace Model, and the Input Requirements Model. The component is used in the trace
validation part of all scenarios. It is implemented as an ATL transformation. The component
checks the validity of assigned traces between R&A by using verification output or
requirements relations. It can also check the validity of requirements relations by using traces
between R&A. The output is the Output Error Model which contains invalid traces and invalid
requirements relations.

Requirements Relation Generator using Traces in ATL: The input of the component is
the Input Architecture Model, the Input Trace Model, and the Input Requirements Model. The
component is used in the trace generation part of Scenario 4. It is implemented as an ATL
model transformation. The component generates new requirements relations based on traces
in the Input Trace Model. The output is given in the Output Requirements Model which contains
only the generated requirements relations.

6.7.3 Tool Features
We describe the most important features of the tool: verifying architecture, displaying generated
traces, and displaying invalid traces.

Verifying Architecture: We use the Open-Source AADL Tool Environment (OSATE) –
Topcased [204] which includes an AADL front-end and architecture analysis capabilities as
plug-ins. The plug-in [182] developed by Artur Boronat is used to generate Maude
representation of AADL models which can be simulated and verified. Figure 6.17 shows the
OSATE-Topcased with AADL-Maude plugin.

6.7 Tool Support 201

Figure 6.17 OSATE with AADL-Maude Plugin

In Maude, we can verify the software architecture for reformulated requirements in LTL. We
use Eclipse plug-in developed in the context of MOMENT2 [30] to run Maude under
Windows. Figure 6.18 gives the GUI for verifying architecture activity in Figure 6.15.

202 Chapter 6 Traces between Requirements and Software Architecture

Figure 6.18 Maude Editor in Eclipse for Verifying Architecture

The window in Figure 6.18 displays the generated Maude code from AADL model. In the
bottom of the window, the software architect can enter the LTL formula in order to verify
the architecture.

Displaying Generated Traces: We use Eclipse model editor (see Figure 6.19) to display
the Output Trace Model in Figure 6.2 which is the output of generating trace activity in Figure
6.15.

6.7 Tool Support 203

Figure 6.19 Output of the Generating Trace Activity

The right-hand side of the window shows the file output.ecore which is the output trace model.
The trace model includes traces, requirements and architectural elements that are associated
with these traces. The details of the chosen trace can be seen in the bottom of the window.

Displaying Invalid Traces: The output error model of validating trace activity in Figure
6.15 is displayed in Eclipse model editor. Figure 6.20 shows the output trace model in
Eclipse model editor.

204 Chapter 6 Traces between Requirements and Software Architecture

Figure 6.20 Output of the Validating Trace Activity

The right-hand side of the window shows the Output Error Model. The model contains
requirements and requirements relations which cause the invalidity in the trace model. The
architectural elements traced from the requirements in the error model can be reached in the
trace model in Figure 6.19.

6.7.4 Evaluation of the Tool
Our tool can be evaluated regarding different qualities like usability, performance and scalability.
The tool usability mainly depends on the usability of the Eclipse environment. For the
counter example and execution traces (the output of the component Architecture Verification in
Maude), no GUI is provided. For a prototype we consider this to be acceptable. In this
section, we conduct performance and scalability tests of the tool for generating and
validating traces. Our tool uses model checking techniques in verification of architecture for
functional requirements. It is known that these techniques may have scalability and
performance problems in handling large amounts of model elements and states. Therefore,
we focus on model checking part of our tool in the performance and scalability tests.

Performance testing is conducted to evaluate the compliance of a system or component with
specified performance requirements [1]. The requirement in our test is that the tool performs

6.7 Tool Support 205

in reasonable time (say less than one minute) with average number of architectural elements.
We base our estimate for the average number of architectural elements on a report by
McCormack et al. [174]. They characterize the differences in design structure between
complex software products like Mozilla and Linux. The report shows that the architectural
model of a real system contains around 2000 model elements. We take this finding as a base
for our performance tests.

Scalability testing is a performance testing focused on ensuring the application under test
gracefully handles increases in workload [1]. The workload in our performance test is the
number of states. Our interpretation of scalability of the tool is the following: the tool scales if
the time spent by the tool increases linearly when the number of generated states increases linearly.

Our dependent variable in the performance and scalability tests is the time for simulation
and verification (in seconds). The independent variable used in the performance tests is
number of elements in the architecture. We define the number of elements as follows:
number of component instances + number of feature instances + number of port connections where component,
feature and port connections are the architectural elements in AADL. The independent variable used
in the scalability test is the number of states generated in the simulation. We define the
number of states in the simulation as follows: the number of states the simulation is enforced to
explore. These two variables are closely related to each other. If the number of elements is
increased, it is likely that the number of states required for simulation and verification also
increases. However, this does not always have to be the case. Assume that there are new
architectural elements in the architecture for a new system property. New architectural
elements may not increase the number of states in the simulation and verification of
architecture for existing system properties.

Memory consumption is not measured in the performance tests. The runs for each
performance test are executed six times. The runs are the cells in Table 6.2 and Table 6.3 for
simulation times. The average for each run is derived from six executions. The performance
tests are done with Intel(R) Core(TM)2 Quad CPU Q6600 running at 2.40 GHz with 4096
KB cache, and 2 GB of memory, running Kubuntu 10.04. We use Core Maude 2.4 for
Linux. The models used in the performance tests are artificially created to test the tool with
certain number of elements and states. The models used in the tests and the example AADL
models given in this chapter do not have any real-time semantics. Real-time design and
simulation are not the main focus of our approach. In the performance and scalability tests
we use a version of operational semantics of AADL excluding the real-time semantics. The
performance and scalability test results might be different with real-time semantics encoded
in Real-Time Maude.

206 Chapter 6 Traces between Requirements and Software Architecture

Performance test. The test is set up as follows. We increase the number of elements by
adding components, data ports and data port connections to the architecture. We start with
2000 architectural elements and end up with 3000 architectural elements. The number of
states for each run is 500, 1000 and 2000. The results of the performance test are shown in
Table 6.2. Since the results of the performance test might be different when the verification
result is an execution trace or a counter example, the performance test is done for both cases
(see Table 6.2(a) and Table 6.2(b)). The standard deviation of the data is approximately
0.3%.

Table 6.2 Simulation Times in the Performance Test

 Simulation Time (sec) for the Execution Trace

elements # states = 500 # states = 1000 # states = 2000

2000 7.8 15.9 33.8

2200 8.7 17.5 37.2

2400 9.3 19.4 40.4

2600 10.1 20.9 43.3

2800 10.9 22.4 46.5

3000 11.5 23.9 49.6

a) Simulation with Execution Trace

 Simulation Time (sec) for the Counter Example

elements # states = 500 # states = 1000 # states = 2000

2000 2.6 5.2 10.8

2200 2.8 5.7 11.9

2400 3.1 6.3 13.0

2600 3.3 6.7 14.0

2800 3.5 7.2 15.2

3000 3.7 7.7 16.1

b) Simulation with Counter Example

According to these performance tests, the tool performs below one minute with average
number of architectural elements in a real system. The increase in the simulation time is
linear and up to 50 seconds for 2000 states (see Figure 6.21).

6.7 Tool Support 207

a) Simulation with Execution Trace

b) Simulation with Counter Example

Figure 6.21 Simulation Time as the Function of the Number of Architectural Elements

Scalability test. The goal of this test is to investigate how the tool handles increases in the
number of states over several orders of magnitude. Our independent variable is the number
of states. We also compare the scalability test results of the tool using Maude with the results
of the tool using different simulation and verification environments such as Alloy [126]. The
same execution semantics of AADL in Maude is encoded in Alloy. The first part of the
performance test is done in Maude with 10000 architectural elements (see Table 6.3(a)).
Then, the second part of the performance test is done in Alloy (see Table 6.3(b)). In [163],
we investigated simulation and verification in Alloy. We found that Alloy is not suitable for
big number of model elements and states. Therefore, we choose to run the second part of

208 Chapter 6 Traces between Requirements and Software Architecture

the performance test in Alloy with a smaller number of architectural elements (38 elements)
(see Table 6.3(b)).

Table 6.3 Simulation Times in the Scalability Test

Number of States Simulation Time (sec)

10 1.5

100 9.5

1000 82.1

3000 265.4

4500 401.8

5000 -

a) Simulation in Maude (# elements = 10000)

Number of States Simulation Time (sec)

20 14.2

40 53.7

60 105.8

80 180.4

100 300.9

b) Simulation in Alloy (# elements = 38)

According to the scalability test results of our tool using Maude, the simulation time
increases linearly when the number of states increases linearly (see Figure 6.22). We ran out
of memory in Maude when we try simulation for 10000 architectural elements with 5000
states. For Alloy, the simulation time also increases linearly when the number of states
increases, however, for much smaller number of architectural elements and much smaller
number of states.

According to these test results, we conclude that our tool scales much better when using
Maude rather than using Alloy.

6.8 Discussion on the Approach 209

Figure 6.22 Simulation Time vs. Number of States in Alloy and Maude

We cover a subset of AADL semantics excluding real-time semantics in the tests. Our results
are valid for this subset. The results depend on the modeling language and its semantics. The
results may change with different AADL semantics or with a lower level design language like
UML class and activity diagrams.

6.8 Discussion on the Approach

In our approach, the requirements are reformulated as formulas that encode properties of
the software architecture. The requirement is first described as a formalized scenario, and
then described as a Linear Temporal Logic (LTL) formula. The reformulation of the
requirement is manual. There is no tool support or formal technique in our approach to
ensure the consistency between the LTL formula and the requirement in natural text.

We use operational semantics of AADL formalized in Maude. The formal semantics for
AADL in Maude is an interpretation of the informal and sometimes ambigious descriptions
in the AADL standard. We cover a subset of AADL semantics in our tool. As we already
stated, our performance results for the tool in Section 6.7.4 are valid for this subset of
AADL.

The tool uses AADL and Maude but the approach can be applied with another architecture
description language and model checker. We can apply the simulation techniques in our
approach to any other architecture description language which has operational semantics.
The operational semantics of the architecture description language can be encoded and
formalized in different enviroments such as GROOVE (GRaphs for Object-Oriented

210 Chapter 6 Traces between Requirements and Software Architecture

VErification) [219] and Alloy [126]. Other logics like Computation Tree Logic (CTL) can be
used in our approach.

A requirement may describe multiple system properties and/or a complex system property
amenable to decomposition. In our approach it is not possible to explicitly state which
property in the complex requirement fails. The requirements engineer should decompose the
requirement into sub-parts (by using the Contains relation) until each requirement describes
only one property which can be given as a single LTL formula.

The approach aims at preserving the requirements relations in their implementation in the
architecture. There might be some cases where extra dependencies not identified in the
requirements analysis are determined in the architecture. For instance, in the requirements
analysis, the requirements engineer models two requirements as non-conflicting. In the
implementation of the requirements in architectural design, the software architect might
realize that these two requirements are conflicting with each other. The software architect
should update the requirements model by introducing a conflicts relation between these two
requirements.

6.9 Example for Trace Generation and Validation

In this section we give more examples for the Remote Patient Monitoring (RPM) system
introduced in Section 6.5. It should be noted that the example is purely illustrative and can
not be considered as a complete validation of the approach.

Section 6.9.1 illustrates reformulation of requirements and verification of architectures for
the reformulated requirement in the example. Section 6.9.2 gives some generated traces in
the example. In Section 6.9.3, we show some invalid traces identified in the example trace
model.

6.9.1 Verification of Architecture for Functional Requirements
We verify the architecture of the RPM system for the following functional requirement.

Requirement 4 The system shall store patient temperature measured by the sensor in the central storage.

Requirement 4 is reformulated as a formalized scenario in terms of solution domain.

Formalized Scenario: (contains(SD_TEMP_EDP1, DI)), (contains(SDM_TEMP_STRG, DI))

The formalized scenario states that if the data instance DI is contained by the data port
SD_TEMP_EDP1 of Sensor 1 (SD component), then the result of the computation is that

6.9 Example for Trace Generation and Validation 211

the data instance DI is stored in the data store SDM_TEMP_STRG of the component SDM.
The following is the LTL formula in Maude for the formalized scenario:

LTL Formula: (mc initializeThreads({ MAIN system Wholesys . imp }) |=u <> ((MAIN -> hpc -
> sdm -> sdmTh) @ temperatureStored) .)

The formula states that if the data instance DI is contained by the data port
SD_TEMP_EDP1 of Sensor 1, then eventually in the future the state in the state transition
system in the sdmTh thread is set to the temperatureStored state (the data instance DI is stored
by the data store SDM_TEMP_STRG of the SDM component). When we check the formula
on the architecture in Figure 6.6, the result is that the requirement is satisfied. Then, the
Satisfies trace is generated for the requirement and the elements in the execution trace.

6.9.2 Generating Traces
In this section, we show some generated traces in the example. Consider the following
requirement for the RPM system.

Requirement 5 The system shall store patient blood pressure measured by the sensor in the central storage.

In Section 6.9.1, we already showed that Requirement 4 is satisfied by the architecture. It can
be shown that the architecture also satisfies Requirement 5. The Satisfies traces are generated
for Requirement 4 and Requirement 5 accordingly (see Figure 6.23).

Figure 6.23 Generated ‘Satisfies’ Traces by Using Verification Results

212 Chapter 6 Traces between Requirements and Software Architecture

The requirements model in Figure 6.5 states that Requirement 4 and Requirement 5 refine
Requirement 6 which is the following:

Requirement 6 The system shall store data measured by sensors in the central storage.

Based on the constraints in Figure 6.9, the set of the generated Satisfies traces for
Requirement 6 is the union of the trace sets for Requirement 4 and Requirement 5 (see
Scenario 3). Figure 6.24 shows the generated Satisfies trace for Requirement 6 by using the
requirements relations.

Figure 6.24 Generated ‘Satisfies’ Traces by Using Requirements Relations

Traces can also be used to generate requirements relations (see Scenario 4). Consider the
following requirement for the RPM system.

Requirement 12 The system shall enable the doctor to retrieve all stored temperature measurements for a
patient.

We already showed that Requirement 4 is satisfied by the architecture. It can be shown that
the architecture also satisfies Requirement 12. The Satisfies trace is generated for
Requirement 12 accordingly.

6.9 Example for Trace Generation and Validation 213

Figure 6.25 Generated Requirements Relation by Using Traces

Figure 6.25 shows the intersection of traces for Requirement 4 and Requirement 12. Based
on the constraints in Figure 6.9, there might be a Requires relation between Requirement 4
and Requirement 12 if the intersection of traces is non-empty. The output of the tool is only
the candidate requirements relations. For the Requires relation, the tool can not suggest the
direction of the relations. The final decision about the relation should be made by the
architect. We analyzed the suggested relation and concluded that Requirement 12 requires
Requirement 4.

6.9.3 Validating Traces
In this section, we perform validation of traces in the example. Section 6.9.2 showed the
generated Satisfies traces for Requirement 6. There are also assigned AllocatedTo traces for the
same requirement. Figure 6.26 gives the generated Satisfies and assigned AllocatedTo traces for
Requirement 6.

The traces in Figure 6.26 are validated according to the differences of the architectural
element sets of the traces in the Venn diagram in Figure 6.12 (see Scenario 2). We check the
software architecture for Requirement 6. Although Requirement 6 is allocated to the
components AS and CPC_AR, these components are not involved in the architecture design
for Requirement 6. We concluded that two AllocatedTo traces to the components AS and
CPC_AR are false positive traces.

214 Chapter 6 Traces between Requirements and Software Architecture

Figure 6.26 Generated ‘Satisfies’ and Assigned ‘AllocatedTo’ Traces for Requirement 6

Figure 6.27 Assigned ‘AllocatedTo’ Traces with Requirements Relation

Figure 6.27 shows the assigned AllocatedTo traces for Requirement 12 and Requirement 6
with the Requires relation. The Requires relation between Requirement 12 and Requirement 6
is a given relation. The traces in Figure 6.27 are validated with the Requires relation between

6.9 Example for Trace Generation and Validation 215

Requirement 12 and Requirement 6 (see Scenario 1). Based on the constraints in Figure 6.9,
the sets of the assigned AllocatedTo traces for Requirement 12 and Requirement 6 should
have a non-empty intersection. We re-inspected Requirement 12, Requirement 6 and the
architecture. We concluded that some traces are missing for Requirement 12. We allocated
Requirement 12 to the architectural element SDM_TEMP_STRG to which Requirement 6 is
also allocated.

For the traces and requirements relation in Figure 6.27, we decided that the Requires relation
is valid and the traces should be corrected. However, there might be cases where the
requirements relation is identified as invalid based on the constraints in Figure 6.9 (see
Scenario 4). Figure 6.28 shows the assigned AllocatedTo traces for Requirement 10 and
Requirement 6 with the Refines relation. Requirement 6 and Requirement 10 are the
following:

Requirement 6 The system shall store data measured by sensors in the central storage.

Requirement 10 The system shall store all generated temperature alarms in a central database.

Based on the constraints and by analyzing requirements, we concluded that the Refines
relation between Requirement 10 and Requirement 6 is invalid.

AllocatedTo

EA10 EA6

AllocatedTo(EA10, R10) AllocatedTo(R6, EA6)

R6R10

AllocatedTo

refines

sd_temp_edp1 sd_temp_edp2

sd_temp_edp3 sd_temp_edp4

sdThr

sdc_temp_edp1 sdc_temp_edp2 sdc_temp_edp3

sdc_temp_edp4 sdc_temp_edp5 sdc_temp_edp6

sdcThr

hpc_temp_edp1 sdm_temp_edp1 sdm_temp_edp2

sdmThr

sdm_temp_strg sd_blood_edp1 sd_blood_edp2

sd_blood_edp3 sd_blood_edp4 sdc_blood_edp1

sdc_blood_edp2 sdc_blood_edp3 sdc_blood_edp4

sdc_blood_edp5 sdc_blood_edp6 hpc_blood_edp1

sdm_blood_edp1 sdm_blood_edp2

sdm_blood_strg

sd_temp_alarm_edp1 sd_temp_alarm_edp2

sd_temp_alarm_edp3 sdc_temp_alarm_edp1

sdc_temp_alarm_edp2 sdc_temp_alarm_edp3

sdc_temp_alarm_edp4 sdc_temp_alarm_edp5

sdc_temp_alarm_edp6 hpc_temp_alarm_edp1

sdm_temp_alarm_edp1 sdm_temp_alarm_edp2

sdm_temp_alarm_strg

Figure 6.28 Assigned ‘AllocatedTo’ Traces with an Invalid Requirements Relation

216 Chapter 6 Traces between Requirements and Software Architecture

When we delete the invalid given relations, some of the inferred relations might be
automatically deleted. Figure 6.29 gives some given and inferred requirements relations for
Requirement 10.

Figure 6.29 Given and Inferred Relations for Requirement 10

Requirement 2 The system shall measure blood pressure from a patient.

Requirement 3 The system shall measure blood pressure and temperature from a patient.

Requirement 6 The system shall store data measured by sensors in the central storage.

Requirement 10 The system shall store all generated temperature alarms in a central database.

The solid arrows indicate the given relations; the dashed arrows denote the relations inferred
from the given relations. The requires between Requirement 10 and Requirement 2 is inferred
from the refines between Requirement 10 and Requirement 6, requires between Requirement 6
and Requirement 3, and contains between Requirement 2 and Requirement 3 (see Figure
6.29(a)). The requires between Requirement 3 and Requirement 10 is inferred from the refines
between Requirement 10 and Requirement 6, and requires between Requirement 3 and
Requirement 6 (see Figure 6.29(b)). Removal of the Refines relation between Requirement 10
and Requirement 6 automatically removes the inferred requires relations in Figure 6.29(a) and
(b).

For the validation of traces and requirements relations for cases like in Figure 6.27 and
Figure 6.28, our tool gives the traces and requirements relations which do not obey the

6.10 Related Work 217

constraints. The architect should decide about either the traces or the requirements relations
are invalid.

6.10 Related Work

We discuss related work in six categories: Types and Semantics of Traces, Generating and Validating
Traces, Conformance Assessment, Architecture Analysis, Analyzing AADL Models and Tool Support.

6.10.1 Types and Semantics of Traces
A number of approaches address types and semantics of traces between R&A. Paige et al.
[206] focus on how to define traces with tool-supported semantics. According to [206]
semantically rich traces possess three characteristics: (1) traces are typed, (2) traces conform
to a case-specific trace metamodel, and (3) the case-specific metamodel should be
accompanied by a set of case-specific constraints, which cannot be captured by the
metamodel. The trace metamodel in Section 6.3, which is a case-specific trace metamodel,
contains the Satisfies and AllocatedTo traces with semantics in FOL. Based on the semantics
we can generate and validate traces between R&A in a formal manner. The trace metamodel
includes the case-specific trace information such that the trace is generated or assigned. This
type of trace information can prevent users and tools from establishing illegitimate traces
[206]. One of the case-specific constraints, not captured by the metamodel, is that there
cannot be both generated Satisfies and AllocatedTo traces for the same requirement.

Aizenbud-Reshef et al. [6] state the need for semantics of traces in general. They present an
approach to defining operational semantics for traces in UML. The semantic property of a
trace is a triplet (event, condition, and actions). This triplet is very much dependent on change
impact analysis. Therefore, it is hard to use the semantics in [6] for other purposes like
generating and validating traces.

Ramesh and Jarke [215] define traces between R&A: allocated to and satisfy which have similar
definitions with trace types in this chapter. Khan et al. [138] define a dependency model to
analyze the impact of evolving requirements dependencies and architecture changes. The
dependency model consists of six types of traces: goal dependency, service dependency, conditional
dependency, temporal dependency, task dependency and infrastructure dependency. Lago et al. [147]
propose following trace types between feature models (requirements) and structural models
(architecture): drive, modify, depend-on, and influence. There is no formal semantics of the trace
types in [138] [147] [215]. All these types can be mapped to our trace types.

218 Chapter 6 Traces between Requirements and Software Architecture

6.10.2 Generating and Validating Traces
A number of approaches provide generating and validating traces. Egyed et al. [72] [71] [70]
provides an automated traceability approach that uses a small number of traces as input. In
[72] [70], the source code is executed according to some scenarios and then traces are
generated between requirements and source code. Footprint graph is used to detect the
incomplete and incorrect input. Dependencies between requirements can be detected based
on overlaps among the lines of code implementing those requirements. There is no formal
semantics of trace types (hypothized, generated, validated and observed traces) in [72] [70]. Similarly
to his work, we use reformulation of requirements as scenarios.

Schwarz et al. [228] describe a graph-based traceability approach. Generation and
maintenance of traces are handled by model transformations. The Satisfies trace is provided
without any formal semantics or textual definition. Components, interfaces and ports in the
architecture are created automatically from requirements and use cases by using heuristics.
Our work assumes that architecture is created manually.

Information retrieval methods are proposed for trace generation. Antoniol et al. [13]
propose an approach for recovering traces between source code and documentation (mainly
requirements specification) using information retrieval methods. Hayes et al. [109] introduce
another approach for trace generation. The assumption of these works is that programmers
use meaningful names for program items so that the analysis of the mnemonics can help to
associate high-level concepts with source code.

Grechanik et al. [102] support generating traces between types and variables in Java
programs and elements of use-case diagrams (UCD). The approach combines program
analysis, run-time monitoring, and machine learning to generate traces. Relations between
program entities are compared with corresponding relations between elements in UCDs only
to validate traces. Cysneiros and Zisman [58] describe an approach to support traceability for
agent systems. Although it is claimed that the approach uses six types of traces and
semantics of these types, no semantics for the trace types is provided in [58]. The approach
supports generating traces between design models and code specification by checking
synonyms. Instead of checking synonyms our approach uses semantics of traces and
requirements relations. Bonde et al. [26] describe an interoperability approach based on
generating a trace model by using model transformations. This work focuses on traces
between platform independent and platform specific models in MDA context.

Mader et al. [167] address modification and enhancement of existing traces after changes to
artifacts. The approach does not support trace generation. On the contrary, in our approach
initial traces can be generated by using architecture verification techniques. A Visual

6.10 Related Work 219

Traceability Modeling Language (VTML) is proposed by Mader et al. [166]. VTML allows
users to model trace queries by hiding underlying technical details. The queries created with
VTML can be applied on traces generated and validated by our approach.

6.10.3 Conformance Assessment
Conformance assessment is the act of checking whether a requirement is satisfied [11]. The
assessment can be testing, inspection, model checking or conformation transformation usage
(see [10] for conformation transformation usage). The usage of architecture verification with
requirements relations in our approach can be considered as a conformance assessment of
properties in the requirements and architecture.

Almeida et al. [11] propose a framework that supports management of traces between
requirements and design. The framework provides a notion of conformance between
application models which reduces the effort for conformance assesment. The conformance
between various application models at different levels of abstraction is assessed. In our
approach, we focus on conformance assessment between requirements and software
architecture. We do not consider the case where there are multiple design models at various
abstraction levels.

Paige et al. [207] give a definition of refinement between models via consistency checking.
Formal definitions for model consistency are provided with the definition of refinement in
MDA. The consistency of platform specific and independent models is ensured with cross-
model rules which actually check the preservation of properties between two models. There
are other conformance assessment approaches by Egyed [69], Abi-Antoun et al. [3] [4],
Moriconi et al. [184], Heckel et al. [112] and Oquendo [205]. Most of these works focuses on
the conformance assessment for architecture and detailed design. Our approach does
conformance assessment for requirements and architecture design.

6.10.4 Architecture Analysis
Simulation and model checking of software architecture are parts of our approach for trace
generation and validation. We studied the literature about behavioral and static analysis of
software architecture models. Zhange et al. [264] give a classification and comparison of
model checking software architecture techniques. According to the survey in [264],
CHARMY [209], using the SPIN model-checker, is one of the most recent architecture
analysis approaches. A similar approach that uses SPIN for verifying software architecture is
proposed by Bose [31]. The works in [209] and [31] use UML-based notations instead of
architecture description languages.

220 Chapter 6 Traces between Requirements and Software Architecture

According to [264], Wright language proposed by Allen and Garlan [9] can be considered as
the first work on model checking techniques for software architecture. The extension of the
work in [8] addresses the problem of specifying and analyzing dynamic behaviour of
architectures. Dynamic behavior is distinguished from the steady-state behavior where the
computation performed by a system without reconfiguration [8]. Magee and Kramer [170]
outline examples of language features for dynamic structure. There are approaches for
analyzing dynamic behaviour: Darwin [171] [168], Chemical Abstract Machine (CHAM) [56]
[57] [125], dynamic architecture verification using DynAlloy [39] [38], reconfiguration
analysis in service oriented architectures [15], and behaviour preservation in dynamic
architectures [112]. Our approach does not support the analysis of dynamic behaviour.

There are works [64] [73] [187] about extending architectural description languages with
statechart semantics to analyze the internal component behavior. These works are similar to
the behavioral annex for thread and subprogram behavior in AADL. In behavioral annex,
the behavior of a thread is modeled as a set of states with pre and post conditions. Ölveczky
et al. [197] [198] implement pre and post conditions in Maude rewriting rules.

Boudiaf et al. [32] use rewriting rules in Maude to give the behavioral semantics of multi-
agent system models for architecture analysis. The difference with the architecture analysis
we use is that Boudiaf et al. perform architecture analysis on multi-agent system models.
ArchJava [7] is an extension to Java that unifies an architecture with its implementation. It is
possible to check if architectural properties are preserved in source code. On the contrary,
we do not couple source code with architecture.

