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Abstract 

At the present day, software systems get more and more complex. The requirements of 
software systems change continuously and new requirements emerge frequently. New 
and/or modified requirements are integrated with the existing ones, and adaptations to the 
architecture and source code of the system are made. The process of integration of the 
new/modified requirements and adaptations to the software system is called change 
management. The size and complexity of software systems make change management costly 
and time consuming. To reduce the cost of changes, it is important to apply change 
management as early as possible in the software development cycle. Requirements 
traceability is considered crucial in change management for establishing and maintaining 
consistency between software development artifacts. It is the ability to link requirements 
back to stakeholders’ rationales and forward to corresponding design artifacts, code, and test 
cases. When changes for the requirements of the software system are proposed, the impact 
of these changes on other requirements, design elements and source code should be traced 
in order to determine parts of the software system to be changed. Determining the impact of 
changes on the parts of development artifacts is called change impact analysis. Change impact 
analysis is applicable to many development artifacts like requirements documents, detailed 
design, source code and test cases. Our focus is change impact analysis in requirements and 
software architecture.  

The need for change impact analysis is observed in both requirements and software 
architecture. When a change is introduced to a requirement, the requirements engineer needs 
to find out if any other requirement related to the changed requirement is impacted. After 
determining the impacted requirements, the software architect needs to identify the impacted 
architectural elements by tracing the changed requirements to software architecture. It is 
hard, expensive and error prone to manually trace impacted requirements and architectural 
elements from the changed requirements. There are tools and approaches that automate 
change impact analysis like IBM Rational RequisitePro and DOORS. In most of these tools, 
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traces are just simple relations and their semantics is not considered. Due to the lack of 
semantics of traces in these tools, all requirements and architectural elements directly or 
indirectly traced from the changed requirement are candidate impacted. The requirements 
engineer has to inspect all these candidate impacted requirements and architectural elements 
to identify changes if there are any. In this thesis we address the following problems which 
arise in performing change impact analysis for requirements and software architecture. 

Explosion of impacts in requirements after a change in requirements. In practice, requirements 
documents are often textual artifacts with implicit structure. Most of the relations among 
requirements are not given explicitly. There is a lack of precise definition of relations among 
requirements in most tools and approaches. Due to the lack of semantics of requirements 
relations, change impact analysis may produce high number of false positive and false 
negative impacted requirements. A requirements engineer may have to analyze all 
requirements in the requirements document for a single change. This may result in 
neglecting the actual impact of a change.  

Manual, expensive and error prone trace establishment. Considerable research has been devoted to 
relating requirements and design artifacts with source code. Less attention has been paid to 
relating Requirements (R) with Architecture (A) by using well-defined semantics of traces. 
Designing architecture based on requirements is a problem solving process that relies on 
human experience and creativity, and is mainly manual. The software architect may need to 
manually assign traces between R&A. Manual trace assignment is time-consuming, expensive 
and error prone. The assigned traces might be incomplete and invalid.  

Explosion of impacts in software architecture after a change in requirements. Due to the lack of 
semantics of traces between R&A, change impact analysis may produce high number of false 
positive and false negative impacted architectural elements. A software architect may have to 
analyze all architectural elements in the architecture for a single requirements change.  

In this thesis we propose an approach that reduces the explosion of impacts in R&A. The 
approach employs semantic information of traces and is supported by tools. We consider 
that every relation between software development artifacts or between elements in these 
artifacts can play the role of a trace for a certain traceability purpose like change impact 
analysis. We choose Model Driven Engineering (MDE) as a solution platform for our approach. 
MDE provides a uniform treatment of software artifacts (e.g. requirements documents, 
software design and test documents) as models. It also enables using different formalisms to 
reason about development artifacts described as models. To give an explicit structure to 
requirements documents and treat requirements, architecture and traces in a uniform way, 



ix 

we use metamodels and models with formally defined semantics. The thesis provides the 
following contributions: 

A modeling language for definition of requirements models with formal semantics. The language is 
defined according to the MDE principles by defining a metamodel. It is based on a survey 
about the most commonly found requirements types and relation types. With this language, 
the requirements engineer can explicitly specify the requirements and the relations among 
them. The semantics of these entities is given in First Order Logic (FOL) and allows two 
activities. First, new relations among requirements can be inferred from the initial set of 
relations. Second, requirements models can be automatically checked for consistency of the 
relations. Tool for Requirements Inferencing and Consistency Checking (TRIC) is developed 
to support both activities. The defined semantics is used in a technique for change impact 
analysis in requirements models. 

A change impact analysis technique for requirements using semantics of requirements relations and 
requirements change types. The technique aims at solving the problem of explosion of impacts in 
requirements when semantics of requirements relations is missing. The technique uses 
formal semantics of requirements relations and requirements change types. A classification 
of requirements changes based on the structure of a textual requirement is given and 
formalized. The semantics of requirements change types is based on FOL. We support three 
activities for impact analysis. First, the requirements engineer proposes changes according to 
the change classification before implementing the actual changes. Second, the requirements 
engineer indentifies the propagation of the changes to related requirements. The change 
alternatives in the propagation are determined based on the semantics of change types and 
requirements relations. Third, possible contradicting changes are identified. We extend TRIC 
with a support for these activities. The tool automatically determines the change propagation 
paths, checks the consistency of the changes, and suggests alternatives for implementing the 
change. 

A technique that provides trace establishment between R&A by using architecture verification and semantics 
of traces. It is hard, expensive and error prone to manually establish traces between R&A. We 
present an approach that provides trace establishment by using architecture verification 
together with semantics of requirements relations and traces. We use a trace metamodel with 
commonly used trace types. The semantics of traces is formalized in FOL. Software 
architectures are expressed in the Architecture Analysis and Design Language (AADL). 
AADL is provided with a formal semantics expressed in Maude. The Maude tool set allows 
simulation and verification of architectures. The first way to establish traces is to use 
architecture verification techniques. A given requirement is reformulated as a property in 
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terms of the architecture. The architecture is executed and a state space is produced. This 
execution simulates the behavior of the system on the architectural level. The property 
derived from the requirement is checked by the Maude model checker. Traces are generated 
between the requirement and the architectural components used in the verification of the 
property. The second way to establish traces is to use the requirements relations together 
with the semantics of traces. Requirements relations are reflected in the connections among 
the traced architectural elements based on the semantics of traces. Therefore, new traces are 
inferred from existing traces by using requirements relations. We use semantics of 
requirements relations and traces to both generate/validate traces and generate/validate 
requirements relations. There is a tool support for our approach. The tool provides the 
following: (1) generation/validation of traces by using requirements relations and/or 
verification of architecture, (2) generation/validation of requirements relations by using 
traces. 

A change impact analysis technique for software architecture using architecture verification and semantics of 
traces between R&A. The software architect needs to identify the impacted architectural 
elements after requirements change. We present a change impact analysis technique for 
software architecture using architecture verification and semantics of traces. The technique is 
semi-automatic and requires participation of the software architect. Our technique has two 
parts. The first part is to identify the architectural elements that implement the system 
properties to which proposed requirements changes are introduced. By having the formal 
semantics of requirements relations and traces, we identify which parts of software 
architecture are impacted by a proposed change in requirements. We have extended TRIC 
for determining candidate impacted architectural elements. The second part of our technique 
is to propose possible changes for software architecture when the software architecture does 
not satisfy the new and/or changed requirements. The technique is based on architecture 
verification. The output of verification is a counter example if the requirements are not 
satisfied. The counter example is used with a classification of architectural changes in order 
to propose changes in the software architecture. These changes produce a new version of 
the architecture that possibly satisfies the new or the changed requirements. 
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Chapter 1 

1 Introduction 

In this chapter, we describe the problem addressed in this thesis, together with our contributions and an 
outline of the thesis. 

1.1 Context 

At the present day, software systems get more and more complex. The requirements of 
software systems change continuously and new requirements emerge frequently. New 
and/or modified requirements are integrated with the existing ones, and adaptations to the 
architecture and source code of the software system are made. Integration of the 
new/modified requirements and adaptations to the software system are called change 
management. The size and complexity of software systems make change management costly 
and time consuming. 85 to 90 percent of software system budgets goes to operation and 
maintenance of software systems [74]. To reduce the cost of changes, it is important to apply 
change management as early as possible in the software development cycle. Requirements 
traceability is considered crucial in change management for establishing and maintaining 
consistency between software development artifacts. It is the ability to link requirements 
back to stakeholders’ rationales and forward to corresponding design artifacts, code, and test 
cases [100]. When changes for the requirements of the software system are proposed, the 
impact of these changes on other requirements, design elements and source code is traced in 
order to determine parts of the software system to be changed. Determining the impact of 
changes on other parts of development artifacts is called change impact analysis. 

This thesis is conducted within the context of the Quality-Driven Requirements Engineering 
and Architectural Design (QuadREAD) project [213]. The QuadREAD project aims to 
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bridge the gap between requirements engineer and software architect. In the project, we 
focus on tracing between user requirements and software architecture for change 
management, and in particular for change impact analysis.    

In the remainder of the present chapter we introduce traceability of requirements and 
software architectures for change management. In the next section the problems this thesis 
addresses are explained. Research objective and research questions related to the problem 
statement are given in Section 1.3. Section 1.4 presents the research methodology that we 
follow in this thesis. Our solution approach is described and the contributions of the thesis 
are introduced in Section 1.5 and Section 1.6. Finally, we provide the outline of the thesis in 
Section 1.7.  

1.2 Problem Statement 

The need for change impact analysis is observed in both requirements and software 
architecture. When a change is introduced to a requirement, the requirements engineer needs 
to find out if any other requirement related to the changed requirement is impacted. After 
determining the impacted requirements, the software architect needs to identify impacted 
architectural elements by tracing the changed requirements to software architecture. It is 
hard, expensive and error prone to manually trace impacted requirements and architectural 
elements from the changed requirements. There are tools and approaches to automate 
tracing for change impact analysis like IBM Rational RequisitePro [119] and DOORS [120]. 
When a requirement is changed in RequisitePro, traces of the changed requirement are 
marked as suspect by the tool. RequisitePro provides two general trace types without any 
semantics: traceFrom and traceTo. These trace types do not say anything about the dependency 
between elements except the direction of the dependency. Therefore, all requirements and 
architectural elements directly or indirectly traced from the changed requirement (with traces 
marked as suspect) are candidate impacted. The requirements engineer has to inspect all these 
candidate impacted requirements and architectural elements to identify changes if there is 
any. 

In case semantic information is missing to determine precisely how requirements and 
software architecture are related to each other, the requirements engineers and software 
architects generally have to assume the worst case dependencies based on the available 
syntactic information only. This generally results in a perception that a change has a wider 
impact on the artifacts than it is. As a result, the requirements engineers and software 
architects cannot precisely locate the impacted requirements and architectural elements and 
as such traces become useless. 
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Bohner [22] [23] [25] formulates the situation where all elements might be impacted, as 
explosion of impacts without semantics. He states that change impact analysis must employ 
additional semantic information to increase the accuracy by finding more valid impacts and 
excluding the invalid ones. In this thesis we tackle explosion of impacts in requirements and 
software architecture. Below we present an overview of the problems addressed by this 
thesis: 

 Explosion of Impacts in Requirements for Requirements Changes. In practice, 
requirements documents are often textual artifacts with implicit structure. Most of 
the relations among requirements are not given explicitly. There is a lack of precise 
definition of relations among requirements in most tools and approaches. Due to the 
lack of semantics of requirements relations, change impact analysis may produce high 
number of false positive and false negative impacted requirements. A requirements 
engineer may have to analyze all requirements in the requirements document for a 
single change. This may result in neglecting the actual impact of a change.  

 Manual, Expensive and Error Prone Trace Establishment. Considerable 
research has been devoted to relating requirements and design artifacts with source 
code. Less attention has been paid to relating Requirements (R) with Architecture (A) 
by using well-defined semantics of traces. Designing architecture based on 
requirements is a problem solving process that relies on human experience and 
creativity, and is mainly manual. The software architect may need to manually assign 
traces between R&A. Manual trace assignment is time-consuming, expensive and 
error prone. The assigned traces might be incomplete and invalid. 

 Explosion of Impacts in Software Architecture for Requirements Changes. 
Due to the lack of semantics of traces between R&A, change impact analysis may 
produce high number of false positive and false negative impacted architectural 
elements. A software architect may have to analyze all architectural elements in the 
software architecture for a single requirements change.  

1.3 Research Questions 

The objective of this thesis is to investigate to what extent and how traceability can be used 
to support change management for requirements and software architecture by enhancing 
traces with semantics. Within the context of this objective, we provide a traceability 
framework of requirements and software architectures for change management. A number 
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of research questions need to be answered. Answering these questions will give us a better 
understanding of the problem domain and the deficiencies of the current solutions.  

 Research Question 1: What does traceability mean? Can every relation between software 
development artifacts or between elements in the artifacts be a trace? What is the 
criterion for a relation to be a trace? 

 Research Question 2: What are the current traceability approaches for change 
management? What are their deficiencies? Which solutions and technologies have 
been proposed to address these deficiencies? 

 Research Question 3: What are the change scenarios for requirements and software 
architecture? What is necessary for these change scenarios to be handled? Which 
solutions can be used? 

 Research Question 4: How to model requirements, software architecture and traces with 
their semantics for change management? What aspects of requirements, software 
architecture and traces should be modeled and how? How can we use the modeled 
aspects to reason about requirements, software architecture and traces?  

 Research Question 5: How can a change in a requirement be propagated to other 
requirements and to software architecture? How can we support the requirements 
engineer and software architect for performing changes? How can we formally check 
if the evolved architecture satisfies evolved requirements? How can we become sure 
that traces are up-to-date?  

These questions guide the research presented in this thesis. In Section 1.7, we give the 
outline of the thesis and a table that relates the research questions to the chapters in which 
we provide answers to the questions (see Table 1.1). 

1.4 Research Methodology 

In this thesis, we try to solve two types of problems: knowledge problems and design problems  
[259] [260] [261]. The difference between the current and desired knowledge states is the 
knowledge problem. The difference between the current and desired state of the world is a 
design problem.  

Our research methodology has three phases – problem analysis, solution design and solution 
validation (see Figure 1.1).   
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In the first phase, we solve a knowledge problem, for instance, we want to understand what 
traceability means, what the criterion for a relation to be a trace is, what the current 
traceability approaches for change management are, and what the deficiencies of the current 
approaches are. For that purpose, we analyze the literature about traceability from different 
research areas (Change Management, Model Driven Engineering and Requirements Engineering) to 
discover possible change management problems in current traceability approaches for 
requirements and software architectures. 

 

Figure 1.1 Research Methodology 

In the second phase, the results of the first phase are used to design a new solution. We 
solve a design problem, that is, we provide a traceability framework of requirements and 
software architectures for change management. Our goal is to improve change management 
for requirements and software architectures by providing semantics of traces. 

Finally, in the third phase, we validate our solution by investigating its availability for the 
problems discovered in the problem analysis phase. This is a knowledge problem since we 
want to gain knowledge about the properties of our solution, and the relation between the 
solution and the problems. The outcome of the solution validation phase is fed back to the 
solution design phase in order to improve the solution. 

1.5 Approach 

We choose Model Driven Engineering (MDE) as a solution platform for our approach. 
MDE provides a uniform treatment of software artifacts, such as requirements documents, 
software design and test documents, as models. It also enables using different formalisms to 
reason about development artifacts described as models. To give an explicit structure to 
requirements documents and treat requirements, architecture and traces in a uniform way, 
we use metamodels and models within the context of MDE. Figure 1.2 gives requirements 
model, architecture model and traces between Requirements (R) and Architecture (A). 
Traces between R&A are also described as a model although the trace model is not explicitly 
shown in Figure 1.2.   



6 Chapter 1 Introduction 

 

To cope with the problem of impact explosion in requirements and software architectures 
due to the lack of semantic information, we study modeling of requirements, software 
architectures and traces with semantic information. We distinguish types of traces between 
requirements, and between requirements and software architectures (see Figure 1.2). We 
provide a traceability approach for change management for requirements and software 
architectures by using semantics of traces. 

To provide an explicit structure to requirements documents, we present a requirements 
metamodel with most commonly found entities in literature. The most important elements 
of the requirements metamodel are requirements relations and their types. We give formal 
requirements relation types to be able to reason about requirements and their relations.  

To be able to use the semantics of requirements relations for change impact analysis in 
requirements, we give a classification of requirements changes based on the structure of a 
textual requirement provided with formal semantics. The formalization of requirements 
relations and changes are used in order to overcome the explosion of impacts in 
requirements. 

 

Figure 1.2 Within-Model and Between-Model Traces1 with Trace Types for Requirements and Architectural 
Models 

For the evolution of requirements, we provide techniques for analyzing the impact of 
requirements changes on architecture design. We need techniques for trace establishment 
between R&A. Therefore, we give trace types and their semantics in order to link 

                                              
1 See [142] For the terminology of Within-Model and Between-Model traces 
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requirements to software architectures in a similar way used for requirements relations. 
Requirements relations and architecture verification techniques are used for trace 
establishment between R&A.  

In order to perform change impact analysis in software architectures, we combine the 
architecture verification techniques and their output (counter example) with the use of 
semantics of traces between R&A.  

1.6 Contributions 

This thesis provides the following contributions: 

 A modeling language for definition of requirements models with formal semantics 

Chapter 4 presents a modeling language for definition of requirements models with formal 
semantics. The language is defined according to the MDE principles by defining a 
metamodel. It is based on a survey about the most commonly found requirements types and 
relation types. With this language, the requirements engineer can explicitly specify the 
requirements and the relations among them. The semantics of these entities is given in First 
Order Logic (FOL) and allows two activities. First, new relations among requirements can be 
inferred from the initial set of relations. Second, requirements models can be automatically 
checked for consistency of the relations. Tool for Requirements Inferencing and 
Consistency Checking (TRIC) is developed to support both activities. The defined semantics 
is used in a technique for change impact analysis in requirements models. 

 A change impact analysis technique for requirements using semantics of requirements 
relations and requirements change types 

Chapter 5 addresses the problem of explosion of impacts in requirements when semantics of 
requirements relations is missing. The technique uses formal semantics of requirements 
relations and requirements change types. A classification of requirements changes based on 
the structure of a textual requirement is given and formalized. The semantics of 
requirements change types is based on FOL. We support three activities for impact analysis. 
First, the requirements engineer proposes changes according to the change classification 
before implementing the actual changes. Second, the requirements engineer indentifies the 
propagation of the changes to related requirements. The change alternatives in the 
propagation are determined based on the semantics of change types and requirements 
relations. Third, possible contradicting changes are identified. We extend TRIC with a 
support for these activities. The tool automatically determines the change propagation paths, 
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checks the consistency of the changes, and suggests alternatives for implementing the 
change. With change alternatives and propagation paths we eliminate some false positive 
impacted requirements. We provide a more precise change impact analysis in requirements 
models than requirements management tools like RequisitePro. 

 A technique that provides trace establishment between R&A by using architecture 
verification and semantics of traces 

Chapter 6 presents an approach that provides trace establishment by using architecture 
verification together with semantics of requirements relations and traces. We use a trace 
metamodel with commonly used trace types. The semantics of traces is formalized in FOL. 
Software architectures are expressed in the Architecture Analysis and Design Language 
(AADL) [225]. AADL is provided with a formal semantics expressed in Maude [198] [197]. 
The Maude tool set allows simulation and verification of architectures. The first way to 
establish traces is to use architecture verification techniques. A given requirement is 
reformulated as a property in terms of the architecture. The architecture is executed and a 
state space is produced. This execution simulates the behavior of the system on the 
architectural level. The property derived from the requirement is checked by the Maude 
model checker. Traces are generated between the requirement and the architectural 
components used in the verification of the property. The second way to establish traces is to 
use the requirements relations together with the semantics of traces. Requirements relations 
are reflected in the connections among the traced architectural elements based on the 
semantics of traces. Therefore, new traces are inferred from existing traces by using 
requirements relations. We use semantics of requirements relations and traces to both 
generate/validate traces and generate/validate requirements relations. There is a tool support 
for our approach. The tool provides the following: (1) generation/validation of traces by 
using requirements relations and/or verification of architecture, (2) generation/validation of 
requirements relations by using traces. We improve trace establishment between R&A with 
automation and trace validation. 

 A change impact analysis technique for software architecture using architecture 
verification and semantics of traces between R&A  

Chapter 7 presents a change impact analysis technique for software architecture using 
architecture verification and semantics of traces. The technique is semi-automatic and 
requires participation of the software architect. Our technique has two parts. The first part is 
to identify the architectural elements that implement the system properties to which 
proposed requirements changes are introduced. By having the formal semantics of 
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requirements relations and traces, we identify which parts of software architecture are 
impacted by a proposed change in requirements. We eliminate some false positive impacted 
architectural elements. We have extended TRIC for determining candidate impacted 
architectural elements. The second part of our technique is to propose possible changes for 
software architecture when the software architecture does not satisfy the new and/or 
changed requirements. The technique is based on architecture verification. The output of 
verification is a counter example if the requirements are not satisfied. The counter example is 
used with a classification of architectural changes in order to propose changes in the 
software architecture. These changes produce a new version of the architecture that possibly 
satisfies the new or the changed requirements. By eliminating some false positive impacts 
and proposing architectural changes, we provide a more precise change impact analysis in 
software architecture than requirements management tools like RequisitePro. 

1.7 Outline of the Thesis 

Figure 1.3 shows the map of the thesis with chapters and relations among them. 

The thesis consists of the following chapters:  

Chapter 2 Background and Definitions. This chapter describes the concepts used in the 
thesis. It introduces concepts and techniques from the areas of Requirements Engineering, 
Software Architecture, Traceability, Software Change Management and Model Driven 
Engineering as they are described in literature. Furthermore, the literature survey for existing 
traceability approaches in MDE is given in general and also in particular for change impact 
analysis. The literature survey is based on work published in [87]. 

Chapter 3 Analysis of Impacts Explosion in Traceability. This chapter motivates the 
need for semantics of traces between requirements, and requirements & architecture for 
change management by addressing the impacts explosion problem with some change 
scenarios.  

Chapter 4 Semantics of Requirements Relations. This chapter studies formal definitions 
of requirements relation types in order to enable reasoning about requirements relations. The 
requirements metamodel with commonly used relation types and their semantics are given in 
this chapter. The features of TRIC for requirements inferencing and consistency checking 
are presented. We illustrate our approach in an example which shows that the formal 
semantics of relation types enables new relations to be inferred and contradicting relations in 
requirements documents to be determined. This chapter is based on work published in [96] 
and [98]. 
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Chapter 5 Change Impact Analysis in Requirements. This chapter discusses problems 
related to change impact analysis in requirements and provides the approach for the 
discussed problems by using formal semantics of requirements relations in Chapter 4 and 
requirements change types. The features of TRIC for change impact analysis are presented. 
We illustrate our approach in an example which shows that the formal semantics of relation 
types and change types enables proposed changes to be propagated and contradicting 
proposed changes in requirements to be determined. This chapter is an enhancement of 
results published in [95] and [243]. 

 

Figure 1.3 Thesis Map 

Chapter 6 Traces between Requirements and Software Architecture. This chapter 
presents the approach that provides trace establishment by using semantics of traces 
between Requirements (R) and Architecture (A). Requirements relations and architecture 
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verification techniques are used in the approach. The trace metamodel with commonly used 
trace types are presented in this chapter. The tool support for trace establishment is 
presented. We illustrate our approach in an example which shows that the formal semantics 
of trace types with architecture verification techniques enables traces between R&A to be 
generated and contradicting traces to be determined. This chapter is an enhancement of 
results published in [97]. 

Chapter 7 Change Impact Analysis in Software Architecture. This chapter presents the 
approach on how to perform change impact analysis in software architectures by using 
architecture verification techniques and traces between R&A. The tool support for change 
impact analysis in software architectures is presented. We illustrate our approach in an 
example which shows that the formal semantics of trace types with architecture verification 
techniques enables impacted architectural elements for requirements changes to be 
determined. 

Chapter 8 Conclusions. This chapter gives conclusions and an evaluation of the 
contributions in this thesis, and describes directions for future work. 

Table 1.1 relates the research questions to the chapters in which we provide answers to the 
questions. 

Table 1.1 Mapping the Research Questions to the Chapters of the Thesis 

 Chapter

 1 2 3 4 5 6 7 8 

Research 
Question 1  +       

Research 
Question 2  +       

Research 
Question 3   +      

Research 
Question 4    +  + +  

Research 
Question 5     + + +  
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Chapter 2 

2 Background and Definitions 

In our work, we utilize concepts and techniques from the areas of requirements engineering, software 
architectures, software change management, traceability and Model Driven Engineering (MDE). In this 
chapter, we provide background information on these areas and introduce a set of definitions used throughout 
the thesis.  

2.1 Introduction 

This chapter gives an overview of basic concepts used in the thesis. Various definitions of 
these concepts are found in literature. We aim at selecting a consistent set of definitions that 
support the understanding of the thesis. 

In this chapter we answer Research Question 1 (What does traceability mean? Can every relation 
between software development artifacts or between elements in the artifacts be a trace? What is the criterion for 
a relation to be a trace?) and Research Question 2 (What are the current traceability approaches for 
change management? What are their deficiencies? Which solutions and technologies have been proposed to 
address these deficiencies?) raised in Chapter 1. With the definitions in this chapter we explain 
traceability within the context of change management for requirements and software 
architecture. This chapter also presents a survey of traceability techniques in MDE in which 
we study the current approaches for traceability with their deficiencies.  

The structure of the chapter is as follows. Section 2.2 describes Requirements Engineering 
by mentioning about fundamentals of Requirements Engineering such as requirements 
engineering process and requirements documentation. Section 2.3 gives the basic concepts 
of software architecture design and analysis. Section 2.4 gives the details of software change 
management. Section 2.5 discusses definitions of trace with traceability types. Section 2.6 
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describes the notion of Model Driven Engineering (MDE) as an enhancement of Model 
Driven Architecture (MDA). Section 2.7 discusses the state-of-the-art in traceability 
approaches in MDE. 

2.2 Requirements Engineering 

Requirements engineering is the process of finding out, analyzing, documenting and 
checking the services and constraints for the system to be built [233]. Requirements are the 
descriptions of these services and constraints for the system. Van Lamsweerde [151] 
describes requirements engineering as “a coordinated set of activities for exploring, 
evaluating, documenting, consolidating, revising and adapting the objectives, capabilities, 
qualities, constraints and assumptions that the system-to-be should meet based on problems 
raised by the system-as-is and opportunities provided by new technologies”. 

In this section, we begin with presentation of the key terms of the field of requirements 
engineering and concepts related to these terms. The definitions of software requirement are 
explored. We introduce the requirements engineering process. Then, approaches for 
software requirements specification and documentation are presented.  

2.2.1 Software Requirements 
There are a number of definitions and classifications of requirement in literature. 
Sommerville [233] defines a requirement as “the descriptions of the services and constraints 
for the system”. In SWEBook [239], a property which must be exhibited by a system is 
called a requirement. We use this definition as our working definition for requirements in the 
thesis.  

Different terms such as user requirements, system requirements, software requirements 
functional/non-functional requirements and quality requirements are used to classify 
requirements in literature. For instance, user requirements mean the high-level abstract 
requirements and system requirements mean the detailed description of what the system 
should do [233]. We consider software requirements or software system requirements 
synonyms and as a specialization of system requirements for software systems in this thesis. 
Software requirements are often classified as functional, non-functional and domain 
requirements [233]. 

 Functional Requirements. The functional requirements for a system describe the 
functionality or services that the system is expected to provide. 
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 Non-Functional Requirements. These requirements are related to emergent system 
properties such as reliability, performance or adaptability, or they define constraints 
on the system such as capabilities of I/O devices.  

 Domain Requirements. These requirements are derived from the application 
domain of the system. They might be functional or non-functional.   

2.2.2 Requirements Engineering Processes 
Requirements engineering can be described as a process of a collection of activities to create 
and maintain a requirements document [233]. There are four activities involved in 
requirements engineering process [233]: (a) feasibility study, (b) requirements elicitation and 
analysis, (c) requirements specification and documentation, and  (d) requirements validation 
(see Figure 2.1). In addition to these activities, there is an additional requirements 
engineering activity not listed in Figure 2.1, which is requirements management. 
Requirements management is concerned with managing requirements change.  

 

Figure 2.1 The Requirements Engineering Process [233] 

 Feasibility Study. A feasibility study investigates the system contribution to the 
organization objectives, integration of the system with current systems, and the 
feasibility of the implementation of the system by using current technology within 
given constraints [233]. The outline of the system is the input of the feasibility study 
and the output is a report which recommends whether or not it is worth carrying on 
with the requirements engineering and system development process.   

 Requirements Elicitation and Analysis. Requirements engineers and software 
architects work with system stakeholders and end-users to find out about the 
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application domain, what services the system should provide, the required 
performance of the system, hardware constraints and so on [233]. The output of 
requirements elicitation and analysis is general objectives, system requirements, 
software requirements, user requirements, relevant domain properties and concept 
definitions.  

 Requirements Specification. The results of the elicitation and analysis activity need 
to be precisely defined and documented. The output of the requirements 
specification activity is the first version of the requirements document. Requirements 
specification provides an assessment of requirements with a basis for estimating 
product costs, risks, and schedules before design begins [239]. 

 Requirements Validation. Requirements are checked if they actually define the 
system which customer wants. Requirements validation has much in common with 
requirements elicitation and analysis but they are distinct since requirements 
validation is concerned with complete version of the requirements document whereas 
elicitation and analysis works on incomplete requirements.  

 Requirements Management. The requirements of software systems are mostly 
changing in time. Requirements management is about understanding and controlling 
changes to system requirements.  The input of the requirements management is the 
changes in understanding of the system to be built and the output is the revised 
requirements in the requirements document. Requirements management has itself 
sub-activities: problem analysis and change specification, change analysis and costing, 
and change implementation.  

In this thesis, we provide techniques and tools for change management in requirements and 
software architecture. Our work mostly supports the requirements management activity.  

2.2.3 Software Requirements Specification and Documentation 
Software requirements specification is an agreement among stakeholders of the system on 
what the software system is to do, as well as what it is not expected to do.  

For non-technical readers, the software requirements specification document is often 
accompanied by a software requirements definition document. Software requirements are 
often written in natural language in requirements document, but this may be supplemented 
by formal or semi-formal descriptions [239]. Requirements specification and documentation 
techniques are the following [151]: (a) Documentation in Natural Language, (b) Use of 
Diagrammatic Notations, and (c) Formal Specification.  



2.3 Software Architecture 17 

 

 Documentation in Natural Language. Agreed statements in requirements 
elicitation and analysis can be documents in natural language. The first option is to 
see free documentation in unrestricted natural language. There are no limitations in 
expressiveness on what requirements engineer can specify in natural language 
whereas unrestricted use of natural language might cause ambiguities, forward 
references, unmeasurable statements and opacity in requirements document [151]. 
Disciplined documentation in structured natural language can be used to overcome 
these defects in requirements documents. Use of predefined statements templates, 
requirements document templates, and decision tables are examples of disciplined 
documentation in structured natural language.  

 Use of Diagrammatic Notations. Semi-formal specification languages can be used 
to complement the use of natural language. Here, semi-formal means that the entities 
in requirements document and their relations are declared in some machine-
processable form with well-defined language syntax whereas the statements about 
these entities are informally specified in natural language [151]. The use of context, 
problem, frame, dataflow, use-case and entity-relationship diagrams is example of the 
use of diagrammatic notations.   

 Formal Specification. Formal specification provides the formalization of statements 
which are left informal in the use of diagrammatic notations. The benefits of the use 
of formal specification is high degree of precision of requirements, precise rules for 
interpretation of requirements and sophisticated forms of validation and verification 
of requirements that can be automated by tools [151]. On the other hand, formal 
specification requires knowledge on formal methods and high effort for the 
formulation of requirements from requirements engineers.  

In this thesis, requirements and their relations are defined by using a requirements 
metamodel. In the requirements metamodel, requirements are captured in a requirements 
model. A requirements model contains requirements and their relationships. The 
descriptions of requirements are informally specified in natural language. The approach that 
we follow for documentation of requirements in this thesis can be considered as the use of 
diagrammatic notations. 

2.3 Software Architecture  

We begin presentation of the key terms in the field of software architecture and concepts 
related to these terms. The definitions of software architecture are explored. We give major 
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constituent elements of architectures, including architecture patterns and styles. Then, 
approaches for modeling software architectures are presented.  

2.3.1 Definitions of Software Architecture 
Architecture is a popular term in the computing community and it is used in various 
contexts to mean the software components in a software system, the structure of the central 
processing unit, or the organizational structure of the information systems. There are also 
different interpretations and definitions of the term architecture within the context of 
software components of a software system.  

Bas et al. [16] define software architecture as: “the structure or structures of a program or 
computing system, which comprise elements, the properties of those elements, and the 
relationships among them”.  

Perry and Wolf [210] formulate the definition of software architecture as a triple where 
Software Architecture = {elements, form, rationale}. Similar to Bas et al., Perry and Wolf considers 
the architecture as the systems’ key elements, and their relationships to each other and to 
their environment. Elements are the system’s building blocks where the form is the 
organization of system elements in the architecture. Rationale captures the software 
architect’s intent, assumptions, decisions, and constraints effecting the architect’s decisions 
for the architecture. Different than Bas et al., Perry and Wolf explicitly consider the rationale 
of the software architect in the definition of software architecture.  

Another definition of software architecture which is mainly about design decisions which is 
part of rationale is given by Taylor et al. [242]. Taylor et al. define the architecture as: “the 
set of principal design decisions made about the system”. The notion of design decision is 
central to software architecture and to all of the concepts based on it [242].  

Klusener et al. [141] provide a different perspective on how to define a software architecture. 
They define software architecture in the following: “the software architecture of deployed 
software is determined by those aspects that are the hardest to change”.  

One more definition of software architecture is from the IEEE 1471 standard [172] which is 
a recommended practice for architectural description of software–intensive systems. 
According to IEEE 1471 standard, architecture is a fundamental organization of a system, 
embodied in its components, their relationships to each other and the environment, and the 
principles governing its design and evolution. Like Perry et al. and Bas et al., IEEE 1471 
standard considers the elements of the system and their relations among the elements as 
architecture. However, the definition in IEEE 1471 standard does not specifically refer to 
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software. IEEE 1471 standard introduces basic concepts in software architecture and 
relationships among them within the context of software architecture description (see Figure 
2.2). An architecture description is a collection of documents to describe a system’s 
architecture [172].   

 

Figure 2.2 Basic Concepts of Architecture Description (IEEE 1471 [172]) 

An individual, team, or organization with interests in, or concerns relative to, a system are 
called stakeholders. These might include end users, operators, software architects, developers, 
subcontractors, and maintainers. A concern is a stakeholder’s interest which pertains to the 
development, operation, or other key characteristics of the system such as run-time 
behavior, performance, reliability, security, evolvability, or distribution. Stakeholders may 
have different and possibly conflicting concerns. A view is a representation of the whole 
system from the perspective of a related set of concerns. The architectural views are the 
actual description of the system. A viewpoint determines the resources and rules for 
constructing a view.   
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2.3.2 Software Architecture Analysis 
Software architecture is one of the important artifacts of software development since it 
enables reasoning about the system by capturing early design decisions. Therefore, it is 
important that software architecture reflect a certain abstraction of the system which enables 
to focus on the relevant parts of the system for analysis. Software architecture analysis helps 
reducing unnecessary maintenance costs by providing reasoning about the system before it is 
built. Software architecture analysis techniques are divided into three categories [242]: (a) 
inspection- and review- based, (b) model-based, and (c) simulation-based. 

 Inspections and Reviews. They are manual analysis techniques used by different 
stakeholders to ensure a variety of properties in a software architecture such as 
scalability, or adaptability. Since these techniques are manual, they are very human 
intensive and they can be very costly. On the other hand, they have the advantage of 
being useful in the case of informal or partial architectural descriptions [242]. 
Examples of inspection- and review-based methods are the Architectural Trade-Off 
Analysis Method (ATAM) and the Scenario-based Architecture Analysis Method 
(SAAM) [53].  

 Model-Based Analysis. It is usually automatic where models are used to analyze 
system properties in architectural level such as structural properties, behavioral 
properties and non-functional properties. Compared to inspection and reviews, 
model-based techniques are less human intensive and less costly. However, they can 
only be used to analyze properties which can be encoded in the architectural model 
[242]. They are not for implicit properties which are inferred by human from the non 
modeled existing information. Architecture description languages such as Wright [9], 
Aesop [89], and MetaH [115] support model-based analysis. 

 Simulation-Based Analysis. It is used to analyze the behavior of software 
architectures by using an executable architecture model of a given system. The results 
of the simulation can be manually or automatically inspected. Since software 
architecture abstracts some details of the system, simulation of the architecture may 
not produce identical results to the system’s execution. The output of simulation 
might be observed only for event sequences, general trends, or range of values rather 
than specific results [242]. An example simulation analysis platform is the eXtensible 
Tool-chain for Evaluation of Architectural Models (XTEAM) [68] which is a model 
driven architectural description and simulation environment for mobile software 
systems. Not all architectural models are available for simulation-based analysis. 
Available architectural models mostly need to be mapped to an external formalism 
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such as discrete event system simulation formalism or queueing network in order to 
enable simulation.  

In this thesis, we map AADL architecture models to rewriting logic [48] [49] in order to 
perform simulation-based analysis.  

2.3.3 Architectural Patterns and Styles 
An architectural pattern is a description of an element and relation types together with a set 
of constraints on how they may be used [16]. Similar to design pattern [88], an architectural 
pattern provides a common vocabulary to build an architecture. This common vocabulary is 
used for communication between stakeholders and software architects. A synonym for 
architectural pattern is architectural style. A pattern restricts many of the possible design 
choices and prevents possible design errors in the architecture. Examples of architectural 
patterns are clients and servers, pipes and filters, and layered architectural patterns. For 
instance, layered architectural pattern [42] restricts a system with two or more layers stacked 
upon each other. A layer n is only allowed to communicate with the layers it has direct 
contact with. 

2.3.4 Modeling Software Architecture 
As stated in definitions of software architecture in Section 2.3.1, software architecture can be 
considered as the set of design decisions made about a software system. An architectural 
model is an artifact that captures some or all of the design decisions that comprise a system’s 
architecture [242]. Architecture modeling is the reification and documentation of those 
design decisions. In the thesis, architectural models are our primary interest. Taylor et al. 
[242] classifies architecture modeling techniques as following: (a) generic techniques, (b) early 
architecture description techniques, (c) domain- and style-specific ADLs, and (d) extensible 
ADLs.   

2.3.4.1  Generic Techniques 
These techniques are not specifically developed to describe a software architecture. Natural 
language, informal graphical PowerPoint-style modeling and the Unified Modeling Language 
(UML) are considered as generic techniques for modeling software architecture. Natural 
languages are expressive but they are ambiguous and nonrigorous since they have inprecise 
semantics about software architecture [242]. They can only be checked by humans. 
Ambiguity problems in natural languages can be limited by using a restricted form of natural 
languages with consistent dictionary of software architecture terms. Tools like Microsoft 
PowerPoint provide users graphical diagrams to model software architectures. These 
diagrams are good to capture early ideas but it is difficult to interpret their meaning since 
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they have inprecise semantics. UML is more precise than arbitrary diagrams that would be 
produced in PowerPoint [242]. However, most constructs in UML are still semantically 
ambigious. Stakeholders should make agreements about how to interpret UML diagrams in 
order to model software architecture in UML. Stereotypes, tagged values and Object 
Constraint Language (OCL) can be used to extend UML for architecture modeling purposes 
such as avoiding ambiguities in software architecture models.  

2.3.4.2  Early Architecture Description Techniques 
The research in 1990s on how to best capture software architectures result in architecture 
description languages (ADLs) developed specifically for modeling software architecture. 
Medvidovic and Taylor [175] survey early ADLs and provide a classification framework for 
these ADLs consisting of the following four common architectural elements: components, 
connectors, interfaces and configurations.  

Apart from generic techniques, these architecture description languages are semantically 
precise but they are not flexible. Examples of first generation languages and their scopes are 
as follows [242]: 

Darwin [169]. It is used to model architectures of highly-distributed systems whose 
dynamism is guided by strict formal underpinnings.  

Rapide [165]. It is used for modeling and simulation of dynamic behavior of software 
architecture.    

Wright [9]. It is for modeling and analysis (specifically deadlock analysis) of dynamic 
behavior of concurrent systems. 

2.3.4.3  Domain- and Style-Specific ADLs 
Early architecture description languages are used to model a wide variety of software 
systems. However, they can not be tailored to stakeholder needs since they do not target a 
particular group of stakeholders. Domain- and style specific ADLs are proposed to avoid 
this kind of problems encountered in early ADLs. Examples of domain- and style- specific 
ADLs are as follows [242]: 

Koala [203]. It was developed by Philips Electronics to model the architecture of consumer 
electronics devices such as televisions and DVD players.  

Weaves [99]. It is used to model data-flows characterized by high-volume of data and real-
time requirements.  
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The Architecture Analysis and Design Language (AADL) [225] [79]. It is developed by 
Software Engineering Institute in Carnegie Mellon University to specify system architectures 
for a wide variety of embedded and real-time systems such as automotive, avionics and 
medical systems. In this thesis, we use AADL to specify software architectures.  

2.3.4.4  Extensible ADLs 
Extensible ADLs are proposed to combine the flexibility of early ADLs and expressivity of 
domain- and style-specific languages with the analyzability and precision of semantically rich 
languages. These languages provide basic constructs for describing common architectural 
elements with extending these elements for user-defined constructs [242]. Examples of 
extensible ADLs are as follows [242]: 

Acme [90]. It is designed to be an interchange language for several existing ADLs.  It has a 
base of constructs to be extended: components, connectors, ports, roles, attachments, 
systems, and representations.   

The Architecture Description Markup Language (ADML) [234]. It is an XML based 
ADL. It provides meta-properties which are used to specify user-defined properties and 
property types.  

xADL [60]. It is build upon XML and schemas. The default schema provides the basic 
elements: component, connector, interface and configuration. The default schema is 
extended for modeling different types of systems.  

In this thesis, we use the definition of software architecture by Bas et al. [16]. Software 
architectures are expressed in Architecture Analysis and Design Language (AADL). We use 
formal dynamic semantics for part of AADL given in rewriting logic used in Maude language 
and tools. Formal semantics of AADL enables performing simulation and verification of 
AADL models (simulation-based analysis). It is used to analyze the behavior of software 
architectures by using an executable architecture model of a given system. 

2.4 Software Change Management 

In this section we first introduce the strategies for software change management. Software 
maintenance, one of the strategies for change management, is explored in detail. We then 
give the details of requirements evolution within the context of software maintenance. In the 
end, change impact analysis, an activity in software maintenance, is introduced since our 
focus in the thesis is to determine the impacted requirements and architectural elements in 
response to changes in requirements of the software system. 
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2.4.1 Strategies for Software Change Management 
Generally, systems of any size need to be changed. Changes might happen in different 
contexts such as new requirements may emerge, existing requirements might change, coding 
and design errors might arise. Different changes require different strategies to be handled.  
Types of strategies for software change management are the following [257]:  

 Software Maintenance. This is the strategy for handling changes in a software 
system after the system has been put into use [233]. Changes within the context of 
software maintenance are fixing coding and design errors, adapting software systems 
for a new operating system, and modifying system functionality in response to 
changes in organizational or business needs.  

 Architectural Transformation. It is the software change strategy for significant 
changes in the architecture of the software system. An example is that the software 
system evolves from a client-server architecture to a broker architecture. There might 
be different reasons for architectural changes like hardware costs, user interface 
expectations and distributed access to systems [233]. 

 Software Re-engineering. This strategy involves changes made to make the 
software system easier to understand and improve the quality of the software system. 
The software re-engineering strategy consists of the activities source code translation, 
reverse engineering, program structure improvement, program modularization and data reengineering.  

These strategies are not mutually exclusive [233]. Software re-engineering could be 
performed before architectural transformation in order to make software system easier to 
understand for architectural changes. The thesis focuses on modifying system functionality 
in response to changes in organizational or business needs. Therefore, we give more details 
about software maintenance in the next section.  

2.4.2 Software Maintenance 
Software maintenance is the process of changing a software system after it has been put into 
use [233]. Changes within the context of software maintenance could be correcting coding 
errors, correcting design errors, correcting requirements errors, simply implementing new 
system features or modifying existing system features. Types of software maintenance are 
the following [233]: 

 Maintenance to Repair Software Faults. This type of maintenance is to repair 
coding, design and requirements errors.  
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 Maintenance to Adapt the Software to a Different Operating System. This type 
of maintenance is necessary to adapt the software system to cope with changes in 
hardware, operating system or other supporting software.  

 Maintenance to Add to or Modify the System’s Functionality. This type of 
maintenance is required to add or modify system features in case of changes in 
business and organizational needs, which cause changes in software system 
requirements.   

Swanson [237] addresses the types of maintenance as corrective, adaptive and perfective 
maintenance. Corrective maintenance is performed in response to processing, performance 
and implementation failures. Changes in data environment or in processing environment 
cause adaptive maintenance. Perfective maintenance is performed to enhance performance, 
or improve maintainability [237].  

The maintenance has activities such as change impact analysis, release planning, and change 
implementation. Change requests from stakeholders of the system, such as system users, 
project managers or programmers, trigger the maintenance. The cost and impact of the 
changes are assessed in change impact analysis to see which part of the system is affected 
and to estimate the cost of changes [233]. 

 

Figure 2.3 An Overview of the Maintenance Process [233] 

Based on the output of change impact analysis, changes to implement for the next release of 
the software system are described in the release planning. Finally, the decided changes are 
implemented during change implementation.  

This thesis addresses the type of maintenance to add to or to modify the system’s 
functionality where requirements of the system evolve in case of changes in business and 
organizational needs. We do not address cost estimation, release planning or 
implementation. In the thesis, we focus only on change impact analysis. 
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2.4.3 Requirements Evolution 
Requirements evolve during the development life cycle as a result of changes in business and 
organizational needs (see Figure 2.4). If evolution of requirements is not managed properly, 
there might be requirements that are not implemented as they are described in the final 
release of the software system. This increases the cost of software system and leads to invalid 
systems.  

 

Figure 2.4 Requirements Evolution [233] 

From requirements evolution perspective, requirements are classified as enduring requirements 
and volatile requirements [233]. 

 Enduring Requirements. They are core requirements about the domain of the 
system, such as requirements about students, lecturers for a course management 
system.  

 Volatile Requirements. They are requirements changing while the system is being 
developed or after the system has been put into operations. For example, 
requirements about student registration regulation, which depend on yearly school 
policies, are volatile requirements.  

In the thesis, we address volatile requirements within the scope of software maintenance and 
in particular, in change impact analysis. New requirements may emerge or existing 
requirements might change. Techniques for the analysis of the impact of these requirements 
changes on other requirements and architectural elements are developed in this thesis.  

2.4.4 Change Impact Analysis 
Change impact analysis is defined as “identifying the potential consequences of a change, or 
estimating what needs to be modified to accomplish a change” [24] [23] [22] [25]. The first 
part of the definition, identifying the potential consequences of a change, addresses research 
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issues such as predicting the effort required to modify work products [196]. The second part 
of the definition adresses analyzing source code dependencies and traces between 
development artifacts to determine impacted elements. This thesis focuses on analyzing 
traces between requirements and between requirements & software architecture in order to 
determine the impacted parts of requirements documents and software architecture for 
requirements changes.  Figure 2.5 depicts the software change impact analysis as a process. 

 

Figure 2.5 Software Change Impact Analysis Process [25] 

The process for change impact analysis is iterative. The requirements engineer or software 
architect receives the software change proposals as a change specification from the 
stakeholders of the software system.  The change specification contains a series of change 
requests for the software system. Software system and change specification are examined in 
order to determine the starting impact set (SIS). The SIS is the initial set of elements thought 
to be affected by a change. After tracing the potential impacts, the set of elements to be 
affected is estimated (the candidate impact set - CIS). The actual impact set (AIS) is the set 
of elements actually modified. There might be more impacts discovered (the discovered 
impact set – DIS) during performing software change. The false-positive impact set (FPIS) is 
the set of over-estimate of impacts. Then, we have AIS = CIS + DIS – FPIS.  

There are change impact analysis techniques that determine the sets of impacted elements. 
Bohner and Arnold [24] describe two types of change impact analysis techniques, traceability 
and dependency change impact analysis. Kilpinen [139] describes a third type, experimental impact 
analysis. 

 Traceability Impact Analysis. In traceability impact analysis, traces between 
requirements, software design, source code and tests, which are the main artifacts of 
software development life-cycle, are used in order to determine the impacted 
elements in these artifacts [24].  
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 Dependency Impact Analysis. The dependency impact analysis focuses on low-
level design, compared to the traceability impact analysis. Dependencies in detailed-
design and source code are used in order to determine the impacted parts of source 
code or detailed design. Program slicing [85] and impact analysis on UML models 
[35] [36] are examples of dependency impact analysis.   

 Experimental Impact Analysis. Review processes, informal discussions and the 
application of engineering judgement are defined as experimental impact analysis by 
Kilpinen [139]. Implicit design dependencies and mechanisms for change propagation 
can be identified by using expert knowledge in informal discussions. Kilpinen 
considers experimental impact analysis as unsystematic since there is no tool support 
and formal methods provided in order to determine the impacted elements.  

In the thesis we develop techniques and tools for change impact analysis of requirements 
and software architecture. Since dependency impact analysis concerns detailed-design and 
source code, our work is not in the scope of the dependency impact analysis. Our work can 
be considered within the context of the traceability impact analysis techniques.  

2.5 Traceability 

In this section we analyze the concepts of traceability from various perspectives. We focus 
on definitions of traceability in requirements engineering and Model Driven Engineering 
(MDE) (Section 2.5.1). We summarize core concepts of traceability given by von Knethen 
[142] in order to give the fundamentals of traceability techniques (Section 2.5.2).   

2.5.1 Definitions of Traceability 
We start with definitions found in literature that considers traceability in general. Next, we 
give definitions for specific areas.  

Traceability is defined in the IEEE Standard Glossary of Software Engineering Terminology 
[123] as: “the degree to which a relationship can be established between two or more 
products of the development process, especially products having a predecessor–successor or 
master–subordinate relationship to one another” and “the degree to which each element in a 
software development product establishes its reason for existing”. In addition to that the 
IEEE Standard Glossary [123] simply defines a trace as “a relationship between two or more 
products of the development process”.  

In the domain of requirements engineering, the term traceability is usually used for the ability 
to follow the traces to and from requirements [262]. One common definition of 
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requirements traceability is given by Pinheiro [211] as “the ability to define, capture, and 
follow the traces left by requirements on other elements of the software development 
environment and the traces left by those elements on requirements”. Similar to this 
definition, Gotel and Finkelstein [100] define requirements traceability as “the ability to 
describe and follow the life of a requirement, in both a forwards and backwards direction 
(i.e., from its origins, through its development and specification, to its subsequent 
deployment and use, and through periods of on-going refinement and iteration in any of 
these phases)”. Paige et al. [208] describe traceability as “the ability to chronologically 
interrelate uniquely identifiable entities in a way that matters. Traceability refers to the 
capability for tracing artifacts along a set of chained (manual or automated) operations”. 

Winkler and Pilgrim [262] discus the definitions of traceability from perspectives of both 
requirements engineering and model driven engineering domains in more detail.  

We use the definition in the IEEE Standard Glossary of Software Engineering Terminology 
[123] as our working definition for traceability in the thesis. In this respect our working 
definition of the term trace is that every relation between software development artifacts or 
between elements in these artifacts can be a trace for a certain traceability purpose like 
change impact analysis. 

2.5.2 Core Concepts of Traceability 
In this section we summarize the core concepts of tracing approaches identified by von 
Knethen et al. [142]. The four core concepts of tracing approaches are the following: (a) 
purpose, (b) conceptual trace model, (c) process, and (d) tools (see Figure 2.6). 
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Figure 2.6 Core Concepts of a Tracing Approach [142] 

Every trace technique has a purpose such as change impact analysis (see the entity “purpose” 
in Figure 2.6). The purpose of tracing technique depends on the stakeholder who needs the 
traceability information and the task of the stakeholder that uses the traceability information. 

A conceptual trace model defines what trace entities are and what kind of trace should be 
captured. The subconcept “entities” characterize different trace techniques according to the 
kind, granularity and attributes of the entities traced. The characterization of trace techniques 
in the subconcept “relationship” is based on the kind, direction, attributes, setting and 
representation of relationships captured as trace. For instance, most of the classification of 
traceability given in Section 2.5.3 is based on the direction of relationships. The concept 
“tool support” characterizes trace tools according to what kind of traceability techniques are 
supported by trace tools. 

2.5.3 Classification of Traces 
Over the years, various classifications of traces are proposed and emphasized by different 
sources in literature. The most common ones are pre-requirements specification, post-requirements 
specification, forwards, backwards, horizontal, vertical, within-level, and between-level traceability (see 
Figure 2.7).  

Gotel and Finkelstein [100] have introduced pre-requirements specification (pre-RS) traceability and 
post-requirements specification (post-RS) traceability. Whereas Pre-RS traceability is concerned with 
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tracing back from requirements to user needs, Post-RS traceability is concerned with tracing 
from requirements to design and coding where requirements are realized. 

The ANSI/IEEE Std 830–1984 [122] gives the terms backward traceability and forward 
traceability. Backward traceability refers to the ability to follow the traceability links from an 
artifact back to its sources from which it has been derived. Forward traceability describes 
following the traceability links to the artifacts that have been derived from the artifact under 
consideration. 

Ramesh and Edwards [214] introduce the distinction between horizontal and vertical traceability. 
These terms differentiate between traces of artifacts belonging to the same development 
phase or level of abstraction, and traces between artifacts belonging to different ones. 

von Knethen et al. [142] describe a classification which is similar to horizontal-vertical 
traceability from refinement point of view. They distinguish two types of traces between 
artifacts on different abstractions as between-level refinement traces and within-level refinement traces. 
Within-level refinement traces are between artifact entities at different refinement levels on a 
certain abstraction level. Such traces are between two system use-cases or between two 
requirements in the same requirements document. Between-level refinement traces are 
between entities at different refinement levels on different abstraction levels eg., between a 
requirement in requirements document and a software component in software architecture 
design. In the thesis we interpret between-level and within-level refinement traceability as 
between-model and within-model traces.  

 

Figure 2.7 Directions of Traces [142]  

According to our working definition of trace given in Section 2.5.1, a relation, which is 
considered as a trace for a traceability purpose, might not be considered as a trace for 
another traceability purpose. In the thesis we do not use any classifications given above since 
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a relation which is considered a trace in above classifications might not be a trace for change 
impact analysis in the thesis.  

2.6 Model Driven Engineering  

The concept of Model Driven Engineering (MDE) was introduced as a generalization of the 
Model Driven Architecture (MDA) for software development. In this section we first 
introduce MDA and then explain MDE.  

2.6.1 Model Driven Architecture 
MDA is a software development approach proposed by Object Management Group 
(OMG). The MDA Guide [199] provides definitions of concepts used in MDA.  

MDA aims at solving the problem of continuous change of software technologies that forces 
software development companies to port their solutions every time a new technology 
appears. For instance, Java platform [129] was announced as an object-oriented software 
development environment in 1990s and many software development companies developed 
their solutions in this platform. .Net platform [190] was proposed as a competitor of Java 
platform in 2000s. As a result of market trends, some software companies switched to .Net 
platform and had to port their implemented solutions for .Net platform. Such kind of 
changes in technologies creates a problem with portability which may require significant 
efforts. MDA proposes the use of models of the same system at different abstraction levels 
with convertions between the models to solve the portability problem. 

To cope with the portability problem MDA uses a set of concepts such as model, metamodel 
and transformation with a classification of models as Computation Independent Models 
(CIMs), Platform Independent Models (PIMs) and Platform Specific Models (PSMs). A CIM 
is a view of a system from the computation independent viewpoint. The PIM focuses on the 
operation of a system while it still hides the details necessary for the implementation of the 
system in a particular platform. The PIM specifies a degree of platform independency to be 
suitable for use with a number of different platforms of similar type. On the other hand the 
PSM includes details of the platform implementation. 

The MDA Guide [199] defines model as “a model of a system is a description or 
specification of that system and its environment for some certain purpose. A model is often 
presented as a combination of drawing and text. The text may be in a modeling language or 
in a natural language”. The MDA Guide defines metamodel as “model of models”. A more 
detailed definition of metamodel by FRISCO report is that “metamodel is a model of the 
conceptual foundation of a language, consisting of a set of basic concepts, and a set of rules 
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determining the set of possible models denotable in that language” [76]. Seidewitz [230] 
defines a metamodel as “a model of models expressed in a given modeling language”. We 
use the definition by Seidewitz as our working definition for metamodel in the thesis.  

Models are organized in a hierarchy that spans multiple levels. The organization of levels is 
referred to as meta-modeling architecture. Figure 2.8 gives an example of meta-modeling 
architecture with three levels. At the bottom level there are models expressed in various 
modeling languages. This level is called model level. An example model in this level is ModelL 
expressed in a modeling language called L. Metamodels of the languages form the second 
level in the stack called metamodel level. The metamodel of L, LModelML, is expressed in 
another language called Metalanguage (ML). The metamodels of the languages that express 
metamodels form the third level called metametamodel level. There is InstanceOf relation between 
a metamodel of a language and models expressed in that language. The levels can be formed 
infinitely with InstanceOf relation. However, in practice only three levels are used. The top 
level contains a self-reflective model. The model MLModelML in Figure 2.8 is expressed in the 
ML language itself (the self InstanceOf relation).  

 

Figure 2.8 Meta-modeling Architecture 

The basic operation applied on models in MDA is model transformation. The MDA guide 
defines model transformation as “the process of converting one model to another model of 
the same system”. The transformation pattern between models is given in Figure 2.9. 
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Figure 2.9 Transformation Pattern 

A transformation definition is capable of transforming a set of source models. A 
transformation that transforms source models expressed in a source metamodel to models 
expressed in a target metamodel uses the meta-entities defined in the source and target 
metamodels.  

2.6.2 Model Driven Engineering 
Model Driven Engineering (MDE) is a generalization of MDA by adding the notion of 
software development process to MDA. 

MDA considers the classification of models based on only the level of model abstraction. 
CIMs and PIMs can be considered at a higher abstraction level than PSMs. MDE utilizes the 
use of Domain Specific Modeling Languages (DSL) on the base of different distinctions of 
models such as the subject area models belong to or organizational issues. The number of 
distinctions of models is not limited and depends on the needs in a software development 
project. MDE technologies combine the following [227]: 

 Domain Specific Modeling Languages. They are used to model the application 
structure, behavior and requirements within particular domains such as financial 
services, embedded systems [227]. Similar to MDA, metamodels are used to describe 
DSMLs by defining the entities for the concepts and relationships between these 
concepts in the domain with clear semantics and constraints.  

 Transformation Engines and Generators. Definition of metamodels is required 
but not sufficient for a complete MDE. We have to define transformations between 
metamodels of DSMLs to obtain the main artifacts of MDE: target models. In 
addition to that transformation engines and generators are used to analyze certain 
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aspects of models and synthesize various artifacts like design models and source 
codes [227].  

With these two techniques above, MDE aims at detecting and preventing errors early in the 
software development life cycle by using domain specific constraints and performing model 
checking.   

2.7 Survey of Traceability in MDE 

In this section, we discuss the state-of-the-art in traceability approaches in MDE and 
appraise them with respect to four general comparison criteria: representation, mapping, change 
impact analysis and tool support. These comparison criteria are influenced by the core concepts 
of tracing approaches (purpose, conceptual trace model, process, and tools) provided by van Knethen 
[142]. Change impact analysis is our tracing purpose in the thesis. Mapping and 
representation are considered as a part of the conceptual trace model to characterize trace 
techniques for entities and relations to be traced.  

2.7.1 Traceability Approaches in MDE 
The traceability approaches we analyze are classified into three categories: requirements-driven 
approaches, modeling approaches and transformation approaches. The requirements-driven approaches 
consider requirements of the system as a starting point for traceability. The modeling 
approaches investigate how metamodels and models are involved in tracing processes. 
Transformation approaches make use of model transformation mechanisms for generating 
trace information. 

2.7.1.1 Requirements-Driven Approaches 
In the field of Requirements Engineering, Gotel and Finkelstein [100] define traceability as 
the ability to describe and follow the life of a requirement, in both forward and backward 
specification, to its subsequent deployment and use, and through periods of ongoing 
refinement and iteration in any of these phases. Tracing requirements in both forward and 
backward directions helps stakeholders and developers to understand requirements in more 
detail. The following subsections present five requirements-driven approaches. 

