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Abstract
Background: Modelling of the 3D breast shape under compression is of
interest when optimizing image processing and reconstruction algorithms for
mammography and digital breast tomosynthesis (DBT). Since these imaging
techniques require the mechanical compression of the breast to obtain appro-
priate image quality, many such algorithms make use of breast-like phantoms.
However, if phantoms do not have a realistic breast shape, this can impact the
validity of such algorithms.
Purpose: To develop a point distribution model of the breast shape obtained
through principal component analysis (PCA) of structured light (SL) scans from
patient compressed breasts.
Methods: SL scans were acquired at our institution during routine craniocaudal-
view DBT imaging of 236 patients, creating a dataset containing DBT and
SL scans with matching information. Thereafter, the SL scans were cleaned,
merged, simplified, and set to a regular grid across all cases. A comparison
between the initial SL scans after cleaning and the gridded SL scans was per-
formed to determine the absolute difference between them. The scans with
points in a regular grid were then used for PCA. Additionally, the correspon-
dence between SL scans and DBT scans was assessed by comparing features
such as the chest-to-nipple distance (CND),the projected breast area (PBA) and
the length along the chest-wall (LCW). These features were compared using a
paired t-test or the Wilcoxon signed rank sum test. Thereafter, the PCA shape
prediction and SL scans were evaluated by calculating the mean absolute error
to determine whether the model had adequately captured the information in
the dataset. The coefficients obtained from the PCA could then parameterize
a given breast shape as an offset from the sample means. We also explored
correlations of the PCA breast shape model parameters with certain patient
characteristics: age, glandular volume, glandular density by mass, total breast
volume, compressed breast thickness, compression force, nipple location, and
centre of the chest-wall.
Results: The median value across cases for the 90th and 99th percentiles of the
interpolation error between the initial SL scans after cleaning and the gridded
SL scans was 0.50 and 1.16 mm, respectively.The comparison between SL and
DBT scans resulted in small, but statistically significant, mean differences of
1.6 mm, 1.6 mm, and 2.2 cm2 for the LCW, CND, and PBA, respectively. The final
model achieved a median mean absolute error of 0.68 mm compared to the
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2 GENERATIVE COMPRESSED BREAST SHAPE MODEL

scanned breast shapes and a perfect correlation between the first PCA coeffi-
cient and the patient breast compressed thickness, making it possible to use it
to generate new model-based breast shapes with a specific breast thickness.
Conclusion: There is a good agreement between the breast shape coverage
obtained with SL scans used to construct our model and the DBT projection
images, and we could therefore create a generative model based on this data
that is available for download on Github.

KEYWORDS
breast tomosynthesis, compressed breast shape, generative model, mammography, principal
component analysis, statistical shape model, structured light scanning

1 INTRODUCTION

Digital mammography (DM) and digital breast tomosyn-
thesis (DBT) require mechanical compression of the
breast during image acquisition. Therefore, many state-
of -the-art image processing algorithms involve simu-
lation of the breast undergoing compression. Some
examples include scatter correction1 applications, in
which multiple realizations of realistic breast shapes are
used to develop an x-ray scatter deep learning-based
model that is then used to correct DBT projections, or
image reconstruction, in which the prior knowledge of
the breast shape can reduce reconstructions artifacts
near the breast edge2 and help to further optimize the
design of DBT systems for clinical practice.3

Modelling of the human anatomy is the subject of
intense research, involving anywhere from the whole
body,4,5 only the face,6,7 or single organs, such as the
heart.8 One approach to create such models is by exam-
ining a representative sample of shapes by statistical
means, also known as statistical shape modelling. This
can be performed by first obtaining the mean shape
representation from the dataset, together with possible
variations from the mean representation. The analysis
of these statistical shape models can also help to study
and identify certain shape features in a patient pop-
ulation, which are capable of characterizing possible
pathologies and of providing estimations of the body
composition.5,6 When an object shape is represented
as a set of points distributed across a surface, it can be
defined as a Point Distribution Model (PDM). This is a
type of statistical shape model and therefore can be sta-
tistically analysed through principal component analysis
(PCA). For instance, the work by Bennett et al.5 showed
how statistical shape models can be used to model the
human body using PCA and to provide detailed shape
features capable of predicting metabolic health risks.