Apart from behavioral analysis, there are static analysis techniques for architecture
verification. Allen and Garlan [9] use the static analysis tool FDR [84] to check deadlock and
component-connector compatibility. Naumovich et al. [188] use static analysis tools based
on flow equations. One of the drawbacks of using static analysis is that some dynamic
features of architecture description languages might cause difficulties for static analysis.

6.10.5 Analyzing AADL Models
In the previous subsection, we give the literature about general architecture analysis
techniques. There are also works particularly studying architecture analysis in AADL models.
Delanote et al. [63] explore the use of AADL in model driven development. However, the
authors do not adapt any architecture analysis technique to AADL models.

Berthomieu et al. [20] [21] give an approach for formal verification of AADL specifications.
A subset of AADL is translated into an extension of Petri nets called Fiacre language [21].
Chkouri et al. [46] propose another analysis approach using translation between AADL and

6.10 Related Work 221

BIP (Behavior Interaction Priority) language. The analysis technique [197] we use gives a
formal executable semantics to an AADL model with a behavior annex specification of its
thread behavior. On the contrary, the approaches in [20] [21] [46] use translations into
imperative languages. Similar to [197], Yang et al. [263] propose a formal semantics in Timed
Abstract State Machine (TASM) for a limited set of AADL behavior annex (periodic threads
and no modes).

Jahier et al. [127] provides an AADL analysis approach in which the behavior of software
components are developed as AADL subprogram execution. In [127] the testing tool Lurette
[128] is used for simulation; verification of architecture is done by the Lesar model-checker
[217]. Abdoul et al. [2] propose an AADL model transformation which provides a formal
model for model checking activities. Hugues et al. [116] present a tool suite for analyzing
AADL models. In [116], it is considered that subprograms in AADL encapsulate the
behavior of architecture. Similar to [197], Benammar et al. [18] [19] propose the use of
rewriting logic in Maude as a formalism for modeling behavior in an AADL architectural
description. On the contrary, in [18] [19], the behavior of a thread is specified directly in
Maude.

Varona-Gomez et al. [253] translate AADL models to SystemC models for performance
analysis. Bozzano et al. [34] [33] present an AADL analysis approach which supports Error
Model Annex for modeling faults and repairs. Li et al. [155] propose the use of
Communicating Sequential Processes (CSP) for simulation of AADL models. The works in
[104] and [232] focus on analyzing schedulability with a behavior of a subset of AADL. All
these approaches assume that the thread behavior is specified outside AADL.

Apart from simulating and verifying AADL models, de Niz et al. [61] propose the use of
AADL models to analyze potentially unintended system behavior. Gilles and Hugues [91]
[92] present a domain specific language (REAL – Requirement Enforcement Analysis
Language) for AADL. Contrary to our approach, the approach in [91] [92] does not focus on
simulation and verification of AADL models.

6.10.6 Tool Support
Some requirements management tools support traces from requirements to system
implementation. The INCOSE management tool survey [124] evaluates these tools
according to the criterion traceability analysis, that is, what kind of trace links the tools provide
and what kind of analysis is performed by the tools. According to the responses of tool
vendors in the survey, current industrial tools mostly provide tracing requirements to system
implementation such as software architecture with integration of other modeling tools.

222 Chapter 6 Traces between Requirements and Software Architecture

However, they do not provide mechanisms of trace generation and validation for
requirements and architecture.

IBM Rational RequisitePro [119] provides only two types of trace between requirements,
requirements & design, and requirements & implementation: traceFrom and traceTo. These
two trace types indicate only the direction. IBM Telelogic Doors [120] provides a
mechanism of describing functional decomposition and analysis in UML. The tool supports
two types of trace: internal and external. Internal traces can be created between any two
elements in the same model such as requirements relations, while external links can be used
to link elements in different models such as traces between R&A. The requirements engineer
can also specify his own trace type. Borland Caliber [27] provides only one trace type. This
type can be used for different purposes such as part-whole and refinement. A trace can be
established between any two artifacts. These artifacts can be of the same type or different
types and even external artifacts, like files, UML elements or test cases. The reasoning
facilities of the tools IBM Rational RequisitePro, IBM Telelogic Doors, and Borland Caliber
are based only on the transitivity property of the traces. These tools do not support
validation of traces.

In TopTeam Analyst [246], there are four trace types. Three of these traces (traces into, impact,
used in) are directed and one of them (trace) is undirected. This undirected trace is considered
as a generic trace type for other trace types. None of the trace types have formal semantics.
The tool does not support trace generation and validation.

6.11 Conclusions

In this chapter, we focused on traces between requirements and architecture. Trace types
with formal semantics were proposed. The formalization of traces is based on the idea that
the properties stated by requirements (problem domain) are satisfied in the architecture
(solution domain). These properties can be reformulated in terms of the architectural
solution and verified. The prerequisite for the verification is the presence of a formal
executable specification of the dynamic semantics of the architecture description language.

Our approach uses Maude, a formal language based on equational and rewriting logic, and
MDE technologies such as Eclipse EMF and ATL. The architecture is modeled in
Architecture Analysis and Design Language (AADL). Maude is used for simulating and
verifying software architecture. Model transformations in ATL are used to generate and
validate traces by using verification results and requirements relations.

6.11 Conclusions 223

In this chapter, we answered Research Question 4 (How to model requirements, software architecture
and traces with their semantics for change management?) and Research Question 5 (How can we formally
check if the evolved architecture satisfies evolved requirements? How can we become sure that traces are up-to-
date?) raised in Chapter 1. The entities Trace, Satisfies and AllocatedTo in the trace metamodel
are the aspects of traces to be modeled. These entities with their semantics are used to
reason about traces. By using architecture verification techniques in our approach it is
checked if the evolved architecture satisfies evolved requirements. Trace generation and
validation are used to keep traces up-to-date and also to automatically generate initial traces.

There are some open issues in the approach. The approach requires the adaptation of the
output of requirements engineering activities for software verification. For large software
development companies there are challenges in this adaptation [224]. Reformulation of
requirements in terms of solution domain is one of these challenges. It is a part of a design
process and is hard to automate. The architect might still need to check the generated traces.
In case of false positives the requirements model and relations should be checked.
Therefore, we suggest an iterative semiautomatic process of applying our approach. In such
a process, the software architect can gradually improve the quality of the traces and the
requirements. Case studies conducted with the industry [47] shows that it is hard to
reformulate requirements as LTL/CTL formulas. Domain-specific languages can be used for
requirements of certain type that allow compilation of LTL/CTL formulas [47]. Starting
from natural language, Semantics Business Vocabulary and Rules (SBVR) [202] can support
reformulation of requirements in terms of LTL/CTL formulas. Extending our approach
with this kind of languages will ease the reformulation of requirements.

We mainly focused on scalability issues in our tool for generating and validating traces. Since
model checking techniques may have problems in handling large amounts of model elements
and states, the scalability of our tool depend on the scalability of the model checking
algorithms in Maude. Our tool needs further improvement for usability. The core parts of
the tool are implemented. However, integration of these parts is currently done manually and
we need a user interface to control all these parts.

In Chapter 5, we presented an approach for using requirements relations and their semantics
for change impact analysis. In this chapter, we defined traces between requirements and
architecture models. Chapter 7 applies semantics of traces and requirements relations to
change impact analysis for software architecture.

225

Chapter 7

7 Change Impact Analysis in Software
Architecture

In this chapter, we aim at improving change impact analysis in software architecture models by using
architecture verification techniques and formal semantics of traces. Our technique has two parts that use the
approaches in Chapters 5 and 6. The first part is to identify the architectural elements that implement the
system properties related to proposed requirements changes. We extended TRIC for determining candidate
impacted architectural elements. The second part is to propose possible changes for software architecture when
the software architecture does not satisfy new and/or changed requirements. The technique is based on
architecture verification. The output of verification is a counter example if the requirements are not satisfied.
The counter example is used together with a classification of architectural changes in order to propose changes
in the software architecture. The technique supports the architect to change the architecture in order to satisfy
the requirements.

7.1 Introduction

Chapter 5 presented a change impact analysis approach in requirements models based on the
formal semantics of requirements relations. In Chapter 6 we presented an approach that
provides trace establishment by using semantics of traces between Requirements (R) and
Architecture (A) (see Figure 7.1 for the Satisfies and AllocatedTo traces).

Once the requirements engineer analyzes the impact of a change in requirements, the
software architect needs to identify the impact of this change in software architecture. By
using only the transitive closure of requirements relations and traces between R&A, the
software architect may conclude that all architectural elements in the architecture are
impacted. Without any additional semantic information about the requirements relations,

226 Chapter 7 Change Impact Analysis in Software Architecture

traces and change, he/she may have to analyze the whole software architecture for a single
change. Furthermore, without considering semantics, change impact analysis may produce
high number of false positive impacts. Consequently, the cost of implementing a change may
become several times higher than expected. For example, in Figure 7.1 a change proposed
for Rn is propagated to R3 by using the semantics of the contains relation. For the proposed
change in Rn, the architectural elements C3, C4, C5 and C6 can be traced from Rn, or C4 and
C5 can be traced from R3. C3 and C6 are also candidate impacted if we start tracing from Rn
although they are not related to the changed property in Rn. In addition to C4 and C5, the
software architect has to inspect C3 and C6 to identify what to change in the architecture.

Figure 7.1 Within-Model and Between-Model Traces with Requirements Relation Types and Trace Types
between Requirements and Software Architectures

In this chapter we present a change impact analysis technique for software architecture using
architecture verification and semantics of traces. Our technique has two parts. The first part
is to identify the architectural elements that implement the system properties to which
proposed requirements changes are introduced. Semantics of requirements relations and
traces is used in the first part. We extended TRIC for determining candidate impacted
architectural elements. The software architect starts changing the software architecture based
on the candidate impacted parts of the architecture. After the changes are implemented, the
software architecture may not satisfy the new/changed requirements. The second part of our
technique is to propose possible architectural changes when the software architecture does
not satisfy the new and/or changed requirements. The technique is based on architecture

7.2 Approach 227

verification. The output of verification is a counter example if the requirements are not
satisfied. The counter example is used together with a classification of architectural changes
in order to propose changes in the software architecture. The technique is semi-automatic
and iterative.

In this chapter, we answer Research Question 4 (How to model requirements, software architecture and
traces with their semantics for change management?) and Research Question 5 (How can be a change in a
requirement propagated to other requirements and to software architecture? How can we support the
requirements engineer and software architect for performing changes? How can we formally check if the evolved
architecture satisfies evolved requirements?) raised in Chapter 1. With the approach for change
impact analysis in requirements models we address the issues about propagation of changes
from a requirement to architectural elements.

This chapter is structured as follows. Section 7.2 describes the approach. Section 7.3
presents the first part of the approach, identifying candidate impacted architectural elements.
In Section 7.4, we describe proposing architectural changes. Section 7.5 explains the tool
support. Section 7.6 describes the related work, and Section 7.7 concludes the chapter.

7.2 Approach

We aim at identifying impacted architectural elements when a requirement is changed. We
rely on previously defined requirements and trace metamodels. In addition, in this chapter
we develop the following:

 Identifying candidate impacted architectural elements. We identify which parts
of the architecture are impacted by a proposed change in requirements (Section 7.3).

 Proposing architectural changes. We propose possible changes for software
architecture when the software architecture does not satisfy the new/changed
requirements (Section 7.4).

We provide tool support and illustrate the feasibility of our approach in an example.

 Tool support. We describe the design and implementation of a prototype tool for
identifying impacted architectural elements and proposing architectural changes
(Section 7.5).

 Example. The approach is illustrated with an example. The example is the Remote
Patient Monitoring (RPM) system which is also used in Chapter 6. Part of the RPM
requirements document is given in Appendix F.

228 Chapter 7 Change Impact Analysis in Software Architecture

7.3 Identifying Candidate Impacted Architectural Elements

The approach in Chapter 5 enables the requirements engineer to propose a change for a
requirement and propagate the proposed change to related requirements. The output is the
set of proposed changes for requirements with a propagation path in the requirements
model. Our technique in this section focuses on determining the architectural elements that
implement the system properties described by the requirements to which changes are
proposed. We are concerned with the domain changes for requirements (see Chapter 5). By
using formal semantics of requirements relations and traces between R&A, we identify
which parts of software architecture are impacted by a proposed change in requirements.
The impact is calculated by a change impact function. The change impact function takes a
change type, a requirement to which the change is introduced, a set of requirements relations
for the requirement and a set of all traces between R&A as input. The output of the change
impact function is a set of architectural elements which are candidate impacted for the
change in the requirement. The following is the signature of the change impact function.

impact : SCT  SR  SSRR  SST  SSAE

where SCT is the set of change types, SR is the set of requirements, SSRR is the set of sets
of requirements relations, SST is the set of sets of traces and SSAE is the set of sets of
architectural elements which are candidate impacted for the requirements change.

Traces in SST can be either generated Satisfies traces or assigned AllocatedTo traces. Given the
domain changes that can be made to the requirements model, we describe rules to determine
the impact of each requirements change type in software architecture (see Chapter 5 for
requirements change classification and semantics of changes). The algorithm of the change impact
function is based on the types of requirements changes. According to the type of
requirements change, the algorithm may traverse the propagation path of the requirements
change in the requirements model. Then, candidate impacted architectural elements are
identified by using traces between requirements and architectural elements. The algorithm of
the change impact function is given in Appendix I. In the following we give the main parts
of the algorithm in pseudo code:

1 impact(ChangeType c, Requirement r, Set srl, Set st): Set {

2 Set sae = empty-set

3 If ((c is ‘Add a New Requirements Relation’) OR

4 (c is ‘Delete Requirements Relation’) OR

5 (c is ‘Update Requirements Relation’)) {

6 Return empty-set

7.3 Identifying Candidate Impacted Architectural Elements 229

7 }

8

9 If (c is ‘Add Property to Requirement’) { Return empty-set }

10

11 If (c is ‘Add a New Requirement’) {

12 If (srl is empty-set) { Return empty-set }

13

14 sae = getCandidateImpacts(c, r, srl)

15 Return sae

16 }

17

18 srlp = getRelationsInPropagation(c, r, srl)

19 sae = traversePropagationPath(c, r, srlp, st)

20 Return sae

21 } //End of impact function

Candidate impacted architectural elements are identified based on the type of requirements
change. The algorithm checks the type of requirements change (see lines 3, 4, 5, 9 and 11).

 Candidate Impacts for ‘Add a New Requirements Relation’, ‘Delete
Requirements Relation’, and ‘Update Requirements Relation’. If the change is
‘Add a New Requirements Relation’, ‘Delete Requirements Relation’ or ‘Update
Requirements Relation’ (see lines 3 - 7), there is no impact on architecture. These
change types improve the structure of the model without modifying overall system
properties (see refactoring in Chapter 5). They have no impact on software architecture.
However, trace constraints given in Chapter 6 should be checked after the changes.

 Candidate Impacts for ‘Add Property to Requirement’. If the change is ‘Add
Property to Requirement’ (see line 9), there is no suggestion for candidate impacted
architectural elements. If the added property is a new system property (see domain
changes in Chapter 5), architectural elements that satisfy the existing properties related
to the added property are candidate impacted. In the requirement itself, there is no
explicit dependency between the existing properties and the added property.
Therefore, it is not possible to automatically identify architectural elements that
satisfy the existing properties related to the new system property as candidate
impacted. The added property may just be an existing property added to the
requirement to improve the structure of the model without modifying overall system

230 Chapter 7 Change Impact Analysis in Software Architecture

properties (see refactoring in Chapter 5). There is no impact on software architecture if
the added property is not a new system property. The approach can not identify
automatically if the added property is a new system property or not. There is no
suggestion for candidate impacted architectural elements. The possible impact needs
to be analyzed by the architect.

 Candidate Impacts for ‘Add Requirement’. If the change is ‘Add a New
Requirement’ (see lines 11 - 16), either architectural elements traced from directly
related requirements are candidate impacted or there is no impact (see Section 7.3.1).

 Candidate Impacts for Other Changes. If the change is none of the changes
above (see line 19), the propagation path of the change is traversed to identify
candidate impacted architectural elements (see Section 7.3.2).

The software architect takes design decisions to implement the change. Some or all of the
architectural elements identified as candidate impacted may not be actually impacted because
of the design decisions taken by the architect. New architectural elements might be
introduced to the software architecture instead of changing the existing elements.

7.3.1 Candidate Impacts for ‘Add Requirement’
If the added requirement introduces a new system property (see domain changes in Chapter 5),
architectural elements that satisfy requirements directly related to the added requirement are
candidate impacted. If there is no new system property introduced by the change (see
refactoring in Chapter 5), there is no impact on software architecture. Table 7.1 gives the
change impact rules for the change type ‘Add Requirement’. Each cell gives the candidate
impacted architectural elements for the change type in the row and the relations in the
columns.

Table 7.1 Change Impact Rules for the Change Type “Add Requirement”
C

h
an

ge

Requirements Relation Types

Ri contains
Rx

Ri refines
Rx

Ri partially
refines Rx

Ri requires
Rx

Rx

contains
Ri

Rx refines
Ri

Rx partially
refines Ri

Rx requires
Ri

Add
Rx

No
candidate
impacted
AE5

No
candidate
impacted
AE

No
candidate
impacted
AE

AEs traced
from Ri are
candidate
impacted

No
candidate
impacted
AE

AEs traced
from Ri
are
candidate
impacted

AEs traced
from Ri
are
candidate
impacted

AEs traced
from Ri are
candidate
impacted

5 ‘AE’ stands for ‘Architectural Element’

7.3 Identifying Candidate Impacted Architectural Elements 231

The requirement Ri in Table 7.1 denotes an existing requirement. Rx is the added
requirement. The change ‘Add Requirement’ is not a domain change if (Ri contains Rx), (Ri
refines Rx), (Ri partially refines Rx) or (Rx contains Ri). Therefore, there is no impact on
architecture. The following is a change impact example for the change ‘Add Requirement’.

Change Impact Example for the Change ‘Add Requirement’ (Add Rx)

We explain one of the change impact rules for the change type ‘Add Requirement’ with the
following example from the RPM requirements document.

Requirement 5 The system shall store patient blood pressure measured by the sensor in the central storage.

Requirement 15 The system shall store patient Central Venous Pressure (CV Pressure) measured by the
sensor in the central storage.

where (Requirement 15 refines Requirement 5)

The stakeholders’ need the following change: Measuring and storing blood pressure is
refined further for Pulmonary Artery Pressure (PA pressure). Therefore, we propose the
change ‘Add Requirement’ in which the new requirement refines Requirement 5.

Requirement X The system shall store patient Pulmonary Artery Pressure (PA pressure) measured by
the sensor in the central storage.

where (Requirement X refines Requirement 5)

Figure 7.2 shows the Satisfies trace for Requirement 5 and the candidate impacted
architectural elements for Requirement X.

232 Chapter 7 Change Impact Analysis in Software Architecture

Figure 7.2 Candidate Impacted Architectural Elements for the Added Requirement

Since Requirement X is the refinement of the system property given in Requirement 5, the
architectural elements that implement measuring and storing patient blood pressure are
candidate impacted for measuring and storing patient PA pressure. Figure 7.3 shows the part
of the RPM architecture that satisfies Requirement 5. The architectural elements in Figure
7.3 are the candidate impacted elements given in Figure 7.2.

Figure 7.3 Part of the RPM Architecture for Storing Blood Pressure

Before adding Requirement X, Requirement 15 is the only requirement that refines
Requirement 5. Therefore, the part of the RPM architecture in Figure 7.3 satisfies the
property in Requirement 15 (Storing patient CV pressure measured by the sensor). We inspected the
architecture based on the new requirement and candidate impacted architectural elements.

7.3 Identifying Candidate Impacted Architectural Elements 233

We changed the architecture to get the new requirement satisfied by the architecture. Figure
7.4 gives the changed part of the RPM architecture.

Figure 7.4 Changed Part of the RPM Architecture for Storing Blood Pressure

We added a new sensor (Sensor 3) and new event data ports (sd_cv_blood_edp1,
sdc_cv_blood_edp1, and etc.) to measure and transmit the patient CV pressure. The threads
sdThr, sdcThr and sdmThr have some of the new event data ports. The measured CV pressure
is stored to the existing data store (sd_blood_strg). Therefore, according to our changes the
actual impacted architectural elements are the threads sdThr, sdcThr, sdmThr and the data store
sd_blood_str.

To implement the change, the software architect takes certain design decisions. Furthermore,
after performing the change, architecture verification and trace establishment techniques in
Chapter 6 have to be applied to verify the new architecture and to generate new traces.

Please note that the candidate impacted architectural elements might not be actually
impacted at all. For instance, we could propose new event data ports, new threads, new
sensors and new data storages for the example. None of the candidate impacted elements
would be affected. With candidate impacted elements we aim at identifying architectural
elements that satisfy changed properties and/or existing properties related to the added
property.

The following is the explanation of the change impact rule in Table 7.1 for the change ‘Add
Requirement’ (Add Rx) where (Rx refines Ri).

Change Impact Rule for ‘Add Requirement’ (Add Rx) where (Rx refines Ri)

 Candidate impacted architectural elements for the change type ‘Add Requirement’ (Add Rx)

 where (Rx refines Ri)

 = Architectural elements traced from Ri are candidate impacted

Explanation:

234 Chapter 7 Change Impact Analysis in Software Architecture

 Let Ri, Rx be requirements and EA be the set of architectural elements that satisfies Ri
where Pi and Px are formulas for Ri and Rx, and PA is the formula for the system property EA
is needed to implement.

= {By using formalization of the refines relation}

 Px → Pi

= {By using formalization of the satisfies trace}

 The fulfillment of PA implies the fulfillment of Pi

 Pi also holds for the set of architectural elements EA. The new requirement Rx is a
refinement of Ri. Usually, the architectural elements in EA provide part of the functionality
that satisfies Px. The elements in EA can be reused or adapted in order to implement the new
requirement Rx. Therefore, they are candidate impacted architectural elements.

The following is the derivation of the change impact rule in Table 7.1 where the change ‘Add
Requirement’ is not a domain change (Add Rx where Ri contains Rx).

Change Impact Rule for ‘Add Requirement’ (Add Rx) where (Ri contains Rx)

 Candidate impacted architectural elements for the change type ‘Add Requirement’ (Add Rx)

 where (Ri contains Rx)

 = No candidate impacted architectural element

Derivation:

 Let RM be a requirements model where PRM is the formula for RM.

 The requirements model RM is the set of requirements R1, R2, … , Rk where P1, P2, … ,
Pk are formulas for R1, R2, … , Rk, and k ≥ 1. PRM can also be represented in the following
way:

 PRM = P1  P2  …  Pk

 Please note that if the requirements R1, R2, …, Rk are written as formulas 1x , 2x , …,

kx with 1 , 2 , …, k in CNF, we have the following: (PRM = x (1  2  3 …

k)).

 Let Ri and Rx be requirements where Pi and Px are formulas for Ri and Rx, and (i  k)

 Let RMl be the requirements model after the change ‘Add Rx’ where PRMl is the formula
for RMl.

= {By using formalization of the change type ‘Add Requirement’}

 PRMl = PRM  Px

7.3 Identifying Candidate Impacted Architectural Elements 235

 If PRM and Px are written as formulas x (1  2  3 … k) and xx with 1 ,

2 , …, k , x in CNF, we have the following: (PRMl = x (1  2  3 … k 

x)).

= {By using formalization of the contains relation}

 We have the following: (Pi = Px  Pl) where Pl denotes properties that are not captured
in Px. Please note that if the requirements Ri and Rx are written as formulas ix and xx

with i and x in CNF and Pl is expressed as x with  in CNF, we understand the

following: Ri contains Rx iff (Pi = x (x  )), and ( (x (x → i))) and ( (x ( →

i))) are satisfiable.

 PRMl = PRM  Px

 PRMl = x (1  2  3 … k  x)

 PRMl = x (1  2  …  i … k  x)

 PRMl = x (1  2  …  x   … k  x)

 PRMl = x (1  2  …  x   … k)

 PRMl = x (1  2  …  i … k)

 PRMl = x (1  2  3 … k)

 Then we get PRMl = PRM = x (1  2  3 … k)

= {By using the formalization of domain changes and refactoring}

 Properties that are captured in the requirements model RM are preserved in the new
requirements model RMl and there is no new property in the new requirements model RMl.
Therefore, we can conclude that the architecture, that satisfies requirements in the
requirements model RM, satisfies requirements in the requirements model RMl after the
change ‘Add Rx’. There is no need to change the architecture and therefore, there is no
candidate impacted architectural element.

7.3.2 Candidate Impacts for Other Changes
The changes ‘Delete Requirement’ and ‘Update Requirement’ (except ‘Add Property to
Requirement’) update existing properties described in requirements. Architectural elements
that satisfy the changed properties are candidate impacted. The changed requirements may
have properties not changed. Architectural elements that satisfy the unchanged properties
are not impacted. The propagation path is traversed in order to identify the impacted
requirement(s) which has no unimpacted properties (if possible) or at least which has the

236 Chapter 7 Change Impact Analysis in Software Architecture

smallest number of unimpacted properties. Architectural elements that are traced from the
identified requirement(s) are named candidate impacted.

We define a function for traversing the propagation path. The function traversePropagationPath
takes a change type, a requirement to which the change is introduced, a set of relations of the
requirement used in the propagation path and a set of all traces between R&A as input. The
output of the traversePropagationPath function is a set of architectural elements which are
candidate impacted by the requirements change. The following is the algorithm of the
function.

1 traversePropagationPath(ChangeType c, Requirement r, Set srlp, Set st): Set {

2 ChangeType pc = empty

3 Set srl = empty-set

4 Set rlp = empty-set

5

6 If (srlp is empty-set) {

7 sae = getArchitecturalElements(r, st)

8 Return sae

9 }

10

11 If (c is ‘Delete Requirement’) {

12 Boolean i = false

13 ForEach relation rl  srlp {

14 If ((rl is ‘refines’) AND (rl.target is r)) {

15 i = true

16 pc = getPropagatedChange(c, r, rl)

17 srl = getRelations(rl.source)

18 rlp = getRelationsInPropagation(pc, rl.source, srl)

19 sae = sae + traversePropagationPath(pc, rl.source, rlp, st)

20 }

21 } // End of ForEach

22

23 If (i = false) { sae = getArchitecturalElements(r, st) }

24 Return sae

25 }

7.3 Identifying Candidate Impacted Architectural Elements 237

26

27 Boolean k = false

28 ForEach relation rl  srlp {

29 If ((rl is ‘refines’) AND (rl.target is r)) OR

30 ((rl is ‘partially refines’) AND (rl.target is r)) {

31 k = true

32 pc = getPropagatedChange(c, r, rl)

33 srl = getRelations(rl.source)

34 rlp = getRelationsInPropagation(pc, rl.source, srl)

35 sae = sae + traversePropagationPath(pc, rl.source, rlp, st)

36 } else {

37 If ((rl is ‘contains’) AND (rl.source is r)) {

38 k = true

39 pc = getPropagatedChange(c, r, rl)

40 srl = getRelations(rl.target)

41 rlp = getRelationsInPropagation(pc, rl.target, srl)

42 sae = sae + traversePropagationPath(pc, rl.target, rlp, st)

43 }

44 }

45 } // End of ForEach

46

47 If (k = false) { sae = getArchitecturalElements(r, st) }

48

49 Return sae

50 } // End of traversePropagationPath function

51

The function is recursive. It returns the set of candidate impacted architectural elements
when there is no relation to be traversed in the propagation path (see lines 6 - 9). If there is
any relation in the propagation path, the function checks the type of the change and relation
to identify candidate impacts based on the change impact rules in Table 7.2. Table 7.2 has
change types in the rows and relation types in the columns. Please note that the relation in
the column is considered for the change in the row only if the requirements relation is in the
propagation path. If the change is ‘Delete Requirement’ and the deleted requirement is
refined by another requirement in the propagation path, the function continues to traverse

238 Chapter 7 Change Impact Analysis in Software Architecture

the path for the refining requirement (see lines 11 - 21). If there is no refining requirement in
the propagation path, architectural elements that satisfy the deleted requirement are
identified as candidate impacted (line 23) (see the row Delete Ri in Table 7.2).