2.7.1.1.1 	Requirements	Traceability	and	Transformation	Conformance	(RTTC)	
Almeida et al. [11] aim at simplifying the management of traces between requirements and 
various design artifacts. They propose a framework as a basis for tracing requirements, 
assessing the quality of model transformation specifications, metamodels and models. The 
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framework allows designers to relate requirements in the early stage of the development to 
the various products of the model-driven design process. 

Traceability cross-tables are used for representing relationships between application 
requirements and models, considering different model granularities. Since model-driven 
techniques consist of different abstraction levels like platform-independent and platform 
specific levels, Almeida et al. propose a notion of conformance between models to trace 
requirements throughout abstraction levels. Change impact analysis in requirements is 
deferred to future work. 

2.7.1.1.2 	Event	Based	Traceability	(EBT)	
Event-Based Traceability (EBT) [50] is a method for automating trace generation and 
maintenance. In EBT, requirements and other traceable artifacts, such as design models, are 
no longer directly related, but linked through publish-subscribe relationship based on 
Observer design pattern [88].  

The main components of the system are the event server, requirements manager and subscriber 
manager. The requirements manager is responsible for triggering change events by publishing 
an event message when a change occurs. Event messages carry structural and semantic 
information concerning the change context. The event server is primarily responsible for 
managing subscriptions, receiving event messages from the requirements manager, and 
forwarding customized event messages to the subscriber manager. The subscriber manager 
resolves event notifications and restores related artifacts and traces to a new state if 
necessary.  

2.7.1.1.3 	Goal	Centric	Traceability	(GCT)	
Cleland-Huang et al. [52] introduce a goal-centric approach for managing impact of a change 
in non-functional requirements. Goal Centric Traceability (GCT) models non-functional 
requirements and their dependencies using a Softgoal Interdependency Graph (SIG).  

The approach has four steps to analyze and implement changes on dependent artifacts: goal 
modeling, impact detection, goal analysis, and decision making. In goal modeling, goals are 
decomposed into subgoals to reflect the fact that dependencies exist between various non-
functional requirements (represented by softgoals). To understand the trade-offs among 
non-functional requirements, the subgoals are decomposed into operationalizations 
providing candidate solutions for the goal. In the impact detection, when a change occurs in 
non-functional requirements, a probabilistic retrieval algorithm dynamically returns related 
traces in the SIG. In the goal analysis the user modifies the contributions, from the impacted 
goal elements to their parents. For each impacted element, changes are propagated 
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throughout the SIG to identify potentially impacted goals. In the decision making it is 
determined if the change should be implemented or not. Stakeholders evaluate the impact of 
the proposed change in non-functional requirement goals. 

2.7.1.1.4 	Event	Based	Traceability	with	Design	patterns	(EBT‐DP)	
In [51], Cleland-Huang and Schmelzer introduce another requirements-driven traceability 
approach. Their work is based on EBT [50] but they describe a different process for 
dynamically tracing non-functional requirements to design patterns. The process is divided 
into two phases. 

During the initial phase, user-defined traces are established. Design elements are traced to a 
cluster, which is the application of the design pattern. Then, a trace is established between 
the non-functional requirement and the cluster. Therefore, the number of traces between 
design artifacts and non-functional requirements is decreased. In the second phase, the well 
established descriptions and invariant rules of a design pattern permit the automatic and 
dynamic generation of code (from the pattern to specific class implementations). By 
establishing traces between requirements and the cluster, the approach aims at minimizing 
the cost and effort of establishing and maintaining traceability links. 

2.7.1.1.5 	Reference	Models	for	Requirements	Traceability	(RMRT)	
Ramesh and Jarke [215] provide an empirical approach and focus on interviews conducted in 
software organizations to study a wide range of traceability practices. As a result of the study, 
Ramesh and Jarke constitute reference models that include the most important kinds of 
traces for various software development artifacts.  

One of the main motivations behind the study is to capture traceability needs of 
stakeholders and present reference models for each need. Ramesh and Jarke classify the 
participants of the study as high-end and low-end users of traceability practices. Trace 
models are presented to reflect the trace entities captured by high-end and low-end users, 
and then a set of five reference models is customized. Requirements are considered as 
traceable entities in all these reference models. 

2.7.1.2  Modeling Approaches 
In MDE, trace metamodels are crucial to store and represent traces, derived from 
dependencies between source and target elements. Modeling approaches represent trace 
information as models. As an instance, the UML profile mechanism gives a solution to store 
and represent traces. There is also a standard stereotype for traceability in UML [201].  
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2.7.1.2.1 	Scenario	Driven	Approach	to	Trace	Dependency	Analysis	(SDTDA)	
Egyed [70] presents an automated approach for generating and validating traces. He 
addresses the problem that the absence of trace information or the uncertainty of trace 
correctness limits the usefulness of software models. The proposed approach reduces the 
complexity of trace generation and validation by using test scenarios and hypothesized 
traces. The approach requires an observable and executable software system, design artifacts, 
scenarios describing test cases, and a set of initial hypothesized traces linking development 
artifacts and scenarios.  

Executing test scenarios in the running system leads to traces between scenarios and source 
code. The runtime behavior of the scenarios is translated into a footprint graph. Traces are 
generated and validated by using the rules that characterize how the footprint graph relates 
to the hypothesized traces and artifacts to which they are linked. 

2.7.1.2.2 	Operational	Semantics	for	Traceability	(OST)	
Aizenbud-Reshef et al. [6] present an approach which defines an operational semantics for 
traceability in UML. Three main issues for traceability are stated: querying (e.g. impact 
analysis, coverage queries), following traces along the life-cycle of a project, and keeping the 
system and its documentation up to date. Two types of semantics based on these issues are 
presented: preventative semantics and reactive semantics. Preventative semantics describes things 
that should not happen; reactive semantics describes what should be triggered when 
something happens to one or more of the related elements or to the relationship itself. 

Operational semantics of a trace is defined by a set of semantic properties. A semantic 
property is a triplet (event, condition, and actions). Event involves an element of the trace. 
Condition is a logical constraint and actions can be either preventative or reactive actions.  

2.7.1.2.3 	Unifying	Traceability	Specification	Scheme	(UTSS)	
Limon and Garbajosa [156] analyze current traceability schemes in order to obtain relevant 
features and identify overlaps and inconsistencies among the approaches. Based on the 
analysis, they propose a traceability scheme specification approach to facilitate traceability 
specification for a given project, to improve the traceability management, and to automate 
some trace management processes.  

2.7.1.2.4 	Precise	Transformation	Traceability	Metadata	(PTTM)	
Vanhooff and Berbers [252] provide a UML profile for transformation traceability metadata 
in order to reason about past transformations. Transformation traceability links provide a 
complete or partial history of model changes caused by the transformations. Transformation 
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traceability metadata are used to make individual transformation units more modular and 
easier to maintain.  

Vanhooff and Berbers list four important requirements for their approach. At first, the 
transformation traceability information should be kept by all transformation units. Secondly, 
traces should be extended with transformation unit specific information. Another 
requirement is that all information should be kept in a UML model itself and, at last, it 
should be possible to easily add traces manually for non-automatic transformations. 

2.7.1.3  Transformation Approaches 
Model transformations are considered as a mechanism which supports automating both 
generation and validation of traces between models. Hence, most of the transformation 
languages support automatic generation of traces.  

2.7.1.3.1 	Loosely	Coupled	Traceability	(LCT)	
Jouault [134] shows how traceability can be added to transformation programs written in the 
ATLAS Transformation Language (ATL) [136] in order to overcome the limits of implicit 
traceability. The trace generation mechanism of ATL is implicit. Such a form of traceability 
does not persist after executing a transformation.  

Jouault considers the traceability information as an additional target model of a 
transformation program. His approach supports generating traces in the same way other 
target model elements are generated. Jouault provides a higher-order transformation (HOT) 
that transforms ATL transformations to insert the trace creation code to the 
transformations. One of the advantages of the solution is that trace generation code is not 
tightly coupled to transformation logic.  

2.7.1.3.2 	On	Demand	Merging	of	Traceability	(ODMT)	
Kolovos et al. [145] present an approach for merging trace models with other software 
development models. The correspondences between elements of the source models are 
established and then corresponded elements are merged. The Epsilon Merging Language 
(EML) [144] is used to implement model merging with traces. EML is a plug-in for the 
Eclipse and supports managing EMF and MOF models as well as XML documents.  

2.7.1.3.3 	Traceability	Framework	for	Model	Transformations	(TFMT)	
Falleri et al. [77] proposes a traceability framework, implemented in Kermeta [176]. The 
framework allows tracing transformation chains within Kermeta, by means of the 
specification and implementation of a language independent trace metamodel. Falleri et al. 
have implemented the following features of the traceability framework [77]: generic 
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traceability items, trace serialization, and a simple transformation for trace visualization using 
Graphviz [101] (in order to visualize the resulted transformation trace chain).  

2.7.2 Evaluation of the Approaches 
In this section we present a comparative analysis of traceability approaches for MDE with 
respect to the following comparison criteria: representation of traceability information, mapping 
models, change impact analysis, and tool support.  

2.7.2.1 Representation 
The capability of the approaches to represent traces is evaluated in Table 2.1. 

Table 2.1 Representation of Trace Information in Traceability Approaches in MDE 
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RTTC Traceability cross-table  

EBT Event-based subscriptions 

GCT Softgoal Interdependency Graph (goals, operationalizations and 
contribution links) and traceability matrix 

EBT-DP Softgoal Interdependency Graph and event-based subscriptions 
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SDTDA Footprint graphs 

OST Rules, conditions and actions 

UTSS Traceability Scheme (TS) 
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LCT Trace model 

ODMT EML (the metamodel) and UML (the trace model) 

TFMT Kermeta models (the proposed metamodel) and XMI (the serialized 
instances of transformation chain) 

 

RTTC: Almeida et al. [11] represent traceability information for application requirements by 
using cross-tables. Assesment activities or conformant transformations between models are 
necessary to justify check marks in cross-tables.  
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EBT and EBT-DP: Event-based subscriptions are used to represent traces in EBT [50] 
and EBTDB [51]. The notification of the events carries structural and semantic information 
concerning a change context. As EBT-DB [51] considers SIG models, traces are also 
represented by interdependencies between softgoals (non-functional requirements) and 
operationalizations (representing design patterns). 

GCT: GCT [52] uses softgoal interdependency graphs in order to trace between goals and 
their operationalizations. A traceability matrix is also constructed to relate SIG elements with 
classes. 

RMRT: In RMRT [215], traceability reference models are used to represent traces. 
Granularity of traces depends on the expectations of the stakeholders. RMRT represents 
simple or more detailed traces across the low-use and high-use reference models. 
Implementations of the reference models present distinct ways to embody traceability 
information. 

SDTDA: In [70] , traces are represented in traceability matrix and a graph structure called 
footprint graph. The runtime behavior of test scenarios is translated into a footprint graph. 
The footprintgraph is interpreted via a set of rules in order to generated new trace 
information. Final representation of generated traces is done in traceability matrix. 

OST: In [6], semantic properties (events, conditions and actions) are used to capture and 
represent traces. 

UTSS: In [156], Limon and Garbajosa analyze several traceability approaches and propose a 
unified Traceability Scheme (TS) specification. TS is composed of a dataset, a type set, a 
minimal set of traces, and a metrics set for the minimal set of traces. 

PTTM: Vanhooff and Berbers [252] provides a UML profile to represent traces. Using 
stereotypes and tagged values, they add trace semantics to existing UML elements. 

LCT: Jouault [134] considers traceability information as a model and extends ATL programs 
to provide trace generation during model transformations. Traces generated by model 
transformations are represented as Ecore models.   

ODMT: Kolovos et al. [144] use an EML trace metamodel for merging, which is compliant 
with Meta-Object Facility (MOF). UML diagrams are used as example models in the 
approach. 

TFMT: In TFMT [77], traces are represented as Kermeta models and instances of resulting 
transformation trace chains are serialized as XMI. 
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2.7.2.2  Mapping 
The mapping criterion analyzes whether the approach is capable of supporting traces among 
models at different levels of abstraction. The traceability approaches are evaluated for 
mapping, based on intra-level relationships (traces among artifacts of the same abstraction level), 
inter-level relationships (traces among artifacts of different abstraction levels), or both intra and 
inter-level relationships (see Table 2.2). 

Table 2.2 Mapping, Change Impact Analysis and Tool Support in Traceability Approaches  

 

 

M
ap

p
in

g 

C
h

an
ge

 
Im

p
ac

t 
A

n
al

ys
is

 

T
oo

l  

Su
p

p
or

t 

R
eq

u
ir

em
en

ts
-D

ri
ve

n
 

A
p

p
ro

ac
h

es
 

RTTC inter no no 

EBT inter yes yes 

GCT intra & inter yes partially 

EBT-DP intra & inter yes yes 

RMRT intra & inter yes yes 
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 LCT intra & inter no yes 

ODMT inter no yes 

TFMT intra & inter no yes 

 

RTTC: RTTC [11] supports traces from requirements models to other models at different 
levels of abstraction. 

EBT and EBT-DP: Both EBT [50] and EBT-DB [51] support mapping requirements to 
other artifacts, by using event-based mechanism.  



2.7 Survey of Traceability in MDE 43 

 

GCT: GCT [52] provides traces between softgoals and operationalizations at the 
requirements level, by using the softgoal interdependency graph. Requirements are traced to 
source code by using traceability matrix. 

RMRT: In RMRT [215], intra-level and inter-level traceability are supported by the low and 
high-use metamodels, which provide mappings between requirements and many other 
elements (system objectives, system components, functions, etc). 

SDTDA: The trace types in [70] provide both intra-level and inter-level mapping. SDTDA 
supports both forward and reverse engineering. 

OST: The approach in [6] is proposed for UML models but there is no indication about 
supporting traces for UML models at different abstraction levels.  

UTSS: In [156], it is stated that the minimal set of traces of the unified traceability schema 
must consider traces among artifacts themselves, as well as traces among a set of artifacts 
and the artifacts of a previous (or next) development phase. 

PTTM: In PTTM [252], a transformation traceability metamodel is mapped to UML 
profiles. UML models at different abstraction levels can be traced. 

LCT: The trace metamodel presented in [134] allows establishing traces between models at 
the same abstraction level or different abstraction levels. 

ODMT: The approach in [144] only presents a traceability method for unidirectional and 
inter-level traces. 

TFMT: The approach in [77] supports forward, backward, intra-level and inter-level 
traceability, depending on the definition of source and target models in the transformation. 

2.7.2.3  Change Impact Analysis 
The change impact analysis criterion checks whether an approach determines the effect of 
change on the entire system and on the artifacts across the software development lifecycle. 
Table 2.2 shows evaluation of the approaches for change impact analysis. 

EBT: A set of standard change events is defined for recognition and publication of change 
events [50]. A method for monitoring user’s actions is proposed. 

GCT: The GCT [52] provides change impact analysis among functional and non-functional 
requirements, represented by using softgoal interdependency graphs. 
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EBT-DB: EBT-DB [51] supports the identification of critical elements that should remain 
in the system for keeping the integrity of a traceable non-functional requirement. 

RMRT: Ramesh and Jarke [215] provide change impact analysis based on the description of 
the rationale submodel. 

Other approaches [6] [11] [70] [77] [134] [144] [156] [252] do not support change impact 
analysis. 

2.7.2.4  Tool Support 
Tool support is fundamental for application of a traceability method, not only for 
visualization and management of manually or automatically traces, but also for proper 
reasoning support on trace information. Table 2.2 summarizes tool support of the 
approaches.  

EBT: EBT [50] has a client-server architecture using Observer design pattern. The event 
trigger mechanism is implemented on top of DOORS [120] to capture change events. 

GCT: The GCT model [52] has partial tool support. Despite of the fact that the retrieval 
algorithm uses probability to return traces, user’s appraisal is required to manage traces. 

EBT-DP: A few features of EBT-DP [51] (generation of traces) are implemented. 

RMRT: The reference metamodels for traceability by Ramesh and Jarke [215] are encoded 
in a knowledge-based meta database management system called ConceptBase. The 
metamodels are also adopted in several commercial tools, such as SLATE [240]. 

SDTDA: The activities for scenario-testing and finding hypothesized traces in [70] are 
manual; trace analysis and result interpretation are automated. 

LCT: LCT [134] is implemented in ATL [134] [136].  

ODMT: ODMT [144] is implemented in EML. EML [145] is used to implement merging 
models with trace models.  

TFMT: The transformation chain trace metamodel is supported by Kermeta [176] and 
graphical visualization of traces is provided in Graphviz [101].  

The other evaluated approaches [6] [11] [156] [252] do not provide any tool support. 

2.7.3  Open Issues for Traceability in MDE 
From the comparative analysis of the approaches we identify the following open issues: 
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 Open Issue 1: Automation in the early development stages. In the early development stages 
like requirements analysis and architectural design, less automation is provided to 
cope with traceability.  

 Open Issue 2: Trace semantics. Most of the approaches that we surveyed do not focus 
on the use of trace semantics. How can trace semantics be formalized and 
represented? How can trace semantics be used to achieve traceability goals such as 
change impact analysis?  

 Open Issue 3: Incremental model transformation. Incremental model transformation [65] 
[110] [132] [146] is an active research topic in MDE. The use of traces with 
incremental model transformations is partially known. There are still some questions 
not answered. For instance, how can traces between source and target models be 
used to determine parts of incremental transformation to be re-executed in case of a 
change?  

 Open Issue 4: Trace generation from implicit trace information. Trace information may not 
always be encoded in a dedicated structure (implicit trace information). Most of the 
approaches do not explore mechanisms for generating traces from implicit trace 
information.  

 Open Issue 5: Scalability of traceability tools. Since software projects become larger 
during their development, and the software specification contains heterogeneous 
artefacts, scalability is an important criterion to be considered when evaluating the 
use of traceability approaches. However, most of the traceability tools are research 
prototypes and scalability of these tools is not explored.  

 Open Issue 6: Maintenance of traces. Most of the approaches investigate the use of 
traceability to determine the model elements impacted by a change. However, 
maintenance of existing traces after changes to artifacts is still an open issue for most 
of the approaches. Trace maintenance is very important to ensure correctness of 
traces.  

Some of the open issues (Open Issues 1, 2, 4 and 6) are detailed further in Chapter 3; some 
open issues (Open Issue 3 and Open Issue 5) are not addressed in the thesis at all. 
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2.8 Conclusions 

In this chapter we introduced the basic concepts in requirements engineering, software 
architecture design and analysis, software change management, traceability and MDE. Our 
approach for change management for requirements and software architecture is based on 
definitions found in literature and selection of those definitions that suit the objectives of the 
thesis.  

This chapter also presented a survey of traceability techniques in MDE in which we 
identified some open issues. Some of these open issues are addressed in the rest of the 
thesis. One of the open issues addressed is trace semantics. We explore the possible 
applications of trace semantics in change impact analysis for requirements and software 
architecture.  

In this chapter we answered Research Question 1 (What does traceability mean? Can every relation 
between software development artifacts or between elements in the artifacts be a trace? What is the criterion for 
a relation to be a trace?) and Research Question 2 (What are the current traceability approaches for 
change management? What are their deficiencies? Which solutions and technologies have been proposed to 
address these deficiencies?) raised in Chapter 1. Our working definition of the term trace is that 
every relation between software development artifacts or between elements in these artifacts 
can be a trace for a certain traceability purpose like change impact analysis. In Section 2.7, 
we presented current traceability approaches with a comparative analysis. The open issues 
for traceability in MDE in Section 2.7 are based on the deficiencies of the current traceability 
approaches.   
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Chapter 3 

3 Analysis of Impacts Explosion in Traceability 

In this chapter, we motivate the need for semantics of traces between requirements, and requirements & 
architecture for change management by exploring impacts explosion problem with some change scenarios. 

3.1 Introduction 

This chapter gives a detailed analysis of the impacts explosion problem that we address in 
the thesis. Our traceability goal is change impact analysis for requirements and software 
architecture, for example, determining which requirements and architectural elements are 
impacted by a change of requirements. Impacts explosion problem is originally formulated in 
the general case for software life-cycle objects by Bohner [22] [23] [24] [25].  

In this chapter we answer Research Question 3 raised in Chapter 1: What are the change scenarios 
for requirements and software architecture? What is necessary for these change scenarios to be handled? Which 
solutions can be used? We first explain the impacts explosion problem for requirements and 
software architecture. We identify some change scenarios where we may have change 
impacts explosion. 

The structure of the chapter is as follows. Section 3.2 describes impacts explosion problem, 
in general, as formulated by Bohner. In Section 3.3 we illustrate specifics of the impacts 
explosion problem for requirements and software architecture. Section 3.4 discusses the 
change scenarios. In Section 3.5, the summary of the problems is given. Section 3.6 
concludes the chapter. 
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3.2 Impacts Explosion Problem 

Change impact analysis is defined by Bohner [22] [23] [24] [25] as “identifying the potential 
consequences of a change, or estimating what needs to be modified to accomplish a 
change”. A change in a software system may affect other parts of the system and the change 
may trigger ripple-effects which cause direct and indirect impacts on other elements [24]. 
The relationships between elements are considered as traces. A direct impact occurs when 
the affected element in the artifact is directly linked with one trace to the changed element. 
An indirect impact occurs when the affected element in the artifact is indirectly linked with 
more than one trace to the changed element. Figure 3.1 shows an example directed graph of 
software life-cycle objects (SLO) with traces. Software life-cycle objects stand for elements in 
development artifacts (e.g. requirements in requirements documents, classes & methods in 
code, components in architecture).  

 

Figure 3.1 Simple Directed Graph of Software Life-Cycle Objects [23] 

When a change occurs in SLO1 in Figure 3.1, SLO2 has a direct impact and SLO3 has an 
indirect impact by the change. Table 3.1 gives the traces between software life-cycle objects 
in Figure 3.1 in a connectivity matrix. 

Table 3.1 Connectivity Matrix of Traces [23] 
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SLO2       

SLO3      

SLO4      
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SLO9      

 

Connectivity matrix of traces is transformed into a reachability matrix where the objects, 
which can potentially be affected by a change to a particular SLO, are indicated [23] (see 
Table 3.2). Reachability matrix denotes traces inferred by using transitive closure of traces in 
the connectivity matrix.  

Table 3.2 Reachability Matrix of Traces [23] 
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The reachability matrix indicates both direct and indirect impacts on software life-cycle 
objects. For instance, the direct impact in SLO2 and the indirect impact in SLO3 of the 
change in SLO1 in Figure 3.1 can be inferred in the reachability matrix in Table 3.2. 
However, transforming the connectivity matrix into a reachability matrix does not gain any 
additional information since every object is related directly or indirectly to every other object 
in the matrix. Bohner suggests the use of the notion of distance between SLOs in order to 
limit the detection of impacts (see Figure 3.2). The notion of distance in Figure 3.2 explains 
how the number of impacts explodes.  

 

Figure 3.2 Impacts Explosion without Semantics [25] 

After a change is introduced to SLO0, 3 impacts are introduced at a distance of 1. The 
number of impacts jumps to 10, 115, 1132 and 46203 at the distances of 2, 3, 4, 5 and 6 with 
only approximately nine traces per SLO [25]. Bohner [24] states that change impact analysis 
must employ additional semantic information to increase the accuracy by finding more valid 
impacts and reducing the number of false-positive impacts. The use of trace semantics in 
impact analysis can identify some of the unimpacted software life-cycle objects at the initial 
distances and this prevents impact explosion at the later distances.   

3.3 Impacts Explosion in Requirements and Software Architecture 

Requirements and architectural elements are considered as Software Life-cycle Objects 
(SLO). In current practice, requirements are textual artifacts with structure often not 
explicitly specified. Relations between requirements are mostly not documented. Table 3.3 
represents a part of a requirements document for a Course Management System (CMS). The 
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requirements are about the CMS for a school which has features such as notification of 
students about exam grades and messaging for communication at school. 

Table 3.3 Some Requirements for a Course Management System 

R1: The system shall notify students about exam grades.

R2: The system shall provide e-mail messaging.

R3: The system shall provide sms messaging.

R4: The system shall provide sms and e-mail messaging.

R5: The system shall allow lecturers to create courses.

R6: The system shall allow lecturers to specify enrolment policies based on grade.

R7: The system shall allow lecturers to manage course information.

R8: The system shall allow lecturers to specify enrolment policies based on grade.
 

There are implicit relations between requirements in Table 3.3. For instance, the system 
needs messaging in order to notify students about exam grades. The system property given 
in R1 requires the system property given in R4.  

 

Figure 3.3 Requirements and Architectural Models with Traces 

We need explicit structure of requirements and requirements relations in order to do change 
impact analysis. Requirements metamodels and models can be used to provide an explicit 
structure to requirements documents with relations between requirements. Requirements in 
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a requirements model can be linked to architectural elements in an architectural model with 
traces. Figure 3.3 shows requirements and architectural models with traces. 

Any relation between requirements, architectural elements, and requirements & architectural 
elements plays a role of trace in change impact analysis. For example in Figure 3.3, a change 
in requirement R3 has a direct impact on architectural component C4, and an indirect impact 
on component C6 through the relation of R3 and Rn. The general impacts explosion 
problem described for the software life-cycle objects by Bohner [24] is valid for elements in 
requirements and architectural models. There might be multiple reasons of impacts 
explosion in requirements and software architecture:  

 Impacts explosion might happen due to large highly connected systems having bad 
decomposition. The requirements and architecture of the system might be 
decomposed in such a way that every element in the requirements and architectural 
models is connected. Therefore, changing a requirement might affect every element 
in the models.  

 Impacts explosion might happen due to the lack of semantic information. Every 
requirement and architectural element directly/indirectly related to the changed 
requirement might be identified as a candidate impacted element due to the lack of 
trace semantics. Some of the candidate impacts might be false positives which cause 
the impacts explosion. In the thesis, we address the impacts explosion in 
requirements and software architecture due to the lack of semantic information. 

When a change is introduced to a requirement, we first want to determine if there is any 
other impacted requirement. After we find out all impacted requirements, we need to 
identify the architectural elements impacted by the change in the requirement.  

In order to determine the impacted requirements in the requirements model, we can form a 
connectivity matrix and then a reachability matrix for requirements relations. The 
reachability matrix for requirements relations will be mostly the same with the one in Table 
3.2 which indicates every SLO might be impacted.  

In a reachability matrix like the one in Table 3.2, the requirements engineer may have to 
analyze all requirements in the model for a single change. This may result in neglecting the 
actual impact of a change in the requirements model. Manual inspection is error-prone and 
time consuming. Consequently, the cost of implementing a change in the requirements 
model may become several times higher than expected.  
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After identifying impacted requirements in the requirements model, impact analysis is 
applied to the architectural model in order to determine architectural elements impacted by 
the requirements change. Then, we form a connectivity matrix and a reachability matrix for 
traces between requirements and software architecture. Again, like the one in Table 3.2 there 
is a high possibility of having a reachability matrix which indicates that every architectural 
element in the software architecture might be impacted. The consequences of change impact 
analysis indicated for requirements models are also valid for change impact analysis in 
software architecture.  

 

Figure 3.4 Part of Requirements and Architectural Models for Course Management System 

In Figure 3.4, we give example requirements and architectural models of the CMS. Four 
requirements (notifying students, e-mail messaging, sms messaging, and e-mail & sms 
messaging) in the requirements document in Table 3.3 are given with their relations in the 
requirements model. Assume that there is a change request for the CMS. Audio messaging is 
requested for communication at school. The requirement R4 (E-mail and Messaging System) 
in Figure 3.4 is updated for the change request. By following direct and indirect requirements 
relations without using any semantic information, it is found that all requirements (R1, R2, 
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R3 and R4) and architectural elements (C1, C2, C3, C4 and C5) satisfying these requirements 
are candidate impacted.  

By knowing the semantics of the requirements change and traces, we can eliminate some of 
the false positive candidate impacted requirements and architectural elements. For instance, 
the change for the requirements in Figure 3.4 is adding a new property (an audio messsaging) 
to R4 which does not have any impact on existing system properties. R1, R2 and R3 are not 
impacted by the change in R4. Only the architectural elements (C3, C4 and C5) are candidate 
impacted. Without making the semantics of changes and traces explicit in the models, the 
requirements engineer and software architect have to make these reasoning by themselves. 
The traceability tools and techniques employing additional semantic information can assist 
the requirements engineer and software architect to do impact analysis on models.   

3.4 Change Scenarios for Change Impact Analysis 

In this section we explain when we have the impacts explosion problem in change 
management for requirements and software architecture. We identified two change scenarios 
in which requirements evolve and then software architecture is updated for the changes in 
requirements. Figure 3.5 shows the requirements and architectural models with traces for 
requirements evolution.   

 

Figure 3.5 Requirements and Architectural Models with Traces for Requirements Evolution 

Section 3.4.1 and Section 3.4.2 explain the change scenarios by using requirements and 
architectural models with traces in Figure 3.5. 

 



3.4 Change Scenarios for Change Impact Analysis 55 

 

3.4.1 Scenario 1: Requirements Evolve 
The steps in Scenario 1 are the following: 

 Receiving the change request: The change request for requirements in the Requirements 
Model RM in Figure 3.5 is received by the requirements engineer. 

 Performing change impact analysis in the Requirements Model RM: The requirements engineer 
interprets the change request as a set of changes in the RM. The impact of each 
change is analyzed by propagating the change in the RM. 

During the change propagation, the requirements engineer may have to encounter explosion 
of impacts where he has to investigate all requirements in the model RM. 

 Updating the Requirements Model RM: After the impact analysis, it is decided which 
changes will be applied to the RM. If any, then the RM is updated (New 
Requirements Model – RM`). 

 Verifying the Architectural Model AM: After updating the RM, the software architecture 
(Architectural Model - AM) is verified in order to determine if it satisfies the 
new/changed requirements 

 Updating the Architectural Model - AM: If there is any requirement not satisfied by the 
Architectural Model AM, the AM is updated to make the new/changed requirements 
being satisfied (New Architectural Model – AM`). 

The software architect might analyze the impact of the requirements change in the 
Architectural Model AM to update the AM where he might encounter impacts explosion.  

3.4.2 Scenario 2: Requirements and Software Architecture Evolve 
The steps in Scenario 2 are the following: 

 Receiving the change request: The change request for requirements in the Requirements 
Model RM in Figure 3.5 is received by the requirements engineer. 

 Performing impact analysis in the Requirements Model RM and Architectural Model AM: After 
the change request for requirements is received, the change impact analysis is applied 
to the RM and AM in Figure 3.5 sequentially. The impacted requirements and 
architectural elements are identified. 

Impacts explosion occurs in change impact analysis in the RM and AM.   
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 Updating the Requirements Model RM and Architectural Model AM: After the impact 
analysis, it is decided which changes will be applied to the RM and AM. If any, then 
the RM and AM are modified (New Requirements Model – RM` and New 
Architectural Model- AM` in Figure 3.5). 

 Verifying the New Architectural Model AM`: After updating the RM and AM, the new 
software architecture (New Architectural Model AM`) is verified in order to 
determine if it satisfies the new/changed requirements. 

 Updating the Architectural Model - AM: If there is any requirement not satisfied by the 
New Architectural Model AM`, the AM` is updated to make the new/changed 
requirements being satisfied. 

The software architect might re-analyze the impact of the requirements change in the New 
Architectural Model AM` to update the AM` where he might encounter impacts explosion.  

3.5 Summary of the Problems 

The need for change impact analysis is observed in both requirements and software 
architecture. In the following, we give a summary of the problems in change impact analysis 
for requirements and software architecture discussed so far. They are tackled in the 
subsequent chapters. 

 Explosion of Impacts in Requirements for Requirements Changes. When a 
change is introduced to a requirement, the requirements engineer needs to find out if 
any other requirement related to the changed requirement is impacted. In practice, 
requirements documents are often textual artifacts with implicit structure and analysis 
of requirements is mostly manual (see Open Issue 1 – Automation in the early development 
stages in Chapter 2). Most of the relations among requirements are not given explicitly. 
There is a lack of precise definition of relations among requirements in most tools 
and approaches. Due to the lack of semantics of requirements relations, change 
impact analysis may produce high number of false positive and false negative 
impacted requirements. As Bohner stated in [24], semantic information should be 
employed to overcome the impacts explosion problem (see Open Issue 2 – Trace 
Semantics in Chapter 2). The use of trace semantics reduces the number of false 
positive impacts. Chapter 4 focusses on the analysis of requirements models for 
inferencing and consistency checking of requirements relations that are considered as 
traces. Chapter 4 also provides the formalization of semantics of requirements 
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relations, which is used to overcome the impacts explosion problem in requirements 
(see Chapter 5). 

 Manual, Expensive and Error Prone Trace Establishment. After determining 
the impacted requirements, the software architect needs to identify impacted 
architectural elements by tracing the changed requirements to software architecture. 
Designing architecture based on requirements is a problem solving process that relies 
on human experience and creativity, and is mainly manual. Therefore, trace 
information may remain implicit and the software architect may need to manually 
assign traces between R&A (see Open Issue 4 – Trace generation from imlicit trace 
information and Open Issue 6 – Maintenance of traces in Chapter 2). Manual trace 
establishment is time-consuming, expensive and error prone. The assigned traces 
might be incomplete and invalid. Chapter 6 improves trace establishment between 
R&A with automation and trace validation. 

 Explosion of Impacts in Software Architecture for Requirements Changes. 
There is a lack of precise definition of traces between R&A in most tools and 
approaches. By using only structural information of traces, the software architect may 
conclude that all architectural elements in the architecture are impacted. Without 
considering semantics of traces, change impact analysis may produce high number of 
false positive impacts in the architecture. Chapter 6 formalizes the semantics of traces 
between R&A. The semantics is used in Chapter 7 to overcome the impacts 
explosion problem in software architecture (see Open Issue 2 – Trace semantics in 
Chapter 2).  

3.6 Conclusions 

In this chapter we answered Research Question 3 raised in Chapter 1: What are the change scenarios 
for requirements and software architecture? What is necessary for these change scenarios to be handled? Which 
solutions can be used? We addressed the impacts explosion problem in requirements and 
software architecture with two change scenarios. Impacts explosion described by Bohner 
[22] [23] [24] [25] was explained and the specifics of impacts explosion for requirements and 
software architecture were given. With change scenarios we explained where we might have 
the impacts explosion for requirements and software architecture.  

Bohner [24] states that change impact analysis must employ additional semantic information 
to increase the accuracy by finding more valid impacts and reducing the number of false-
positive impacts. The use of trace semantics in change impact analysis can identify some of 
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the unimpacted software life-cycle objects at the initial distances and this prevents impact 
explosion at later distances.  

In the thesis we use semantics of requirements and software architecture to prevent impacts 
explosion. Reasoning about requirements with semantics of requirements relations provided 
in Chapter 4 supports requirements modeling. Chapter 5 provides a change impact analysis 
approach to prevent impacts explosion in requirements models. The approach in Chapter 7 
uses traces between R&A generated and validated by the approach in Chapter 6 to prevent 
impacts explosion in software architecture. 
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Chapter 4 

4 Semantics of Requirements Relations 

In practice, requirements documents are often textual artifacts with implicit structure. Most of the relations 
among requirements are not given explicitly. There is a lack of precise definition of relations among 
requirements in most tools and approaches. In this respect change impact analysis in requirements may 
produce deficient results. In this chapter, we aim at formal definitions of relation types in order to enable 
reasoning about requirements relations. We give a requirements metamodel with commonly used relation 
types. The semantics of the relations is formalized in first-order logic. We use the formalization for consistency 
checking of relations and for inferring new relations. A tool has been built to support both reasoning activities. 
We illustrate our approach in an example which shows that the formal semantics of relation types enables 
new relations to be inferred and contradicting relations in requirements documents to be determined. The 
results from this chapter are used in Chapter 5 to perform change impact analysis in requirements models. 

4.1 Introduction 

In Chapter 3, we observed that additional semantic information should be employed to 
overcome the impacts explosion in requirements and software architecture. Furthermore, 
there is a need of semantics of requirements and requirements relations to increase the 
accuracy by finding more valid impacts and reducing the number of false-positive impacts. 
However, requirements documents are often textual artifacts with structure not explicitly 
specified. In most tools and approaches there is a lack of precise definition of requirements 
relations. In this chapter, we aim at identifying requirements relations (see Figure 4.1) and 
defining their semantics. Within the context of Model Driven Engineering (MDE), we 
construct metamodels and models for all artifacts in software development. We give a 
requirements metamodel with formal relation types. The semantics of these relations is 
based on First-Order Logic (FOL). This formalization is used for consistency checking of 
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relations and inferencing. Here, inferencing is the activity of deducing new relations based 
solely on the relations which the requirements engineer has already specified. Consistency 
checking is the activity of identifying the relations whose existence causes a contradiction. 
Tool for Requirements Inferencing and Consistency Checking (TRIC) is developed to 
support both activities. The main features of the tool are managing requirements and 
relations (add, update, delete), displaying consistency checking and inferencing, and 
explaining the results of reasoning. 

 

Figure 4.1 Within-Model and Between-Model Traces with Requirements Relation Types for Requirements 
and Architectural Models 

In this chapter we answer Research Question 4 raised in Chapter 1: How to model requirements, 
software architecture and traces with their semantics for change management? What aspects of requirements, 
software architecture and traces should be modeled and how? How can we use the modeled aspects to reason 
about requirements, software architecture and traces? With the requirements metamodel and 
semantics of requirements relations we address the need for modeling requirements and 
reasoning about requirements.  

Change impact analysis requires semantics of requirements relations which are not given 
explicitly in most of the approaches. The results in this chapter are used in Chapter 5 to 
perform change impact analysis in requirements models.  

This chapter is structured as follows. Section 4.2 describes the approach. Section 4.3 
presents the requirements metamodel and definitions of the requirements relations. The 
formalization of the relations is provided in Section 4.4. Section 4.5 describes the use of the 
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formalization for consistency checking and inferencing followed by the details of the tool 
support in Section 4.6. Section 4.7 illustrates the approach by an example. Section 4.8 
describes the related work, and Section 4.9 concludes the chapter. 

4.2 Approach 

We aim at providing requirements relations with formal semantics. In order to achieve this, 
we successively take the following steps: 

 Requirements metamodel. To provide an explicit structure to requirements 
documents, we define a requirements metamodel. This metamodel includes mostly 
commonly found entities in the literature. The most important elements of the 
requirements metamodel are requirements relations and their types (Section 4.3). 

 Semantics of relations. Since we aim at providing requirements relations with well-
defined semantics, we formalize the requirements relations by using FOL (Section 
4.4). 

 Consistency checking and inferencing. We use the formalization for consistency 
checking of relations and inferring new relations (Section 4.5). 

 Tool support. We describe the design and implementation of a tool for managing 
requirements, displaying consistency checking & inferencing, and explaining results of 
reasoning (Section 4.6). 

 Running example. We illustrate the approach with an example (Section 4.7). The 
example is about requirements for a Course Management System (CMS). This system 
provides a lecturer with a set of tools that allows the creation of online course 
content and the subsequent teaching and management of that course including 
interactions with students taking the course. A CMS requirements document was put 
together for illustration in this chapter as a running example. Part of this document is 
given in Appendix B. 

4.3 Requirements Metamodel 

Our requirements metamodel contains common entities identified in the literature for 
requirements models. There are several commonly used approaches to define and represent 
requirements: goal-oriented [250] [186], aspect-driven [216], variability management [183], 
use-case [54], domain-specific [200] [143], and reuse-driven techniques [164]. Goal-oriented 
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requirements engineering [250] [186] defines a model for decomposing a system goal into 
requirements with goal trees, and offers some decision methods based on this 
decomposition. The aspect-oriented approach [216] gives a requirements model for the 
separation of crosscutting functional and non-functional properties in the requirements 
analysis phase. The System Modeling Language (SysML) [200] is a domain-specific modeling 
language for system engineering. It provides modeling constructs to represent text-based 
requirements and relate them to other modeling elements with stereotypes. The variability 
management approach [183] deals with producing requirements that can be considered as a 
core asset in a product line. 

 

Figure 4.2 Requirements Metamodel 

Since we aim at using requirements relations as trace relations, we focused in our survey on 
the requirement entity with its attributes and relations between requirements. We left out 
other entities such as goals, stakeholders, and test cases. Figure 4.2 gives the requirements 
metamodel used in our approach. 

In the requirements metamodel, requirements are captured in a requirements model. A 
requirements model contains requirements and their relationships. Based on [239], we define a 
requirement as follows: 
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 Definition 4.1. Requirement: A requirement is a description of a system property or 
properties which need to be fulfilled. 

Requirements relations are defined as follows: 

 Definition 4.2. Requires relation: A requirement R1 requires a requirement R2 if R1 is 
fulfilled only when R2 is fulfilled. 

The required requirement can be seen as a pre-condition for the requiring requirement [255]. 

 Definition 4.3. Refines relation: A requirement R1 refines a requirement R2 if R1 is 
derived from R2 by adding more details to its properties. 

The refined requirement can be seen as an abstraction of the detailed requirements [59] 
[250]. 

 Definition 4.4. Partially refines relation: A requirement R1 partially refines a requirement 
R2 if R1 is derived from R2 by adding more details to properties of R2 and excluding 
the unrefined properties of R2. 

Our assumption here is that R2 can be decomposed into other requirements and that R1 
refines a subset of these decomposed requirements. This relation can be described as a 
special combination of decomposition and refinement. It is mainly drawn from the 
decomposition of goals in goal-oriented requirements engineering [250]. 

 Definition 4.5. Contains relation: A requirement R1 contains requirements R2 ... Rn if R2 

... Rn are parts of the whole R1 (part-whole hierarchy). 

This relationship enables a complex requirement to be decomposed into parts [200]. A 
composite requirement may state that the system shall do A and B and C, which can be 
decomposed into the requirements that the system shall do A, the system shall do B, and the 
system shall do C. For this relation, all parts are required in order to fulfill the composing 
requirement. 

 Definition 4.6. Conflicts relation: A requirement R1 conflicts with a requirement R2 if the 
fulfillment of R1 excludes the fulfillment of R2 and vice versa. 

The conflicts relation addresses a contradiction between requirements. This relation may be 
modeled explicitly by the requirements engineer. In this thesis, we consider conflicts as a 
binary relation [251]. Our approach can be extended to n-ary conflicts relations, that is, 
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conflicts among multiple requirements, as a whole without excluding pairs of requirements 
to be fulfilled. 

The conflicts relation should be distinguished from inconsistencies in requirements relations. 
In our terminology, an inconsistency is a situation where the co-existence of certain relations 
among requirements causes a contradiction in the context of the semantics given in this 
chapter. When we use the term consistency checking, we refer to finding inconsistencies among 
requirements relations (more on this in Section 4.5). 

There are other classifications of inconsistencies between requirements. For example, Van 
Lamsweerde et al. [251] distinguish conflicts (excluding the simultaneous fulfillment of 
requirements), divergence (boundary cases make requirements contradict – a weaker form of 
conflict), competition (a particular case of divergence), obstruction (a borderline case of 
divergence), and terminology clash (using different syntactic names for a single real-world 
concept). 

The definitions given above are informal and present an intuitive meaning (and sometimes 
ambiguous). Since we aim at precise semantics, we formalize requirements and requirements 
relations in FOL. 

4.4 Formalization of Requirements and Relations 

In this section we provide formalization of requirements and relation types. Section 4.4.1 
gives the formalization of requirements. Section 4.4.2 presents the formalization of 
requirements relations. We chose a formalization of requirements in first-order logic (FOL). 
We discuss this choice in Section 4.4.3. 

4.4.1 Formalization of Requirements 
We assume the general notion of requirement being “a property which must be exhibited by 
a system”. We express the property as a formula P in FOL. We assume that requirements 
can always be expressed in the universal fragment of FOL and a requirement is expressed as 
a formula x  with   in conjunctive normal form (CNF). If the formula   is a closed 

formula, then the universal quantifiers can be dropped. It is also possible that the formula 
contains free variables.  

According to the model theoretic semantics of FOL the truth value of P is determined in a 
model M by using an interpretation for the function and predicate symbols in P.  
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Let F be a set of function symbols and P a set of predicate symbols, each symbol with a 
fixed arity. A model M of the pair (F, P) consists of the following items [118]: 

 a non-empty set A, the universe of concrete values 

 for each f   F with n arguments, a function f M : An  A 

 for each P  P with n arguments, a set PM   An. 

The details of the definition of a model in FOL can be found in Appendix A. A satisfaction 
relation between the model M and the formula P holds: 

(1) M  l P 

if P evaluates to True in the model M with respect to the environment l (i.e., a look-up table 
for free variables in P). The model M together with l in which P is true represents a system s 
that satisfies the requirement. From now on, all the formulae P that express properties will 
be in the form where ( x  = 1x  2x  … kx ): 

(2) P = x  (p1   …   pn), where n ≥ 1 

pn is a disjunction of literals which are atomic formulas (atoms) or their negation. An atomic 
formula is a predicate symbol applied over terms. In the rest of the thesis we use the 
notation (p1 … pn) for (p1   …   pn).  

Example: Interpretation of a Requirement as a Formula 

Although the interpretation of requirements as formulas in FOL is not within the scope of 
our work, we give an intuition of how to map requirements expressed in natural text to our 
formalization in FOL. Assume that we have the following requirement: “The system shall 
provide security facilities for login”. 

We can represent the requirement as a formula provide(x, login)   security_ mechanism(x). The 
intuition behind x is that x is a free variable ranging over possible security solutions (since 
security can be supported in different ways, e.g. SSL certification, TLS certification). login is a 
constant. An example system for this requirement supports SSL certification for users to log 
in.  
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Let F  {login} and P  {provide, security_mechanism}, where login is a constant symbol; 
and where provide is a predicate with two arguments and security_ mechanism is a predicate with 
just one argument. We choose as a model M the following: 

 A  {ssl_certification, tls_certification, socket_communication, login_feature} 

 loginM  login_feature 

 provideM  {(ssl_certification, login_feature)} 

 security_ mechanismM  {ssl_certification, tls_certification} 

We have the following satisfaction relation between the model M and the formula stated in 
the requirement: 

(3) M  l[x ssl_certification] provide(x, login)   security_ mechanism(x) 

where l maps the free variable x to the value ssl_certification in the set A and login is the 
constant. The model M together with l can be considered as a part of the system s that 
satisfies the requirement.  

The model may express both modeling choices and universal truths (domain knowledge). 
The relation security_mechanismM refers to a universal truth for available security 
mechanisms. The relation provideM refers to modeling choices like providing login feature 
with ssl certification. In a different model, login feature might be provided with tls 

certification or just with an unsecure socket communication. Consider the relation provideM` 

in the model M` (A, loginM` and security_ mechanismM` are kept same with the model M):    

 provideM`  {(socket_communication, login_feature)} 

The formula is not satisfied in the model M` and the environment l which maps the variable 
x to the value socket_communication in the set A. 

(4) M`  l[x socket_communication] provide(x, login)   security_ mechanism(x) 

The system provides a login feature with an unsecure socket communication.      

4.4.2 Formalization of Requirements Relations 
We formalize the informal definitions of the requirements relations in the requirements 
metamodel. 
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4.4.2.1 Formalization of Requires 
Let R1 and R2 be requirements where P1 and P2 are formulas in CNF for R1 and R2. 

R1 requires R2 iff the following two statements hold: 

(5) (P1 → P2) 

(6) ( (P2 → P1)) is satisfiable  

Please note that if the requirements R1 and R2 are written as formulas x  and x  with 

  and   in CNF, we understand the following: R1 requires R2 iff ( x (  →  )) and 

( ( x (  →  ))) is satisfiable. This is also valid for other relations. 

From the definition we conclude that (S1   S2) where S1 is the set of systems that satisfy R1 
and S2 is the set of systems that satisfy R2. The requires relation is non-reflexive, non-symmetric, 
and transitive.  

Example: Requires Relation 

We explain the requires relation with the following two requirements from the CMS 
requirements document explained in Section 4.7.  

R24: The system shall notify students about events (new messages posted, etc.). 

R7: The system shall provide a messaging facility. 

We formalize the requirements R7 and R24 as follows:  

(7) P7 = provide_msg(x) 

(8) P24 = notify_students(x, std_events) 

where x is a free variable over the values in A and std_events is a constant. Let 

F {std_events} and P {provide_msg, notify_students}, where std_events is a constant 
symbol; and where provide_msg is a predicate with one argument and notify_students is a 
predicate with two arguments. From the domain knowledge we know that for all models if 

((x, std_events)  notify_studentsM), then (x  provide_msgM). We choose as a model M 
the following: 

 A  {individual_msg, team_msg, participant_msg, lecturer_msg, student_events} 

 std_eventsM  student_events 



68 Chapter 4 Semantics of Requirements Relations 

 

 provide_msgM  {individual_msg, team_msg, participant_msg, lecturer_msg} 

 notify_studentsM  {(individual_msg, student_events), (team_msg, student_events),  

(participant_msg, student_events)} 

Then we have the following: 

(9) M  l notify_students(x, std_events) → provide_msg(x) 

(notify_students(x, std_events) → provide_msg(x)) holds for all bindings of x in the 

environment l since for all models if ((x, std_events)  notify_studentsM), then (x  
provide_msgM). ( (provide_msg(x) → notify_students(x, std_events))) is satisfiable: 

(10) M  l[x lecturer_msg] ( (provide_msg(x) → notify_students(x, std_events)))  

Therefore, we conclude that R24 requires R7 to be fulfilled.  

4.4.2.2 Formalization of Refines 
Let R1 and R2 be requirements. P1 and P2 are formulas for R1 and R2. The conjunctive 
normal form of P2 is: 

(11) P2 = x  ((p1 ... pn)   (q1 ... qm));  n ≥ 1, m ≥ 0 

Let p1l, p2l, …, pn–1l, pnl be disjunction of literals such that x  (pjl → pj) for all j  1..n 

R1 refines R2 iff P1 is derived from P2 by replacing every pj in P2 with pjl for j  1..n such that 
the following two statements hold: 

(12) P1 = x  ((p1l ... pnl)   (q1 ... qm));  n ≥ 1, m ≥ 0 

(13) ( ( x (pj → pjl))) is satisfiable for all j  1..n 

From the definition we conclude that (P1 → P2) holds for every model where R1 refines R2 
and ( (P2 → P1)) is satisfiable. Therefore, (S1   S2) where S1 is the set of systems that 
satisfy R1 and S2 is the set of systems that satisfy R2. Similarly to the previous relation we 
have the properties non-reflexive, non-symmetric, and transitive for the refines relation. Obviously, 
if R1 refines R2 then R1 requires R2. 

Example: Refines Relation 

We explain the refines relation with the following two requirements. 
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R7: The system shall provide a messaging facility. 

R16: The system shall allow messages to be sent to individuals, teams, or all course 
participants at once. 

We formalize the requirements R7 and R16 as follows:  

(14) P7 = provide_msg(x) 

(15) P16 = course_msg(x) 

where x is a free variable over the values in A. Let P {provide_msg, course_msg} where 
provide_msg and course_msg are predicates with one argument. From the domain knowledge we 
are interested only in those models for which (16) holds: 

(16) course_msgM   provide_msgM 

We choose as a model M the following: 

 A  {individual_msg, team_msg, participant_msg, lecturer_msg} 

 provide_msgM  {individual_msg, team_msg, participant_msg, lecturer_msg} 

 course_msgM  {individual_msg, team_msg, participant_msg} 

Then we have the following: 

(17) M  l course_msg(x) → provide_msg(x)  

(course_msg(x) → provide_msg(x)) holds for each model M since (course_msgM   

provide_msgM) for all models. ( (provide_msg(x) → course_msg(x))) is satisfiable like in 
the following:     

(18) M  l[x lecturer_msg] ( (provide_msg(x) → course_msg(x)))  

R7 states only the need for a messaging property in the system. However, R16 explains the 
details of the messaging property: the messaging shall allow messages to be sent to 
individuals, teams, or all course participants at once, excluding lecturers. Therefore, we 
conclude that R16 refines R7. Note also that R16 requires R7 to be fulfilled.  
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4.4.2.3 Formalization of Partially Refines 
Let R1 and R2 be requirements. P1 and P2 are formulas for R1 and R2. The conjunctive 
normal form of P2 is: 

(19) P2 = x  ((p1 … pn)   (q1 … qm));   m, n ≥ 1 

Let q1l, q2l, …, qm–1l, qml be disjunction of literals such that x  (qil → qi) for all i  1..m 

R1 partially refines R2 iff P1 is derived from P2 by replacing every qi in P2 with qil for i  1..m 

and excluding others (pi for all i  1..n) such that the following two statements hold: 

(20) P1 = x (q1l ... qml) 

(21) ( ( x (qi → qil))) is satisfiable for all i  1..m 

The partially refines relation is non-reflexive, non-symmetric, and transitive. 

Example: Partially Refines Relation 

We explain the partially refines relation with the following two requirements. 

R97: The system shall allow only the administration to manage courses.  

R102: The system shall allow only the administration to specify the minimum number of 
students for a course. If there are too few subscriptions in a semester, that course will not be 
given during that semester. 

In the glossary of the CMS requirements document in Appendix B, it is stated that 
managing courses means creating, updating, deleting, and reading course information. We formalize R97 
and R102 as follows: 

(22) P97 = x y (( courses(x)   numbers(y)   allow_admin_create(x, y))   

( courses(x)   numbers(y)   allow_admin_delete(x, y))   ( courses(x)   

numbers(y)   allow_admin_update(x, y))   ( courses(x)   numbers(y)   

allow_admin_read(x, y))) 

(23) P102 = x y ( courses(x)   numbers(y)   allow_admin_specify(x, y, z)) 

where x is a universally quantified variable for the courses, y is a universally quantified 
variable for the number of students registered to the course and z is a free variable for the 
minimum number of students that should be registered to the course.  
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Let P  {allow_admin_create, allow_admin_delete, allow_admin_update, allow_admin_read, 
allow_admin_specify, courses, numbers} where courses and numbers are predicates with one 
argument, allow_admin_create, allow_admin_delete, allow_admin_update and allow_admin_read are 
predicates with two arguments, and allow_admin_specify is a predicate with three arguments. 
From the domain knowledge we are interested only in those models that satisfy the 

following condition: If ((x, y, z)  allow_admin_specifyM), then ((x, y)  
allow_admin_createM). 

We choose as a model M the following: 

 The universe of concrete values A consists of the elements that correspond to the 

courses and the positive natural numbers. The elements for the courses are mathematics, 

physics, chemistry, biology and literature. 

 allow_admin_createM  {(x, y) | x  {mathematics, physics, chemistry, biology, 

literature}, y  N+} 

 allow_admin_deleteM  {(x, y) | x  {mathematics, physics, chemistry, biology, 

literature}, y  N+} 

 allow_admin_updateM  {(x, y) | x  {mathematics, physics, chemistry, biology, 

literature}, y  N+} 

 allow_admin_readM  {(x, y) | x  {mathematics, physics, chemistry, biology, 

literature}, y  N+} 

 allow_admin_specifyM  {(x, y, z) | (x, y)  allow_admin_createM, z  N+, y  z} 

 coursesM  { x | x  {mathematics, physics, chemistry, biology, literature}} 

 numbersM  { y | y  N+} 

We interpret P102 as assigning the minimum number of students for a created course. 
Then we have the following: 

(24) M  l x y (( courses(x)   numbers(y)   allow_admin_specify(x, y, z)) → 

( courses(x)   numbers(y)   allow_admin_create(x, y)))  
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The formula holds for each model since for all models if ((x, y, z)  allow_admin_specifyM), 

then ((x, y)  allow_admin_createM).  

( ( x y  (( courses(x)   numbers(y)   allow_admin_create(x, y)) → ( courses(x)   

numbers(y)   allow_admin_specify(x, y, z))))) is satisfiable: 

(25) M  l ( ( x y  (( courses(x)   numbers(y)   allow_admin_create(x, y)) → 

( courses(x)   numbers(y)   allow_admin_specify(x, y, z)))))  

There is at least a value of the variable z where y < z. Therefore, R102 partially refines R97.  

4.4.2.4 Formalization of Contains 
Let R1, R2, …, Rk be requirements where k ≥ 2. P1, P2, P3, …, Pk are formulas for R1, R2, … 
, Rk in conjunctive normal form as follows: 

(26) Pi = x  (p1i … pmii); mi ≥ 1, i  2 ... k     

R1 contains R2, …, Rk iff P1 is derived from P2, P3, …, Pk such that the following two 
statements hold: 

(27) P1 = P2   P3 …  Pk   Pl 

(28) ( (P2 → P1)), ( (P3 → P1)), …, ( (Pk → P1)) are satisfiable 

where Pl denotes properties that are not captured in P2, P3, …, Pk  

For the formulas P1, P2, …, Pk, if any variable universally quantified in one of the formulas 
appears free in any other formulas, the free variable is renamed. If any variable in one of the 
formulas appears in any other formulas with a different valuation, the variable with the 
different valuation is renamed. Please note that if the requirements R1, R2, …, Rk are written 
as formulas 1x , 2x , …, kx  with 1 , 2 , …, k  in CNF and Pl is expressed as x  

with   in CNF, we understand the following: R1 contains R2, …, Rk iff (P1 = x ( 2    3  

…  k     )) and ( ( x ( 2  → 1 ))), ( ( x ( 3  → 1 ))), …, ( ( x ( k  → 1 ))) are 

satisfiable. 

In the definition, we do not assume completeness of the decomposition [250]. From the 
definition we conclude that (P1 → P2), (P1 → P3), …, and (P1 → Pk) hold for every model 
where R1 contains R2, …, Rk. Therefore, S1   S2, S1   S3, …, and S1   Sk where S1, S2, S3,…, 
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and Sk are the set of systems that satisfy R1, R2, R3,…, and Rk. The contains relation is non-
reflexive, non-symmetric, and transitive. Obviously, if R1 contains R2 then R1 requires R2. 

Example: Contains Relation 

We explain the contains relation with the following two requirements. 

R61: The system shall allow lecturers to specify enrolment policies based on grade, first-
come first-serve (fcfs), and department. 

R62: The system shall allow lecturers to specify enrolment policies based on grade.  

We formalize R61 and R62 as follows 

(29) P61 = allow_policy(grade_enrl_policy)   allow_policy(fcfs_enrl_policy)    

         allow_policy(department_enrl_policy) 

(30) P62 = allow_policy(grade_enrl_policy)  

where grade_enrl_policy, fcfs_enrl_policy, and department_enrl_policy are constants. We have the 

following: 

(31) P61 = P62   allow_policy(fcfs_enrl_policy)   allow_policy(department_enrl_policy) 

Let F  {fcfs_enrl_policy, department_enrl_policy, grade_enrl_policy} and P  
{allow_policy}, where fcfs_enrl_policy, department_enrl_policy and grade_enrl_policy are constant 
symbols; and where allow_policy is a predicate with one argument. We choose as a model M 
the following: 

 A  {fcfs_enrolment_policy, department_enrolment_policy, grade_enrolment_policy} 

 fcfs_enrl_policyM  fcfs_enrolment_policy 

 department_enrl_policyM  department_enrolment_policy 

 grade_enrl_policyM  grade_enrolment_policy 

 allow_policyM  {fcfs_enrolment_policy, grade_enrolment_policy} 

Then we have the following: 

(32) M   (allow_policy(grade_enrl_policy) → (allow_policy(grade_enrl_policy)   

allow_policy(fcfs_enrl_policy)   allow_policy(department_enrl_policy)))  
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R61 states that the system shall allow lecturers to specify three different enrollment policies. 
The requirement can be interpreted as three different properties for the system, like specifying 
enrollment policies based on grade, specifying enrollment policies based on first come first serve, and specifying 
enrollment policies based on department. R62 states only one of these properties, which is specifying 
enrollment policies based on grade. Therefore, we conclude that R62 is one of the decomposed 
requirements of R61 (R61 contains R62). It is also noted that R61 requires R62 to be 
fulfilled. 

4.4.2.5 Formalization of Conflicts 
Let R1 and R2 be requirements. P1 and P2 are formulas for R1 and R2. 

R1 conflicts with R2 iff (P1 → P2)   (P2 → P1) 

Please note that if the requirements R1 and R2 are written as formulas x  and x  with 

  and   in CNF, we understand the following: R1 conflicts R2 iff ( x (  →  ))   ( x (  

→   )). 

From the definition we conclude that (S1   S2) =  where S1 is the set of systems that 
satisfy R1 and S2 is the set of systems that satisfy R2. The binary conflicts relation is symmetric 
and non-reflexive. It is not transitive. 

Example: Conflicts Relation 

We explain the conflicts relation with the following two requirements. 

R60: The system shall allow lecturers to limit the number of students subscribing to a 
course. 

R103: The system shall have no maximum limit on the number of course participants ever. 