Currently, another approach to model the human
anatomy is to create a learning-based shape analy-
sis framework with deep learning networks.9 However,
this type of methods requires a large image dataset to
capture the finer shape changes and, in many cases,
especially in applications requiring medical images,
datasets of such magnitude are not yet available.

Recently, the work by Rodriguez-Ruiz et al.10 applied
the aforementioned PCA to a PDM of the compressed
breast curvature. The work set out to create a full 3D
model of the compressed breast by sequentially com-
bining the information in multiple vertical profiles of the
3D breast surface with a previously developed 2D model
of the breast shape projected onto mammograms.11 The
3D-generated shape from this combination included
breast shape deformations between the detector cover
and the compression paddle. That 3D model was
achieved by imaging the patients’ breast surface with
state-of -the-art structured light (SL) technology while
the patient underwent a normal cranio-caudal (CC) view
DBT image acquisition. The resulting model was used
to characterize the breast curvature under compres-
sion. However, that initial proof-of -concept work used a
limited number of vertical 2D profiles of the breast cur-
vature instead of the full 3D breast surface information.
Furthermore, it was limited in the number of patients
included in the study and, due to hardware resources,
in the angular coverage of the breast.This restricted the
dataset used to develop the breast PDM.

In the present work, a larger study population is
scanned with an optimized 3D SL setup to develop an
improved PDM of the entire breast shape under com-
pression in the CC view. The correlations of certain
patient characteristics with the breast PDM parameters
were also evaluated.

2 MATERIALS AND METHODS

2.1 Study population

In our study,we aimed to represent the breast screening
population,by including breast thicknesses ranging from
30 to 90 mm. Based on previous work,10 we estimated
that the smallest (< 40 mm) and largest (> 80 mm)
thickness groups represent roughly 8% of all cases.
Therefore, to include approximately 20 cases in these
extreme thickness groups, we aimed to collect 250
cases.We invited female patients,age 40 or older,under-
going a DBT exam due to clinical concerns or recall
from screening, at Radboud University Medical Center,
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GENERATIVE COMPRESSED BREAST SHAPE MODEL 3

F IGURE 1 SL scanning system setup: one projector with two
cameras is placed on each side of the DBT system (see close-up
image) and markers were added to the compression paddle to
ensure good alignment in the post-processing step (top blue arrows).
DBT, digital breast tomosynthesis; SL, structured light.

Nijmegen, the Netherlands, to participate in this study
between March 2019 and February 2020. Exclusion
criteria were confirmed pregnancy, bilateral mastec-
tomy, breast implants, or having undergone surgery of
both breasts. The study was approved by the medical
ethics committee and all enrolled subjects gave writ-
ten informed consent.Only one breast was scanned per
patient, with being artifact-free and matching the DBT
breast coverage as selection criteria for using the scans.

2.2 Image acquisition and SL
goodness of fit

During acquisition of a clinical CC-view DBT exam,
patients are seated while their breast is positioned and
compressed. For this study, the SL scan was performed
concurrently with the DBT acquisition. An SL scanning
system (HP Inc., Palo Alto, CA, USA) was positioned to
each side of a clinical DBT system (MAMMOMAT Inspi-
ration, Siemens Healthineers, Erlangen, Germany), as
can be seen in Figure 1. This setup was chosen so that
the SL scans did not extend the clinical workflow (and
breast compression) by more than 15 s.12 Since the DBT
and SL scans are acquired at the same time, identical
information from both image techniques is recorded.