The function checks if the updated requirement is (partially) refined by another requirement
or contains another requirement in the propagation path. If there is any refining/contained
requirement in the propagation path, the function continues to traverse the path for the
refining/contained requirement (see lines 28 - 45). If there is no refining/contained
requirement in the propagation path, architectural elements that satisfy the updated
requirement are identified as candidate impacted (line 47).

Table 7.2 Traversal Rules for Change Types “Delete Requirement” and “Update Requirement”

Changes

Requirements Relation Types

Ri contains Rk Ri refines Rk Ri partially
refines Rk

Rk contains Ri Rk refines Ri Rk partially
refines Ri

Delete Ri Do not traverse
the propagation
path for Rk

Do not
traverse the
propagation
path for Rk

Do not
traverse the
propagation
path for Rk

Do not traverse
the propagation
path for Rk

Take Rk to
traverse the
propagation
path

Do not
traverse the
propagation
path for Rk

Ri
pt

 Ri
l

Take Rk to
traverse the
propagation
path

Do not
traverse the
propagation
path for Rk

Do not
traverse the
propagation
path for Rk

Do not traverse
the propagation
path for Rk

Take Rk to
traverse the
propagation
path

Take Rk to
traverse the
propagation
path

Ri

lptpt

 Ri
l

Take Rk to
traverse the
propagation
path

Do not
traverse the
propagation
path for Rk

Do not
traverse the
propagation
path for Rk

Do not traverse
the propagation
path for Rk

Take Rk to
traverse the
propagation
path

Take Rk to
traverse the
propagation
path

Ri
ct

 Ri
l

Take Rk to
traverse the
propagation
path

Do not
traverse the
propagation
path for Rk

Do not
traverse the
propagation
path for Rk

Do not traverse
the propagation
path for Rk

Take Rk to
traverse the
propagation
path

Take Rk to
traverse the
propagation
path

Ri
ct

 Ri
l

Take Rk to
traverse the
propagation
path

Do not
traverse the
propagation
path for Rk

Do not
traverse the
propagation
path for Rk

Do not traverse
the propagation
path for Rk

Take Rk to
traverse the
propagation
path

Take Rk to
traverse the
propagation
path

Ri
lctct

 Ri
l

Take Rk to
traverse the
propagation
path

Do not
traverse the
propagation
path for Rk

Do not
traverse the
propagation
path for Rk

Do not traverse
the propagation
path for Rk

Take Rk to
traverse the
propagation
path

Take Rk to
traverse the
propagation
path

In Table 5.2 in Chapter 5 we give the change impact alternatives for the change propagation.
Each cell in Table 5.2 gives change alternatives in order to propagate the changes in the rows
by using the relations in the columns. The requirements engineer selects one of the

7.3 Identifying Candidate Impacted Architectural Elements 239

alternatives to propagate the change. The changes in the rows of Table 7.2 represent the
changes selected by the requirements engineer.

The following is an example for change impact for the change ‘Add Constraint to Property
of Requirement’.

Change Impact Example for the Change ‘Add Constraint to Property of
Requirement’

We explain one of the change impact rules for the change type ‘Add Constraint to Property
of Requirement’ with the following requirements from the RPM requirements document.

Requirement 4 The system shall store patient temperature measured by the sensor in the central storage.

Requirement 7 The system shall warn the doctor when the temperature threshold is violated.

Requirement 8 The system shall generate an alarm if the temperature threshold is violated.

Requirement 9 The system shall show the doctor the temperature alarm at the doctors’ computers.

Requirement 14 The system shall store patient temperature measured by the sensor in the central storage
and it shall warn the doctor when the temperature threshold is violated.

Figure 7.5 shows the part of the RPM requirements model for the requirements above.

Figure 7.5 Part of the RPM Requirements Model

The stakeholders’ need a change for the RPM system: The system shall warn the doctor
with the information about the patient’s condition when the temperature threshold is
violated. The change ‘Add Constraint to Property of Requirement’ is proposed for
Requirement 14.

Proposed Change: Add Constraint to Property of Requirement 14

Description of the Proposed Change: If the temperature threshold is violated, the system
shall warn the doctor with the information about the patient’s condition.

240 Chapter 7 Change Impact Analysis in Software Architecture

The property of Requirement 14 is ‘warning the doctor about the temperature threshold
violation’. The constraint added to the property of Requirement 14 is ‘warning the doctor
with the information about the patient’s condition’. The proposed change is propagated to
the requirements which contain or refine the property ‘warning the doctor about the
temperature threshold violation’ (see Chapter 5). Figure 7.6 shows the propagation path of
the proposed change for Requirement 14.

Figure 7.6 Propagation Path of the Proposed Change for Requirement 14

The proposed changes for Requirement 7 and Requirement 9 in the propagation path are
the following:

Proposed Change for Requirement 7: Add Constraint to Property of Requirement 7

Description of the Proposed Change: If the temperature threshold is violated, the system
shall warn the doctor with the information about the patient’s condition.

Since the property of Requirement 14, which has the proposed change, is contained by
Requirement 7, the same proposed change is introduced to Requirement 7.

Proposed Change for Requirement 9: Add Constraint to Property of Requirement 9

Description of the Proposed Change: The system shall show the doctor the temperature
alarm with information about the patient’s condition at the doctor’s computer.

Since the property of Requirement 7, which has the propagated change, is partially
refined by Requirement 9, the same proposed change is introduced to Requirement 9.

The proposed changes in the propagation path are the ‘Add Constraint to Property of
Requirement’ change. Therefore, in order to identify the candidate impacted architectural
elements for the proposed change in Requirement 14, we traverse the propagation path in
Figure 7.6 based on the rules in Table 7.2.

7.3 Identifying Candidate Impacted Architectural Elements 241

According to Table 7.2, Rk is taken to traverse the propagation path if (Ri
ct

 Ril) and (Ri
contains Rk). Since Requirement 14 has the change ‘Add Constraint to Property of
Requirement’ and Requirement 14 contains Requirement 7, Requirement 7 is taken to traverse
the propagation path.

According to Table 7.2, Rk is taken to traverse the propagation path if (Ri
ct

 Ril) and (Rk
partially refines Ri). Since Requirement 9 has the change ‘Add Constraint to Property of
Requirement’ and Requirement 9 partially refines Requirement 7, Requirement 9 is taken to
traverse the propagation path. There is no other requirement which has the proposed change
in the propagation path. Therefore, architectural elements traced from Requirement 9 are
candidate impacted. Figure 7.7 shows the propagation path and candidate impacted
architectural elements.

Figure 7.7 Candidate Impacted Architectural Elements for the Constraint Added to Requirement 14

242 Chapter 7 Change Impact Analysis in Software Architecture

Requirement 9 has the most refined property related to the proposed change. Therefore,
in order to implement the change proposed for Requirement 14, architectural elements that
satisfy Requirement 9 are identified as candidate impacted.

Traversal rules in Table 7.2 are derived from the semantics of change types and requirements
relations. The following is the derivation of the traversal rule in Table 7.2 for the change

‘Add Constraint to Property of Requirement’ for Ri (Ri
ct

 Ril) where (Rk partially refines Ri).

Traversal Rule for the Change ‘Add Constraint to Property of Requirement’

 Candidate impacted architectural elements for the change type ‘Add Constraint to

 Property of Requirement’ for Ri (Ri
ct

 Ril)

 where (Rk partially refines Ri) and the change is propagated to Rk (Rk
ct

 Rkl)

 = Take Rk to traverse the propagation path

Derivation:

 Let Ri be a requirement where Pi is the formula for Ri. Pi is represented in a conjunctive
normal form (CNF) in the following way:

 Pi = x (p1 … pn); n ≥ 1 and pi is disjunction of literals

 Let Rk be a requirement where Pk is the formula for Rk.

 Let Ril and Rkl be the requirements after the changes (Ri
ct

 Ril) and (Rk
ct

 Rkl) where Pil
and Pkl are the formulas for Ril and Rkl.

 Let EAi be the set of architectural elements that satisfies Ri and EAk be the set of
architectural elements that satisfies Rk where PAi is the formula for the system property EAi is
needed to implement and PAk is the formula for the system property EAk is needed to
implement.

= {By using formalization of the satisfies trace}

 The fulfillment of PAi implies the fulfillment of Pi

 The fulfillment of PAk implies the fulfillment of Pk

= {By using formalization of the partially refines relation}

 Pk = x (p1l ... pzl); z < n and x (pjl → pj) for for all j  1..z

= {By using formalization of the change type ‘Add Constraint to Property of Requirement’ for Ri}

 Pil = x ((p1ll ... ptll)  (pt+1 ... pn)); t  z and x (pjll → pj) for all j  1..t

7.4 Proposing Architectural Changes 243

 The properties captured in x (pz+1 … pn) in Ri are not affected by the change. These
properties are not captured by Rk. Therefore, the propagation path is traversed for Rk.

The software architect identifies the candidate impacted architectural elements with tool
support. Then, he/she starts investigating the impacted architectural elements and changing
the software architecture for the changed requirements. In the following we explain how to
identify possible changes for software architecture when the software architecture does not
satisfy the changed requirements.

7.4 Proposing Architectural Changes

With the first part of our technique, the software architect identifies software architecture
elements that are candidate impacted by the requirements changes. He/she analyzes and
possibly changes parts of the architecture. After the changes, the software architecture may
not satisfy the changed requirements. The second part of our technique is to propose
possible changes in the software architecture when the software architecture does not satisfy
the changed requirements. The technique is based on architecture verification. The output of
the verification is a counter example if the requirements are not satisfied. The counter
example is used together with a classification of architectural changes to propose changes in
the software architecture. These changes produce a new version of the architecture that
possibly satisfies the changed requirements.

We provide a change impact function for proposing architectural changes. It takes a changed
requirement, a set of traces between the requirement and software architecture, and a
counter example where the requirement is not satisfied, as input. The function produces a
set of proposed architectural changes as output. The following is the signature of the change
impact function.

impact : SR  SST  SCE  SSAC

where SR is the set of requirements, SST is the set of sets of traces, SCE is the set of counter
examples and SSAC is the set of sets of architectural changes.

Counter example is an ordered set of states which are generated when the requirement is not
satisfied. There are no transition rules applicable in the last state of the counter example. A
state transition rule is fired if its left-hand side pattern matches in the current state. The next
state is formed based on the right-hand side of the transition rule. The idea is to make such
changes in the architecture that will make the application of some transition rules possible.

244 Chapter 7 Change Impact Analysis in Software Architecture

Application of changes may happen iteratively until the requirement is eventually satisfied. In
the analysis of the counter example we have the following limitations and assumptions.

 Analyzing the counter example in our approach is limited to the operational semantics of AADL in
[197] [198]. This semantics mostly deals with passing & storing data in a data flow,
dispatching & executing threads and switching modes. These specific details are used
when proposed architectural changes are identified. Therefore, architectural changes
in our approach may not be generalized for other architecture description languages
and other versions of semantics.

 Architectural changes in our approach are limited to the possible missing parts of the architecture for
mainly data flow and thread execution. Designing architecture based on requirements is a
creative process. There are an infinite number of designs that satisfy the requirements
for a given project. Therefore, the number of changes over the architecture is infinite.
We do not consider changes such as adding new systems, processes or threads which
may cause infinite number of solutions for the changed requirements.

 It is assumed that there is a next state from the last state of the counter example. It is possible
that the last state might be the final state where no state transition is fired further. In
this case, the software architect should check all the states in the counter example to
change the architecture. Even if the last state is not the final state, changing the
architecture to enable a next state may not produce an architecture that satisfies the
changed requirement. The software architect may need iterations of changing and
verifying the architecture.

The following is an illustration of the idea:

Example for Proposing Architectural Changes

The example was already used in Section 7.3.1. It shows a change request to illustrate how
we identify the candidate impacted architectural elements for the change ‘Add Requirement’.

Requirement X The system shall store patient Pulmonary Artery Pressure (PA pressure) measured by
the sensor in the central storage.

Figure 7.8 gives the changed part of the RPM architecture that implements the added
requirement.

7.4 Proposing Architectural Changes 245

Figure 7.8 Changed Part of the RPM Architecture for Stroring Blood Pressure

We added a new sensor (Sensor 3) and new event data ports (sd_cv_blood_edp1,
sdc_cv_blood_edp1, hpc_cv_blood_edp1 and etc.) to measure and transmit the patient PA
pressure. The threads sdThr, sdcThr and sdmThr have some of the new event data ports. The
measured PA pressure is stored to the existing data store (sd_blood_strg).

Sensor 3 measures and transmits the patient PA pressure via the event data ports
(sd_cv_blood_edp1, sdc_cv_blood_edp1, hpc_cv_blood_edp1 and etc.) and the threads (sdThr, sdcThr
and sdmThr). The following is the LTL formula for the added requirement (see Chapter 6 for
the reformulation of requirements as LTL formulas):

LTL formula in Maude: (mc initializeThreads({ MAIN system Wholesys . imp }) |=u <>
((MAIN -> hpc -> sdm -> sdmTh) @ bloodStored) .)

The formula states that if the DI data instance is contained by the data port
sd_cv_blood_edp1 of Sensor 3, then eventually in the future the state in the state transition
system in the sdmTh thread is set to the bloodStored state (the DI data instance is stored by the
sdm_blood_strg data store of the SDM component). Please note that the DI data instance is
created in the initial state by a test thread in the RPM model. Therefore, the LTL formula
does not explicitly indicate the DI data instance and the sd_cv_blood_edp1 data port of Sensor
3. The formula creates the initial state instead. After executing the model checker in Maude,
the LTL formula is false and it returns the counter example.

During the design of the architecture, the software architect assigns some ‘AllocatedTo’
traces between the requirement and parts of the software architecture that are supposed to
satisfy the requirement. Some ‘AllocatedTo’ traces are generated between the new
requirement and parts of the architecture that are used in the verification (see Chapter 6).

There might be unexpected architectural elements used in the verification. We compare
the assigned and generated ‘AllocatedTo’ traces before we analyze the last state of the
counter example. If there is any unexpected element in the generated traces, we have to find

246 Chapter 7 Change Impact Analysis in Software Architecture

out why it is used in the verification. The unexpected elements might be the cause that the
requirement is not satisfied. If some elements in the assigned traces are not in the generated
traces, some elements have not been used in the verification yet. If the application of further
rules is possible after the change, the rest of the elements in the assigned traces may be used.
Figure 7.9 shows the assigned and generated ‘AllocatedTo’ traces for the added requirement.

Figure 7.9 Assigned and Generated ‘AllocatedTo’ Traces for the Added Requirement

The set of architectural elements used in the verification (the generated ‘AllocatedTo’) is a
subset of the architectural elements to which Requirement X is allocated (the assigned
‘AllocatedTo’). Therefore, there is no unexpected architectural element used in the
verification. Figure 7.10 gives the last state of the counter example.

Figure 7.10 Last State of the Counter Example in the First Check

In Figure 7.10, the DI data instance is at the buffer of the sd_cv_blood_edp3 data-in-port of
the sdThr thread. Before the last state of the counter example, the data is passed to the

7.4 Proposing Architectural Changes 247

sd_cv_blood_edp3 data-in-port of the sdThr thread from the sd_cv_blood_edp2 data-in-port of the
sdPrc process. The transmission of messages from source port to destination port along
connections is modeled as equations in Maude [197] [198]. The following equation models the
transmission of a data along a level-down connection C.P --> C.C1.P1 from the P data-in-
port of the C component to the P1 data-in-port of the C1 subcomponent.

1 op transfer : MsgList -> MsgList [ctor] .

2

3 vars C C1 : ComponentId . vars P P1 : PortId .

4 vars PORTS PORTS2 OTHER-COMPONENTS : Configuration .

5 vars ML ML’ : MsgList . var CONXS : ConnectionSet .

6

7 eq < C : Component |

8 features :

9 < P : InPort | buffer : transfer(ML) > PORTS,

10 subcomponents :

11 < C1 : Component | features : < P1 : InPort | buffer : ML' > PORTS2 >

12 OTHER-COMPONENTS,

13 connections : (P --> C1 . P1) ; CONXS >

14 =

15 < C : Component |

16 features : < P : InPort | buffer : nil > PORTS,

17 subcomponents :

18 < C1 : Component | features : < P1 : InPort | buffer : ML' :: transfer(ML) >

19 PORTS2 >
20 OTHER-COMPONENTS > .

As a result of applying the equation in our example, the sd_cv_blood_edp3 data-in-port has
the DI data instance (line 18), and the sd_cv_blood_edp2 data-in-port’s buffer is empty (line
16).

Accoding to the AADL standard, the only possible transition is thread dispatching if the data
is at the buffer of (event) data-in-port of the thread. The sdThr thread is an aperiodic thread.
Therefore, the state transition rule for aperiodic thread dispatching can be fired. An
architectural change has to make the application of the state transition rule for aperiodic
thread dispatching possible. Aperiodic thread dispatching is modeled by the following
conditional rewrite rule in Maude [197] [198]:

248 Chapter 7 Change Impact Analysis in Software Architecture

1 var O : ThreadId . var P : PortId. var PROGRAM : ThreadBehaviour .

2 var MTS : ModeTransitionSystem . var TN : ThreadName . var IMPL : ImpleName .

3 var PORTS : Configuration . vars ML ML’ : MsgList .

4

5 crl [aperiodic-incoming-message] :

6 < O : Thread | properties : aperiodic-dispatch ; TP,

7 used : U,

8 modes : MTS,

9 deactivated : false,

10 features :

11 (< P : InEventDataThreadPort | buffer : ML :: transfer(ML') >

12 PORTS),

13 status : completed,

14 behavior : PROGRAM,

15 threadType : TN, implementationType : IMPL >

16 =>

17 < O : Thread | used : true,

18 features :

19 dispatchInputPorts(

20 < P : InEventDataThreadPort | buffer : ML :: ML' > PORTS),

21 status : active >

22 if someTransEnabled(transitions(TN, IMPL), PROGRAM,

23 dispatchInputPorts(

24 < P : InEventDataThreadPort | buffer : ML :: ML' >

25 PORTS)) .

The left-hand side pattern of the transition rule is in lines 6 - 15 and lines 22 - 26. To fire
the aperiodic-incoming-message transition rule, the following conditions should hold:

(1) the thread is active (line 9),

(2) the thread status is in complete (line 13)

(3) some of the transitions in the behavioral annex of the thread are enabled (lines 22-23)

(4) there is an incoming data at the buffer of the data-in-port of the thread (lines 23 - 24)

There is already a data at the the buffer of the sd_cv_blood_edp3 data-in-port of the sdThr
thread. Therefore, architectural changes should be proposed to make the conditions 1, 2 and

7.4 Proposing Architectural Changes 249

3 hold. In order to make the conditions 1, 2 and 3 hold, there are two changes on the
architecture: changing the mode of the thread and changing the behaviour of the thread. The thread
might be activated and its status might be set to completed by changing the mode of the
thread. The behaviour of the thread is coded as states and state transitions with its activation
and status in the behavioral annex. Please note that the states and state transitions in the
behavioral annex are different than the states and state transitions in the model checker.
Changing the behaviour of the thread (the behavioral annex of the thread) may make the
thread active and its status complete. If none of the transitions in the thread is enabled (see the
condition 3), either some of the transitions in the behavioral annex or the mode of the
thread is changed. The thread may have different states and transitions in different modes.

Let’s inspect the requirement, the software architecture and the possible changes. The
conditions 1 and 2 hold for the sdThr thread. The thread is active and its status is in complete.
None of the transitions in the behavioral annex of the thread is enabled because the states
and transitions in the sdThr thread are about the data received from Sensor 1 (not shown in
Figure 7.10) and Sensor 2. There is no state and transition handling the data which is
received from Sensor 3 and put to the the sd_cv_blood_edp3 data-in-port. The sdThr thread has
no mode. Therefore, we decide to change the behavior of the thread by introducing new
states and state transitions in the behavioral annex. We add the following state transition
with the new state cvBloodPassed to the behavioural annex of the sdThr thread:

 idle -[sd_cv_blood_edp3?(inMessage)]-> cvBloodPassed { sd_cv_blood_edp4!(inMessage); };

The added state transition states the following: If the sdThr thread is in the idle state and
receives the measurement data at the sd_cv_blood_edp3 event data port, then the received data
is passed to the sd_cv_blood_edp4 event data port. We re-execute the model checker over the
changed architecture. The LTL formula is again false and it returns another counter example.
After the first check of the architecture we have three more iterations that we do not
illustrate here because the architectural changes are again changing the behaviour of the
thread. We add new states and state transitions to the behavioral annex of the threads sdcThr
and sdmThr after the second and third iterations.

As a fourth check we re-execute the model checker over the changed architecture. The
LTL formula is true and it returns the execution. Figure 7.11 gives the last state of the
execution trace.

250 Chapter 7 Change Impact Analysis in Software Architecture

Figure 7.11 Last State of the Execution Trace

In the last state of the execution trace, the DI data instance is stored and the bloodStored
state is reached. Therefore, the architecture satisfies the new requirement. For the changed
part of the RPM architecture in Figure 7.8 we have four iterations to make the architecture
satisfy the new requirement.

The software architect may always take different architectural decisions to change the
architecture. If we use the RPM architecture in Figure 7.12 instead of the one in Figure 7.8,
we change the architecture only once.

Figure 7.12 Another RPM Architecture for Storing CV Pressure

In Figure 7.12, only Sensor 3 and three data-in-ports (sd_cv_blood_edp1, sd_cv_blood_edp2
and sd_cv_blood_edp3) are added to the RPM architecture. Existing data-in-ports and
connections are used to transmit the data from the sdThr thread to the sdmThr thread. The
only change over the architecture is changing the behaviour of the sdThr thread. Since the
sdcThr and sdmThr threads use the existing data-in-ports for the data measured by Sensor 3,
they do not need any change in their behavioral annex.

The main steps in the change impact function are the following:

Comparing the Assigned and Generated Traces. There might be unexpected
architectural elements used in the verification. We compare the assigned and generated
‘AllocatedTo’ traces before we analyze the last state of the counter example. Figure 7.13
gives the comparison of generated and assigned ‘AllocatedTo’ traces for a requirement.

7.4 Proposing Architectural Changes 251

Figure 7.13 Venn Diagram for Generated and Assigned ‘AllocatedTo’ Traces for a Requirement

Figure 7.13 is used to compare the generated and assigned ‘AllocatedTo’ traces:

 If (GAT \ AAT) = , then all architectural elements used in the verification for the
requirement are designed to satisfy the requirement. If some elements in the assigned
traces are not in the generated traces, some elements have not been used in the
verification yet. If the application of further rules is possible after the change, the rest
of the elements in the assigned traces may be used. The change impact algorithm
takes the second step to analyze the counter example.

 If (GAT \ AAT)  , then there are some unexpected elements in the generated
traces. We have to find out why they are used in the verification. The unexpected
elements might be the cause that the requirement is not satisfied. Therefore, the
change impact algorithm does not take the second step.

Analyzing the Counter Example. There are no transition rules applicable in the last state
of the counter example. The idea is to make such changes in the architecture that will make
the application of some transition rules possible. Our analysis of the counter example is
limited to enabling passing data, dispatching threads, executing threads and switching modes.
These are the main actions in the dynamic semantics of AADL used in our approach. We
have the following steps for analyzing the counter example:

 Locating the architectural elements that may need changes. We want to locate the elements that
may cause transitions. These are data, data-in-ports, data-out-ports, data storage,
threads, systems and processes. The statements in the right-hand side patterns give
information where data can be found in the architecture, if a thread is
dispatched/executed and if a mode is switched. Table 7.3 gives the categories of the
state transition rules in AADL with the right-hand-side patterns.

252 Chapter 7 Change Impact Analysis in Software Architecture

Table 7.3 Categories of the State Transition Rules in AADL with the Right-hand Side Patterns

Categories of State
Transition Rules in

AADL

Right-hand Side Patterns

Passing Message M1

Event/Data M1 at the buffer of the (event) data-in-port of System S1
Event/Data M1 at the buffer of the (event) data-in-port of Process P1
Event/Data M1 at the buffer of the (event) data-in-port of Thread T1
Event/Data M1 at the buffer of the (event) data-out-port of Device D1
Event/Data M1 at the buffer of the (event) data-out-port of System S1
Event/Data M1 at the buffer of the (event) data-out-port of Process P1

Dispatching Thread T1

Event/Data M1 at the internalbuffer of the (event) data-in-port of Thread
T1 & Thread T1 is in active status
Thread T1 is in the active status

Executing Thread T1

Event/Data M1 at the buffer of the (event) data-out-port of Thread T1
& Thread T1 is in the completed status
Thread T1 is in the completed status

Switching the Mode of
Thread T1

Thread T1 is in the inactive status
Thread T1 is in the completed status

In the first column of Table 7.3, there are four categories of the state transition rules (Passing
Message M1, Dispatching Thread T1, Executing Thread T1 and Switching the Mode of Thread T1).

 Matching the last state of the counter example for the right-hand side patterns of the state transition
rules. By analyzing the right-hand side patterns, we know what are the possible
locations of the data and the status of threads for thread dispatching and execution.
We check the last state of the counter example to find the location of data and
activated threads for dispatching and execution in the last state.

 Analyzing the left-hand side of the state transition rules to propose architectural changes. Data and
dispatched/executed threads in the last state of the counter example are the potential
architectural elements to trigger further state transition rules. For instance, if a thread
is already dispatched, the next state transition rule is for thread execution. We analyze
the left-hand side of the state transition rules to identify the conditions for each rule to
be applied. Architectural changes are proposed to make the conditions hold.

In this section we illustrate proposing architectural changes for the counter example where
the thread is dispatched. Analysis of all the state transition rules is given in Appendix J.
There are two right-hand side patterns for Dispatching Thread T1: (i) if T1 is aperiodic, its status
is active and event/data M1 is at the internalbuffer of its (event) data-in-port, (ii) if T1 is periodic,
its status is active. Table 7.4 gives proposed architectural changes that would trigger state

7.4 Proposing Architectural Changes 253

transition rules if the thread is dispatched. The first column of Table 7.4 lists the right-hand
side patterns of the state transition rules for Dispatching Thread T1. The second column of the
table gives the state transition rules which can be fired when a thread is already dispatched.
Accoding to the AADL standard, only the state transition rules for Executing Thread T1 can
be fired if the thread is already dispatched. The third column gives the possible architectural
changes to make the conditions of the left-hand side patterns of the state transition rules for
Executing Thread T1.