We formalize R60 and R103 as follows: 

(33) P60 = x y ( courses(x)   numbers(y)   allow_lecturer_limit(x, y)) 

(34) P103 = x y ( courses(x)   numbers(y)   has_limit(x, y)) 

where x is a universally quantified variable for the courses and y is a universally quantified 
variable for the limit of the number of students that should be registered to the course.  

Let P  {allow_lecturer_limit, has_limit, courses, numbers} where courses and numbers are 
predicates with one argument, allow_lecturer_limit and has_limit are predicates with two 
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arguments. From the domain knowledge we are interested only in those models where the 
following statement is valid: 

(35) allow_lecturer_limitM = has_limitM 

We choose as a model M the following: 

 The universe of concrete values A consists of the elements that correspond to the 

courses and the positive natural numbers. The elements for the courses are mathematics, 

physics, chemistry, biology and literature. 

 allow_lecturer_limitM  {(x, y) | x  {mathematics, physics, chemistry, biology, 

literature}, y  N+} 

 has_limitM  {(x, y) | x  {mathematics, physics, chemistry, biology, literature}, y  

N+} 

 coursesM  { x | x  {mathematics, physics, chemistry, biology, literature}} 

 numbersM  { y | y  N+} 

Then we have the following: 

(36) M  l x y (( courses(x)   numbers(y)   allow_lecturer_limit(x, y)) → 

( ( courses(x)   numbers(y)   has_limit(x, y))))  

(37) M  l x y (( courses(x)   numbers(y)   has_limit(x, y)) → 

( ( courses(x)   numbers(y)   allow_lecturer_limit(x, y))))  

The formulas in (36) and (37) hold for each model since (allow_lecturer_limitM = 
has_limitM) for all models. The satisfaction of R60 excludes the satisfaction of R103 and vice 
versa. The limit on the number of students and absence of a maximum limit on the number 
of course participants cannot exist at the same time. Therefore, we conclude that R60 
conflicts with R103. 

4.4.3 Discussion on the Chosen Formalization 
We chose a formalization of requirements and their relations in FOL. There are other 
formalizations of requirements, for example, in modal logic and deontic logic [177]. The 
formalization in FOL allows the expression of commonly occurring requirement 
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descriptions. However, there are limitations of the expressivity of FOL. For instance, 
imperfect requirements can be modeled by fuzzy sets [191]. Dealing with imperfection is out 
of scope of our formalization. We also do not cover modalities in requirements like 
possibility, probability, and necessity or logic operators like “in the next state” and “some 
time in the future” which can be used to describe the evolution of requirements. Our 
formalization should be extended with temporal logic, modal logic or fuzzy sets in order to 
cover these types of requirements. Under these limitations, the expressiveness of FOL is 
sufficient for inferencing and consistency checking. 

As we stated in Section 4.4.1, the interpretation of requirements as formulas in FOL is not 
within the scope of our approach. The modeling of requirements and their relations is 
carried out by requirements engineers. However, the requirements engineer does not need to 
know the details of the formalization. He/she can be guided by tutorials [94] that provide an 
informal explanation of the relations. The requirements model is used to obtain new 
knowledge about the requirements relations by automated reasoning, for example, inferred 
relations and/or inconsistencies. These results – supported by the visualization – are 
presented to the requirements engineer, who should give his/her own interpretation. Since 
the requirements engineer may make mistakes in the modeling, the approach may produce 
incorrect results. However, by interpreting the results, the requirements engineer may 
improve his initial requirements model. Also the consistency checking may detect errors. 

4.5 Inferencing and Consistency Checking 

Inferencing and consistency checking aim at deriving new relations based on given relations 
and determining contradictions among relations. Rules can be derived for the combinations 
of relations where new relations are inferred and contradictions are determined. Some of the 
inference rules are as follows:  

 (R1 refines R2)   (R2 contains R3) → (R1 requires R3) 

 (R1 refines R2)   (R2 contains R3) → (R1 requires R3) 

 (R1 partially-refines R2)   (R1 contains R3) → (R3 partially-refines R2) 

 (R1 contains R2) → (R1 requires R2) 

 (R1 refines R2) →  (R2 requires R1) 

It is not easy to ensure the completeness of the rules. Instead of exploring combinations of 
requirements relations, requirements relations are represented as facts derived from their 
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definitions. The inferencing and consistency checking are implemented in a reasoner 
supporting a form of logic programming based on these facts. The first type of facts 
concerns relations among sets, and the second encodes relations between formulas. 
Transitive and disjoint properties of the set and formula relations are used together with 
some inferencing rules. The formula relations are defined for formulas in CNF.  

Since the rules of set theory and formula relations can be directly mapped to the Web 
Ontology Language (OWL) [62], we use an OWL reasoner called Jena [130] in our 
implementation. The Web Ontology Language (OWL) is a family of knowledge 
representation languages for specifying ontologies. OWL ontologies are serialized using 
RDF/XML syntax. Our formalization is directly mapped to the language features of OWL 
like transitivity and symmetry of properties. Reasoning on requirements models is done on 
OWL ontologies. We used Jena [130], a programmatic environment for processing OWL 
data, with a rule-based inference engine. The engine performs consistency checking and 
inferencing. The details of the tool support with OWL for inferencing and consistency 
checking are given in Section 4.6. In the following, we illustrate how to map requirements 
relations to facts and the use of the facts for inferencing and consistency checking. 

Mapping Requirements Relations to Set Theoretic Relations. The set theoretic 
relations with their properties like transitivity are natively supported in OWL and OWL 
reasoners. Therefore, based on the formalization of the relations, we map the requirements 
relations (requires, refines, contains, and conflicts) to the set theoretic relations for the set of 
systems.  

Let R1 and R2 be requirements. P1 and P2 are formulas for R1 and R2. S1 is the set of systems 
that satisfy R1 and S2 is the set of systems that satisfy R2. 

 (S1   S2) iff (R1 requires R2) 

 (S1   S2) if (R1 refines R2) 

 (S1   S2) if (R1 contains R2) 

 ((S1   S2) = ) iff (R1 conflicts R2) 

To map the partially refines relation to the set theoretic relations for a set of systems, we 
decompose this relation to the combination of contains and refines relations. We define a 
temporary requirement named RT12 to decompose the partially refines relation between R1 

and R2 into refines and contains relations. The partially refines relation can be decomposed 
into the contains and refines relations in two different combinations: 
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 (R2 contains RT12)   (R1 refines RT12) iff (R1 partially-refines R2) 

 (RT12 refines R2)   (RT12 contains R1) iff (R1 partially-refines R2) 

The combinations given above exist at the same time. Each combination is mapped to set 
theoretic relations. 

 (S2   ST12)   (S1   ST12) if (R1 partially-refines R2) 

 (ST12   S2)   (ST12   S1) if (R1 partially-refines R2) 

The mappings are implemented by using the Jena reasoner rule language. The Jena rules for 
the mappings can be found in Appendix C. An informal description of the simplified text 
rule syntax [130] is:  

Rule      :=   bare-rule . 

              or   [ bare-rule ] 

              or   [ ruleName : bare-rule ] 
 

bare-rule :=   term, ... term -> hterm, ... hterm    // forward rule 

               or   bhterm <- term, ... term                // backward rule 
 

hterm     :=   term 

              or   [ bare-rule ] 
 

term      :=   (node, node, node)           // triple pattern 

             or   (node, node, functor)        // extended triple pattern 

             or   builtin(node, ... node)       // invoke procedural primitive 
 

bhterm    :=   (node, node, node)           // triple pattern 
 

functor   :=   functorName(node, ... node)  // structured literal 
 

node      :=   uri-ref                 // e.g. http://foo.com/eg 
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              or   prefix:localname     // e.g. rdf:type 

              or   <uri-ref>      // e.g. <myscheme:myuri> 

              or   ?varname                        // variable 

              or   'a literal'                          // a plain string literal 

              or   'lex'^^typeURI               // a typed literal, xsd:* type names supported 

              or   number                         // e.g. 42 or 25.5 

If terms are matched by the first part of the rule, the terms following ’->’ are concluded 
(inferred). Variables are denoted with a ’?’. Variables are not typed. A variable will match 
with any node in the model, which could be requirements or systems (resources in OWL) or 
relations (object properties in OWL). In our model, requirements are related through object 
properties. To ensure a variable has a certain type we could have added the following line to 
our mapping rules:  

(?r1 rdf:type Requirement) 

However in our case we know that when the following term matches: 

(?r1 refines ?r2) 

the variables ?r1 and ?r2 must be instances of Requirement. In our rules only requirements 
can be related through a requires relation. Analogously we assume that if a ‘satisfies’ is 
matched in a triple, the left-hand side ?s1 is an instance for set of systems, and the right-hand 
side ?r1 is a requirement instance: 

(?s1 satisfies ?r1) 

Therefore, we do not need to check explicitly for the variable’s type in the reasoner rules. 
The following is the rule in Jena that maps the requires relation to the set theoretic relations: 

@include <OWL> . 

[requires_to_subclass:  

         (?r1 mm:requires ?r2)  

         (?s1 inf:satisfies ?r1)  

         (?s2 inf:satisfies ?r2) -> (?s1 inf:subClassOf ?s2)] 
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The first line starts with “@include <OWL>.”, which tells the reasoner to import the rules 
for OWL. This enables the reasoner to reason on OWL and RDF constructs such as 
transitive object properties. The object properties in the rule’s terms are prefixed with ’inf:’. 
This prefix refers to the inference model. The rule states that if ?r1 requires ?r2, ?s1 satisfies 
?r1, and ?s2 satisfies ?r2, then we have (?s1 is a sub set of ?s2). The subset relation between 
the sets of systems are represented by the subClassOf construct in OWL. The following Jena 
rule maps the subset relation to the requires relation: 

[subclass_to_requires:  

         (?s1 inf:subClassOf ?s2)  

         (?s1 inf:satisfies ?r1)  

         (?s2 inf:satisfies ?r2) -> (?r1 mm:requires ?r2)] 

If there exists a conflicts relation between two requirements, then their sets of systems are 
disjoint (i.e. there is no system satisfying both requirements). The other way around also 
holds: if sets of systems are disjoint, the requirements they satisfy are conflicting. Two  rules 
are listed in the following:  

[conflicts_to_disjoint: (?r1 mm:conflicts ?r2) 

                                  (?s1 inf:satisfies ?r1) 

                                  (?s2 inf:satisfies ?r2)   ->   (?s1 inf:disjointWith ?s2) 

                                                                           (?s2 inf:disjointWith ?s1)] 

 

[disjoint_to_conflicts: (?s1 inf:disjointWith ?s2) 

                                  (?s1 inf:satisfies ?r1) 

                                  (?s2 inf:satisfies ?r2)   ->   (?r1 mm:conflicts ?r2)] 

The concluding terms of the first rule (conflicts_to_disjoint) are stating a disjointWith relation 
in both directions because the symmetry of the disjointWith property is not handled properly 
by the JENA reasoner. 

We need an additional rule to ensure the so-called ‘permeation of disjointness’, which states 
that subsets of disjoint sets are also disjoint: 
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[subclass_also_disjoint: 

         (?s1 inf:subClassOf ?s2)  

         (?s2 inf:disjointWith ?s3) -> (?s1 inf:disjointWith ?s3)] 

The partially refines relation needs a specific approach since it is a special combination of the 
refines and contains relations. Two  rules for the partially refines relation are the following: 

[temp_req_to_p_ref1:  (? r1 partially_refines ? r2 )  

                                                             <-   (?r1 refines ?rt) 

                                                                    (?r2 contains ?rt) 

                                                                    (?rt isTemporary ’ true ’^^ xsd:boolean )] 

 

[temp_req_to_p_ref2:  (?r1 partially_refines ?r2) 

                                                            <-   (?rt contains ?r1) 

                                                                   (?rt refines ?r2) 

                                                                   (?rt isTemporary ’ true ’^^ xsd:boolean )] 

Since we need to distinguish the temporary requirement from the given requirements, we 
added a data type property named isTemporary to the Requirement type. By using the term 
(?rt isTemporary ’true’^^xsd:boolean) we make sure the variable ?rt is bound to a temporary 
requirement. 

The rules above only match on a temporary requirement. These two rules are of a different 
type than the other rules. They use ’<-’, and have the concluding terms before the matching 
terms. This type of rule is called a backward rule, as opposed to the forward rules. Backward 
rules can be seen as ‘goal-driven’ rules because they match and execute when the reasoning 
engine queries to satisfy a certain goal. Forward rules are ‘data-driven’. They trigger on given 
data to infer new triples. 

Mapping Requirements Relations to Relations between Formulas. We map the 
requirements relations contains, refines, and partially refines to the relations between the 
formulas. First we define the relations all-in-part, all-in-whole, some-implies-in, all-implies-in, all-
equals-in between formulas. We would like to capture the relations among clauses: implication 
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and just repetition, and also the coverage among clauses: either all clauses are related or part 
of them. Let xs and ys be sets of clauses in conjunctive normal form.  

(38) all-in-part(xs, ys)                                                                                                                

=def  For each clause cxs in CNF of xs, there is a distinct clause cys in CNF of ys where 

either cxs is equal2 to cys or cxs implies3 cys. The number of clauses in CNF of xs is 

smaller than the number of clauses in CNF of ys.  

(39) all-in-whole(xs, ys)                                                                                                              

=def  For each clause cxs in CNF of xs, there is a distinct clause cys in CNF of ys where 

either cxs is equal to cys or cxs implies cys. The number of clauses in CNF of xs is equal 

to the number of clauses in CNF of ys. 

(40) some-implies-in(xs, ys)                                                                                                          

=def  There is at least one clause cxs in CNF of xs where cxs implies a clause cys in 

CNF of ys and cxs is not equal to cys. 

(41) all-implies-in(xs, ys)                                                                                                            

=def  For each clause cxs in CNF of xs, there is a distinct clause cys in CNF of ys where 

cxs implies cys and cxs is not equal to cys. 

(42) all-equals-in(xs, ys)                                                                                                  

=def  For each clause cxs in CNF of xs, there is a distinct clause cys in CNF of ys where 

cxs is equal to cys. 

We have the following mappings: 

all-in-whole(P1, P2)   some-implies-in(P1, P2) iff  R1 refines R2 

all-in-part(P1, P2)   all-implies-in(P1, P2) iff  R1 partially-refines R2 

all-in-part(P2, P1)   all-equals-in(P2, P1) iff  R1 contains R2 

                                              
2 If two formulas have the same predicate symbols and arguments, these two formulas are equal. 
3 The logical connective implies in first-order logic. 
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The following is the Jena rule that maps the refines relation to the all-in-whole and some-implies-in 
formula relations: 

[map_refines_to_formulas:  

               (?r1 mm:refines ?r2)            

               (?p1 inf:formulas ?r1)  

               (?p2 inf:formulas ?r2)   ->   (?p1 cons:all_in_whole ?p2) 

                                                          (?p1 cons:some_implies_in ?p2)] 

The rule states that if ?r1 refines ?r2, ?p1 is a formula of ?r1 and ?p2 is a formula of ?r2, then 
we have (?p1 all-in-whole ?p2) and (?p1 some-implies-in ?p2). Another rule maps the all-in-
whole and some-implies-in formula relations to the refines relation:  

[map_formulas_to_refines:  

               (?p1 cons:all_in_whole ?p2)            

               (?p1 cons:some_implies_in ?p2 ) 

               (?p1 inf:formulas ?r1)  

               (?p2 inf:formulas ?r2)   ->   (?r1 mm:refines ?r2)] 

The rule states that if we have (?p1 all-in-whole ?p2) and (?p1 some-implies-in ?p2) where ?p1 
is a formula of ?r1 and ?p2 is a formula of ?r2, then ?r1 refines ?r2. 

The following is the Jena rule that maps the partially refines relation to the all-in-part and all-
implies-in formula relations: 

[map_part_ref_to_formulas:  

               (?r1 mm:partially_refines ?r2)            

               (?p1 inf:formulas ?r1)  

               (?p2 inf:formulas ?r2)   ->   (?p1 cons:all_in_part ?p2) 

                                                          (?p1 cons:all_implies_in ?p2)] 
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The rule states that if ?r1 partially refines ?r2, ?p1 is a formula of ?r1 and ?p2 is a formula of 
?r2, then we have (?p1 all-in-part ?p2) and (?p1 all-implies-in ?p2). Another rule maps the all-
in-part and all-implies-in formula relations to the partially refines relation: 

[map_formulas_to_part_ref:  

               (?p1 cons:all_in_part ?p2)            

               (?p1 cons:all_implies_in ?p2) 

               (?p1 inf:formulas ?r1)  

               (?p2 inf:formulas ?r2)   ->   (?r1 mm:partially_refines ?r2)] 

The rule states that if we have (?p1 all-in-part ?p2) and (?p1 all-implies-in ?p2) where ?p1 is a 
formula of ?r1 and ?p2 is a formula of ?r2, then ?r1 partially refines ?r2. 

The following is the Jena rule that maps the contains relation to the all-in-part and all-equals-in 
formula relations: 

[map_contains_to_formulas:  

               (?r1 mm:contains ?r2)            

               (?p1 inf:formulas ?r1)  

               (?p2 inf:formulas ?r2)   ->   (?p2 cons:all_in_part ?p1) 

                                                          (?p2 cons:all_equals_in ?p1)] 

The rule states that if ?r1 contains ?r2, ?p1 is a formula of ?r1 and ?p2 is a formula of ?r2, 
then we have (?p2 all-in-part ?p1) and (?p2 all-equals-in ?p1). Another rule maps the all-in-part 
and all-equals-in formula relations to the contains relation:  

[map_formulas_to_contains:  

               (?p2 cons:all_in_part ?p1)            

               (?p2 cons:all_equals_in ?p1) 

               (?p1 inf:formulas ?r1)  

               (?p2 inf:formulas ?r2)   ->   (?r1 mm:contains ?r2)] 
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The rule states that if we have (?p2 all-in-part ?p1) and (?p2 all-equals-in ?p1) where ?p1 is a 
formula of ?r1 and ?p2 is a formula of ?r2, then ?r1 contains ?r2. 

We have the following properties for the formula relations: 

all-in-whole, all-in-part, all-implies-in, and some-implies-in relations are transitive 

all-in-part and all-in-whole relations are disjoint 

all-equals-in and some-implies-in are disjoint 

all-equals-in and all-implies-in are disjoint 

We have the following inferences for the relations between formulas: 

(P1 all-in-part P2)   (P2 all-in-whole P3)  (P1 all-in-part P3) 

(P1 all-in-whole P2)   (P2 all-in-part P3)  (P1 all-in-part P3) 

(P1 some-implies-in P2)   (P2 all-implies-in P3)  (P1 all-implies-in P3) 

(P1 all-implies-in P2)   (P2 some-implies-in P3)  (P1 all-implies-in P3) 

(P1 some-implies-in P2)   (P2 all-equals-in P3)  (P1 some-implies-in P3) 

(P1 all-implies-in P2)   (P2 all-equals-in P3)  (P1 all-implies-in P3) 

(P1 all-equals-in P2)   (P2 all-implies-in P3)  (P1 all-implies-in P3) 

We manually check the combinations of the formula relations to derive the inferences given 
above and to check the completeness of the inferences. The properties and inferences for 
the formula relations are implemented with the Jena rule language like in the following:  

[formula_rule_1: (?p1 cons:all_in_part ?p2) 

                           (?p2 cons:all_in_whole ?p3) -> (?p1 cons:all_in_part ?p3)] 

The rule states that if (?p1 all-in-part ?p2) and (?p2 all-in-whole ?p3), then we have (?p1 all-in-
part ?p3). The rest of the Jena rules for the properties and inferences for the formula 
relations can be found in Appendix C. 

Inferencing. The requirements relations are mapped to facts which concern set and formula 
relations. The Jena reasoner is capable of automatically inferring new facts based on the 
properties of the facts and inferences encoded in the Jena rule language. The inferred facts 
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are mapped back to the requirements relations. For the following inference rule we show 
how new facts are automatically inferred and mapped back to the relations. 

 (R1 partially-refines R2)   (R1 contains R3) → (R3 partially-refines R2) 

(R1 partially refines R2) is mapped to facts which concern formula relations with the 
following Jena rule: 

[map_part_ref_to_formulas:  

               (?r1 mm:partially_refines ?r2)            

               (?p1 inf:formulas ?r1)  

               (?p2 inf:formulas ?r2)   ->   (?p1 cons:all_in_part ?p2) 

                                                          (?p1 cons:all_implies_in ?p2)] 

Since R1 partially refines R2, we have (p1 all-in-part p2) and (p1 all-implies-in p2) where p1 is a 
formula of R1 and p2 is a formula of R2. (R1 contains R3) is mapped to the formula relations 
with the following Jena rule: 

[map_contains_to_formulas:  

               (?r1 mm:contains ?r2)            

               (?p1 inf:formulas ?r1)  

               (?p2 inf:formulas ?r2)   ->   (?p2 cons:all_in_part ?p1) 

                                                          (?p2 cons:all_equals_in ?p1)] 

Since R1 contains R3, we have (p3 all-in-part p1) and (p3 all-equals-in p1) where p1 is a formula 
of R1 and p3 is a formula of R3. The all-in-part relation is transitive. The reasoner takes (p3 all-
in-part p1) and (p1 all-in-part p2), and infers (p3 all-in-part p2). The facts (p3 all-equals-in p1) 
and (p1 all-implies-in p2) are matched by the following Jena rule: 

[formula_rule_7: (?p1 cons:all_equals_in ?p2)  

                           (?p2 cons:all_implies_in ?p3)   ->   (?p1 cons:all_implies_in ?p3)]            

(p3 all-implies-in p2) is inferred. We have (p3 all-in-part p2) and (p3 all-implies-in p2) as 
inferred facts. These inferred facts are mapped to the partially refines relation by the following 
rule: 
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[map_formulas_to_part_ref:  

               (?p1 cons:all_in_part ?p2)            

               (?p1 cons:all_implies_in ?p2) 

               (?p1 inf:formulas ?r1)  

               (?p2 inf:formulas ?r2)   ->   (?r1 mm:partially_refines ?r2)] 

We have (R3 partially-refines R2) as inferred.   

Consistency Checking. The reasoner is capable of automatically identifying contradicting 
facts. The following is a proof of one of the consistency checks that uses the formula 
relations. 

Inconsistency: (R1 refines R2)   (R1 contains R2) 

Proof: Let R1 refines R2. 

= {By mapping the refines relation to all-in-whole and some-implies-in relations} 

(P1 all-in-whole P2)   (P1 some-implies-in P2)                                      (a) 

Let R1 contains R2.                                                                                

= {By mapping the contains relation to part-of and not-imply relations}                        

(P2 all-in-part P1)   (P2 all-equals-in P1)                                              (b) 

The all-in-whole relation in (a) and all-in-part relation in (b) are disjoint. They cannot 
exist between the same formulas together. The all-equals-in relation is symmetric and it 
contradicts the some-implies-in relation for the same formulas. Therefore, (R1 refines R2) 
and (R1 contains R2) contradict one another. 

The Jena rules for consistency checking can be found in Appendix D. We manually check 
the combinations of the formula relations to derive the consistency checking rules and to 
check the completeness of the rules. The following is one of the Jena rules for consistency 
checking:  

[all_in_whole__contradicts__all_in_part:  

       (?p1 cons:all_in_whole ?p2)  
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       (?p2 cons:all_in_part ?p1) -> addInconsistency('all-in-whole_all_in_part', ?p1, ?p2)] 

The rule states that if (?p1 all-in-whole ?p2) and (?p2 all-in-part ?p1), then there is an 
inconsistency.  

4.6 Tool Support 

We built a tool named TRIC (Tool for Requirements Inferencing and Consistency checking) 
for automatic inferencing and consistency checking [254]. TRIC and an example 
requirements model can be downloaded from [245]. In this section, we give the details of the 
tool. In Section 4.6.1, we describe the usage of the tool in the context of a modeling process. 
Section 4.6.2 gives the architecture of the tool. Section 4.6.3 describes the main features of 
the tool with some screenshots. 

4.6.1 The Modeling Process 
We depict the usage of the tool in a modeling process with inferencing and consistency 
checking. This process is based on the analysis of activities during modeling of requirements 
and their relations. Figure 4.3 gives a UML activity diagram of the process. 

The process consists of the following activities: 

Modeling. This activity takes the requirements document as input and produces the 
requirements model which is an instance of the requirements metamodel. The requirements 
model contains requirements and their relations. The definitions given in Section 4.3 are 
used to specify the requirements relations. 

Inferencing and Consistency Checking. The modeling process is forked into two 
activities: consistency checking and inferencing. These two activities are processed in parallel. The 
requirements model is updated with inferred relations. Inconsistent parts of the model are 
determined, if there are any. Inferencing and consistency checking enrich the set of 
requirements relations in the requirements model. These two activities are combined because 
the consistency checking uses the machinery for inferencing and also checks the 
inconsistencies among inferred relations as well as among given relations. 
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Figure 4.3 Modeling Process with Consistency Checking and Inferencing 

Iterating. The process given in Figure 4.3 is iterative: the requirements engineer may return 
to the modeling activity in order to fix inconsistencies and/or input new requirements and 
relations. If there is no need to update the model, the process is terminated. 

4.6.2 Tool Architecture 
The tool architecture is composed of three layers (see Figure 4.4): a) the User Interface (UI) 
layer, b) the Application Layer, and c) the Data Layer. 

User Interface (UI) Layer. This layer supports the modeling activity. The user interface is 
implemented by using the Eclipse Rich Client Platform (RCP) [218]. The output of the 
consistency checking and inferencing is represented in a table form. The JGraph library [131] 
is used for the graphical visualization of this output. The layer provides the following: 

 A form-based editor to enter and modify requirements 

 An editor to enter and modify relations between requirements 

 A matrix view of requirements in the model 

 The control of the services provided by the application layer 
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Figure 4.4 Layered Architecture of the Tool 

Application Layer. This layer performs the main activities given in Figure 4.3: consistency 
checking and inferencing. It contains the components Modeling Environment, Inferencing Engine, 
Consistency Checking Engine, and Visualization Engine. The components provide the following 
functionalities: 

 Modeling Environment: allows the creation, storage, and retrieval of requirements 
models, and bridging the User Interface layer with the Data layer. 

 Inferencing Engine: infers all implicit relations between requirements, and keeps track of 
given and inferred relations. 

 Consistency Checking Engine: allows checking consistency of relations. 
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 Visualization Engine: accesses the Data layer in order to get requirements and relations 
to be visualized in diagrams. The visualization is done by JGraph in the User 
Interface layer. 

The Inferencing Engine component also implements the mappings between requirements 
relations and their definitions in the formalization. These mappings are required to 
implement consistency checking and inferencing. 

Data Layer. The entered requirements and their relations are stored as an OWL ontology 
[62] which consists of the requirements metamodel and its instance model in the same file. 
Therefore, we can use the existing reasoners developed for the semantic web environment. 
Our formalization is directly mapped to the language features of OWL like transitivity and 
symmetry of properties. Reasoning on requirements models is done on OWL ontologies. We 
used Jena [130], a programmatic environment for processing OWL data, with a rule-based 
inference engine. The engine performs consistency checking and inferencing. One of the 
advantages of Jena is that it provides derivation trace analysis. The analysis is used in one of 
the main facilities of the tool: explaining results of inferencing and consistency checking. We reason on 
copies of the given ontology in order to prevent the pollution of the given requirements 
ontology with inferred relations and inconsistencies. The Data Access Objects (DAO) 
component is responsible for reading and manipulating models without any dependency on 
data format. 

4.6.3 Tool Features 
We describe the most important features of the tool: managing requirements (add, update, delete 
requirements and relations), displaying inconsistencies & inferred relations, and explaining the results of 
reasoning. 

Managing requirements. We can add new requirements and update or delete existing 
requirements. Figure 4.5 gives the GUI for managing requirements which supports the 
modeling activity in Figure 4.3. 
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Figure 4.5 GUI for Managing Requirements and Relations 

The left-hand side of the window lists the entered requirements. The right-hand side of the 
window shows details of the selected requirement (R3). The tool gives a warning if a deleted 
given relation is inferred by the inferencing engine. The Relate requirements window opened by 
the Add new relation(s) button is used to select related requirements and relation types. 

The tool provides a matrix view in order to represent and manage requirements and 
relations. Such a view is also available in commercial requirements management tools, such 
as RequisitePro. Figure 4.6 illustrates the matrix view feature of our tool. 
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Figure 4.6 Matrix View for Managing Requirements and Relations 

 

Figure 4.7 Visual Editor for Managing Requirements and Relations 
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The arrows with direction in the cells denote the existence of requirements relations with 
their directions. Since there might be multiple relations between two requirements, the tool 
provides the Relate requirements window, which is similar to the window in Figure 4.5. 

The matrix view is less usable for large models. We provide a visual editor (see Figure 4.7) in 
order to improve the usability of the tool for large models. The requirements engineer can 
select a smaller set of requirements to be shown in a graph. 

Displaying inconsistencies and inferred relations. Figure 4.8 gives the screenshot of the 
tool for output of the inferencing activity. 

 

Figure 4.8 Output of the Inferencing Activity 

The highlighted relations (conflicts and requires) in the right part of the window are the inferred 
relations for the requirement R18. The tool detects contradictions in the model. Figure 4.9 
gives the screenshot of output of the consistency checking activity. 
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Figure 4.9 Output of the Consistency Checking Activity 

The left part of the window gives descriptions of the inconsistencies; the right part gives the 
contradicting relations. 

Explaining results of reasoning. The requirements engineer may need further explanation 
of the result from the reasoning in order to update the requirements model. The tool 
visualizes how inferred relations are derived (see Figure 4.10). 

In Figure 4.10, the derivation of the conflicts relation between requirements R8 and R59 
(dashed arrow) is visualized. Note that this conflicts relation is not an inconsistency itself. 
The solid arrows indicate the given relations used in the derivation. 

The tool also provides an explanation of contradicting relations, for example the 
inconsistency for requirements R11 and R48 (see Figure 4.11). 
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Figure 4.10 Explanation of the Inferred Conflicts Relation between R8 and R59 

 

Figure 4.11 Explanation of the Inconsistency for R11 and R48 
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The solid arrow (the requires relation) indicates the given relation in the inconsistency; the 
dashed arrow (the conflicts relation) denotes the inferred relation in the inconsistency. The 
Show visualization button is used to visualize the derivation of the inferred conflicts relation 
(see Figure 4.12). Since the set of contradicting relations like in Figure 4.11 may contain 
inferred relations, the visualization in Figure 4.12 helps the requirements engineer to resolve 
contradictions by identifying all given relations causing the inconsistency. 

 

Figure 4.12 Explanation of the Inferred Conflicts Relation in the Inconsistency 

Another visualization option provided by the tool is to visualize the requirements related to a 
selected requirement at a given depth. Depth is the maximum number of relations between 
the requirement and its related requirements in the shortest path. Figure 4.13 shows the 
requirements related to the requirement R5 at depth 2. 
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Figure 4.13 Visualization of the Related Requirements for R5 with Depth 2 

This visualization option allows showing only a part of the requirements model. It is useful 
for large models where the matrix view does not scale well. 

4.7 Example: Course Management System 

In this section, we illustrate our approach and tool support with the CMS example. The 
CMS requirements document was prepared as a result of a discussion by QuadREAD 
project members who took the role of stakeholders. No particular inconsistencies and 
conflicts were inserted intentionally. We aimed at detecting inconsistencies and conflicts as a 
result of the modeling process. All requirements used in this chapter can be found in 
Appendix B. We performed two iterations of the modeling process for the example. 

 In the first iteration, we modeled the textual requirements and their relations 
according to the semantics of relation types. We analyzed given and inferred relations 
and inconsistencies by using the outputs of the tool. The requirements engineer 
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identifies which relations are valid or invalid based on his/her knowledge of the 
application domain and the semantics of the relations. He or she decides how to 
correct invalid given relations by using the feature for explaining the output of 
reasoning. 

 In the second iteration, we updated the model in order to correct the invalid 
relations. The validity of relations in the model was checked according to the 
semantics of the relation types. This checking is dependent on the requirements 
engineer’s interpretation of the semantics of the relations. 

It should be noted that the conclusions from the example cannot be generalized for our 
approach, since we still need to apply the approach to a number of industrial and academic 
case studies with empirical results. The example illustrates potential benefits and limitations 
of the approach for larger case studies. Section 4.7.1 presents the overall results of the two 
iterations. Section 4.7.2 gives some inferred relations in the example. In Section 4.7.3, we 
show some inconsistencies detected in the example requirements model. 

4.7.1 Modeling the Requirements 
The requirements in the document are grouped by their stakeholders, which are Student, 
Lecturer, System Maintainer, and Administration. The functional and non-functional 
requirements are separated in the requirements document. There are 122 requirements (94 
functional and 28 non-functional requirements). In the document, relations between 
requirements are not stated explicitly. 

In the first iteration, we modeled the document according to our relation types by 
interpreting the requirements in the document. The execution of the inference engine 
inferred new relations based on the given relations. As a second step, we run the consistency 
checker for the requirements model. 

The tool reported 32 inconsistent parts in the requirements model. An inconsistent part is a 
set of relations whose existence causes a contradiction. For example, the conflicts and requires 
relations between R29 and R97 cause a contradiction. The output for one of the inconsistent 
parts is given below: 

Inconsistency 

Description: “Both conflicts and requires relations” 

Contradicting relations:  

              R29 requires R97 (inferred relation) 
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              R29 conflicts R97 (inferred relation) 

In the second iteration, we used the tool feature for explaining the results of reasoning. The 
feature provides derivation trace analysis of inconsistent parts of the model. Based on this 
information, we discovered that there are five invalid given requires relations, one refines 
relation is actually a contains relation, and one contains relation is actually a partially refines 
relation in the example. Deleting and updating these relations results in a consistent 
requirements model. The number of inferred relations is reduced. Table 4.1 gives the 
number of given and inferred relations, and the number of inconsistencies in the first and 
second iteration for the CMS example. 

Table 4.1 Number of Relations and Inconsistencies in the Example 

 Number of Relations per Relation Type  Number

of 

Inconsistencies

Refines Partially 
Refines

Requires Contains Conflicts Total 

First 

Iteration 

Given 41 9 42 14 17 123 32

Inferred 3 10 122 0 103 238 

Second 

Iteration 

Given 40 10 37 14 17 118 0

Inferred 3 10 86 0 13 112 

 

In the first iteration there are 225 conflicts and requires relations of 238 inferred relations. 
Updating the model in the second iteration in order to fix the inconsistencies eliminates the 
inferred invalid conflicts and requires relations. 

In the second iteration, reasoning on the requirements model resulted in 112 inferred 
relations from 118 given relations. There are 86 requires relations of 112 inferred relations. 
From the formalization of relation types, we know that the contains and refines relations imply 
the requires relation in the requirements model. Therefore, we were expecting that the 
number of inferred requires relations would be more than the total number of given contains 
and refines relations. Fifty-four of these 86 inferred requires relations are inferred from the 
given contains and refines relations. Other requires relations are inferred by using the transitive 
property of the requires relation and the combination of the requires relation with contains and 
refines relations. 
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As a result of reasoning, we have 13 inferred conflicts relations from 17 given conflicts relations. 
All these conflicts relations are inferred because of the combination of the conflicts relation with 
the requires and contains relations. 

In the requirements document, the containment hierarchy has only one level. Since the 
transitive property of the contains relation is the only way to infer the contains relation 
according to its semantics, the tool does not infer any new contains relations. We have only 
three inferred refines relations from 40 given refines relations by using the transitive property 
of the refines relation. On the other hand, 10 partially refines relations are inferred from 10 
given partially refines relations. 

4.7.2 Inferring Requirements Relations 
In this section, we describe some inferred relations in the example. The example in Figure 
4.14 illustrates the inferencing for the following requirements: 

R5: The system shall be able to store dynamic course information. 

R6: The system shall be able to represent dynamic course information. 

R26: The system shall allow students to view course grade statistics per semester. 

In the glossary of the requirements document (see Appendix B), dynamic course 
information is expressed as information (news messages, archived files, and roster) about a 
course which changes while a course is given. In the requirements model, the following 
relations are given: (R26 refines R6) and (R6 requires R5). When we run our tool over the 
requirements model, the relation (R26 requires R5) is inferred (dashed line in Figure 4.14). 

 

Figure 4.14 Example with Inferred Requires Relation 

Grade statistics are dynamic course information. The system needs to store dynamic course 
information in order to allow students to view course grade statistics per semester. 
Therefore, we confirm that the inferred relation (R26 requires R5) is a valid relation in the 
model. 
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The interpretation of requirements depends on the requirements engineer. In the example, 
we discovered some invalid given relations. The tool feature for explaining the inferencing 
results supports our analysis of (in)valid given relations based on inferred relations. Figure 
4.15 depicts the analysis of one inferred relation to identify invalid given relations. 

 

Figure 4.15 Analysis of the Inferred Relation to Identify Invalid Given Relations 

Although there is an inferred conflicts relation between requirements R8 and R59, these two 
requirements are not in conflict. These requirements are the following: 

R8: The system shall enable students to retrieve contact information of students and 
lecturers of subscribed courses. 

R59: The system shall allow lecturers to manage static course information. 

When we analyzed the given relations used to infer conflicts relations in Figure 4.15, we 
concluded that the given relation (R11 requires R97) is not a valid relation. These two 
requirements are the following: 

R11: The system shall enable students to subscribe to and unsubscribe from courses. 

R97: The system shall allow only the administration to manage courses. 

R11 does not require R97 to be fulfilled. The invalid input causes the invalid output of the 
inferencing. The tool helps to identify candidate invalid given relations in the example. 

4.7.3 Checking Consistency 
In the previous section we treated conflicts relations, which are modeled by the requirements 
engineer. Here, we discuss inconsistencies, that is, contradictions among relations which are 
detected by our tool. We will depict how we fix an inconsistent part by using the output of 
our tool. The example in Figure 4.16 illustrates this part. The requirements are: 

R11: The system shall enable students to subscribe to and unsubscribe from courses. 

R48: The system shall allow lecturers to create courses. 

The consistency checking engine reports that conflicts and requires relations between R11 
and R48 cause a contradiction. The relation (R11 requires R48) is a given relation. When we 



4.8 Related Work 103 

 

re-analyzed requirements R11 and R48, we concluded that this requires relation is an invalid 
relation. Since there might be hard coded courses in the system, the students can subscribe 
to and unsubscribe from these courses without any need to create courses. 

 

Figure 4.16 Inconsistent Part in the Example Model 

Since the relation (R11 conflicts R48) is an inferred relation, we need derivation trace 
analysis for this relation. Figure 4.17 gives the analysis of the inferred relation in the 
inconsistent part of the model. 

 

Figure 4.17 Analysis of the Inferred Relation in the Inconsistent Part of the Model 

When we checked the given relations in Figure 4.17, we found that the given relation (R11 
requires R97) is an invalid relation, modeled incorrectly in the first iteration. This is the same 
relation we identify in the analysis of the inferred relation in Figure 4.15. We removed the 
requires relation between R11 and R97 to fix the inconsistent part in Figure 4.16. This 
example illustrates how the tool helps localizing invalid relations. 

4.8 Related Work 

We classify the related work in four categories: Requirements Relations, Requirements 
Metamodeling, Requirements Reasoning, and Tool Support. 

4.8.1 Requirements Relations 
We studied literature about requirements relation types and their semantics. Dahlstedt and 
Persson [59] address requirements relations (they call a relation an “interdependency”) from 
a traceability perspective. They give an overview of requirements relations research and 
present a model of fundamental relation types. There is a classification (structural, constrain, 
and cost/value interdependencies) of fundamental interdependency types which includes some of 
the relations (refines, requires, and conflicts) we also use in our approach. The need to 
understand the nature of requirements relations and their influence on software 
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development activities such as change management are stated. However, there is no formal 
semantics for the relations. Carlshamre et al. [43] run an industrial survey of requirements in 
software product release planning. Their aim is to learn about the nature of 
interdependencies in general, to be able to classify them, and to assess the relative frequency 
of different classes. The results show that roughly 20% of the requirements are responsible 
for 75% of the interdependencies and only a few requirements are singular. It is expected to 
find conflicting requirements in the survey, since this relation is common in the literature. 
However, no such dependencies are identified. Apparently conflicts had already been 
eliminated in the documents. 

Although the two studies mentioned above motivate the need for requirements relations, no 
much attention is paid for how to give formal semantics of the relations. Aizenbud-Reshef et 
al. [6] state the need for semantics of traceability links in general. They present an approach 
to defining operational semantics for traceability in UML which captures more precisely the 
intended meaning of various types of traceability. The main goal is achieving automated 
consistency management of UML models. The semantic property of a traceability 
relationship is a triplet (event, condition, and actions). This triplet is very much dependent on 
change impact analysis. For instance, an event indicates a change in a model. Conditions help 
to differentiate between events. Actions describe what should and should not be done when 
a specific event has occurred. Therefore, it is hard to use the semantics in [6] for other 
purposes like inferencing and consistency checking of trace relations. On the other hand, the 
semantics formalized with FOL in this chapter can be considered as more general and 
suitable for different purposes. In [96] and [95], we use our semantics for inferencing, 
consistency checking, and change impact analysis in requirements models. 

Lee et al. [152] studies relationships between soft functional requirements based on fuzzy 
logic. The types of relations between soft functional requirements are classified as conflicting, 
irrelevant, cooperative, counterbalance and independent. These relation types are formalized by using 
fuzzy logic. Contrary to our approach, the relation types in [152] are specialized for 
imprecise requirements and they are used for trade-off analysis.  

The survey in [222] introduces Requirements Interaction Management (RIM), which is 
concerned with the analysis and management of dependencies among the requirements. One 
of the activities in RIM, is reasoning on requirements interactions. Conflict detection 
methods for reasoning are introduced in five categories: domain model, theorem model, scenario 
analysis, modeling checking and executing monitoring methods. We consider our work in the scope 
of the domain model method. The domain model method is summarized in the survey that a 
domain model of system requirements interactions is used to identify interactions at the 
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requirement level. We consider that our requirements metamodel is our domain model of 
requirements relations which stand for requirements interactions to identify relations 
between requirements. 

4.8.2 Requirements Metamodeling 
A number of approaches in MDE address modeling requirements and their relations from a 
traceability perspective. Vicente-Chicote et al. [255] describe a requirements metamodel and 
a modeling environment. The environment supports: graphical requirements models, their 
validation against the metamodel and against a set of constraints written in Object 
Constraint Language (OCL), and automatic generation of a navigable Software 
Requirements Specification document (SRS). In the requirements metamodel, there are three 
types of trace links between requirements: DependenceTrace, InfluenceTrace, and ParentChildTrace. 
The relations are defined informally. 

Baudry et al. [17] introduce a metamodel for requirements and present how they use it on 
top of a constrained natural language for requirements definitions. The requirements 
metamodel captures functional requirements as use cases with pre-conditions and post-
conditions that constrain the activation of use cases. Operations are added in the metamodel 
in order to simulate requirements models. The goal of the simulation is to instantiate the use 
cases, replacing the formal parameters with actual values defined in an initial configuration. 
The metamodel does not capture the static part of requirements. It does not have the notion 
of requirements relations. On the other hand, our approach covers the static aspects of 
requirements including non-functional requirements and reasoning on requirements 
relations. In [37], a model-driven mechanism is proposed to merge different requirement 
specifications and reveal inconsistencies between them by using a requirements metamodel. 
The requirements metamodel is mainly used to produce a requirements model from a given 
requirements document. Requirements relations are not typed and lack semantics. 
Consistency checking and inferencing for requirements relations are not supported. 

Some authors [111] [236] use the UML profiling mechanism in a goal-oriented requirements 
engineering approach. Heaven et al. [111] introduce a profile that allows the KAOS model 
[250] to be represented in UML. They also provide an integration of requirements models 
with lower level design models. Supakkul et al. [236] use the UML profiling mechanism to 
provide an integrated modeling language for functional and non-functional requirements 
that are mostly specified by using different notations. These two works aim at a metamodel 
for goal-oriented requirements engineering rather than reasoning over requirements. 

SysML [200] [231] uses the UML profiling mechanism to provide modeling constructs that 
represent text-based requirements and relate them to other modeling elements. The relation 
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types for requirements in SysML are derive, copy, and contain. SysML also provides a stereotype 
mechanism that allows the requirements engineer to specify their own relation types. The 
main goal of SysML requirements diagrams is to represent the requirements and their 
relations. Formal semantics of relation types is not considered. The definitions of the 
relations tend to be ambiguous. No reasoning facility for requirements is provided. 

Vogel and Mantell [256] provides a UML profile that allows the modeling of stakeholders, 
requirements and test cases. The profile has two parts: Stakeholders and Requirements. The first 
part includes entities for types of stakeholders such as User, Project Stakeholder, Supplier and 
Customer. The second part of the profile contains entities for TestCase and types of 
requirements such as Performance Requirement and Functional Requirement.  The profile contains 
entities similar to entities in our requirements metamodel. However, there is no requirements 
relation in [256].  

COMET [55], a requirements modeling method, provides a requirements metamodel which 
is an extension to the use case concept of UML. COMET considers the UML use cases as 
the only requirements specification method. The requirements metamodel includes a use 
case entity with interacting roles, scenario which is the detailed description of the use case, 
goal entity, and the requirement entity represented by the use case. Requirements relations 
are not represented in the requirements metamodel of COMET.  

Navarro et al. [189] propose a customization approach for requirements metamodels. They 
propose a core requirements metamodel which is generic and considers only Artifact and 
Dependency as core entities. The metamodel does not contain concrete types for requirements 
relations. This disallows the application of inference rules for the core relations to 
customized entities. The Requirements Interchange Format (RIF) [220] structures 
requirements and their attributes, types, access permissions, and relationships. It is defined as 
an XML schema. Its data model has generic entities and relations like Information Type, 
Association, and Generalization. These entities can be formalized to reason about requirements 
and their relations. Ramesh et al. [215] propose reference models for requirements 
traceability. The models include basic entities like Stakeholder, Object, and Source. Relations 
between different software artifacts and requirements are captured. 

Some papers address domain-specific requirements models. Koch et al. [143] propose a 
requirements metamodel specialized for Web systems. They identify the general structure of 
Web systems in order to define the requirements metamodel. The requirements metamodel 
for web requirements, presented by Escalona and Aragon [75], is divided into two packages: 
the Behavior and the Structure. In the behavior package, concepts such as WebActor and 
WebUseCase related to the behavior of the system presented. In the structure package, any 
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information storage for the system is represented. Molina et al. [180] [181] propose another 
web engineering requirements metamodel as an extension that can be integrated with 
existing web engineering methodologies. A tool is provided as an eclipse plug-in that 
accompanies the metamodel presented in [180] [181]. The metamodel is extended with 
general security concepts in [226] in order to define a domain specific language for security 
requirements. In [178], Molina presents a measurable requirements metamodel which 
extends the requirements metamodel in [180] [181]. The measurable requirements 
metamodel supports the elicitation of measurable requirements based on the explicit 
connection of goals, requirements, and measures. Moon et al. [183] propose a methodology 
for producing requirements that can be considered as a core asset in the product line. Ceron 
et al. [44] discuss requirements modeling in the context of product lines. They propose a 
metamodel for requirements that contains both the common and variable parts. Lopez et al. 
[164] propose a metamodel for requirements reuse as a conceptual schema to integrate 
semiformal requirement diagrams into a reuse strategy. The requirements metamodel is used 
to integrate different abstraction levels for requirements definitions. All these domain-
specific approaches aim at providing a structure for representing requirements and their 
relations. Some of them do not contain types of requirements relations and most of them 
only provide informal definitions of their relations. 

In [179] there is a review of requirements metamodels in literature. Loniewski et al. [162] 
presents a review of the use of requirements engineering techniques in Model-Driven 
Engineering. They do not focus on requirements metamodels but MDE approaches that use 
requirements metamodels are summarized and reviewed.  

4.8.3 Requirements Reasoning 
A number of approaches describe reasoning about requirements. Giorgini et al. [93] propose 
a formal framework for reasoning with goal models. A precise semantics is given for all goal 
relationships in a qualitative and numerical form. Label propagation algorithms that are 
shown to be sound and complete with respect to the axiomatization are introduced. Two 
main limitations are stated. One concerns the definition of contribution links and the labels 
assignment; the second is that the conflicts relation is not resolved. In general, the idea in 
[93] is similar to our approach. However, the presented reasoning framework is very specific 
to goal models. No reasoning facility and tool support is introduced.  

Zowghi et al. [268] [267] propose a logical framework for modeling and reasoning about the 
evolution of requirements. They characterize the properties correctness, completeness, and 
consistency of requirements in an evolutionary framework. The interaction of consistency 
and completeness with correctness during requirements evolution is discussed. Duffy et al. 
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[67] propose a logic-based framework for reasoning about requirements specifications based 
on goal-tree structures. The framework is based on goal decomposition supported by 
automated reasoning. Rodrigues et al. [223] propose a framework for the analysis of evolving 
specifications that enables reasoning in the presence of inconsistency. The work is 
complementary to our formalization since a tool that translates requirements given in the 
form of “if then else” rules into the disjunctive normal form for classical logic reasoning and 
cluster prioritization is provided. 

Heitmeyer et al. [113] propose consistency checking in requirements specifications for 
automatic detection of errors, such as type errors, non-determinism, missing cases, and 
circular definitions. The technique is based on requirements specifications expressed in the 
SCR (Software Cost Reduction) tabular notation. A formal requirements model that 
represents the system to be built as a finite-state automaton is provided. It defines a system 
state in terms of entities, a condition as a predicate on the system state, and an input event as 
a change which triggers a new system state. There are some consistency checks derived from 
the formal requirements model such as type correctness. Contrary to our approach, the 
formal requirements model requires modeling requirements in a very formal way in order to 
detect inconsistencies. The main focus is determining inconsistencies among requirements 
instead of inconsistencies among requirements relations. 

Finkelstein et al. [81] [194] describe a technique for inconsistency handling in requirements 
documents developed using multiple methods and notations for the same system. They 
combine the ViewPoints framework for perspective development and a logic-based 
approach to inconsistency handling. Partial specification knowledge in each ViewPoint is 
translated into first-order logic. Logical inconsistencies are identified. Then, some temporal 
logic rules are combined with the identified inconsistencies to specify inconsistency handling 
actions. Hunter et al. [117] present an adaptation of classical logic, which they term quasi-
classical (QC) logic that allows reasoning in the presence of inconsistency. This facilitates an 
analysis of inconsistent information. In our approach, inconsistencies are explained based on 
the derivation trace of relations. 

4.8.4 Tool Support 
Some requirements management tools support multiple requirements relation types. The 
INCOSE management tool survey [124] evaluates these tools according to the criterion 
traceability analysis, that is, what kinds of trace links the tools provide and what kinds of 
analyses are performed by the tools. According to the responses of tool vendors in the 
survey, current industrial tools mostly do not support reasoning about requirements 
relations. 
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IBM Rational RequisitePro [119] provides only two relation types between requirements: 
traceFrom and traceTo. Since these two relations indicate only the direction, they are very 
generic relations. In IBM Telelogic Doors [120], there is no predefined requirements 
relation. The requirements engineer can specify his or her own relation type. However, it is 
not possible to assign semantics to relation types created by the requirements engineer. The 
tool provides basic support for change impact analysis. It shows suspected relations when a 
requirement is updated. Borland Caliber [27] provides only one generic relation type for 
requirements. This type can be used for different purposes such as part-whole and 
refinement. The reasoning facilities of the tools IBM Rational RequisitePro, IBM Telelogic 
Doors, and Borland Caliber are based only on the transitivity property of the relations. 
These tools do not support consistency checking of the relations. 

In TopTeam Analyst [246], there are four relation types. Three of these relations (traces into, 
impact, used in) are directed and one of the relations (trace) is undirected. This undirected 
relation is considered as a generic relation type for the other relation types. None of these 
relation types have formal semantics. The tool does not support any reasoning. 

We may conclude that some common industrial requirements tools do not support 
reasoning about relations between requirements or provide formal semantics for relation 
types. 

4.9 Conclusions 

There has recently been a growing interest in requirements traceability in the software 
engineering community and industry. Although considerable research has been devoted to 
linking requirements in both forward and backward directions, less attention has been paid 
to linking requirements with other requirements. In this chapter, we focused on 
requirements and requirements relations from a traceability perspective. A requirements 
metamodel including relation types with formal semantics was proposed. Existing 
requirements engineering approaches were surveyed in order to extract the metamodel. We 
provided semantics of trace relations with formalization in first-order logic. The 
formalization of relations was used in tool support for inferencing and consistency checking. 
We illustrated the approach and the tool in the Course Management System requirements 
document. 

The usage of the formal semantics of relation types enables new relations to be inferred and 
contradicting relations to be determined in requirements documents. There are still open 
issues. In some cases, relations do not cause any contradiction but violate some of the 
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constraints in the requirements engineering domain such as “every non-functional 
requirement should be related with at least one functional requirement”. These constraints 
may be valid only for a specific requirements engineering approach like goal-oriented 
requirements engineering. OCL could be used in order to specify these kinds of constraints 
in the requirements metamodel. However, further research is needed to specify these 
constraints. Apart from specifying constraints, there might be updates in the requirements 
metamodel. In the formalization of relations, we stated that the refines and contains relations 
imply the requires relation. This might be interpreted as a specialization relation between the 
requires, refines, and contains relations. 

Our approach uses the semantic web technologies OWL and Jena instead of MDE 
technologies such as model transformation languages and engines. OWL and Jena directly 
support inferencing by using basic properties like symmetry and transitivity. In contrast, in 
model transformation languages, we have to encode all basic properties and the logic behind 
them in order to have the same inferencing capability. 

Our current support is for textual requirements. We do not have any support for other 
requirements artifacts like use case or activity diagrams.  We improved the usability of the 
tool for large models with the visual editor which enables selecting requirements to be 
shown. However, there is still a need to test the usability of the tool for large requirements 
documents.  

In [96], we presented an approach for reusing the formalization of requirements relations for 
customization of the requirements metamodel. The main focus of the work in [96] is to 
customize the core requirements metamodel and to apply the inference rules written for the 
core relations to the customized relations. We showed how we could benefit from this 
approach by applying it to current requirements modeling approaches like SysML. Our tool 
needs to be extended to support this customization. 

The requirements attributes like priority and status can be included in our reasoning engine. 
For instance, we may define the constraint that a requirement cannot require another 
requirement whose priority is lower. 

In this chapter we answered Research Question 4 raised in Chapter 1: How to model requirements, 
software architecture and traces with their semantics for change management? What aspects of requirements, 
software architecture and traces should be modeled and how? How can we use the modeled aspects to reason 
about requirements, software architecture and traces? The entities Requirement and Relation in the 
requirements metamodel are the aspects of requirements to be modeled. These entities with 
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their semantics are used in inferencing and consistency checking to reason about 
requirements. 

The results in this chapter like requirements relation types, relation semantics, inferencing 
and consistency checking is the input for change impact analysis in requirements models. 
Chapter 5 presents an approach for using requirements relations and their semantics for 
change impact analysis in requirements models. TRIC is extended with features in order to 
apply semantics of relations in change impact analysis. For the evolution of requirements, we 
want to analyze the impact of requirements changes on software architectures. Chapter 6 
defines trace relations and their semantics in order to link requirements models to software 
architecture models with a similar approach presented in this chapter. 
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Chapter 5 

5 Change Impact Analysis in Requirements 
Models 

In this chapter, we provide an approach for change impact analysis in requirements models by using formal 
semantics of requirements relations and requirements change types. The classification of requirements changes 
is based on the structure of a textual requirement with formal semantics. The formalization of requirements 
relations and changes is used for propagating proposed changes and consistency checking of proposed changes in 
requirements models. Tool support for the approach is an extension of our Tool for Requirements Inferencing 
and Consistency Checking (TRIC). The main features of the tool are proposing changes, propagating 
proposed changes, checking consistency of proposed changes, and generating decision trees for reasoning about 
proposed changes. We illustrate our approach in an example which shows that the formal semantics of 
requirements relations and change classification provides more precise change impact analysis in requirements 
models.  

5.1 Introduction 

In Chapter 3 we analyzed the impacts explosion problem. It is observed that additional 
semantic information for requirements should be employed to increase the accuracy of 
impact analysis in requirements models. Chapter 4 focused on relations between 
requirements in requirements models (see Figure 5.1). Formal definitions of the relation 
types were provided in order to enable reasoning about requirements relations.  

When a change is introduced to a requirement, the requirements engineer determines if there 
is any impacted requirement. By using only the transitive closure of relations, the 
requirements engineer may conclude that all requirements in the model are impacted. 
Without any additional semantic information about the requirements relations and change, 
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he may have to analyze the whole requirements model for a single change. Furthermore, 
without considering semantics, change impact analysis may produce high numbers of false 
positives and false negatives. Consequently, the cost of implementing a change may become 
several times higher than expected. Assume that a change is introduced to Rn in Figure 5.1. 
The introduced change in Rn can be traced to other requirements R1, R2, and R3 by following 
the requirements relations. The requirements engineer has to inspect all these requirements 
to identify what to change in the requirements model. 

 

Figure 5.1 Requirements and Architectural Models Showing Within-model and Between-model Trace 
Relations 

In this chapter we provide a change impact analysis approach in requirements models based 
on formal semantics of requirements relations and requirements change types. Our approach 
increases the accuracy of impact analysis since it provides change alternatives in change 
propagation, elimination of false positives and consistency checking of changes. 

The classification of requirements changes is based on the structure of a textual requirement. 
Changes are formalized by giving their effects in terms of formula changes in the 
requirement. The rationale of changes affects the impact of a change. The rationale of 
changes is formalized in terms of formula changes in the requirements model. The 
formalization of requirements relations, changes and change rationale is used for propagating 
and consistency checking of proposed changes. Here, propagating proposed changes is the activity 
of deducing new proposed changes for requirements related to the requirement having a 
proposed change. Consistency checking is the activity of identifying the proposed changes 
whose existence may cause a contradiction. Change alternatives in change propagation and 
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consistency rules for proposed changes are determined based on the semantics of change 
types, requirements relations and rationale of changes. 

TRIC supports change impact analysis in requirements models. The tool supports three 
activities for impact analysis. First, the requirements engineer proposes changes according to 
the change classification before implementing the actual changes. Second, the requirements 
engineer indentifies the propagation of the changes to related requirements. Third, possible 
contradicting changes are identified.  

In this chapter we answer Research Question 5 raised in Chapter 1: How can a change in a 
requirement be propagated to other requirements and to software architecture? How can we support the 
requirements engineer and software architect for performing changes? How can we formally check if the evolved 
architecture satisfies evolved requirements? How can we become sure that traces are up-to-date? With the 
approach for change impact analysis in requirements models we address the issues about 
propagation of changes from a requirement to other related requirements.  

The chapter is structured as follows. Section 5.2 describes the approach. Section 5.3 presents 
classification of requirements changes with formal semantics. In Section 5.4, we describe the 
use of the formalization of requirements relations and requirements change types for change 
propagation and change consistency checking. The approach is discussed for the open issues 
in Section 5.5. Section 5.6 gives details about the tool support. Section 5.7 illustrates the 
approach by an example. Section 5.8 evaluates the approach. Section 5.9 summarizes the 
related work, and Section 5.10 concludes the chapter. 

5.2 Approach  

We provide an approach for more precise change impact analysis in requirements models by 
using formal semantics of requirements relations and requirements change types. We rely on 
the previously defined requirements metamodel with formal semantics. In addition, in this 
chapter the followings are elaborated: 

 Classification of requirements changes. To determine the granularity of change 
that can be applied to requirements, we use the structure of a textual requirement. 
With this structure, parts of the requirement to which a change is proposed are 
identified (Section 5.3). 

 Semantics of requirements changes. Changes are formalized by giving their effects 
in terms of formula changes in the requirement (Section 5.3).  
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 Rationale of requirements changes. Requirements changes might happen because 
of different reasons. Rationale of changes affects the change impact. Rationale of 
changes is formalized in terms of formula changes in the requirements model 
(Section 5.3).  

 Change propagation and change consistency checking. The approach identifies 
change alternatives in the propagation and consistency rules for proposed changes. 
Change alternatives and consistency rules are determined based on the semantics of 
change types, requirements relations and rationale of changes (Section 5.4). 

We provide tool support and illustrate the feasibility of our approach in an example. 

 Tool support. We describe the design and implementation of a prototype tool for 
proposing changes, propagating proposed changes, checking consistency of proposed 
changes, and implementing proposed changes in the requirements model (Section 
5.6). 

 Running example. The approach is illustrated with an example through the whole 
chapter (Section 5.7 is a complete example section). The example is about 
requirements for the Course Management System (CMS) that is also used in Chapter 
4. Part of this document is given in Appendix B. 

5.3 Classification of Changes in Requirements 

In this section, the structure of a textual requirement is mapped to our formalization of a 
requirement. Requirements changes are classified based on the textual requirement structure. 
Then, change types are formalized by giving their effects in terms of formula changes in the 
requirement. We discuss rationale of changes at the end of the section.  