With each set of SL systems consisting of two cam-
eras and a single projector, an increased angular cover-
age of the breast was achieved when compared to prior
work,10 even for thicker breasts. Furthermore, markers
were placed on each side of the compression paddle to
ensure an easier alignment in the post-processing step
between left and right scans (Figure 1).

2.2.1 SL scans post-processing

The 3D representation of the scanned breast was gen-
erated from the information recorded by the cameras by
the accompanying software (HP 3D scan V5, HP Inc.,
Palo Alto, CA, USA). Since the scans record spurious
surfaces from the system beyond the breast surfaces
themselves, appropriate cleaning by removal of these
surfaces had to be carried out before merging the scans
from the left and right sides using the markers placed on
the compression paddle (Figure 2). These steps were
performed in MeshLab (Visual Computing Lab, ISTI -
CNR, Pisa, Italy).

An essential requirement for building shape models
with PDMs is that all training examples have their set
of points located across the surface at corresponding
positions.13 Therefore, to model the compressed breast
surface between the support table and the compression
paddle, we started by simplifying and rearranging the
breast scan surface points of the training examples.

For this,first,we removed all the points from the breast
surface scan (BSS) in which the coordinates were out-
side the volume delimited by the detector area or outside
the compressed breast thickness (T), defined by the
height between the support table and the compression
paddle, as reported in the DICOM header of the corre-
sponding DBT acquisition. Subsequently, breast shapes
represented by between 200 000 and 1 000 000 points
were subsampled to approximately 10 000 points using
Poisson-disk sampling method.14 The remaining points
were converted to a cylindrical coordinate system and
interpolated on a grid with 256 regular angular steps
ranging from [−90◦, 90◦] and 1 mm high layers, in order
to produce a regularly sampled set of points for all cases.
The 1 mm-apart points represented the centres of each
layer,so they were positioned from 0.5 mm to T – 0.5 mm.
We used the kriging method,15 assuming a spherical
model, not only as our interpolation method to produce
a gridded 2D array with the desired estimated point
locations, but also as an extrapolation method to fill in
missing points in small areas for that same gridded array.
The regularly sampled scans were then saved as a 2D
distance map,specifying only the cylindrical coordinates
(Figure 3), and also converted back to a point cloud as
a new fitted BSS. In this distance map, the pixel inten-
sity matched the distance between the axis through the
centre of the detector at the chest-wall side (origin of
distance map) to the breast surface (i.e., the radial dis-
tance in the cylindrical coordinate system, Figure 3, left),
whereas the breast height (i.e., the height in the cylin-
drical coordinate system) was recorded as the y-axis
of the image, and the points at predefined angles were
recorded as the x-axis of the image (i.e., the angular
position in the cylindrical coordinate system, Figure 3,
right). This origin of the distance maps was kept fixed
across patient cases.
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4 GENERATIVE COMPRESSED BREAST SHAPE MODEL

F IGURE 2 Merging of a cleaned scan in MeshLab (left) before and (right) after.

F IGURE 3 Graphical example of a distance map for an 84 mm phantom (r represents the radial distance vector).

2.2.2 Goodness of fit in BSSs

To evaluate the performance of the interpolation
process, a comparison between the initial BSS after
cleaning and the new fitted scans was performed to
determine the absolute difference between these scans.
Additionally, the correspondence between SL and DBT
scans was assessed by looking into features such as
the chest-to-nipple distance (CND), the projected breast
area (PBA) and the length along the chest-wall (LCW).
These features were obtained from both the DBT exams
and the BSSs and compared using a paired t-test, in
normal distributed data,or its equivalent non-parametric
test, the Wilcoxon signed rank sum test, when the data
was not normally distributed (with a significance level
of 0.05).

2.3 Dimensionality reduction and data
analysis

After simplification of the BSSs to result in distance
maps, the next step was to reduce the dimensionality

of the dataset through PCA. In this manner, a smaller
set of independent parameters comprising most of the
information in the data points16 can be obtained. This
was performed in MATLAB 2018b (MathWorks, Natick,
MA, USA).