Table 7.4 Right-hand Side Patterns of the State Transition Rules for Dispatching Thread T1 with
Proposed Architectural Changes in AADL

 Right-hand Side
Patterns of the State
Transition Rules for
Dispatching Thread

T1

State Transition Rules
to be Fired Further

Proposed Architectural
Changes

 1

Event/Data M1 at
the internalbuffer of the
(event) data-in-port
of Thread T1 &
Thread T1 is in the
active status

Executing Thread T1

Change the mode of Thread
T1

Change the behaviour of
Thread T1

 2

Thread T1 is in the
active status

Executing Thread T1 Change the mode of Thread
T1
Change the behaviour of
Thread T1

In row (1), the right hand side pattern is for dispatching an aperiodic thread. In row (2), the
right–hand side pattern is for dispatching a periodic thread. To fire the transition rules for
both periodic and aperiodic thread execution, the following condition in the left-hand side
patterns of the state transition rules should hold: some of the transitions in the behavioral annex of
the thread are enabled.

If none of the transitions in the behavioral annex of the thread is enabled, either some of the
transitions in the behavioral annex or the mode of the thread is changed. The thread may
have different states and transitions in different modes. Therefore, there are two changes on
the architecture (changing the mode of the thread and changing the behaviour of the thread) to make the
condition hold.

There might be multiple applicable state transition rules which affect different parts of the
architecture. Therefore, multiple changes may be proposed for different parts of the

254 Chapter 7 Change Impact Analysis in Software Architecture

architecture. The software architect should analyze each proposed change and decide which
one to implement. We tried the approach with relatively simple state transition rules. We
have not studied the applicability of the approach for more complex state transition rules in
AADL.

Iterating. Calling the change impact function is iterative: the software architect may
continue changing the architecture. The software architect selects one or more of the
proposed changes to be implemented. After implementing the proposed architectural
changes, the architecture is verified again. If the changed requirement is not satisfied by the
changed architecture, the change impact function is called again.

7.5 Tool Support

In Chapter 4 and Chapter 5, we showed the details of our tool named Tool for
Requirements Inferencing and Consistency Checking (TRIC). We extended TRIC with
features for identifying candidate impacted architectural elements [235]. In this section, we
give the details of the tool. Tool support for architecture verification as part of changing
software architecture is already given in Chapter 6. In Section 7.5.1, we depict the usage of
the tool in the context of a requirements modeling process. Section 7.5.2 describes the main
features of the tool with some screenshots.

7.5.1 The Modeling Process
We depict the usage of the tool in a requirements modeling and architecture design process
with identifying candidate impacted architectural elements and proposing architectural
changes. Figure 7.14 gives a UML activity diagram of the process. Change impact analysis
techniques for requirements and software architecture are interleaved. Therefore, the process
in Figure 7.14 also contains activities for change impact analysis in requirements models. The
activities for change impact analysis in software architecture are identifying candidate impacted
architectural elements, proposing architectural changes and changing architecture model.

The process consists of the following activities.

Modeling Requirements & Designing Architecture: This activity takes the requirements
document as input and produces the Requirements Model (RM), Architecture Model (AM)
and Trace Model (TM). The requirements engineer models the requirements in the
requirements document by assigning relations between them with tool support in Chapter 4.
The software architect designs the software architecture for the requirements and traces
between requirements and architecture are assigned and/or generated (see Chapter 6).

7.5 Tool Support 255

Analyzing Change Impact in Requirements Model: The activity takes the change
request and the Requirements Model (RM) as input and produces impacted requirements
and proposed changes in the requirements model as output. The change is interpreted by the
requirements engineer in order to propose and propagate changes in the Requirements
Model (RM) (see Chapter 5).

Identifying Candidate Impacted Architectural Elements: The activity takes proposed
changes, impacted requirements, Requirements Model (RM), Architecture Model (AM) and
Trace Model (TM) as input and produces impacted architectural elements as output. The
activity is automatic. The software architect/requirements engineer selects the proposed
change in the requirements model. TRIC gives the impacted requirement to be traced to
candidate impacted architectural elements for the proposed change. Eclipse model editor is
used to display the candidate impacted architectural elements with the Trace Model (TM).

After identifying the candidate impacted architectural elements, the software architect
decides to implement the changes in requirements model and architecture model.

Changing Requirements Model: This activity takes the Requirements Model (RM) with
proposed changes and impacted requirements as input and produces the New Requirements
Model (RM`) as output. The activity is manual. The requirements engineer changes
requirements according to proposed changes.

Changing Architecture Model: The activity takes the New Requirements Model (RM`),
Trace Model (TM), Architecture Model (AM), candidate impacted architectural elements and
impacted requirements as input and produces the New Architecture Model (AM`) and the
New Trace Model (TM`) as output. It is a manual activity. The software architect changes
the Architecture Model (AM) based on candidate impacted architectural elements in order to
make the architecture satisfy new/changed requirements. He also updates the traces (the
New Trace Model – TM`) between the New Requirements Model (RM`) and the New
Architecture Model (AM`).

256 Chapter 7 Change Impact Analysis in Software Architecture

Figure 7.14 Requirements Modeling and Architectural Design Process with Change Impact Analysis

7.5 Tool Support 257

Verifying New Architecture for New Requirements Model: This activity takes the New
Requirements Model (RM`) and the New Architecture Model (AM`) as input and gives an
execution trace or a counter example and unsatisfied requirements (if there is any) as output.
The activity checks whether the requirements are satisfied by the architecture. It is semi-
automatic. The software architect reformulates the new/changed requirements in terms of
logical formulas over the architecture. These logical formulas are checked for the
architecture by the model checker in Maude automatically.

Proposing Architectural Changes: The activity takes the New Architecture Model (AM`),
New Trace Model (TM`), unsatisfied requirement and counter example as input and
produces proposed architectural changes as output. The proposed changes are derived by
analyzing the latest configuration of the architectural elements in the counter example.

Changing New Architecture Model: The activity takes the New Architecture Model
(AM`), New Trace Model (TM`), unsatisfied requirement and proposed architectural changes
as input and produces the New Architecture Model (AM``) and the New Trace Model (TM`)
as output. It is a manual activity. The software architect changes the New Architecture
Model (AM`) based on proposed architectural changes in order to make the architecture
satisfy new/changed requirements. He also updates the traces (the New Trace Model – TM`)
between the New Requirements Model (RM`) and the New Architecture Model (AM``).

Iterating: The process in Figure 7.14 is iterative: the software architect may return to the
verification of new architecture for new requirements model activity if the requirements are
still not satisfied by the new architecture. If all requirements are satisfied, the process is
terminated.

7.5.2 Tool Features
The tool support is a combination of the usage of TRIC, Eclipse Model Editor and Maude. We
describe the features of the tool support: identifying candidate impacted architectural elements and
proposing architectural changes.

Identifying Candidate Impacted Architectural Elements: Figure 7.15 gives the GUI for
selecting the proposed requirements change which supports the identifying candidate impacted
architectural elements activity.

258 Chapter 7 Change Impact Analysis in Software Architecture

Figure 7.15 GUI for Selecting the Proposed Requirements Change

The left-hand side of the window lists the requirements in the model. The requirements are
tagged as SI – Starting Impacted and UI - Unimpacted. The right-hand side of the window shows
the details of the selected requirement (R14). The pop-up menu opened by right clicking on
the selected requirement (R14) is used to select the proposed requirements change. After
selecting the proposed requirements change, the propagation path for the selected change is
traversed by the tool to identify the impacted requirement to be traced to architecture.
Figure 7.16 gives the output of traversing the propagation path of the proposed
requirements change.

Figure 7.16 Output of Traversing the Propagation Path of the Proposed Requirements Change

7.5 Tool Support 259

Figure 7.17 Output of the Identifying Candidate Impacted Architectural Elements Activity

Architectural elements traced from the impacted requirement(s) in Figure 7.16 are candidate
impacted architectural elements for the requirements change selected in Figure 7.15. The
Eclipse Model Editor is used to trace from the impacted requirement to candidate impacted
architectural elements by using the trace model (see Figure 7.17).

The right-hand side of the window shows the file output.ecore which is the trace model. The
trace model includes the traces, requirements and architectural elements that are associated
with the traces. The software architect can identify the architectural elements traced from the
impacted requirement by using the trace model in the Eclipse Model Editor. The details of
the chosen element in the trace model can be seen in the bottom of the window.

Proposing Architectural Changes: Architectural changes are proposed based on counter
example which is the output of verification when the reformulated requirements fail. We use
the Open-Source AADL Tool Environment (OSATE) – Topcased [204] which includes an
AADL front-end and architecture verification capabilities as plug-ins. The plug-in [182]
developed by Artur Boronat is used to generate Maude representation of AADL models
which can be simulated and verified. In Maude, we verify the software architecture for
reformulated requirements in LTL. We use Eclipse plug-in developed in the context of
MOMENT2 [30] to run Maude under Windows. We do not have a tool support to analyze

260 Chapter 7 Change Impact Analysis in Software Architecture

the counter example and to propose changes yet. Analysis of the counter example is
currently done manually according to the algorithm in Section 7.4.

7.6 Related Work

We discuss related work in two categories: Change Impact Analysis in Software Architectures and
Tool Support.

7.6.1 Change Impact Analysis in Software Architectures
A number of approaches in the literature address change impact analysis in software
architectures. Jonsson and Lindvall [133] present common strategies for performing change
impact analysis. They divide the strategies into two categories: automatable
(traceability/dependency analysis and slicing techniques) and manual (design documentation
and interviews). Automatable impact analysis strategies often employ algorithmic methods
for change propagation [133]. Traceability and dependency analyses differ in scope and detail
level. Traceability analysis is the analysis of the relations among all types of artifacts, while
dependency analysis focus on relations extracted from the source code. Since our approach
analyzes requirements relations and traces between R&A, it can be considered as traceability
analysis.

Algorithmic analysis is employed by Lee et al. [153] in order to compute the impact of
changes on object-oriented software. Lee et al. uses data dependency graphs with a
classification of changes for object-oriented software to determine the impacted elements in
object-oriented source code. The approach addresses the impact analysis in source code, not
in high-level design. Briand et al. [35] [36] presents a change impact analysis approach for
UML analysis/design models. The changes between two versions of UML models are
automatically identified based on a change classification. Then, model elements impacted by
the changes are identified by using formally defined change impact analysis rules expressed
in OCL. Similar to our approach, the approach in [35] [36] provides resulting changes for the
impacted model elements. On the other hand, change impact analysis rules in [35] [36] are
specific to UML models and changes in requirements are not considered. Tang et al. [241]
introduce Architecture Rationale and Element Linkage (AREL) model represented as a
Bayesian Belief Network (BBN). AREL captures the casual relationship between
architectural elements and decisions using propabilities. This allows architects to perform
change impact in software architecture based on probability theory. The input probabilities
have to be entered by the software architect based on previous experience. The main
difference with our approach is that the approach in [241] provides only impacted
architectural elements without any proposed change. Han [106] introduces an approach for

7.6 Related Work 261

impact analysis and change propagation based on dependencies of software artifacts.
Propagation rules are defined based on change patterns. A change pattern includes initial
modifications, consequent modifications with Boolean expressions that state the
dependencies of the elements involved. Han applies the approach in order to determine the
consequent modifications in design and source code for the initial modifications in design.
Our approach supports determining impacted architectural elements with consequent
changes for changes in requirements.

Westhuizen and Hoek [248] provides an approach for propagating architectural changes
within a product line architecture. The approach has two algorithms. The first one is a
differencing algorithm that automatically calculates the difference between two versions of a
product line architecture. The second algorithm is a merging algorithm that propagates the
changes captured by the differencing algorithm to the second product line architecture. The
merging algorithm requires the presence of some common elements among the
architectures. It propagates the changes from one architecture to another. Our approach
focuses on the propagation of changes in requirements to software architecture.

Slicing techniques are mainly developed to understand dependencies using independent
slices of the program [85]. Silicing is based on data and control flows in the program. Slicing
techniques limit change propagation by identifying the scopes of changes. The work by Tip
et al. [244] is an example of slicing techniques for C++ programs. Architectural slicing
introduced by Zhao et al. [265] [266] is similar to program slicing. As opposed to program
slicing, architectural slicing runs on the software architecture. The approach determines one
slice of the software architecture for the proposed change. Components that might be
impacted by the changed component are traced by using a graph of information flows.
Therefore, the approach requires all the information flows of the software architecture being
exposed. The main difference between the architectural slicing and our approach is that our
approach identifies candidate impacted architectural elements with possible architectural
changes caused by changes in requirements. Zhao et al. mainly focus on the questions such
as ‘If a change is made to a component c, what other components might be affected by c?’.
Feng and Maletic [80] address the propagation of architectural changes within the same
architecture. Their approach can be considered as both dependency analysis and slicing
technique. Interface and method slicing are used together with analysis of component
dependencies.

7.6.2 Tool Support
Some requirements management tools support change impact analysis in software
architectures. The selection of tools is based on INCOSE management tool survey [124].

262 Chapter 7 Change Impact Analysis in Software Architecture

IBM Rational RequisitePro [119] provides a matrix view to show the traces between
requirements and architectural elements. When a requirement is changed, traces of the
changed requirement are marked as suspect. All architectural elements directly or indirectly
related to the changed requirement are candidate impacted. The software architect has to
inspect the candidate impacted architectural elements to identify changes if there is any.

Borland Caliber [27] supports one trace type between artifacts. It is a trace that can be
established between any two artifacts such as requirements model and software architecture.
Change impact analysis is manual. Similar to RequisitePro, Borland Caliber provides
traceability matrix and traceability diagram to represent traces. All architectural elements
directly or indirectly related to the changed requirement are candidate impacted. Therefore,
the software architect should inspect all directly and indirectly related architectural elements
by using traceability matrix and diagram manually.

TopTeam Analyst [246] identifies suspected traces for change impact analysis. However,
direct traces are not automatically marked as suspect when a requirement is changed. All
traces for the changed requirement have to be selected and marked as suspect manually to
identify the candidate impacted architectural elements. On the other hand, it is possible to
get subscribed to specific elements in artifacts. When one of these elements such as a
requirement is changed, the subscribers get a message. The message contains the name of
the element, the user who changed the element and a link to the element for a quick
inspection. IBM Telelogic Doors [120] supports a manual analysis of the relations and
requirements affected by a change. When a requirement is changed, its traces are marked as
suspect automatically.

All industrial tools given above supports marking traces as suspected for changed
requirements. All direct and indirect traces of the changed requirement are marked as
suspect. Therefore, in these tools, all architectural elements directly or indirectly related to
the changed requirement are candidate impacted. None of the inspected industrial tools
provides proposing possible changes for software architecture to make the architecture
satisfy the new and/or changed requirements.

7.7 Conclusions

We presented a technique for change impact analysis in software architecture. Our technique
has two parts that use the approaches in Chapters 5 and 6. In the first part, we use the
formal semantics of requirements relations and traces between R&A to identify the
candidate impacted architectural elements. Most of the approaches and tools like IBM

7.7 Conclusions 263

Rational RequisitePro and DOORS do not focus on formal semantics of requirements
relations and traces. By using formal semantics, we provide a more precise change impact
analysis in software architecture by elimination of false positive impacts. We extended TRIC
for identifying candidate impacted architectural elements. The second part of the technique
is to propose possible changes for software architecture when the software architecture does
not satisfy changed requirements. We provided a classification of architectural changes. The
technique is based on architecture verification. The output of verification is a counter
example if the requirements are not satisfied. The counter example is used together with the
classification of architectural changes in order to propose changes in the software
architecture. The technique supports the architect to change the architecture.

There are some certain limitations and assumptions in our technique. Analyzing the counter
example in our approach is limited to the operational semantics of AADL in [197] [198].
This semantics mostly deals with passing & storing data in a data flow, dispatching &
executing threads and switching modes. Architectural changes in our approach may not be
generalized for other architecture description languages and other versions of semantics.

Architectural changes in our approach are limited to the possible missing parts of the
architecture for mainly data flow and thread execution. There are an infinite number of
designs that satisfy the requirements for a given project. We do not consider changes such as
adding new systems, processes or threads which may cause infinite number of solutions for
the changed requirements.

It is assumed that there is a next state from the last state of the counter example. It is
possible that the last state might be the final state where no state transition is fired further.
Even if the last state is not the final state, changing the architecture to enable a next state
may not produce an architecture that satisfies the changed requirement. The software
architect may need iterations of changing and verifying the architecture.

In this chapter, we answer Research Question 4 (How to model requirements, software architecture and
traces with their semantics for change management?) and Research Question 5 (How can be a change in a
requirement propagated to other requirements and to software architecture? How can we support the
requirements engineer and software architect for performing changes? How can we formally check if the evolved
architecture satisfies evolved requirements?) raised in Chapter 1. The use of semantics of
requirements relations and traces between R&A with tool support addresses the propagation
of a change from a requirement to architectural elements. The proposed changes derived
from the analysis of the counter example help the software architect to perform changes on
software architecture.

264 Chapter 7 Change Impact Analysis in Software Architecture

There are still some open issues. Since we applied the approach to a limited number of
requirements in the Remote Patient Monitoring System requirements document, the results
may not be generalizable. We still need to apply the approach to a number of industrial case
studies and to obtain empirical results. Our tool needs improvement for usability. The core
parts of the tool for identification of candidate impacted architectural elements are
implemented. However, the integration of these parts (TRIC and the Eclipse model editor)
is currently done manually and we need a user interface to control all these parts.
Furthermore, we do not have a tool support to analyze the counter example and to propose
changes yet. Analysis of the counter example is currently done manually.

265

Chapter 8

8 Conclusions

This chapter gives the overall conclusions of the thesis. We outline the problems addressed in this thesis,
together with our solution and future research directions.

8.1 Introduction

This chapter gives the overall conclusions of the thesis. First, in Section 8.2 we summarize
the problems addressed in the thesis: (i) explosion of impacts in requirements for requirements changes,
(ii) manual, expensive and error prone trace establishment between requirements and architecture, and (iii)
explosion of impacts in software architecture for requirements changes. We reflect on the solutions for
these problems in Section 8.3. Section 8.4 gives further research directions.

8.2 Problems

In this thesis, we have addressed the following problems in change impact analysis for
requirements and software architecture:

 Explosion of Impacts in Requirements for Requirements Changes. When a
change is introduced to a requirement, there might be other requirements impacted
by the introduced change. The requirements engineer traces impacted requirements
from the changed requirement by using relations among requirements. In practice,
requirements documents are often textual artifacts with implicit structure. Most of
the relations among requirements are not given explicitly. There is a lack of precise
definition of relations among requirements in most tools and approaches. By using
only the structural information of relations, the requirements engineer may conclude

266 Chapter 8 Conclusions

that all requirements in the model are impacted. Without considering semantics of
relations, change impact analysis may produce high number of false positive and false
negative impacts.

 Manual, Expensive and Error Prone Trace Establishment between
Requirements and Architecture. Once the requirements engineer analyzes the
impact of a change in requirements, the software architect needs to identify the
impact of this change in software architecture. Traces are needed to be established
between Requirements (R) & Architecture (A) in order to identify the impacted parts
of the architecture. Designing architecture based on requirements is a problem
solving process that relies on human experience and creativity, and is mainly manual.
Therefore, trace information may remain implicit and the software architect may need
to manually assign traces between R&A. Manual trace establishment is time-
consuming, expensive and error prone. The assigned traces might be incomplete and
invalid.

 Explosion of Impacts in Software Architecture for Requirements Changes. In
most approaches, there is a lack of precise definition of traces between R&A. By
using only the structural information of traces between R&A, the software architect
may conclude that all architectural elements in the architecture are impacted. Without
considering semantics of traces, change impact analysis may produce high number of
false positive and false negative impacts.

8.3 Solutions

In this section, we explain how we have addressed the aforementioned problems. The
proposed techniques tackle impacts explosion and trace establishment issues at early stages
of software development life cycle (requirements analysis and architecture design).

 A modeling language for definition of requirements models. To give an explicit
structure to requirements and their relations, we propose a requirements modeling
language. The language is defined according to the MDE principles by defining a
metamodel. It is based on a survey about the most commonly found requirements
types and relation types. With this language, the requirements engineer can explicitly
specify the requirements and the relations among them. We assign relation types with
formal semantic definitions in First-Order Logic (FOL) in order to enable reasoning
about requirements relations. We use the formal definitions for consistency checking
of relations and for inferring new relations. The tool TRIC has been built to support

8.3 Solutions 267

both reasoning activities. The language supports only textual requirements. There is
no support for other requirements artifacts like use case and activity diagrams. On the
other hand, the requirements metamodel can be customized in order to apply
inferencing and consistency checking to current requirements modeling approaches
like SysML and goal-oriented requirements engineering. In [96], we presented the
customization of the requirements metamodel for SysML.

 A change impact analysis technique for requirements. The technique uses the
formal semantics of requirements relations and requirements change types. A
classification of requirements changes based on the structure of a textual requirement
is given and formalized. The semantics of requirements change types is based on
FOL. We support three activities for impact analysis. First, the requirements engineer
proposes changes according to the change classification before implementing the
actual changes. Second, the requirements engineer indentifies the propagation of the
changes to related requirements. The change alternatives in the propagation are
determined based on the semantics of change types and requirements relations.
Third, possible contradicting changes are identified. We provide a tool support for
these activities. The tool automatically determines the change propagation paths,
checks the consistency of the changes, and suggests alternatives for implementing the
change. By the use of change alternatives and propagation paths, some false positive
impacted requirements are eliminated. We provide a more precise change impact
analysis in requirements models than requirements management tools like IBM
RequisitePro. The definitions of the requirements relations do not give information
about the structure of properties in a requirement. The requirements engineer has to
inspect the requirements to know this. Therefore, the technique provides change
alternatives in change propagation to be chosen by the requirements engineer.
Change alternatives are used only if there is any requirement related to the changed
requirement.

 A technique for trace establishment between R&A. The technique provides trace
establishment by using architecture verification together with semantics of
requirements relations and traces. We use a trace metamodel with commonly used
trace types. The semantics of traces is formalized in FOL. Software architectures are
expressed in the Architecture Analysis and Design Language (AADL). AADL is
provided with a formal semantics expressed in Maude. The Maude tool set allows
simulation and verification of architectures. The first way to establish traces is to use
architecture verification techniques. A given requirement is reformulated as a
property in terms of the architecture. The architecture is executed and a state space is

268 Chapter 8 Conclusions

produced. This execution simulates the behavior of the system on the architectural
level. The property derived from the requirement is checked by the Maude model
checker. Traces are generated between the requirement and the architectural
components used in the verification of the property. The second way to establish
traces is to use the requirements relations together with the semantics of traces.
Requirements relations are reflected in the connections among the traced
architectural elements. Therefore, new traces are inferred from existing traces by
using requirements relations. We use semantics of requirements relations and traces
to both generate/validate traces and generate/validate requirements relations. The
technique is supported by a tool. The tool provides the following: (1)
generation/validation of traces by using requirements relations and/or verification of
architecture, (2) generation/validation of requirements relations by using traces. We
enhance trace establishment between R&A with automation and trace validation. We
conducted performance and scalability tests of the tool for generating and validating
traces. We focused on model checking part of our tool in the performance and
scalability tests. According to the test results, the tool performs well in general. The
main limitation of the technique is that it is not possible to explicitly state which
property in a complex requirement fails when the requirement has multiple
properties. The technique aims at preserving the requirements relations in their
implementation in the architecture. There might be some cases where extra
dependencies not identified in the requirements analysis are determined in the
architecture. In these cases, the software architect should update the requirements
model by introducing new relations to the requirements model. We use the formal
semantics of behavioral subset of AADL models in Maude implemented by Olveczky
et al. [197] [198]. Since AADL standard specification does not define a formal
semantics, the semantic definitions in Maude involve an interpretation of what the
informal and sometimes ambiguous descriptions in the AADL standard mean. The
tool uses AADL and Maude but the technique can be applied with another
architecture description language and model checker, provided that the formal
semantics of the language is given.

 A change impact analysis technique for software architecture. The technique is
semi-automatic and requires participation of the software architect. It has two parts.
The first part is to identify the architectural elements that implement the system
properties to which proposed requirements changes are introduced. By having the
formal semantics of requirements relations and traces, we identify which parts of
software architecture are impacted by a proposed change in requirements. The

8.4 Future Research Directions 269

second part of our technique is to propose possible changes for software architecture
when the software architecture does not satisfy the new and/or changed
requirements. The technique is based on architecture verification. The output of
verification is a counter example if the requirements are not satisfied. The counter
example is used together with a classification of architectural changes in order to
propose changes in the software architecture. These changes produce a new version
of the architecture that possibly satisfies the new or the changed requirements. By
eliminating some false positive impacts and proposing architectural changes, we
provide a more precise change impact analysis in software architecture than
requirements management tools like IBM RequisitePro and DOORS.

8.4 Future Research Directions

This thesis explained various applications of semantics of traces to solve the impacts
explosion problems. These applications lead to open issues that we will investigate in the
future.

 Change impact analysis for non-functional requirements. In the change impact
analysis technique for requirements we do not consider the distinction between
functional and non-functional requirements. There might be different relation types
for non-functional requirements like performance and security requirements. Non-
functional requirements might be stated in a Domain Specific Language (DSL) rather
than in FOL. We plan to select one or two non-functional requirements and
investigate their relations within the context of change impact analysis.

 Extension of requirements metamodel. The requirements metamodel have the
generic entities requirement and requirements relation types. The requirements
reasoning technique in Chapter 4 and change impact analysis technique in Chapter 5
do not address specific requirements management approaches like goal-oriented
requirements engineering. In order to apply our techniques for requirements
management approaches found in the literature, the requirements metamodel needs
to be customized. We need an extension mechanism for the requirements metamodel
and TRIC. In [96], we presented a possible customization of the requirements
metamodel for SysML but we did not study how we can extend TRIC for the
customization of the metamodel.

 Change impact analysis within architectural models. In the thesis, we propagate
the change in a requirement to other requirements and software architecture.

270 Chapter 8 Conclusions

Architectural elements impacted by requirements changes are identified and
architectural changes are proposed. However, identification of architectural elements
impacted by changes on architecture is not studied in the thesis. We plan to address
this issue by applying the formal definitions of architectural elements and their
dependencies to change impact analysis. Architectural elements and their
dependencies can be formalized in a similar way to requirements and their relations.
The formalization can be used to identify architectural elements impacted by a
change in an architectural element.

 Tracing from requirements to architecture, detailed design and source code
for change impact analysis. The change impact analysis techniques should be
applied further for other software development artifacts such as detailed design and
source code. To identify impacted parts of detailed design and source code, we need
tracing from requirements to architecture, detailed design and source code.

 Reasoning about requirements and architectural design decisions. Decisions
taken in the design of the architecture can be considered as intermediate artifacts
between requirements and software architecture. In practice, the focus is mainly on
the results of the architectural design (the architectural elements). The alternative
decisions and the rationale behind the decisions are easily lost. TRIC can be extended
with a metamodel for architectural decisions. Capturing these decisions may facilitate
an early assignment of traces between requirements and architecture.

 Tooling. We have tool support for the techniques developed within the context of
the thesis. The change impact analysis techniques and the requirements modeling
language are supported by TRIC. Trace establishment between R&A is based on
model transformations in ATL and term-writing logic in Maude. We have two
improvements for tooling as a future work. The first one is the improvement of our
trace establishment tool support for usability. The core parts of the tool are
implemented in ATL and Maude. However, integration of these parts is currently
done manually and we need a user interface to control all these parts. The second
future improvement is the integration of the tool for trace establishment with TRIC.
In the current tooling, we do not have a user interface to control TRIC and the trace
establishment tool in a uniform way.