5.3.1 Structure of a Textual Requirement 
We need to consider the structure of a requirement to determine the granularity of changes 
that can be applied. Heninger [114] mentions about six criteria which a software 
requirements document should satisfy: 

 It should only specify external system behavior 

 It should specify constraints on the implementation 

 It should be easy to change 
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 It should serve as a reference document for system maintainers 

 It should record forethought about the life-cycle of the system 

 It should characterize acceptable responses to undesired events 

The last four criteria can be regarded as quality criteria for the requirements document. The 
first two criteria explicitly mention external behaviour and constraints on this behaviour 
respectively. 

Wasson [258] further refines external behavior and constraints in order to explain the 
structure of a textual requirement. He states that a textual requirement should be interpreted 
by identifying key elements of the requirement, the so-called requirement primitives. The 
requirement primitives in [258] are the following: 

 Capability to be provided 

 Relational operators 

 Thresholds, boundary constraints, tolerances or conditions 

Each requirement describes one or more capability that the system should provide. This is 
the main functionality. This functionality can be further refined by adding additional 
information which makes the capability more specific. It is done by thresholds, boundary 
constraints and other limitations such as tolerances. Compared to Heninger, Wasson 
explains in further detail how a threshold is related to a capability. This is done through the 
relational operator, which describes how additional information is related to the capability. 
Using Wasson’s primitives, we present the structure of a textual requirement with a UML 
diagram (see Figure 5.2). 

 

Figure 5.2 Wasson’s Primitives for Structure of a Textual Requirement 

Example: Structure of Requirement based on Wasson’s Primitives 

Consider the following requirement. 

R98: The system shall allow only the administration to create new courses. 

We give the following structure of R98 by using Wasson’s primitives in Figure 5.2: 
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Capability: The system shall provide the functionality of creating new courses 

Relational operator: Limited by user type 

Threshold: Only by the administration 

The definition of a requirement used in Chapter 4 is that “a textual requirement is a 
description of a property or properties which must be exhibited by the system”. The notion 
of Property corresponds to the capability where relational operator and threshold in 
Wasson’s definitions can be classified as constraints over properties (see Figure 5.3). 

 

Figure 5.3 Structure of a Textual Requirement based on the Definition of a Requirement in Chapter 4 

In Chapter 4, we formalized requirements as formulas in conjunctive normal form (CNF). 
The properties and constraints in the requirement can be mapped to any conjunct in 
conjunctive normal form of P. The mapping depends on the interpretation of the 
requirement as a formula. 

Example: Structure of Requirement based on the Definition of a Requirement in Chapter 4 

We explain the structure of a textual requirement with the following example. 

R98: The system shall allow only the administration to create new courses. 

We give the following structure of R98 by using structure of a textual requirement in 
Figure 5.3: 

Property: The system shall provide the functionality of creating courses to only the 
administration 

Constraint: Only the administrator users can create courses 

We formalize R98 follows: 

(43) P98 = x y  ( courses(x)   numbers(y)   create(x, y, z)) 

where x is a universally quantified variable for the courses, y is a universally quantified 
variable for the number of students registered to the course, and z is a free variable for the 

administrators of the system who creates the courses. Let P  {create, courses, numbers}, 
where create is a predicate with three arguments; and where courses and numbers are predicates 
with one argument.  
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Both the property and its constraint in R98 are mapped to the conjunct ( courses(x)   
numbers(y)   create(x, y, z)). Different mappings can be defined with different formulas 
for R98. As a second encoding we formalize R98 as follows: 

(44) P98 = x y  (( courses(x)   numbers(y)   create(x, y))   administrator(z))) 

where x is a universally quantified variable for the courses, y is a universally quantified 
variable for the number of students registered to the course, and z is a free variable for the 

administrators of the system who creates the courses. Let P  {create, courses, numbers, 
administrator}, where create is a predicate with three arguments; and where administrator, 
courses and numbers are predicates with one argument.  

The property in R98 is mapped to the conjuncts ( courses(x)   numbers(y)   
create(x, y)) and (administrator(z)) while its constraint is mapped to the conjunct 
(administrator(z)).    

5.3.2 Change Types for Requirements Models 
Change types for requirements models are derived from the structure in Figure 5.3 and from 
the requirements metamodel in Chapter 4. Table 5.1 gives the requirements change types. 

Table 5.1 Requirements Change Types 

Change Types

 Add a New Requirements Relation 
 Delete Requirements Relation 
 Update Requirements Relation 
 Add a New Requirement 
 Delete Requirement 
 Update Requirement 

o Add Property to Requirement 
o Add Constraint to Property of Requirement 
o Change Property of Requirement 
o Change Constraint of Property of Requirement 
o Delete Property of Requirement 
o Delete Constraint of Property of Requirement 

 

The first five change types in Table 5.1 are obvious manipulations over the requirements 
model. The subtypes of ‘Update Requirement’ are obtained from the structure of a textual 
requirement in Section 5.3.1. We formalize only the subtypes of ‘Update Requirement’ by 
giving their effects in terms of formula changes in the requirement.  
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Add a New Requirements Relation 
A new requirements relation is added between two requirements Ri and Rk. 

Delete Requirements Relation 
A requirements relation between two requirements Ri and Rk is removed. 

Update Requirements Relation 
The type or direction of a requirements relation between two requirements Ri and Rk is 
changed. 

Add a New Requirement 
Create a new requirement R to be added to the requirements model. 

Delete Requirement 
Delete a requirement R from the requirements model.  

Update Requirement 
We use the symbol  , to denote updates in requirements in the following way: R   Rl 
denotes a change where R is the requirement before the change and Rl is the requirement 
after the change. Change types are denoted by using a notation over the symbol  . Update 
of a requirement R is done: 

 By adding a property pt to the requirement R, denoted as R 
pt

  Rl. 

 By deleting a property pt of the requirement R, denoted as R 
pt

  Rl. 

 By changing a property pt of the requirement R with a property ptl, denoted as          

R 
lptpt

  Rl.  

 By adding a constraint ct to a property pt of the requirement R, denoted as R 
ct

  Rl. 

 By deleting a constraint ct of a property pt of the requirement R, denoted as R 
ct

  Rl. 

 By changing a constraint ct of a property pt of the requirement R with a constraint ctl, 

denoted as R 
lctct

  Rl.  
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We assume that the change ‘Update Requirement’ always changes the set of systems that 
satisfy the properties in the updated requirement. For instance, for adding a property pt to 
the requirement R we assume that the added property pt is always different than the existing 
properties in the requirement R. There is always a system s that satisfies pt and does not 
satisfy the existing properties in the requirement R. Therefore, the set of systems that satisfy 
the requirement R is different after adding the property pt to the requirement R. 

In the following we describe the effect of the changes over the formulas. 

Add Property to Requirement 

Let R be the requirement before adding the property pt, and Rl be the requirement after 
adding the property pt. P and Pl are formulas for R and Rl. P is in conjunctive normal form 
as follows: 

(45) P = x  (p1 … pi); i ≥ 1 

R 
pt

  Rl iff Pl is derived from P such that the following two statements hold: 

(46) Pl = P   Ppt  

(47) ( (P → Pl)) is satisfiable 

where Ppt denotes the property that is captured in pt 

For the formulas P and Ppt, if any variable universally quantified in one of the formulas 
appears free in the second formula, the free variable is renamed. If any variable in P appears 
in Ppt with a different valuation, the variable in Ppt is renamed. Please note that if the 
requirements Rl and R are written as formulas 1x  and 2x  with 1  and 2  in CNF and 

Ppt is expressed as x  with   in CNF, we understand the following: R 
pt

  Rl iff (Pl = 

x ( 2     )), and ( ( x ( 2  → 1 ))) is satisfiable. 

From the definition we conclude that (Pl → P) and (Pl → Ppt) hold for every model where R 
pt

  Rl. We assume that the change ‘Update Requirement’ always changes the set of systems 
that satisfy the properties in the updated requirement. P and Ppt always describe different 
system properties. Sl is a proper subset of S (Sl   S) where Sl is the set of systems that satisfy 
Rl and S is the set of systems that satisfy R. 
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Example: Add Property to Requirement  

Consider the following requirement. 

R62: The system shall allow lecturers to specify enrolment policies based on grade. 

We formalize R62 as follows 

(48) P62 = allow(grade_enrl_policy).  

where grade_enrl_policy is a constant. We add a property pt to the requirement R62 (R62 
pt

  
R62l) where we have a new requirement as follows. 

R621: The system shall allow lecturers to specify enrolment policies based on grade and first 
come-first serve. 

We formalize R62l as follows 

(49) P62l = allow(grade_enrl_policy)   allow(fcfs_enrl_policy)  

where grade_enrl_policy, and fcfs_enrl_policy are constants. We have the following: 

(50) P62l = P62   allow(fcfs_enrl_policy) 

Let F  {fcfs_enrl_policy, department_enrl_policy, grade_enrl_policy} and P  
{allow_policy}, where fcfs_enrl_policy, department_enrl_policy and grade_enrl_policy are constant 
symbols; and where allow_policy is a predicate with one argument. We choose as a model M 
the following: 

 A  {fcfs_enrolment_policy, department_enrolment_policy, grade_enrolment_policy} 

 fcfs_enrl_policyM  fcfs_enrolment_policy 

 department_enrl_policyM  department_enrolment_policy 

 grade_enrl_policyM  grade_enrolment_policy 

 allow_policyM  {department_enrolment_policy, grade_enrolment_policy} 

Then we have the following: 

(51) M   (allow_policy(grade_enrl_policy) → (allow_policy(grade_enrl_policy)   

allow_policy(fcfs_enrl_policy)))  
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R621 states that the system shall allow lecturers to specify two different enrollment policies. 
The requirement can be interpreted as two different properties for the system, like specifying 
enrolment policies based on grade, and specifying enrolment policies based on first come first serve. R62 
states only one of these properties, which is specifying enrolment policies based on grade. Therefore, 
the property specifying enrolment policies based on first come first serve is added to the requirement 
R62. 

Delete Property of Requirement 

Let R be the requirement before deleting the property pt, and Rl be the requirement after 
deleting the property pt. P and Pl are formulas for R and Rl. P is in conjunctive normal form 
as follows: 

(52) P = x  ((p1 … pn)   (q1 … qm));   m, n ≥ 1 

R 
pt

  Rl iff Pl is derived from P such that the following two statements hold: 

(53) Pl = x  (p1 ... pn);  n ≥ 1 

(54) ( (Pl → P)) is satisfiable 

where x (q1 … qm) denotes the property that is captured in pt. 

If every bounded occurence of a variable is removed by deleting the property, then the 
quantifier for the variable is removed as well. Please note that if the requirement R is written 
as a formula x (     ) with (     ) in CNF and Ppt (for the property captured in pt) is 

expressed as x  with   in CNF, we understand the following: R 
pt

  Rl iff (Pl = x  ), 

and ( ( x (  → (     )))) is satisfiable. 

From the definition we conclude that (P → Pl) and (P → Ppt) hold for every model where R 
pt

  Rl. We assumed that the change ‘Update Requirement’ always changes the set of systems 
that satisfy the properties in the updated requirement. x (p1 ... pn) and x (q1 … qm) always 
describe different system properties. S is a proper subset of Sl (S   Sl) where S is the set of 
systems that satisfy R and Sl is the set of systems that satisfy Rl. 

Change Property of Requirement 

Let R be the requirement before changing the property pt with the property ptl, and Rl be the 
requirement after changing the property pt with the property ptl. P and Pl are formulas for R 
and Rl. P is in conjunctive normal form as follows: 
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(55) P = x  ((p1 … pn)   (q1 … qm));   n ≥ 1, m ≥ 0 

R 
lptpt

  Rl iff Pl is derived from P as follows: 

(56) Pl = x  ((t1 ... tz)   (q1 … qm));  z ≥ 1, m ≥ 0 

where x (p1 … pn) denotes the property captured in pt and x (t1 … tz) denotes the 
property captured in ptl. 

If every bounded occurence of a variable is removed by changing the property, then the 
quantifier for the variable is removed as well. For the formulas x (t1 … tz) and x (q1 … 
qm), if any variable universally quantified in one of the formulas appears free in the second 
formula, the free variable is renamed. If any variable in x (q1 … qm) appears in x (t1 … tz) 
with a different valuation, the variable in x (t1 … tz) is renamed. 

Add Constraint to Property of Requirement 

Let R be the requirement before adding the constraint ct to the property pt, and Rl be the 
requirement after adding the constraint ct to the property pt. P and Pl are formulas for R and 
Rl. P is in conjunctive normal form as follows: 

(57) P = x  ((p1 ... pn)   (q1 ... qm));  n ≥ 1, m ≥ 0 

Let p1l, p2l, …, pn–1l, pnl be disjunction of literals such that x (pjl → pj) for all j  1..n 

R 
ct

  Rl iff Pl is derived from P by replacing every pj in P with pjl for j  1..n such that the 
following two statements hold: 

(58) Pl = x ((p1l ... pnl)   (q1 ... qm));  n ≥ 1, m ≥ 0 

(59) ( ( x (pj → pjl))) is satisfiable for all j  1..n 

For the formulas x (p1l ... pnl) and x (q1 … qm), if any variable universally quantified in one 
of the formulas appears free in the second formula, the free variable is renamed. If any 
variable in x (q1 … qm) appears in x (p1l ... pnl) with a different valuation, the variable in 
x (p1l ... pnl) is renamed. 

This change is similar to refining a requirement (see the refines relation in Chapter 4). The 
idea behind the change is to make the requirement more restrictive by adding constraint. 
Therefore, the requirement after the change is a refinement of the requirement before the 
change. From the definition of the refines relation we conclude that (Pl → P) holds for every 
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model where R 
ct

  Rl and ( (P → Pl)) is satisfiable. (Sl   S) where Sl is the set of systems 
that satisfy Rl and S is the set of systems that satisfy R. Extensionally, the changes ‘Add 
Property to Requirement’ and ‘Add Constraint to Property of Requirement’ are the same 
since these two changes cause a proper subsetting between the sets of systems (Sl   S). 
Intensionally, they are different, i.e. they have different effects on formulas. The different 
effects on formulas are the reason of having different propagations for these changes (see 
Section 5.4 for change propagation). 

Example: Add Constraint to Property of Requirement 

Consider the following requirement. 

R7: The system shall provide a messaging facility. 

We add a constraint ct to the property pt of the requirement R7 (R7 
ct

  R7l) where we have a 
new requirement as follows. 

R71: The system shall allow messages to be sent to individuals, teams, or all course 
participants at once. 

We formalize the requirements R7 and R7l as follows:  

(60) P7 = provide_msg(x) 

(61) P7l = course_msg(x) 

where x is a free variable over the values in A. Let P {provide_msg, course_msg} where 
provide_msg and course_msg are predicates with one argument. From the domain knowledge we 
know that the following statement is valid for all models: 

(62) course_msgM   provide_msgM 

We choose as a model M the following: 

 A  {individual_msg, team_msg, participant_msg, lecturer_msg} 

 provide_msgM  {individual_msg, team_msg, participant_msg, lecturer_msg} 

 course_msgM  {individual_msg, team_msg, participant_msg} 

Then we have the following: 
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(63) M  l course_msg(x) → provide_msg(x) 

The relation course_msgM is a subset of the relation provide_msgM. Therefore, 
(course_msg(x) → provide_msg(x)) holds for each l with the model M. ( (provide_msg(x) 
→ course_msg(x))) is satisfiable like in the following: 

(64) M  l[x lecturer_msg] ( (provide_msg(x) → course_msg(x)))  

R7 states only the need for a messaging property in the system. However, R7l explains the 
details of the messaging property: the messaging shall allow messages to be sent to 
individuals, teams, or all course participants at once, excluding lecturers. 

Please note that as we saw in the example in Section 5.3.1 there might be other encodings of 
R7.  

Delete Constraint of Property of Requirement 

Let R be the requirement before deleting the constraint ct from the property pt, and Rl be the 
requirement after deleting the constraint ct from the property pt. P and Pl are formulas for R 
and Rl. P is in conjunctive normal form as follows: 

(65) P = x  ((p1l ... pnl)   (q1 ... qm));  n ≥ 1, m ≥ 0 

Let p1, p2, …, pn–1, pn be disjunction of literals such that pjl → pj for all j  1..n 

R 
ct

  Rl iff Pl is derived from P by replacing every pjl in P with pj for j  1..n such that the 
following two statements hold: 

(66) Pl = x  ((p1 ... pn)   (q1 ... qm));  n ≥ 1, m ≥ 0 

(67) ( ( x (pj → pjl))) is satisfiable for all j  1..n 

If every bounded occurence of a variable is removed by deleting the constraint of the 
property, then the quantifier for the variable is removed as well. For the formulas x (p1 ... 
pn) and x (q1 … qm), if any variable universally quantified in one of the formulas appears 
free in the second formula, the free variable is renamed. If any variable in x (q1 … qm) 
appears in x (p1 ... pn) with a different valuation, the variable in x (p1 ... pn) is renamed. 

This change is similar to refining a requirement (see the refines relation in Chapter 4). The 
idea behind the change is to make the requirement less restrictive by removing constraint. 
From the definition of the refines relation we conclude that (P → Pl) holds for every model 



5.3 Classification of Changes in Requirements 127 

 

where R 
ct

  Rl and ( (Pl → P)) is satisfiable. (S   Sl) where S is the set of systems that 
satisfy R and Sl is the set of systems that satisfy Rl. Extensionally, the changes ‘Delete 
Property of Requirement’ and ‘Delete Constraint of Property of Requirement’ are the same 
since for these two changes there is a proper subsetting between the sets of systems (S   Sl). 
Intensionally, they are different, i.e. they have different effects on formulas. The different 
effects on formulas are the reason of having different propagations for these two changes 
(see Section 5.4 for change propagation). 

Change Constraint of Property of Requirement 

Let R be the requirement before changing the constraint ct with the constraint ctl, and Rl be 
the requirement after changing the constraint ct with the constraint ctl. P and Pl are formulas 
for R and Rl. P is a formula in conjunctive normal form as follows: 

(68) P = x  ((p1 … pn)   (q1 … qm));   m, n ≥ 1 

R 
lctct

  Rl iff Pl is derived from P as follows: 

(69) Pl = x  ((t1 ... tz)   (q1 … qm));  m, z ≥ 1 

where x (p1 … pn) denotes the constraint captured in ct and x (t1 … tz) denotes the 
constraint captured in ctl. 

If every bounded occurence of a variable is removed by changing the constraint of the 
property, then the quantifier for the variable is removed as well. For the formulas x (t1 ... tz) 
and x (q1 … qm), if any variable universally quantified in one of the formulas appears free in 
the second formula, the free variable is renamed. If any variable in x (q1 … qm) appears in 
x (t1 ... tz) with a different valuation, the variable in x (t1 ... tz) is renamed. 

The effects of the changes “Change constraint” and “Change Property” in terms of formula 
changes in the formalization are the same. In these two changes some of the conjuncts in the 
formula are replaced by new conjuncts.  

5.3.3 Rationale of Changes 
The semantics of requirements changes in Section 5.3.2 does not explain why a change needs 
to be performed in the requirements model, that is, what is the rationale of changes. The 
impact of changes depends on their rationale. For instance, the requirements engineer may 
delete a property of a requirement because this property is not required any more from 
business/stakeholder point of view. The property may be in other requirements in the model 
and it also has to be deleted from them. The requirements engineer may delete a property of 
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a requirement in the requirements model to improve the structure of the model without 
modifying overall system properties. This property still must hold in the requirements model 
after the change. The property has to be kept at least in one of the requirements in the 
model. Therefore, we need to know rationale of requirements changes in order to determine 
the impact of changes in the whole requirements model. We classify rationale of 
requirements changes as refactoring and domain changes.  

Buckley et al. [40] classifies changes in general as semantics-preserving and semantics-modifying. 
However, they focus more on semantics of software components, such as type hierarchy, 
scoping, visibility, accessibility, and overriding relationships, rather than changes in 
requirements. We adapt the classification proposed by Buckley for requirements changes. 
Van Lamsweerde [151] introduces requirements description qualities such as good 
structuring and modifiability. The requirements engineer may change the requirements 
model to improve the quality of requirements description. For instance, a requirement may 
be decomposed to multiple requirements. These changes are semantics-preserving according to 
[40] and we consider their rationale as refactoring (see [82] for refactoring). Evolution of 
requirements also fosters changes to the requirements model. We name these changes and 
their rationale domain changes. With the term ‘domain’ we mean problem/business domain. 
Consider a requirements model that contains a set of requirements for online banking in 
Europe. Here, the domain is banking and a change request for adapting the system to the 
USA is received. Then, all currency requirements in the domain of banking are changed and 
these changes should be reflected in the requirements model.  

In order to formalize domain changes and refactoring, we first formalize the requirements 
model in the following. 

We define a requirements model RM as a property (or properties). We express the property 
(or properties) as a formula PRM in CNF. PRM can be represented in a conjunctive normal 
form (CNF) in the following way: 

(70) PRM = x  (p1   …   pn), where n ≥ 1 and pn is disjunction of literals 

The requirements model RM from Chapter 4 contains a set of requirements formalized as 
R1, R2, … , Rk where k ≥ 1. P1, P2, P3, …, Pk are formulas for R1, R2, … , Rk in conjunctive 
normal form. Therefore, PRM can also be represented in the following way. 

(71) PRM = P1   P2   …   Pk 
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Please note that if the requirements R1, R2, …, Rk are written as formulas 1x , 2x , …, 

kx  with 1 , 2 , …, k  in CNF, we have the following: (PRM = x ( 1    2    3  …  

k )). 

Refactoring 
Refactoring is a change (changes) in the requirements model in order to improve the 
structure of the model without modifying overall system properties [82]. Changes to the 
model caused by refactoring do not affect the properties in the whole requirements model. 
We formalize the refactoring in the following. 

RM   RMl denotes a series of changes for model refactoring where RM is the requirement 
model before the changes and RMl is the requirement model after the changes. PRM and PRMl 
are formulas for RM and RMl. PRM and PRMl are described in the conjunctive normal form in 
the following. 

(72) PRM = PRMl = x  (p1   …   pn), where n ≥ 1 and pn is disjunction of literals 

In refactoring, changes to the model do not affect the conjunctive normal form (CNF) of 
the formula of the requirements model although the CNFs of formulas of some 
requirements in the model are changed. (SRM = SRMl) where SRM is the set of systems that 
satisfy PRM and SRMl is the set of systems that satisfy PRMl.  

Domain Changes 
Domain changes are the changes in the requirements model in order to modify overall 
system properties. Changes to the model caused by domain changes do affect the properties 
in the whole requirements model and usually alter the set of systems that satisfy the 
requirements. We formalize the domain changes in the following. 

RM   RMl denotes a series of changes caused by domain change where RM is the 
requirement model before the changes and RMl is the requirement model after the changes. 
PRM and PRMl are formulas for RM and RMl. We have the following. 

(73)  equals(PRM, PRMl)    

If two formulas have the same predicate symbols and arguments, and they both have either 
negation or not, these two formulas are equal. If there are contradicting requirements in the 
model, SRM = 0 where SRM is the set of systems that satisfy PRM. Domain changes will not 
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change the set of systems that satisfy the requirements in the model unless the conflicts in 

the model are resolved. For domain changes (SRM  SRMl) where SRM  0. 

Rationale of changes is important since it is a factor in order to determine the change 
alternatives for change propagation (see the example derivation of change alternatives for 
change propagation in Section 5.4). 

5.4 Change Propagation and Change Consistency Checking 

Change propagation aims at deducing new proposed changes based on an initial set. Change 
consistency checking identifies contradicting proposed changes. We provide change 
propagation defined as a change impact function. Only domain changes are considered in 
the approach. Given the type of changes, we individually describe rules to determine the 
impact of each change type. By using the formal semantics of requirements, relations and 
changes, it is possible to derive whether or not (possible) impacts are caused by a change. 
The change impact function takes a change type and a requirement to which the change is 
introduced as input, and produces a set of decision trees as output. A decision tree contains 
decisions taken for propagating changes by traversing the requirements model. The 
following is the definition of the change impact function: 

impact : SCT   SR   SSRR    SSDT  

where SCT is the set of change types, SR is the set of requirements, SSRR is the set of sets 
of requirements relations, and SSDT is the set of sets of decision trees for changes. 

A decision tree is expressed as a sentence in a language with the following grammar. 

<DT-C> ::= <Change > | <Change > <And>“(” <DT-C> “)” | 

                      <DT-C> <Boolean-Operator> <DT-C> | “(” <DT-C> “)” 

<Change> ::= <Change-Type> ID 

<Change-Type> ::= “No Impact in” | “Delete Requirement” |  

                                  “Delete Property of Requirement” |  

                                  “Delete Constraint of Property of Requirement” |  

                                   “Add Requirement” | “Add Property to Requirement” |  

                                   “Add Constraint to Property of Requirement” | 
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                                   “Change Property of Requirement” |  

                                   “Change Constraint of Property of Requirement” | 

                                   “Add Relation” | “Delete Relation”  

<Boolean-Operator> ::= <Exclusive-or>|<And> 

<Exclusive-or> ::= “|” 

<And> ::= “&” 

ID denotes identifiers. 

The algorithm for the change impact function is based on traversing the requirements model 
and propagating change from one requirement to another related requirement. The impact 
function propagates change from one requirement to other related requirements and returns 
the set of decision trees. We give the overview of the algorithm for the change impact 
function in the following: 

1   Set sdt = empty-set  
2    
3   impact(ChangeType c, Requirement r, Set srl): Set { 
4   
5       Set visited = empty-set                // set of visited requirements 
6       DecisionTree dt = empty 
7       Requirement rq = empty 
8         
9       dt = createDT(r, c)   
10            
11      visited = addVisited(r, visited)  
12       
13      If (srl is an empty-set) { Return empty-set } 
14       
15      ForEach relation rl   srl { 
16         rq = getRequirement(r, rl)  
17          
18         If (Not rq   visited) { propagateChange(rq, rl, dt, visited) } 
19      } 
20    
21      Return sdt 
22  }   //End of the impact function 
 

The variable declerations are done in line 1 and lines 5-7. sdt is a variable for the set of 
decision trees and it is global for the functions impact, propagateChange and expandDecisionTrees 
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(see line 1). The requirement to which the change is proposed is the starting requirement 
(Requirement r in line 3). The algorithm creates a decision tree for each unvisited 
requirement directly related to the starting requirement (see line 9). Once the algorithm is 
initiated, only the starting requirement is visited (see line 11). If there is no requirement 
related to the starting requirement, there is no impacted requirement and the function 
returns an empty set (see line 13). Each decision tree has a root node including the proposed 
change and the starting requirement. For each unvisited related requirement, the change is 
propagated (see lines 15-19). If the related requirement is not visited before, then the 
propagateChange function is called (see line 18). The impact function returns the set of decision 
trees (see line 21). The propagateChange function propagates the change from the starting 
requirement to the unvisited related requirement by expanding the decision tree. The 
overview of the algorithm for the propagateChange function is the following: 

1   propagateChange(Requirement rq, Relation rl, DecisionTree dt, Set visited) { 
2 
3       Set cvisited = empty-set            // copy of the set of visited requirements 
4       DecisionTree cdt = empty        // copy of the decision tree 
5       Set srl =  empty-set                  // set of relations 
6       Requirement req = empty 
7       Relation rlt = empty 
8 
9       cdt = copyDT(dt)   
10       
11      expandDecisionTree(cdt, rq, rl) 
12       
13      cvisited = addVisited(rq, visited)  
14       
15      srl = getRelations(rq)  
16       
17      ForEach relation rlt   srl { 
18          req = getRequirement(rq, rlt)  
19                                       
20          If (Not req   cvisited) { propagateChange(req, rlt, cdt, cvisited) } 
21      } 
22       
23      If No requirement rqt such that  
24                      (getRelation(rqt, rq)   srl)   (rqt   cvisited) { 
25          addDT(cdt, sdt) 
26      } 
27  }    //End of the propagateChange function 
 

First the decision tree is copied (see line 9). Alternative proposed changes are identified for 
the unvisited related requirement. The change alternatives in the propagation are determined 
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based on the semantics of change type and the requirements relation (see Table 5.2 which is 
explained later). The copied decision tree is expanded with the change alternatives (see line 
11). The requirement to which the change is propagated is marked as visited (see line 13). 
The algorithm is iterative (see lines 15-21). For each decision tree, the set of visited 
requirements is copied and the directly related requirement to which the change alternatives 
are introduced becomes the starting requirement. Changes are propagated for each unvisited 
requirement directly related to the new starting requirement. If there is more than one 
unvisited related requirement, the decision tree is copied. If there is no unvisited requirement 
directly related to the starting requirement, the decision tree is added to the set of decision 
trees (see lines 23-26). Please note that the impact function returns the set of decision trees. 
The algorithm for the expandDecisionTree function is the following:  

1   expandDecisionTree(DecisionTree dt, Requirement rq, Relation rl) { 
2 
3       Set sct = empty-set         // set of change types 
4    
5       ForEach leaf node ln in dt { 
6           sct = getChangeTypes(ln, rq, rl) 
7        
8           ForEach change type ct   sct {  
9               addChild(ln, rq, ct) 
10          } 
11      } 
12  }    //End of the expandDecisionTree function 
 

Decision trees are expanded with a set of alternative proposed changes based on BNF given 
before. For each leaf node of the decision tree, a set of alternative proposed changes is 
identified for the unvisited related requirement (see line 6). Each alternative becomes a node 
in the decision tree (see lines 8-10).  

Figure 5.4(a) gives an example requirements model where the change ‘Delete Property of 
Requirement’ is proposed for requirement R2. Figure 5.4(b) shows the four paths created 
while the change impact algorithm traverses the requirements model for the proposed 
change in requirement R2. 

Figure 5.5 illustrates the decision trees created for the example model in Figure 5.4(a). The 
operator Exclusive-or in the grammar is represented as branches of the decision trees in 
Figure 5.5 while the operator And in the grammar is the “&” in the nodes of the decision 
trees. 
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Figure 5.4 Example Requirements Model and Traversing the Model for the Proposed Change 

The main steps in the change impact function algorithm are the following: 

 Creating a Decision Tree for Each Unvisited Requirement Related to Starting Requirement (see 
the impact function). In Figure 5.4(b), the change ‘Delete Property of Requirement’ is 
introduced to the requirement R2. The algorithm creates a decision tree (Decision Tree 
for Path 1, Decision Tree for Path 2 and Decision Tree for Path 4 in Figure 5.5) for each 
unvisited directly related requirement (R1, R3 and R4 in Figure 5.4(b)). Decision trees 
have a starting node ‘Delete Property of Requirement R2’. 

 Propagating Change for Each Unvisited Related Requirement (see the propagateChange 
function). Change alternatives are identified for unvisited requirements (R1, R3 and 
R4) directly related to R2 in Figure 5.4(b). For instance, R1 is related to R2 through 
the requires relation. The alternatives for propagating the change ‘Delete Property of 
Requirement R2’ from R2 to R1 are ‘No impact in R1’, ‘Delete Relation’ and ‘Delete 
R1 & Delete Relation’ (the Decision Tree for Path 1 in Figure 5.5). These alternatives are 

given in Table 5.2 where (Ri 
pt

  Ril) and (Ri requires Rk). 

 Expanding Decision Tree for Each Unvisited Related Requirement (see the expandDecisionTree 
function). Each decision tree created for directly related requirements (the Decision 
Tree for Path 1 for requirement R2, the Decision Tree for Path 2 for requirement R3 and 
the Decision Tree for Path 4 for requirement R4 in Figure 5.5) is expanded with 
alternative proposed changes. For instance, the change alternatives ‘No impact in R1’, 
‘Delete Relation’ and ‘Delete R1 & Delete Relation’ for R1 become the nodes of the 
Decision Tree for Path 1 in Figure 5.5. 
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Figure 5.5 Decision Trees for the Example Requirements Model 
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 Iterating (see the propagateChange function). Directly related requirements (R1, R3 and 
R4 in Figure 5.4(b)) become the starting requirement and the algorithm is reinitiated 
for each of them. For R1, there is no unvisited directly related requirement and the 
Decision Tree for Path 1 in Figure 5.5 is not expanded further. For R3, there are two 
unvisited directly related requirements (R4 and R5) and the Decision Tree for Path 2 is 
copied (see the Decision Tree for Path 3). The Decision Tree for Path 2 is expanded with 
change alternatives for R5 and the Decision Tree for Path 3 is expanded with change 
alternatives for R4. 

The output of the change impact function is a set of decision trees that contains all 
alternatives for a change to be propagated in the whole model. For instance, the output of 
the change impact function for the proposed change in the example requirements model in 
in Figure 5.4(a) is the set of decision trees in Figure 5.5. The requirements engineer can also 
select among the change alternatives to propagate the change from one requirement to 
another step by step. Our tool (see Section 5.6) supports both the decision tree generation 
and step by step propagation. In the following we explain how change alternatives are 
derived for change propagation based on the semantics of change types, rationale of changes 
and requirements relations. 

Change Propagation. This is the activity of deducing new proposed changes for 
requirements related to the requirement which already has a proposed change. The change 
alternatives are determined based on the semantics of change types, rationale of changes and 
requirements relations. Table 5.2 gives the change impact alternatives for domain changes. 
Each cell in the table gives change alternatives in order to propagate the changes in the rows 
by using the relations in the columns. Please note that both directions of the relations are 
explored in Table 5.2. 

Table 5.2 Change Impact Alternatives for Domain Changes 

 

 

Changes 

Requirements Relation Types

Ri contains Rk Ri refines Rk Ri partially refines Rk Ri requires Rk Ri conflicts Rk

Add Rx No impact No impact No impact No impact No impact
Delete 
Relation 

No impact No impact No impact No impact No impact

 
Delete Ri 

Delete Rk & 
Delete relation 

Delete Rk & 
Delete relation Delete property of Rk 

Delete relation 
| (Delete Rk & 
Delete relation) 

 
Delete relation 

Ri 
pt

  Ri
l   

 
No impact 

Add property to 
Rk | Delete Delete relation No impact 

 
No impact 
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relation

Ri 
pt

  Ri
l 

No impact | 
Delete relation 
| (Delete Rk & 
Delete relation) 
| Delete 
property of Rk  

 
Delete property 
of Rk | (Delete 
property of Rk & 
Delete relation) 

 
Delete property of Rk 

No impact | 
Delete  relation 
| (Delete Rk & 
Delete relation)  

 
 
No impact | 
Delete relation 

Ri 

lptpt

  Ri
l 

No impact | 
Change 
property of Rk 

Change property 
of Rk | (Change 
property of Rk & 
Delete relation) 

Change property of Rk

| (Change property of 
Rk & Delete relation) 

No impact | 
Delete relation 
| (Delete Rk & 
Delete relation) 

 
No impact | 
Delete relation 

Ri 
ct

  Ri
l 

No impact | 
Add constraint 
to property of 
Rk | Delete 
relation 

 
 
No impact  

 
No impact  

 
No impact 

 
 
No impact 

 

Ri 
ct

  Ri
l 

 
No impact | 
Delete 
constraint of 
property of Rk  

No impact | 
Delete relation | 
Delete constraint 
of property of Rk 
| (Delete 
constraint of 
property of Rk & 
Delete relation) 

No impact |
Delete relation | 
Delete constraint of 
property of Rk | 
(Delete constraint of 
property of Rk & 
Delete relation) 

No impact | 
Delete relation 
| (Delete Rk & 
Delete relation) 

 
 
 
No impact | 
Delete relation 

Ri 
lctct

  Ri
l 

No impact | 
Change 
constraint of 
property of Rk  

No impact |
Change 
constraint of 
property of Rk  

No impact |
Change constraint of 
property of Rk 

No impact | 
Delete relation 
| (Delete Rk & 
Delete relation) 

 
No impact | 
Delete relation 

 
Delete Rk 

 
Delete property 
of Ri 

 
Delete Ri & 
Delete relation 

Delete Ri & Delete 
relation 

Delete relation 
| (Delete Ri & 
Delete relation) 

 
Delete relation 

Rk 
pt

  Rk
l 

Add property 
to Ri | Delete 
relation  

Add property to 
Ri | Delete 
relation 

No impact No impact 
 
No impact 

Rk 
pt

  Rk
l 

 
Delete property 
of Ri 

Delete property 
of Ri | (Delete 
property of Ri & 
Delete relation) 

No impact | Delete 
relation | Delete 
property of Ri | 
(Delete Ri & Delete 
relation)  

No impact | 
Delete relation 
| (Delete Ri & 
Delete relation) 

 
No impact | 
Delete relation 

Rk 

lptpt

  Rk
l 

 
Change 
property of Ri 

Change property 
of Ri | (Change 
property of Ri & 
Delete relation) 

No impact | Change 
property of Ri | 
 (Change property of 
Ri & Delete relation) 

No impact | 
Delete relation 
| (Delete Ri & 
Delete relation) 

 
No impact | 
Delete relation 

Rk 
ct

  Rk
l 

Add constraint 
to property of 
Ri | Delete 
relation 

Add constraint to
property of Ri | 
Delete relation 

No impact |
Add constraint to 
property of Ri 
 

No impact 
 
No impact 

Rk 
ct

  Rk
l 

 
Delete 
constraint of 
property of Ri 

Delete constraint 
of property of Ri 
| (Delete 
constraint of 
property of Ri & 
Delete relation) 

No impact | Delete 
constraint of Ri | 
(Delete constraint of 
property of Ri & 
Delete relation) 

No impact | 
Delete relation 
| (Delete Ri & 
Delete relation) 

 
No impact | 
Delete relation 

Rk 
lctct

  Rk
l 

Change 
constraint of 

Change 
constraint of 

No impact |
Change constraint of  

No impact | 
Delete relation 

 
No impact | 
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property of Ri property of Ri   property of Ri | (Delete Ri & 
Delete relation) 

Delete relation

 

The following is a change propagation example. 

Change Propagation Example  

In the following there are two requirements for the course management system: 

R61: The system shall allow lecturers to specify enrolment policies based on grade, first-
come first-serve (fcfs), and department. 

R62: The system shall allow lecturers to specify enrolment policies based on grade. 

where R61 contains R62. 
 

For the course management system the stakeholder needs a change. Specifying enrolment 
policies based on grade is not needed any more. One of the properties given in requirement 
R61 is allowing lecturers specifying enrolment policies based on grade. Therefore, we 
propose the change ‘Delete property of Requirement’ for R61.     
 

Proposed Change: Delete Property of Requirement R61  

Description of Change: Specifying enrolment policies based on grade is not needed any 
more.  
 

The proposed change is propagated from R61 to R62 through the contains relation in the 
following: 
 

Propagation from R61 to R62: According to Table 5.2 the alternatives to propagate the 
proposed change `Delete Property of Requirement R61` to requirement R62 are (No impact 
| Delete Requirement R62 | Delete Property of Requirement R62).  

The property to be deleted from requirement R61 is specifying enrolment policies based on 
grade. It should also be deleted from requirement R62. Since this property is the only 
property given in requirement R62, we choose the change ‘Delete Requirement R62’ among 
the change alternatives.     

The following is the derivation of change alternatives for change propagation where Ri 
pt

  
Ril and Ri contains Rk. 

Change Alternatives:  

     Change alternatives for Rk where (Ri 
pt

  Ril) and (Ri contains Rk)  

                                                 = No impact | Delete Rk | Delete Property of Rk  
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Derivation:  

    Let Ri and Rk be requirements. Pi and Pk are formulas for Ri and Rk. 

= {By using formalization of the contains relation} 

    Ri contains Rk iff Pi is derived from Pk as follows: 

           Pi = Pk   Pl 

    where Pi = x ((p1 … pn)   (q1 … qm));   m, n ≥ 1 and Pl denotes properties that are not 
captured in Pk 

= {By using formalization of the change type} 

    Ri 
pt

  Ril iff Pil is derived from Pi as follows: 

            Pil = x (p1 ... pn); n ≥ 1 

    where x (q1 … qm) denotes properties that are captured in pt. 

= {By using the formalization of domain changes} 

    Properties x (q1 … qm) that are captured in pt should be deleted from the requirements 
model RM.         

= {By using formalization of the contains relation} 

    There are three alternatives for Pk and impact on Rk 

       (i) Pk = x (z1 … zt); z ≥ 1, {z1, … , zt}{p1, … , pn} then No Impact    

       (ii) Pk = x (q1 … qm); m ≥ 1 then x (q1 … qm) should also be deleted. It means Delete 
Rk & Delete Relation    

       (iii) Pk = x ((z1 … zt) (q1 … qm));  t, m ≥ 1 then x (q1 … qm) should also be deleted. 
It means Delete Property of Rk     
 

All change alternatives given in Table 5.2 are derived from the semantics of change types, 
requirements relations and rationale of changes as shown above. Change propagation is 
implemented in a rule based form in TRIC (see Section 5.6). Not all derivations are given 
due to their size. 

Proposed changes and propagated proposed changes may cause a conflict. In the following 
we explain how conflicts between proposed changes are identified. 

Change Consistency Checking. This is the activity of identifying the proposed changes 
whose existence may cause a contradiction. Stakeholders may require changes that contradict 
with each other or the requirements engineer may propagate multiple changes to the same 
requirement in which the propagations cause a contradiction. Table 5.3 gives the 
contradicting changes based on semantics of domain changes and change types. The rows 
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and columns of the table are change types. Two changes for the same requirement might 
cause a contradiction (cells marked as maybe in Table 5.3) and these changes should be 
inspected, or there is an ensured contradiction (cells marked as yes) caused by these changes. 
Cells in Table 5.3 are marked as no if there is no contradiction caused by these changes. 

Table 5.3 Contradicting Changes based on Semantics of Domain Changes and Change Types 

Change 
Type 

 
Delete R R 

pt

  Rl   R 
pt

  Rl R 

lptpt

  Rl R 
ct

  Rl R 
ct

  Rl R 
lctct

  Rl 
 
No impact 

 
Delete R 

no yes no yes yes no yes no

R 
pt

  Rl   
yes no no no no no no no

R 
pt

  Rl 
no no no maybe maybe no maybe no

R 

lptpt

  Rl 
yes no maybe maybe maybe maybe maybe no

R 
ct

  Rl 
yes no maybe maybe no maybe maybe no

 

R 
ct

  Rl 

no no no maybe maybe no maybe no

R 
lctct

  Rl 
yes no maybe maybe maybe maybe maybe no

No impact no no no no no no no no
 

The following is an ensured inconsistency example.  

Ensured Inconsistency Example  

The following is one of the requirements for the course management system: 

R7: The system shall provide a messaging facility. 

There are two changes in stakeholders’ needs for requirement R7. The first change is that 
there is no need for a messaging facility any more. The second one is that sms messaging 
should be provided. The followings are two proposed changes for requirement R7 based on 
the changes in the stakeholders’ needs.        
 

Proposed Change 1: Delete Requirement R7  

Description of Proposed Change 1: There is no need for a messaging facility any more.  
 

Proposed Change 2: Add Constraint to Property of Requirement R7  

Description of Proposed Change 2: Sms messaging should be provided.  
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The second change is stating sms messaging as a new constraint while the first change states 
messaging facility is not needed at all. Therefore, there is an ensured inconsistency for these 
two proposed changes (see Table 5.3).     
 

The following is a proof of this ensured inconsistency.  

Ensured Inconsistency: (R 
ct

  Rl)   (Delete R) 

Proof Sketch: Let R 
ct

  Rl. 

= {By using the semantics of domain changes and the change type ‘Add Constraint to Property of 
Requirement’} 

Pl = x ((p1l ... pnl)   (q1 ... qm)); n ≥ 1, m ≥ 0 and (Pl → P) holds                           (a) 

Let Delete R. 

= {By using the semantics of domain changes and the change type ‘Delete Requirement’} 

P = x ((p1 ... pn)   (q1 ... qm)) and P does not hold for the whole model                (b) 

Pl in (a) states x ((p1l ... pnl)   (q1 ... qm)) holds although x ((p1 ... pn)   (q1 ... qm)) does 

not hold because P in (b) does not hold any more. Therefore, (R 
ct

  Rl) and (Delete R) 
contradict one another. 

The following is a possible inconsistency example.  

Possible Inconsistency Example  

Consider the following requirement. 

R61: The system shall allow lecturers to specify enrolment policies based on grade, first-
come first-serve (fcfs), and department. 
 

There are three properties in requirement R61: (i) allow lecturers to specify enrolment 
policies based on grade, (ii) allow lecturers to specify enrolment policies based on first-come 
first-serve (fcfs), and (iii) allow lecturers to specify enrolment policies based on department.  

There are two changes in stakeholders’ needs for requirement R61. The first change is that 
there is no need of specifying enrolment policies based on grade any more. The second one 
is that lecturers should be allowed to specify enrolment policies based on department only 
which they are affiliated with. The following are two proposed changes for requirement R61 
based on the changes in stakeholders’ needs.        
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Proposed Change 1: Delete Property of Requirement R61  

Description of Proposed Change 1: There is no need of specifying enrolment policies 
based on grade any more.  
 

Proposed Change 2: Add Constraint to Property of Requirement R61  

Description of Proposed Change 2: Lecturers should be allowed to specify enrolment 
policies based on department only which they are affiliated with. 
 

The first change states specifying enrolment policies based on grade is not needed any more. 
The second change states a constraint about departments for enrolment policies. There is a 
need of checking if changes are referring to the same property or not. Since two changes 
refer to different properties, there is no inconsistency.     
 

The following is a proof of this possible inconsistency. 

Possible Inconsistency: (R 
pt

  Rl)   (R 
ct

  Rl) 

Proof Sketch: Let R 
pt

  Rl. 

= {By using the semantics of domain changes and the change type ‘‘Delete Property of Requirement’} 

  Pl = x ((p1 ... pn));  m, n ≥ 1 and  x (q1 ... qm) does not hold any more          (a) 

Let R 
ct

  Rl.                                                                                                          

= {By using the semantics of domain changes and the change type ‘Add Constraint to Property of 
Requirement’} 

There are two alternatives for applying the change type ‘Add Constraint to Property of 
Requirement’ with the change type ‘Delete Property of Requirement’ 

Pll = x (p1l ... pkl ... pn) where p1l, p2l, …, pk–1l, pkl are disjunction of literals  

                                           such that pul → pu for all u  1..k and k  n           (b) 

Pll = x ((p1 ... pn) (q1l ... qkl ... qm)) where q1l, q2l, …, qk–1l, qkl are disjunction of literals  

                                           such that qul → qu for all u  1..k and k  m          (c) 
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Pl in (a) and Pll in (b) do not have any contradiction. The change type ‘Add Constraint to 
Property of Requirement’ can be applied to requirement R with the change type ‘Delete Property of 
Requirement’ if these two changes are applied to different properties in requirement R.  

Pl in (a) and Pll in (c) have a contradiction since the change type ‘Add Constraint to Property 
of Requirement’ is applied to x (q1 ... qm) which are not valid anymore (see (a)). Therefore, (R 
pt

  Rl)   (R 
ct

  Rl) may contradict one another. 

Table 5.3 is implemented in a rule based form in TRIC. The consistency rules are checked 
for proposed and propagated changes (see Section 5.6). 

5.5 Discussion on the Approach 

The formalization of changes relies on FOL and therefore the limitations discussed in 
Chapter 4 are also valid here.  

As we stated in Chapter 4, the requirements engineer does not need to know the details of 
the formalization since he/she can be guided by tutorials [94] that provide an informal 
explanation of the relations. Similar to tutorials for requirements relations, tutorials can be 
provided for the interpretation of informal change request based on our formal change 
classification. The requirements engineer receives the change request from the stakeholder 
who might be a user of the system, system developer or the project manager. Then, he/she 
interprets the informal change request based on the tutorial in order to propose and 
propagate changes over the requirements model. 

Our approach has limitations for some change types and relation types. Change alternatives 
in Table 5.2 are used only if there is any requirement related to the changed requirement. For 
instance, adding a new requirement (Add Rx) has no impact on other requirements in the 
requirements models according to Table 5.2. The requirements engineer has to determine 
relations for the added requirement and find if there is any impact on other requirements. 
Also, there may be relations that are missed by the requirements engineer during modeling 
but appear later (see Chapter 6).  

There might be multiple relations between two requirements. The priority is given to the 
intensionally defined relations for propagation of changes through multiple relations. For 
instance, we stated that the refines and contains relations imply the requires relation. Since refines 
and contains are given in intensional terms, our approach uses refines and contains to determine 
change alternatives.  
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In the implementation of change propagation and change consistency checking, change 
impact alternatives in Table 5.2 and contradicting changes in Table 5.3 are hard-coded. 
When there is a new relation and/or change type, additional manual proofs have to be 
implemented in the current tool support.  

5.6 Tool Support 

In Chapter 4, we described the Tool for Requirements Inferencing and Consistency 
Checking (TRIC). We extended TRIC with features for change impact analysis in 
requirements [235]. In this section, we give the details of the extension. In Section 5.6.1, we 
depict the usage of the tool in the context of a requirements modeling process. Section 5.6.2 
gives the architecture of the tool. Section 5.6.3 describes the main features of the tool with 
some screenshots. 

5.6.1 The Modeling Process 
We depict the usage of the tool in a requirements modeling process with change propagation 
and change consistency checking. This process is based on an analysis of activities during 
change impact analysis. Figure 5.6 gives a UML activity diagram of the process. 

The process consists of the following activities. 

Modeling Requirements. This activity takes the requirements document as input and 
produces the requirements model which is an instance of the requirements metamodel.  

The modeling process is forked into three activities: proposing change, propagating change and 
checking change consistency. 

Proposing Change. This activity takes the requirements model as input and produces the 
proposed changes in the requirements model as output. The requirements engineer proposes 
changes based on the interpretation of the changes in stakeholder’s needs. The activity 
denotes proposing a single change in the model. The modeling process is iterative and the 
requirements engineer may introduce multiple changes consecutively without propagating 
the proposed changes.  

Propagating Change. The activity takes the requirements model with proposed changes as 
input and produces the propagated changes in the requirements model as output. The 
activity is semi-automatic. Propagation alternatives described in Table 5.2 are applied. The 
requirements engineer has to select one of the propagation alternatives proposed by the tool. 
The activity denotes one step propagation of a single change in the model. The modeling 
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process is iterative and the requirements engineer may propagate multiple changes multiple 
times consecutively. 

 

Figure 5.6 Requirements Modeling Process with Change Propagation and Change Consistency Checking 

Checking Change Consistency. The activity takes the requirements model including the 
proposed changes and gives inconsistencies between proposed changes as output. 

If there is no need to propose, propagate or update any changes further, the requirements 
engineer starts updating the requirements model according to proposed changes. 

Updating Model with Changes. This activity takes the requirements model with proposed 
changes as input and produces the updated requirements model as output. The activity is 
manual. The requirements engineer changes requirements according to proposed changes. 
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Iterating. The process given in Figure 5.6 is iterative: the requirements engineer may return 
to the modeling activity in order to propose/propagate changes and/or update changes. If 
there is no need to update the model, the process is terminated. 

5.6.2 Tool Architecture 
The tool is composed of three layers as already given in Chapter 4: a) the User Interface (UI) 
layer, b) the Application Layer, and c) the Data Layer. Figure 5.7 gives the extended version of 
the layered architecture. We extended some of the existing components (Consistency 
Checking Engine, Visualization Engine, and Modeling Environment) in the architecture of 
TRIC and added some new components (Change Propagation Engine and XML file) for 
change impact analysis features. In this section, we explain only the extended and added 
components (colored gray in Figure 5.7). 
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Figure 5.7 Layered Architecture of the Tool 

Change Proposing & Propagation Engine. It supports the proposing change and propagating 
change activities. The engine asks the requirements engineer to give the relevant change type 
for the selected requirement. Change propagation is done by the engine based on the 
semantics of the proposed change and the requirements relations.  
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Consistency Checking Engine. This component allows checking consistency of 
requirements relations based on semantics of relations (see Chapter 4). It is extended to 
support the checking change consistency activity.   

Visualization Engine.  It accesses the Data layer in order to get requirements and relations 
to be visualized in diagrams (see Chapter 4). In addition to that, the visualization engine is 
used to show the results of change impact analysis such as the propagation path of a change.  

Modeling Environment. This component allows the creation, storage, and retrieval of 
requirements models and bridging the User Interface layer with the Data layer (see Chapter 
4). It is extended for the updating model with changes activity in Figure 5.6. 

XML File. The proposed and propagated changes are stored in XML format. We split up 
the requirements model in OWL ontology and proposed & propagated changes in XML file 
for separation of concerns. The XML file always refers to the relevant OWL ontology to 
relate the changes with the requirements model. Therefore, we can have different versions of 
proposed & propagated changes for the same requirements model. 

5.6.3 Tool Features 
We describe the most important features of the tool: proposing changes, propagating changes, 
displaying inconsistencies in proposed changes, implementing proposed changes in the requirements model, and 
predicting impact of proposed changes. 

Proposing changes. Figure 5.8 gives the GUI for proposing changes. The left-hand side of 
the window lists the requirements in the model. The right-hand side of the window shows 
the details of the selected requirement (R7). The Propose Change window opened by right 
clicking on the selected requirement (R7) is used to propose a change with a type and 
description of the change.  

After proposing a change, the tool lists the requirements related to the changed requirement. 
These requirements are candidate impacted (CI) requirements in which the requirements 
engineer can propagate the change (see Figure 5.9).  
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Figure 5.8 GUI for Proposing Changes 

 

Figure 5.9 Output of the Proposing Change Activity 
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The left-hand side of the window lists the requirements in the model with the proposed 
change requirement (R7) tagged as Starting Impacted (SI) and related requirements (R16, 
R18, and R24) tagged as Candidate Impacted (CI). The requirements engineer can select the 
candidate impacted requirements (R16, R18, and R24) to propagate the proposed change to 
them. At the bottom of the left-hand side of the window, the numbers about change impact 
analysis such as numbers of impacted requirements and uninspected requirements are listed.  

Propagating changes. Figure 5.10 gives the GUI for propagating proposed changes which 
supports the propagating change activity in Figure 5.6.  

 

Figure 5.10 GUI for Propagating Proposed Changes 

The Determine Proposed Impact window is opened by clicking on one of the candidate impacted 
requirements (R16). The tool asks the type of the proposed change for candidate impacted 
requirement with a change description. 

We support a matrix view in order to represent and propagate changes. Such a view is also 
available in commercial requirements management tools, such as RequisitePro in order to 
determine the impacted requirements. Figure 5.11 illustrates the matrix view. 
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Figure 5.11 Matrix View for Propagating Proposed Changes 

The arrows (green and red) with direction in the cells denote the existence of requirements 
relations with their directions. In addition to that, the red arrows indicate the candidate 
impacted requirements for the proposed change in the selected requirement (R7) listed at the 
top of the window. By clicking the red arrows, the tool provides the Determine Proposed 
Impact window, which is similar to the window in Figure 5.10. Since there can be multiple 
proposed changes in the requirements model, the tool has a different matrix view for each 
proposed change.  

The GUI for propagating proposed changes in Figure 5.10 and the Impact Matrix view in 
Figure 5.11 do not allow analysis of multiple proposed changes simultaneously. To support 
simultaneous analysis of multiple impact propagations, tool support for building decision 
trees is provided. Figure 5.12 shows the interactive decision tree builder for propagating 
changes. 
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Figure 5.12 Interactive Decision Tree Builder for Propagating Proposed Changes 

Each arrow in Figure 5.12 indicates a decision captured by the target node of the arrow. The 
decision tree can be expanded by making decisions (the Make Decision button in Figure 5.12). 
Once the analysis of the interactive decision tree is concluded, the requirements engineer can 
select a node and apply decisions captured by the path from the tree root to the selected 
node (the Use Analysis button in Figure 5.12).  

Displaying inconsistencies in proposed changes. Figure 5.13 gives the screenshot of the 
tool for the output of the checking change consistency activity. The window in Figure 5.13 has a 
list view including three columns. The first column of the list view gives the requirements 
that have contradicting proposed changes. The second column shows if the inconsistency is 
ensured or possible. The third column lists proposed changes that cause the inconsistency for 
the given requirement. 

The tool provides an explanation of contradicting proposed changes, for example, the 
contradicting proposed changes “Add Constraint to Property of Requirement” and “Delete 
Requirement” for requirement R16 (see Figure 5.14). 
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Figure 5.13 Output of the Checking Change Consistency Activity 

 

Figure 5.14 Explanation of the Proposed Change of R16 Causing the Inconsistency 

Figure 5.14 shows the propagation path for the proposed change “Add Constraint to 
Property of Requirement” in R16. R7 is the requirement where first the change is proposed 
and this change is propagated to R16 as “Add Constraint to Property of Requirement” by 
using the refines relation between R7 and R16. 

Implementing proposed changes in the requirements model. The tool allows the 
requirements engineer to implement proposed and propagated proposed changes according 
to the propagation path. The first proposed change in the path is implemented first (see 
Figure 5.15). Then, propagated proposed changes are implemented (see Figure 5.16). 
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Figure 5.15 GUI for Implementing Proposed Changes 

 

Figure 5.16 GUI for Implementing Propagated Proposed Changes 
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Predicting impact of proposed changes. The tool provides impact prediction for a 
proposed change. All possible propagation paths in the requirements model are traversed in 
order to determine alternative change types for the propagation. Figure 5.17 gives the output 
of the impact prediction for the proposed change “Add Constraint to Property of 
Requirement” in R7.  

The window in Figure 5.17 has a list view including three columns. The first column of the 
list view gives requirements in the model. The second column shows if the requirement is 
impacted (no, yes, or maybe). The third column lists the impact type if there is any impact. For 
instance, in Figure 5.17, R16 might be impacted by the proposed change “Add Constraint to 
Property of Requirement” in R7 and the type of change for the possible impact in R16 is 
“Add Constraint to Property of Requirement”. 

The tool also provides the propagation paths for the impacts listed in Figure 5.17. Figure 
5.18 gives the propagation paths for the impact in R16. The first part of the window in 
Figure 5.18 gives the types of impact for R16. There are two change types to be propagated 
for R16: “Add Constraint to Property of Requirement” or “No Impact”. The second part of 
the window shows the requirements in the propagation path. 

 

Figure 5.17 Output of the Impact Prediction for the Proposed Change in R7 
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Figure 5.18 Output of the Prediction Investigation for the Proposed Change in R16 

 

Figure 5.19 GUI for the Visualization of the Propagation Paths in Impact Prediction 
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Change propagation paths generated by the impact prediction are visualized by the tool. For 
instance, the first row in Figure 5.18 lists the propagation path from R7 to R16 with the 
change “Add Constraint to Property of Requirement” for R16. The visualization of this path 
is in Figure 5.19. 

The impact prediction option allows showing the impact of the proposed change for the 
whole model. It is useful for large models where the matrix view does not scale well. 

5.7 Example: Course Management System 

In this section, we illustrate our approach and tool support with the CMS example which we 
also use in Chapter 4. All requirements used in this chapter can be found in Appendix B. We 
performed two iterations of the modeling process for the example.  

 In the first iteration, we modeled the textual requirements and their relations. This is 
the modeling activity given in Chapter 4. Then, we proposed changes and propagated 
changes with the help of the tool.  

 In the second iteration, we updated the model in order to correct the inconsistent 
proposed changes. We implemented the approved changes in the requirements 
model. 

The example illustrates potential benefits and limitations of the approach for larger case 
studies. Change impact alternatives, elimination of false positive impacts in change 
propagation and consistency checking of changes are the potential benefits of the approach 
illustrated in this section. The main limitation is that the approach heavily depends on the 
requirements relations. False requirements relations assigned by the requirements engineer 
cause wrong propagation alternatives. Section 5.7.1 gives some proposed and propagated 
changes in the example. In Section 5.7.2, we show some inconsistent proposed changes 
detected in the example requirements model. 

5.7.1 Proposing and Propagating Requirements Changes 
Consider the following change to R7.  

R7: The system shall provide a messaging facility. 

Proposed Change is the following. 

      Change: Add constraint to property of requirement 

      Description of Change: Messaging facility should also contains sms and e-mail features 
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R7 states a messaging facility where sms and e-mail features are introduced as types of 
messages for messaging facility in the description of change. Since these features are 
constrains for the property messaging facility, the type of change is ‘Add constraint to 
Property of Requirement’. Then, the proposed change is propagated to requirements related 
to R7. Figure 5.20 gives requirements related to R7 with depth 2 (dotted arrows are inferred 
relations).  

 

Figure 5.20 Requirements Related to R7 with Depth 2 

R16: The system shall allow messages to be sent to individuals, teams, or all course 
participants at once. 

R18: Teams are created by students inviting other students in the same course using the 
messaging system. 

R24: The system shall notify students about events (new messages posted, etc.). 