The crucial requirement for PCA to work in this case
is that we have the same number of points for each
realization of the data, and that each data point repre-
sents corresponding locations across each realization.
Because the distance maps of the BSSs represent the
breast surface points at the same angular coordinates
but at varying heights across cases, each case was
then resampled by linear interpolation to a set of 30
equidistant heights along the breast thickness.The start
and end of the breasts surface points were kept fixed
at their original positions. The cases representing a
left-side breast were also mirrored to match the right-
side cases before performing the PCA. This ensured
that breast shape deformations that occurred during
breast compression, and were described by the PCA
components, were related to medial and lateral shape
variations, and not averaged out by analysing opposite
sides (medial vs. lateral) of contralateral breasts.
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GENERATIVE COMPRESSED BREAST SHAPE MODEL 5

The coefficients obtained using PCA were then
plotted as individual histograms together with the cor-
responding Gaussian distribution fit (mean μ, standard
deviation σ), and a normality test (D’Agostino and
Pearson’s17,18 test with a p-value= 0.05) was performed
for each component.

2.4 Breast PDM

2.4.1 Breast shape generation

To generate new and realistic breast shape distance
maps, new coefficients were sampled randomly from
these Gaussian fit functions. The sampling was done
even for coefficients that did not follow the normality
assumption, but it could optionally be performed using
exclusively the empirical cumulative distribution function
of the coefficients. The PCA coefficients obtained can
parameterize a given breast shape as an offset from the
sample means.

2.4.2 Evaluation of PDM residuals

The PCA residuals (prediction errors) were evaluated
by calculating the mean absolute error, in millimetres,
(MAE, Eq. 1) in order to determine whether the model
had adequately captured the information in the dataset.

MAE (mm) =
1
n

n∑
i = 1

|||Xi − X̂i
||| , (1)

where n is the number of cases in our dataset, Xi is the
matrix with all the fitted breast shape data points and X̂i
is the predicted breast shape data points through PCA.

2.4.3 Correlation between breast PDM
parameters and patient characteristics

To visually examine the influence each coefficient has in
changing the mean breast shape,each coefficient value
was varied independently, from (μ − 2σ) to (μ + 2σ),
while the remaining coefficients were held constant at
their mean values. The ability to describe each PCA
coefficient using patient features was also evaluated
by computing linear correlations between relevant PCA
coefficients and each individual patient feature. The fol-
lowing patient features were either available from the
exam DICOM header or determined using Volpara™
(v1.5, Volpara Health, Wellington, New Zealand) from
the DBT images acquired concurrently with the BSSs:
age, glandular volume (GV), glandular density by mass
(GDM), total breast volume (TBV), compressed breast
thickness (T), and compression force (CF). The nipple

Acquired Cases: 
268 SL scans 

Final Selection: 
236 SL scans

32 SL scans excluded:
• 4 missing DBT images/patient information

• 28 SL scans with artefacts (incl. insufficient 

breast coverage)

F IGURE 4 Flowchart of SL scans selection. SL, structured light.

location (NL) and the centre of the chest-wall (CCW)
features were measured based on the BSSs. The lin-
ear relationships found between PCA coefficients and
individual patient features, were then used to develop a
PDM capable of modelling and generating new exam-
ples of the entire breast shape under compression in a
CC view.

2.4.4 Generative model – python module

The final implementation of the PDM takes advantage
of the strong correlation found between one of the
PCA coefficients and the breast thickness, to gener-
ate breast shapes with specific or random thicknesses.
The PDM was made available as a python module and
can be found on GitHub (https://github.com/radboud-
axti/abreast-generator). The module can use the fit-
ted gaussian distribution to all the PCA coefficients or,
alternatively, the empirical cumulative distribution func-
tions for each of the coefficients. The user can decide
between generating a random or average compressed
breast shape, with or without setting a specific breast
thickness (further information can be found with the
module package).