271

Samenvatting

Softwaresystemen worden steeds complexer. De eisen – requirements - waaraan
softwaresystemen moeten voldoen veranderen voortdurend en vaak komen er nieuwe eisen
bij. Nieuwe en/of aangepaste software-eisen dienen te worden geïntegreerd met de
bestaande eisen. Bovendien moeten de software-architectuur en programmacode eveneens
worden aangepast. Change management is het proces van integratie van veranderde eisen en de
aanpassing van het softwaresysteem. De complexiteit van softwaresystemen maakt dit proces
kostbaar en tijdrovend. Teneinde de kosten van veranderingen te reduceren is het belangrijk
deze veranderingen zo vroeg mogelijk in het softwareontwikkelproces door te voeren.

Traceerbaarheid van software-eisen - requirements traceability - is cruciaal voor het in stand
houden van de consistentie tussen software-artefacten, dat zijn softwaredocumenten zoals
architectuur, ontwerp, code, testen. Traceerbaarheid is de mogelijkheid om software-eisen
terug te voeren naar belanghebbenden en deze eisen te koppelen aan corresponderende
software-artefacten. Wanneer veranderingen in de eisen worden voorgesteld dan kunnen de
gevolgen van deze veranderingen getraceerd worden naar andere software-artefacten zodat
kan worden vastgesteld welke delen veranderd moeten worden. Change impact analysis is het
bepalen van de gevolgen van veranderingen in eisen op andere artefacten. De impact kan
betrekking op verschillende software-artefacten. Wij zullen ons in het bijzonder richten op
impact van veranderende eisen op de software-architectuur.

De noodzaak van change impact analysis geldt zowel voor software-eisen zelf als voor de
software-architectuur. Wanneer een verandering wordt voorgesteld in een software-eis dan
dient de requirement engineer na te gaan of ook andere software-eisen moeten worden
aangepast. Nadat deze impact is vastgesteld dient de software-architect vast te stellen welke
elementen in de software-architectuur veranderd moeten worden. Dit is mogelijk door de
veranderde software-eisen te traceren naar de software-architectuur. Het handmatig
uitvoeren van traceren is moeilijk, duur en foutgevoelig. Er zijn softwarepakketten

272 Chapter 8 Conclusions

ontwikkeld om de change impact analysis te automatiseren (zoals IBM Rational RequisitePro
en DOORS). In de meeste van deze pakketten worden relaties - traces - tussen software-
artefacten vastgelegd, maar de semantiek van deze relaties wordt verder niet uitgewerkt.
Hierdoor wordt een veranderde eis al snel gekoppeld – direct of indirect - aan veel mogelijk
te veranderen elementen in de architectuur. De requirements engineer dient al deze
elementen, die kandidaat zijn om veranderd te worden, ook allemaal te inspecteren en na te
gaan of een verandering echt noodzakelijk is.

In dit proefschrift behandelen we een aantal problemen die naar voren komen bij het
uitvoeren van de change impact analysis van software-eisen en software-architectuur.

 Het groot aantal software-eisen dat mogelijk beïnvloed wordt door een verandering in
een eis (requirements impact explosion).

 De foutgevoeligheid en kostbaarheid van het handmatig bepalen van traces tussen
software-artefacten.

 Het groot aantal elementen in de software-architectuur dat mogelijk beïnvloed wordt
door een verandering in een eis (achitecture impact explosion).

We beschrijven een aanpak waarin deze explosies van impacts in software requirements (R)
en software-architectuur (A) worden gereduceerd. Deze aanpak is gebaseerd op een
welgedefinieerde semantiek van de traces. We gaan ervan uit dat iedere relatie tussen
software-artefacts of elementen in deze artefacten een trace kan zijn die gebruikt kan worden
in change impact analysis.

De aanpak wordt uitgewerkt in de context van Model Driven Engineering (MDE). MDE
behandelt verschillende software-artefacten op een uniforme wijze als modellen. Dit maakt
het mogelijk over artefacten te redeneren als modellen. Voor het op deze manier
structureren van software-eisen, architectuur en traces worden metamodellen gebruikt met een
formeel gedefinieerde semantiek.

Dit proefschrift levert de volgende onderzoeksbijdragen:

 Een taal voor het modelleren van software-eisen – en hun onderlinge relaties - met een
formele semantiek. De consistentie van de modellen kan automatisch worden
gecheckt met een daarvoor ontwikkelde software-applicatie (TRIC - Tool for
Requirements Inferencing and Consistency Checking).

8.4 Future Research Directions 273

 Een techniek voor change impact analysis van veranderde software-eisen gebaseerd op
relaties tussen de eisen en een classificatie van veranderingen. Deze techniek wordt
ondersteund in TRIC.

 Een techniek voor het bepalen van trace relaties tussen software-eisen (R) en de
architectuur (A) gebaseerd op verificatietechnieken voor software-architecturen en de
semantiek van de relaties tussen R&A.

 Een techniek voor change impact analysis van software-architectuur, eveneens gebaseerd
op verificatietechnieken voor software-architecturen en de semantiek van de relaties
tussen R&A.

275

REFERENCES

[1] from http://www.aptest.com/glossary.html#S
[2] Abdoul, T., Champeau, J., Dhaussy, P., Pillain, P. Y., & Roger, J. C. (2008). AADL

Execution Semantics Transformation for Formal Verification. 13th International Conference on
Engineering of Complex Computer Systems, IEEE Computer Society, 263-268.

[3] Abi-Antoun, M., & Aldrich, J. (2008). Static Conformance Checking of Runtime
Architectural Structure. Carnegie Mellon University Technical Report, CMU-ISR-08-132.

[4] Abi-Antoun, M., & Medvidovic, N. (1999). Enabling the Refinement of a Software
Architecture into a Design. UML’99, LNCS(1723), 17-31.

[5] Ackermann, C., & Lindvall, M. (2006). Understanding Change Requests to Predict Software
Impact. 30th Annual IEEE/NASA Software Engineering Workshop, 66-75.

[6] Aizenbud-Reshef, N., Paige, R. F., Rubin, J., Shaham-Gafni, Y., & Kolovos, D. S. (2005).
Operational Semantics for Traceability. ECMDA-TW 2005, 7-14.

[7] Aldrich, J., Chambers, C., & Notkin, D. (2002). Architectural Reasoning in ArchJava.
ECOOP’02, LNCS(2374), 334-367.

[8] Allen, R., Douence, R., & Garlan, D. (1998). Specifying and Analyzing Dynamic Software
Architectures. FASE’98, LNCS(1382), 21-37.

[9] Allen, R., & Garlan, D. (1997). A Formal Basis for Architectural Connection. ACM Trans.
Softw. Eng. Methodol., 6(3), 213-249.

[10] Almeida, J. P. A., Dijkman, R., Pires, L. F., Quartel, D., & van Sinderen, M. (2006). Model-
Driven Design, Refinement and Transformation of Abstract Interactions. Int. Jour. of Coop.
Inf. Sys., 15, 599-632.

[11] Almeida, J. P. A., Iacop, M. E., & van Eck, P. (2007). Requirements Traceability in Model-
Driven Development: Applying Model and Transformation Conformance. Inf. Syst. Front., 9,
327-342.

[12] Amelunxen, C., Königs, A., Rötschke, T., & Schürr, A. (2008). Metamodeling with
MOFLON. Applications of Graph Transformations with Industrial Relevance LNCS(5088/2008),
573-574.

[13] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., & Merlo, E. (2002). Recovering
Traceability Links between Code and Documentation. IEEE Trans. Soft. Eng. , 28(10), 970-
983.

[14] Baier, C., & Katoen, J. P. (2008). Principles of Model Checking: MIT Press.
[15] Baresi, L., Heckel, R., Thone, S., & Varro, D. (2003). Modeling and Validation of Service-

Oriented Architectures: Application vs. Style. ESEC/FSE’03, ACM, 68-77.

276

[16] Bas, L., Clements, P., & Kazman, R. (1998). Software Architecture in Practice: Addison-Wesley.
[17] Baudry, B., Nebut, C., & Le Traon, Y. (2007). Model-driven engineering for requirements

analysis. EDOC 2007, 459-466.
[18] Benammar, M., & Belala, F. (2010). How to Make AADL Specification More Precise.

International Journal of Computer Applications, 8(10), 16-23.
[19] Benammar, M., Belala, F., & Latreche, F. (2008). AADL Behavioral Annex based on

Generalized Rewriting Logic. RCIS 2008.
[20] Berthomieu, B., Bodeveix, J. P., Farail, P., Filali, M., Garavel, H., Gaufillet, P., et al. (2008).

Fiacre: an Intermediate Language for Model Verification in the TOPCASED Environment.
4th European Congress on Embedded Real-Time Software, ERTS 2008.

[21] Berthomieu, B., Bodeveix, J. P. C., C., Dal-Zilio, S., Filali, M., & Vernadat, F. (2009). Formal
Verification of AADL Specifications in the Topcased Environment. Ada-Europe’09,
LNCS(5570).

[22] Bohner, S. A. (2002). Extending Software Change Impact Analysis into COTS Components.
27th Annual NASA Goddard Software Engineering Workshop, 175-182.

[23] Bohner, S. A. (2002). Software Change Impacts – An Evolving Perspective. ICSM’02, 263-
271.

[24] Bohner, S. A., & Arnold, R. S. (1996). Software Change Impact Analysis. IEEE Computer
Society Press.

[25] Bohner, S. A., & Gracanin, D. (2003). Software Impact Analysis in a Virtual Environment.
28th Annual NASA Goddard Software Engineering Workshop, 143-151.

[26] Bonde, L., Boulet, P., & Dekeyser, J. L. (2005). Traceability and Interoperability at Different Levels
of Abstraction in Model-Driven Engineering. Paper presented at the FDL 2005.

[27] Borland Caliber Analyst.
[28] Boronat, A., & Mesequer, J. (2010). An Algebraic Semantics for MOF. Formal Aspects of

Computing, 22, 269-296.
[29] Boronat, A., & Mesequer, J. (2009). Algebraic Semantics of OCL-constrained Metamodel

Specification. TOOLS, LNBIP(47), 96-115.
[30] Boronat, A., & Ölveczky, P. C. (2010). Formal Real-Time Model Transformations in

MOMENT2. FASE 2010, LNCS(6013), 29-43.
[31] Bose, P. K. (1999). Automated Translation of UML Models of Architectures for Verification

and Simulation Using SPIN. In: ASE’99.
[32] Boudiaf, N., Mokhati, F., & Badri, M. (2008). Supporting Formal Verification of DIMA

Multi-Agents Models: Towards a Framework Based on Maude Model Checking. Int. J. Soft.
Eng. Knowl. Eng. , 18(7), 853-875.

[33] Bozzano, M., Cimatti, A., Katoen, J. P., Nguyen, V. N., Noll, T., & Roveri, M. (2010). Safety,
Dependability, and Performance Analysis of Extended AADL Models. The Computer Journal.

[34] Bozzano, M., Cimatti, A., Roveri, M., Katoen, J. P., Nguyen, V. N., & Noll, T. (2009).
Verification and Performance Evaluation of AADL Models. ESEC-FSE’09, ACM, 285-286.

[35] Briand, L. C., Labiche, Y., & O’Sullivan, L. (2003). Impact Analysis and Change
Management of UML Models. International Conference on Software Maintenance, 256-265.

[36] Briand, L. C., Labiche, Y., O’Sullivan, L., & Sowka, M. (2006). Automated Impact Analysis
of UML Models. Journal of Systems and Software, 79(3), 339-352.

[37] Brottier, E., Baudry, B., Le Traon, Y., Touzet, D., & Nicolas, B. (2007). Producing a global
requirement model from multiple requirement specifications. EDOC 2007, 390-404.

277

[38] Bruni, R., Bucchiarone, A., Gnesi, S., & Melgratti, H. (2008). Modelling Dynamic Software
Architectures using Typed Graph Grammars. GT-VC 2007 ENTCS, 213(1), 39-53.

[39] Bucchiarone, A., & Galeotti, J. P. (2008). Dynamic Software Architectures Verification using
DynAlloy. GT-VMT 2008, Proceedings of the Seventh International Workshop on Graph
Transformation and Visual Modeling Techniques.

[40] Buckley, J., Mens, T., Zenger, M., Rashid, A., & Kniesel, G. (2005). Towards a Taxonomy of
Software Change. Journal of Software Maintenance and Evolution: Research and Practice, 17, 309-332.

[41] Buhr, R. J. A. (1998). Use Case Maps as Architectural Entities for Complex Systems. IEEE
Trans. Softw. Eng., 24(12), 1131-1155.

[42] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). Pattern-Oriented
Software Architecture, A System of Patterns: Wiley.

[43] Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., & Natt och Dag, J. (2001). An
industrial survey of requirements interdependencies in software product release planning.
Proceedings of the 5th International Symposium on Requirements Engineering, 84-91.

[44] Ceron, R., Duenas, J. C., Serrano, E., & Capilla, R. (2005). A meta-model for requirements
engineering in system family context for software process improvement using CMMI.
PROFES 2005, 3547, 173-178.

[45] Cheng, H., Xia, Y., & Hu, X. (2007). Requirements Change Management of Information
System Based on the Keyword Mapping. The Sixth Wuhan International Conference on E-Business,
135-140.

[46] Chkouri, M. Y., Robert, A., Bozga, M., & Sifakis, J. (2009). Translating AADL into BIP -
Application to the Verification of Real-time Systems. Models in Software Engineering: Workshops
and Symposia at MODELS 2008, LNCS(5421), 5-19.

[47] Ciraci, S. (2009). Graph based Verification of Software Evolution Requirements (Vol. PhD thesis 09-
162): Univ. of Twente.

[48] Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., et al. (2002).
Maude: Specification and Programming in Rewriting Logic. Theoretical Computer Science, 285,
187-243.

[49] Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., et al. (2007). All
about Maude - A High-Performance Logical Framework. Lecture Notes in Computer Science,
4350.

[50] Cleland-Huang, J., Chang, C. K., & Christensen, M. (2003). Event-based Traceability for
Managing Evolutionary Change. IEEE Transactions on Software Engineering, 29(9), 796-810.

[51] Cleland-Huang, J., & Schmelzer, D. (2003). Dynamically Tracing Non-Functional
Requirements through Design Pattern Invariants. In Proceedings of the Second International
Workshop on Traceability in Emerging Forms of Software Engineering (TEFSE’03).

[52] Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhanskaya, E., & Christina, S. (2005).
Goal-centric Traceability for Managing Non-functional Requirements. In Proceedings of the 27th
International Conference on Software Engineering (ICSE’05), 362-371.

[53] Clements, P., Kazman, R., & Klein, M. (2002). Evaluating Software Architectures: Methods and
Case Studies: Addison-Wesley Professional.

[54] Cockburn, A. (2000). Writing Effective Use Cases. Addison-Wesley.
[55] COMET (Component and Model Based Development Methodology). from

http://modelbased.net/methods/comet/
[56] Compare, D., Inverardi, P., & Wolf, A. L. (1999). Uncovering Architectural Mismatch in

Component Behavior. Sci. Comput. Prog., 33(2), 101-131.

278

[57] Corradini, F., & Inverardi, P. (1998). Model Checking Cham Description of Software
Architecture. WICSA’98.

[58] Cysneiros, G., & Zisman, A. (2008). Traceability and Completeness Checking for Agent-
Oriented Systems. SAC 2008, 71-77.

[59] Dahlstedt, A. G., & Persson, A. (2005). Requirements Interdependencies: State of the Art
and Future Challenges. In A. Aurum & C. Wohlin (Eds.), Engineering and Managing Software
Requirements (pp. 95-116). Berlin: Springer.

[60] Dashofy, E. M., Hoek, A., & Taylor, R. N. (2005). A Comprehensive Approach for the
Development of Modular Software Architecture Description Languages. ACM Transactions
on Software Engineering and Methodology (TOSEM), 14(2), 199-245.

[61] de Niz, D., & Feiler, P. H. (2009). Verification of Replication Architectures in AADL. 14th
International Conference on Engineering of Complex Computer Systems, IEEE Computer Society, 365-
370.

[62] Dean, M., Schreiber, G., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D., et al.
OWL Web Ontology Language Reference W3C Recommendation (2004).

[63] Delanote, D., van Baelen, S., Joosen, W., & Berbers, Y. (2007). Using AADL in Model
Driven Development. IEEE-SEE International Workshop on UML and AADL 2007,
International Conference on Engineering Complex Computer Systems (ICECCS07).

[64] Dias, M. S., & Vieira, M. E. R. (2000). Software Architecture Analysis based on Statechart
Semantics. IWSSD’00, IEEE Computer Society, 133-138.

[65] Diskin, Z., Xiong, Y., & Czarnecki, K. (2010). From State- to Delta-Based Bidirectional
Model Transformations. ICMT 2010, LNCS(6142), 61-76.

[66] Drivalos, N., Kolovos, D. S., Paige, R. F., & Fernandes, K. J. (2009). Engineering a DSL for
Software Traceability. SLE 2008, LNCS (5452), 151-167.

[67] Duffy, D., MacNish, C., McDermid, J., & Morris, P. (1995). A framework for requirements
analysis using automated reasoning. CAiSE 1995, Lecture Notes in Computer Science, 932, 68-81.

[68] Edwards, G., Malek, S., & Medvidovic, N. (2007). Scenario-Driven Dynamic Analysis of
Distributed Architectures. 10th International Conference on Fundamental Approaches to Software
Engineering (FASE'07), 125-139.

[69] Egyed, A. (2000). Automatically Validating Model Consistency during Refinement.
[70] Egyed, A. (2003). A Scenario-Driven Approach to Trace Dependency Analysis. IEEE Trans.

Software Eng., 29(2), 116-132.
[71] Egyed, A., & Grunbacher, P. (2002). Automated Requirements Traceability: beyond the

Record and Replay Paradigm. 17th IEEE International Conference on Automated Software
Engineering (ASE'02), 163-171.

[72] Egyed, A., & Grunbacher, P. (2005). Supporting Software Understanding with Automated
Requirements Traceability. Int. J. Soft. Eng. Knowl. Eng. , 15(5), 783-810.

[73] Egyed, A., & Wile, D. (2001). Statechart Simulator for Modeling Architecture Dynamics.
WICSA’01, IEEE Computer Society, 87-96.

[74] Erlikh, E. (2000). Leveraging Legacy System Dollars for E-Business. IT Professional, 2(3), 17-
23.

[75] Escalona, M. J., & Aragon, G. (2008). NDT. A Model-Driven Approach for Web
Requirements. IEEE Trans. Soft. Eng., 34(3), 377-390.

[76] Falkenberg, E. D., Hesse, W., Lindgreen, P., Nilsson, B. E., Han Oei, J. E., Rolland, C., et al.
(1998). A Framework of Information System Concepts.

279

[77] Falleri, J., Huchard, M., & Nebut, C. (2006). Towards a Traceability Framework for Model
Transformations in Kermeta. In Traceability Workshop, at European Conference on Model Driven
Architecture (ECMDA-TW 2006), 31-40.

[78] Fawcett, T. (2004). ROC Graphs: Notes and Practical Considerations for Researchers.
Technical Report, HP Laboratories, Palo Alto, California.

[79] Feiler, P. H., Lewis, B., & Vestal, S. (2003). The SAE Avionics Architecture Description
Language (AADL) Standard: A Basis for Model-Based Architecture-Driven Embedded
Systems Engineering. RTAS 2003 Workshop on Model-Driven Embedded Systems.

[80] Feng, T., & Maletic, J. I. (2006). Applying Dynamic Change Impact Analysis in Component-
based Architecture Design. Seventh ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing (SNPD’06).

[81] Finkelstein, A. C. W., Gabbay, D., Hunter, A., Kramer, J., & Nuseibeh, B. (1994).
Inconsistency handling inmultiperspective specifications. IEEE Transactions on Software
Engineering, 20(8), 569-578.

[82] Fowler, M. (1999). Refactoring: Improving the Design of Existing Code: Addison-Wesley.
[83] Franca, R., Bodeveix, J. P., Filali, M., Rolland, J. F., Chemouil, D., & Thomas, D. (2007).

The AADL Behaviour Annex - Experiments and Roadmap. ICECCS 07.
[84] FST. (1992). Failures Divergence Refinement: User Manual and Tutorial.
[85] Gallagher, K. B., & Lyle, J. R. (1991). Using Program Slicing in Software Maintenance.

IEEE Transactions on Software Engineering, 17(8), 751-761.
[86] Galster, M., Eberlein, A., & Moussavi, M. (2006). Transition from Requirements to

Architecture: A Review and Future Perspective. SNPD ’06.
[87] Galvao, I., & Goknil, A. (2007). Survey of Traceability Approaches in Model-Driven

Engineering. EDOC'07, 313-324.
[88] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements of Reusable

Object-Oriented Software: Addison-Wesley Professional.
[89] Garlan, D., Allen, R., & Ockerbloom, J. (1995). Architectural Mismatch or Why It's Hard to

Build Systems Out of Existing Parts. 17th International Conference on Software Engineering
(ICSE'95), 179 - 185.

[90] Garlan, D., Monroe, R. T., & Wile, D. (1997). ACME: An Architecture Description
Language. CASCON'97, 169-183.

[91] Gilles, O., & Hugues, J. (2010). Expressing and Enforcing User-defined Constraints of
AADL Models. Proceedings of the 5th UML\& AADL Workshop (UML\&AADL 2010).

[92] Gilles, O., & Hugues, J. (2008). Validating Requirements at Model-Level. Proceedings of the 4th
workshop on Model-Oriented Engineering (IDM'08).

[93] Giorgini, P., Mylopoulos, J., Nicchiarelli, E., & Sebastiani, R. (2003). Formal reasoning
techniques for goal models. Journal on Data Semantics, Lecture Notes in Computer Science, 2800, 1-
20.

[94] Goknil, A. (2009). Tutorial: requirements relations and definitions with examples. from
http://www.home.cs.utwente.nl/~goknila/tutorial/Relations_Tutorial.doc

[95] Goknil, A., Kurtev, I., & van den Berg, K. (2008). Change Impact Analysis based on
Formalizations of Trace Relations for Requirements. ECMDA-TW’08, SINTEF Report, 59-
75.

[96] Goknil, A., Kurtev, I., & van den Berg, K. (2008). A Metamodeling Approach for Reasoning
about Requirements. European Conference on Model Driven Architecture Foundations and Applications
(ECMDA-FA’08), LNCS(5095), 311-326.

280

[97] Goknil, A., Kurtev, I., & van den Berg, K. (2010). Tool Support for Generation and
Validation of Traces between Requirements and Architecture. ECMFA-TW 2010.

[98] Goknil, A., Kurtev, I., van den Berg, K., & Veldhuis, J. W. (2011). Semantics of Trace
Relations in Requirements Models for Consistency Checking and Inferencing. Software and
System Modeling, 10(1), 31-54.

[99] Gorlick, M. M., & Razouk, R. R. (1991). Using Weaves for Software Construction and
Analysis. Thirteenth International Conference on Software Engineering, 23-34.

[100] Gotel, O. C. Z., & Finkelstein, C. W. (1994). An Analysis of the Requirements Traceability
Problem. RE’94, 94-101.

[101] Graph Visualization Software (Graphviz). from http://www.graphviz.org
[102] Grechanik, M., McKinley, K. S., & Perry, D. E. (2007). Recovering and Using use-case-

diagram-to-source-code traceability links. ESEX-FSE ‘07.
[103] Grunbacher, P., Egyed, A., & Medvidovic, N. (2003). Reconciling Software Requirements

and Architectures with Intermediate Models. Softw. Syst. Modeling, 3, 235-253.
[104] Gui, S., Luo, L., Li, Y., & Wang, L. (2008). Formal Schedulability Analysis and Simulation

for AADL. ICESS 2008.
[105] Hall, J. G., Jackson, M., Laney, R. C., Nuseibeh, B., & Rapanotti, L. (2002). Relating

Software Requirements and Architectures using Problem Frames. RE ’02, 137-144.
[106] Han, J. (1997). Supporting Impact Analysis and Change Propagation in Software

Engineering Environments. Proceedings of the 8th International Workshop on Software Technology and
Engineering Practice (STEP '97), 172-182.

[107] Harker, S. D. P., Eason, K. D., & Dobson, J. E. (1993). The Change and Evolution of
Requirements as a Challenge to the Practice of Software Engineering. Proceedings of IEEE
International Symposium on Requirements Engineering 1993, 266-272.

[108] Hassine, J., Rilling, J., & Hewitt, J. (2005). Change Impact Analysis for Requirement
Evolution using Use Case Maps. Eighth International Workshop on Principles of Software Evolution,
81-90.

[109] Hayes, J. H., Dekthyar, A., & Sundaram, S. K. (2006). Advancing Candidate Link Generation
for Requirements Tracing: the Study of Methods. IEEE Trans. Softw. Eng., 32(1), 4-19.

[110] Hearnden, D., Lawley, M., & Raymond, K. (2006). Incremental Model Transformation for
the Evolution of Model-Driven Systems. In MoDELS 2006, 321-335.

[111] Heaven, W., & Finkelstein, A. (2004). UML profile to support requirements engineering with
KAOS. IEE Proceedings Software, 151(1), 10-27.

[112] Heckel, R., & Thone, S. (2005). Behavior-Preserving Refinement Relations between
Dynamic Software Architectures. WADT’04, LNCS(3423), 1-27.

[113] Heitmeyer, C. L., Jeffords, R. D., & Labaw, G. L. (1996). Automated consistency checking
of requirements specifications. ACM Transactions on Software Engineering and Methodology
(TOSEM), 5(3), 231-261.

[114] Heninger, K. L. (1980). Specifying Software Requirements for Complex Systems: New
Techniques and Their Application. IEEE Trans. Soft. Eng., 6(1), 2-13.

[115] Honeywell. (1998). MetaH Evaluation and Support Site. from
http://www.htc.honeywell.com

[116] Hugues, J., Zalila, B., Pautet, L., & Kordon, F. (2008). From the Prototype to the Final
Embedded System using the Ocarina AADL Tool Suite. ACM Trans. Embedded Comput. Syst.,
7(4).

281

[117] Hunter, A., & Nuseibeh, B. (1998). Managing inconsistent specifications: reasoning, analysis,
and action. ACM Transactions on Software Engineering and Methodology (TOSEM), 7(4), 335-367.

[118] Huth, M. R. A., & Ryan, M. D. (2000). Logic in Computer Science: Modeling and Reasoning
about Systems. Cambridge University Press, Cambridge.

[119] IBM Rational RequisitePro. from http://www-01.ibm.com/software/awdtools/reqpro/
[120] IBM Telelogic Doors. from http://www.telelogic.com/Products/doors/doors/index.cfm
[121] Ibrahim, S., Munro, M., & Deraman, A. (2005). A Requirements Traceability to Support

Change Impact Analysis. Asian Journal of Information Technology, 4(4), 329-338.
[122] IEEE. (1984). IEEE Guide to Software Requirements Specification.
[123] IEEE. (1990). IEEE Standard Glossary of Software Engineering Terminology.
[124] INCOSE Requirements Management Tool Survey. from http://www.incose.org
[125] Inverardi, P., & Wolf, A. L. (1995). Formal Specification and Analysis of Software

Architectures Using the Chemical Abstract Machine Model. IEEE Trans. Softw. Eng. , 21(4),
373-386.

[126] Jackson, D. (2002). Alloy: a Lightweight Object Modelling Notation. ACM Trans. Softw. Eng.
Methodol. , 11(2), 256-290.

[127] Jahier, E., Halbwachs, N., Raymond, P., Nicollin, X., & Lesens, D. (2007). Virtual Execution
of AADL Models via a Translation into Synchronous Programs. EMSOFT’07, ACM, 134-
143.