R25: The system shall allow students to customize the notification behavior. 

R117: The system shall allow the administration to evaluate courses through students by 
means of a web-survey. 

According to Table 5.2 in Section 5.4, there is no impact for R18, R24, R25 and R117, which 
require R7, for the proposed change in R7. Then, we do not have to check R17, R74 and R72 
since they are indirectly related to R7 through R18. 
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There are two change alternatives to propagate the proposed change from R7 to R16 via the 
refines relation: ‘Add Constraint to Property of Requirement’ or ‘Delete Relation’. The change 
type ‘Add Constraint to Property of Requirement’ is chosen among these two to be 
proposed for R16 since the constraint added to R7 is also a constraint for R16.  

Proposed Change for the requirement R16 is the following. 

      Change: Add constraint to property of requirement 

      Description of Change: Messages to be sent to individuals, teams, or all course 
participants at once with both sms and e-mail. 

The next propagation of proposed change is from R16 to related requirements. Figure 5.21 
gives requirements related to R16 with depth 2 (inferred relations are not shown for 
simplicity). 

 

Figure 5.21 Requirements Related to R16 with Depth 2 

R8: The system shall enable students to retrieve contact information of students and 
lecturers of subscribed courses. 

According to Table 5.2, for the proposed change in R16, there is no impact for R8 and R18 
which are related to R16 with the requires relation. Then, we do not have to check R5, R6, 



5.7 Example: Course Management System 159 

 

R9, R12, R20, R97, R110 and R116 since they are indirectly related to R7 through R18. 
There are no other requirements related to R16 and the change propagation is over. 

5.7.2 Checking Consistency 
In this section, we discuss inconsistencies which are detected by our tool. R16 is the 
requirement which has the inconsistent proposed changes. They are the following: 

Change 1: Add Constraint to Property of Requirement R16 

Description of Change 1: Messages to be sent to individuals, teams, or all course 
participants at once with sms and e-mail. 

Change 2: Delete Requirement R16 

Description of Change 2: Messaging individuals, teams, or all course participants is not 
required any more.  

According to Table 5.3, changes “Add Constraint to Property of Requirement” and “Delete 
Requirement” cause an ensured inconsistency. Since the change “Add Constraint to Property 
of Requirement” is a propagated proposed change, we also need to analyze change 
propagation path of this change. Figure 5.22 gives the propagation path of the proposed 
change for R16 in the inconsistency. 

 

Figure 5.22 Propagation Path of the Proposed Change for R16 in the Inconsistency 

According to the propagation path in Figure 5.22, the proposed change in R16 is caused by 
propagating the change in R7 via the refines relation. In order to fix the inconsistency, the 
requirements engineer has three options. He/she might decide that the proposed change 
“Delete Requirement” in R16 is not valid, or the proposed change “Add Constraint to 
Property of Requirement” in R7 is not valid. The third option is that the change alternative 
“Delete Relation” is chosen to propagate the proposed change “Add Constraint to Property 
of Requirement” in R7 to R16 (see Section 5.7.1). This decision has to be made as a result of 
negotiation between the requirements engineer and the stakeholder who has the change 
request. 
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5.8 Evaluation of the Approach 

In this section we compare our approach with one of the industrial requirements 
management tools IBM Rational RequisitePro. As we discuss in Section 5.9, most of the 
approaches and tools like IBM Rational RequisitePro [119] do not focus on formal 
semantics of requirements relations and change types. By using formal semantics we provide 
a more precise change impact analysis in requirements models because we have the 
following features in our approach:  

 change alternatives in change propagation, 

 elimination of false positive impacts in change propagation, 

 consistency checking of changes. 

In the following we compare our approach with RequisitePro based on these features. 

Change Alternatives in Change Propagation. Our approach provides a classification of 
changes in requirements models (see Table 5.1 in Section 5.3). The requirements engineer 
proposes a change with a type before implementing the change in the model. The main 
advantage of our approach with change types is that propagation alternatives are provided to 
be choosen by the requirements engineer. Change alternatives provide information to the 
requirements engineer about what to change in impacted requirements. Table 5.4 gives a part 
of change impact alternatives for our approach and RequisitePro.  

Table 5.4 Part of Change Impact Alternatives for Our Approach and IBM Rational RequisitePro 
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In Table 5.4 there are three change types and their propagation alternatives provided by our 
approach and RequisitePro. RequisitePro has only two relation types (traceFrom and traceTo) 
with informal definitions. As shown in Table 5.4, for each change type, RequisitePro 
provides two alternatives (No impact or Change Rk) since there is only one change type (Change 
requirement). In RequisitePro, the requirements engineer has to inspect the impacted 
requirement in order to determine the type of change without any semantic information. In 
our approach, the requirements engineer inspects the impacted requirement based on the 
change alternatives derived from the semantics of requirements relations and change types. 
On the other hand, the requirements engineer has to spend some effort to model 
requirements and to determine their relations before performing change impact analysis in 
our approach. Figure 5.23 gives the requirements related to R7 in the CMS requirements 
model with depth 2 in RequisitePro (see Figure 5.20 in Section 5.7.1 for the correspondence 
model in TRIC). 

 

Figure 5.23 Requirements Related to R7 with Depth 2 in IBM Rational RequisitePro 
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Please note that RequisitePro does not provide visualization like the one in Figure 5.23. We 
converted the part of the matrix view of the CMS requirements model in RequisitePro to the 
graph visualization. Consider the following change to R7.  

R7: The system shall provide a messaging facility. 

Description of Change: Messaging facility should also contain sms and e-mail features 

Since RequisitePro does not support proposing changes based on a change classification, the 
change is implemented by updating R7. Requirements relations for R7 get suspended after 
implementing the change in R7 in RequisitePro. Figure 5.24 shows the suspended relations 
in the matrix view. 

R16: The system shall allow messages to be sent to individuals, teams, or all course 
participants at once. 

R18: Teams are created by students inviting other students in the same course using the 
messaging system. 

R24: The system shall notify students about events (new messages posted, etc.). 

R25: The system shall allow students to customize the notification behavior. 

R117: The system shall allow the administration to evaluate courses through students by 
means of a web-survey. 

 

Figure 5.24 Suspended Relations for Impacted Requirements by the Change in R7 

All requirements directly related to R7 with the suspended relations (R16, R18, R24, R25 and 
R117) are candidate impacted. The requirements engineer has to inspect the candidate 
impacted requirements to identify changes if there is any. When the same change is 
proposed with the change type ‘Add Constraint to Property of Requirement’ in our 
approach, ‘no impact’ is automatically identified for R18, R24, R25 and R117 (see Section 
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5.7.1). Our approach provides two change alternatives to propagate the proposed change 
from R7 to R16 via the refines relation: ‘Add Constraint to Property of Requirement’ or 
‘Delete Relation’. The requirements engineer inspects R16 to propose a change among these 
two alternatives. 

Elimination of False Positive Impacts in Change Propagation. Without employing any 
semantics information about relations and change types, all requirements directly related to 
the changed requirement are identified as candidate impacted. The requirements engineer 
has to check all these requirements manually to identify which requirements are actually not 
impacted (false positive impacts). For some change and relation types, our approach 
identifies ‘no impact’ for the related requirements. For instance, for the change in R7, all 
requirements (R16, R18, R24, R25 and R117) related to R7 are identified as candidate 
impacted by RequisitePro. All of these requirements are checked to identify the change 
although there is no impact for R18, R24, R25 and R117. When the change in R7 is 
proposed with the change type ‘Add Constraint to Property of Requirement’ in our 
approach, ‘no impact’ is automatically identified for R18, R24, R25 and R117 which are false 
positive impacts (see Section 5.7.1).  

Apart from directly related requirements, there might be other candidate impacted 
requirements indirectly related to the changed requirement. Figure 5.25 shows some of the 
requirements directly/indirectly related to R7 at a distance of 1, 2, 3 and 4. Here, distance is 
the number of relations between two related requirements [24]. 

The requirements indirectly related to R7 at a distance of 2, 3 and 4 (see Figure 5.25(b), (c) 
and (d)) are candidate impacted to be inspected in RequisitePro. By following directly and 
indirectly related requirements like in Figure 5.25, the number of impacted requirements 
might explode at some distance [24]. 
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Figure 5.25 Some of the Requirements Directly/Indirectly Related to R7 in RequisitePro 

Our approach provides impact prediction for a proposed change (see Section 5.6.3). The 
output of the impact prediction is the impacted requirements including both directly and 
indirectly requirements with change alternatives. For instance, for the change in R7, the 
output of the impact prediction is that only R16 might be impacted with the change type 
‘Add Constraint to Property of Requirement’ (see Figure 5.17 in Section 5.6.3). All other 
impacts identified by following directly and indirectly related requirements in RequisitePro 
are false positives. In this way we reduce the number of elements to be inspected.  

Consistency Checking of Changes. Our approach provides consistency checking of 
changes based on the formal semantics of requirements, relations and changes (see Section 
5.7.2 for the example of consistency checking). RequisitePro does not support any 
consistency checking activity for requirements changes.  
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5.9 Related Work 

We classify the related work in three categories: Change Classification with Formal Semantics, 
Change Impact Analysis in Requirements, and Tool Support. 

5.9.1 Change Classification with Formal Semantics 
We studied literature about requirements change classification and semantics of change 
types. Buckley et al. [40] propose a taxonomy of software change based on characterizing the 
mechanisms of change and the factors that influence these mechanisms. In this taxonomy, 
change type is one of the characterizing and influencing factors for mechanisms of change. 
Change types in [40] are defined as structural and semantic changes. Structural changes are 
changes that alter the structure of software. Another distinction for changes is semantics-
preserving and semantics-modifying changes. This distinction is very much similar to our 
classification of change rationale named as domain changes and refactoring. Buckley et al., 
however, focus more on semantics of software components, such as type hierarchy, scoping, 
visibility, accessibility, and overriding relationships, rather than on changes in requirements.  

Kitchenham et al. [140] propose an ontology to identify a number of factors that influence 
maintenance. The ontology has Modification Activity as an entity, specialized by Enhancement 
and Correction entities. In Corrections, a defect such a discrepancy between the required 
behaviour of a product/application and the observed behaviour is corrected [140]. 
Enhancements might be the changes in the implementation or they might be requirements 
changes which are adding new requirements or changing existing requirements. According to 
Kitchenham, “Add a new Requirement” and “Update an Existing Requirement” can be 
aquated to Swanson’s adaptive and perfective maintenance change types [237] [238] in turn. 
The difference with our work is that requirements change types in [140] have no formal 
semantics.  

Aizenbud-Reshef et al. [6] present an approach to defining operational semantics for a trace 
in UML. The semantic property of a trace is a triplet (event, condition and actions). An event 
indicates a change. Conditions help to differentiate among events. Actions describe what 
should and should not be done when a specific event has occurred. There are event types 
(delete events, update events, and create events) which can be considered as change types. The main 
goal is to achieve automated consistency management of UML class diagrams. Therefore, it 
is hard to use the semantics in [6] for different models like requirements models.  

Lee et al. [154] provide a change impact analysis approach using a goal-driven traceability-
based techniques. There is no explicit requirements change classification in the approach 
although change types such as modify an existing requirement and add a new requirement are 
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introduced in the example section of [154]. Instead of providing a requirements change 
classification, Nurmuliani et al. [192] focus on establishing how practitioners classify 
requirements change requests. The Card Sorting, a knowledge elicitation method, is used to 
identify categories of change requests in practice. For instance, requirements changes are 
categorized as high effort, medium effort, low effort and no effort changes based on the magnitude of 
effort involved criterion by the practitioners. Harker et al. [107] describe a classification of 
changing requirements where each changing requirement type could be reformulated as a 
change type. Lam et al. [150] propose a change maturity model that reflects an organization’s 
capability at managing change. In this maturity model, a change classification is provided 
with three main types of change: screen change, report change and data change. The change 
classification in [150] is specialized for Customer Complaints Systems (CCCs). Ackermann 
and Lindvall [5] classify change requests as data flow change, program flow change and application 
domain change. Contrary to our approach, none of these change classifications given above 
except the work in [6] has formal semantics.  

5.9.2 Change Impact Analysis in Requirements 
A number of approaches in the literature address change impact analysis in requirements. 
Jonsson and Lindvall [133] present common strategies for change impact analysis from a 
requirements engineering perspective. They categorize strategies as automatable 
(traceability/dependency analysis and slicing techniques) and manual (design documentation 
and interviews). Automatable impact analysis strategies often employ algorithmic methods 
for change propagation [133]. Traceability analysis is an automatable strategy that examines 
relations among all types of software development artifacts. Since our approach analyzes 
requirements relations for change impact, it can be considered as traceability analysis.  

Event-Based Traceability (EBT) [50] supports change impact analysis with automating trace 
generation and maintenance. In EBT, requirements and other traceable artifacts, such as 
design models, are linked through publish-subscribe relationship based on the Observer design 
pattern [88]. The main purpose of EBT is to determine the candidate impacted elements and 
maintain traces for these elements. Contrary to our approach, in EBT all elements 
directly/indirectly related to the changed element are candidate impacted. EBT does not 
support change impact alternatives, identification of false positives and consistency checking 
of changes.  

A goal-driven requirements traceability approach is proposed by Lee et al. [154] to analyze 
requirements change impacts through goals and use cases. Traces among goals and use cases 
are established and evaluated. Lee et al. provide trace types with definitions but with no 
formal semantics. Contrary to our approach, this approach does not focus on change 
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alternatives for propagating a change from one requirement to another. Cleland-Huang et al. 
[52] introduce another goal-centric approach for managing impact of a change in non-
functional requirements. Non-functional requirements and their dependencies are modeled 
with a Softgoal Interdependency Graph (SIG). The impact detection in [52] is limited to 
identifying a set of directly impacted SIG elements without any change type.  

Ibrahim et al. [121] present an approach for change impact analysis of object oriented 
software. Change impact analysis is performed from requirements to design, test case or 
source code. Ibrahim et al., however, do not explain how to propagate a change from one 
requirement to another requirement. Turver et al. [247] describe a technique dealing with the 
ripple effects of a change based on a graph-theoretic model. This technique can be applied 
not only for source code but also for design and requirements documents. The technique, 
however, calculates the ripple effects by using relations without any semantic information.  

O’Neal [195] [196] proposes a change impact analysis method to evaluate requirement 
changes. Complementary to our approach, O’Neal addresses the identification of the 
consequences of a change, such as how much change should be done. Hassine et al. [108] 
provide change impact analysis approach for requirements described as detailed scenarios.  
Dependencies between scenarios are used to identify the impacted scenarios. However, the 
approach does not provide any change alternatives for propagation of change. The 
requirements engineer has to inspect requirements to identify the type of impact without any 
proposed alternatives. 

Cheng et al. [45] propose a method of requirements change management based on keyword 
mapping. Each requirement is defined as a keyword and a keyword sentence is used to 
arrange all the keywords according to certain kind of order. When a change request is 
received for a keyword, the relations of keywords are analyzed for impact analysis. However, 
the requirements engineer is not supported in how the change is propagated.  

Lock et al. [159] [160] [161] provide an approach that integrates different traceability 
extraction methods (pre-recorded traceability, dependency, plain experience, extrapolation 
and certainty analysis) to determine impacted requirements. Impact propagation structure, 
similar to propagation path in our approach, is used with propagation probability to 
propagate a proposed change from one requirement to another. Contrary to our approach, 
the only output is the candidate impacted requirements in the impact propagation structure. 
In addition to candidate impacted requirements, our approach provides change alternatives 
to be chosen by the requirements engineer. 
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Lai et al. [148] [149] provide a model-based approach for propagating changes between 
requirements and design models (particularly activity and sequence diagrams). A change 
propagation algorithm is proposed to identify and localize the effects of change across 
requirements and design models. Our approach mainly focuses on change impact analysis in 
requirements models based on semantics of requirements relations. None of the approaches 
given above supports consistency checking of requirements changes. 

5.9.3 Tool Support 
Some requirements management tools support change impact analysis in requirements. The 
selection of tools is based on INCOSE management tool survey [124].  

IBM Rational RequisitePro [119] provides a matrix view to show the requirements relations 
and their direction between two requirements, or requirements and design elements. When a 
requirement is changed, relations of the changed requirement are marked as suspect. All 
requirements directly or indirectly related to the changed requirement are candidate 
impacted. The requirements engineer has to inspect the candidate impacted requirements to 
identify changes if there is any. In Borland Caliber [27] change impact analysis is manual. 
Similar to RequisitePro, Borland Caliber provides traceability matrix and traceability diagram 
to represent traces where requirements relations are also considered as a trace. Therefore, 
the requirements engineer should inspect the impacted requirements by using traceability 
matrix and diagram manually.  

TopTeam Analyst [246] supports suspected relations for change impact analysis. However, 
requirements relations should be manually marked as suspect when a requirement is 
changed. On the other hand, it is possible to get subscribed to specific elements in artifacts. 
When one of these elements such as a requirement is changed, the subscribers get a message. 
The message contains the name of the element, the user who changed the element and a link 
to the element for a quick inspection.  

IBM Telelogic Doors [120] supports a manual analysis of the relations and requirements 
affected by a change. When a requirement is changed, its relations are marked as suspect 
automatically. DOORS provides a Change Proposal System (CPS) similar to change impact 
analysis feature of TRIC. It allows the requirements engineer to investigate, allow or deny 
change proposals. The requirements engineer can keep an overview of proposed changes 
and can determine the effect of these changes. However, DOORS does not provide 
elimination of false positive impacts and any change alternatives for change propagation. 
None of the industrial tools given above supports consistency checking of requirements 
changes. 
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5.10 Conclusions 

We presented an approach for change impact analysis in requirements. We provided a 
classification of requirements changes. The usage of the formal semantics of relations and 
change types enables new proposed changes to be deduced and contradicting proposed 
changes to be determined in the requirements model. Most of the approaches and tools like 
IBM Rational RequisitePro do not focus on formal semantics of requirements relations and 
change types. With having formal semantics, we provide a more precise change impact 
analysis in requirements models by supporting change alternatives in change propagation, 
elimination of false positive impacts and consistency checking of changes. None of the 
industrial requirements management tools support change impact alternatives and 
consistency checking of changes. The main advantage of our approach is that propagation 
alternatives are provided to be chosen by the requirements engineer. By providing change 
alternatives with impact prediction we determine some of the false positive impacts occurred 
in most of the industrial tools like IBM RequisitePro.  

In this chapter, we answered the part of Research Question 5 raised in Chapter 1: How can a 
change in a requirement be propagated to other requirements and to software architecture? How can we 
support the requirements engineer and software architect for performing changes? How can we formally check 
if the evolved architecture satisfies evolved requirements? How can we become sure that traces are up-to-date? 
The use of semantics of relations and change types with tool support addresses the 
propagation of a change from a requirement to other requirements.  

There are still open issues. Since we applied the approach to a limited number of 
requirements in the Course Management System requirements document, the results may 
not be generalizable. We aim at empirical evaluation of our approach [249] with a quasi-
experiment, comparing TRIC with other tools (Microsoft Excel and RequisitePro) for 
change impact analysis. However, the results of the empirical evaluation are subject to 
limitations such as low participant representativeness, small sample size, limited 
comparability of software tools, low participant reliability and training for a new tool.  

The definitions of the requirements relations do not give information about the structure of 
properties in a requirement. For instance, the contains relation does not state exactly which 
property is contained by the containing requirement. The requirements engineer has to 
inspect the requirements to know this. Therefore, our approach provides change alternatives 
in change propagation to be choosen by the requirements engineer. 

In the current tool support, change propagation alternatives (see Table 5.2) and 
inconsistencies (see Table 5.3) are implemented in a rule based form. It might be possible to 
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derive change propagation alternatives and inconsistencies automatically. One possible 
future work is automatically deriving these propagation alternatives and inconsistencies.   

The output of this chapter (requirements change types, proposed changes and propagated 
proposed changes) is the input for change impact analysis in software architectures. For the 
evolution of requirements, we will analyze the impact of requirements changes on software 
architectures. Complete and valid traces between requirements and software architecture are 
needed in order to propagate changes in requirements to software architectures. In Chapter 
6, we provide an approach for generation and validation of traces between requirements and 
architecture with a tool support. The change impact analysis approach for software 
architectures is given in Chapter 7. The approach uses the traces with the output of this 
chapter in order to determine the impacted architectural elements and to fix the software 
architecture for changed requirements.       
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Chapter 6 

6 Traces between Requirements and Software 
Architecture 

In this chapter, we present an approach for trace establishment based on semantics of traces between 
Requirements (R) & Architecture (A). Requirements relations and architecture verification techniques are 
used. We provide a trace metamodel with commonly used trace types. The semantics of traces is formalized in 
first-order logic. We use the semantics of traces and requirements relations for generating and validating traces 
with a tool support. The tool provides the following: (1) generation and validation of traces by using 
requirements relations and/or verification of architecture, (2) generation and validation of requirements 
relations by using traces. The tool is based on model transformations in ATL and term-rewriting logic in 
Maude. We illustrate our approach in an example. 

6.1 Introduction 

In Chapter 5, we presented a change impact analysis approach in requirements models. To 
overcome the explosion of impacts addressed in [23], we provide semantics of requirements 
changes together with formal semantics of requirements relations given in Chapter 4. We use 
the formalization of relations and changes for propagating and consistency checking of 
proposed changes. Once we analyze the impact of a change in requirements, we need to 
determine the impact of this change in software architecture by using traces between 
Requirements (R) and Software Architecture (A). For example, in Figure 6.1, a change in 
requirement R2 has a direct impact on architectural component C2 through the trace between 
R2 and C2. It may also have an indirect impact on component C1 through the refines relation 
between R2 and R1, and the trace between R1 and C1. We need complete and valid traces 
between R&A in order to identify impacted architectural elements for requirements changes.   
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Figure 6.1 Within-Model and Between-Model Traces with Requirements Relation Types and Trace Types 
between Requirements and Software Architectures 

Considerable research has been devoted to relating requirements and design artifacts with 
source code. Most approaches focus on generating traces between requirements and source 
code or between design and source code [13] [70] [102] [109]. Less attention has been paid 
to relating requirements with architecture by using well-defined semantics of traces. 
Designing architecture based on requirements is a creative and manual process. The software 
architect can manually assign traces between R&A. Manual trace assignment is time-
consuming, expensive and error prone. In most approaches, there is a lack of precise 
definition of traces between R&A. This lack may cause incomplete and invalid trace 
establishment for requirements and architecture, thus prohibiting accurate change impact 
analysis.  

In this chapter, we present an approach that provides trace establishment by using semantics 
of traces between R&A (Requirements and Architecture). Our approach for trace 
establishment includes trace generation and validation. Generating traces is the activity of 
deducing traces between requirements and architecture based solely on verification of 
architecture and/or the requirements relations. Validating traces is the activity of identifying 
traces which do not obey trace semantics. We use a trace metamodel with commonly used 
trace types: Satisfies and AllocatedTo (see Section 6.3 for details of trace types). The semantics 
of the traces is provided with a formalization in first-order logic. Software architectures are 
expressed in Architecture Analysis and Design Language (AADL) [225]. We use dynamic 
semantics for part of AADL [197] [198] expressed in rewriting logic supported by the Maude 
language and tools [48] [49]. Semantics of AADL given in Maude enables simulation and 
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verification of AADL models [221]. For verification of AADL models, we use model 
checking of the systems’ behavior with respect to selected properties [264]. 

We propose two mechanisms to generate traces between R&A. The first mechanism uses 
architecture verification techniques. A given requirement is reformulated as a property in 
terms of the architecture. The architecture is executed and a state space is produced. This 
execution simulates the behavior of the system on the architecture level. The property 
derived from the requirement is checked by the Maude model checker. Traces are generated 
between the requirement and the architectural components used in the verification of the 
property. 

The second mechanism uses the requirements relations together with the semantics of 
traces. We ensure that the relations between requirements are preserved in their 
implementation in the architecture. This preservation is also used in the concept of software 
reflexion models where relations between elements in high-level models are preserved in their 
implementations [185]. Requirements relations are reflected in the connections among the 
traced architectural elements based on the semantics of traces. Therefore, new traces are 
inferred from existing traces by using requirements relations. We use semantics of 
requirements relations and traces to both generate/validate traces and generate/validate 
requirements relations. 

In this chapter, we answer Research Question 4 (How to model requirements, software architecture and 
traces with their semantics for change management?) and Research Question 5 (How can we formally check 
if the evolved architecture satisfies evolved requirements? How can we become sure that traces are up-to-date?) 
raised in Chapter 1. With the approach for trace establishment we address the issues about 
the use of formal semantics to reason about traces.  

Our approach is supported by a tool that uses ATL model transformations [135] [136] in 
combination with Maude. The tool provides the following: (1) generation and validation of 
traces by using requirements relations and/or verification of architecture, (2) generation and 
validation of requirements relations by using traces. We illustrate our approach in an 
example. 

This chapter is structured as follows. Section 6.2 describes the approach. Section 6.3 
presents the trace metamodel and definitions of the trace. In Section 6.4, we provide the 
formalization of the relations. Section 6.5 introduces the example. Section 6.6 describes 
generating and validating traces based on formal trace semantics. Section 6.7 explains the 
tool support. Section 6.8 discusses on the approach for the open issues. In Section 6.9, we 
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illustrate the approach with the Remote Patient Monitoring (RPM) example. Section 6.10 
describes the related work, and Section 6.11 concludes the chapter. 

6.2 Overview of the Approach 

Our approach supports several scenarios with different degrees of automation of trace 
generation and validation. Figure 6.2 gives the overview of the approach. 

Scenario 1: Generating/Validating traces by using requirements relations. This scenario takes the 
requirements model, an initial trace model and constraints in Figure 6.2 as input. The initial 
traces are assigned by the architect in the input trace model. Traces are generated for 
requirements which do not have any assigned traces but which are related to requirements 
with assigned traces. The semantics of trace and requirements relations is used to deduce the 
new traces. The output trace model contains the generated traces. The requirements relations 
and the constraints are used to check the validity of the assigned traces in the input trace 
model. Invalid traces are reported in the output error model. 

Scenario 2: Generating/Validating traces by using verification of architecture. We check if the 
requirements are satisfied by the architecture. This is done by reformulating the 
requirements in terms of logical formulas over the architecture. This scenario takes the 
reformulated requirement(s), the input trace model and the architectural model as input. To 
check the formulas we perform architecture simulation and verification in Maude. If the 
result of the verification is positive, all the architectural elements used in the execution trace4 
are considered to be related to the requirement with the Satisfies traces. Traces are generated 
accordingly in the output trace model. If a counter example is found, all the architectural 
elements used in the counter example are considered to be related to the requirement with 
the AllocatedTo traces. The software architect should inspect the input models for errors. The 
validation phase compares the assigned traces in the input trace model with the architectural 
elements in the verification output. The invalid assigned traces are reported in the output 
error model. 

Scenario 3: Generating/Validating traces by using requirements relations and verification of architecture. 
This scenario is the combination of the first two scenarios and takes the reformulated 
requirement(s), the input trace model, the requirements model and the architectural model as 
input. First, initial traces are generated for the reformulated requirement(s) by using 
verification of architecture. Then, requirements relations in the input requirements model are 
used to generate traces for other requirements. The newly generated traces are placed in the 
                                              
4 Execution traces should not be confused with the R&A traces 
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output trace model. The validation step considers two cases. In the first case, the input trace 
model is empty. Then, traces generated from the verification output are validated by using 
the requirements relations. The output is the error model which contains invalid generated 
traces.  In the second case, the input trace model contains assigned traces. New traces are 
generated from the verification output. The assigned and generated traces are compared for 
validation with the help of requirements relations. The output error model contains the 
invalid assigned traces. 

 

Figure 6.2 Overview of the Approach 

Scenario 4: Generating/Validating requirements relations by using traces. The input trace model 
contains traces which might be either assigned or generated. The relations among 
architectural elements may reveal new relations, or the lack of relations between the traced 
requirements according to the constraints based on semantics of traces and requirements 
relations. For instance, one of the constraints is that if one requirement requires another 
requirement, there should be, at least, an architectural element that satisfies both 
requirements. The output requirements model contains the generated requirements relations. 
The output error model contains the invalid requirements relations in the input requirements 
model. 

We have to note that all generated/invalid traces and requirements relations are suggestions 
for the architect. They have to be checked by the architect for the final decision. In order to 
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facilitate the scenarios, we rely on the semantics of requirements and relations previously 
given in Chapter 4. In addition, in this chapter we successively provide the followings: 

 Trace metamodel. We use a trace metamodel [66] to structure the traces. The 
metamodel includes most commonly found entities in literature, and requirements & 
architecture specific traces (Section 6.3). 

 Semantics of traces. We formalize traces between R&A by using FOL (Section 6.4). 

 Architecture description and verification facilities. Software architectures are 
expressed in Architecture Analysis and Design Language (AADL) [225]. We use 
formal dynamic semantics for part of AADL [197] [198] given in rewriting logic used 
in Maude language and tools [48] [49]. The details of the formal semantics of AADL 
models in Maude can be found in Appendix E. Formal semantics of AADL enables 
performing simulation and verification of AADL models [221]. For the verification, 
architectural significant functional requirements are reformulated as formalized 
scenarios and then properties are checked using linear temporal logic (LTL) [14]. 
Application of verification techniques for requirements is not the main focus of this 
chapter. The details can be found in [212]. 

 Generating and validating traces. We use semantics of traces and requirements 
relations with architecture verification techniques for generating and validating traces 
(Section 6.6). 

We provide tool support and illustrate the feasibility of our approach in an example. 

 Tool support. We describe the design and implementation of a prototype tool for 
generating and validating traces based on formal trace semantics (Section 6.7). 

 Running example. We illustrate the approach with an example (Section 6.9). The 
example is about requirements and architecture of a Remote Patient Monitoring 
(RPM) system developed by a company in the Netherlands. An RPM requirements 
document is used in this chapter as a running example.  

6.3 Trace Metamodel 

Our trace metamodel defines trace types between requirements and architecture identified in 
the literature. There are several approaches about transition from requirements to 
architecture which define trace types. Some of these approaches are summarized in [86] as: 
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goal-oriented [250], model bridging [103], problem frames [105], use case maps [41], rule-based decision 
making [158], architecting requirements [157], object-oriented transition [137], and weaving requirements 
and architecture processes [193]. For example, goal-oriented requirements engineering [250] 
defines a model for decomposing a system goal into requirements and operationalizations 
with goal-trees. Operationalizations can be considered as traces between requirements and 
architecture. Von Knethen at al. [142] classifies traces as within-model and between-model. Our 
trace metamodel consists of between-model traces. Figure 6.3 shows our trace metamodel 
together with parts of requirements and architecture metamodels. The requirements 
metamodel is the one described in Chapter 4. In the terminology of Von Knethen, 
requirements relations are within-model traces. 

 

Figure 6.3 Trace Metamodel for Requirements and Architecture 

We assume the following definition of software architecture: A software architecture is a 
description of the structure of a system, which comprise the software elements, the externally visible properties 
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of those elements, and the relationships among them [229]. We use AADL to model the architecture. 
A fragment of the AADL metamodel is given in Figure 6.3.  

We use two types of traces between requirements and architecture: AllocatedTo and Satisfies. 
In the literature, these relations are informally defined as follows [200] [215] [258]: 

Definition 6.1 AllocatedTo trace: A requirement R is allocated to a set of architectural elements 
E if the system properties related to E are supposed to fulfill the system properties given in 
R. 

The architect can track which component will take care of what requirement by using 
AllocatedTo traces [215]. 

Definition 6.2 Satisfies trace: A set of architectural elements E satisfies a requirement R if the 
system properties related to E fulfill the system properties given in R. 

A Satisfies trace addresses an implication dependency between the system properties given in 
the requirement and system properties designed in the architecture. The architecture satisfies 
the requirement where the fulfillment of system properties described in the architecture 
implies the fulfillment of the system properties given in the requirement. 

An AllocatedTo trace is assigned when the fulfillment of the requirement is expected. A 
Satisfies trace is assigned or generated when the fulfillment of the requirement is present. 

The literature proposes several types of traces, which are similar to Satisfies and AllocatedTo 
but named differently. For example, Khan et al. [138] propose six types of traces. They differ 
only in the type of the source requirement. In our approach we abstract from this detail thus 
keeping the generic types Satisfies and AllocatedTo. Section 6.10.1 further discusses the trace 
types found in the literature. 

The definitions given above are informal and can be interpreted differently. Since we aim at 
precise semantics, we formalize trace types in FOL. 

6.4 Formalization of Trace Types 

In this section we formalize the trace types. In Section 6.4.1 we briefly repeat the definition 
of requirements as found in Chapter 4. Section 6.4.2 presents the formalization of software 
architectures. In Section 6.4.3, we introduce the formalization for trace types between 
requirements and architecture.  
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6.4.1 Formalization of Requirements 
We assume the general notion of requirement being “a property which must be exhibited by 
a system”. We assume that requirements can always be expressed as a formula in the 
universal fragment of FOL as x  with   in conjunctive normal form (CNF). If the 

formula   is a closed formula, then the universal quantifiers can be dropped. It is also 

possible that the formula contains free variables.  

6.4.2 Formalization of Architecture 
A software architecture model AM is a model conforming to the AADL metamodel. There 
are different works in the literature [12] [28] [29] [221] that provide a formal semantics of the 
following notions: metamodel, model, and conformance of a model to its metamodel. We do not repeat 
the formalization of these notions in this thesis.  

We consider the software architecture model AM as an implementation of a property or 
properties which must be exhibited by a system. The software architecture model AM has 
architectural elements - the computational units which collectively constitute an architecture. 
The architectural elements in the subset of AADL that we use are System, Process, Thread 
Group, Thread, SubProgram, Data Store, Port, Data Access and Connector. For a given property PA, 
we are interested in identifying the set of architectural elements EA that are responsible for 
fulfilling PA. We express the property as a formula PA in any suitable logic such as Linear 
Temporal Logic (LTL) or Computation-Tree Logic (CTL). The property PA can be checked over 
the architecture model AM by using architecture verification techniques.       

6.4.3 Formalization of Satisfies and AllocatedTo Trace Types 
Traces are generally subsets of Cartesian products of sets. We define Satisfies and AllocatedTo 
trace types as follows: 

(74) SRSAESatisfies  )(  and )(SAESRoAllocatedT   

where SR is the set of requirements in the requirements model RM and SAE is the set of 
architectural elements in the software architecture model AM. The definition of the 
AllocatedTo trace type formalizes the intuition that a part of software architecture is planned 
to be an implementation of a set of requirements. 

Let R be a requirement and EA be a set of architectural elements where PR is a formula in 
CNF for R and PA is a formula in LTL. Figure 6.4 gives the schematic view of the relation 
between PR and PA.  

We require the following for the Satisfies trace type: 
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EA Satisfies R iff the following statement holds: 

(75) The fulfillment of PA implies the fulfillment of PR 

 

This definition of the Satisfies trace type formalizes the intuition that a part of software 
architecture is an implementation of a set of requirements. The set of architectural elements 
(EA) fulfills a property (PA) which is a refinement of a property (PR) given in a requirement 
(R). The architectural elements in EA are in the execution trace of checking PA. This is 
explained later. The refinement of PR to PA and modeling of the architecture are manual. PA 
is considered a refinement because in the general case the software architect makes certain 
design decisions that narrow the set of systems that satisfy the requirements.  

 

Figure 6.4 Schematic View of the Relation between PR and PA 

The whole software architecture model implements all the architecturally significant 
requirements in the requirements model. Architecturally significant requirements play an 
important role in determining the architecture of the system. Not all requirements have equal 
significance with regards to the architecture. According to [173], architecturally significant 
requirements are those that (1) capture essential functionality of the system, (2) exercise 
many architectural elements, (3) challenge the architecture, (4) highlight identified 
issues/risks, (5) exemplify stringent demands on the architecture (e.g. performance 
requirements), (6) are likely to change, and (7) involve communication and synchronization 
with external systems. Every architecturally significant requirement should be satisfied and 
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every architectural element should contribute to at least one requirement. We define the 
Satisfies relation between the requirements model RM and the architecture model AM: 

The Architecture Model AM satisfies the Requirements Model RM iff the following two 
statements hold where R is a requirement, SAR is the set of architecturally significant 
requirements in the requirements model RM, AE is an architectural element and SAE is the 
set of architectural elements in the architecture model AM:  

(76) ))),()((( RESatisfiesEAESAEERESAEAEAE AAAA   

(77) ))),()(())((( RESatisfiesSAEEERrefinedSARRR AAA   

refined(R) is true iff R is refined by one or more requirements. The most refined requirements 
in the requirements model are the most concrete requirements satisfied by the software 
architecture.  

6.5 Example: Remote Patient Monitoring System 

In this section, we introduce the Remote Patient Monitoring (RPM) system as a running 
example. The example is about requirements and architecture of a RPM system. The RPM 
system has the following stakeholders: patients, doctors, and the system administrator. The 
main goal of the RPM system is to monitor the patients’ condition such as blood pressure, 
heart rate and temperature. For instance, the system has to perform a temperature 
measurement at the patient. The patient carries a sensor for the measurement. Each 
temperature measurement is transferred to a central system which stores the measurements. 

The example system was developed by a company in the Netherlands. The system had 
already been implemented and running when we started studying the system. The artifacts of 
the development of the system are the requirements document, source code and test cases. 
To deploy the example for our approach, we modeled the textual requirements in the RPM 
requirements document and their relations according to the semantics of requirements 
relation types. 

The requirements model of the RPM system was created in TRIC (see Chapter 4). Some of 
the requirements in the RPM requirements document can be found in Appendix F. In the 
following, two requirements are shown: Requirement 6 requires Requirement 3. 

Requirement 3 The system shall measure blood pressure and temperature from a patient. 

Requirement 6 The system shall store data measured by sensors in the central storage. 
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Figure 6.5 shows the part of the requirements model that we created from the RPM 
requirements document. 

 

Figure 6.5 Part of Requirements Model for RPM System 

The solid arrows indicate the requirements relations given by the requirements engineer. For 
simplicity, we did not include the inferred requirements relations in Figure 6.5. We 
constructed the architecture of the system from the source code by reverse engineering. 
Figure 6.6 gives the overview of the RPM architecture in AADL visual syntax. The graphical 
notation for architectural elements in AADL is explained in Appendix G. The complete 
explanations of the abbreviations of the components used in this chapter are given in 
Appendix H. 

 

Figure 6.6 Overview of the RPM Architecture 
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The architecture in Figure 6.6 shows the most abstract components (system and process in 
AADL). These components contain other components which we do not represent in Figure 
6.6. The SD (Sensor Device) system component contains the sensors carried by the patient. 
The sensors perform measurements at a regular interval. If required, the SD sends the 
measurements to the HPC (Host Personal Computer) system component through the SDC 
(Sensor Device Coordinator) system component. The SDC is the ZigBee network coordinator. 
The details of the real coordinating tasks are omitted in the architecture description. The 
HPC consists of the SDM (Sensor Device Manager), AS (Alarm Service) and WS (Web Server) 
process subcomponents. The SDM stores the measurements and generated alarms in the 
data stores (Temp_alarms and Temp_Meas for temperature alarms and measuraments). The WS 
serves as a web-interface for the doctors. The AS forwards the alarms to the CPC (Client 
Personal Computer) system component. The CPC is used by the doctors to monitor patients. 
The AR (Alarm Receiver) process subcomponent in the CPC receives the alarms from the AS 
and notifies the doctor about the alarms. The WC (Web Client) process subcomponent uses 
the WS to retrieve the measurements and alarms stored by the SDM. 

Figure 6.6 shows only systems and processes in the RPM architecture. AADL provides also 
support for thread and subprogram components. The computation of the system is modeled as 
subprogram and thread behaviour. The current version of the AADL semantics [197] [198] 
in Maude that we use allows us to model subprogram and thread behaviour by using 
AADL’s behavioral annex with a finite set of states and a set of state variables. The RPM 
architecture has behavioral annexes for dynamic behaviour of threads in each system 
component. 

The following presents the implementation of the thread in the SDM component 
(SDM_Thread) for storing blood pressure measurements. It shows a transition system with 
state variables where each transition contains a guard ([sdm_blood_edp2?(inMessage)] in line 17) 
on the existence of events/data in the input ports (sdm_blood_edp2 in line 17), and on the 
value of the data receieved (inMessage in line 17).  

1          thread SDM_Thread 

2              features 

3                 sdm_blood_edp2: in event data port Behavior::integer;  

4                 sdm_blood_strg: out event data port Behavior::integer;  

5             properties 

6                 Dispatch_Protocol => aperiodic;      

7         end SDM_Thread; 

8 
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9          thread implementation SDM_Thread.i 

10             annex behavior_specification {** 

11               states 

12                   s0: initial complete state; 

13                   bloodStored: complete state; 

14              state variables 

15                  inMessage: Behavior::integer; 

16             transitions        

17                 s0 -[sdm_blood_edp2?(inMessage)]-> bloodStored { sdm_blood_strg!(inMessage); }; 

18            **};   

19         end SDM_Thread.i; 

The thread above has event data ports SDM_BLOOD_EDP2 in line 3 and 
SDM_BLOOD_STRG in line 4 for blood measurements. Since the Dispatch_Protocol of the 
thread is aperiodic (see line 6), this thread is activated upon receiving input. The thread has 
states s0 as the initial state in line 12 and bloodStored as the complete state in line 13. If the 
thread is in the s0 state and receives the measurement data at the SDM_BLOOD_EDP2 
event data port, then the received data is stored in the SDM_BLOOD_STRG data port and 
the bloodStored state is reached (see line 17). 

6.6 Generating and Validating Traces 

An important element of our approach is the ability to verify architectures thanks to the 
semantics definition of AADL in Maude. Both the generation and validation activities 
depend on it. This section describes how the results from the verification together with 
semantics of traces and requirements relations are used. Section 6.6.1 explains the 
verification of architecture for functional requirements in Maude. Section 6.6.2 gives the 
details of the trace generation by using requirements relations and verification results. In 
Section 6.6.3, we illustrate trace validation. 

6.6.1 Verification of Architecture for Functional Requirements 
We limit ourselves to verification of functional requirements only. The purpose of the 
verification is to check if requirements are correctly implemented in the architecture. We use 
model checking for verification of AADL models (see [264] for model checking). 
Verification results are used in both trace generation and trace validation as an input 
(Scenario 2 and Scenario 3 in Section 6.2). Figure 6.7 illustrates the verification of 
architecture for functional requirements. 
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Figure 6.7 Verification of Architecture for Functional Requirements 

The output of the verification is represented by the Satisfies and ConformsTo relations in 
Figure 6.7. ConformsTo implies that the state space captures the specified properties. We have 
the following artifacts in the process of verification of architecture: 

 Functional Requirements. Requirements which describe the functions that the system is 
to execute; for example, formatting some text or receiving data. 

 Architecture in AADL. The architecture of the system to be built. It plays the role of 
the solution for the problem defined by the requirements. 

 Property Specifications in Maude. The formal description of the required behavior of the 
architecture. The requirements are reformulated as properties in terms of the 
solution, which is the architecture (reformulate and uses in Figure 6.7). These properties 
are checked for the architecture by the model checker. The requirement is first 
described as a formalized scenario, and then described as property specification [32] 
[209] [212]. The formalized scenario is a pair of predicates <pre, post> encoding the 
precondition pre and the postcondition post for the architecture. The property 
specification uses any logic such as Linear Temporal Logic (LTL), First-Order Logic 
(FOL), or Computation-Tree Logic (CTL). In the tool, we use the formal analysis features 
of Maude. Maude provides model checking with LTL which is a logical formalism 
that is suited for specifying Linear-Time properties (see [14] for the details of Linear-
Time properties and LTL). In our approach, linear-time properties are formalized 
first as a scenario and then as an LTL formula.  

 State Space in Maude. The presence of a dynamic semantics specification of AADL in 
Maude makes the architectural models executable. The architecture is executed and a 
state space is produced (simulate in Figure 6.7). This execution simulates the behavior 
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of the system on the architecture level so that it can be studied to see how the system 
will work. Discrete event simulation, which introduces the notion of events, states, 
and state space, is used. A state describes the loci of data values within the 
architecture. Two states are connected by a transition and all states are captured by 
the state space. The result of the verification, which might be a counter example or an 
execution trace, is used to generate and validate traces. An execution trace is the 
ordered set of states which are generated where the reformulated requirement is 
satisfied. Counter example is the ordered set of states which are generated where the 
reformulated requirement is not satisfied. 

We use the formal semantics of behavioral AADL models in Maude implemented by 
Olveczky et al. [197] [198]. Since the focus of this chapter is not verification and simulation, 
we do not give details of the AADL semantics in this chapter. This is itself a non-trivial topic 
and subject of another work. The AADL semantics in [197] [198] can be found in Appendix 
E. 

Example: Reformulation of Requirements 

We explain the reformulation of requirements as property specifications in Maude with the 
following requirement from the RPM requirements document explained in Section 6.9 and 
given in Appendix F.  

Requirement 5 The system shall store patient blood pressure measured by the sensor in the central storage. 

The reformulation of Requirement 5 has two steps. Requirement 5 is first reformulated 
(reformulate in Figure 6.7) as a formalized scenario in terms of solution domain – the RPM 
architecture (uses in Figure 6.7). The formalized scenario is a pair of predicates <pre, post> 
encoding the precondition pre and the postcondition post for a dataflow in the architecture 
(see Figure 6.6 in Section 6.5). Figure 6.8 is the part of the RPM architecture developed for 
the system property given in Requirement 5. 

 

Figure 6.8 Part of the RPM Architecture 
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Requirement 5 is reformulated as a formalized scenario in terms of solution domain. 

Formalized Scenario: (contains(SD_BLOOD_EDP1, DI)), (contains(SDM_BLOOD_STRG, 
DI)) 

According to the formalized scenario, if the data instance DI is contained by the data port 
SD_BLOOD_EDP1 of Sensor 2 (SD component in Figure 6.8), then the data instance DI is 
stored in the data store SDM_BLOOD_STRG of the component SDM after executing the 
architecture (see Figure 6.8).  

The dynamic behavior of a thread is defined in AADL using AADL’s behavioral annex 
with a finite set of states and a set of state variables. In the RPM architecture, the 
subprogram execution for storing the blood pressure data in the central storage is 
implemented as a state transition system in the thread sdmTh (see Section 6.5). The sdmTh 
thread has states bloodStored, temperatureStored, highTemperature, lowTemperature and idle. When the 
data instance DI is stored in the data store SDM_BLOOD_STRG of the component SDM, 
the state of the sdmTh thread in the state transition system is set to the bloodStored state. 

The formalized scenario is the first step to reformulate the requirement in terms of 
solution domain. The next step is to construct the appropriate logic expression for the 
formal analysis in Maude. The following is the LTL formula derived from the formalized 
scenario: 

LTL formula in Maude: (mc initializeThreads({ MAIN system Wholesys . imp }) |=u <> 
((MAIN -> hpc -> sdm -> sdmTh) @ bloodStored) .) 

The formula states that if the data instance DI is contained by the data port 
SD_BLOOD_EDP1 of Sensor 2, then eventually in the future the state in the state transition 
system in the sdmTh thread is set to the bloodStored state (the data instance DI is stored by the 
data store SDM_BLOOD_STRG of the SDM component). Please note that the data instance 
DI is created in the initial state by a test thread in the RPM model. Therefore, the LTL 
formula does not explicitly indicate the data instance DI and the data port 
SD_BLOOD_EDP1 of Sensor 2. The formula creates the initial state instead.  

The initializeThreads({ MAIN system Wholesys . imp }) creates the initial state where the data 
instance DI is contained by the data port SD_BLOOD_EDP1 of Sensor 2. The MAIN -> 
hpc -> sdm -> sdmTh denotes the full component name of the sdmTh thread component. The 
@bloodStored states that the state of the sdmTh thread is the bloodStored. The ‘<>’ in the LTL 
formula states ‘eventually in the future’. The LTL formula can be checked on the generated state 
space in Maude. 
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The LTL formula derived from the formalized scenario (contains(SD_BLOOD_EDP1, 
DI)), (contains(SDM_BLOOD_STRG, DI)) is the property PA in our formalization of 
architecture. From the formalization we know that if PA holds, then PR given in the 
requirement also holds.   

6.6.2 Generating Traces 
Generating traces aims at deducing traces between requirements and architecture based 
solely on verification of architecture and/or the requirements relations in the requirements 
model. The approach does not need initial traces to generate new traces (see Scenario 2 in 
Section 6.2). 

The approach uses the result of the verification of architecture. If the verification is 
successful, the architecture satisfies the requirement. According to the semantics of trace 
types, the Satisfies trace is generated between the architectural elements in the execution trace 
and the requirement. These elements collectively satisfy the requirement and form the part 
of the architecture to which the requirement is traced. A counter example means that 
although the requirement is allocated to the architectural elements, the architecture does not 
satisfy it. The AllocatedTo trace can be generated but the Satisfies does not hold. We modified 
the transition rules in Maude to be able to record the architectural elements matched by the 
transition rules. These matched elements are the used architectural elements during the 
verification of architecture. These elements correspond to EA in the formalization of 
architecture. We modified the AADL metamodel and included an attribute called Used to the 
component classes in the AADL metamodel. Each transition rule sets the attribute Used of 
the architectural element matched in the transition rule to True. The details of the 
implementation of the approach are given in Section 6.7. 

The output of the verification for an LTL formula is true or false with a counter example. If 
the verification returns false with a counter example, the field used of the architectural 
elements matched by the transition rules is set to true in the last state of the counter example. 
To get the execution trace where the requirement is satisfied, we use the search command in 
Maude which allows exploring the reachable state space. The search command returns the 
execution trace where the requirement is satisfied. There might be multiple execution traces 
where the requirement is satisfied. In this case, the Satisfies trace is generated between the 
architectural elements in each execution trace and the requirement. 

A requirement may describe multiple system properties and/or a complex system property 
amenable to decomposition. In our approach it is not possible to explicitly state which 
property in the complex requirement fails. The requirements engineer should decompose the 



6.6 Generating and Validating Traces 189 

 

requirement into sub-parts (by using the Contains relation) until each requirement describes 
only one property which can be given as a single LTL formula. 

The second way to generate traces is to use the requirements relations (see Scenario 1 and 
Scenario 3 in Section 6.2). The constraints about traces in Figure 6.9 are derived from the 
intuition about the semantics of trace types and semantics of requirements relations. The 
constraints ensure that requirements relations are preserved in the architecture by the 
satisfying elements. The constraints are also used to generate requirements relations from 
traces (see Scenario 4 in Section 6.2). 

Please note that the constraints are given for the Satisfies traces in Figure 6.9. The same 
constraints are valid also for the assigned AllocatedTo traces. The constraint in Figure 6.9(a) 
states that the intersection of sets of architectural elements that satisfy two requirements 
where one requires another one is non-empty. In Figure 6.9(b), it is stated that architectural 
elements that satisfy the refining requirements also satisfy the refined requirement. 
Constraints similar to the one in Figure 6.9(b) are valid for traces with the Contains and 
Partially Refines relations (see Figure 6.9(c) and Figure 6.9(d)).  

In order to generate the Satisfies traces for R1 in Figure 6.9(b)(c) and (d), all other 
requirements (R2, R3, …, Rk) should be satisfied by the architecture. For instance, if one of 
the refining requirements (R2, R3, …, Rk) in Figure 6.9(d) is not satisfied by the architecture, 
the refined requirement (R1) is also not satisfied by the architecture. Therefore, there is no 
Satisfies trace for the refined requirement. The partial refinement might not be complete. In 
this case, even if all refining requirements are satisfied, the Satisfies trace is generated only if it 
is confirmed that the unrefined properties are also satisfied. The Satisfies trace is generated 
for the unrefined properties in R1 by using the verification of architecture.        
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Figure 6.9 Constraints based on Semantics of Traces and Requirements Relations 

The following is an example for generation of traces by using verification of architecture. 

Example: Generation of Traces by Using Verification of Architecture 

In Section 6.6.1, we give an example about the reformulation of requirements as property 
specifications in Maude for Requirement 5. In this section, we explain how to generate traces 
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by using the verification of architecture for Requirement 5 (see Scenario 2). The output of 
the reformulation of Requirement 5 is an LTL formula given below.  

LTL formula in Maude: (mc initializeThreads({ MAIN system Wholesys . imp }) |=u <> 
((MAIN -> hpc -> sdm -> sdmTh) @ bloodStored) .) 

After executing Maude, the formula is true which means that Requirement 5 is satisfied by 
the architecture. As we explained before, the LTL formula does not return the execution 
trace where the requirement is satisfied. Therefore, we run the search command in Maude in 
order to get the execution trace for Requirement 5: 

Search Command in Maude:  

  (utsearch [1] 

     initializeThreads({ MAIN system Wholesys . imp }) =>* {C:Configuration}  

       such that  

        ((location of component (MAIN -> hpc -> sdm -> sdmTh) in C:Configuration) == bloodStored  .) 

In the search command above, the initializeThreads({ MAIN system Wholesys . imp }) creates 
the initial state where the data instance DI is contained by the data port SD_BLOOD_EDP1 
of Sensor 2. The (location of component (MAIN -> hpc -> sdm -> sdmTh) in C:Configuration) 
returns the state in the transition system in the sdmTh thread, which should be the bloodStored 
state (‘== bloodStored’). ‘=>*’ in the command indicates the form of the rewriting proof from 
the initial state until the state where the state in the transition system in the sdmTh thread is 
the bloodStored state. Then, the search command tries to reach that state from the initial state.  

The search command returns the execution trace where the reformulated requirement is 
satisfied. The field used of the architectural elements matched by the transition rules is set to 
true in the last state of the counter example. Therefore, our tool (explained in Section 6.7) 
generates the Satisfies trace between Requirement 5 and the architectural elements used in the 
execution trace. Figure 6.10 shows the generated Satisfies trace for Requirement 5. 
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Figure 6.10 Generated ‘Satisfies’ Trace for Requirement 5 by Using Verification Results 

In this example, we only explained trace generation by using verification results. Other 
trace generation scenarios in Section 6.2 are illustrated with other examples in Section 6.9. 

The verification result, and therefore the traces, depends on the reformulation of the 
requirement to be checked. The architect needs to consider potential false positive and 
missed traces. Such traces are defined in relation to the set of actual traces, which is the golden 
standard for a pair of requirements and architecture. Figure 6.11 gives the classification of 
traces based on the relation between the actual and the generated traces for a requirement. 

 

Figure 6.11 Venn Diagram for Generated and Actual Satisfies Traces for a Requirement 

The interpretation of Figure 6.11 is given in a confusion matrix [78] in Table 6.1. 
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Table 6.1 Confusion Matrix of Generated and Actual Traces for Satisfies Relation 

 Actual ‘Satisfies’ Traces (AST) 

Generated ‘Satisfies’ Traces (GST) True Positive False Positive 

False Negative True Negative 
 

 (GST  AST) is True Positive. Generated traces which are also actual. 

 (GST \ AST) is False Positive. Generated traces which are not actual. 

 (AST \ GST) is False Negative. Actual traces which are not generated. 

 (PST \ (GST  AST)) is True Negative. Traces which are not actual and not generated. 

Misinterpretation of the requirement and wrong reformulation are the causes for false 
positive and false negative traces. In case of ideal models and correct reformulation the 
generated traces are the actual traces. 

6.6.3 Validating Traces 
Validation aims at identifying the traces which do not obey the trace semantics. This helps 
the elimination of false positive traces in Table 6.1. The approach identifies traces or 
requirements relations which violate the constraints in Figure 6.9. Validation by using 
requirements relations can be used in two ways (see Scenario 1 and Scenario 4). First, the 
architect may conclude that an invalid trace is a true positive and then he reconsiders the 
requirements relations (Scenario 4). Second, the architect concludes that requirements 
relations are all valid, then, he/she identifies the invalid traces (Scenario 1). 

Our approach also provides validation of traces by using verification results (see Scenario 2 
and Scenario 3). The architect assigns some AllocatedTo traces while creating the architecture 
(Scenario 2). In order to ensure that the architecture satisfies the requirements, the 
verification of architecture is performed. For the requirements satisfied by the architecture, 
the Satisfies traces are generated. The assigned AllocatedTo traces and the generated Satisfies 
traces for a requirement are validated based on the comparison of traces in Figure 6.12. 
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GST AAT

Assigned ‘AllocatedTo’ 
Traces (AAT)

Generated ‘Satisfies’ 
Traces (GST)

All Possible Traces (APT) 

GST \ AAT AAT \ GST

APT \ [ GST AAT ]

 

Figure 6.12 Venn Diagram for Generated ‘Satisfies’ and Assigned ‘AllocatedTo’ Traces for a Requirement 

The software architect should check the difference of the sets (GST \ AAT and AAT \ 
GST) and conclude about the validity of traces. 

 If (GST \ AAT) is non-empty, then either some of the generated Satisfies traces (GST 
\ AAT) are false positives or some of the traces are missed while assigning the 
AllocatedTo traces. If the software architect concludes that some of the generated 
Satisfies traces (GST \ AAT) are false positives, then misinterpretation of the 
requirement and/or wrong reformulation might be the causes of invalid trace 
generation. 

 If (AAT \ GST) is non-empty, then either some of the assigned AllocatedTo traces 
(AAT \ GST) are false positives or some of the Satisfies traces are missed while 
generating the Satisfies traces. If the software architect concludes that some of the 
traces (AAT \ GST) are missed while generating the Satisfies traces, misinterpretation 
of the requirement and wrong reformulation are the causes of the missing Satisfies 
traces. 

For the requirements which are not satisfied by the architecture, the AllocatedTo traces are 
generated from the counter example. The assigned and generated AllocatedTo traces for a 
requirement are validated based on the comparison of traces in Figure 6.13 which is similar 
to the comparison table in Figure 6.12. 
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Figure 6.13 Venn Diagram for Generated and Assigned ‘AllocatedTo’ Traces for a Requirement 

The software architect should check the difference of the sets (GAT \ AAT and AAT \ 
GAT) and conclude about the validity of traces.  

 If (GAT \ AAT) is non-empty, then some of the generated AllocatedTo traces (GAT \ 
AAT) are false positives or some of the traces are missed while assigning the 
AllocatedTo traces. If the software architect concludes that some of the generated 
AllocatedTo traces (GAT \ AAT) are false positives, then misinterpretation of the 
requirement and/or wrong reformulation might be the causes of having a counter 
example and invalid trace generation. 

 If (AAT \ GAT) is non-empty, then either some of the assigned AllocatedTo traces 
(AAT \ GAT) are false positive or some of the traces are missed in the trace 
generation. If some of the traces are missed in the trace generation, then 
misinterpretation of the requirement and/or wrong reformulation might be the 
causes of having a counter example and missing traces. 

The following is an example of validation of traces by using verification of architecture. 

Example: Validation of Traces by Using Verification of Architecture 

In Sections 6.6.1 and 6.6.2, we give examples about the reformulation of requirements and 
generation of traces for Requirement 5. In this section, we explain how to validate traces by 
using the verification of architecture for Requirement 5 (see Scenario 2).  

The example in Section 6.6.2 shows the generated Satisfies traces for Requirement 5. Figure 
6.14 gives the generated Satisfies and assigned AllocatedTo traces for Requirement 5. 
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Figure 6.14 Generated ‘Satisfies’ and Assigned ‘AllocatedTo’ Traces for Requirement 5 

The traces in Figure 6.14 are validated according to the Venn diagram in Figure 6.12 (see 
Scenario 2). Although Requirement 5 is allocated to the components AS and CPC_AR, 
these components are not involved in the Satisfies traces. We concluded that the two 
AllocatedTo traces to the components AS and CPC_AR are false positives.  

In this example, we only explained trace validation by using verification results. Other 
trace validation scenarios in Section 6.2 are illustrated in Section 6.9. 

6.7 Tool Support 

We built a tool for generating and validating traces between R&A based on formal trace 
semantics. In this section, we give the details of the tool. In Section 6.7.1, we depict the 
usage of the tool in the context of a modeling process. Section 6.7.2 gives the architecture of 
the tool. Section 6.7.3 describes the main features of the tool with some screenshots. Section 
6.7.4 evaluates the tool. 

6.7.1 The Modeling Process 
The tool is used in the context of a modeling process for trace generation and validation. 
Figure 6.15 gives a UML activity diagram of the process. 
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Figure 6.15 Modeling Process with Trace Generation and Validation 

The process in Figure 6.15 consists of the following activities: 

Modeling Requirements & Designing Architecture: This activity takes the requirements 
document and produces the input requirements model, input architecture model and input 
trace model. The software architect assigns some initial traces between requirements and 
architecture. 

The modeling process is separated into three activities: reformulating requirements, generating trace 
and validating trace. 