3 RESULTS

3.1 Study dataset

Figure 4 illustrates how the final dataset of 236 cases
was assembled for this study, with Table 1 show-
ing some of this population characteristics after the
post-processing step of the BSS. The minimum and
maximum breast thickness values in our dataset were
of 30 and 92 mm, respectively.

3.2 Goodness of fit in BSSs

From the included cases, the 90th and 99th percentile
of the interpolation error between the initial BSS after
cleaning and the corresponding fitted surface scans,
was calculated and the median value for the 90th and
99th percentile resulted in a 0.50 and 1.16 mm error
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6 GENERATIVE COMPRESSED BREAST SHAPE MODEL

F IGURE 5 Bland-Altman plots comparing PBA (in cm2), CND (in mm) and LCW (in mm) measurements across BSSs and DBT scans.
Mean difference is shown with a solid line, together with ± 𝜎 shown as dashed lines. CND, chest-to-nipple distance; LCW, length along the
chest-wall; PBA, projected breast area.

TABLE 1 Population characteristics with median values and
interquartile ranges in brackets

Population characteristics Median (interquartile range)

Age (years) 60 (54–67)

Imaged breast laterality Left: 117; Right: 119

Compression force (N) 82.3 (68.9–97.3)

Breast thickness (mm) 62.0 (52.0–69.8)

Glandular density by massa (%) 12.2 (8.5–19.1)

Glandular volumea (cm3) 50.4 (37.4–69.8)

Total breast volumea (cm3) 775.7 (555.2–1145.4)
aValues obtained using Volpara™.

between the surfaces, respectively. Further analysis on
these fitted BSS and DBT exams was carried out and
is reported in Table 2 for the PBA, CND, and LCW, and
compared across the two different scans in Figure 5. To
avoid mismatch due to non-breast tissue visible in the
DBT that was removed in the SL scan, the LCW mea-
surement was performed at 50% distance of the CND
instead of at chest wall. Table 2 and Figure 5 show
that the small mean differences of 1.6 mm (0.96%) and
1.6 mm (1.51%) for the LCW and CND,respectively,were
statistically different (at a significance level of 0.05), as
was the projected breast area with a mean difference of
2.2 cm2 (1.59%).

3.3 Principal component analysis

The PCA performed in our data captures 96.61% of
the cumulative data variance for the first PCA compo-
nent, while 99.76% is included in the first three PCA
components, and 99.98% with 15 PCA components.
Figure 6 illustrates the distribution of the estimated 15
PCA components and the corresponding Gaussian dis-
tribution fits. All components, except the 5th, 8th, 9th,
11th, and 12th, were found to be normally distributed
(p-value < 0.05).

The analysis of the prediction errors from the PCA
showed a median MAE of 0.68 mm (maximum of
3.53 mm and minimum of 0.44 mm). Most of the pre-
diction errors were at the borders of the breast (see
Figure 7), which may be due to the variability found in
the posterior part of the scanned breast, mostly due to
skin folds.

3.4 Breast PDM characterization

Visual inspection of the influence that each component
could have on the deformation of the mean breast shape
seemed to indicate that the first three PCA components
were related with the size of the breast, while the rest of
the components were needed to capture smaller shape
variations (see Figure 8 and the Figure S1).
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GENERATIVE COMPRESSED BREAST SHAPE MODEL 7

F IGURE 6 Gaussian distributions of the 15 PCA components with mean zero and the specified standard deviation and the data variance
percentage represented by each component. The * indicates the components that are not normally distributed. PCA, principal component
analysis.
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8 GENERATIVE COMPRESSED BREAST SHAPE MODEL

TABLE 2 Comparison of breast tissue coverage in BSSs and DBT scans

Projected breast
area (cm2)