[128] Jahier, E., Raymond, P., & Baufreton, P. (2006). Case studies with Lurette V2. International
Journal on Software Tools for Technology Transfer (STTT), 8(6), 517-530.

[129] Java. from http://java.sun.com/
[130] Jena. A Semantic Web Framework for JAVA. from http://jena.sourceforge.net/
[131] JGraph. Java Graph Visualization and Layout. from http://www.jgraph.com/
[132] Johann, S., & Egyed, A. (2004). Instant and Incremental Transformation of Models. 19th

IEEE International Conference on Automated Software Engineering (ASE'04), 362-365.
[133] Jonsson, P., & Lindvall, M. (2005). Impact Analysis. In A. Aurum & C. Wohlin (Eds.),

Engineering and Managing Software Requirements (pp. 117-142). Berlin: Springer.
[134] Jouault, F. (2005). Loosely Coupled Traceability for ATL. In Traceability Workshop at European

Conference on Model Driven Architecture (ECMDA-TW 2005), 29-37.
[135] Jouault, F., Allilaire, F., Bezivin, J., & Kurtev, I. (2008). ATL: A Model Transformation Tool.

Sci. Comput. Prog., 72(1-2), 31-39.
[136] Jouault, F., & Kurtev, I. (2006). Transforming Models with ATL. MoDELS 2005,

LNCS(3844).
[137] Kaindl, H. (1999). Difficulties in the Transition from OO Analysis to Design. IEEE Software,

16, 94-102.
[138] Khan, S. S., Greenwood, P., Garcia, A., & Rashid, A. (2008). On the Impact of Evolving

Requirements-Architecture Dependencies: An Exploratory Study. Caise 2008, LNCS(5074),
243-257.

[139] Kilpinen, M. S. (2008). The Emergence of Change at the System Engineering and Software Design
Interface: An Investigation of Impact Analysis. PhD Thesis, University of Cambridge, Cambridge.

[140] Kitchenham, B. A., Travassos, G. H., von Mayrhauser, A., Niessink, F., Schneidewind, N. F.,
Singer, J., et al. (1999). Towards an Ontology of Software Maintenance. Journal of Software
Maintenance: Research and Practice, 11, 365-389.

[141] Klusener, A. S., Lammel, L. R., & Verhoef, C. (2005). Architectural Modifications to
Deployed Software. Science of Computer Programming, 54, 143-211.

282

[142] Knethen, A. v., & Paech, B. (2002). A Survey on Tracing Approaches in Practice and
Research. IESE-Report, 095.01/E(version 1.0).

[143] Koch, N., & Kraus, A. (2003). Towards a common metamodel for the development of web
applications. ICWE 2003, 497-506.

[144] Kolovos, D., Paige, R., & Polack, F. (2006). Merging Models with the Epsilon Merging
Language. In Proceedings of ACM/IEEE 9th International Conference on Model Driven Engineering
Languages and Systems (Models/UML’06).

[145] Kolovos, D., Paige, R., & Polack, F. (2006). On-Demand Merging of Traceability Links with
Models. Traceability Workshop at European Conference on Model Driven Architecture (ECMDA-TW
2006).

[146] Kurtev, I., Dee, M., Goknil, A., & van den Berg, K. (2007). Traceability-based Change
Management in Operational Mappings. Traceability Workshop at European Conference on Model
Driven Architecture (ECMDA-TW 2007).

[147] Lago, P., Muccini, H., & van Vliet, H. (2009). A Scoped Approach to Traceability
Management. The Journal of Systems and Software, 82, 168-182.

[148] Lai, W. (2009). Relationship-Based Change Propagation: A Case Study. M.Sc. thesis, University of
Toronto, Toronto.

[149] Lai, W., Nejati, S., Cabot, J., Diskin, Z., Easterbrook, S., Sabetzadeh, M., et al. (2009).
Relationship-Based Change Propagation: A Case Study. In Proceedings of ICSE'09 Workshop on
Modeling in Software Engineering (MiSE'09).

[150] Lam, W., & Shankararaman, V. (1998). Managing Change in Software Development using a
Process Improvement Approach. Proceedings of 24th Euromicro Conference 1998, 779-786.

[151] Lamsweerde, A. v. (2009). Requirements Engineering: From System Goals to UML Models to Software
Specifications: John Wiley & Sons.

[152] Lee, J., & Kuo, J. Y. (1998). New Approach to Requirements Trade-off Analysis for
Complex Systems. IEEE Transactions on Knowledge Data Engineering, 10(4), 551-562.

[153] Lee, M., Offutt, J. A., & Alexander, R. T. (2000). Algorithmic Analysis of the Impacts of
Changes to Object-oriented Software. 34th International Conference on Technology of Object-Oriented
Languages and Systems, 61-70.

[154] Lee, W. T., Deng, W. Y., Lee, J., & Lee, S. J. (2010). Change Impact Analysis with a Goal-
Driven Traceability-Based Approach. International Journal of Intelligent Systems.

[155] Li, C., Zhou, X., & Dong, Y. (2010). Formal Behavior Specification for AADL. 2nd
International Conference on Industrial and Information Systems (IIS), 110-113.

[156] Limon, A. E., & Garbajosa, J. (2005). The Need for a Unifying Traceability Scheme. In
Traceability Workshop at European Conference on Model Driven Architecture (ECMDA-TW 2005),
47-55.

[157] Liu, W. (2004). Architecting Requirements. Doctoral Consortium at RE ’04.
[158] Liu, W., & Easterbrook, S. (2003). Eliciting Architectural Decisions from Requirements

using a Rule-based Framework. STRAW ’03.
[159] Lock, S. (2001). A Hybrid Approach to Requirement Level Impact Analysis. PhD Thesis, Lancaster

University.
[160] Lock, S., & Kotonya, G. (1999). An Integrated Framework for Requirement Change Impact

Analysis. Proceedings of the 4th Australian Conference on Requirements Engineering, 29-42.
[161] Lock, S., & Kotonya, G. (1999). An Integrated, Probabilistic Framework for Requirement

Change Impact Analysis. The Australian Journal of Information Systems, 6(2), 38-63.

283

[162] Loniewski, G., Insfran, E., & Abrahao, S. (2010). A Systematic Review of the Use of
Requirements Engineering Techniques in Model-Driven Development. MODELS 2010,
LNCS(6395), 213-227.

[163] Looman, S. A. M. (2009). Impact Analysis of Changes in Functional Requirements in the
Behavioral View of Software Architectures. M.Sc. Thesis, University of Twente.

[164] Lopez, O., Laguna, M. A., & Garcia, F. J. (2002). Metamodeling for requirements reuse. Ana
is do WER02—Workshop em Engenharia de Requisitos, 76-90.

[165] Luckham, D. C., & Henke, F. W. (1995). Specification and Analysis of System Architecture
using Rapide. IEEE Trans. Soft. Eng., 21(4), 336-355.

[166] Mader, P., & Cleland-Huang, J. (2010). A Visual Traceability Modeling Language. MODELS
2010, LNCS(6394), 226-240.

[167] Mader, P., O., G., & Philippow, I. (2009). Enabling Automated Traceability Maintenance
through the Upkeep of Traceability Relations. ECMDA-FA ’09, LNCS(5562), 174-189.

[168] Magee, J. (1999). Behavioral Analysis of Software Architectures using LTSA. ICSE'99, 634-
637.

[169] Magee, J., Dulay, N., Eisenbach, S., & Kramer, J. (1995). Specifying Distributed Software
Architectures. Fifth European Software Engineering Conference (ESEC 95), 137-153.

[170] Magee, J., & Kramer, J. (1996). Dynamic Structure in Software Architectures. ACM
SIGSOFT Software Engineering Notes, 21(6), 3 - 14.

[171] Magee, J., Kramer, J., & Giannakopoulou, D. (1999). Behaviour Analysis of Software
Architectures. First Working IFIP Conference on Software Architecture (WICSA1), IFIP Conference
Proceedings(140), 35-50.

[172] Maier, M. W., Emery, D., & Hilliard, R. (2001). Software Architecture: Introducing IEEE
Standard 1471. IEEE Computer, 34(4), 107-109.

[173] Malan, R., & Bredemeyer, D. (2002). Architectural Requirements in the Visual Architecting
Process. from
http://www.bredemeyer.com/ArchitectingProcess/ArchitecturalRequirements.htm

[174] McCormack, A., Rusnak, J., & Baldwin, C. Y. (2006). Exploring the Structure of Complex
Software Designs: An Empirical Study of Open Source and Proprietary Code. Management
Science, 52(7), 1015-1030.

[175] Medvidovic, N., & Taylor, R. N. (2000). A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Trans. Soft. Eng., 26(1), 70-93.

[176] The Metamodeling Language Kermeta. from http://www.kermeta.org
[177] Meyer, J. J. C., Wieringa, R., & Dignum, F. (1998). The Role of Deontic Logic in the

Specification of Information Systems. Logics for Databases and Information Systems, 71-115.
[178] Molina, F., Pardillo, J., Cachero, C., & Toval, A. (2010). An MDE Modeling Framework for

Measurable Goal-Oriented Requirements. International Journal of Intelligent Systems, 25(8), 757-
783.

[179] Molina, F., Pardillo, J., Cachero, C., & Toval, A. (2009). A Systematic Review of
Requirements Metamodels. Technical Report, University of Murcia.

[180] Molina, F., Pardillo, J., & Toval, A. (2008). Modelling Web-Based Systems Requirements
Using WRM. Web Information Systems Engineering – WISE 2008 Workshops, LNCS(5176), 122-
131.

[181] Molina, F., & Toval, A. (2009). Integrating Usability Requirements that can be Evaluated in
Design Time into Model Driven Engineering of Web Information Systems. Advances in
Engineering Software, 40(12), 1306-1317.

284

[182] Moment2-AADL. from http://www.cs.le.ac.uk/people/aboronat/tools/moment2-aadl/
[183] Moon, M., Yeom, K., & Chae, H. S. (2005). An approach to developing domain

requirements reuse as a core asset based on commonality and variability analysis in a product
line. IEEE Transactions on Software Engineering, 31(7), 551-569.

[184] Moriconi, M., Qian, X., & Riemenschneider, R. A. (1995). Correct Architecture Refinement.
IEEE Trans. Softw. Eng. , 21(4), 356-372.

[185] Murphy, G. C., Notkin, D., & Sullivan, K. (1995). Software Reflexion Models: Bridging the
Gap between Source and High-Level Models. SIGSOFT’95.

[186] Mylopoulos, J., Chung, L., & Yu, E. (1999). From object-oriented to goal oriented
requirements analysis. ACM Commiunications, 31-37.

[187] Naslavsky, L., Xu, L., Dias, M., Ziv, H., & Richardson, D. J. (2004). Extending xADL with
Statechart Behavioral Specification. WADS '04 at ICSE 2004.

[188] Naumovich, G., G.S., A., Clarke, L. A., & Osterweil, L. J. (1997). Applying Static Analysis to
Software Architectures. ESEC/FSE’97, LNCS(1301), 77-93.

[189] Navarro, E., Mocholi, J. A., Letelier, P., & Ramos, I. (2006). A metamodeling approach for
requirements specification. The Journal of Computer Information Systems 46(5), 67-77.

[190] .Net Platform. from http://msdn.microsoft.com/en-gb/netframework/default.aspx
[191] Noppen, J., van den Broek, P., & Aksit, M. (2007). Imperfect Requirements in Software

Development. REFSQ 2007, 4542, 247-261.
[192] Nurmuliani, N., Zowghi, D., & Williams, S. P. (2004). Using Card Sorting Technique to

Classify Requirements Change. Proceedings of 12th IEEE International Requirements Engineering
Conference 2004, 240-248.

[193] Nuseibeh, B. (2001). Weaving together Requirements and Architecture. IEEE Software, 34,
115-111.

[194] Nuseibeh, B., Kramer, J., & Finkelstein, A. (1994). A framework for expressing the
relationships between multiple views in requirements specification. IEEE Transactions on
Software Engineering, 760-773.

[195] O’Neal, J. S. (2003). Analyzing the Impact of Changing Software Requirements: A traceability-based
Methodology. Ph.D. dissertation, Louisiana State University.

[196] O’Neal, J. S., & Carver, D. L. (2001). Analyzing the Impact of Changing Requirements.
International Conference on Software Maintenance, 190-195.

[197] Ölveczky, P. C., Boronat, A., & Mesequer, J. (2010). Formal Semantics and Analysis of
Behavioral AADL Models in Real-Time Maude. FMOODS/FORTE 2010, LNCS(6117), 47-
62.

[198] Ölveczky, P. C., Boronat, A., Mesequer, J., & Pek, E. (to appear). Formal Semantics and
Analysis of Behavioral AADL Models in Real-Time Maude. Technical Report at UIUC.

[199] OMG. MDA Guide. from http://www.omg.org/cgi-bin/doc?omg/03-06-01
[200] OMG. SysML Specification. Retrieved 05 January 2010, from

http://www.sysml.org/specs.htm
[201] OMG. (2004). UML 2.0 Superstructure Specification. from

http://www.omg.org/cgibin/doc?ptc/2004-10-02.
[202] OMG Semantics of Business Vocabulary and Rules (SBVR). OMG Standard.
[203] Ommering, R., Linden, F., Kramer, J., & Magee, J. (2000). The Koala Component Model for

Consumer Electronics Software. IEEE Computer, 33(3), 78-85.
[204] The Open Source Toolkit for Critical Systems (Topcased).

285

[205] Oquendo, F. (2004). π-ARL: an Architecture Refinement Language for Formally Modelling
the Stepwise Refinement of Software Architectures. ACM SIGSOFT Software Engineering
Notes, 29(5), 1-20.

[206] Paige, R. F., Drivalos, N., Kolovos, D. S., Fernandes, K. J., Power, C., Olsen, G. K., et al.
(2010). Rigorous Identification and Encoding of Trace-links in Model-Driven Engineering
Software and Systems Modeling.

[207] Paige, R. F., Kolovos, D. S., & Polack, F. A. C. (2005). Refinement via Consistency Checking
in MDA. ENTCS, 137(2), 151-161.

[208] Paige, R. F., Olsen, G. K., Kolovos, D. S., Zschaler, S., & Power, C. (2008). Building Model-
Driven Engineering Traceability Classifications. In Proceedings of ECMDA Traceability
Workshop (ECMDA-TW 2008), 49-58.

[209] Pelliccione, P., Inverardi, P., & Muccini, H. (2009). CHARMY: A Framework for Designing
and Verifying Architectural Specifications. IEEE Trans. Software Eng. , 35(3), 325-346.

[210] Perry, D., & Wolf, A. L. (1992). Foundations for the Study of Software Architecture. ACM
SIGSOFT Software Engineering Notes, 17(4), 40-52.

[211] Pinheiro, F. A. C. (2003). Requirements traceability Perspectives on Software Requirements (pp. 93-
113): Springer.

[212] Post, H., Sinz, C., Merz, F., Gorges, T., & Kropf, T. (2009). Linking Functional
Requirements and Software Verification. RE’09, 295-302,.

[213] QuadREAD. (2006). Quality-Driven Requirements Engineering and Architectural Design.
2010, from http://quadread.ewi.utwente.nl/

[214] Ramesh, B., & Edwards, M. (1993). Issues in the Development of a Requirements
Traceability Model. In Proceedings of the IEEE International Symposium on Requirements Engineering,
256-259.

[215] Ramesh, B., & Jarke, M. (2001). Towards reference Models for Requirements Traceability.
IEEE Trans. Softw. Eng. , 27(1), 58-93.

[216] Rashid, A., Moreira, A., & Araujo, J. (2003). Modularization and composition of aspectual
requirements. AOSD 2003, 11-20.

[217] Ratel, C., Halbwachs, N., & Raymond, P. (1991). Programming and verifying critical systems
by means of the synchronous data-flow programming language lustre. ACM-SIGSOFT’91
Conference on Software for Critical Systems.

[218] RCP. Eclipse Rich Client Platform. from http://www.eclipse.org/home/categories/rcp.php
[219] Rensink, A. (2003). The GROOVE Simulator: A Tool for State Space Generation. Proceedings

of Applications of Graph Transformations with Industrial Relevance (AGTIVE) - LNCS, 3062, 479-
485.

[220] RIF. Requirements Interchange Format. from http://www.automative-his.de/rif/doku.php
[221] Rivera, E. J., Guerra, E., de Lara, J., & Vallecillo, A. (2009). Analyzing Rule-Based Behavioral

Semantics of Visual Modeling Languages with Maude. SLE 2008, LNCS (5452), 54-73.
[222] Robinson, W. N., Pawlowski, S. D., & Volkov, V. (2003). Requirements interaction

management. ACM Computing Surveys, 35(2), 132-190.
[223] Rodrigues, O., Garcez, A., & Russo, A. (2004). Reasoning about requirements evolution

using clustered belief revision. SBIA 2004, Lecture Notes in Computer Science (LNAI), 3171, 41-
51.

[224] Sabaliauskaite, G., Loconsole, A., Engstrom, E., Unterkalmsteiner, M., Regnell, B., Runeson,
P., et al. (2010). Challenges in Aligning Requirements Engineering and Verification in a
Large-Scale Industrial Context. REFSQ 2010, LNCS(6182), 128-142.

286

[225] SAE. Architecture Analysis and Design Language (AADL). Retrieved 05 January 2010,
from http://www.aadl.info

[226] Sanchez, O., Molina, F., Garcia-Molina, J., & Toval, A. (2009). ModelSec: A Generative
Architecture for Model-Driven Security. Journal of Universal Computer Science, 15(15), 2957-
2980.

[227] Schmidt, D. C. (2006). Guest Editor's Introduction: Model-Driven Engineering. IEEE
Computer, 39(2), 25-31.

[228] Schwarz, H., Ebert, J., & Winter, A. (2009). Graph-based Traceability: a Comprehensive
Approach. Software and System Modeling.

[229] SEI Software Architecture Glossary. from
http://www.sei.cmu.edu/architecture/start/glossary/

[230] Seidewitz, E. (2003). What Models Mean. IEEE Software, 20(5).
[231] Soares, M. S., & Vrancken, J. (2008). Model-driven user requirements specification using

SysML. Journal of Software, 3(6), 57-68.
[232] Sokolsky, O., Lee, I., & Clarke, D. (2009). Process-Algebraic Interpretation of AADL

Models. Reliable Software Technologies - Ada Europe, LNCS(5570), 222-236.
[233] Sommerville, I. (2001). Software Engineering (6 ed.): Addison-Wesley.
[234] Spencer, J. (2000). Architecture Description Markup Language (ADML): Creating an Open

Market for IT Architecture Tools. The Open Group.
[235] Spijkerman, W. (2010). Tool Support for Change Impact Analysis in Requirement Models. MSc

Thesis, University of Twente, Enschede.
[236] Supakkul, S., & Chung, L. (2005). A UML profile for goal-oriented and use case driven

representation of NFRs and FRs. SERA 2005, 112-119.
[237] Swanson, E. B. (1976). The Dimensions of Maintenance. Proceedings of the 2nd International

Conference on Software Engineering, 492-497.
[238] Swanson, E. B., & Chapin, N. (1995). Interview with E. Burton Swanson. Journal of Software

Maintenance: Research and Practice, 7(5), 303-315.
[239] SWEBOOK. Guide to Software Engineering Body of Knowledge. IEEE Computer Society.
[240] System Level Automation Tool for Engineers (SLATE). from http://www.tdtech.com
[241] Tang, A., Jin, Y., Han, J., & Nicholson, A. (2005). Predicting Change Impact in Architecture

Design with Bayesian Belief Networks. 5th Working IEEE/IFIP Conference on Software
Architecture, 67-76.

[242] Taylor, R. N., Medvidovic, N., & Dashofy, E. M. (2010). Software Architecture: Foundations,
Theory, and Practice: John Wiley & Sons.

[243] ten Hove, D., Goknil, A., Kurtev, I., van den Berg, K., & de Goede, K. (2009). Change
Impact Analysis for SysML Requirements Models based on Semantics of Trace Relations.
ECMDA-TW 2009, 17-28.

[244] Tip, F., Jong, D. C., Field, J., & Ramlingam, G. (1996). Slicing Class Hierarchies in C++.
Object-Oriented Programming, Systems, Languages & Applications Conference, 179-197.

[245] Tool for Requirements Inferencing and Consistency Checking (TRIC) from
http://trese.cs.utwente.nl/tric/

[246] TopTeam Analyst. from
http://www.technosolutions.com/topteam_requirements_management.html

[247] Turver, R. J., & Munro, M. (1994). An Early Impact Analysis Technique for Software
Maintenance. Journal of Software Maintenance Research and Practice, 6(1), 35-52.

287

[248] van der Westhuizen, C., & van der Hoek, A. (2002). Understanding and Propagating
Architectural Changes. Proceedings of the IFIP 17th World Computer Congress- TC2 Stream, 3rd
IEEE/IFIP Conference on Software Architecture: System Design, Development and Maintenance, 95-
109.

[249] van Domburg, R. S. A. (2009). Empirical Validation of Representation and Interpretation of Software
Requirements in Requirements Models. MSc Thesis, University of Twente, Enschede.

[250] van Lamswerdee, A. (2001). Goal-oriented requirements engineering: a roundtrip from
research to Practice. Invited Minitutorial, Proceedings RE’01—5th International Symposium
Requirements Engineering, 249-263.

[251] van Lamswerdee, A., Darimont, R., & Letier, E. (1998). Managing conflicts in goal-driven
requirements engineering. IEEE Transactions on Software Engineering, 24(11), 908-926.

[252] Vanhooff, B., & Berbers, Y. (2005). Supporting Modular Transformation Units with Precise
Transformation Traceability Metadata. In Traceability Workshop at European Conference on Model
Driven Architecture (ECMDA-TW 2005).

[253] Varona Gomez, R., & Villar, E. (2009). AADS: AADL Simulation and Performance Analysis
in SystemC. Software demonstration at the DATE’09 University Booth, Nice.

[254] Veldhuis, J. W. (2009). Tool support for a metamodeling approach for reasoning about requirements. MSc
Thesis, University of Twente, Enschede.

[255] Vicente-Chicote, C., Moros, B., & Toval, A. (2007). REMM-Studio: an integrated model-
driven environment for requirements specification, validation and formatting. Journal of Object
Technology, 6(9), 437-454.

[256] Vogel, R., & Mantell, K. (2006). MDA Adoption for a SME: evolution, not revolution -
Phase II. 2nd Workshop on From Code Centric to Model Centric Software Engineering: Practices,
Implications and ROI.

[257] Warren, I. (1998). The Renaissance of Legacy Systems: Springer.
[258] Wasson, C. S. (2006). System, Analysis, Design, and Development: Concepts, Principles, and Practices:

John Wiley & Sons.
[259] Wieringa, R. (2009). Design Science as Nested Problem Solving. 4th International Conference on

Design Science Research in Information Systems and Technology, ACM, 1-12.
[260] Wieringa, R. (2010). Relevance and Problem Choice in Design Science. 5th International

Conference on Global Perspectives on Design Science Research (DESRIST), Lecture Notes in Computer
Science (LNCS)(6105), 61-76.

[261] Wieringa, R., Maide, N., & Mead, N. (2006). Requirements Engineering Paper Classification
and Evaluation Criteria: a Proposal and a Discussion. Requirements Engineering Journal, 11(1),
102-107.

[262] Winkler, S., & Pilgrim, J. V. (2010). A Survey of Traceability in Requirements Engineering
and Model-Driven Development. Software and Systems Modeling.

[263] Yang, Z., Hu, K., Ma, D., & Pi, L. (2009). Towards a Formal Semantics for the AADL
Behavior Annex. DATE’09, 1166-1171.

[264] Zhang, P., Muccini, H., & Li, B. (2009). A Classification and Comparison of Model
Checking Software Architecture Techniques. The Journal of Systems and Software, 83, 723-744.

[265] Zhao, J. (1998). Applying Slicing Technique to Software Architectures. 4th IEEE International
Conference on Engineering of Complex Computer Systems, 87-98.

[266] Zhao, J., Yang, H., Xiang, L., & Xu, B. (2002). Change Impact Analysis to Support
Architectural Evolution. Journal of Software Maintenance: Research and Practice, 14(5), 317-333.

288

[267] Zowghi, D., & Gervasi, V. (2003). On the interplay between consistency, completeness and
correctness in requirements evolution. Information and Software Technology, 45, 993-1009.

[268] Zowghi, D., & Offen, R. (1997). A logical framework for modeling and reasoning about the
evolution of requirements. RE 1997, 247-257.

289

APPENDIX

291

Appendix A

A Definition of a model in FOL

In this appendix, we recapture the terminology for defining a model in FOL (first-order
logic) [118]. Let F be a set of function symbols and P a set of predicate symbols, each
symbol with a fixed arity. A model M of the pair (F, P) consists of the following items:

 a non-empty set A, the universe of concrete values

 for each f  F with n arguments, a function f M : An  A

 for each P  P with n arguments, a set PM  An

The condensed definition of formula in FOL using Backus Naur Form (BNF) is the
following:

(78)  ::= K(t1, t2, …, tn) () (  ) (  ) (  ) (x) (x)

In Equation (78), K is a predicate of arity n, ti are terms, and x is a variable. Each occurrence

of  on the right-hand side of the ::= stands for any formula. A formula is in conjunctive
normal form if it is a conjunction of formulas, where these formulas are atomic formulas or
disjunctions of other formulas (clauses). An atomic formula is a formula with no deeper
structure, that is, a formula that contains no logical connectives and has no sub-formulas.
The satisfaction relation between a model and a formula is the following:

(79) M  l , for each logical formula  over the pair (F, P).

292

This denotation says that  computes to True in the model M with respect to the

environment l, a look-up table which associates with every variable x a value l (x) of the
model (l : var  A).

293

Appendix B

B Part of the CMS Requirements Document

In this appendix, we give an overview of the requirements of the Course Management
System (CMS) as used in this thesis. The full requirements document is available at
http://wwwhome.cs.utwente.nl/~goknila/sosym/.

Requirements (partial)

Stakeholder General

R1: The system shall provide static course information.

R4: The system shall provide dynamic course information.

R5: The system shall be able to store dynamic course information.

R6: The system shall be able to represent dynamic course information.

R7: The system shall provide a messaging facility.

Stakeholder Students

R8: The system shall enable students to retrieve contact information of students and
lecturers of subscribed courses.

R11: The system shall enable students to subscribe to and unsubscribe from courses.

R16: The system shall allow messages to be sent to individuals, teams, or all course
participants at once.

294

R17: The systems should allow students to create teams.

R18: Teams are created by students inviting other students in the same course using the
messaging system.

R24: The system shall notify students about events (new messages posted, etc.).

R25: The system shall allow students to customize the notification behavior.

R26: The system shall allow students to view course grade statistics per semester.

R29: The system shall provide a user-customizable visibility policy for the personal
information.

Stakeholder Lecturers

R48: The system shall allow lecturers to create courses.

R49: The system shall allow lecturers to create entirely new courses.

R59: The system shall allow lecturers to manage static course information.

R60: The system shall allow lecturers to limit the number of students subscribing to a
course.

R61: The system shall allow lecturers to specify enrolment policies based on grade, first-
come first-serve (fcfs), and department.

R62: The system shall allow lecturers to specify enrolment policies based on grade.

R72: The system shall allow only lecturers to manage student teams.

R74: The system shall allow only lecturers to create new teams.

Stakeholder Administration

R97: The system shall allow only the administration to manage courses.

R98: The system shall allow only the administration to create new courses.

R100: The system shall allow only the administration to update static course information.