Reformulating Requirements: This activity takes the input requirements model and input 
architectural model and produces the reformulated requirement as output. The software 
architect reformulates the requirements in terms of logical formulas over the architecture. 
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Verifying Architecture: This activity takes the input architectural model and the 
reformulated requirement, and produces an execution trace or a counter example (see 
Section 6.6.1). The activity checks whether the requirements are satisfied by the architecture. 
It is done automatically in Maude. 

Generating Trace: This activity takes the input trace, requirements and architecture models 
with the output of verifying the architecture and produces the output trace model and 
requirements model. The activity is automatic. If the activity uses only requirements relations 
in the requirements model and initial traces in the input trace model, the activity is 
performed after the activity modeling requirements & designing architecture.  

Validating Trace: This activity takes the input trace model, input requirements model, 
input architecture model and produces an output error model. The activity is automatic. 
However, the interpretation of the errors in the trace model should be done manually by the 
software architect. 

Iterating: The process given in Figure 6.15 is iterative. The requirements engineer and/or 
the software architect may return to the modeling requirements & designing architecture 
activity in order to fix requirements relations and/or traces in the output models. If there is 
no need to update the models, the process is terminated. 

6.7.2 Tool Architecture 
The tool contains five components (rounded boxes in Figure 6.16): (a) the Model Checker in 
Maude, (b) the Trace Generator using Verification Results in ATL, (c) the Trace Generator using 
Requirements Relations in ATL, (d) the Trace Validator in ATL, and (d) the Requirements Relation 
Generator using Traces in ATL. 

Model Checker in Maude: The input for architecture verification component is the input 
architecture model and the requirement(s) reformulated in LTL. This component is used in 
the trace generation part of Scenario 2 and Scenario 3 (see Section 6.2). The verification and 
simulation are performed by the model checker and the rule execution engine of Maude. The 
architectural model originally expressed in AADL is transformed to a Maude term [182]. The 
AADL metamodel is encoded as a set of sorts. The dynamic semantics of AADL is given in 
rewriting rules [197] [198]. Requirements are reformulated as LTL formulas, the language 
supported by Maude checker. 
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Figure 6.16 Overview of the Tool 

Trace Generator using Verification Result in ATL: The input of the component is the 
execution trace and counter example. The component is implemented as an ATL 
transformation. If the verification result is an execution trace, the Satisfies traces are 
generated between the checked requirement(s) and the architectural elements in the 
execution trace. If the verification result is a counter example, the AllocatedTo traces are 
generated between the checked requirement(s) and the architectural elements marked in the 
counter example. The result is the Output Trace Model 1. 

Trace Generator using Requirements Relations in ATL: The input of the component is 
the Input Architecture Model, the Input Trace Model, and the Input Requirements Model. The 
component is used in the trace generation part of Scenario 1 and Scenario 3. It is 
implemented as an ATL transformation. The component generates new traces based on the 
requirements relations in the Input Requirements Model and the constraints in Figure 6.9. The 
output is the Output Trace Model 2. 

For output of the two trace generator components, we use two different output trace models 
in order to state that the outputs do not have to be the same. In the generation part of 
Scenario 3 which is generating traces by using requirements relations and verification of architecture, the 
three components above are used. First, the traces are generated in the output trace model 1 
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by the component trace generator by using verification result. Then the output trace model 1 is 
used as an input trace model by the component trace generator by using requirements relations to 
generate traces based on requirements relations in the input requirements model. 

Trace Validator in ATL: The input of the component is the Input Architecture Model, the 
Input Trace Model, and the Input Requirements Model. The component is used in the trace 
validation part of all scenarios. It is implemented as an ATL transformation. The component 
checks the validity of assigned traces between R&A by using verification output or 
requirements relations. It can also check the validity of requirements relations by using traces 
between R&A. The output is the Output Error Model which contains invalid traces and invalid 
requirements relations. 

Requirements Relation Generator using Traces in ATL: The input of the component is 
the Input Architecture Model, the Input Trace Model, and the Input Requirements Model. The 
component is used in the trace generation part of Scenario 4. It is implemented as an ATL 
model transformation. The component generates new requirements relations based on traces 
in the Input Trace Model. The output is given in the Output Requirements Model which contains 
only the generated requirements relations. 

6.7.3 Tool Features 
We describe the most important features of the tool: verifying architecture, displaying generated 
traces, and displaying invalid traces. 

Verifying Architecture: We use the Open-Source AADL Tool Environment (OSATE) – 
Topcased [204] which includes an AADL front-end and architecture analysis capabilities as 
plug-ins. The plug-in [182] developed by Artur Boronat is used to generate Maude 
representation of AADL models which can be simulated and verified. Figure 6.17 shows the 
OSATE-Topcased with AADL-Maude plugin. 
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Figure 6.17 OSATE with AADL-Maude Plugin 

In Maude, we can verify the software architecture for reformulated requirements in LTL. We 
use Eclipse plug-in developed in the context of MOMENT2 [30] to run Maude under 
Windows. Figure 6.18 gives the GUI for verifying architecture activity in Figure 6.15. 
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Figure 6.18 Maude Editor in Eclipse for Verifying Architecture 

The window in Figure 6.18 displays the generated Maude code from AADL model. In the 
bottom of the window, the software architect can enter the LTL formula in order to verify 
the architecture. 

Displaying Generated Traces: We use Eclipse model editor (see Figure 6.19) to display 
the Output Trace Model in Figure 6.2 which is the output of generating trace activity in Figure 
6.15. 
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Figure 6.19 Output of the Generating Trace Activity 

The right-hand side of the window shows the file output.ecore which is the output trace model. 
The trace model includes traces, requirements and architectural elements that are associated 
with these traces. The details of the chosen trace can be seen in the bottom of the window. 

Displaying Invalid Traces: The output error model of validating trace activity in Figure 
6.15 is displayed in Eclipse model editor. Figure 6.20 shows the output trace model in 
Eclipse model editor. 
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Figure 6.20 Output of the Validating Trace Activity 

The right-hand side of the window shows the Output Error Model. The model contains 
requirements and requirements relations which cause the invalidity in the trace model. The 
architectural elements traced from the requirements in the error model can be reached in the 
trace model in Figure 6.19. 

6.7.4 Evaluation of the Tool 
Our tool can be evaluated regarding different qualities like usability, performance and scalability. 
The tool usability mainly depends on the usability of the Eclipse environment. For the 
counter example and execution traces (the output of the component Architecture Verification in 
Maude), no GUI is provided. For a prototype we consider this to be acceptable. In this 
section, we conduct performance and scalability tests of the tool for generating and 
validating traces. Our tool uses model checking techniques in verification of architecture for 
functional requirements. It is known that these techniques may have scalability and 
performance problems in handling large amounts of model elements and states. Therefore, 
we focus on model checking part of our tool in the performance and scalability tests. 

Performance testing is conducted to evaluate the compliance of a system or component with 
specified performance requirements [1]. The requirement in our test is that the tool performs 
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in reasonable time (say less than one minute) with average number of architectural elements. 
We base our estimate for the average number of architectural elements on a report by 
McCormack et al. [174]. They characterize the differences in design structure between 
complex software products like Mozilla and Linux. The report shows that the architectural 
model of a real system contains around 2000 model elements. We take this finding as a base 
for our performance tests. 

Scalability testing is a performance testing focused on ensuring the application under test 
gracefully handles increases in workload [1]. The workload in our performance test is the 
number of states. Our interpretation of scalability of the tool is the following: the tool scales if 
the time spent by the tool increases linearly when the number of generated states increases linearly. 

Our dependent variable in the performance and scalability tests is the time for simulation 
and verification (in seconds). The independent variable used in the performance tests is 
number of elements in the architecture. We define the number of elements as follows: 
number of component instances + number of feature instances + number of port connections where component, 
feature and port connections are the architectural elements in AADL. The independent variable used 
in the scalability test is the number of states generated in the simulation. We define the 
number of states in the simulation as follows: the number of states the simulation is enforced to 
explore. These two variables are closely related to each other. If the number of elements is 
increased, it is likely that the number of states required for simulation and verification also 
increases. However, this does not always have to be the case. Assume that there are new 
architectural elements in the architecture for a new system property. New architectural 
elements may not increase the number of states in the simulation and verification of 
architecture for existing system properties. 

Memory consumption is not measured in the performance tests. The runs for each 
performance test are executed six times. The runs are the cells in Table 6.2 and Table 6.3 for 
simulation times. The average for each run is derived from six executions. The performance 
tests are done with Intel(R) Core(TM)2 Quad CPU Q6600  running at 2.40 GHz with 4096 
KB cache, and 2 GB of memory, running Kubuntu 10.04. We use Core Maude 2.4 for 
Linux. The models used in the performance tests are artificially created to test the tool with 
certain number of elements and states. The models used in the tests and the example AADL 
models given in this chapter do not have any real-time semantics. Real-time design and 
simulation are not the main focus of our approach. In the performance and scalability tests 
we use a version of operational semantics of AADL excluding the real-time semantics. The 
performance and scalability test results might be different with real-time semantics encoded 
in Real-Time Maude.  
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Performance test. The test is set up as follows. We increase the number of elements by 
adding components, data ports and data port connections to the architecture. We start with 
2000 architectural elements and end up with 3000 architectural elements. The number of 
states for each run is 500, 1000 and 2000. The results of the performance test are shown in 
Table 6.2. Since the results of the performance test might be different when the verification 
result is an execution trace or a counter example, the performance test is done for both cases 
(see Table 6.2(a) and Table 6.2(b)). The standard deviation of the data is approximately 
0.3%. 

Table 6.2 Simulation Times in the Performance Test 

 Simulation Time (sec)  for the Execution Trace 

# elements # states = 500 # states = 1000 # states = 2000 

2000 7.8 15.9 33.8 

2200 8.7 17.5 37.2 

2400 9.3 19.4 40.4 

2600 10.1 20.9 43.3 

2800 10.9 22.4 46.5 

3000 11.5 23.9 49.6 

a) Simulation with Execution Trace 

 Simulation Time (sec) for the Counter Example 

# elements # states = 500 # states = 1000 # states = 2000 

2000 2.6 5.2 10.8 

2200 2.8 5.7 11.9 

2400 3.1 6.3 13.0 

2600 3.3 6.7 14.0 

2800 3.5 7.2 15.2 

3000 3.7 7.7 16.1 

b) Simulation with Counter Example 

According to these performance tests, the tool performs below one minute with average 
number of architectural elements in a real system. The increase in the simulation time is 
linear and up to 50 seconds for 2000 states (see Figure 6.21). 
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a) Simulation with Execution Trace 

 

b) Simulation with Counter Example 

Figure 6.21 Simulation Time as the Function of the Number of Architectural Elements 

Scalability test. The goal of this test is to investigate how the tool handles increases in the 
number of states over several orders of magnitude. Our independent variable is the number 
of states. We also compare the scalability test results of the tool using Maude with the results 
of the tool using different simulation and verification environments such as Alloy [126]. The 
same execution semantics of AADL in Maude is encoded in Alloy. The first part of the 
performance test is done in Maude with 10000 architectural elements (see Table 6.3(a)). 
Then, the second part of the performance test is done in Alloy (see Table 6.3(b)). In [163], 
we investigated simulation and verification in Alloy. We found that Alloy is not suitable for 
big number of model elements and states. Therefore, we choose to run the second part of 
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the performance test in Alloy with a smaller number of architectural elements (38 elements) 
(see Table 6.3(b)). 

Table 6.3 Simulation Times in the Scalability Test 

Number of States Simulation Time (sec) 

10 1.5 

100 9.5 

1000 82.1 

3000 265.4 

4500 401.8 

5000 - 

a) Simulation in Maude (# elements = 10000) 

Number of States Simulation Time (sec) 

20 14.2 

40 53.7 

60 105.8 

80 180.4 

100 300.9 

b) Simulation in Alloy (# elements = 38) 

According to the scalability test results of our tool using Maude, the simulation time 
increases linearly when the number of states increases linearly (see Figure 6.22). We ran out 
of memory in Maude when we try simulation for 10000 architectural elements with 5000 
states. For Alloy, the simulation time also increases linearly when the number of states 
increases, however, for much smaller number of architectural elements and much smaller 
number of states. 

According to these test results, we conclude that our tool scales much better when using 
Maude rather than using Alloy. 



6.8 Discussion on the Approach 209 

 

 

Figure 6.22 Simulation Time vs. Number of States in Alloy and Maude 

We cover a subset of AADL semantics excluding real-time semantics in the tests. Our results 
are valid for this subset. The results depend on the modeling language and its semantics. The 
results may change with different AADL semantics or with a lower level design language like 
UML class and activity diagrams. 

6.8 Discussion on the Approach 

In our approach, the requirements are reformulated as formulas that encode properties of 
the software architecture. The requirement is first described as a formalized scenario, and 
then described as a Linear Temporal Logic (LTL) formula. The reformulation of the 
requirement is manual. There is no tool support or formal technique in our approach to 
ensure the consistency between the LTL formula and the requirement in natural text.  

We use operational semantics of AADL formalized in Maude. The formal semantics for 
AADL in Maude is an interpretation of the informal and sometimes ambigious descriptions 
in the AADL standard. We cover a subset of AADL semantics in our tool. As we already 
stated, our performance results for the tool in Section 6.7.4 are valid for this subset of 
AADL.  

The tool uses AADL and Maude but the approach can be applied with another architecture 
description language and model checker. We can apply the simulation techniques in our 
approach to any other architecture description language which has operational semantics. 
The operational semantics of the architecture description language can be encoded and 
formalized in different enviroments such as GROOVE (GRaphs for Object-Oriented 
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VErification) [219] and Alloy [126]. Other logics like Computation Tree Logic (CTL) can be 
used in our approach. 

A requirement may describe multiple system properties and/or a complex system property 
amenable to decomposition. In our approach it is not possible to explicitly state which 
property in the complex requirement fails. The requirements engineer should decompose the 
requirement into sub-parts (by using the Contains relation) until each requirement describes 
only one property which can be given as a single LTL formula. 

The approach aims at preserving the requirements relations in their implementation in the 
architecture. There might be some cases where extra dependencies not identified in the 
requirements analysis are determined in the architecture. For instance, in the requirements 
analysis, the requirements engineer models two requirements as non-conflicting. In the 
implementation of the requirements in architectural design, the software architect might 
realize that these two requirements are conflicting with each other. The software architect 
should update the requirements model by introducing a conflicts relation between these two 
requirements.  

6.9 Example for Trace Generation and Validation 

In this section we give more examples for the Remote Patient Monitoring (RPM) system 
introduced in Section 6.5. It should be noted that the example is purely illustrative and can 
not be considered as a complete validation of the approach.  

Section 6.9.1 illustrates reformulation of requirements and verification of architectures for 
the reformulated requirement in the example. Section 6.9.2 gives some generated traces in 
the example. In Section 6.9.3, we show some invalid traces identified in the example trace 
model. 

6.9.1 Verification of Architecture for Functional Requirements 
We verify the architecture of the RPM system for the following functional requirement. 

Requirement 4 The system shall store patient temperature measured by the sensor in the central storage. 

Requirement 4 is reformulated as a formalized scenario in terms of solution domain. 

Formalized Scenario: (contains(SD_TEMP_EDP1, DI)), (contains(SDM_TEMP_STRG, DI)) 

The formalized scenario states that if the data instance DI is contained by the data port 
SD_TEMP_EDP1 of Sensor 1 (SD component), then the result of the computation is that 
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the data instance DI is stored in the data store SDM_TEMP_STRG of the component SDM. 
The following is the LTL formula in Maude for the formalized scenario: 

LTL Formula: (mc initializeThreads({ MAIN system Wholesys . imp }) |=u <> ((MAIN -> hpc -
> sdm -> sdmTh) @ temperatureStored) .) 

The formula states that if the data instance DI is contained by the data port 
SD_TEMP_EDP1 of Sensor 1, then eventually in the future the state in the state transition 
system in the sdmTh thread is set to the temperatureStored state (the data instance DI is stored 
by the data store SDM_TEMP_STRG of the SDM component). When we check the formula 
on the architecture in Figure 6.6, the result is that the requirement is satisfied. Then, the 
Satisfies trace is generated for the requirement and the elements in the execution trace. 

6.9.2 Generating Traces 
In this section, we show some generated traces in the example. Consider the following 
requirement for the RPM system. 

Requirement 5 The system shall store patient blood pressure measured by the sensor in the central storage. 

In Section 6.9.1, we already showed that Requirement 4 is satisfied by the architecture. It can 
be shown that the architecture also satisfies Requirement 5. The Satisfies traces are generated 
for Requirement 4 and Requirement 5 accordingly (see Figure 6.23). 

 

Figure 6.23 Generated ‘Satisfies’ Traces by Using Verification Results 
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The requirements model in Figure 6.5 states that Requirement 4 and Requirement 5 refine 
Requirement 6 which is the following: 

Requirement 6 The system shall store data measured by sensors in the central storage. 

Based on the constraints in Figure 6.9, the set of the generated Satisfies traces for 
Requirement 6 is the union of the trace sets for Requirement 4 and Requirement 5 (see 
Scenario 3). Figure 6.24 shows the generated Satisfies trace for Requirement 6 by using the 
requirements relations. 

 

Figure 6.24 Generated ‘Satisfies’ Traces by Using Requirements Relations 

Traces can also be used to generate requirements relations (see Scenario 4). Consider the 
following requirement for the RPM system. 

Requirement 12 The system shall enable the doctor to retrieve all stored temperature measurements for a 
patient. 

We already showed that Requirement 4 is satisfied by the architecture. It can be shown that 
the architecture also satisfies Requirement 12. The Satisfies trace is generated for 
Requirement 12 accordingly. 
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Figure 6.25 Generated Requirements Relation by Using Traces 

Figure 6.25 shows the intersection of traces for Requirement 4 and Requirement 12. Based 
on the constraints in Figure 6.9, there might be a Requires relation between Requirement 4 
and Requirement 12 if the intersection of traces is non-empty. The output of the tool is only 
the candidate requirements relations. For the Requires relation, the tool can not suggest the 
direction of the relations. The final decision about the relation should be made by the 
architect. We analyzed the suggested relation and concluded that Requirement 12 requires 
Requirement 4.   

6.9.3 Validating Traces 
In this section, we perform validation of traces in the example. Section 6.9.2 showed the 
generated Satisfies traces for Requirement 6. There are also assigned AllocatedTo traces for the 
same requirement. Figure 6.26 gives the generated Satisfies and assigned AllocatedTo traces for 
Requirement 6. 

The traces in Figure 6.26 are validated according to the differences of the architectural 
element sets of the traces in the Venn diagram in Figure 6.12 (see Scenario 2). We check the 
software architecture for Requirement 6. Although Requirement 6 is allocated to the 
components AS and CPC_AR, these components are not involved in the architecture design 
for Requirement 6. We concluded that two AllocatedTo traces to the components AS and 
CPC_AR are false positive traces. 
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Figure 6.26 Generated ‘Satisfies’ and Assigned ‘AllocatedTo’ Traces for Requirement 6 
 

 

Figure 6.27 Assigned ‘AllocatedTo’ Traces with Requirements Relation 

Figure 6.27 shows the assigned AllocatedTo traces for Requirement 12 and Requirement 6 
with the Requires relation. The Requires relation between Requirement 12 and Requirement 6 
is a given relation. The traces in Figure 6.27 are validated with the Requires relation between 
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Requirement 12 and Requirement 6 (see Scenario 1). Based on the constraints in Figure 6.9, 
the sets of the assigned AllocatedTo traces for Requirement 12 and Requirement 6 should 
have a non-empty intersection. We re-inspected Requirement 12, Requirement 6 and the 
architecture. We concluded that some traces are missing for Requirement 12. We allocated 
Requirement 12 to the architectural element SDM_TEMP_STRG to which Requirement 6 is 
also allocated. 

For the traces and requirements relation in Figure 6.27, we decided that the Requires relation 
is valid and the traces should be corrected. However, there might be cases where the 
requirements relation is identified as invalid based on the constraints in Figure 6.9 (see 
Scenario 4). Figure 6.28 shows the assigned AllocatedTo traces for Requirement 10 and 
Requirement 6 with the Refines relation. Requirement 6 and Requirement 10 are the 
following: 

Requirement 6 The system shall store data measured by sensors in the central storage. 

Requirement 10 The system shall store all generated temperature alarms in a central database. 

Based on the constraints and by analyzing requirements, we concluded that the Refines 
relation between Requirement 10 and Requirement 6 is invalid. 

AllocatedTo

EA10 EA6

AllocatedTo(EA10, R10)  AllocatedTo(R6, EA6)  

R6R10

AllocatedTo

refines

sd_temp_edp1 sd_temp_edp2

sd_temp_edp3 sd_temp_edp4

sdThr

sdc_temp_edp1 sdc_temp_edp2 sdc_temp_edp3

sdc_temp_edp4 sdc_temp_edp5 sdc_temp_edp6

sdcThr

hpc_temp_edp1 sdm_temp_edp1 sdm_temp_edp2

sdmThr

sdm_temp_strg sd_blood_edp1 sd_blood_edp2

sd_blood_edp3 sd_blood_edp4 sdc_blood_edp1

sdc_blood_edp2 sdc_blood_edp3 sdc_blood_edp4

sdc_blood_edp5 sdc_blood_edp6 hpc_blood_edp1

sdm_blood_edp1 sdm_blood_edp2

sdm_blood_strg

sd_temp_alarm_edp1 sd_temp_alarm_edp2

sd_temp_alarm_edp3 sdc_temp_alarm_edp1

sdc_temp_alarm_edp2 sdc_temp_alarm_edp3

sdc_temp_alarm_edp4 sdc_temp_alarm_edp5

sdc_temp_alarm_edp6 hpc_temp_alarm_edp1

sdm_temp_alarm_edp1 sdm_temp_alarm_edp2

sdm_temp_alarm_strg

 

Figure 6.28 Assigned ‘AllocatedTo’ Traces with an Invalid Requirements Relation 
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When we delete the invalid given relations, some of the inferred relations might be 
automatically deleted. Figure 6.29 gives some given and inferred requirements relations for 
Requirement 10.  

 

Figure 6.29 Given and Inferred Relations for Requirement 10 

Requirement 2 The system shall measure blood pressure from a patient. 

Requirement 3 The system shall measure blood pressure and temperature from a patient. 

Requirement 6 The system shall store data measured by sensors in the central storage. 

Requirement 10 The system shall store all generated temperature alarms in a central database. 

The solid arrows indicate the given relations; the dashed arrows denote the relations inferred 
from the given relations. The requires between Requirement 10 and Requirement 2 is inferred 
from the refines between Requirement 10 and Requirement 6, requires between Requirement 6 
and Requirement 3, and contains between Requirement 2 and Requirement 3 (see Figure 
6.29(a)). The requires between Requirement 3 and Requirement 10 is inferred from the refines 
between Requirement 10 and Requirement 6, and requires between Requirement 3 and 
Requirement 6 (see Figure 6.29(b)). Removal of the Refines relation between Requirement 10 
and Requirement 6 automatically removes the inferred requires relations in Figure 6.29(a) and 
(b). 

For the validation of traces and requirements relations for cases like in Figure 6.27 and 
Figure 6.28, our tool gives the traces and requirements relations which do not obey the 
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constraints. The architect should decide about either the traces or the requirements relations 
are invalid. 

6.10 Related Work 

We discuss related work in six categories: Types and Semantics of Traces, Generating and Validating 
Traces, Conformance Assessment, Architecture Analysis, Analyzing AADL Models and Tool Support. 

6.10.1 Types and Semantics of Traces 
A number of approaches address types and semantics of traces between R&A. Paige et al. 
[206] focus on how to define traces with tool-supported semantics. According to [206] 
semantically rich traces possess three characteristics: (1) traces are typed, (2) traces conform 
to a case-specific trace metamodel, and (3) the case-specific metamodel should be 
accompanied by a set of case-specific constraints, which cannot be captured by the 
metamodel. The trace metamodel in Section 6.3, which is a case-specific trace metamodel, 
contains the Satisfies and AllocatedTo traces with semantics in FOL. Based on the semantics 
we can generate and validate traces between R&A in a formal manner. The trace metamodel 
includes the case-specific trace information such that the trace is generated or assigned. This 
type of trace information can prevent users and tools from establishing illegitimate traces 
[206]. One of the case-specific constraints, not captured by the metamodel, is that there 
cannot be both generated Satisfies and AllocatedTo traces for the same requirement.  

Aizenbud-Reshef et al. [6] state the need for semantics of traces in general. They present an 
approach to defining operational semantics for traces in UML. The semantic property of a 
trace is a triplet (event, condition, and actions). This triplet is very much dependent on change 
impact analysis. Therefore, it is hard to use the semantics in [6] for other purposes like 
generating and validating traces.  

Ramesh and Jarke [215] define traces between R&A: allocated to and satisfy which have similar 
definitions with trace types in this chapter. Khan et al. [138] define a dependency model to 
analyze the impact of evolving requirements dependencies and architecture changes. The 
dependency model consists of six types of traces: goal dependency, service dependency, conditional 
dependency, temporal dependency, task dependency and infrastructure dependency. Lago et al. [147] 
propose following trace types between feature models (requirements) and structural models 
(architecture): drive, modify, depend-on, and influence. There is no formal semantics of the trace 
types in [138] [147] [215]. All these types can be mapped to our trace types. 
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6.10.2 Generating and Validating Traces 
A number of approaches provide generating and validating traces. Egyed et al. [72] [71] [70] 
provides an automated traceability approach that uses a small number of traces as input. In 
[72] [70], the source code is executed according to some scenarios and then traces are 
generated between requirements and source code. Footprint graph is used to detect the 
incomplete and incorrect input. Dependencies between requirements can be detected based 
on overlaps among the lines of code implementing those requirements. There is no formal 
semantics of trace types (hypothized, generated, validated and observed traces) in [72] [70]. Similarly 
to his work, we use reformulation of requirements as scenarios. 

Schwarz et al. [228] describe a graph-based traceability approach. Generation and 
maintenance of traces are handled by model transformations. The Satisfies trace is provided 
without any formal semantics or textual definition. Components, interfaces and ports in the 
architecture are created automatically from requirements and use cases by using heuristics. 
Our work assumes that architecture is created manually. 

Information retrieval methods are proposed for trace generation. Antoniol et al. [13] 
propose an approach for recovering traces between source code and documentation (mainly 
requirements specification) using information retrieval methods. Hayes et al. [109] introduce 
another approach for trace generation. The assumption of these works is that programmers 
use meaningful names for program items so that the analysis of the mnemonics can help to 
associate high-level concepts with source code. 

Grechanik et al. [102] support generating traces between types and variables in Java 
programs and elements of use-case diagrams (UCD). The approach combines program 
analysis, run-time monitoring, and machine learning to generate traces. Relations between 
program entities are compared with corresponding relations between elements in UCDs only 
to validate traces. Cysneiros and Zisman [58] describe an approach to support traceability for 
agent systems. Although it is claimed that the approach uses six types of traces and 
semantics of these types, no semantics for the trace types is provided in [58]. The approach 
supports generating traces between design models and code specification by checking 
synonyms. Instead of checking synonyms our approach uses semantics of traces and 
requirements relations. Bonde et al. [26] describe an interoperability approach based on 
generating a trace model by using model transformations. This work focuses on traces 
between platform independent and platform specific models in MDA context.  

Mader et al. [167] address modification and enhancement of existing traces after changes to 
artifacts. The approach does not support trace generation. On the contrary, in our approach 
initial traces can be generated by using architecture verification techniques. A Visual 
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Traceability Modeling Language (VTML) is proposed by Mader et al. [166]. VTML allows 
users to model trace queries by hiding underlying technical details. The queries created with 
VTML can be applied on traces generated and validated by our approach.  

6.10.3 Conformance Assessment 
Conformance assessment is the act of checking whether a requirement is satisfied [11]. The 
assessment can be testing, inspection, model checking or conformation transformation usage 
(see [10] for conformation transformation usage). The usage of architecture verification with 
requirements relations in our approach can be considered as a conformance assessment of 
properties in the requirements and architecture. 

Almeida et al. [11] propose a framework that supports management of traces between 
requirements and design. The framework provides a notion of conformance between 
application models which reduces the effort for conformance assesment. The conformance 
between various application models at different levels of abstraction is assessed. In our 
approach, we focus on conformance assessment between requirements and software 
architecture. We do not consider the case where there are multiple design models at various 
abstraction levels.  

Paige et al. [207] give a definition of refinement between models via consistency checking. 
Formal definitions for model consistency are provided with the definition of refinement in 
MDA. The consistency of platform specific and independent models is ensured with cross-
model rules which actually check the preservation of properties between two models. There 
are other conformance assessment approaches by Egyed [69], Abi-Antoun et al. [3] [4], 
Moriconi et al. [184], Heckel et al. [112] and Oquendo [205]. Most of these works focuses on 
the conformance assessment for architecture and detailed design. Our approach does 
conformance assessment for requirements and architecture design. 

6.10.4 Architecture Analysis 
Simulation and model checking of software architecture are parts of our approach for trace 
generation and validation. We studied the literature about behavioral and static analysis of 
software architecture models. Zhange et al. [264] give a classification and comparison of 
model checking software architecture techniques. According to the survey in [264], 
CHARMY [209], using the SPIN model-checker, is one of the most recent architecture 
analysis approaches. A similar approach that uses SPIN for verifying software architecture is 
proposed by Bose [31]. The works in [209] and [31] use UML-based notations instead of 
architecture description languages.  
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According to [264], Wright language proposed by Allen and Garlan [9] can be considered as 
the first work on model checking techniques for software architecture. The extension of the 
work in [8] addresses the problem of specifying and analyzing dynamic behaviour of 
architectures. Dynamic behavior is distinguished from the steady-state behavior where the 
computation performed by a system without reconfiguration [8]. Magee and Kramer [170] 
outline examples of language features for dynamic structure. There are approaches for 
analyzing dynamic behaviour: Darwin [171] [168], Chemical Abstract Machine (CHAM) [56] 
[57] [125], dynamic architecture verification using DynAlloy [39] [38], reconfiguration 
analysis in service oriented architectures [15], and behaviour preservation in dynamic 
architectures [112]. Our approach does not support the analysis of dynamic behaviour.  

There are works [64] [73] [187] about extending architectural description languages with 
statechart semantics to analyze the internal component behavior. These works are similar to 
the behavioral annex for thread and subprogram behavior in AADL. In behavioral annex, 
the behavior of a thread is modeled as a set of states with pre and post conditions. Ölveczky 
et al. [197] [198] implement pre and post conditions in Maude rewriting rules. 

Boudiaf et al. [32] use rewriting rules in Maude to give the behavioral semantics of multi-
agent system models for architecture analysis. The difference with the architecture analysis 
we use is that Boudiaf et al. perform architecture analysis on multi-agent system models. 
ArchJava [7] is an extension to Java that unifies an architecture with its implementation. It is 
possible to check if architectural properties are preserved in source code. On the contrary, 
we do not couple source code with architecture.  

Apart from behavioral analysis, there are static analysis techniques for architecture 
verification. Allen and Garlan [9] use the static analysis tool FDR [84] to check deadlock and 
component-connector compatibility. Naumovich et al. [188] use static analysis tools based 
on flow equations. One of the drawbacks of using static analysis is that some dynamic 
features of architecture description languages might cause difficulties for static analysis. 

6.10.5 Analyzing AADL Models 
In the previous subsection, we give the literature about general architecture analysis 
techniques. There are also works particularly studying architecture analysis in AADL models. 
Delanote et al. [63] explore the use of AADL in model driven development. However, the 
authors do not adapt any architecture analysis technique to AADL models. 

Berthomieu et al. [20] [21] give an approach for formal verification of AADL specifications. 
A subset of AADL is translated into an extension of Petri nets called Fiacre language [21]. 
Chkouri et al. [46] propose another analysis approach using translation between AADL and 
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BIP (Behavior Interaction Priority) language. The analysis technique [197] we use gives a 
formal executable semantics to an AADL model with a behavior annex specification of its 
thread behavior. On the contrary, the approaches in [20] [21] [46] use translations into 
imperative languages. Similar to [197], Yang et al. [263] propose a formal semantics in Timed 
Abstract State Machine (TASM) for a limited set of AADL behavior annex (periodic threads 
and no modes). 

Jahier et al. [127] provides an AADL analysis approach in which the behavior of software 
components are developed as AADL subprogram execution. In [127] the testing tool Lurette 
[128] is used for simulation; verification of architecture is done by the Lesar model-checker 
[217]. Abdoul et al. [2] propose an AADL model transformation which provides a formal 
model for model checking activities. Hugues et al. [116] present a tool suite for analyzing 
AADL models. In [116], it is considered that subprograms in AADL encapsulate the 
behavior of architecture. Similar to [197], Benammar et al. [18] [19] propose the use of 
rewriting logic in Maude as a formalism for modeling behavior in an AADL architectural 
description. On the contrary, in [18] [19], the behavior of a thread is specified directly in 
Maude.   

Varona-Gomez et al. [253] translate AADL models to SystemC models for performance 
analysis. Bozzano et al. [34] [33] present an AADL analysis approach which supports Error 
Model Annex for modeling faults and repairs. Li et al. [155] propose the use of 
Communicating Sequential Processes (CSP) for simulation of AADL models. The works in 
[104] and [232] focus on analyzing schedulability with a behavior of a subset of AADL. All 
these approaches assume that the thread behavior is specified outside AADL.   

Apart from simulating and verifying AADL models, de Niz et al. [61] propose the use of 
AADL models to analyze potentially unintended system behavior. Gilles and Hugues [91] 
[92] present a domain specific language (REAL – Requirement Enforcement Analysis 
Language) for AADL. Contrary to our approach, the approach in [91] [92] does not focus on 
simulation and verification of AADL models.  

6.10.6 Tool Support 
Some requirements management tools support traces from requirements to system 
implementation. The INCOSE management tool survey [124] evaluates these tools 
according to the criterion traceability analysis, that is, what kind of trace links the tools provide 
and what kind of analysis is performed by the tools. According to the responses of tool 
vendors in the survey, current industrial tools mostly provide tracing requirements to system 
implementation such as software architecture with integration of other modeling tools. 
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However, they do not provide mechanisms of trace generation and validation for 
requirements and architecture. 

IBM Rational RequisitePro [119] provides only two types of trace between requirements, 
requirements & design, and requirements & implementation: traceFrom and traceTo. These 
two trace types indicate only the direction. IBM Telelogic Doors [120] provides a 
mechanism of describing functional decomposition and analysis in UML. The tool supports 
two types of trace: internal and external. Internal traces can be created between any two 
elements in the same model such as requirements relations, while external links can be used 
to link elements in different models such as traces between R&A. The requirements engineer 
can also specify his own trace type. Borland Caliber [27] provides only one trace type. This 
type can be used for different purposes such as part-whole and refinement. A trace can be 
established between any two artifacts. These artifacts can be of the same type or different 
types and even external artifacts, like files, UML elements or test cases. The reasoning 
facilities of the tools IBM Rational RequisitePro, IBM Telelogic Doors, and Borland Caliber 
are based only on the transitivity property of the traces. These tools do not support 
validation of traces. 

In TopTeam Analyst [246], there are four trace types. Three of these traces (traces into, impact, 
used in) are directed and one of them (trace) is undirected. This undirected trace is considered 
as a generic trace type for other trace types. None of the trace types have formal semantics. 
The tool does not support trace generation and validation. 

6.11 Conclusions 

In this chapter, we focused on traces between requirements and architecture. Trace types 
with formal semantics were proposed. The formalization of traces is based on the idea that 
the properties stated by requirements (problem domain) are satisfied in the architecture 
(solution domain). These properties can be reformulated in terms of the architectural 
solution and verified. The prerequisite for the verification is the presence of a formal 
executable specification of the dynamic semantics of the architecture description language. 

Our approach uses Maude, a formal language based on equational and rewriting logic, and 
MDE technologies such as Eclipse EMF and ATL. The architecture is modeled in 
Architecture Analysis and Design Language (AADL). Maude is used for simulating and 
verifying software architecture. Model transformations in ATL are used to generate and 
validate traces by using verification results and requirements relations. 
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In this chapter, we answered Research Question 4 (How to model requirements, software architecture 
and traces with their semantics for change management?) and Research Question 5 (How can we formally 
check if the evolved architecture satisfies evolved requirements? How can we become sure that traces are up-to-
date?) raised in Chapter 1. The entities Trace, Satisfies and AllocatedTo in the trace metamodel 
are the aspects of traces to be modeled. These entities with their semantics are used to 
reason about traces. By using architecture verification techniques in our approach it is 
checked if the evolved architecture satisfies evolved requirements. Trace generation and 
validation are used to keep traces up-to-date and also to automatically generate initial traces.  

There are some open issues in the approach. The approach requires the adaptation of the 
output of requirements engineering activities for software verification. For large software 
development companies there are challenges in this adaptation [224]. Reformulation of 
requirements in terms of solution domain is one of these challenges. It is a part of a design 
process and is hard to automate. The architect might still need to check the generated traces. 
In case of false positives the requirements model and relations should be checked. 
Therefore, we suggest an iterative semiautomatic process of applying our approach. In such 
a process, the software architect can gradually improve the quality of the traces and the 
requirements. Case studies conducted with the industry [47] shows that it is hard to 
reformulate requirements as LTL/CTL formulas. Domain-specific languages can be used for 
requirements of certain type that allow compilation of LTL/CTL formulas [47]. Starting 
from natural language, Semantics Business Vocabulary and Rules (SBVR) [202] can support 
reformulation of requirements in terms of LTL/CTL formulas. Extending our approach 
with this kind of languages will ease the reformulation of requirements. 

We mainly focused on scalability issues in our tool for generating and validating traces. Since 
model checking techniques may have problems in handling large amounts of model elements 
and states, the scalability of our tool depend on the scalability of the model checking 
algorithms in Maude. Our tool needs further improvement for usability. The core parts of 
the tool are implemented. However, integration of these parts is currently done manually and 
we need a user interface to control all these parts. 

In Chapter 5, we presented an approach for using requirements relations and their semantics 
for change impact analysis. In this chapter, we defined traces between requirements and 
architecture models. Chapter 7 applies semantics of traces and requirements relations to 
change impact analysis for software architecture. 
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Chapter 7 

7 Change Impact Analysis in Software 
Architecture 

In this chapter, we aim at improving change impact analysis in software architecture models by using 
architecture verification techniques and formal semantics of traces. Our technique has two parts that use the 
approaches in Chapters 5 and 6. The first part is to identify the architectural elements that implement the 
system properties related to proposed requirements changes. We extended TRIC for determining candidate 
impacted architectural elements. The second part is to propose possible changes for software architecture when 
the software architecture does not satisfy new and/or changed requirements. The technique is based on 
architecture verification. The output of verification is a counter example if the requirements are not satisfied. 
The counter example is used together with a classification of architectural changes in order to propose changes 
in the software architecture. The technique supports the architect to change the architecture in order to satisfy 
the requirements. 

7.1 Introduction 

Chapter 5 presented a change impact analysis approach in requirements models based on the 
formal semantics of requirements relations. In Chapter 6 we presented an approach that 
provides trace establishment by using semantics of traces between Requirements (R) and 
Architecture (A) (see Figure 7.1 for the Satisfies and AllocatedTo traces).  

Once the requirements engineer analyzes the impact of a change in requirements, the 
software architect needs to identify the impact of this change in software architecture. By 
using only the transitive closure of requirements relations and traces between R&A, the 
software architect may conclude that all architectural elements in the architecture are 
impacted. Without any additional semantic information about the requirements relations, 
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traces and change, he/she may have to analyze the whole software architecture for a single 
change. Furthermore, without considering semantics, change impact analysis may produce 
high number of false positive impacts. Consequently, the cost of implementing a change may 
become several times higher than expected. For example, in Figure 7.1 a change proposed 
for Rn is propagated to R3 by using the semantics of the contains relation. For the proposed 
change in Rn, the architectural elements C3, C4, C5 and C6 can be traced from Rn, or C4 and 
C5 can be traced from R3. C3 and C6 are also candidate impacted if we start tracing from Rn 
although they are not related to the changed property in Rn. In addition to C4 and C5, the 
software architect has to inspect C3 and C6 to identify what to change in the architecture.  

 

Figure 7.1 Within-Model and Between-Model Traces with Requirements Relation Types and Trace Types 
between Requirements and Software Architectures 

In this chapter we present a change impact analysis technique for software architecture using 
architecture verification and semantics of traces. Our technique has two parts. The first part 
is to identify the architectural elements that implement the system properties to which 
proposed requirements changes are introduced. Semantics of requirements relations and 
traces is used in the first part. We extended TRIC for determining candidate impacted 
architectural elements. The software architect starts changing the software architecture based 
on the candidate impacted parts of the architecture. After the changes are implemented, the 
software architecture may not satisfy the new/changed requirements. The second part of our 
technique is to propose possible architectural changes when the software architecture does 
not satisfy the new and/or changed requirements. The technique is based on architecture 
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verification. The output of verification is a counter example if the requirements are not 
satisfied. The counter example is used together with a classification of architectural changes 
in order to propose changes in the software architecture. The technique is semi-automatic 
and iterative.  

In this chapter, we answer Research Question 4 (How to model requirements, software architecture and 
traces with their semantics for change management?) and Research Question 5 (How can be a change in a 
requirement propagated to other requirements and to software architecture? How can we support the 
requirements engineer and software architect for performing changes? How can we formally check if the evolved 
architecture satisfies evolved requirements?) raised in Chapter 1. With the approach for change 
impact analysis in requirements models we address the issues about propagation of changes 
from a requirement to architectural elements. 

This chapter is structured as follows. Section 7.2 describes the approach. Section 7.3 
presents the first part of the approach, identifying candidate impacted architectural elements. 
In Section 7.4, we describe proposing architectural changes. Section 7.5 explains the tool 
support. Section 7.6 describes the related work, and Section 7.7 concludes the chapter. 

7.2 Approach 

We aim at identifying impacted architectural elements when a requirement is changed. We 
rely on previously defined requirements and trace metamodels. In addition, in this chapter 
we develop the following:  

 Identifying candidate impacted architectural elements. We identify which parts 
of the architecture are impacted by a proposed change in requirements (Section 7.3).  

 Proposing architectural changes. We propose possible changes for software 
architecture when the software architecture does not satisfy the new/changed 
requirements (Section 7.4). 

We provide tool support and illustrate the feasibility of our approach in an example. 

 Tool support. We describe the design and implementation of a prototype tool for 
identifying impacted architectural elements and proposing architectural changes 
(Section 7.5). 

 Example. The approach is illustrated with an example. The example is the Remote 
Patient Monitoring (RPM) system which is also used in Chapter 6. Part of the RPM 
requirements document is given in Appendix F. 
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7.3 Identifying Candidate Impacted Architectural Elements 

The approach in Chapter 5 enables the requirements engineer to propose a change for a 
requirement and propagate the proposed change to related requirements. The output is the 
set of proposed changes for requirements with a propagation path in the requirements 
model. Our technique in this section focuses on determining the architectural elements that 
implement the system properties described by the requirements to which changes are 
proposed. We are concerned with the domain changes for requirements (see Chapter 5). By 
using formal semantics of requirements relations and traces between R&A, we identify 
which parts of software architecture are impacted by a proposed change in requirements. 
The impact is calculated by a change impact function. The change impact function takes a 
change type, a requirement to which the change is introduced, a set of requirements relations 
for the requirement and a set of all traces between R&A as input. The output of the change 
impact function is a set of architectural elements which are candidate impacted for the 
change in the requirement. The following is the signature of the change impact function. 

impact : SCT   SR   SSRR   SST    SSAE  

where SCT is the set of change types, SR is the set of requirements, SSRR is the set of sets 
of requirements relations, SST is the set of sets of traces and SSAE is the set of sets of 
architectural elements which are candidate impacted for the requirements change. 

Traces in SST can be either generated Satisfies traces or assigned AllocatedTo traces. Given the 
domain changes that can be made to the requirements model, we describe rules to determine 
the impact of each requirements change type in software architecture (see Chapter 5 for 
requirements change classification and semantics of changes). The algorithm of the change impact 
function is based on the types of requirements changes. According to the type of 
requirements change, the algorithm may traverse the propagation path of the requirements 
change in the requirements model. Then, candidate impacted architectural elements are 
identified by using traces between requirements and architectural elements. The algorithm of 
the change impact function is given in Appendix I. In the following we give the main parts 
of the algorithm in pseudo code: 

1          impact(ChangeType c, Requirement r, Set srl, Set st): Set { 

2              Set sae = empty-set 

3              If ((c is ‘Add a New Requirements Relation’) OR  

4                      (c is ‘Delete Requirements Relation’) OR 

5                      (c is ‘Update Requirements Relation’)) {  

6                           Return empty-set 
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7              } 

8               

9              If (c is ‘Add Property to Requirement’) { Return empty-set } 

10 

11             If (c is ‘Add a New Requirement’) { 

12                  If (srl is empty-set) { Return empty-set } 

13                   

14                  sae = getCandidateImpacts(c, r, srl) 

15                  Return sae 

16             }  

17               

18             srlp = getRelationsInPropagation(c, r, srl)  

19             sae = traversePropagationPath(c, r, srlp, st) 

20             Return sae  

21         }   //End of impact function 

Candidate impacted architectural elements are identified based on the type of requirements 
change. The algorithm checks the type of requirements change (see lines 3, 4, 5, 9 and 11).  

 Candidate Impacts for ‘Add a New Requirements Relation’, ‘Delete 
Requirements Relation’, and ‘Update Requirements Relation’. If the change is 
‘Add a New Requirements Relation’, ‘Delete Requirements Relation’ or ‘Update 
Requirements Relation’ (see lines 3 - 7), there is no impact on architecture. These 
change types improve the structure of the model without modifying overall system 
properties (see refactoring in Chapter 5). They have no impact on software architecture. 
However, trace constraints given in Chapter 6 should be checked after the changes. 

 Candidate Impacts for ‘Add Property to Requirement’. If the change is ‘Add 
Property to Requirement’ (see line 9), there is no suggestion for candidate impacted 
architectural elements. If the added property is a new system property (see domain 
changes in Chapter 5), architectural elements that satisfy the existing properties related 
to the added property are candidate impacted. In the requirement itself, there is no 
explicit dependency between the existing properties and the added property. 
Therefore, it is not possible to automatically identify architectural elements that 
satisfy the existing properties related to the new system property as candidate 
impacted. The added property may just be an existing property added to the 
requirement to improve the structure of the model without modifying overall system 
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properties (see refactoring in Chapter 5). There is no impact on software architecture if 
the added property is not a new system property. The approach can not identify 
automatically if the added property is a new system property or not. There is no 
suggestion for candidate impacted architectural elements. The possible impact needs 
to be analyzed by the architect. 

 Candidate Impacts for ‘Add Requirement’. If the change is ‘Add a New 
Requirement’ (see lines 11 - 16), either architectural elements traced from directly 
related requirements are candidate impacted or there is no impact (see Section 7.3.1).  

 Candidate Impacts for Other Changes. If the change is none of the changes 
above (see line 19), the propagation path of the change is traversed to identify 
candidate impacted architectural elements (see Section 7.3.2). 

The software architect takes design decisions to implement the change. Some or all of the 
architectural elements identified as candidate impacted may not be actually impacted because 
of the design decisions taken by the architect. New architectural elements might be 
introduced to the software architecture instead of changing the existing elements.  

7.3.1 Candidate Impacts for ‘Add Requirement’ 
If the added requirement introduces a new system property (see domain changes in Chapter 5), 
architectural elements that satisfy requirements directly related to the added requirement are 
candidate impacted. If there is no new system property introduced by the change (see 
refactoring in Chapter 5), there is no impact on software architecture. Table 7.1 gives the 
change impact rules for the change type ‘Add Requirement’. Each cell gives the candidate 
impacted architectural elements for the change type in the row and the relations in the 
columns. 

Table 7.1 Change Impact Rules for the Change Type “Add Requirement” 
C

h
an

ge 

Requirements Relation Types

Ri contains 
Rx 

Ri refines 
Rx 

Ri partially 
refines Rx 

Ri requires 
Rx 

Rx

contains 
Ri 

Rx refines 
Ri 

Rx partially 
refines Ri 

Rx requires
Ri 

 
Add 
Rx 

No 
candidate 
impacted 
AE5 

No 
candidate 
impacted 
AE 

No 
candidate 
impacted 
AE 

AEs traced 
from Ri are 
candidate 
impacted 

No 
candidate 
impacted 
AE 

AEs traced 
from Ri 
are 
candidate 
impacted 

AEs traced 
from Ri 
are 
candidate 
impacted 

AEs traced 
from Ri are 
candidate 
impacted 

 

                                              
5 ‘AE’ stands for ‘Architectural Element’ 
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The requirement Ri in Table 7.1 denotes an existing requirement. Rx is the added 
requirement. The change ‘Add Requirement’ is not a domain change if (Ri contains Rx), (Ri 
refines Rx), (Ri partially refines Rx) or (Rx contains Ri). Therefore, there is no impact on 
architecture. The following is a change impact example for the change ‘Add Requirement’. 

Change Impact Example for the Change ‘Add Requirement’ (Add Rx) 

We explain one of the change impact rules for the change type ‘Add Requirement’ with the 
following example from the RPM requirements document.  

Requirement 5 The system shall store patient blood pressure measured by the sensor in the central storage. 
 

Requirement 15 The system shall store patient Central Venous Pressure (CV Pressure) measured by the 
sensor in the central storage. 
 

where (Requirement 15 refines Requirement 5)  

The stakeholders’ need the following change: Measuring and storing blood pressure is 
refined further for Pulmonary Artery Pressure (PA pressure). Therefore, we propose the 
change ‘Add Requirement’ in which the new requirement refines Requirement 5.     
 

Requirement X The system shall store patient Pulmonary Artery Pressure (PA pressure) measured by 
the sensor in the central storage.  

where (Requirement X refines Requirement 5) 
 

Figure 7.2 shows the Satisfies trace for Requirement 5 and the candidate impacted 
architectural elements for Requirement X. 
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Figure 7.2 Candidate Impacted Architectural Elements for the Added Requirement  

Since Requirement X is the refinement of the system property given in Requirement 5, the 
architectural elements that implement measuring and storing patient blood pressure are 
candidate impacted for measuring and storing patient PA pressure. Figure 7.3 shows the part 
of the RPM architecture that satisfies Requirement 5. The architectural elements in Figure 
7.3 are the candidate impacted elements given in Figure 7.2.  
   

 
Figure 7.3 Part of the RPM Architecture for Storing Blood Pressure 

Before adding Requirement X, Requirement 15 is the only requirement that refines 
Requirement 5. Therefore, the part of the RPM architecture in Figure 7.3 satisfies the 
property in Requirement 15 (Storing patient CV pressure measured by the sensor). We inspected the 
architecture based on the new requirement and candidate impacted architectural elements. 
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We changed the architecture to get the new requirement satisfied by the architecture. Figure 
7.4 gives the changed part of the RPM architecture.  

 
Figure 7.4 Changed Part of the RPM Architecture for Storing Blood Pressure 

We added a new sensor (Sensor 3) and new event data ports (sd_cv_blood_edp1, 
sdc_cv_blood_edp1, and etc.) to measure and transmit the patient CV pressure. The threads 
sdThr, sdcThr and sdmThr have some of the new event data ports. The measured CV pressure 
is stored to the existing data store (sd_blood_strg). Therefore, according to our changes the 
actual impacted architectural elements are the threads sdThr, sdcThr, sdmThr and the data store 
sd_blood_str. 

To implement the change, the software architect takes certain design decisions. Furthermore, 
after performing the change, architecture verification and trace establishment techniques in 
Chapter 6 have to be applied to verify the new architecture and to generate new traces. 

Please note that the candidate impacted architectural elements might not be actually 
impacted at all. For instance, we could propose new event data ports, new threads, new 
sensors and new data storages for the example. None of the candidate impacted elements 
would be affected. With candidate impacted elements we aim at identifying architectural 
elements that satisfy changed properties and/or existing properties related to the added 
property.    
 

The following is the explanation of the change impact rule in Table 7.1 for the change ‘Add 
Requirement’ (Add Rx) where (Rx refines Ri). 

Change Impact Rule for ‘Add Requirement’ (Add Rx) where (Rx refines Ri) 

  Candidate impacted architectural elements for the change type ‘Add Requirement’ (Add Rx) 

                                           where (Rx refines Ri)  

                                           = Architectural elements traced from Ri are candidate impacted  

Explanation:  
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    Let Ri, Rx be requirements and EA be the set of architectural elements that satisfies Ri 
where Pi and Px are formulas for Ri and Rx, and PA is the formula for the system property EA 
is needed to implement.     

= {By using formalization of the refines relation} 

          Px → Pi 

= {By using formalization of the satisfies trace} 

          The fulfillment of PA implies the fulfillment of Pi                     

    Pi also holds for the set of architectural elements EA. The new requirement Rx is a 
refinement of Ri. Usually, the architectural elements in EA provide part of the functionality 
that satisfies Px. The elements in EA can be reused or adapted in order to implement the new 
requirement Rx. Therefore, they are candidate impacted architectural elements.        
 

The following is the derivation of the change impact rule in Table 7.1 where the change ‘Add 
Requirement’ is not a domain change (Add Rx where Ri contains Rx). 

Change Impact Rule for ‘Add Requirement’ (Add Rx) where (Ri contains Rx) 

  Candidate impacted architectural elements for the change type ‘Add Requirement’ (Add Rx) 

                                                 where (Ri contains Rx)  

                                                 = No candidate impacted architectural element  

Derivation:  

     Let RM be a requirements model where PRM is the formula for RM.  

     The requirements model RM is the set of requirements R1, R2, … , Rk where P1, P2, … , 
Pk are formulas for R1, R2, … , Rk, and k ≥ 1. PRM can also be represented in the following 
way: 

      PRM = P1   P2   …   Pk 

    Please note that if the requirements R1, R2, …, Rk are written as formulas 1x , 2x , …, 

kx  with 1 , 2 , …, k  in CNF, we have the following: (PRM = x ( 1    2    3  …  

k )). 

    Let Ri and Rx be requirements where Pi and Px are formulas for Ri and Rx, and (i  k)  

    Let RMl be the requirements model after the change ‘Add Rx’ where PRMl is the formula 
for RMl. 

= {By using formalization of the change type ‘Add Requirement’} 

      PRMl = PRM   Px       
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      If PRM and Px are written as formulas x ( 1    2    3  …  k ) and xx  with 1 , 

2 , …, k , x  in CNF, we have the following: (PRMl = x ( 1    2    3  …  k    

x )). 

= {By using formalization of the contains relation} 

      We have the following: (Pi = Px   Pl) where Pl denotes properties that are not captured 
in Px. Please note that if the requirements Ri and Rx are written as formulas ix  and xx  

with i  and x  in CNF and Pl is expressed as x  with   in CNF, we understand the 

following: Ri contains Rx iff (Pi = x ( x     )), and ( ( x ( x  → i ))) and ( ( x (  → 

i ))) are satisfiable.    

         PRMl = PRM   Px  

         PRMl = x ( 1    2    3  …  k    x )  

         PRMl = x ( 1    2    …   i  …  k    x )  

         PRMl = x ( 1    2    …   x      …  k    x )           

         PRMl = x ( 1    2    …   x      …  k )           

         PRMl = x ( 1    2    …   i  …  k )           

         PRMl = x ( 1    2    3  …  k )           

      Then we get PRMl = PRM = x ( 1    2    3  …  k )   

= {By using the formalization of domain changes and refactoring} 

     Properties that are captured in the requirements model RM are preserved in the new 
requirements model RMl and there is no new property in the new requirements model RMl. 
Therefore, we can conclude that the architecture, that satisfies requirements in the 
requirements model RM, satisfies requirements in the requirements model RMl after the 
change ‘Add Rx’. There is no need to change the architecture and therefore, there is no 
candidate impacted architectural element.      
 

7.3.2 Candidate Impacts for Other Changes 
The changes ‘Delete Requirement’ and ‘Update Requirement’ (except ‘Add Property to 
Requirement’) update existing properties described in requirements. Architectural elements 
that satisfy the changed properties are candidate impacted. The changed requirements may 
have properties not changed. Architectural elements that satisfy the unchanged properties 
are not impacted. The propagation path is traversed in order to identify the impacted 
requirement(s) which has no unimpacted properties (if possible) or at least which has the 
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smallest number of unimpacted properties. Architectural elements that are traced from the 
identified requirement(s) are named candidate impacted. 

We define a function for traversing the propagation path. The function traversePropagationPath 
takes a change type, a requirement to which the change is introduced, a set of relations of the 
requirement used in the propagation path and a set of all traces between R&A as input. The 
output of the traversePropagationPath function is a set of architectural elements which are 
candidate impacted by the requirements change. The following is the algorithm of the 
function.  

1          traversePropagationPath(ChangeType c, Requirement r, Set srlp, Set st): Set { 

2              ChangeType pc = empty 

3              Set srl = empty-set  

4              Set rlp = empty-set  

5              

6              If (srlp is empty-set) {  

7                    sae = getArchitecturalElements(r, st) 

8                    Return sae 

9              } 

10               

11             If (c is ‘Delete Requirement’) { 

12                   Boolean i = false 

13                   ForEach relation rl   srlp { 

14                        If ((rl is ‘refines’) AND (rl.target is r)) {   

15                             i = true 

16                             pc = getPropagatedChange(c, r, rl)    

17                             srl = getRelations(rl.source)  

18                             rlp = getRelationsInPropagation(pc, rl.source, srl) 

19                             sae = sae + traversePropagationPath(pc, rl.source, rlp, st) 

20                         } 

21                    }  // End of ForEach 

22              

23                    If (i = false) { sae = getArchitecturalElements(r, st) } 

24                    Return sae 

25            }  
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26                

27            Boolean k = false   

28            ForEach relation rl   srlp { 

29                    If ((rl is ‘refines’) AND (rl.target is r)) OR 

30                        ((rl is ‘partially refines’) AND (rl.target is r)) { 

31                               k = true 

32                               pc = getPropagatedChange(c, r, rl) 

33                               srl = getRelations(rl.source) 

34                               rlp = getRelationsInPropagation(pc, rl.source, srl) 

35                               sae = sae + traversePropagationPath(pc, rl.source, rlp, st) 

36                    } else {    

37                            If ((rl is ‘contains’) AND (rl.source is r)) { 

38                                  k = true 

39                                  pc = getPropagatedChange(c, r, rl) 

40                                  srl = getRelations(rl.target) 

41                                  rlp = getRelationsInPropagation(pc, rl.target, srl) 

42                                  sae = sae + traversePropagationPath(pc, rl.target, rlp, st)  

43                            } 

44                    } 

45            } // End of ForEach           

46                

47            If (k = false) { sae = getArchitecturalElements(r, st) } 

48               

49            Return sae 

50         } // End of traversePropagationPath function 

51 

The function is recursive. It returns the set of candidate impacted architectural elements 
when there is no relation to be traversed in the propagation path (see lines 6 - 9). If there is 
any relation in the propagation path, the function checks the type of the change and relation 
to identify candidate impacts based on the change impact rules in Table 7.2. Table 7.2 has 
change types in the rows and relation types in the columns. Please note that the relation in 
the column is considered for the change in the row only if the requirements relation is in the 
propagation path. If the change is ‘Delete Requirement’ and the deleted requirement is 
refined by another requirement in the propagation path, the function continues to traverse 
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the path for the refining requirement (see lines 11 - 21). If there is no refining requirement in 
the propagation path, architectural elements that satisfy the deleted requirement are 
identified as candidate impacted (line 23) (see the row Delete Ri in Table 7.2).  

The function checks if the updated requirement is (partially) refined by another requirement 
or contains another requirement in the propagation path. If there is any refining/contained 
requirement in the propagation path, the function continues to traverse the path for the 
refining/contained requirement (see lines 28 - 45). If there is no refining/contained 
requirement in the propagation path, architectural elements that satisfy the updated 
requirement are identified as candidate impacted (line 47). 