Chest to nipple
distance (mm)

Length along
chest-walla (mm)

DBT 157.1 (122.9–196.5) 103.9 (89.8–122.8) 162.9 (148.4–178.4)

BSS 156.2 (116.5–195.1) 105.8 (89.7–122.7) 166.4 (148.9–180.9)

Mean difference −2.2 (p < 10-4) 1.6 (p < 10-4) 1.6 (p < 10-4)

Percentage difference −1.59% 1.51% 0.96%

Median values are reported together with interquartile range within parentheses. The p-values report the result of the statistical test with the null hypothesis that the
two groups do not differ statistically at a significance level of 0.05.
Abbreviations: BSS, breast surface scan; CND, chest-to-nipple distance; DBT, digital breast tomosynthesis.
aMeasured at 50% distance of the CND.

F IGURE 7 MAE (in mm) over the mean breast shape
representation: the y axis shows the 30 equidistant height steps
along the breast thickness, while the x axis represents points of the
mean breast shape representation at predefined angular positions.
The lower error in the centre of the breast (dark blue) compared to
the borders of the breast, especially top and bottom corners (yellow).
MAE, mean absolute error.

Figure 9 shows the relationships between the three
first PCA coefficients and the recorded individual patient
features with correlation larger than 0.4. The correla-
tions plotted here match what was observed in the
above Figure 8 through visual inspection.

A very strong simple linear relationship was found
between the first PCA coefficient, PC1, and the breast
thickness(p < 0.05). For the second and third coeffi-
cients, PC2 and PC3, we found that the CND and the
position of the breast along the chest-wall edge of
the detector is correlated with these coefficients. We
could observe a good correlation between PC2 and the
CND (p < 0.05) and between PC3 and the centre of the
chest-wall (p < 0.05) and the nipple location (p < 0.05).
No strong correlations were found for the remaining
coefficients and patient features (R2 < 0.4 in all other
instances).

4 DISCUSSION

The simulation of the breast under compression is a
requirement for certain image processing algorithms
when working with mammography and DBT.The present
work aimed to improve a previously reported breast

shape model.10 Our model was based on a larger
dataset with 236 patient cases and included an opti-
mized 3D SL scan acquisition setup, which enabled the
full coverage of the breast surface under compression
in the CC view. Compared to previous work,10,12 the
breast PDM development was updated in various ways.
First, two 3D SL scanning systems were used, one on
each side of the DBT machine, with two cameras per
projector (stereo scanning mode, enhancing coverage).
Second, the scanned 3D breast surface was analysed
as a whole, as opposed to analysing a limited num-
ber of vertical 2D profiles. Finally, this whole-surface
analysis resulted in a complete 3D model, rather than
achieving one by combining an independent 2D model
of the breast shape projection with the model of the
3rd dimension from the surface scans. When compared
to merging information from two complementary per-
spectives (the breast shape projection and curvature),10

modelling the 3D shape of the breast directly has the
advantage of including shape correlations and defor-
mations that are not accounted otherwise. This enabled
us to characterize the model regarding certain patient
features obtained from the concurrently acquired DBT
scans. The capability to directly correlate between
patient features and the model, makes this a straight-
forward approach when compared to a deep-learning
based one, where a block-based framework makes it
not so easy to implement9 and where fine tuning of
several parameters might be needed.