R102: The system shall allow only the administration to specify the minimum number of
students for a course. If there are too few subscriptions in a semester, that course will not

295

be given during that semester.

R103: The system shall have no maximum limit on the number of course participants ever.

R117: The system shall allow the administration to evaluate courses through students by
means of a web-survey.

Glossary (partial)

Static Course Information: Information about a course which does not change while a
course is given but does change between semesters. This includes the lecturer, number of
ECTS credits, and study material.

Dynamic Course Information: Information about a course which changes while a course is
given. This includes news messages, archived files, and roster.

Manage Courses: Managing courses involves the creation, reading, updating, and deleting of
courses

297

Appendix C

C Inference Rules in JENA

This appendix provides the reasoner rules for the Inference Engine. The syntax is explained
in Chapter 4.

Import OWL reasoner rules

@include < OWL >.

Declaration of prefixes

@prefix mm: < http://trese.ewi.utwente.nl/requirements.owl#>.

@prefix xsd: < http://www.w3.org/2001/XMLSchema # >.

@prefix inf: < inf://inference_engine/# >.

#--

Permeation of disjointedness .

Not a standard rule of the JENA OWL reasoner ,

but neccessary for inferring conflicts

#--

[subset_also_disjoint: (?s1 inf:subClassOf ?s2)

 (?s2 inf:disjointWith ?s3) -> (?s1 inf:disjointWith ?s3)]

298

#--

Map requirement relations to subset relation

between satisfying sets of systems

#--

[requires_to_subset: (?r1 mm:requires ?r2)

 (?s1 inf:satisfies ?r1)

 (?s2 inf:satisfies ?r2) -> (?s1 inf:subClassOf ?s2)]

[refines_to_subset: (?r1 mm:refines ?r2)

 (?s1 inf:satisfies ?r1)

 (?s2 inf:satisfies ?r2) -> (?s1 inf:subClassOf ?s2)]

[contains_to_subset: (?r1 mm:contains ?r2)

 (?s1 inf:satisfies ?r1)

 (?s2 inf:satisfies ?r2) -> (?s1 inf:subClassOf ?s2)]

#---

If there is subset relation between sets of systems ,

conclude a requires relation

#---

[subset_to_requires: (?s1 inf:subClassOf ?s2)

 (?s1 inf:satisfies ?r1)

 (?s2 inf:satisfies ?r2) -> (? r1 mm:requires ? r2)]

299

#---

If there is a conflicts relation , conclude

disjointness of the sets of systems

#---

[conflict_to_disjoint: (?r1 mm:conflicts ?r2)

 (?s1 inf:satisfies ?r1)

 (?s2 inf:satisfies ?r2) -> (?s1 inf:disjointWith ?s2)

 (?s2 inf:disjointWith ?s1)]

#--

If there is disjointness of the sets of systems

conclude a conflicts relation

#--

[disjoint_to_conflict: (?s1 inf:disjointWith ?s2)

 (?s1 inf:satisfies ?r1)

 (?s2 inf:satisfies ?r2) -> (?r1 mm:conflicts ?r2)]

#---

Rules to infer a partial refines

#---

[temp_req_to_p_ref1: (?r1 mm:partial_refines ?r2) <-

 (?r1 mm:refines ?rt)

 (?r2 mm:contains ?rt)

300

 (? rt isTemporal ’ true ’^^ xsd:boolean)]

[temp_req_to_p_ref2: (?r1 mm:partial_refines ?r2) <-

 (?rt mm:contains ?r1)

 (?rt mm:refines ?r2)

 (?rt isTemporal ’ true ’^^ xsd:boolean)]

#---

Map requirement relations to formula relations

#---

[map_refines_to_formulas: (?r1 mm:refines ?r2)

 (?p1 inf:formulas ?r1)

 (?p2 inf:formulas ?r2) -> (?p1 cons:all_in_whole ?p2)

 (?p1 cons:some_implies_in ?p2)]

[map_contains_to_formulas: (?r1 mm:contains ? r2)

 (?p1 inf:formulas ?r1)

 (?p2 inf:formulas ?r2) -> (?p2 cons:all_in_part ?p1)

 (?p2 cons:all_equals_in ?p1)]

[map_part_ref_to_formulas: (?r1 mm:partially_refines ?r2)

 (?p1 inf:formulas ?r1)

 (?p2 inf:formulas ?r2) -> (?p1 cons:all_in_part ?p2)

301

 (?p1 cons:all_implies_in ?p2)]

#--

Map formula relations to requirements relations

#--

[map_formulas_to_refines: (?p1 cons:all_in_whole ?p2)

 (?p1 cons:some_implies_in ?p2)

 (?p1 inf:formulas ?r1)

 (?p2 inf:formulas ?r2) -> (?r1 mm:refines ?r2)]

[map_formulas_to_contains: (?p2 cons:all_in_part ?p1)

 (?p2 cons:all_equals_in ?p1)

 (?p1 inf:formulas ?r1)

 (?p2 inf:formulas ?r2) -> (?r1 mm:contains ?r2)]

[map_formulas_to_part_ref: (?p1 cons:all_in_part ?p2)

 (?p1 cons:all_implies_in ?p2)

 (?p1 inf:formulas ?r1)

 (?p2 inf:formulas ?r2) -> (?r1 mm:partially_refines ?r2)]

#---

Properties of formula relations

#---

302

[formula_rule_1: (?p1 cons:all_in_part ?p2)

 (?p2 cons:all_in_whole ?p3) -> (?p1 cons:all_in_part ?p3)]

[formula_rule_2: (?p1 cons:all_in_whole ?p2)

 (?p2 cons:all_in_part ?p3) -> (?p1 cons:all_in_part ?p3)]

[formula_rule_3: (?p1 cons:some_implies_in ?p2)

 (?p2 cons:all_implies_in ?p3) -> (?p1 cons:all_implies_in ?p3)]

[formula_rule_4: (?p1 cons:all_implies_in ?p2)

 (?p2 cons:some_implies_in ?p3) -> (?p1 cons:all_implies_in ?p3)]

[formula_rule_5: (?p1 cons:some_implies_in ?p2)

 (?p2 cons:all_equals_in ?p3) -> (?p1 cons:some_implies_in ?p3)]

[formula_rule_6: (?p1 cons:all_implies_in ?p2)

 (?p2 cons:all_equals_in ?p3) -> (?p1 cons:all_implies_in ?p3)]

[formula_rule_7: (?p1 cons:all_equals_in ?p2)

 (?p2 cons:all_implies_in ?p3) -> (?p1 cons:all_implies_in ?p3)]

303

Appendix D

D Consistency Checking Rules in JENA

This appendix provides the reasoner rules for the Consistency Checking Engine. The syntax
is explained in Chapter 4.

Import OWL reasoner rules

@include < OWL >.

Declaration of prefixes

@prefix mm: <http://trese.ewi.utwente.nl/requirements.owl#>.

@prefix cons: <cons://consistency_checker/#>.

@prefix inf: <inf://inference_engine/#>.

#---

Consistency rules .

#---

[inconsistency_1: (?s1 inf:subClassOf ?s1)

 (?s1 inf:satisfies ?r1) -> addInconsistency (’ Circular dependency ’ , ?r1)]

304

[inconsistency_2: (?s1 inf:subClassOf ?s2)

 (?s2 inf:subClassOf ?s1)

 notEqual(?s1, ?s2)

 (?s1 inf:satisfies ?r1)

 (?s2 inf:satisfies ?r2) ->

 addInconsistency (’ Contradicting subclasses of systems ’, 80 ?r1 ,? r2)]

[inconsistency_3: (?r1 mm:conflicts ?r2)

 (?r1 mm:requires ?r2) ->

 addInconsistency (’ Both conflicts and depends (req .) ’, ?r1, ?r2)]

[inconsistency_4: (?r1 mm:conflicts ?r2)

 (?r1 mm:partially_refines ?r2) ->

 addInconsistency (’ Both conflicts and depends (prt . ref .) ’, ?r1 ,?r2)]

[inconsistency_5: (?r1 cons:all_in_part ?r2)

 (?r1 cons:all_in_whole ?r2) ->

 addInconsistency (’ Requirement both part - of and whole ’, ?r1, ?r2)]

[inconsistency_6: (?r1 cons:all_equals_in ?r2)

 (?r1 cons:all_implies_in ?r2) ->

 addInconsistency (’ all_equals_in contr . all_implies_in ’, ?r1, ?r2)]

305

[inconsistency_7: (?r1 cons:all_equals_in ?r2)

 (?r1 cons:some_implies_in ?r2) ->

 addInconsistency (’ all_equals_in contr . some_implies_in ’, ?r1, ?r2)]

307

Appendix E

E Formal Semantics and Analysis of Behavioral
AADL Models in Maude

In this appendix, we give the formal semantics and analysis of behavioral AADL models in
Maude. The appendix is a short version of the technical report [198] and the paper [197] by
Peter Csaba Olveczky, Artur Boronat, Jose Meseguer, and Edgar Pek. Furthermore, we
included our updates on operational semantics of AADL models in Maude for trace
generation to the appendix

Preliminaries on AADL. The Architecture Analysis & Design Language (AADL) [225] is
an industrial standard used in avionics, aerospace, automotive, medical devices, and robotics
communities to describe a performance-critical embedded real-time system as an assembly
of software components mapped onto an execution platform.

An AADL model describes a system as a hierarchy of hardware and software components. A
component is defined by its name, its interface consisting of input and output ports, its
subcomponents and their interaction, and other type-specific properties. System components are
the top-level components, and can consist of other system components as well as of
hardware and software components. Hardware components include: processor components
that schedule and execute threads; memory components; device components representing
devices like sensors and actuators that interface with the environment; and bus components
that interconnect processors, memory, and devices. Software components include: thread
components modeling the application software to be executed; process components defining
protected memory that can be accessed by its thread subcomponents; and data components
representing data types. In AADL, thread behavior is typically described using AADL’s
behavior annex [83], which models programs as transition systems with local state variables.

308

An AADL model specifies how the different components interact and are integrated to form
a complete system. The AADL standard also describes the runtime mechanisms for handling
message and event passing, synchronized access to shared resources, thread scheduling when
several threads run on the same processor, and dynamic reconfiguration that are specified by
mode transitions. AADL has a MOF meta-model, and the OSATE modeling environment
provides a set of plug-ins for front-end processing of AADL models on top of Eclipse.

Overview of a Behavioral Subset of AADL. In AADL, a system is modeled as a collection
of software and hardware components. Since we focus on the software parts of AADL, the
following description only deals with the software components and features.

A component is given by its type and its implementation. A component type specifies the
component’s interface in terms of features and properties. In the software portion, features are
just input and output ports. A component implementation specifies the internal structure of
the component in terms of a set of subcomponents, a set of connections linking the ports of the
subcomponents, and modes that represent operational states of components. System
components are the top level components. A process component contains a set of thread
components that define the dynamic behavior of the process.

Connections link ports to enable the exchange of data and events among components. A port
is either a data port, an event port, or an event data port. Buffers associated to event ports and
event data ports support queuing of, respectively, “events” and message data, while buffers
of data ports only keep the latest data.

Modes represent the operational states of components. A component can have mode-specific
property values, subcomponents, and connections. Mode transitions are triggered by events.

The dispatch protocol property of a thread determines when the thread is executed. A periodic
thread is activated at time intervals of the specified period T; an aperiodic thread is activated
when an event arrives at a port of the thread; a sporadic thread is activated when an event
arrives and the interval between two dispatches is at least T; and a background thread is always
active.

The dynamic behavior of a thread is defined using AADL’s behavior annex. Given finite sets
of states and state variables, the behavior of a thread is defined by a set of state transitions of
the form s – [guard] -> s` {actions}, where s and s` are states, and where guard is a Boolean
condition on the values of the state variables and/or the presence of events or data in the
thread’s input ports. The actions that are performed when a transition is applied may update
the state variables, generate new outputs, and/or suspend the thread for a given amount of
time. Actions are built from basic actions using a small set of control structures allowing

309

sequencing, conditionals, and finite loops. When a thread is activated, an enabled transition
is nondeterministically selected and applied; if the resulting state s` is not a complete state,
another transition is applied, and so on, until a complete state is reached (or the thread is
suspended).

An AADL Example. As an example of a specification within the subset of AADL in this
appendix, consider a network of sensor devices for patients, consisting of a network
controller, doctor client computers that receive information about a patient’s condition.

The patient’s condition is monitored by the sensor devices and measured data are stored in a
central database. The doctor is warned if the patient’s condition gets worse.

The entire system Wholesys is a closed system that does not have any features (i.e., ports) to
the outside world. Hence, its type (interface) is empty:

system Wholesys

end Wholesys;

The implementation of the entire system describes the architecture of the system, with four
subcomponents and the connections linking these subcomponents:

system implementation Wholesys.imp

 subcomponents

 sd: system SD.i; sdc: system SDC.i;

 hpc: system HPC.i; cpc: system CPC.i;

 connections

 pc1: event data port cpc.measurements_request_out -> hpc.measurements_request_in;

 pc2: event data port cpc.alarms_request_out -> hpc.alarms_request_in;

 pc3: event data port sd.sd_blood_edp4 -> sdc.sdc_blood_edp1;

 pc4: event data port sdc.sdc_blood_edp6 -> hpc.hpc_blood_edp1;

 pc5: event data port cpc.cpc_temp_request_edp1 -> hpc.hpc_temp_request_edp1;

 pc6: event data port hpc.hpc_temp_request_edp2 -> cpc.cpc_temp_request_edp2;

end Wholesys.imp;

The sd, which measures data every second, is an instance of a system of type SD. Its
implementation consists of a process sdProcess, which again consists of a thread taThread
that is an instance of the following taThread.impl:

310

thread taThread

 features measuredData: out event data port Behavior::integer;

 properties Dispatch_Protocol => periodic; Period => 1 sec;

end Test_Thread;

thread implementation taThread.i

 annex behavior_specification {**

 states s0: initial complete state;

 transitions s0 -[]-> s0 {measuredData!(35);}; **};

end Test_Thread.i;

The thread taThread is dispatched every second. When the thread is dispatched, the transition
is applied once (since the resulting state s0 is a complete state), and the action performed is
to output the value 35 through the port measuredData.

Representing AADL Models in Maude. The semantics of a component-based language
can naturally be defined in an object-oriented style, where each component instance is
modeled as an object. The hierarchical structure of AADL components is reflected in the
nested structure of objects, in which an attribute of an object contains its subcomponents as
a multiset of objects.

Any AADL component instance is represented as an object instance of a subclass of the
following class Component, which contains the attributes common to all kinds of
components (systems, processes, threads, etc.):

class Component | features : Configuration, subcomponents : Configuration,

 properties : Properties, connections : ConnectionSet,

 modes : Modes, inModes : ModeNameSet .

The attribute features denotes the features of a component (i.e., its ports), represented as a
multiset of Port objects (see below); subcomponents denotes the subcomponents of the
object; properties denotes its properties, such as the dispatch protocol for threads;
connections denotes the set of port connections of the object (see below); modes contains
the object’s mode transition system; and inModes gives the set of modes (of the immediate
supercomponent) in which the component is available (if the component is not a mode-
specific subcomponent of the containing component, then this attribute has the value
allModes).

311

In our AADL subset, the classes System and Process, denoting system and process
components, do not have other attributes than those they inherit from their Component
superclass. The Thread class is declared as follows:

class Thread | behavior : ThreadBehavior, status : ThreadStatus,

 deactivated : Bool .

subclass Thread < Component .

The behavior attribute denotes the transition system associated with the thread. The status
indicates the current status of the thread (active, completed, suspended, etc.). The
attribute deactivated indicates whether the thread is deactivated because it is not in the
current “active” modes of the system.

Ports and connections. A port is modeled as an object instance of a subclass of the class Port,
whose subclasses define outgoing and incoming ports, as well as data, event, and event data
ports. See [198] for details. An immediate level-up connection, linking an outgoing port P in
a subcomponent C to the outgoing P` in the “current” component, is modeled as a term C.P
- -> P`. Immediate same-level and level-down connections are terms of the forms,
respectively, P1 - -> P2 and P - -> C.P`.

Representing Thread Behavior. The transition system associated with a thread is modeled as a
term of the form:

states current: s complete: s1 . . . sk other: sk+1 . . . sn

state variables var1 |-> val1 . . . varm |-> valuem

transitions s -[guard]-> s` {actions} ; . . . ; s`` -[guard`] -> s` {actions`}

Operational Semantics of AADL in Maude. This section formalizes the operational
semantics of AADL in Real-Time Maude. Unavoidably, since AADL does not have a precise
semantics, the semantic definitions in Maude are a formal semantics for AADL and involve
an interpretation of what the informal and sometimes ambiguous descriptions in the
standard mean. The dynamics is defined by equations and rewrite rules specifying:

 "message" passing,

 mode switches,

 thread dispatch,

 thread execution,

312

 nondeterministically assigning values to a set of variables, given a value constraint,
and

 timed behavior.

AADL has been extended with a property feature to express constraints on a set of values of
the components. The AADL example in [198] has such kind of constraints. Since the
concept of value constraint is not in AADL standard, it is skipped in the appendix.

Message Passing. In the spirit of the "traditional" Maude model for message transmission -
where message transmission from source to destination is abstractly modeled by the state
having a multiset structure – equations are used to model the transmission of messages from
source port to destination port along a series of connections.

To transmit a list of ML of messages (that is, events and/or data), an out port puts
transfer(ML) into its buffer. The following equation models the transmission of a message list
along a level-up connection C1 . P1 - -> P from the outport P1 of the subcomponent C1 to
the outport of P of the supercomponent C. As a result of applying the equation, the port P
now has the value transfer(ML), and the subcomponent’s port buffer is empty:

op transfer : MsgList -> MsgList [ctor] .

vars C C1 C2 : ComponentId . vars P P1 P2 : PortId .

vars PORTS PORTS2 OTHER-COMPONENTS : Configuration .

vars ML ML' : MsgList . var CONXS : ConnectionSet .

eq < C : Component |

 features : < P : OutPort | buffer : nil > PORTS,

 subcomponents :

 < C1 : Component |

 features : < P1 : OutPort | buffer : transfer(ML) > PORTS2 >

 OTHER-COMPONENTS,

 connections : (C1 . P1 --> P) ; CONXS >

=

 < C : Component |

 features : < P : OutPort | buffer : transfer(ML) > PORTS,

 subcomponents :

313

 < C1 : Component | features : < P1 : OutPort | buffer : nil > PORTS2 >

 OTHER-COMPONENTS > .

There are similar equations which model the transmission of a message list following a same-
level connection between the two subcomponents or along a level-down connection. We
skip these equations in this appendix. For further details the reader should check [198].

Thread Status and Mode Switches. The execution status of a thread can be any of the following:

 Active: The thread is ready to execute a state transition.

 Completed: The thread has completed its execution in this dispatch and waits for its
next dispatch.

 Sleeping: The thread is suspended, and will resume execution after a given amount of
time.

 Inactive: The thread is not part of the "active" mode of the system.

A mode switch has the effect of deactivating and activating threads to respond to dispatches.
A thread becomes inactive as the result of a mode change if it is not part of the new mode.
An inactive thread cannot be dispatched for execution. An inactive thread can be activated
as the result of a mode change, in which case the thread enters the completed status, from
where it can respond to future dispatches. When a thread in the completed status receives a
dispatch request, the thread enters the active status to perform the computation. Upon
successful completion of the computation, the thread returns to the completed status. Once an
active thread executes a delay action, it enters the sleeping status, suspends for a period of time,
and becomes active after that time period. Mode switch is modeled by the following rewrite
rule:

rl [modeSwitch] :

 < C : Component |

 features :

 (< P : InEventPort | buffer : transfer(ML) :: ML' > PORTS),

 modes : current: MN1

 transitions: (MN1 -[P , PIS]-> MN2) ; MTSET,

 subcomponents : SUBCOMPONENTS >

 =>

 < C : Component |

314

 features : (< P : InEventPort | buffer : nil > PORTS),

 modes : current: MN2 transitions: (MN1 -[P , PIS]-> MN2) ; MTSET,

 subcomponents : modeSwitch(SUBCOMPONENTS, MN1, MN2) > .

where the modeSwitch operation propagates the mode switch request to the subcomponents
(by setting deactivated to true for the other threads to be suspended; and vice versa for the
threads that should be activated).

Thread Dispatch and Execution. Under a periodic dispatch protocol, a thread in completed
status is dispatched when the "dispatch timer", i.e., the second parameter T' in the term
periodic-dispatch(T,T'), is 0. As a result, the thread is dispatched, that is, its status is set to
active, the "timer" is reset to the length T of a period, and the input ports are "dispatched" as
well:

crl [periodic-dispatch] :

 < O : Thread | properties : periodic-dispatch(T, 0) ; TP,

 status : completed,

 features : PORTS >

=>

 < O : Thread | properties : periodic-dispatch(T, T) ; TP,

 status : active ,

 features : dispatchInputPorts(PORTS) >

if not environmentThread(TP) .

Likewise, when the dispatch protocol is aperiodic, and new events have arrived in some of the
thread's input ports (that is, some of the messages in the port buffer have the wrapper
transfer), and the thread is in completed status, then the thread is activated:

rl [aperiodic-incoming-message] :

 < O : Thread | properties : aperiodic-dispatch PROPS,

 features :

 (< P : InEventThreadPort | buffer : ML :: transfer(ML') >

 PORTS),

 status : completed >

 =>

 < O : Thread | features :

 dispatchInputPorts(

315

 < P : InEventThreadPort | buffer : ML :: ML' > PORTS),

 status : active > .

The next rule specifes the execution of an active thread. If the thread is in state L1, and
there is some transition from L1 whose guard evaluates to true, then the transition is
executed. The resulting status is sleeping(...) if some of the actions in the statement list SL are
delay statements, the thread is completed or suspended if the resulting state L2 is a complete
state, and remains active otherwise:

crl [execute-transition] :

 < O : Thread | status : active ,

 deactivated : false,

 features : PORTS,

 behavior : states (current: L1) LDS state variables VAL,

 threadType : TN, implementationType : IMPL >

 =>

 < O : Thread | status : NEW-STATUS,

 features : (if NEW-STATUS == completed

 then transferData(NEW-PORTS)

 else NEW-PORTS fi),

 behavior : states (current: L2) LDS

 state variables NEW-VALUATION >

 if not environmentThread(TP)

 /\ ((L1 -[GUARD]-> L2 [187]) ; TRANSITIONS) := transitions(TN, IMPL)

 /\ evalGuard(GUARD, dispatchInputPorts(PORTS), VAL)

 /\ transResult(NEW-PORTS, NEW-VALUATION, SLEEP-TIME) :=

 executeTransition(L1 -[GUARD]-> L2 SL, dispatchInputPorts(PORTS), VAL)

 /\ SLEEP := SLEEP-TIME > 0

 /\ NEW-STATUS := if SLEEP then sleeping(SLEEP-TIME)

 else (if completeState(L2,LDS) then

 completed else active fi) fi .

The function executeTransition executes a given transition in a state with a given set PORTS of
ports and assignment VAL of the state variables. Its definition is straight-forward. The

function returns a triple transResult(p; ; t), where p is the state of the ports after the

316

execution,  is the resulting values of the state variables, and t is the sum of the delays in the
transition actions. The transitions are modeled as a multiset of single transitions; therefore,
any of the enabled transitions can be nondeterministically selected in the matching condition

((L1 -[GUARD]-> L2 [187]) ; TRANSITIONS) := transitions(TN, IMPL)

in the above rule.

The following rule models the behavior of a sleeping thread when the remaining sleeping time
is 0. The thread becomes active, completed, or suspended depending on whether or not its current
state is a complete state and, if so, whether it should deactivate itself as a result of an earlier
mode switch:

rl [finish-sleep] :

 < O : Thread | status : sleeping(0) ,

 deactivated : B,

 behavior : states current: L LDS state variables VAL >

 =>

 < O : Thread | status : (if not completeState(L, LDS) then active else

 (if B then inactive else completed fi) fi) > .

Time Behavior. Time elapse in the system is modeled with a single tick rule

crl {SYSTEM} => {delta(SYSTEM, T)} in time T if T <= mte(SYSTEM) .

The function delta defines the effect of time elapse in a system, and the function mte defines
the maximal time elapse possible until an action must be taken. These functions distribute
over the elements in a (sub)configuration, propagate to the subcomponents of system and
process components, and must be defined for single thread objects to define the time behavior
of a system.

The following must be taken into account when defining these functions: (i) periodic threads
must dispatch at the correct times; (ii) threads in sleep status must wake up when their sleep
time expires; (iii) time must not elapse when there are “untreated” messages in the system,
since an aperiodic thread is dispatched when it receives an event; and (iv) time cannot
advance when a thread is in active state, as the thread should execute a transition when it is
active.

317

The function delta modeling the effect of time elapse decreases the “timer” t in a periodic-
dispatch(T,t) property of a thread, and the timer t` in the sleeping(t`) status of a thread,
according to the elapsed time:

eq delta(< THR : Thread | subcomponents : C, status : TS, properties : PROPS >, T)

 = < THR : Thread | subcomponents : delta(C, T), status : delta(TS, T),

 properties : delta(PROPS, T) > .

op delta : ThreadStatus Time -> ThreadStatus .

eq delta(sleeping(T), T’) = sleeping(T - T’). eq delta(TS, T’) = TS [owise] .

op delta : Properties Time -> Properties .

eq delta(periodic-dispatch(T,T’) PROPS, T’’) =

 periodic-dispatch(T, T’ - T’’) PROPS .

eq delta(PROPS, T) = PROPS [owise] .

The function mte (maximum time elapse) ensures that mte is 0 when an “untreated” message
list, that is, one of the form transfer(ml), is present in some port buffer; in addition, it ensures
that time cannot advance beyond the wake-up time of a sleeping thread, or beyond the
dispatch time of a periodic thread. In addition, time cannot advance when a thread is active:

eq mte(< THR : Thread | features : PORTS, subcomponents : C,

 status : TS, properties : PROPS >)

 = min(mte(PORTS), mte(C), mte(TS), mte(PROPS)) .

eq mte(< P : Port | buffer : ML :: transfer(ML’) :: ML’’ >) = 0 .

eq mte(< P : Port | buffer : ML >) = INF [owise] .

op mte : ThreadStatus -> TimeInf .

eq mte(active) = 0 . eq mte(completed) = INF . eq mte(sleeping(T)) = T .

eq mte(inactive) = INF .

op mte : Properties -> TimeInf .

eq mte(periodic-dispatch(T, T’) PROPS) = T’ . eq mte(PROPS) = INF [owise].

Updates on Operational Semantics of AADL in Maude for Trace Generation. This
section explains the updates on operational semantics of AADL in Maude for trace
generation in Chapter 6. We modified the transition rules in Maude to be able to record the
architectural elements matched by the transition rules. These matched elements are the used

318

architectural elements during the verification of architecture. We modified the AADL
metamodel and included a boolean attribute called Used to the component classes in the
AADL metamodel. Each transition rule sets the attribute Used of the architectural element
matched in the transition rule to True. The Port and Thread classes are updated as follows:

class Port | used : Bool, *** This is added in order to mark used ports in verification

 buffer : MsgList .

class Thread | used : Bool, *** This is added in order to mark used threads in verification

 behavior : ThreadBehavior,

 status : ThreadStatus,

 threadType : ThreadName,

 implementationType : ImplName,

 deactivated : Bool .