Table 7.2 Traversal Rules for Change Types “Delete Requirement” and “Update Requirement” 

 

 

Changes 

Requirements Relation Types 

Ri contains Rk Ri refines Rk Ri partially 
refines Rk 

Rk contains Ri Rk refines Ri Rk partially 
refines Ri 

Delete Ri Do not traverse 
the propagation 
path for Rk  

Do not 
traverse the 
propagation 
path for Rk  

Do not 
traverse the 
propagation 
path for Rk  

Do not traverse 
the propagation 
path for Rk  

Take Rk to 
traverse the 
propagation 
path 

Do not 
traverse the 
propagation 
path for Rk  

Ri 
pt

  Ri
l 

Take Rk to 
traverse the 
propagation 
path 

Do not 
traverse the 
propagation 
path for Rk  

Do not 
traverse the 
propagation 
path for Rk  

Do not traverse 
the propagation 
path for Rk  

Take Rk to 
traverse the 
propagation 
path 

Take Rk to 
traverse the 
propagation 
path 

Ri 

lptpt

  Ri
l 

Take Rk to 
traverse the 
propagation 
path 

Do not 
traverse the 
propagation 
path for Rk  

Do not 
traverse the 
propagation 
path for Rk 

Do not traverse 
the propagation 
path for Rk 

Take Rk to 
traverse the 
propagation 
path 

Take Rk to 
traverse the 
propagation 
path 

Ri 
ct

  Ri
l 

Take Rk to 
traverse the 
propagation 
path 

Do not 
traverse the 
propagation 
path for Rk 

Do not 
traverse the 
propagation 
path for Rk 

Do not traverse 
the propagation 
path for Rk 

Take Rk to 
traverse the 
propagation 
path 

Take Rk to 
traverse the 
propagation 
path 

Ri 
ct

  Ri
l 

Take Rk to 
traverse the 
propagation 
path 

Do not 
traverse the 
propagation 
path for Rk 

Do not 
traverse the 
propagation 
path for Rk 

Do not traverse 
the propagation 
path for Rk 

Take Rk to 
traverse the 
propagation 
path 

Take Rk to 
traverse the 
propagation 
path 

Ri 
lctct

  Ri
l 

Take Rk to 
traverse the 
propagation 
path 

Do not 
traverse the 
propagation 
path for Rk 

Do not 
traverse the 
propagation 
path for Rk 

Do not traverse 
the propagation 
path for Rk 

Take Rk to 
traverse the 
propagation 
path 

Take Rk to 
traverse the 
propagation 
path 

 

In Table 5.2 in Chapter 5 we give the change impact alternatives for the change propagation. 
Each cell in Table 5.2 gives change alternatives in order to propagate the changes in the rows 
by using the relations in the columns. The requirements engineer selects one of the 
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alternatives to propagate the change. The changes in the rows of Table 7.2 represent the 
changes selected by the requirements engineer. 

The following is an example for change impact for the change ‘Add Constraint to Property 
of Requirement’. 

Change Impact Example for the Change ‘Add Constraint to Property of 
Requirement’ 

We explain one of the change impact rules for the change type ‘Add Constraint to Property 
of Requirement’ with the following requirements from the RPM requirements document.  

Requirement 4 The system shall store patient temperature measured by the sensor in the central storage. 

Requirement 7 The system shall warn the doctor when the temperature threshold is violated. 

Requirement 8 The system shall generate an alarm if the temperature threshold is violated. 

Requirement 9 The system shall show the doctor the temperature alarm at the doctors’ computers. 

Requirement 14 The system shall store patient temperature measured by the sensor in the central storage 
and it shall warn the doctor when the temperature threshold is violated. 
 

Figure 7.5 shows the part of the RPM requirements model for the requirements above. 

 
Figure 7.5 Part of the RPM Requirements Model  

The stakeholders’ need a change for the RPM system: The system shall warn the doctor 
with the information about the patient’s condition when the temperature threshold is 
violated. The change ‘Add Constraint to Property of Requirement’ is proposed for 
Requirement 14. 
 

Proposed Change: Add Constraint to Property of Requirement 14  

Description of the Proposed Change: If the temperature threshold is violated, the system 
shall warn the doctor with the information about the patient’s condition.  
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The property of Requirement 14 is ‘warning the doctor about the temperature threshold 
violation’. The constraint added to the property of Requirement 14 is ‘warning the doctor 
with the information about the patient’s condition’. The proposed change is propagated to 
the requirements which contain or refine the property ‘warning the doctor about the 
temperature threshold violation’ (see Chapter 5). Figure 7.6 shows the propagation path of 
the proposed change for Requirement 14.  
 

 
Figure 7.6 Propagation Path of the Proposed Change for Requirement 14 

The proposed changes for Requirement 7 and Requirement 9 in the propagation path are 
the following: 
 

Proposed Change for Requirement 7: Add Constraint to Property of Requirement 7  

Description of the Proposed Change: If the temperature threshold is violated, the system 
shall warn the doctor with the information about the patient’s condition.  
 

Since the property of Requirement 14, which has the proposed change, is contained by 
Requirement 7, the same proposed change is introduced to Requirement 7. 
 

Proposed Change for Requirement 9: Add Constraint to Property of Requirement 9  

Description of the Proposed Change: The system shall show the doctor the temperature 
alarm with information about the patient’s condition at the doctor’s computer.  
 

Since the property of Requirement 7, which has the propagated change, is partially 
refined by Requirement 9, the same proposed change is introduced to Requirement 9. 

The proposed changes in the propagation path are the ‘Add Constraint to Property of 
Requirement’ change. Therefore, in order to identify the candidate impacted architectural 
elements for the proposed change in Requirement 14, we traverse the propagation path in 
Figure 7.6 based on the rules in Table 7.2. 
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According to Table 7.2, Rk is taken to traverse the propagation path if (Ri 
ct

  Ril) and (Ri 
contains Rk). Since Requirement 14 has the change ‘Add Constraint to Property of 
Requirement’ and Requirement 14 contains Requirement 7, Requirement 7 is taken to traverse 
the propagation path.    

According to Table 7.2, Rk is taken to traverse the propagation path if (Ri 
ct

  Ril) and (Rk 
partially refines Ri). Since Requirement 9 has the change ‘Add Constraint to Property of 
Requirement’ and Requirement 9 partially refines Requirement 7, Requirement 9 is taken to 
traverse the propagation path. There is no other requirement which has the proposed change 
in the propagation path. Therefore, architectural elements traced from Requirement 9 are 
candidate impacted. Figure 7.7 shows the propagation path and candidate impacted 
architectural elements. 

 
Figure 7.7 Candidate Impacted Architectural Elements for the Constraint Added to Requirement 14 
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Requirement 9 has the most refined property related to the proposed change. Therefore, 
in order to implement the change proposed for Requirement 14, architectural elements that 
satisfy Requirement 9 are identified as candidate impacted.      
 

Traversal rules in Table 7.2 are derived from the semantics of change types and requirements 
relations. The following is the derivation of the traversal rule in Table 7.2 for the change 

‘Add Constraint to Property of Requirement’ for Ri (Ri 
ct

  Ril) where (Rk partially refines Ri). 

Traversal Rule for the Change ‘Add Constraint to Property of Requirement’  

  Candidate impacted architectural elements for the change type ‘Add Constraint to                                      

                                                                             Property of Requirement’ for Ri (Ri 
ct

  Ril)  

                         where (Rk partially refines Ri) and the change is propagated to Rk (Rk 
ct

  Rkl)   

                         = Take Rk to traverse the propagation path 

Derivation:  

     Let Ri be a requirement where Pi is the formula for Ri. Pi is represented in a conjunctive 
normal form (CNF) in the following way:  

        Pi = x (p1 … pn); n ≥ 1 and pi is disjunction of literals 

     Let Rk be a requirement where Pk is the formula for Rk. 

     Let Ril and Rkl be the requirements after the changes (Ri 
ct

  Ril) and (Rk 
ct

  Rkl) where Pil 
and Pkl are the formulas for Ril and Rkl. 

     Let EAi be the set of architectural elements that satisfies Ri and EAk be the set of 
architectural elements that satisfies Rk where PAi is the formula for the system property EAi is 
needed to implement and PAk is the formula for the system property EAk is needed to 
implement.            

= {By using formalization of the satisfies trace} 

         The fulfillment of PAi implies the fulfillment of Pi 

         The fulfillment of PAk implies the fulfillment of Pk 

= {By using formalization of the partially refines relation} 

         Pk =  x (p1l ... pzl); z < n and x (pjl → pj) for for all j  1..z  

= {By using formalization of the change type ‘Add Constraint to Property of Requirement’ for Ri} 

         Pil = x  ((p1ll ... ptll)   (pt+1 ... pn)); t  z and x (pjll → pj) for all j  1..t  
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    The properties captured in x (pz+1 … pn) in Ri are not affected by the change. These 
properties are not captured by Rk. Therefore, the propagation path is traversed for Rk.      
 

The software architect identifies the candidate impacted architectural elements with tool 
support. Then, he/she starts investigating the impacted architectural elements and changing 
the software architecture for the changed requirements. In the following we explain how to 
identify possible changes for software architecture when the software architecture does not 
satisfy the changed requirements. 

7.4 Proposing Architectural Changes  

With the first part of our technique, the software architect identifies software architecture 
elements that are candidate impacted by the requirements changes. He/she analyzes and 
possibly changes parts of the architecture. After the changes, the software architecture may 
not satisfy the changed requirements. The second part of our technique is to propose 
possible changes in the software architecture when the software architecture does not satisfy 
the changed requirements. The technique is based on architecture verification. The output of 
the verification is a counter example if the requirements are not satisfied. The counter 
example is used together with a classification of architectural changes to propose changes in 
the software architecture. These changes produce a new version of the architecture that 
possibly satisfies the changed requirements.  

We provide a change impact function for proposing architectural changes. It takes a changed 
requirement, a set of traces between the requirement and software architecture, and a 
counter example where the requirement is not satisfied, as input. The function produces a 
set of proposed architectural changes as output. The following is the signature of the change 
impact function. 

impact : SR   SST   SCE    SSAC  

where SR is the set of requirements, SST is the set of sets of traces, SCE is the set of counter 
examples and SSAC is the set of sets of architectural changes. 

Counter example is an ordered set of states which are generated when the requirement is not 
satisfied. There are no transition rules applicable in the last state of the counter example. A 
state transition rule is fired if its left-hand side pattern matches in the current state. The next 
state is formed based on the right-hand side of the transition rule. The idea is to make such 
changes in the architecture that will make the application of some transition rules possible. 
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Application of changes may happen iteratively until the requirement is eventually satisfied. In 
the analysis of the counter example we have the following limitations and assumptions.  

 Analyzing the counter example in our approach is limited to the operational semantics of AADL in 
[197] [198]. This semantics mostly deals with passing & storing data in a data flow, 
dispatching & executing threads and switching modes. These specific details are used 
when proposed architectural changes are identified. Therefore, architectural changes 
in our approach may not be generalized for other architecture description languages 
and other versions of semantics.  

 Architectural changes in our approach are limited to the possible missing parts of the architecture for 
mainly data flow and thread execution. Designing architecture based on requirements is a 
creative process. There are an infinite number of designs that satisfy the requirements 
for a given project. Therefore, the number of changes over the architecture is infinite. 
We do not consider changes such as adding new systems, processes or threads which 
may cause infinite number of solutions for the changed requirements.    

 It is assumed that there is a next state from the last state of the counter example. It is possible 
that the last state might be the final state where no state transition is fired further. In 
this case, the software architect should check all the states in the counter example to 
change the architecture. Even if the last state is not the final state, changing the 
architecture to enable a next state may not produce an architecture that satisfies the 
changed requirement. The software architect may need iterations of changing and 
verifying the architecture.  

The following is an illustration of the idea: 

Example for Proposing Architectural Changes 

The example was already used in Section 7.3.1. It shows a change request to illustrate how 
we identify the candidate impacted architectural elements for the change ‘Add Requirement’. 

Requirement X The system shall store patient Pulmonary Artery Pressure (PA pressure) measured by 
the sensor in the central storage.  
 

Figure 7.8 gives the changed part of the RPM architecture that implements the added 
requirement.     
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Figure 7.8 Changed Part of the RPM Architecture for Stroring Blood Pressure  

We added a new sensor (Sensor 3) and new event data ports (sd_cv_blood_edp1, 
sdc_cv_blood_edp1, hpc_cv_blood_edp1 and etc.) to measure and transmit the patient PA 
pressure. The threads sdThr, sdcThr and sdmThr have some of the new event data ports. The 
measured PA pressure is stored to the existing data store (sd_blood_strg).  

Sensor 3 measures and transmits the patient PA pressure via the event data ports 
(sd_cv_blood_edp1, sdc_cv_blood_edp1, hpc_cv_blood_edp1 and etc.) and the threads (sdThr, sdcThr 
and sdmThr). The following is the LTL formula for the added requirement (see Chapter 6 for 
the reformulation of requirements as LTL formulas): 

LTL formula in Maude: (mc initializeThreads({ MAIN system Wholesys . imp }) |=u <> 
((MAIN -> hpc -> sdm -> sdmTh) @ bloodStored) .) 

The formula states that if the DI data instance is contained by the data port 
sd_cv_blood_edp1 of Sensor 3, then eventually in the future the state in the state transition 
system in the sdmTh thread is set to the bloodStored state (the DI data instance is stored by the 
sdm_blood_strg data store of the SDM component). Please note that the DI data instance is 
created in the initial state by a test thread in the RPM model. Therefore, the LTL formula 
does not explicitly indicate the DI data instance and the sd_cv_blood_edp1 data port of Sensor 
3. The formula creates the initial state instead. After executing the model checker in Maude, 
the LTL formula is false and it returns the counter example.  

During the design of the architecture, the software architect assigns some ‘AllocatedTo’ 
traces between the requirement and parts of the software architecture that are supposed to 
satisfy the requirement. Some ‘AllocatedTo’ traces are generated between the new 
requirement and parts of the architecture that are used in the verification (see Chapter 6).  

There might be unexpected architectural elements used in the verification. We compare 
the assigned and generated ‘AllocatedTo’ traces before we analyze the last state of the 
counter example. If there is any unexpected element in the generated traces, we have to find 
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out why it is used in the verification. The unexpected elements might be the cause that the 
requirement is not satisfied. If some elements in the assigned traces are not in the generated 
traces, some elements have not been used in the verification yet. If the application of further 
rules is possible after the change, the rest of the elements in the assigned traces may be used. 
Figure 7.9 shows the assigned and generated ‘AllocatedTo’ traces for the added requirement. 

 

Figure 7.9 Assigned and Generated ‘AllocatedTo’ Traces for the Added Requirement  

The set of architectural elements used in the verification (the generated ‘AllocatedTo’) is a 
subset of the architectural elements to which Requirement X is allocated (the assigned 
‘AllocatedTo’). Therefore, there is no unexpected architectural element used in the 
verification. Figure 7.10 gives the last state of the counter example. 

 

Figure 7.10 Last State of the Counter Example in the First Check  

In Figure 7.10, the DI data instance is at the buffer of the sd_cv_blood_edp3 data-in-port of 
the sdThr thread. Before the last state of the counter example, the data is passed to the 
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sd_cv_blood_edp3 data-in-port of the sdThr thread from the sd_cv_blood_edp2 data-in-port of the 
sdPrc process. The transmission of messages from source port to destination port along 
connections is modeled as equations in Maude [197] [198]. The following equation models the 
transmission of a data along a level-down connection C.P --> C.C1.P1 from the P data-in-
port of the C component to the P1 data-in-port of the C1 subcomponent.  

 

1        op transfer : MsgList -> MsgList [ctor] . 

2 

3        vars  C  C1 : ComponentId .              vars P  P1 : PortId .   

4        vars PORTS  PORTS2  OTHER-COMPONENTS : Configuration .  

5        vars ML  ML’ : MsgList .                   var CONXS : ConnectionSet .  

6 

7        eq < C : Component |  

8                 features : 

9                   < P : InPort | buffer : transfer(ML) > PORTS, 

10                subcomponents : 

11                  < C1 : Component | features : < P1 : InPort | buffer : ML' > PORTS2 > 

12                  OTHER-COMPONENTS,  

13                connections : (P --> C1 . P1) ; CONXS > 

14          =  

15           < C : Component | 

16                  features : < P : InPort | buffer : nil > PORTS, 

17              subcomponents : 

18                   < C1 : Component | features : < P1 : InPort | buffer : ML' :: transfer(ML) > 

19                                              PORTS2 > 
20           OTHER-COMPONENTS > . 

 

As a result of applying the equation in our example, the sd_cv_blood_edp3 data-in-port has 
the DI data instance (line 18), and the sd_cv_blood_edp2 data-in-port’s buffer is empty (line 
16). 

Accoding to the AADL standard, the only possible transition is thread dispatching if the data 
is at the buffer of (event) data-in-port of the thread. The sdThr thread is an aperiodic thread. 
Therefore, the state transition rule for aperiodic thread dispatching can be fired. An 
architectural change has to make the application of the state transition rule for aperiodic 
thread dispatching possible. Aperiodic thread dispatching is modeled by the following 
conditional rewrite rule in Maude [197] [198]: 
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1      var  O : ThreadId .             var  P : PortId.           var  PROGRAM : ThreadBehaviour .

2      var  MTS : ModeTransitionSystem .    var  TN : ThreadName .     var  IMPL : ImpleName .   

3      var  PORTS : Configuration .         vars ML  ML’ : MsgList .   

4 

5      crl [aperiodic-incoming-message] : 

6         < O : Thread | properties : aperiodic-dispatch ; TP,  

7                                  used : U,  

8                                  modes : MTS,  

9                                  deactivated : false,  

10                                  features :  

11                                   (< P : InEventDataThreadPort | buffer : ML :: transfer(ML') > 

12                                   PORTS), 

13                                status : completed, 

14                                behavior : PROGRAM, 

15                                threadType : TN, implementationType : IMPL > 

16           => 

17        < O : Thread | used : true,  

18                                 features :  

19                                 dispatchInputPorts( 

20                                     < P : InEventDataThreadPort | buffer : ML :: ML' > PORTS), 

21                                status : active >   

22        if  someTransEnabled(transitions(TN, IMPL), PROGRAM, 

23                           dispatchInputPorts( 

24                                      < P : InEventDataThreadPort | buffer : ML :: ML' > 

25                                       PORTS)) . 
 

The left-hand side pattern of the transition rule is in lines 6 - 15 and lines 22 - 26. To fire 
the aperiodic-incoming-message transition rule, the following conditions should hold: 

(1) the thread is active (line 9),  

(2) the thread status is in complete (line 13)  

(3) some of the transitions in the behavioral annex of the thread are enabled (lines 22-23) 

(4) there is an incoming data at the buffer of the data-in-port of the thread (lines 23 - 24) 

There is already a data at the the buffer of the sd_cv_blood_edp3 data-in-port of the sdThr 
thread. Therefore, architectural changes should be proposed to make the conditions 1, 2 and 
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3 hold. In order to make the conditions 1, 2 and 3 hold, there are two changes on the 
architecture: changing the mode of the thread and changing the behaviour of the thread. The thread 
might be activated and its status might be set to completed by changing the mode of the 
thread. The behaviour of the thread is coded as states and state transitions with its activation 
and status in the behavioral annex. Please note that the states and state transitions in the 
behavioral annex are different than the states and state transitions in the model checker. 
Changing the behaviour of the thread (the behavioral annex of the thread) may make the 
thread active and its status complete. If none of the transitions in the thread is enabled (see the 
condition 3), either some of the transitions in the behavioral annex or the mode of the 
thread is changed. The thread may have different states and transitions in different modes.  

Let’s inspect the requirement, the software architecture and the possible changes. The 
conditions 1 and 2 hold for the sdThr thread. The thread is active and its status is in complete. 
None of the transitions in the behavioral annex of the thread is enabled because the states 
and transitions in the sdThr thread are about the data received from Sensor 1 (not shown in 
Figure 7.10) and Sensor 2. There is no state and transition handling the data which is 
received from Sensor 3 and put to the the sd_cv_blood_edp3 data-in-port. The sdThr thread has 
no mode. Therefore, we decide to change the behavior of the thread by introducing new 
states and state transitions in the behavioral annex. We add the following state transition 
with the new state cvBloodPassed to the behavioural annex of the sdThr thread: 

 

         idle -[sd_cv_blood_edp3?(inMessage)]-> cvBloodPassed { sd_cv_blood_edp4!(inMessage); }; 
 

The added state transition states the following: If the sdThr thread is in the idle state and 
receives the measurement data at the sd_cv_blood_edp3 event data port, then the received data 
is passed to the sd_cv_blood_edp4 event data port. We re-execute the model checker over the 
changed architecture. The LTL formula is again false and it returns another counter example. 
After the first check of the architecture we have three more iterations that we do not 
illustrate here because the architectural changes are again changing the behaviour of the 
thread. We add new states and state transitions to the behavioral annex of the threads sdcThr 
and sdmThr after the second and third iterations.  

As a fourth check we re-execute the model checker over the changed architecture. The 
LTL formula is true and it returns the execution. Figure 7.11 gives the last state of the 
execution trace. 
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Figure 7.11 Last State of the Execution Trace  

In the last state of the execution trace, the DI data instance is stored and the bloodStored 
state is reached. Therefore, the architecture satisfies the new requirement. For the changed 
part of the RPM architecture in Figure 7.8 we have four iterations to make the architecture 
satisfy the new requirement.  

The software architect may always take different architectural decisions to change the 
architecture. If we use the RPM architecture in Figure 7.12 instead of the one in Figure 7.8, 
we change the architecture only once.  

 
Figure 7.12 Another RPM Architecture for Storing CV Pressure  

In Figure 7.12, only Sensor 3 and three data-in-ports (sd_cv_blood_edp1, sd_cv_blood_edp2 
and sd_cv_blood_edp3) are added to the RPM architecture. Existing data-in-ports and 
connections are used to transmit the data from the sdThr thread to the sdmThr thread. The 
only change over the architecture is changing the behaviour of the sdThr thread. Since the 
sdcThr and sdmThr threads use the existing data-in-ports for the data measured by Sensor 3, 
they do not need any change in their behavioral annex.    

The main steps in the change impact function are the following: 

Comparing the Assigned and Generated Traces. There might be unexpected 
architectural elements used in the verification. We compare the assigned and generated 
‘AllocatedTo’ traces before we analyze the last state of the counter example. Figure 7.13 
gives the comparison of generated and assigned ‘AllocatedTo’ traces for a requirement. 
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Figure 7.13 Venn Diagram for Generated and Assigned ‘AllocatedTo’ Traces for a Requirement 

Figure 7.13 is used to compare the generated and assigned ‘AllocatedTo’ traces: 

 If (GAT \ AAT) = , then all architectural elements used in the verification for the 
requirement are designed to satisfy the requirement. If some elements in the assigned 
traces are not in the generated traces, some elements have not been used in the 
verification yet. If the application of further rules is possible after the change, the rest 
of the elements in the assigned traces may be used. The change impact algorithm 
takes the second step to analyze the counter example.  

 If (GAT \ AAT)  , then there are some unexpected elements in the generated 
traces. We have to find out why they are used in the verification. The unexpected 
elements might be the cause that the requirement is not satisfied. Therefore, the 
change impact algorithm does not take the second step. 

Analyzing the Counter Example. There are no transition rules applicable in the last state 
of the counter example. The idea is to make such changes in the architecture that will make 
the application of some transition rules possible. Our analysis of the counter example is 
limited to enabling passing data, dispatching threads, executing threads and switching modes. 
These are the main actions in the dynamic semantics of AADL used in our approach. We 
have the following steps for analyzing the counter example: 

 Locating the architectural elements that may need changes. We want to locate the elements that 
may cause transitions. These are data, data-in-ports, data-out-ports, data storage, 
threads, systems and processes. The statements in the right-hand side patterns give 
information where data can be found in the architecture, if a thread is 
dispatched/executed and if a mode is switched. Table 7.3 gives the categories of the 
state transition rules in AADL with the right-hand-side patterns. 
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Table 7.3 Categories of the State Transition Rules in AADL with the Right-hand Side Patterns  

Categories of State 
Transition Rules in 

AADL 

Right-hand Side Patterns 

 
 
Passing Message M1  

Event/Data M1 at the buffer of the (event) data-in-port of System S1 
Event/Data M1 at the buffer of the (event) data-in-port of Process P1 
Event/Data M1 at the buffer of the (event) data-in-port of Thread T1 
Event/Data M1 at the buffer of the (event) data-out-port of Device D1 
Event/Data M1 at the buffer of the (event) data-out-port of System S1 
Event/Data M1 at the buffer of the (event) data-out-port of Process P1 

 
Dispatching Thread T1  

Event/Data M1 at the internalbuffer of the (event) data-in-port of Thread  
T1 & Thread T1 is in active status  
Thread T1 is in the active status 

 
Executing Thread T1 

Event/Data M1 at the buffer of the (event) data-out-port of Thread T1 
& Thread T1 is in the completed status 
Thread T1 is in the completed status 

Switching the Mode of 
Thread T1  

Thread T1 is in the inactive status 
Thread T1 is in the completed status 

 

In the first column of Table 7.3, there are four categories of the state transition rules (Passing 
Message M1, Dispatching Thread T1, Executing Thread T1 and Switching the Mode of Thread T1).  

 Matching the last state of the counter example for the right-hand side patterns of the state transition 
rules. By analyzing the right-hand side patterns, we know what are the possible 
locations of the data and the status of threads for thread dispatching and execution. 
We check the last state of the counter example to find the location of data and 
activated threads for dispatching and execution in the last state.   

 Analyzing the left-hand side of the state transition rules to propose architectural changes. Data and 
dispatched/executed threads in the last state of the counter example are the potential 
architectural elements to trigger further state transition rules. For instance, if a thread 
is already dispatched, the next state transition rule is for thread execution. We analyze 
the left-hand side of the state transition rules to identify the conditions for each rule to 
be applied. Architectural changes are proposed to make the conditions hold. 

In this section we illustrate proposing architectural changes for the counter example where 
the thread is dispatched. Analysis of all the state transition rules is given in Appendix J. 
There are two right-hand side patterns for Dispatching Thread T1: (i) if T1 is aperiodic, its status 
is active and event/data M1 is at the internalbuffer of its (event) data-in-port, (ii) if T1 is periodic, 
its status is active. Table 7.4 gives proposed architectural changes that would trigger state 
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transition rules if the thread is dispatched. The first column of Table 7.4 lists the right-hand 
side patterns of the state transition rules for Dispatching Thread T1. The second column of the 
table gives the state transition rules which can be fired when a thread is already dispatched. 
Accoding to the AADL standard, only the state transition rules for Executing Thread T1 can 
be fired if the thread is already dispatched. The third column gives the possible architectural 
changes to make the conditions of the left-hand side patterns of the state transition rules for 
Executing Thread T1. 

Table 7.4 Right-hand Side Patterns of the State Transition Rules for Dispatching Thread T1 with 
Proposed Architectural Changes in AADL 

 Right-hand Side 
Patterns of the State 
Transition Rules for 
Dispatching Thread 

T1  

State Transition Rules 
to be Fired Further 

 

Proposed Architectural 
Changes 

 
 
   1 

Event/Data M1 at 
the internalbuffer of the 
(event) data-in-port 
of Thread  T1 & 
Thread T1 is in the 
active status 

 
 
Executing Thread T1 

 
Change the mode of Thread 
T1 
 
Change the behaviour of 
Thread T1 

 
  2 

Thread T1 is in the 
active status 

Executing Thread T1 Change the mode of Thread 
T1 
Change the behaviour of 
Thread T1 

 

In row (1), the right hand side pattern is for dispatching an aperiodic thread. In row (2), the 
right–hand side pattern is for dispatching a periodic thread. To fire the transition rules for 
both periodic and aperiodic thread execution, the following condition in the left-hand side 
patterns of the state transition rules should hold: some of the transitions in the behavioral annex of 
the thread are enabled.  

If none of the transitions in the behavioral annex of the thread is enabled, either some of the 
transitions in the behavioral annex or the mode of the thread is changed. The thread may 
have different states and transitions in different modes. Therefore, there are two changes on 
the architecture (changing the mode of the thread and changing the behaviour of the thread) to make the 
condition hold. 

There might be multiple applicable state transition rules which affect different parts of the 
architecture. Therefore, multiple changes may be proposed for different parts of the 
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architecture. The software architect should analyze each proposed change and decide which 
one to implement. We tried the approach with relatively simple state transition rules. We 
have not studied the applicability of the approach for more complex state transition rules in 
AADL.  

Iterating. Calling the change impact function is iterative: the software architect may 
continue changing the architecture. The software architect selects one or more of the 
proposed changes to be implemented. After implementing the proposed architectural 
changes, the architecture is verified again. If the changed requirement is not satisfied by the 
changed architecture, the change impact function is called again. 

7.5 Tool Support 

In Chapter 4 and Chapter 5, we showed the details of our tool named Tool for 
Requirements Inferencing and Consistency Checking (TRIC). We extended TRIC with 
features for identifying candidate impacted architectural elements [235]. In this section, we 
give the details of the tool. Tool support for architecture verification as part of changing 
software architecture is already given in Chapter 6. In Section 7.5.1, we depict the usage of 
the tool in the context of a requirements modeling process. Section 7.5.2 describes the main 
features of the tool with some screenshots. 

7.5.1 The Modeling Process 
We depict the usage of the tool in a requirements modeling and architecture design process 
with identifying candidate impacted architectural elements and proposing architectural 
changes. Figure 7.14 gives a UML activity diagram of the process. Change impact analysis 
techniques for requirements and software architecture are interleaved. Therefore, the process 
in Figure 7.14 also contains activities for change impact analysis in requirements models. The 
activities for change impact analysis in software architecture are identifying candidate impacted 
architectural elements, proposing architectural changes and changing architecture model.  

The process consists of the following activities. 

Modeling Requirements & Designing Architecture: This activity takes the requirements 
document as input and produces the Requirements Model (RM), Architecture Model (AM) 
and Trace Model (TM). The requirements engineer models the requirements in the 
requirements document by assigning relations between them with tool support in Chapter 4. 
The software architect designs the software architecture for the requirements and traces 
between requirements and architecture are assigned and/or generated (see Chapter 6). 
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Analyzing Change Impact in Requirements Model: The activity takes the change 
request and the Requirements Model (RM) as input and produces impacted requirements 
and proposed changes in the requirements model as output. The change is interpreted by the 
requirements engineer in order to propose and propagate changes in the Requirements 
Model (RM) (see Chapter 5). 

Identifying Candidate Impacted Architectural Elements: The activity takes proposed 
changes, impacted requirements, Requirements Model (RM), Architecture Model (AM) and 
Trace Model (TM) as input and produces impacted architectural elements as output. The 
activity is automatic. The software architect/requirements engineer selects the proposed 
change in the requirements model. TRIC gives the impacted requirement to be traced to 
candidate impacted architectural elements for the proposed change. Eclipse model editor is 
used to display the candidate impacted architectural elements with the Trace Model (TM).  

After identifying the candidate impacted architectural elements, the software architect 
decides to implement the changes in requirements model and architecture model. 

Changing Requirements Model: This activity takes the Requirements Model (RM) with 
proposed changes and impacted requirements as input and produces the New Requirements 
Model (RM`) as output. The activity is manual. The requirements engineer changes 
requirements according to proposed changes.  

Changing Architecture Model: The activity takes the New Requirements Model (RM`), 
Trace Model (TM), Architecture Model (AM), candidate impacted architectural elements and 
impacted requirements as input and produces the New Architecture Model (AM`) and the 
New Trace Model (TM`) as output. It is a manual activity. The software architect changes 
the Architecture Model (AM) based on candidate impacted architectural elements in order to 
make the architecture satisfy new/changed requirements. He also updates the traces (the 
New Trace Model – TM`) between the New Requirements Model (RM`) and the New 
Architecture Model (AM`). 
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Figure 7.14 Requirements Modeling and Architectural Design Process with Change Impact Analysis 
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Verifying New Architecture for New Requirements Model: This activity takes the New 
Requirements Model (RM`) and the New Architecture Model (AM`) as input and gives an 
execution trace or a counter example and unsatisfied requirements (if there is any) as output. 
The activity checks whether the requirements are satisfied by the architecture. It is semi-
automatic. The software architect reformulates the new/changed requirements in terms of 
logical formulas over the architecture. These logical formulas are checked for the 
architecture by the model checker in Maude automatically. 

Proposing Architectural Changes: The activity takes the New Architecture Model (AM`), 
New Trace Model (TM`), unsatisfied requirement and counter example as input and 
produces proposed architectural changes as output. The proposed changes are derived by 
analyzing the latest configuration of the architectural elements in the counter example. 

Changing New Architecture Model: The activity takes the New Architecture Model 
(AM`), New Trace Model (TM`), unsatisfied requirement and proposed architectural changes 
as input and produces the New Architecture Model (AM``) and the New Trace Model (TM`) 
as output. It is a manual activity. The software architect changes the New Architecture 
Model (AM`) based on proposed architectural changes in order to make the architecture 
satisfy new/changed requirements. He also updates the traces (the New Trace Model – TM`) 
between the New Requirements Model (RM`) and the New Architecture Model (AM``). 

Iterating: The process in Figure 7.14 is iterative: the software architect may return to the 
verification of new architecture for new requirements model activity if the requirements are 
still not satisfied by the new architecture. If all requirements are satisfied, the process is 
terminated. 

7.5.2 Tool Features 
The tool support is a combination of the usage of TRIC, Eclipse Model Editor and Maude. We 
describe the features of the tool support: identifying candidate impacted architectural elements and 
proposing architectural changes. 

Identifying Candidate Impacted Architectural Elements: Figure 7.15 gives the GUI for 
selecting the proposed requirements change which supports the identifying candidate impacted 
architectural elements activity. 
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Figure 7.15 GUI for Selecting the Proposed Requirements Change 

The left-hand side of the window lists the requirements in the model. The requirements are 
tagged as SI – Starting Impacted and UI - Unimpacted. The right-hand side of the window shows 
the details of the selected requirement (R14). The pop-up menu opened by right clicking on 
the selected requirement (R14) is used to select the proposed requirements change. After 
selecting the proposed requirements change, the propagation path for the selected change is 
traversed by the tool to identify the impacted requirement to be traced to architecture. 
Figure 7.16 gives the output of traversing the propagation path of the proposed 
requirements change.  

 

Figure 7.16 Output of Traversing the Propagation Path of the Proposed Requirements Change 
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Figure 7.17 Output of the Identifying Candidate Impacted Architectural Elements Activity 

Architectural elements traced from the impacted requirement(s) in Figure 7.16 are candidate 
impacted architectural elements for the requirements change selected in Figure 7.15. The 
Eclipse Model Editor is used to trace from the impacted requirement to candidate impacted 
architectural elements by using the trace model (see Figure 7.17).  

The right-hand side of the window shows the file output.ecore which is the trace model. The 
trace model includes the traces, requirements and architectural elements that are associated 
with the traces. The software architect can identify the architectural elements traced from the 
impacted requirement by using the trace model in the Eclipse Model Editor. The details of 
the chosen element in the trace model can be seen in the bottom of the window. 

Proposing Architectural Changes: Architectural changes are proposed based on counter 
example which is the output of verification when the reformulated requirements fail. We use 
the Open-Source AADL Tool Environment (OSATE) – Topcased [204] which includes an 
AADL front-end and architecture verification capabilities as plug-ins. The plug-in [182] 
developed by Artur Boronat is used to generate Maude representation of AADL models 
which can be simulated and verified. In Maude, we verify the software architecture for 
reformulated requirements in LTL. We use Eclipse plug-in developed in the context of 
MOMENT2 [30] to run Maude under Windows. We do not have a tool support to analyze 
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the counter example and to propose changes yet. Analysis of the counter example is 
currently done manually according to the algorithm in Section 7.4.  

7.6 Related Work 

We discuss related work in two categories: Change Impact Analysis in Software Architectures and 
Tool Support. 

7.6.1 Change Impact Analysis in Software Architectures 
A number of approaches in the literature address change impact analysis in software 
architectures. Jonsson and Lindvall [133] present common strategies for performing change 
impact analysis. They divide the strategies into two categories: automatable 
(traceability/dependency analysis and slicing techniques) and manual (design documentation 
and interviews). Automatable impact analysis strategies often employ algorithmic methods 
for change propagation [133]. Traceability and dependency analyses differ in scope and detail 
level. Traceability analysis is the analysis of the relations among all types of artifacts, while 
dependency analysis focus on relations extracted from the source code. Since our approach 
analyzes requirements relations and traces between R&A, it can be considered as traceability 
analysis.  

Algorithmic analysis is employed by Lee et al. [153] in order to compute the impact of 
changes on object-oriented software. Lee et al. uses data dependency graphs with a 
classification of changes for object-oriented software to determine the impacted elements in 
object-oriented source code. The approach addresses the impact analysis in source code, not 
in high-level design. Briand et al. [35] [36] presents a change impact analysis approach for 
UML analysis/design models. The changes between two versions of UML models are 
automatically identified based on a change classification. Then, model elements impacted by 
the changes are identified by using formally defined change impact analysis rules expressed 
in OCL. Similar to our approach, the approach in [35] [36] provides resulting changes for the 
impacted model elements. On the other hand, change impact analysis rules in [35] [36] are 
specific to UML models and changes in requirements are not considered. Tang et al. [241] 
introduce Architecture Rationale and Element Linkage (AREL) model represented as a 
Bayesian Belief Network (BBN). AREL captures the casual relationship between 
architectural elements and decisions using propabilities. This allows architects to perform 
change impact in software architecture based on probability theory. The input probabilities 
have to be entered by the software architect based on previous experience. The main 
difference with our approach is that the approach in [241] provides only impacted 
architectural elements without any proposed change. Han [106] introduces an approach for 
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impact analysis and change propagation based on dependencies of software artifacts. 
Propagation rules are defined based on change patterns. A change pattern includes initial 
modifications, consequent modifications with Boolean expressions that state the 
dependencies of the elements involved. Han applies the approach in order to determine the 
consequent modifications in design and source code for the initial modifications in design. 
Our approach supports determining impacted architectural elements with consequent 
changes for changes in requirements.  

Westhuizen and Hoek [248] provides an approach for propagating architectural changes 
within a product line architecture. The approach has two algorithms. The first one is a 
differencing algorithm that automatically calculates the difference between two versions of a 
product line architecture. The second algorithm is a merging algorithm that propagates the 
changes captured by the differencing algorithm to the second product line architecture. The 
merging algorithm requires the presence of some common elements among the 
architectures. It propagates the changes from one architecture to another. Our approach 
focuses on the propagation of changes in requirements to software architecture.  

Slicing techniques are mainly developed to understand dependencies using independent 
slices of the program [85]. Silicing is based on data and control flows in the program. Slicing 
techniques limit change propagation by identifying the scopes of changes. The work by Tip 
et al. [244] is an example of slicing techniques for C++ programs. Architectural slicing 
introduced by Zhao et al. [265] [266] is similar to program slicing. As opposed to program 
slicing, architectural slicing runs on the software architecture. The approach determines one 
slice of the software architecture for the proposed change. Components that might be 
impacted by the changed component are traced by using a graph of information flows. 
Therefore, the approach requires all the information flows of the software architecture being 
exposed. The main difference between the architectural slicing and our approach is that our 
approach identifies candidate impacted architectural elements with possible architectural 
changes caused by changes in requirements. Zhao et al. mainly focus on the questions such 
as ‘If a change is made to a component c, what other components might be affected by c?’. 
Feng and Maletic [80] address the propagation of architectural changes within the same 
architecture. Their approach can be considered as both dependency analysis and slicing 
technique. Interface and method slicing are used together with analysis of component 
dependencies.  

7.6.2 Tool Support 
Some requirements management tools support change impact analysis in software 
architectures. The selection of tools is based on INCOSE management tool survey [124].  
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IBM Rational RequisitePro [119] provides a matrix view to show the traces between 
requirements and architectural elements. When a requirement is changed, traces of the 
changed requirement are marked as suspect. All architectural elements directly or indirectly 
related to the changed requirement are candidate impacted. The software architect has to 
inspect the candidate impacted architectural elements to identify changes if there is any.  

Borland Caliber [27] supports one trace type between artifacts. It is a trace that can be 
established between any two artifacts such as requirements model and software architecture. 
Change impact analysis is manual. Similar to RequisitePro, Borland Caliber provides 
traceability matrix and traceability diagram to represent traces. All architectural elements 
directly or indirectly related to the changed requirement are candidate impacted. Therefore, 
the software architect should inspect all directly and indirectly related architectural elements 
by using traceability matrix and diagram manually. 

TopTeam Analyst [246] identifies suspected traces for change impact analysis. However, 
direct traces are not automatically marked as suspect when a requirement is changed. All 
traces for the changed requirement have to be selected and marked as suspect manually to 
identify the candidate impacted architectural elements. On the other hand, it is possible to 
get subscribed to specific elements in artifacts. When one of these elements such as a 
requirement is changed, the subscribers get a message. The message contains the name of 
the element, the user who changed the element and a link to the element for a quick 
inspection. IBM Telelogic Doors [120] supports a manual analysis of the relations and 
requirements affected by a change. When a requirement is changed, its traces are marked as 
suspect automatically.  

All industrial tools given above supports marking traces as suspected for changed 
requirements. All direct and indirect traces of the changed requirement are marked as 
suspect. Therefore, in these tools, all architectural elements directly or indirectly related to 
the changed requirement are candidate impacted. None of the inspected industrial tools 
provides proposing possible changes for software architecture to make the architecture 
satisfy the new and/or changed requirements. 

7.7 Conclusions 

We presented a technique for change impact analysis in software architecture. Our technique 
has two parts that use the approaches in Chapters 5 and 6. In the first part, we use the 
formal semantics of requirements relations and traces between R&A to identify the 
candidate impacted architectural elements. Most of the approaches and tools like IBM 
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Rational RequisitePro and DOORS do not focus on formal semantics of requirements 
relations and traces. By using formal semantics, we provide a more precise change impact 
analysis in software architecture by elimination of false positive impacts. We extended TRIC 
for identifying candidate impacted architectural elements. The second part of the technique 
is to propose possible changes for software architecture when the software architecture does 
not satisfy changed requirements. We provided a classification of architectural changes.  The 
technique is based on architecture verification. The output of verification is a counter 
example if the requirements are not satisfied. The counter example is used together with the 
classification of architectural changes in order to propose changes in the software 
architecture. The technique supports the architect to change the architecture. 

There are some certain limitations and assumptions in our technique. Analyzing the counter 
example in our approach is limited to the operational semantics of AADL in [197] [198]. 
This semantics mostly deals with passing & storing data in a data flow, dispatching & 
executing threads and switching modes. Architectural changes in our approach may not be 
generalized for other architecture description languages and other versions of semantics.  

Architectural changes in our approach are limited to the possible missing parts of the 
architecture for mainly data flow and thread execution. There are an infinite number of 
designs that satisfy the requirements for a given project. We do not consider changes such as 
adding new systems, processes or threads which may cause infinite number of solutions for 
the changed requirements.  

It is assumed that there is a next state from the last state of the counter example. It is 
possible that the last state might be the final state where no state transition is fired further. 
Even if the last state is not the final state, changing the architecture to enable a next state 
may not produce an architecture that satisfies the changed requirement. The software 
architect may need iterations of changing and verifying the architecture. 

In this chapter, we answer Research Question 4 (How to model requirements, software architecture and 
traces with their semantics for change management?) and Research Question 5 (How can be a change in a 
requirement propagated to other requirements and to software architecture? How can we support the 
requirements engineer and software architect for performing changes? How can we formally check if the evolved 
architecture satisfies evolved requirements?) raised in Chapter 1. The use of semantics of 
requirements relations and traces between R&A with tool support addresses the propagation 
of a change from a requirement to architectural elements. The proposed changes derived 
from the analysis of the counter example help the software architect to perform changes on 
software architecture. 
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There are still some open issues. Since we applied the approach to a limited number of 
requirements in the Remote Patient Monitoring System requirements document, the results 
may not be generalizable. We still need to apply the approach to a number of industrial case 
studies and to obtain empirical results. Our tool needs improvement for usability. The core 
parts of the tool for identification of candidate impacted architectural elements are 
implemented. However, the integration of these parts (TRIC and the Eclipse model editor) 
is currently done manually and we need a user interface to control all these parts. 
Furthermore, we do not have a tool support to analyze the counter example and to propose 
changes yet. Analysis of the counter example is currently done manually.  
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Chapter 8 

8 Conclusions 

This chapter gives the overall conclusions of the thesis. We outline the problems addressed in this thesis, 
together with our solution and future research directions. 

8.1 Introduction 

This chapter gives the overall conclusions of the thesis. First, in Section 8.2 we summarize 
the problems addressed in the thesis: (i) explosion of impacts in requirements for requirements changes, 
(ii) manual, expensive and error prone trace establishment between requirements and architecture, and (iii) 
explosion of impacts in software architecture for requirements changes. We reflect on the solutions for 
these problems in Section 8.3. Section 8.4 gives further research directions.  

8.2 Problems 

In this thesis, we have addressed the following problems in change impact analysis for 
requirements and software architecture:  

 Explosion of Impacts in Requirements for Requirements Changes. When a 
change is introduced to a requirement, there might be other requirements impacted 
by the introduced change. The requirements engineer traces impacted requirements 
from the changed requirement by using relations among requirements. In practice, 
requirements documents are often textual artifacts with implicit structure. Most of 
the relations among requirements are not given explicitly. There is a lack of precise 
definition of relations among requirements in most tools and approaches. By using 
only the structural information of relations, the requirements engineer may conclude 
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that all requirements in the model are impacted. Without considering semantics of 
relations, change impact analysis may produce high number of false positive and false 
negative impacts.  

 Manual, Expensive and Error Prone Trace Establishment between 
Requirements and Architecture. Once the requirements engineer analyzes the 
impact of a change in requirements, the software architect needs to identify the 
impact of this change in software architecture. Traces are needed to be established 
between Requirements (R) & Architecture (A) in order to identify the impacted parts 
of the architecture. Designing architecture based on requirements is a problem 
solving process that relies on human experience and creativity, and is mainly manual. 
Therefore, trace information may remain implicit and the software architect may need 
to manually assign traces between R&A. Manual trace establishment is time-
consuming, expensive and error prone. The assigned traces might be incomplete and 
invalid. 

 Explosion of Impacts in Software Architecture for Requirements Changes. In 
most approaches, there is a lack of precise definition of traces between R&A. By 
using only the structural information of traces between R&A, the software architect 
may conclude that all architectural elements in the architecture are impacted. Without 
considering semantics of traces, change impact analysis may produce high number of 
false positive and false negative impacts.  

8.3 Solutions 

In this section, we explain how we have addressed the aforementioned problems. The 
proposed techniques tackle impacts explosion and trace establishment issues at early stages 
of software development life cycle (requirements analysis and architecture design).  

 A modeling language for definition of requirements models. To give an explicit 
structure to requirements and their relations, we propose a requirements modeling 
language. The language is defined according to the MDE principles by defining a 
metamodel. It is based on a survey about the most commonly found requirements 
types and relation types. With this language, the requirements engineer can explicitly 
specify the requirements and the relations among them. We assign relation types with 
formal semantic definitions in First-Order Logic (FOL) in order to enable reasoning 
about requirements relations. We use the formal definitions for consistency checking 
of relations and for inferring new relations. The tool TRIC has been built to support 
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both reasoning activities. The language supports only textual requirements. There is 
no support for other requirements artifacts like use case and activity diagrams. On the 
other hand, the requirements metamodel can be customized in order to apply 
inferencing and consistency checking to current requirements modeling approaches 
like SysML and goal-oriented requirements engineering. In [96], we presented the 
customization of the requirements metamodel for SysML. 

 A change impact analysis technique for requirements. The technique uses the 
formal semantics of requirements relations and requirements change types. A 
classification of requirements changes based on the structure of a textual requirement 
is given and formalized. The semantics of requirements change types is based on 
FOL. We support three activities for impact analysis. First, the requirements engineer 
proposes changes according to the change classification before implementing the 
actual changes. Second, the requirements engineer indentifies the propagation of the 
changes to related requirements. The change alternatives in the propagation are 
determined based on the semantics of change types and requirements relations. 
Third, possible contradicting changes are identified. We provide a tool support for 
these activities. The tool automatically determines the change propagation paths, 
checks the consistency of the changes, and suggests alternatives for implementing the 
change. By the use of change alternatives and propagation paths, some false positive 
impacted requirements are eliminated. We provide a more precise change impact 
analysis in requirements models than requirements management tools like IBM 
RequisitePro. The definitions of the requirements relations do not give information 
about the structure of properties in a requirement. The requirements engineer has to 
inspect the requirements to know this. Therefore, the technique provides change 
alternatives in change propagation to be chosen by the requirements engineer. 
Change alternatives are used only if there is any requirement related to the changed 
requirement.  

 A technique for trace establishment between R&A. The technique provides trace 
establishment by using architecture verification together with semantics of 
requirements relations and traces. We use a trace metamodel with commonly used 
trace types. The semantics of traces is formalized in FOL. Software architectures are 
expressed in the Architecture Analysis and Design Language (AADL). AADL is 
provided with a formal semantics expressed in Maude. The Maude tool set allows 
simulation and verification of architectures. The first way to establish traces is to use 
architecture verification techniques. A given requirement is reformulated as a 
property in terms of the architecture. The architecture is executed and a state space is 
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produced. This execution simulates the behavior of the system on the architectural 
level. The property derived from the requirement is checked by the Maude model 
checker. Traces are generated between the requirement and the architectural 
components used in the verification of the property. The second way to establish 
traces is to use the requirements relations together with the semantics of traces. 
Requirements relations are reflected in the connections among the traced 
architectural elements. Therefore, new traces are inferred from existing traces by 
using requirements relations. We use semantics of requirements relations and traces 
to both generate/validate traces and generate/validate requirements relations. The 
technique is supported by a tool. The tool provides the following: (1) 
generation/validation of traces by using requirements relations and/or verification of 
architecture, (2) generation/validation of requirements relations by using traces. We 
enhance trace establishment between R&A with automation and trace validation. We 
conducted performance and scalability tests of the tool for generating and validating 
traces. We focused on model checking part of our tool in the performance and 
scalability tests. According to the test results, the tool performs well in general. The 
main limitation of the technique is that it is not possible to explicitly state which 
property in a complex requirement fails when the requirement has multiple 
properties. The technique aims at preserving the requirements relations in their 
implementation in the architecture. There might be some cases where extra 
dependencies not identified in the requirements analysis are determined in the 
architecture. In these cases, the software architect should update the requirements 
model by introducing new relations to the requirements model. We use the formal 
semantics of behavioral subset of AADL models in Maude implemented by Olveczky 
et al. [197] [198]. Since AADL standard specification does not define a formal 
semantics, the semantic definitions in Maude involve an interpretation of what the 
informal and sometimes ambiguous descriptions in the AADL standard mean. The 
tool uses AADL and Maude but the technique can be applied with another 
architecture description language and model checker, provided that the formal 
semantics of the language is given.  

 A change impact analysis technique for software architecture. The technique is 
semi-automatic and requires participation of the software architect. It has two parts. 
The first part is to identify the architectural elements that implement the system 
properties to which proposed requirements changes are introduced. By having the 
formal semantics of requirements relations and traces, we identify which parts of 
software architecture are impacted by a proposed change in requirements. The 
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second part of our technique is to propose possible changes for software architecture 
when the software architecture does not satisfy the new and/or changed 
requirements. The technique is based on architecture verification. The output of 
verification is a counter example if the requirements are not satisfied. The counter 
example is used together with a classification of architectural changes in order to 
propose changes in the software architecture. These changes produce a new version 
of the architecture that possibly satisfies the new or the changed requirements. By 
eliminating some false positive impacts and proposing architectural changes, we 
provide a more precise change impact analysis in software architecture than 
requirements management tools like IBM RequisitePro and DOORS. 

8.4 Future Research Directions 

This thesis explained various applications of semantics of traces to solve the impacts 
explosion problems. These applications lead to open issues that we will investigate in the 
future. 

 Change impact analysis for non-functional requirements. In the change impact 
analysis technique for requirements we do not consider the distinction between 
functional and non-functional requirements. There might be different relation types 
for non-functional requirements like performance and security requirements. Non-
functional requirements might be stated in a Domain Specific Language (DSL) rather 
than in FOL. We plan to select one or two non-functional requirements and 
investigate their relations within the context of change impact analysis.  

 Extension of requirements metamodel. The requirements metamodel have the 
generic entities requirement and requirements relation types. The requirements 
reasoning technique in Chapter 4 and change impact analysis technique in Chapter 5 
do not address specific requirements management approaches like goal-oriented 
requirements engineering. In order to apply our techniques for requirements 
management approaches found in the literature, the requirements metamodel needs 
to be customized. We need an extension mechanism for the requirements metamodel 
and TRIC. In [96], we presented a possible customization of the requirements 
metamodel for SysML but we did not study how we can extend TRIC for the 
customization of the metamodel.  

 Change impact analysis within architectural models. In the thesis, we propagate 
the change in a requirement to other requirements and software architecture. 
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Architectural elements impacted by requirements changes are identified and 
architectural changes are proposed. However, identification of architectural elements 
impacted by changes on architecture is not studied in the thesis. We plan to address 
this issue by applying the formal definitions of architectural elements and their 
dependencies to change impact analysis. Architectural elements and their 
dependencies can be formalized in a similar way to requirements and their relations. 
The formalization can be used to identify architectural elements impacted by a 
change in an architectural element.  

 Tracing from requirements to architecture, detailed design and source code 
for change impact analysis. The change impact analysis techniques should be 
applied further for other software development artifacts such as detailed design and 
source code. To identify impacted parts of detailed design and source code, we need 
tracing from requirements to architecture, detailed design and source code. 

 Reasoning about requirements and architectural design decisions. Decisions 
taken in the design of the architecture can be considered as intermediate artifacts 
between requirements and software architecture. In practice, the focus is mainly on 
the results of the architectural design (the architectural elements). The alternative 
decisions and the rationale behind the decisions are easily lost. TRIC can be extended 
with a metamodel for architectural decisions. Capturing these decisions may facilitate 
an early assignment of traces between requirements and architecture. 

 Tooling. We have tool support for the techniques developed within the context of 
the thesis. The change impact analysis techniques and the requirements modeling 
language are supported by TRIC. Trace establishment between R&A is based on 
model transformations in ATL and term-writing logic in Maude. We have two 
improvements for tooling as a future work. The first one is the improvement of our 
trace establishment tool support for usability. The core parts of the tool are 
implemented in ATL and Maude. However, integration of these parts is currently 
done manually and we need a user interface to control all these parts. The second 
future improvement is the integration of the tool for trace establishment with TRIC. 
In the current tooling, we do not have a user interface to control TRIC and the trace 
establishment tool in a uniform way. 
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Samenvatting 

Softwaresystemen worden steeds complexer. De eisen – requirements - waaraan 
softwaresystemen moeten voldoen veranderen voortdurend en vaak komen er nieuwe eisen 
bij. Nieuwe en/of aangepaste software-eisen dienen te worden geïntegreerd met de 
bestaande eisen. Bovendien moeten de software-architectuur en programmacode eveneens 
worden aangepast. Change management is het proces van integratie van veranderde eisen en de 
aanpassing van het softwaresysteem. De complexiteit van softwaresystemen maakt dit proces 
kostbaar en tijdrovend. Teneinde de kosten van veranderingen te reduceren is het belangrijk 
deze veranderingen zo vroeg mogelijk in het softwareontwikkelproces door te voeren. 

Traceerbaarheid van software-eisen - requirements traceability - is cruciaal voor het in stand 
houden van de consistentie tussen software-artefacten, dat zijn softwaredocumenten zoals 
architectuur, ontwerp, code, testen. Traceerbaarheid is de mogelijkheid om software-eisen 
terug te voeren naar belanghebbenden en deze eisen te koppelen aan corresponderende 
software-artefacten. Wanneer veranderingen in de eisen worden voorgesteld dan kunnen de 
gevolgen van deze veranderingen getraceerd worden naar andere software-artefacten zodat 
kan worden vastgesteld welke delen veranderd moeten worden. Change impact analysis is het 
bepalen van de gevolgen van veranderingen in eisen op andere artefacten. De impact kan 
betrekking op verschillende software-artefacten. Wij zullen ons in het bijzonder richten op 
impact van veranderende eisen op de software-architectuur. 

De noodzaak van change impact analysis geldt zowel voor software-eisen zelf als voor de 
software-architectuur. Wanneer een verandering wordt voorgesteld in een software-eis dan 
dient de requirement engineer na te gaan of ook andere software-eisen moeten worden 
aangepast. Nadat deze impact is vastgesteld dient de software-architect vast te stellen welke 
elementen in de software-architectuur veranderd moeten worden. Dit is mogelijk door de 
veranderde software-eisen te traceren naar de software-architectuur. Het handmatig 
uitvoeren van traceren is moeilijk, duur en foutgevoelig. Er zijn softwarepakketten 
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ontwikkeld om de change impact analysis te automatiseren (zoals IBM Rational RequisitePro 
en DOORS). In de meeste van deze pakketten worden relaties - traces - tussen software-
artefacten vastgelegd, maar de semantiek van deze relaties wordt verder niet uitgewerkt. 
Hierdoor wordt een veranderde eis al snel gekoppeld – direct of indirect - aan veel mogelijk 
te veranderen elementen in de architectuur. De requirements engineer dient al deze 
elementen, die kandidaat zijn om veranderd te worden, ook allemaal te inspecteren en na te 
gaan of een verandering echt noodzakelijk is. 

In dit proefschrift behandelen we een aantal problemen die naar voren komen bij het 
uitvoeren van de change impact analysis van software-eisen en software-architectuur. 

 Het groot aantal software-eisen dat mogelijk beïnvloed wordt door een verandering in 
een eis (requirements impact explosion). 

 De foutgevoeligheid en kostbaarheid van het handmatig bepalen van traces tussen 
software-artefacten. 

 Het groot aantal elementen in de software-architectuur dat mogelijk beïnvloed wordt 
door een verandering in een eis (achitecture impact explosion). 

We beschrijven een aanpak waarin deze explosies van impacts in software requirements (R) 
en software-architectuur (A) worden gereduceerd. Deze aanpak is gebaseerd op een 
welgedefinieerde semantiek van de traces. We gaan ervan uit dat iedere relatie tussen 
software-artefacts of elementen in deze artefacten een trace kan zijn die gebruikt kan worden 
in change impact analysis. 

De aanpak wordt uitgewerkt in de context van Model Driven Engineering (MDE). MDE 
behandelt verschillende software-artefacten op een uniforme wijze als modellen. Dit maakt 
het mogelijk over artefacten te redeneren als modellen. Voor het op deze manier 
structureren van software-eisen, architectuur en traces worden metamodellen gebruikt met een 
formeel gedefinieerde semantiek. 

Dit proefschrift levert de volgende onderzoeksbijdragen: 

 Een taal voor het modelleren van software-eisen – en hun onderlinge relaties - met een 
formele semantiek. De consistentie van de modellen kan automatisch worden 
gecheckt met een daarvoor ontwikkelde software-applicatie (TRIC - Tool for 
Requirements Inferencing and Consistency Checking). 
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 Een techniek voor change impact analysis van veranderde software-eisen gebaseerd op 
relaties tussen de eisen en een classificatie van veranderingen. Deze techniek wordt 
ondersteund in TRIC. 

 Een techniek voor het bepalen van trace relaties tussen software-eisen (R) en de 
architectuur (A) gebaseerd op verificatietechnieken voor software-architecturen en de 
semantiek van de relaties tussen R&A. 

 Een techniek voor change impact analysis van software-architectuur, eveneens gebaseerd 
op verificatietechnieken voor software-architecturen en de semantiek van de relaties 
tussen R&A. 
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Appendix A 

A Definition of a model in FOL 

In this appendix, we recapture the terminology for defining a model in FOL (first-order 
logic) [118]. Let F be a set of function symbols and P a set of predicate symbols, each 
symbol with a fixed arity. A model M of the pair (F, P) consists of the following items: 

 a non-empty set A, the universe of concrete values 

 for each f    F with n arguments, a function f M : An  A 

 for each P   P with n arguments, a set PM   An  

The condensed definition of formula in FOL using Backus Naur Form (BNF) is the 
following: 

(78)  ::= K(t1, t2, …, tn) () (   ) (   )  (  ) (x) (x) 

In Equation (78), K is a predicate of arity n, ti are terms, and x is a variable. Each occurrence 

of  on the right-hand side of the ::= stands for any formula. A formula is in conjunctive 
normal form if it is a conjunction of formulas, where these formulas are atomic formulas or 
disjunctions of other formulas (clauses). An atomic formula is a formula with no deeper 
structure, that is, a formula that contains no logical connectives and has no sub-formulas. 
The satisfaction relation between a model and a formula is the following: 

(79) M  l , for each logical formula  over the pair (F, P). 



 

292 

This denotation says that  computes to True in the model M with respect to the 

environment l, a look-up table which associates with every variable x a value l (x) of the 
model (l : var  A). 
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Appendix B 

B Part of the CMS Requirements Document 

In this appendix, we give an overview of the requirements of the Course Management 
System (CMS) as used in this thesis. The full requirements document is available at 
http://wwwhome.cs.utwente.nl/~goknila/sosym/. 

Requirements (partial) 

Stakeholder General

R1: The system shall provide static course information.

R4: The system shall provide dynamic course information.

R5: The system shall be able to store dynamic course information.

R6: The system shall be able to represent dynamic course information.

R7: The system shall provide a messaging facility.

Stakeholder Students 

R8: The system shall enable students to retrieve contact information of students and 
lecturers of subscribed courses. 