Our DBT dataset results in comparable values to pre-
vious studies,particularly for thickness (mean = 60 mm)
and projected breast area (mean = 160 cm2),10,11,19

which points to our sample being representative for
the breast cancer population. Additionally, our study
included more cases with thicknesses at least one stan-
dard deviation from the mean (below 46 mm and above
76 mm), when compared to the previous dataset10

(39 vs. 8 and 19 vs. 3, respectively). This has the advan-
tage that our model generates breast shapes within a
range that is based on actually acquired data when
compared to the previous model, in which for some thick-
nesses the data was instead extrapolated. The fact that
the post-processing of the scanned breasts resulted in a
99th percentile median error of 1.16 mm also shows that
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GENERATIVE COMPRESSED BREAST SHAPE MODEL 9

F IGURE 8 Influence of the first PCA component in the generated breast shape (left) and of the seventh component (right): Mean breast
representation (blue), mean breast representation + 2 standard deviations (red) and – 2 standard deviations (black). The breast shapes
generated can range in thickness between the minimum and maximum values reported in our dataset (i.e., 30–92 mm): the left side figure
presents thicknesses of 35 mm (black), 62 mm (blue), and 90 mm (red). PCA, principal component analysis.

F IGURE 9 Simple linear regressions found relevant (R2
≥ 0.4) between the first three PCA coefficients and some patient features. PCA,

principal component analysis.

our fitted BSS, used as inputs for our model, were truth-
ful to the original BSS and did not deform the original
shape substantially.

The posterior comparison between the new fitted BSS
and the DBT exams in Table 2, together with Figure 5,
demonstrated that the reported projected breast area,
length along the chest-wall,and chest-to-nipple distance
were statistically different (at a significance level of
0.05). We believe these small yet statistically significant

differences are caused by the cumulative effects present
in the post-processing of the BSS scans, such as the
previously-reported error of 3 mm found in our scanning
system,20 the merging of left- and right-side scans, the
alignment to the DBT data, and the fitting of the BSS.
However, the median values reported in Table 2 show
that there is a good agreement on the breast shape
coverage between SL cameras and DBT images, with
the reported values showing a mean difference smaller
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10 GENERATIVE COMPRESSED BREAST SHAPE MODEL

than the presented interquartile range. This confirms
that, overall, our fitted BSS capture the correct dimen-
sions of the breast shape,but that for some cases where
the quality of the original scan is poorer,special attention
is needed when post-processing the BSS. Additionally,
we are certain that no further systematic biases were
introduced in the model’s dataset since our breast PDM
achieved a median MAE of 0.68 mm among all the
fitted breast shapes and the ones predicted through
PCA,which is smaller than the error obtained during the
pre-processing of the scanned breasts.

Our choice to use the DICOM reported compressed
breast thickness in pre-processing the SL scans
resulted in a perfect correlation between the first PCA
coefficient and the patient breast compressed thick-
ness, which made it possible to use it as a variable that
can be user defined when generating new model-based
breast shapes.The described model is now available as
a python module on GitHub. The moderate correlations
found, regarding the second and third PCA coefficients
and certain patient features (chest-to-nipple distance,
centre of the chest-wall and the nipple location), were
not used in our model as their coefficient of determina-
tion (R2) were insufficient to ensure that the generated
breast shape could present the patient feature assigned
by the user. Nonetheless, these correlations mean that
our generated model breasts also include variation in
the chest-to-nipple distance and shifts parallel to the
detector edge, as seen in clinical practice.

Our work had some limitations, namely, the fact that
for some cases artifacts arose while using the SL
scanning systems and the fact that the post-processing
of BSS limited the details retrieved of the breast shape
(resampled done regarding the height of the breast
removed the nipple, as shown in Figure 8, and small
variations across breast curvature).However,we believe
the data validity analysis results provide insights into the
good accuracy obtained by the model and its capability
of generating realistic breast compressed shapes.

As the next step, for future clinical and research stud-
ies, we would like to complete this compressed breast
shape model by including the breast shape obtained
during a medio-lateral oblique view image acquisition.

5 CONCLUSION

We developed a patient-based 3D generative model
of the compressed breast shape for DM and DBT in
CC view and made it publicly available. The model
enables the simulation of as many randomly shaped
compressed breasts as needed, even for a specific
defined thickness. Thus, the model can be used for
future studies in which simulation of the compressed
breast shape is required, such as image processing
and/or reconstruction research.
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