While the threads and ports are being initialized, the attribute Used of threads and ports
should be set to False. The following is the updated equation initializeThreads which initializes
threads with the attribute Used set to false.

eq initializeThreads(< O : X:Thread | ATTS, inModes : MNS >, MN) =

 < O : X:Thread | ATTS, inModes : MNS, status : completed,

 used : false, *** This is added to initialize threads

 *** with the Used attribute set to false

 deactivated : (not MN in MNS) > .

The following is one of the updated equations which initialize ports with the attribute Used
set to false.

var P : PortId .

eq P out event data port = < P : OutEventDataPort | buffer : nil, used : false > .

Equations and rewrite rules for operational semantics of AADL ("message" passing, mode
switches, thread dispatch, and thread execution) are updated in order to record the
architectural elements used in the verification. The following is one of the updated equations
for "message" passing.

319

var U : Bool .

eq < C : Component | features : < P : InPort | buffer : transfer(ML), used : U > PORTS,

 subcomponents : COMPONENTS,

 modes : noModes,

 connections : (P --> C1 . P1) ; CONXS >

 =

 < C : Component | features : < P : InPort | buffer : nil, used : true > PORTS,

 subcomponents :

 (transfer ML from P to COMPONENTS using ((P --> C1 . P1) ; CONXS)) > .

The above equation models the transmission of a message list along a level-down connection
P - -> C1.P1 from the outport P to the outport of P1 of the subcomponent C1. As a result
of applying the equation, the port P1 now has the value transfer(ML), and the outport P
buffer is empty. For trace generation the attribute used of the outport P is added to the
equation. Since the message is transferred from the outport P, the attribute used of the
outport P is set to true in the equation (used : true). The following is the updated rewrite rule
for periodic thread dispatch.

var U : Bool .

crl [periodic-dispatch] :

 < O : Thread | properties : periodic-dispatch(T, 0) ; TP,

 used : U, *** This is added to match the attribute used

 status : completed,

 features : PORTS >

=>

 < O : Thread | properties : periodic-dispatch(T, T) ; TP,

 used : true, *** This is added to set the attribute used true

 status : active,

 features : dispatchInputPorts(PORTS) >

if not environmentThread(TP) .

In the above rewrite rule, the thread is dispatched, that is, its status is set to active, the "timer"
is reset to the length T of a period, and the input ports are "dispatched" as well. For trace

320

generation the attribute used of the thread O is added to the rewrite rule. Since the thread O is
dispatched in the rewrite rule, the attribute used of the thread O is set to true (used : true). The
following is the updated rewrite rule for aperiodic thread dispatch.

var U : Bool .

rl [aperiodic-incoming-message] :

 < O : Thread | properties : aperiodic-dispatch PROPS,

 features :

 (< P : InEventThreadPort | buffer : ML :: transfer(ML') >

 PORTS),

 used : U, *** This is added to match the attribute used

 status : completed >

 =>

 < O : Thread | features :

 dispatchInputPorts(

 < P : InEventThreadPort | buffer : ML :: ML' > PORTS),

 used : true, *** This is added to set the attribute used true

 status : active > .

In the above rule, when the dispatch protocol is aperiodic, and new events have arrived in
some of the thread's input ports (that is, some of the messages in the port buffer have the
wrapper transfer), and the thread is in completed status, then the thread is dispatched
(activated). For trace generation the attribute used of the thread O is added to the rewrite rule.
Since the thread O is dispatched in the rewrite rule, the attribute used of the thread O is set to
true (used : true). The following is the updated rewrite rule for thread execution.

var U : Bool .

crl [execute-transition] :

 < O : Thread | status : active ,

 used : U, *** This is added to match the attribute used

 deactivated : false,

 features : PORTS,

 behavior : states (current: L1) LDS state variables VAL,

 threadType : TN, implementationType : IMPL >

321

 =>

 < O : Thread | status : NEW-STATUS,

 used : true, *** This is added to set the attribute used true

 features : (if NEW-STATUS == completed

 then transferData(NEW-PORTS)

 else NEW-PORTS fi),

 behavior : states (current: L2) LDS

 state variables NEW-VALUATION >

 if not environmentThread(TP)

 /\ ((L1 -[GUARD]-> L2 [187]) ; TRANSITIONS) := transitions(TN, IMPL)

 /\ evalGuard(GUARD, dispatchInputPorts(PORTS), VAL)

 /\ transResult(NEW-PORTS, NEW-VALUATION, SLEEP-TIME) :=

 executeTransition(L1 -[GUARD]-> L2 SL, dispatchInputPorts(PORTS), VAL)

 /\ SLEEP := SLEEP-TIME > 0

 /\ NEW-STATUS := if SLEEP then sleeping(SLEEP-TIME)

 else (if completeState(L2,LDS) then

The above rule specifes the execution of a dispatched (active) thread. For trace generation
the attribute used of the thread O is added to the rewrite rule. Since the thread O is executed
in the rewrite rule, the attribute used of the thread O is set to true (used : true).

Formal Analysis of AADL Models. The Real-Time Maude verification model synthesized
from an AADL design model can be formally analyzed in different ways. This section
presents some functions allowing the user to define system properties in terms of an AADL
model without having to understand its Real-Time Maude representation. Remote Patient
Monitoring (RPM) system example is used to illustrate the formal analysis features.

Defining Initial States and Simulation. An AADL system definition declares a component
template. An initial state is an instance of such a template. In the remote patient monitoring
example example, if MAIN is a system component name, the initial state is {MAIN system
Wholesys . impl}. In addition, a function initialize is used to correctly initialize the status and
deactivated attributes in the threads, since a thread may be inactive if a mode-specific
component much higher in the containment hierarchy is not part of the “current” mode. A
first form of formal analysis consists of simulating one of the many possible system
behaviors up to a given duration using timed rewriting:

Maude> (tfrew initialize({MAIN system Wholesys . impl}) in time < 20 .)

322

Reachability Analysis. Real-Time Maude’s tsearch and utsearch commands can be used to analyze
whether or not a state pattern can be reached from the initial state. To avoid requiring the
user of AADL2Maude to know the Real-Time Maude representation of AADL models to
define his/her state patterns, the tool [182] defines some useful functions. The term

value of v in component fullComponentName in globalComponent

returns the value of the state variable v in the thread identified by the full component name
fullComponentName in the system in state globalComponent. The full component name is defined
as a ->-separated path of component names, from the outermost to the innermost. Likewise,
the term

location of component fullComponentName in globalComponent

gives the current location/state in the transition system in the given thread.

In the RPM example, MAIN -> hpc -> sdm -> sdmTh denotes the full component name of
the sdmTh thread. The following search command checks if the sdmTh thread reaches the
bloodStored state from the initial state.

Maude> (utsearch [1]

 initializeThreads({ MAIN system Wholesys . imp }) =>* {C:Configuration}

 such that

 ((location of component (MAIN -> hpc -> sdm -> sdmTh)

 in C:Configuration) == bloodStored .)

Solution 1 C:Configuration - -> …

LTL Model Checking. For LTL model checking purposes, our tool has pre-defined useful
parametric atomic propositions, such as full thread name @ location, which holds when the
thread is in state location.

Maude > (mc initializeThreads({ MAIN system Wholesys . imp }) |=u

 <> ((MAIN -> hpc -> sdm -> sdmTh) @ bloodStored) .)

323

Appendix F

F Part of the RPM Requirements Document

In this appendix we give an overview of the requirements of the Remote Patient Monitoring
(RPM) system as used in this paper.

Requirements (partial)

Requirement 1 The system shall measure temperature from a patient.

Requirement 2 The system shall measure blood pressure from a patient.

Requirement 3 The system shall measure blood pressure and temperature from a patient.

Requirement 4 The system shall store patient temperature measured by the sensor in the central storage.

Requirement 5 The system shall store patient blood pressure measured by the sensor in the central
storage.

Requirement 6 The system shall store data measured by sensors in the central storage.

Requirement 7 The system shall warn the doctor when the temperature threshold is violated.

Requirement 8 The system shall generate an alarm if the temperature threshold is violated.

Requirement 9 The system shall show the doctor the temperature alarm at the doctors’ computers.

324

Requirement 10 The system shall store all generated temperature alarms in a central database.

Requirement 11 The system shall enable the doctor to set the temperature threshold for a patient.

Requirement 12 The system shall enable the doctor to retrieve all stored temperature measurements for a
patient.

Requirement 13 The system shall enable the doctor to retrieve all stored temperature alarms for a
patient.

Requirement 14 The system shall store patient temperature measured by the sensor in the central storage
and it shall warn the doctor when the temperature threshold is violated.

Requirement 15 The system shall store patient Central Venous Pressure (CV Pressure) measured by
the sensor in the central storage.

325

Appendix G

G Graphical Notation for Elements in AADL

In this appendix we give a graphical notation for architectural elements in AADL.

System

Process

Thread Group

Thread

Subprogram

Datastore

Event Data Port

Data Access

Connector

327

Appendix H

H Abbreviations of Elements in the RPM System

In this appendix we give the explanations of the abbreviations of the architectural elements
of the Remote Patient Monitoring (RPM) system used in the thesis.

Abbreviation Explanation

SD Sensor Device

SDC Sensor Device Coordinator

SDM Sensor Device Manager

AS Alarm Service

AR Alarm Receiver

WS Web Server

WC Web Client

HPC Host Personal Computer

CPC Client Personal Computer

sd_blood_edp1 Event Data Port 1 for Blood Pressure in Sensor Device

sd_blood_edp2 Event Data Port 2 for Blood Pressure in Sensor Device

sd_blood_edp3 Event Data Port 3 for Blood Pressure in Sensor Device

328

sd_blood_edp4 Event Data Port 4 for Blood Pressure in Sensor Device

sd_temp_edp1 Event Data Port 1 for Temperature in Sensor Device

sd_temp_edp2 Event Data Port 2 for Temperature in Sensor Device

sd_temp_edp3 Event Data Port 3 for Temperature in Sensor Device

sd_temp_edp4 Event Data Port 4 for Temperature in Sensor Device

sd_temp_alarm_edp1 Event Data Port 1 for Temperature Alarm in Sensor Device

sd_temp_alarm_edp1 Event Data Port 1 for Temperature Alarm in Sensor Device

sd_temp_alarm_edp3 Event Data Port 3 for Temperature Alarm in Sensor Device

sd_temp_alarm_edp4 Event Data Port 4 for Temperature Alarm in Sensor Device

sdThr Thread in Sensor Device

sdc_blood_edp1 Event Data Port 1 for Blood Pressure in Sensor Device Controller

sdc_blood_edp2 Event Data Port 2 for Blood Pressure in Sensor Device Controller

sdc_blood_edp3 Event Data Port 3 for Blood Pressure in Sensor Device Controller

sdc_blood_edp4 Event Data Port 4 for Blood Pressure in Sensor Device Controller

sdc_blood_edp5 Event Data Port 5 for Blood Pressure in Sensor Device Controller

sdc_blood_edp6 Event Data Port 6 for Blood Pressure in Sensor Device Controller

sdc_temp_edp1 Event Data Port 1 for Temperature in Sensor Device Controller

sdc_temp_edp2 Event Data Port 2 for Temperature in Sensor Device Controller

sdc_temp_edp3 Event Data Port 3 for Temperature in Sensor Device Controller

sdc_temp_edp4 Event Data Port 4 for Temperature in Sensor Device Controller

sdc_temp_edp5 Event Data Port 5 for Temperature in Sensor Device Controller

sdc_temp_edp6 Event Data Port 6 for Temperature in Sensor Device Controller

sdc_temp_alarm_edp1 Event Data Port 1 for Temperature Alarm in Sensor Device

329

Controller

sdc_temp_alarm_edp2 Event Data Port 2 for Temperature Alarm in Sensor Device
Controller

sdc_temp_alarm_edp3 Event Data Port 3 for Temperature Alarm in Sensor Device
Controller

sdc_temp_alarm_edp4 Event Data Port 4 for Temperature Alarm in Sensor Device
Controller

sdc_temp_alarm_edp5 Event Data Port 5 for Temperature Alarm in Sensor Device
Controller

sdc_temp_alarm_edp6 Event Data Port 6 for Temperature Alarm in Sensor Device
Controller

sdcThr Thread in Sensor Device Controller

sdm_blood_edp1 Event Data Port 1 for Blood Pressure in Sensor Device Manager

sdm_blood_edp2 Event Data Port 2 for Blood Pressure in Sensor Device Manager

sdm_blood_strg Storage for Blood Pressure in Sensor Device Manager

sdm_temp_edp1 Event Data Port 1 for Temperature in Sensor Device Manager

sdm_temp_edp2 Event Data Port 2 for Temperature in Sensor Device Manager

sdm_temp_strg Storage for Temperature in Sensor Device Manager

sdm_temp_alarm_edp1 Event Data Port 1 for Temperature Alarm in Sensor Device
Manager

sdm_temp_alarm_edp2 Event Data Port 2 for Temperature Alarm in Sensor Device
Manager

sdm_temp_alarm_strg Storage for Temperature Alarm in Sensor Device Manager

sdmThr Thread in Sensor Device Manager

hpc_blood_edp1 Event Data Port 1 for Blood Pressure in Host Personal Computer

330

hpc_temp_edp1 Event Data Port 1 for Temperature in Host Personal Computer

hpc_temp_req_edp1 Event Data Port 1 for Temperature Request in Host Personal
Computer

hpc_temp_alarm_edp1 Event Data Port 1 for Temperature Alarm in Host Personal
Computer

wc_temp_req_edp1 Event Data Port 1 for Temperature Request in Web Client

wc_temp_req_edp2 Event Data Port 2 for Temperature Request in Web Client

wc_temp_req_edp3 Event Data Port 3 for Temperature Request in Web Client

wc_temp_req_edp4 Event Data Port 4 for Temperature Request in Web Client

wcThr Thread in Web Client

ws_temp_req_edp1 Event Data Port 1 for Temperature Request in Web Server

ws_temp_req_edp2 Event Data Port 2 for Temperature Request in Web Server

ws_temp_req_edp3 Event Data Port 3 for Temperature Request in Web Server

ws_temp_req_edp4 Event Data Port 4 for Temperature Request in Web Server

wsThr Thread in Web Server

cpc_temp_req_edp1 Event Data Port 1 for Temperature Request in Client Personal
Computer

cpc_temp_req_edp2 Event Data Port 2 for Temperature Request in Client Personal
Computer

cpc_ar Alarm receiver in Client Personal Computer

331

Appendix I

I Change Impact Analysis Function for
Identifying Candidate Impacted Architectural
Elements

In this appendix, we give the algorithm for the change impact analysis function for
identifying candidate impacted architectural elements in Chapter 7.

impact(ChangeType c, Requirement r, Set srl, Set st): Set {

 // c is the type of the change proposed to requirement r
 // srl is the set of relations of requirement r
 // st is the set of all traces between requirements and architecture
 // Set of architectural elements, which are candidate impact for
 // the change type c in requirement r, is returned from the function impact

 Set sae = empty-set // set of architectural elements for candidate impact
 Set ae = empty-set
 Set srlp = empty-set
 Requirement rq = empty

 // If the change is ‘Add a New Requirements Relation’,
 // ‘Delete Requirements Relation’, or ‘Update Requirements Relation’,
 // then there is no impacted architectural element and return empty set
 If ((r is empty) AND
 ((c is ‘Add a New Requirements Relation’) OR
 (c is ‘Delete Requirements Relation’) OR
 (c is ‘Update Requirements Relation’)))
 {
 Return empty-set
 }

 // If the change is ‘Add a New Requirement’,
 // then check if there is also any new relation for the new requirement
 If (c is ‘Add a New Requirement’)
 {
 // If there is no relation for the new requirement,
 // then there is no candidate impacted requirement
 If (srl is empty-set) {
 Return empty-set

332

 }

 ForEach relation rl  srl {

 // If the new requirement is refined, partially refined or contained
 // by an existing requirement, or the new requirement is containing
 // an existing requirement, then the change is not a domain change and
 // it does not have any impact in software architecture.
 // Therefore, return empty-set.
 If ((rl is ‘contains’) OR
 ((rl is ‘refines’) OR (rl is ‘partially refines’)) AND (rl.target is r))
 {
 Return empty-set
 }

 // If there is a requires relation for the requirement added,
 // then architectural elements traced from the related requirement
 // are candidate impacted.
 If (rl is ‘requires’) {
 rq = getRequirement(r, rl) // returns requirement rq
 // related to requirement r
 // with relation rl

 ae = getArchitecturalElements(rq, st) // get architectural
 // elements traced from rq
 // by using traces st

 sae = sae + ae
 }

 // If the new requirement refines or partially refines
 // one of the existing requirements,
 // then architectural elements traced from the existing requirement
 // are candidate impacted
 If ((rl is ‘refines’) OR (rl is ‘partially refines’)) AND
 (rl.source is r)
 {
 rq = getRequirement(r, rl) // returns requirement rq
 // related to requirement r
 // with relation rl

 ae = getArchitecturalElements(rq, st) // get architectural
 // elements traced from rq
 // by using traces st

 sae = sae + ae
 }

 }

 Return sae

 } // ENDIF

 // If the change is ‘Add Property to Requirement’,
 // then there is no suggestion for the impacted architectural elements
 // and return empty set
 If (c is ‘Add Property to Requirement’) {
 Return empty-set
 }

 // Get relations of requirement r, which are used in change propagation
 // for change c
 srlp = getRelationsInPropagation(c, r, srl)

333

 // If the change is none of the changes above,
 // then traverse the propagation path in the requirements model for
 // change c in order to find the candidate impacted architectural elements
 sae = traversePropagationPath(c, r, srlp, st)

 Return sae

} // End of impact Function

traversePropagationPath(ChangeType c, Requirement r, Set srlp, Set st): Set {

 ChangeType pc = empty
 Set srl = empty-set
 Set rlp = empty-set

 // If there is no relation of requirement r
 // used in change propagation for change c,
 // then the architectural elements only traced from requirement r
 // are candidate impacted
 If (srlp is empty-set) {
 sae = getArchitecturalElements(r, st) // get architectural
 // elements traced from r
 // by using traces st

 Return sae
 }

 // If the change is ‘Delete Requirement’
 // and if there is any requirement which refines requirement r
 // in the propagation path, then the architectural elements traced from
 // the refining requirement are candidate impacted
 If (c is ‘Delete Requirement’) {

 Integer i = 0

 ForEach relation rl  srlp {

 // Check if there is any refining requirement in the propagation path
 If ((rl is ‘refines’) AND (rl.target is r)) {

 i = 1

 // Get the change propagated from requirement r
 // with change c through relation rl
 pc = getPropagatedChange(c, r, rl)

 // Get relations of the refining requirement
 srl = getRelations(rl.source)

 // Get relations of the refining requirement,
 // used in change propagation
 rlp = getRelationsInPropagation(pc, rl.source, srl)

 // traverse the propagation path in the requirements model for
 // change pc in order to find the candidate impacted
 // architectural elements
 sae = sae + traversePropagationPath(pc, rl.source, rlp, st)

 }

 } // End of FOREACH

334

 // If there is no refining requirement for requirement r
 // in the propagation path, then architectural elements
 // traced from requirement r are candidate impacted
 If (i = 0) {
 sae = getArchitecturalElements(r, st) // get architectural
 // elements traced from r
 // by using traces st
 }

 Return sae

 }

 Integer k = 0

 // If the change is none of the changes above and there is any requirement
 // which refines or partially refines requirement r or
 // contained by requirement r in the propagation path,
 // then architectural elements traced from requirement r are
 // candidate impacted and continue traversing the propagation path
 // in the requirements model for change c
 ForEach relation rl  srlp {

 // Check if there is any (or partially) refining requirement
 // in the propagation path
 If ((rl is ‘refines’) AND (rl.target is r)) OR
 ((rl is ‘partially refines’) AND (rl.target is r)) {

 k = 1

 // Get the change propagated from the requirement r
 // with the change c through the relation rl
 pc = getPropagatedChange(c, r, rl)

 // Get relations of the refining (or partially refining) requirement
 srl = getRelations(rl.source)

 // Get relations of the refining (or partially refining) requirement,
 // used in change propagation
 rlp = getRelationsInPropagation(pc, rl.source, srl)

 // traverse the propagation path in the requirements model for
 // change pc in order to find the candidate impacted
 // architectural elements
 sae = sae + traversePropagationPath(pc, rl.source, rlp, st)

 } else {
 If ((rl is ‘contains’) AND (rl.source is r)) {

 k = 1

 pc = getPropagatedChange(c, r, rl)

 srl = getRelations(rl.target)

 rlp = getRelationsInPropagation(pc, rl.target, srl)

 sae = sae + traversePropagationPath(pc, rl.target, rlp, st)
 }

 }

 } // End of FOREACH

 // If there is no refining, partially refining or contained requirement for
 // requirement r in the propagation path,
 // then architectural elements traced from requirement r are

335

 // candidate impacted
 If (k = 0) {
 sae = getArchitecturalElements(r, st) // get architectural
 // elements traced from r
 // by using traces st
 }

 Return sae

}

337

Appendix J

J The Complete Analysis of Counter Example for
Proposing Architectural Changes

In this appendix, we give the complete analysis of the counter example for proposing
architectural changes in Chapter 7.

Table J.1 gives the categories of the state transition rules in AADL with the right-hand side
patterns.

Table J.1 Categories of the State Transition Rules in AADL with the Right-hand Side Patterns

Categories of State
Transition Rules in

AADL

Right-hand Side Patterns

Passing Message M1

Event/Data M1 at the buffer of the (event) data-in-port of System S1
Event/Data M1 at the buffer of the (event) data-in-port of Process P1
Event/Data M1 at the buffer of the (event) data-in-port of Thread T1
Event/Data M1 at the buffer of the (event) data-out-port of Device D1
Event/Data M1 at the buffer of the (event) data-out-port of System S1
Event/Data M1 at the buffer of the (event) data-out-port of Process P1

Dispatching Thread T1

Event/Data M1 at the internalbuffer of the (event) data-in-port of Thread
T1 & Thread T1 is in active status
Thread T1 is in the active status

Executing Thread T1

Event/Data M1 at the buffer of the (event) data-out-port of Thread T1
& Thread T1 is in the completed status
Thread T1 is in the completed status

Switching the Mode of
Thread T1

Thread T1 is in the inactive status
Thread T1 is in the completed status

338

Table J.2 lists the architectural change types for AADL models.

Table J.2 Architectural Change Types

Change Types

Add (event) data-in-port to System
Add (event) data-out-port to System
Add (event) data-in-port to Process
Add (event) data-out-port to Process
Add (event) data-in-port to Thread
Add (event) data-out-port to Thread
Add connection to (event) data-in-port
Add connection to (event) data-out-port
Change the mode of System
Change the mode of Process
Change the mode of Thread
Change the behaviour of Thread

Please note that there are more changes that can be performed in AADL models such as
adding new systems and threads. Designing architecture based on requirements is a creative
process. The number of changes over the architecture is infinite. We do not consider
changes such as adding new systems, processes or threads which may cause infinite number
of solutions for the changed requirements.

Table J.3 lists the right-hand side patterns of the state transition rules for Passing Message M1
and proposed architectural changes.

Table J.3 Right-hand Side Patterns of the State Transition Rules for Passing Message M1 with Proposed
Architectural Changes

Right-hand Side Patterns of the
Transition Rules for Passing Message

M1

Proposed Architectural Changes

Event/Data M1 at the buffer of the
(event) data-in-port of System S1

Add connection to the (event) data-in-port of Subsystem
SS1 of System S1
Add (event) data-in-port to Subsystem SS1 of System S1
& Add connection to the added (event) data-in-port of
Subsystem SS1
Add connection to the (event) data-in-port of Process P1
of System S1
Add (event) data-in-port to Process P1 of System S1 &
Add connection to the added (event) data-in-port of

339

Process P1
Change mode of System S1

Event/Data M1 at the buffer of the
(event) data-in-port of Process P1

Add connection to the (event) data-in-port of Thread T1
of Process P1
Add (event) data-in-port to Thread T1 of Process P1 &
Add connection to the added (event) data-in-port of
Thread T1
Change the mode of Process P1

Event/Data M1 at the buffer of the
(event) data-in-port of Thread T1

Change the behaviour of Thread T1

Change the mode of Thread T1

Event/Data M1 at the buffer of the
(event) data-out-port of System S1

Add connection to the (event) data-in-port of the same
level System S2
Add (event) data-in-port to the same level System S2 &
Add connection to the added (event) data-in-port of the
same level System S2
Add connection to the (event) data-in-port of the same
level Process P1
Add (event) data-in-port to the same level Process P1 &
Add connection to the added (event) data-in-port of the
same level Process P1
Add (event) data-out-port to the upper level System S0
Add (event) data-out-port to the upper level System S0 &
Add connection to the added (event) data-out-port of the
upper level System S0
Change the mode of the upper level System S0

Event/Data M1 at the buffer of the
(event) data-out-port of Process P1

Add connection to the (event) data-in-port of the same
level Process P2
Add (event) data-in-port to the same level Process P2 &
Add connection to the added (event) data-in-port of the
same level Process P2
Add connection to the (event) data-in-port of the same
level System S1
Add (event) data-in-port to the same level System S1 &
Add connection to the added (event) data-in-port of the
same level System S1
Add connection to the (event) data-out-port of the upper
level System S0
Add (event) data-out-port to the upper level System S0 &
Add connection to the added (event) data-out-port of the
upper level System S0
Change the mode of the upper level System S0

Add connection to the (event) data-in-port of the same
level Process P1
Add (event) data-in-port to the same level Process P1 &

340

Event/Data M1 at the buffer of the
(event) data-out-port of Device D1

Add connection to the added (event) data-in-port of the
same level Process P1
Add connection to the (event) data-in-port of the same
level System S1
Add (event) data-in-port to the same level System S1 &
Add connection to the added (event) data-in-port of the
same level System S1
Add connection to the (event) data-out-port of the upper
level System S0
Add (event) data-out-port to the upper level System S0 &
Add connection to the added (event) data-out-port of the
upper level System S0
Change the mode of upper level System S0

Table J.4 lists the right-hand side patterns of the state transition rules for Dispatching Thread
T1/Executing Thread T1/Switching the Mode of Thread T1 with proposed architectural changes.

Table J.4 Right-hand Side Patterns of the Transition Rules for Dispatching Thread T1/Executing Thread
T1/Switching the Mode of Thread T1 with Proposed Architectural Changes

Right-hand Side Patterns of the
Transition Rules for Dispatching

Thread T1/Executing Thread
T1/Switching Model of Thread T1

Proposed Architectural Changes

Event/Data M1 at the internalbuffer of
the (event) data-in-port of Thread T1
& Thread T1 is in the active status

Change the mode of Thread T1
Change the behaviour of Thread T1

Event/Data M1 at the buffer of (event)
data-out-port of Thread T1
& Thread T1 is in the completed status

Add connection to the (event) data-in-port of the same
level Thread T2
Add (event) data-in-port to the same level Thread T2 &
Add connection to the added (event) data-in-port of the
same level Thread T2
Add connection to the (event) data-out-port of the upper
level Process P1
Add (event) data-out-port to the upper level Process P1 &
Add connection to the added (event) data-out-port of the
upper level Process P1
Change the mode of the upper level Process P1
Change the mode of Thread T1
Change the behaviour of Thread T1

Thread T1 is in the completed status Change the mode of Thread T1
Change the behaviour of Thread T1

Thread T1 is in the inactive status Change the mode of Thread T1
Thread T1 is in the active status Change the mode of Thread T1

341

Change the behaviour of Thread T1
Thread T1 is in the sleeping status Change the mode of Thread T1

Change the behaviour of Thread T1