R11: The system shall enable students to subscribe to and unsubscribe from courses.

R16: The system shall allow messages to be sent to individuals, teams, or all course 
participants at once. 
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R17: The systems should allow students to create teams. 

R18: Teams are created by students inviting other students in the same course using the 
messaging system. 

R24: The system shall notify students about events (new messages posted, etc.). 

R25: The system shall allow students to customize the notification behavior.  

R26: The system shall allow students to view course grade statistics per semester. 

R29: The system shall provide a user-customizable visibility policy for the personal 
information. 

Stakeholder Lecturers 

R48: The system shall allow lecturers to create courses.

R49: The system shall allow lecturers to create entirely new courses.

R59: The system shall allow lecturers to manage static course information.

R60: The system shall allow lecturers to limit the number of students subscribing to a 
course. 

R61: The system shall allow lecturers to specify enrolment policies based on grade, first-
come first-serve (fcfs), and department. 

R62: The system shall allow lecturers to specify enrolment policies based on grade. 

R72: The system shall allow only lecturers to manage student teams.

R74: The system shall allow only lecturers to create new teams.

Stakeholder Administration 

R97: The system shall allow only the administration to manage courses.

R98: The system shall allow only the administration to create new courses. 

R100: The system shall allow only the administration to update static course information.

R102: The system shall allow only the administration to specify the minimum number of 
students for a course. If there are too few subscriptions in a semester, that course will not 
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be given during that semester. 

R103: The system shall have no maximum limit on the number of course participants ever.

R117: The system shall allow the administration to evaluate courses through students by 
means of a web-survey.  

 

Glossary (partial) 

Static Course Information: Information about a course which does not change while a 
course is given but does change between semesters. This includes the lecturer, number of 
ECTS credits, and study material. 

Dynamic Course Information: Information about a course which changes while a course is 
given. This includes news messages, archived files, and roster. 

Manage Courses: Managing courses involves the creation, reading, updating, and deleting of 
courses 
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Appendix C 

C Inference Rules in JENA 

This appendix provides the reasoner rules for the Inference Engine. The syntax is explained 
in Chapter 4. 

# Import OWL reasoner rules 

@include < OWL >. 

# Declaration of prefixes 

@prefix mm: < http://trese.ewi.utwente.nl/requirements.owl#>. 

@prefix xsd: < http://www.w3.org/2001/XMLSchema # >. 

@prefix inf: < inf://inference_engine/# >. 

#---------------------------------------------------------------- 

# Permeation of disjointedness . 

# Not a standard rule of the JENA OWL reasoner , 

# but neccessary for inferring conflicts 

#---------------------------------------------------------------- 

[ subset_also_disjoint: (?s1 inf:subClassOf ?s2) 

                                 (?s2 inf:disjointWith ?s3) -> (?s1 inf:disjointWith ?s3 )] 
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#-------------------------------------------------------- 

# Map requirement relations to subset relation 

# between satisfying sets of systems 

#-------------------------------------------------------- 

[ requires_to_subset: (?r1 mm:requires ?r2 ) 

                                (?s1 inf:satisfies ?r1) 

                                (?s2 inf:satisfies ?r2) -> (?s1 inf:subClassOf ?s2 )] 

 

[ refines_to_subset: (?r1 mm:refines ?r2) 

                             (?s1 inf:satisfies ?r1) 

                             (?s2 inf:satisfies ?r2) -> (?s1 inf:subClassOf ?s2 )] 

 

[ contains_to_subset: (?r1 mm:contains ?r2) 

                                (?s1 inf:satisfies ?r1) 

                                (?s2 inf:satisfies ?r2) -> (?s1 inf:subClassOf ?s2 )] 

 

#----------------------------------------------------------------- 

# If there is subset relation between sets of systems , 

# conclude a requires relation 

#----------------------------------------------------------------- 

[ subset_to_requires: (?s1 inf:subClassOf ?s2) 

                                (?s1 inf:satisfies ?r1) 

                                (?s2 inf:satisfies ?r2) -> (? r1 mm:requires ? r2 )] 
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#----------------------------------------------------- 

# If there is a conflicts relation , conclude 

# disjointness of the sets of systems 

#----------------------------------------------------- 

[ conflict_to_disjoint: (?r1 mm:conflicts ?r2) 

                                (?s1 inf:satisfies ?r1) 

                                (?s2 inf:satisfies ?r2) -> (?s1 inf:disjointWith ?s2) 

                                                                   (?s2 inf:disjointWith ?s1 )] 

 

#-------------------------------------------------------- 

# If there is disjointness of the sets of systems 

# conclude a conflicts relation 

#-------------------------------------------------------- 

[ disjoint_to_conflict: (?s1 inf:disjointWith ?s2) 

                                (?s1 inf:satisfies ?r1) 

                                (?s2 inf:satisfies ?r2) -> (?r1 mm:conflicts ?r2 )] 

 

#----------------------------------------------------- 

# Rules to infer a partial refines 

#----------------------------------------------------- 

[ temp_req_to_p_ref1: (?r1 mm:partial_refines ?r2) <- 

                                                        (?r1 mm:refines ?rt) 

                                                        (?r2 mm:contains ?rt) 
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                                                        (? rt isTemporal ’ true ’^^ xsd:boolean )] 

 

[ temp_req_to_p_ref2: (?r1 mm:partial_refines ?r2) <- 

                                                     (?rt mm:contains ?r1) 

                                                     (?rt mm:refines ?r2) 

                                                     (?rt isTemporal ’ true ’^^ xsd:boolean )] 

 

#----------------------------------------------------------- 

# Map requirement relations to formula relations 

#----------------------------------------------------------- 

[ map_refines_to_formulas: (?r1 mm:refines ?r2 ) 

                                            (?p1 inf:formulas ?r1)  

                                            (?p2 inf:formulas ?r2) -> (?p1 cons:all_in_whole ?p2) 

                                                                                   (?p1 cons:some_implies_in ?p2)] 

 

[ map_contains_to_formulas: (?r1 mm:contains ? r2)  

                                              (?p1 inf:formulas ?r1)  

                                              (?p2 inf:formulas ?r2) -> (?p2 cons:all_in_part ?p1) 

                                                                                     (?p2 cons:all_equals_in ?p1)] 

 

[ map_part_ref_to_formulas: (?r1 mm:partially_refines ?r2)  

                                              (?p1 inf:formulas ?r1)  

                                              (?p2 inf:formulas ?r2) -> (?p1 cons:all_in_part ?p2) 
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                                                                                     (?p1 cons:all_implies_in ?p2)] 

 

#-------------------------------------------------------------- 

# Map formula relations to requirements relations 

#-------------------------------------------------------------- 

[map_formulas_to_refines: (?p1 cons:all_in_whole ?p2) 

                                           (?p1 cons:some_implies_in ?p2 )  

                                           (?p1 inf:formulas ?r1)  

                                           (?p2 inf:formulas ?r2) -> (?r1 mm:refines ?r2)] 

 

[map_formulas_to_contains: (?p2 cons:all_in_part ?p1) 

                                             (?p2 cons:all_equals_in ?p1)  

                                             (?p1 inf:formulas ?r1)  

                                             (?p2 inf:formulas ?r2) -> (?r1 mm:contains ?r2)] 

 

[map_formulas_to_part_ref: (?p1 cons:all_in_part ?p2) 

                                             (?p1 cons:all_implies_in ?p2 ) 

                                             (?p1 inf:formulas ?r1)  

                                             (?p2 inf:formulas ?r2) -> (?r1 mm:partially_refines ?r2)] 

 

#----------------------------------------------------- 

# Properties of formula relations 

#----------------------------------------------------- 
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[formula_rule_1: (?p1 cons:all_in_part ?p2) 

                            (?p2 cons:all_in_whole ?p3) -> (?p1 cons:all_in_part ?p3 )] 

 

[formula_rule_2: (?p1 cons:all_in_whole ?p2) 

                            (?p2 cons:all_in_part ?p3) -> (?p1 cons:all_in_part ?p3)] 

 

[formula_rule_3: (?p1 cons:some_implies_in ?p2) 

                            (?p2 cons:all_implies_in ?p3) -> (?p1 cons:all_implies_in ?p3)] 

 

[formula_rule_4: (?p1 cons:all_implies_in ?p2) 

                            (?p2 cons:some_implies_in ?p3) -> (?p1 cons:all_implies_in ?p3)] 

 

[formula_rule_5: (?p1 cons:some_implies_in ?p2 ) 

                            (?p2 cons:all_equals_in ?p3) -> (?p1 cons:some_implies_in ?p3 )] 

 

[formula_rule_6: (?p1 cons:all_implies_in ?p2) 

                            (?p2 cons:all_equals_in ?p3) -> (?p1 cons:all_implies_in ?p3)] 

 

[formula_rule_7: (?p1 cons:all_equals_in ?p2) 

                            (?p2 cons:all_implies_in ?p3) -> (?p1 cons:all_implies_in ?p3)] 
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Appendix D 

D Consistency Checking Rules in JENA 

This appendix provides the reasoner rules for the Consistency Checking Engine. The syntax 
is explained in Chapter 4. 

# Import OWL reasoner rules 

@include < OWL >. 

 

# Declaration of prefixes 

@prefix mm: <http://trese.ewi.utwente.nl/requirements.owl#>. 

@prefix cons: <cons://consistency_checker/#>. 

@prefix inf: <inf://inference_engine/#>. 

 

#----------------------------------------------------- 

# Consistency rules . 

#----------------------------------------------------- 

[ inconsistency_1: (?s1 inf:subClassOf ?s1) 

                             (?s1 inf:satisfies ?r1) -> addInconsistency ( ’ Circular dependency ’ , ?r1)] 
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[ inconsistency_2: (?s1 inf:subClassOf ?s2 ) 

                            (?s2 inf:subClassOf ?s1) 

                            notEqual(?s1, ?s2) 

                            (?s1 inf:satisfies ?r1) 

                            (?s2 inf:satisfies ?r2) -> 

                                addInconsistency ( ’ Contradicting subclasses of systems ’, 80 ?r1 ,? r2 )] 

 

[ inconsistency_3: (?r1 mm:conflicts ?r2) 

                             (?r1 mm:requires ?r2) -> 

                                 addInconsistency ( ’ Both conflicts and depends ( req .) ’, ?r1, ?r2)] 

 

[ inconsistency_4: (?r1 mm:conflicts ?r2) 

                            (?r1 mm:partially_refines ?r2 ) -> 

                                addInconsistency ( ’ Both conflicts and depends ( prt . ref .) ’, ?r1 ,?r2)] 

 

[ inconsistency_5: (?r1 cons:all_in_part ?r2) 

                             (?r1 cons:all_in_whole ?r2) -> 

                                 addInconsistency ( ’ Requirement both part - of and whole ’, ?r1, ?r2 )] 

 

[ inconsistency_6: (?r1 cons:all_equals_in ?r2) 

                             (?r1 cons:all_implies_in ?r2) -> 

                                 addInconsistency ( ’ all_equals_in contr . all_implies_in ’, ?r1, ?r2)] 
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[ inconsistency_7: (?r1 cons:all_equals_in ?r2) 

                            (?r1 cons:some_implies_in ?r2) -> 

                                 addInconsistency ( ’ all_equals_in contr . some_implies_in ’, ?r1, ?r2)] 
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Appendix E 

E Formal Semantics and Analysis of Behavioral 
AADL Models in Maude 

In this appendix, we give the formal semantics and analysis of behavioral AADL models in 
Maude. The appendix is a short version of the technical report [198] and the paper [197] by 
Peter Csaba Olveczky, Artur Boronat, Jose Meseguer, and Edgar Pek. Furthermore, we 
included our updates on operational semantics of AADL models in Maude for trace 
generation to the appendix 

Preliminaries on AADL. The Architecture Analysis & Design Language (AADL) [225] is 
an industrial standard used in avionics, aerospace, automotive, medical devices, and robotics 
communities to describe a performance-critical embedded real-time system as an assembly 
of software components mapped onto an execution platform. 

An AADL model describes a system as a hierarchy of hardware and software components. A 
component is defined by its name, its interface consisting of input and output ports, its 
subcomponents and their interaction, and other type-specific properties. System components are 
the top-level components, and can consist of other system components as well as of 
hardware and software components. Hardware components include: processor components 
that schedule and execute threads; memory components; device components representing 
devices like sensors and actuators that interface with the environment; and bus components 
that interconnect processors, memory, and devices. Software components include: thread 
components modeling the application software to be executed; process components defining 
protected memory that can be accessed by its thread subcomponents; and data components 
representing data types. In AADL, thread behavior is typically described using AADL’s 
behavior annex [83], which models programs as transition systems with local state variables. 
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An AADL model specifies how the different components interact and are integrated to form 
a complete system. The AADL standard also describes the runtime mechanisms for handling 
message and event passing, synchronized access to shared resources, thread scheduling when 
several threads run on the same processor, and dynamic reconfiguration that are specified by 
mode transitions. AADL has a MOF meta-model, and the OSATE modeling environment 
provides a set of plug-ins for front-end processing of AADL models on top of Eclipse. 

Overview of a Behavioral Subset of AADL. In AADL, a system is modeled as a collection 
of software and hardware components. Since we focus on the software parts of AADL, the 
following description only deals with the software components and features. 

A component is given by its type and its implementation. A component type specifies the 
component’s interface in terms of features and properties. In the software portion, features are 
just input and output ports. A component implementation specifies the internal structure of 
the component in terms of a set of subcomponents, a set of connections linking the ports of the 
subcomponents, and modes that represent operational states of components. System 
components are the top level components. A process component contains a set of thread 
components that define the dynamic behavior of the process. 

Connections link ports to enable the exchange of data and events among components. A port 
is either a data port, an event port, or an event data port. Buffers associated to event ports and 
event data ports support queuing of, respectively, “events” and message data, while buffers 
of data ports only keep the latest data. 

Modes represent the operational states of components. A component can have mode-specific 
property values, subcomponents, and connections. Mode transitions are triggered by events. 

The dispatch protocol property of a thread determines when the thread is executed. A periodic 
thread is activated at time intervals of the specified period T; an aperiodic thread is activated 
when an event arrives at a port of the thread; a sporadic thread is activated when an event 
arrives and the interval between two dispatches is at least T; and a background thread is always 
active. 

The dynamic behavior of a thread is defined using AADL’s behavior annex. Given finite sets 
of states and state variables, the behavior of a thread is defined by a set of state transitions of 
the form  s – [guard] -> s` {actions},  where s and s` are states, and where guard is a Boolean 
condition on the values of the state variables and/or the presence of events or data in the 
thread’s input ports. The actions that are performed when a transition is applied may update 
the state variables, generate new outputs, and/or suspend the thread for a given amount of 
time. Actions are built from basic actions using a small set of control structures allowing 
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sequencing, conditionals, and finite loops. When a thread is activated, an enabled transition 
is nondeterministically selected and applied; if the resulting state s` is not a complete state, 
another transition is applied, and so on, until a complete state is reached (or the thread is 
suspended). 

An AADL Example. As an example of a specification within the subset of AADL in this 
appendix, consider a network of sensor devices for patients, consisting of a network 
controller, doctor client computers that receive information about a patient’s condition. 

The patient’s condition is monitored by the sensor devices and measured data are stored in a 
central database. The doctor is warned if the patient’s condition gets worse.  

The entire system Wholesys is a closed system that does not have any features (i.e., ports) to 
the outside world. Hence, its type (interface) is empty: 

system Wholesys 

end Wholesys; 
 

The implementation of the entire system describes the architecture of the system, with four 
subcomponents and the connections linking these subcomponents: 

system implementation Wholesys.imp 

  subcomponents 

     sd: system SD.i;                     sdc: system SDC.i; 

     hpc: system HPC.i;               cpc: system CPC.i; 

  connections 

     pc1: event data port cpc.measurements_request_out -> hpc.measurements_request_in; 

     pc2: event data port cpc.alarms_request_out -> hpc.alarms_request_in; 

     pc3: event data port sd.sd_blood_edp4 -> sdc.sdc_blood_edp1;   

     pc4: event data port sdc.sdc_blood_edp6 -> hpc.hpc_blood_edp1;   

     pc5: event data port cpc.cpc_temp_request_edp1 -> hpc.hpc_temp_request_edp1; 

     pc6: event data port hpc.hpc_temp_request_edp2 -> cpc.cpc_temp_request_edp2; 

end Wholesys.imp; 
 

The sd, which measures data every second, is an instance of a system of type SD. Its 
implementation consists of a process sdProcess, which again consists of a thread taThread 
that is an instance of the following taThread.impl: 
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thread taThread 

  features              measuredData: out event data port Behavior::integer; 

  properties          Dispatch_Protocol => periodic;        Period => 1 sec; 

end Test_Thread; 

 

thread implementation taThread.i 

  annex behavior_specification {** 

     states                    s0: initial complete state;       

     transitions            s0 -[]-> s0 {measuredData!(35);};                                     **}; 

end Test_Thread.i; 
 

The thread taThread is dispatched every second. When the thread is dispatched, the transition 
is applied once (since the resulting state s0 is a complete state), and the action performed is 
to output the value 35 through the port measuredData. 

Representing AADL Models in Maude. The semantics of a component-based language 
can naturally be defined in an object-oriented style, where each component instance is 
modeled as an object. The hierarchical structure of AADL components is reflected in the 
nested structure of objects, in which an attribute of an object contains its subcomponents as 
a multiset of objects. 

Any AADL component instance is represented as an object instance of a subclass of the 
following class Component, which contains the attributes common to all kinds of 
components (systems, processes, threads, etc.): 

class Component |  features  :  Configuration,     subcomponents : Configuration, 

                                   properties : Properties,         connections : ConnectionSet, 

                                   modes : Modes,                     inModes : ModeNameSet . 
 

The attribute features denotes the features of a component (i.e., its ports), represented as a 
multiset of Port objects (see below); subcomponents denotes the subcomponents of the 
object; properties denotes its properties, such as the dispatch protocol for threads; 
connections denotes the set of port connections of the object (see below); modes contains 
the object’s mode transition system; and inModes gives the set of modes (of the immediate 
supercomponent) in which the component is available (if the component is not a mode-
specific subcomponent of the containing component, then this attribute has the value 
allModes). 
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In our AADL subset, the classes System and Process, denoting system and process 
components, do not have other attributes than those they inherit from their Component 
superclass. The Thread class is declared as follows: 

class Thread |  behavior  :  ThreadBehavior,     status : ThreadStatus, 

                           deactivated : Bool . 

subclass Thread < Component . 
 

The behavior attribute denotes the transition system associated with the thread. The status 
indicates the current status of the thread (active, completed, suspended, etc.). The 
attribute deactivated indicates whether the thread is deactivated because it is not in the 
current “active” modes of the system. 

Ports and connections. A port is modeled as an object instance of a subclass of the class Port, 
whose subclasses define outgoing and incoming ports, as well as data, event, and event data 
ports. See [198] for details. An immediate level-up connection, linking an outgoing port P in 
a subcomponent C to the outgoing P` in the “current” component, is modeled as a term C.P 
- -> P`. Immediate same-level and level-down connections are terms of the forms, 
respectively, P1 - -> P2 and P - -> C.P`. 

Representing Thread Behavior. The transition system associated with a thread is modeled as a 
term of the form: 

states                      current: s   complete: s1 . . . sk   other: sk+1 . . . sn 

state variables        var1 |-> val1    . . .    varm |-> valuem 

transitions              s -[guard]-> s` {actions} ; . . . ; s`` -[guard`] -> s` {actions`} 
 

Operational Semantics of AADL in Maude. This section formalizes the operational 
semantics of AADL in Real-Time Maude. Unavoidably, since AADL does not have a precise 
semantics, the semantic definitions in Maude are a formal semantics for AADL and involve 
an interpretation of what the informal and sometimes ambiguous descriptions in the 
standard mean. The dynamics is defined by equations and rewrite rules specifying: 

 "message" passing, 

 mode switches, 

 thread dispatch, 

 thread execution, 
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 nondeterministically assigning values to a set of variables, given a value constraint, 
and 

 timed behavior. 

AADL has been extended with a property feature to express constraints on a set of values of 
the components. The AADL example in [198] has such kind of constraints. Since the 
concept of value constraint is not in AADL standard, it is skipped in the appendix.  

Message Passing. In the spirit of the "traditional" Maude model for message transmission - 
where message transmission from source to destination is abstractly modeled by the state 
having a multiset structure – equations are used to model the transmission of messages from 
source port to destination port along a series of connections. 

To transmit a list of ML of messages (that is, events and/or data), an out port puts 
transfer(ML) into its buffer. The following equation models the transmission of a message list 
along a level-up connection C1 . P1 - -> P from the outport P1 of the subcomponent C1 to 
the outport of P of the supercomponent C. As a result of applying the equation, the port P 
now has the value transfer(ML), and the subcomponent’s port buffer is empty: 

op transfer : MsgList -> MsgList [ctor] . 

 

vars C C1 C2 : ComponentId .                   vars P P1 P2 : PortId . 

vars PORTS PORTS2 OTHER-COMPONENTS : Configuration . 

vars ML ML' : MsgList .                            var CONXS : ConnectionSet . 

 

eq < C : Component | 

               features : < P : OutPort | buffer : nil > PORTS, 

               subcomponents : 

                    < C1 : Component | 

                               features : < P1 : OutPort | buffer : transfer(ML) > PORTS2 > 

                    OTHER-COMPONENTS, 

               connections : (C1 . P1 --> P) ; CONXS > 

= 

     < C : Component | 

               features : < P : OutPort | buffer : transfer(ML) > PORTS, 

               subcomponents : 
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                    < C1 : Component | features : < P1 : OutPort | buffer : nil > PORTS2 > 

                    OTHER-COMPONENTS > . 
 

There are similar equations which model the transmission of a message list following a same-
level connection between the two subcomponents or along a level-down connection. We 
skip these equations in this appendix. For further details the reader should check [198]. 

Thread Status and Mode Switches. The execution status of a thread can be any of the following: 

 Active: The thread is ready to execute a state transition. 

 Completed: The thread has completed its execution in this dispatch and waits for its 
next dispatch. 

 Sleeping: The thread is suspended, and will resume execution after a given amount of 
time. 

 Inactive: The thread is not part of the "active" mode of the system. 

A mode switch has the effect of deactivating and activating threads to respond to dispatches. 
A thread becomes inactive as the result of a mode change if it is not part of the new mode. 
An inactive thread cannot be dispatched for execution. An inactive thread can be activated 
as the result of a mode change, in which case the thread enters the completed status, from 
where it can respond to future dispatches. When a thread in the completed status receives a 
dispatch request, the thread enters the active status to perform the computation. Upon 
successful completion of the computation, the thread returns to the completed status. Once an 
active thread executes a delay action, it enters the sleeping status, suspends for a period of time, 
and becomes active after that time period. Mode switch is modeled by the following rewrite 
rule: 

rl [modeSwitch] : 

    < C : Component | 

                   features : 

                         (< P : InEventPort | buffer : transfer(ML) :: ML' > PORTS), 

                   modes : current: MN1 

                                  transitions: (MN1 -[P , PIS]-> MN2 ) ; MTSET, 

                   subcomponents : SUBCOMPONENTS > 

   => 

    < C : Component | 
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                  features : (< P : InEventPort | buffer : nil > PORTS), 

                  modes : current: MN2 transitions: (MN1 -[P , PIS]-> MN2) ; MTSET, 

                  subcomponents : modeSwitch(SUBCOMPONENTS, MN1, MN2) > . 
 

where the modeSwitch operation propagates the mode switch request to the subcomponents 
(by setting deactivated to true for the other threads to be suspended; and vice versa for the 
threads that should be activated). 

Thread Dispatch and Execution. Under a periodic dispatch protocol, a thread in completed 
status is dispatched when the "dispatch timer", i.e., the second parameter T' in the term 
periodic-dispatch(T,T'), is 0. As a result, the thread is dispatched, that is, its status is set to 
active, the "timer" is reset to the length T of a period, and the input ports are "dispatched" as 
well: 

crl [periodic-dispatch] : 

    < O : Thread | properties : periodic-dispatch(T, 0 ) ; TP, 

                               status : completed, 

                               features : PORTS > 

=> 

    < O : Thread | properties : periodic-dispatch(T, T) ; TP, 

                               status : active , 

                               features : dispatchInputPorts(PORTS) > 

if not environmentThread(TP) . 
 

Likewise, when the dispatch protocol is aperiodic, and new events have arrived in some of the 
thread's input ports (that is, some of the messages in the port buffer have the wrapper 
transfer), and the thread is in completed status, then the thread is activated: 

rl [aperiodic-incoming-message] : 

   < O : Thread | properties : aperiodic-dispatch PROPS, 

                              features : 

                                 (< P : InEventThreadPort | buffer : ML :: transfer(ML') > 

                                 PORTS), 

                              status : completed > 

 => 

   < O : Thread | features : 

                                dispatchInputPorts( 
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                                     < P : InEventThreadPort | buffer : ML :: ML' > PORTS), 

                              status : active > . 
 

The next rule specifes the execution of an active thread. If the thread is in state L1, and 
there is some transition from L1 whose guard evaluates to true, then the transition is 
executed. The resulting status is sleeping(...) if some of the actions in the statement list SL are 
delay statements, the thread is completed or suspended if the resulting state L2 is a complete 
state, and remains active otherwise: 

crl [execute-transition] : 

      < O : Thread | status : active , 

                                 deactivated : false, 

                                 features : PORTS, 

                                 behavior : states (current: L1 ) LDS state variables VAL, 

                                 threadType : TN, implementationType : IMPL > 

  => 

      < O : Thread | status : NEW-STATUS, 

                                features : (if NEW-STATUS == completed 

                                                  then transferData(NEW-PORTS) 

                                                  else NEW-PORTS fi), 

                                behavior : states (current: L2 ) LDS 

                                state variables NEW-VALUATION > 

 if not environmentThread(TP) 

   /\ ((L1 -[ GUARD ]-> L2 [187]) ; TRANSITIONS) := transitions(TN, IMPL) 

   /\ evalGuard(GUARD, dispatchInputPorts(PORTS), VAL) 

   /\ transResult(NEW-PORTS, NEW-VALUATION, SLEEP-TIME) := 

            executeTransition(L1 -[ GUARD ]-> L2 SL, dispatchInputPorts(PORTS), VAL) 

   /\ SLEEP := SLEEP-TIME > 0 

   /\ NEW-STATUS := if SLEEP then sleeping(SLEEP-TIME) 

                                         else (if completeState(L2,LDS) then 

                                                  completed else active fi) fi . 
 

The function executeTransition executes a given transition in a state with a given set PORTS of 
ports and assignment VAL of the state variables. Its definition is straight-forward. The 

function returns a triple transResult(p; ; t), where p is the state of the ports after the 
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execution,  is the resulting values of the state variables, and t is the sum of the delays in the 
transition actions. The transitions are modeled as a multiset of single transitions; therefore, 
any of the enabled transitions can be nondeterministically selected in the matching condition 

((L1 -[ GUARD ]-> L2 [187]) ; TRANSITIONS) := transitions(TN, IMPL) 

in the above rule.  

The following rule models the behavior of a sleeping thread when the remaining sleeping time 
is 0. The thread becomes active, completed, or suspended depending on whether or not its current 
state is a complete state and, if so, whether it should deactivate itself as a result of an earlier 
mode switch: 

rl [finish-sleep] : 

    < O : Thread | status : sleeping(0) , 

                               deactivated : B, 

                               behavior : states current: L LDS state variables VAL > 

  => 

    < O : Thread | status : (if not completeState(L, LDS) then active else 

                                              (if B then inactive else completed fi) fi) > . 
 

Time Behavior. Time elapse in the system is modeled with a single tick rule 

crl {SYSTEM} => {delta(SYSTEM, T)} in time T if T <= mte(SYSTEM) . 
 

The function delta defines the effect of time elapse in a system, and the function mte defines 
the maximal time elapse possible until an action must be taken. These functions distribute 
over the elements in a (sub)configuration, propagate to the subcomponents of system and 
process components, and must be defined for single thread objects to define the time behavior 
of a system. 

The following must be taken into account when defining these functions: (i) periodic threads 
must dispatch at the correct times; (ii) threads in sleep status must wake up when their sleep 
time expires; (iii) time must not elapse when there are “untreated” messages in the system, 
since an aperiodic thread is dispatched when it receives an event; and (iv) time cannot 
advance when a thread is in active state, as the thread should execute a transition when it is 
active. 



 

317 

The function delta modeling the effect of time elapse decreases the “timer” t in a periodic-
dispatch(T,t) property of a thread, and the timer t` in the sleeping(t`) status of a thread, 
according to the elapsed time: 

eq delta(< THR : Thread | subcomponents : C, status : TS, properties : PROPS >, T) 

      = < THR : Thread | subcomponents : delta(C, T), status : delta(TS, T), 

                                          properties : delta(PROPS, T) > . 

 

op delta : ThreadStatus Time -> ThreadStatus . 

eq delta(sleeping(T), T’) = sleeping(T - T’).               eq delta(TS, T’) = TS [owise] . 

op delta : Properties Time -> Properties . 

eq delta(periodic-dispatch(T,T’) PROPS, T’’) = 

         periodic-dispatch(T, T’ - T’’) PROPS . 

eq delta(PROPS, T) = PROPS [owise] . 
 

The function mte (maximum time elapse) ensures that mte is 0 when an “untreated” message 
list, that is, one of the form transfer(ml), is present in some port buffer; in addition, it ensures 
that time cannot advance beyond the wake-up time of a sleeping thread, or beyond the 
dispatch time of a periodic thread. In addition, time cannot advance when a thread is active: 

eq mte(< THR : Thread | features : PORTS, subcomponents : C, 

                                              status : TS, properties : PROPS >) 

         = min(mte(PORTS), mte(C), mte(TS), mte(PROPS)) . 

 

eq mte(< P : Port | buffer : ML :: transfer(ML’) :: ML’’ >) = 0 . 

eq mte(< P : Port | buffer : ML >) = INF [owise] . 

op mte : ThreadStatus -> TimeInf . 

eq mte(active) = 0 . eq mte(completed) = INF .                 eq mte(sleeping(T)) = T . 

eq mte(inactive) = INF . 

op mte : Properties -> TimeInf . 

eq mte(periodic-dispatch(T, T’) PROPS) = T’ .                 eq mte(PROPS) = INF [owise]. 
 

Updates on Operational Semantics of AADL in Maude for Trace Generation. This 
section explains the updates on operational semantics of AADL in Maude for trace 
generation in Chapter 6. We modified the transition rules in Maude to be able to record the 
architectural elements matched by the transition rules. These matched elements are the used 



 

318 

architectural elements during the verification of architecture. We modified the AADL 
metamodel and included a boolean attribute called Used to the component classes in the 
AADL metamodel. Each transition rule sets the attribute Used of the architectural element 
matched in the transition rule to True. The Port and Thread classes are updated as follows: 

class Port | used : Bool,        *** This is added in order to mark used ports in verification 

                     buffer : MsgList .    

  

class Thread | used : Bool,   *** This is added in order to mark used threads in verification 

                          behavior : ThreadBehavior,  

                          status : ThreadStatus, 

                          threadType : ThreadName, 

                          implementationType : ImplName, 

                          deactivated : Bool .             
 

While the threads and ports are being initialized, the attribute Used of threads and ports 
should be set to False. The following is the updated equation initializeThreads which initializes 
threads with the attribute Used set to false.  

eq initializeThreads(< O : X:Thread | ATTS, inModes : MNS >, MN) =  

            < O : X:Thread | ATTS, inModes : MNS, status : completed,  

                                   used : false,          *** This is added to initialize threads  

                                                                 *** with the Used attribute set to false 

                                   deactivated : (not MN in MNS)  > .             
 

The following is one of the updated equations which initialize ports with the attribute Used 
set to false. 

var P : PortId . 

 

eq P out event data port = < P : OutEventDataPort | buffer : nil, used : false > .             
 

Equations and rewrite rules for operational semantics of AADL ("message" passing, mode 
switches, thread dispatch, and thread execution) are updated in order to record the 
architectural elements used in the verification. The following is one of the updated equations 
for "message" passing. 
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var U : Bool .  

 

eq < C : Component | features : < P : InPort | buffer : transfer(ML), used : U >  PORTS, 

                      subcomponents : COMPONENTS,  

                      modes : noModes,  

                      connections : (P --> C1 . P1) ; CONXS  > 

     = 

   < C : Component | features :  < P : InPort | buffer : nil, used : true >  PORTS, 

                     subcomponents :  

                   (transfer ML from P to COMPONENTS using ((P --> C1 . P1) ; CONXS)) > . 
 

The above equation models the transmission of a message list along a level-down connection 
P - -> C1.P1 from the outport P to the outport of P1 of the subcomponent C1. As a result 
of applying the equation, the port P1 now has the value transfer(ML), and the outport P 
buffer is empty. For trace generation the attribute used of the outport P is added to the 
equation. Since the message is transferred from the outport P, the attribute used of the 
outport P is set to true in the equation (used : true). The following is the updated rewrite rule 
for periodic thread dispatch. 

var U : Bool . 

 

crl [periodic-dispatch] : 

    < O : Thread | properties : periodic-dispatch(T, 0 ) ; TP, 

                               used : U,                   *** This is added to match the attribute used 

                               status : completed, 

                               features : PORTS > 

=> 

    < O : Thread | properties : periodic-dispatch(T, T) ; TP, 

                               used : true,                *** This is added to set the attribute used true 

                               status : active, 

                               features : dispatchInputPorts(PORTS) > 

if not environmentThread(TP) . 
 

In the above rewrite rule, the thread is dispatched, that is, its status is set to active, the "timer" 
is reset to the length T of a period, and the input ports are "dispatched" as well. For trace 
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generation the attribute used of the thread O is added to the rewrite rule. Since the thread O is 
dispatched in the rewrite rule, the attribute used of the thread O is set to true (used : true). The 
following is the updated rewrite rule for aperiodic thread dispatch. 

var U : Bool . 

 

rl [aperiodic-incoming-message] : 

   < O : Thread | properties : aperiodic-dispatch PROPS, 

                              features : 

                                 (< P : InEventThreadPort | buffer : ML :: transfer(ML') > 

                                 PORTS), 

                              used : U,                     *** This is added to match the attribute used  

                              status : completed > 

 => 

   < O : Thread | features : 

                                dispatchInputPorts( 

                                     < P : InEventThreadPort | buffer : ML :: ML' > PORTS), 

                              used : true,                  *** This is added to set the attribute used true   

                              status : active > . 
 

In the above rule, when the dispatch protocol is aperiodic, and new events have arrived in 
some of the thread's input ports (that is, some of the messages in the port buffer have the 
wrapper transfer), and the thread is in completed status, then the thread is dispatched 
(activated). For trace generation the attribute used of the thread O is added to the rewrite rule. 
Since the thread O is dispatched in the rewrite rule, the attribute used of the thread O is set to 
true (used : true). The following is the updated rewrite rule for thread execution. 

var U : Bool .  

 

crl [execute-transition] : 

      < O : Thread | status : active , 

                                 used : U,                     *** This is added to match the attribute used 

                                 deactivated : false, 

                                 features : PORTS, 

                                 behavior : states (current: L1 ) LDS state variables VAL, 

                                 threadType : TN, implementationType : IMPL > 
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  => 

      < O : Thread | status : NEW-STATUS, 

                               used : true,                 *** This is added to set the attribute used true 

                               features : (if NEW-STATUS == completed 

                                                  then transferData(NEW-PORTS) 

                                                  else NEW-PORTS fi), 

                                behavior : states (current: L2 ) LDS 

                                state variables NEW-VALUATION > 

 if not environmentThread(TP) 

   /\ ((L1 -[ GUARD ]-> L2 [187]) ; TRANSITIONS) := transitions(TN, IMPL) 

   /\ evalGuard(GUARD, dispatchInputPorts(PORTS), VAL) 

   /\ transResult(NEW-PORTS, NEW-VALUATION, SLEEP-TIME) := 

            executeTransition(L1 -[ GUARD ]-> L2 SL, dispatchInputPorts(PORTS), VAL) 

   /\ SLEEP := SLEEP-TIME > 0 

   /\ NEW-STATUS := if SLEEP then sleeping(SLEEP-TIME) 

                                         else (if completeState(L2,LDS) then 
 

The above rule specifes the execution of a dispatched (active) thread. For trace generation 
the attribute used of the thread O is added to the rewrite rule. Since the thread O is executed 
in the rewrite rule, the attribute used of the thread O is set to true (used : true). 

Formal Analysis of AADL Models. The Real-Time Maude verification model synthesized 
from an AADL design model can be formally analyzed in different ways. This section 
presents some functions allowing the user to define system properties in terms of an AADL 
model without having to understand its Real-Time Maude representation. Remote Patient 
Monitoring (RPM) system example is used to illustrate the formal analysis features. 

Defining Initial States and Simulation. An AADL system definition declares a component 
template. An initial state is an instance of such a template. In the remote patient monitoring 
example example, if MAIN is a system component name, the initial state is {MAIN system 
Wholesys . impl}. In addition, a function initialize is used to correctly initialize the status and 
deactivated attributes in the threads, since a thread may be inactive if a mode-specific 
component much higher in the containment hierarchy is not part of the “current” mode. A 
first form of formal analysis consists of simulating one of the many possible system 
behaviors up to a given duration using timed rewriting: 

Maude> (tfrew initialize({MAIN system Wholesys . impl}) in time < 20 .) 
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Reachability Analysis. Real-Time Maude’s tsearch and utsearch commands can be used to analyze 
whether or not a state pattern can be reached from the initial state. To avoid requiring the 
user of AADL2Maude to know the Real-Time Maude representation of AADL models to 
define his/her state patterns, the tool [182] defines some useful functions. The term 

value of v in component fullComponentName in globalComponent 
 

returns the value of the state variable v in the thread identified by the full component name 
fullComponentName in the system in state globalComponent. The full component name is defined 
as a ->-separated path of component names, from the outermost to the innermost. Likewise, 
the term 

location of component fullComponentName in globalComponent 
 

gives the current location/state in the transition system in the given thread. 

In the RPM example, MAIN -> hpc -> sdm -> sdmTh denotes the full component name of 
the sdmTh thread. The following search command checks if the sdmTh thread reaches the 
bloodStored state from the initial state.  

Maude> (utsearch [1] 

                  initializeThreads({ MAIN system Wholesys . imp }) =>* {C:Configuration}  

                    such that  

                         ((location of component (MAIN -> hpc -> sdm -> sdmTh)  

                                 in C:Configuration) == bloodStored  .) 

 

Solution 1        C:Configuration - ->  … 
 

LTL Model Checking. For LTL model checking purposes, our tool has pre-defined useful 
parametric atomic propositions, such as full thread name @ location, which holds when the 
thread is in state location. 

Maude > (mc initializeThreads({ MAIN system Wholesys . imp }) |=u  

                           <> ((MAIN -> hpc -> sdm -> sdmTh) @ bloodStored) .) 
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Appendix F 

F Part of the RPM Requirements Document 

In this appendix we give an overview of the requirements of the Remote Patient Monitoring 
(RPM) system as used in this paper. 

Requirements (partial) 

Requirement 1 The system shall measure temperature from a patient.

Requirement 2 The system shall measure blood pressure from a patient.

Requirement 3 The system shall measure blood pressure and temperature from a patient. 

Requirement 4 The system shall store patient temperature measured by the sensor in the central storage.

Requirement 5 The system shall store patient blood pressure measured by the sensor in the central 
storage. 

Requirement 6 The system shall store data measured by sensors in the central storage. 

Requirement 7 The system shall warn the doctor when the temperature threshold is violated. 

Requirement 8 The system shall generate an alarm if the temperature threshold is violated. 

Requirement 9 The system shall show the doctor the temperature alarm at the doctors’ computers.
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Requirement 10 The system shall store all generated temperature alarms in a central database.

Requirement 11 The system shall enable the doctor to set the temperature threshold for a patient.

Requirement 12 The system shall enable the doctor to retrieve all stored temperature measurements for a 
patient. 

Requirement 13 The system shall enable the doctor to retrieve all stored temperature alarms for a 
patient. 

Requirement 14 The system shall store patient temperature measured by the sensor in the central storage
and it shall warn the doctor when the temperature threshold is violated. 

Requirement 15 The system shall store patient Central Venous Pressure (CV Pressure) measured by 
the sensor in the central storage.    



 

325 

Appendix G 

G Graphical Notation for Elements in AADL 

In this appendix we give a graphical notation for architectural elements in AADL. 

System

Process

Thread Group

Thread

Subprogram

Datastore

Event Data Port

Data Access

Connector
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Appendix H 

H Abbreviations of Elements in the RPM System 

In this appendix we give the explanations of the abbreviations of the architectural elements 
of the Remote Patient Monitoring (RPM) system used in the thesis. 

Abbreviation Explanation

SD Sensor Device

SDC Sensor Device Coordinator

SDM Sensor Device Manager

AS Alarm Service

AR Alarm Receiver

WS Web Server

WC Web Client

HPC Host Personal Computer

CPC Client Personal Computer

sd_blood_edp1 Event Data Port 1 for Blood Pressure in Sensor Device 

sd_blood_edp2 Event Data Port 2 for Blood Pressure in Sensor Device 

sd_blood_edp3 Event Data Port 3 for Blood Pressure in Sensor Device 
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sd_blood_edp4 Event Data Port 4 for Blood Pressure in Sensor Device 

sd_temp_edp1 Event Data Port 1 for Temperature in Sensor Device 

sd_temp_edp2 Event Data Port 2 for Temperature in Sensor Device 

sd_temp_edp3 Event Data Port 3 for Temperature in Sensor Device 

sd_temp_edp4 Event Data Port 4 for Temperature in Sensor Device 

sd_temp_alarm_edp1 Event Data Port 1 for Temperature Alarm in Sensor Device

sd_temp_alarm_edp1 Event Data Port 1 for Temperature Alarm in Sensor Device

sd_temp_alarm_edp3 Event Data Port 3 for Temperature Alarm in Sensor Device

sd_temp_alarm_edp4 Event Data Port 4 for Temperature Alarm in Sensor Device

sdThr Thread in Sensor Device

sdc_blood_edp1 Event Data Port 1 for Blood Pressure in Sensor Device Controller

sdc_blood_edp2 Event Data Port 2 for Blood Pressure in Sensor Device Controller

sdc_blood_edp3 Event Data Port 3 for Blood Pressure in Sensor Device Controller

sdc_blood_edp4 Event Data Port 4 for Blood Pressure in Sensor Device Controller

sdc_blood_edp5 Event Data Port 5 for Blood Pressure in Sensor Device Controller

sdc_blood_edp6 Event Data Port 6 for Blood Pressure in Sensor Device Controller

sdc_temp_edp1 Event Data Port 1 for Temperature in Sensor Device Controller

sdc_temp_edp2 Event Data Port 2 for Temperature in Sensor Device Controller

sdc_temp_edp3 Event Data Port 3 for Temperature in Sensor Device Controller

sdc_temp_edp4 Event Data Port 4 for Temperature in Sensor Device Controller

sdc_temp_edp5 Event Data Port 5 for Temperature in Sensor Device Controller

sdc_temp_edp6 Event Data Port 6 for Temperature in Sensor Device Controller

sdc_temp_alarm_edp1 Event Data Port 1 for Temperature Alarm in Sensor Device 
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Controller

sdc_temp_alarm_edp2 Event Data Port 2 for Temperature Alarm in Sensor Device 
Controller 

sdc_temp_alarm_edp3 Event Data Port 3 for Temperature Alarm in Sensor Device 
Controller 

sdc_temp_alarm_edp4 Event Data Port 4 for Temperature Alarm in Sensor Device 
Controller 

sdc_temp_alarm_edp5 Event Data Port 5 for Temperature Alarm in Sensor Device 
Controller 

sdc_temp_alarm_edp6 Event Data Port 6 for Temperature Alarm in Sensor Device 
Controller 

sdcThr Thread in Sensor Device Controller

sdm_blood_edp1 Event Data Port 1 for Blood Pressure in Sensor Device Manager

sdm_blood_edp2 Event Data Port 2 for Blood Pressure in Sensor Device Manager

sdm_blood_strg Storage for Blood Pressure in Sensor Device Manager 

sdm_temp_edp1 Event Data Port 1 for Temperature in Sensor Device Manager

sdm_temp_edp2 Event Data Port 2 for Temperature in Sensor Device Manager

sdm_temp_strg Storage for Temperature in Sensor Device Manager 

sdm_temp_alarm_edp1 Event Data Port 1 for Temperature Alarm in Sensor Device 
Manager 

sdm_temp_alarm_edp2 Event Data Port 2 for Temperature Alarm in Sensor Device 
Manager 

sdm_temp_alarm_strg Storage for Temperature Alarm in Sensor Device Manager

sdmThr Thread in Sensor Device Manager

hpc_blood_edp1 Event Data Port 1 for Blood Pressure in Host Personal Computer
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hpc_temp_edp1 Event Data Port 1 for Temperature in Host Personal Computer

hpc_temp_req_edp1 Event Data Port 1 for Temperature Request in Host Personal 
Computer 

hpc_temp_alarm_edp1 Event Data Port 1 for Temperature Alarm in Host Personal 
Computer 

wc_temp_req_edp1 Event Data Port 1 for Temperature Request in Web Client

wc_temp_req_edp2 Event Data Port 2 for Temperature Request in Web Client

wc_temp_req_edp3 Event Data Port 3 for Temperature Request in Web Client

wc_temp_req_edp4 Event Data Port 4 for Temperature Request in Web Client

wcThr Thread in Web Client

ws_temp_req_edp1 Event Data Port 1 for Temperature Request in Web Server

ws_temp_req_edp2 Event Data Port 2 for Temperature Request in Web Server

ws_temp_req_edp3 Event Data Port 3 for Temperature Request in Web Server

ws_temp_req_edp4 Event Data Port 4 for Temperature Request in Web Server

wsThr Thread in Web Server

cpc_temp_req_edp1 Event Data Port 1 for Temperature Request in Client Personal 
Computer 

cpc_temp_req_edp2 Event Data Port 2 for Temperature Request in Client Personal 
Computer 

cpc_ar Alarm receiver in Client Personal Computer
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Appendix I 

I Change Impact Analysis Function for 
Identifying Candidate Impacted Architectural 
Elements 

In this appendix, we give the algorithm for the change impact analysis function for 
identifying candidate impacted architectural elements in Chapter 7. 

impact(ChangeType c, Requirement r, Set srl, Set st): Set { 
   
  // c is the type of the change proposed to requirement r  
  // srl is the set of relations of requirement r 
  // st is the set of all traces between requirements and architecture 
  // Set of architectural elements, which are candidate impact for 
  // the change type c in requirement r, is returned from the function impact 
 
  Set sae = empty-set      // set of architectural elements for candidate impact 
  Set ae = empty-set 
  Set srlp = empty-set 
  Requirement rq = empty 
   
    
  // If the change is ‘Add a New Requirements Relation’,  
  // ‘Delete Requirements Relation’, or ‘Update Requirements Relation’, 
  // then there is no impacted architectural element and return empty set 
  If ((r is empty) AND 
      ((c is ‘Add a New Requirements Relation’) OR 
       (c is ‘Delete Requirements Relation’) OR 
       (c is ‘Update Requirements Relation’)))  
  { 
      Return empty-set 
  } 
 
   
  // If the change is ‘Add a New Requirement’,  
  // then check if there is also any new relation for the new requirement 
  If (c is ‘Add a New Requirement’)  
  { 
      // If there is no relation for the new requirement, 
      // then there is no candidate impacted requirement 
      If (srl is empty-set) { 
           Return empty-set 
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      } 
       
       
      ForEach relation rl  srl { 
           
          // If the new requirement is refined, partially refined or contained  
          // by an existing requirement, or the new requirement is containing  
          // an existing requirement, then the change is not a domain change and  
          // it does not have any impact in software architecture.  
          // Therefore, return empty-set. 
          If ((rl is ‘contains’) OR  
              ((rl is ‘refines’) OR (rl is ‘partially refines’)) AND (rl.target is r))  
          { 
              Return empty-set  
          }     
           
        
          // If there is a requires relation for the requirement added, 
          // then architectural elements traced from the related requirement 
          // are candidate impacted. 
          If (rl is ‘requires’) { 
               rq = getRequirement(r, rl) // returns requirement rq  
                                          // related to requirement r  
                                          // with relation rl        
           
               ae = getArchitecturalElements(rq, st)  // get architectural 
                                                      // elements traced from rq 
                                                      // by using traces st   
            
               sae = sae + ae 
          }  
                                                                            
                                                                                
          // If the new requirement refines or partially refines  
          // one of the existing requirements,  
          // then architectural elements traced from the existing requirement 
          // are candidate impacted 
          If ((rl is ‘refines’) OR (rl is ‘partially refines’)) AND  
              (rl.source is r) 
          {  
               rq = getRequirement(r, rl) // returns requirement rq  
                                          // related to requirement r  
                                          // with relation rl        
            
               ae = getArchitecturalElements(rq, st)  // get architectural 
                                                      // elements traced from rq 
                                                      // by using traces st   
            
               sae = sae + ae 
          }                   
         
      }  
       
      Return sae   
       
  } // ENDIF 
    
   
  // If the change is ‘Add Property to Requirement’,  
  // then there is no suggestion for the impacted architectural elements  
  // and return empty set 
  If (c is ‘Add Property to Requirement’) { 
      Return empty-set 
  } 
    
  // Get relations of requirement r, which are used in change propagation  
  // for change c 
  srlp = getRelationsInPropagation(c, r, srl)  
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  // If the change is none of the changes above,  
  // then traverse the propagation path in the requirements model for  
  // change c in order to find the candidate impacted architectural elements 
  sae = traversePropagationPath(c, r, srlp, st)  
 
  Return sae 
 
} // End of impact Function 
 
 

 

 

traversePropagationPath(ChangeType c, Requirement r, Set srlp, Set st): Set { 
   
  ChangeType pc = empty 
  Set srl = empty-set 
  Set rlp = empty-set 
 
  // If there is no relation of requirement r  
  // used in change propagation for change c, 
  // then the architectural elements only traced from requirement r  
  // are candidate impacted 
  If (srlp is empty-set) { 
       sae = getArchitecturalElements(r, st)   // get architectural 
                                               // elements traced from r 
                                               // by using traces st     
   
       Return sae 
  } 
    
  // If the change is ‘Delete Requirement’  
  // and if there is any requirement which refines requirement r  
  // in the propagation path, then the architectural elements traced from  
  // the refining requirement are candidate impacted 
  If (c is ‘Delete Requirement’) { 
   
    Integer i = 0 
       
    ForEach relation rl  srlp { 
        
       // Check if there is any refining requirement in the propagation path     
       If ((rl is ‘refines’) AND (rl.target is r)) { 
         
           i = 1 
     
           // Get the change propagated from requirement r  
           // with change c through relation rl 
           pc = getPropagatedChange(c, r, rl)  
            
           // Get relations of the refining requirement 
           srl = getRelations(rl.source) 
      
           // Get relations of the refining requirement,  
           // used in change propagation  
           rlp = getRelationsInPropagation(pc, rl.source, srl)   
            
           // traverse the propagation path in the requirements model for  
           // change pc in order to find the candidate impacted  
           // architectural elements 
           sae = sae + traversePropagationPath(pc, rl.source, rlp, st) 
       
       } 
     
    } // End of FOREACH 
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    // If there is no refining requirement for requirement r  
    // in the propagation path, then architectural elements  
    // traced from requirement r are candidate impacted        
    If (i = 0) { 
        sae = getArchitecturalElements(r, st)   // get architectural 
                                                // elements traced from r 
                                                // by using traces st  
    } 
 
    Return sae 
  
  } 
 
 
  Integer k = 0 
   
  // If the change is none of the changes above and there is any requirement  
  // which refines or partially refines requirement r or  
  // contained by requirement r in the propagation path,  
  // then architectural elements traced from requirement r are  
  // candidate impacted and continue traversing the propagation path  
  // in the requirements model for change c  
  ForEach relation rl  srlp { 
 
     // Check if there is any (or partially) refining requirement  
     // in the propagation path     
     If ((rl is ‘refines’) AND (rl.target is r)) OR 
        ((rl is ‘partially refines’) AND (rl.target is r)) { 
        
          k = 1 
           
          // Get the change propagated from the requirement r  
          // with the change c through the relation rl 
          pc = getPropagatedChange(c, r, rl)  
  
          // Get relations of the refining (or partially refining) requirement 
          srl = getRelations(rl.source) 
  
          // Get relations of the refining (or partially refining) requirement,  
          // used in change propagation  
          rlp = getRelationsInPropagation(pc, rl.source, srl)   
 
          // traverse the propagation path in the requirements model for  
          // change pc in order to find the candidate impacted  
          // architectural elements 
          sae = sae + traversePropagationPath(pc, rl.source, rlp, st) 
           
     } else { 
          If ((rl is ‘contains’) AND (rl.source is r)) { 
                
             k = 1 
           
             pc = getPropagatedChange(c, r, rl)  
 
             srl = getRelations(rl.target) 
 
             rlp = getRelationsInPropagation(pc, rl.target, srl)   
              
             sae = sae + traversePropagationPath(pc, rl.target, rlp, st) 
          } 
      
     }    
     
  } // End of FOREACH 
   
 
  // If there is no refining, partially refining or contained requirement for  
  // requirement r in the propagation path,  
  // then architectural elements traced from requirement r are  
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  // candidate impacted        
  If (k = 0) { 
      sae = getArchitecturalElements(r, st)   // get architectural 
                                              // elements traced from r 
                                              // by using traces st  
  } 
 
  Return sae 
 
} 
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Appendix J 

J The Complete Analysis of Counter Example for 
Proposing Architectural Changes 

In this appendix, we give the complete analysis of the counter example for proposing 
architectural changes in Chapter 7.  

Table J.1 gives the categories of the state transition rules in AADL with the right-hand side 
patterns. 

Table J.1 Categories of the State Transition Rules in AADL with the Right-hand Side Patterns  

Categories of State 
Transition Rules in 

AADL 

Right-hand Side Patterns 

 
 
Passing Message M1  

Event/Data M1 at the buffer of the (event) data-in-port of System S1 
Event/Data M1 at the buffer of the (event) data-in-port of Process P1 
Event/Data M1 at the buffer of the (event) data-in-port of Thread T1 
Event/Data M1 at the buffer of the (event) data-out-port of Device D1 
Event/Data M1 at the buffer of the (event) data-out-port of System S1 
Event/Data M1 at the buffer of the (event) data-out-port of Process P1 

 
Dispatching Thread T1  

Event/Data M1 at the internalbuffer of the (event) data-in-port of Thread  
T1 & Thread T1 is in active status  
Thread T1 is in the active status 

 
Executing Thread T1 

Event/Data M1 at the buffer of the (event) data-out-port of Thread T1 
& Thread T1 is in the completed status 
Thread T1 is in the completed status 

Switching the Mode of 
Thread T1  

Thread T1 is in the inactive status 
Thread T1 is in the completed status 
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Table J.2 lists the architectural change types for AADL models.  

Table J.2 Architectural Change Types 

Change Types

Add (event) data-in-port to System 
Add (event) data-out-port to System 
Add (event) data-in-port to Process 
Add (event) data-out-port to Process 
Add (event) data-in-port to Thread 
Add (event) data-out-port to Thread 
Add connection to (event) data-in-port 
Add connection to (event) data-out-port 
Change the mode of System 
Change the mode of Process 
Change the mode of Thread 
Change the behaviour of Thread 

 

Please note that there are more changes that can be performed in AADL models such as 
adding new systems and threads. Designing architecture based on requirements is a creative 
process. The number of changes over the architecture is infinite. We do not consider 
changes such as adding new systems, processes or threads which may cause infinite number 
of solutions for the changed requirements. 

Table J.3 lists the right-hand side patterns of the state transition rules for Passing Message M1 
and proposed architectural changes.  

Table J.3 Right-hand Side Patterns of the State Transition Rules for Passing Message M1 with Proposed 
Architectural Changes 

Right-hand Side Patterns of the 
Transition Rules for Passing Message 

M1 

Proposed Architectural Changes 

 
 
 
 
Event/Data M1 at the buffer of the 
(event) data-in-port of System S1 

Add connection to the (event) data-in-port of Subsystem 
SS1 of System S1 
Add (event) data-in-port to Subsystem SS1 of  System S1 
& Add connection to the added (event) data-in-port of 
Subsystem SS1  
Add connection to the (event) data-in-port of Process P1 
of System S1 
Add (event) data-in-port to Process P1 of  System S1 & 
Add connection to the added (event) data-in-port of 
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Process P1 
Change mode of System S1 

 
 
Event/Data M1 at the buffer of the 
(event) data-in-port of Process P1 

Add connection to the (event) data-in-port of Thread T1 
of Process P1 
Add (event) data-in-port to Thread T1 of  Process P1 & 
Add connection to the added (event) data-in-port of 
Thread T1 
Change the mode of Process P1 

 
Event/Data M1 at the buffer of the 
(event) data-in-port of Thread T1 

Change the behaviour of Thread T1 

Change the mode of Thread T1 

 
 
 
 
 
 
Event/Data M1 at the buffer of the 
(event) data-out-port of System S1 

Add connection to the (event) data-in-port of the same 
level System S2 
Add (event) data-in-port to the same level System S2 & 
Add connection to the added (event) data-in-port of the 
same level System S2 
Add connection to the (event) data-in-port of the same 
level Process P1 
Add (event) data-in-port to the same level Process P1 & 
Add connection to the added (event) data-in-port of the 
same level Process P1 
Add (event) data-out-port to the upper level System S0  
Add (event) data-out-port to the upper level System S0 & 
Add connection to the added (event) data-out-port of the 
upper level System S0 
Change the mode of the upper level System S0 

 
 
 
 
 
 
 
Event/Data M1 at the buffer of the 
(event) data-out-port of Process P1 

Add connection to the (event) data-in-port of the same 
level Process P2 
Add (event) data-in-port to the same level Process P2 & 
Add connection to the added (event) data-in-port of the 
same level Process P2 
Add connection to the (event) data-in-port of the same 
level System S1 
Add (event) data-in-port to the same level System S1 & 
Add connection to the added (event) data-in-port of the 
same level System S1 
Add connection to the (event) data-out-port of the upper 
level System S0 
Add (event) data-out-port to the upper level System S0 & 
Add connection to the added (event) data-out-port of the 
upper level System S0 
Change the mode of the upper level System S0 

 
 
 

Add connection to the (event) data-in-port of the same 
level Process P1 
Add (event) data-in-port to the same level Process P1 & 
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Event/Data M1 at the buffer of the 
(event) data-out-port of Device D1 

Add connection to the added (event) data-in-port of the 
same level Process P1 
Add connection to the (event) data-in-port of the same 
level System S1 
Add (event) data-in-port to the same level System S1 & 
Add connection to the added (event) data-in-port of the 
same level System S1 
Add connection to the (event) data-out-port of the upper 
level System S0 
Add (event) data-out-port to the upper level System S0 & 
Add connection to the added (event) data-out-port of the 
upper level System S0 
Change the mode of upper level System S0 

 

Table J.4 lists the right-hand side patterns of the state transition rules for Dispatching Thread 
T1/Executing Thread T1/Switching the Mode of Thread T1 with proposed architectural changes.  

Table J.4 Right-hand Side Patterns of the Transition Rules for Dispatching Thread T1/Executing Thread 
T1/Switching the Mode of Thread T1 with Proposed Architectural Changes 

Right-hand Side Patterns of the 
Transition Rules for Dispatching 

Thread T1/Executing Thread 
T1/Switching Model of Thread T1 

Proposed Architectural Changes 

Event/Data M1 at the internalbuffer of 
the (event) data-in-port of Thread  T1 
& Thread T1 is in the active status 

Change the mode of Thread T1 
Change the behaviour of Thread T1 

 
 
 
 
 
Event/Data M1 at the buffer of (event) 
data-out-port of Thread T1 
& Thread T1 is in the completed status 

Add connection to the (event) data-in-port of the same 
level Thread T2 
Add (event) data-in-port to the same level Thread T2 & 
Add connection to the added (event) data-in-port of the 
same level Thread T2 
Add connection to the (event) data-out-port of the upper 
level Process P1 
Add (event) data-out-port to the upper level Process P1 & 
Add connection to the added (event) data-out-port of the 
upper level Process P1 
Change the mode of the upper level Process P1 
Change the mode of Thread T1 
Change the behaviour of Thread T1 

Thread T1 is in the completed status Change the mode of Thread T1 
Change the behaviour of Thread T1 

Thread T1 is in the inactive status Change the mode of Thread T1 
Thread T1 is in the active status Change the mode of Thread T1 
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Change the behaviour of Thread T1 
Thread T1 is in the sleeping status Change the mode of Thread T1 

Change the behaviour of Thread T1 
 

 

 


