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We develop a theory of the quasiparticle interference (QPI) in multiband superconductors based on the
strong-coupling Eliashberg approach within the Born approximation. In the framework of this theory, we
study dependencies of the QPI response function in the multiband superconductors with the nodeless s-wave
superconductive order parameter. We pay special attention to the difference in the quasiparticle scattering between
the bands having the same and opposite signs of the order parameter. We show that at the momentum values close
to the momentum transfer between two bands, the energy dependence of the quasiparticle interference response
function has three singularities. Two of these correspond to the values of the gap functions and the third one
depends on both the gaps and the transfer momentum. We argue that only the singularity near the smallest band
gap may be used as a universal tool to distinguish between the s++ and s± order parameters. The robustness of
the sign of the response function peak near the smaller gap value, irrespective of the change in parameters, in
both the symmetry cases is a promising feature that can be harnessed experimentally.
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I. INTRODUCTION

In recent decades, a number of new materials such as
cuprates, magnesium diboride, chalcogenides, and iron pnic-
tides with a high critical temperature have been found [1–6].
This generated numerous proposals for the mechanisms of
superconductivity and the symmetry of the order parameters
[7–10].

The most recent findings are of iron-based superconductors
(FeBSs) having critical temperatures up to 100 K [11]. The
important issue of the pairing mechanisms and the symmetry
of the order parameter in these materials is still a matter
of extensive debate. As shown by DFT calculations and
confirmed by ARPES, they are in fact multiband materials
with either four or five quasi-2D disconnected Fermi pockets
[12,13]. The hole pockets are centered at � = (0,0) and the
electron pockets are centered at M = (π,π ). The nesting
between the electron and hole pockets on the one hand leads
to strong spin fluctuations, which favor s± superconductivity,
with the order parameter having the opposite sign for the
electron and the hole pockets [14–18]. On the other hand it may
enhance orbital fluctuations, favoring s++ superconductivity
[19], with the order parameter having the same sign for the
electron and the hole pockets. Therefore, such a sign change
of the order parameter between the electron and hole pockets
should hint at the possible pairing mechanism [16,20–25].

Even though the symmetry of the order parameter was
determined for some of the representative FeBSs, e.g., in
the inelastic neutron scattering experiments, it still does not
give the complete picture for all compounds. The underlying
reason is the multiband character of the Fermi surfaces in the
FeBSs. In this case the order parameter may change sign due
to impurities, as was demonstrated theoretically [26–28] and
experimentally [29] with doping either to d-wave symmetry
[30–33] or a change of sign [34]. Therefore, a universal tool
to ascertain the pairing symmetry is much needed.

In contrast to high-Tc cuprates, phase-sensitive experi-
ments using FeBS-based Josephson junctions have not been
performed yet. The main difficulty for such a multiband
superconductor is the need to design an experimental geometry
in such a way that the current through one contact is dominated
by carriers having positive sign of the order parameter and
in the other contact the opposite case occurs. The isotropic
nature of the s wave fails the effort in this direction; however,
the extended s-wave nature comes directly under the realm of
such experimental investigation [35–38].

One of the methods for resolving the symmetry of the
order parameter is the study of the local density of states
(LDOS) modulations due to the quasiparticle interference
(QPI) in the presence of impurities, which could provide
interesting information on the pairing symmetry of the gap
function. STM studies of conductance modulations have
been utilized in earlier investigations as the direct probes of
the quantum interference of electronic eigenstates in metals
[39], semiconductors [40], and cuprates [41–43]. In Fe-based
superconductors, theoretical predictions for the dispersion of
the QPI vector peaks have been made with models with
electron and hole pockets for the case of s± superconducting
order [44–48],

In view of the above discussion, it would be helpful to
formulate a model for the QPI to reveal qualitative differences
between the response in the s± and s++ pairing states. In this
work we formulate such a model for multiband superconduc-
tors by employing the Eliashberg formalism which naturally
takes into account the temperature and retardation effects.
We discuss the temperature dependence of the QPI spectral
function and emphasize the finite-temperature effect on the
distinction between the two symmetry cases, viz., s± and s++.

We show both analytically and numerically that within the
Born approximation, the quasiparticle interference response
function given as the function of energy has three singularities.
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Two of these correspond to the values of the energy gaps and
the third depends on both the gaps and the transfer momentum.
We argue that only the lowest value in the energy singularity
may be used as a universal tool for the determination of the
phase shift of the order parameter between the bands. We
identify the robustness of the sign of the response function
peak near the smaller gap value in both symmetry cases as
a promising feature that can be used to identify a pairing
symmetry.

The paper is organized as follows. In Sec. II we briefly
introduce the main object of the present study, namely, the
QPI response function and the Eliashberg approach for the
single-particle correlation functions in multiband systems with
strong-coupling interaction. The theoretical background to
obtain the LDOS and the response function is explained in
Sec. III, where we numerically analyze the response function
in strong coupling for inter- and intraband cases. In Sec. IV,
the general case of away from ideal nesting conditions with
nonzero band ellipticity ε and the shifted Fermi surface energy
δμ is discussed. We show the dependence of the QPI response
function on the inherently present large momentum transfer
process that could probe the sign-changing gap symmetry. In
Sec. V we conclude the paper with the summary of our results.

II. THE ELIASHBERG APPROACH

To find the single-particle correlation functions in multi-
band systems with the strong-coupling interaction we employ
the Eliashberg approach [49–56]. For the sake of simplicity,
the consideration here is restricted by assuming the two-band
scenario. The generalization for higher numbers of bands
is straightforward. Since the superconducting gap functions
have weak momentum dependence, systems such as Fe-
based superconductors can be successfully described in the
framework of quasiclassical Green’s functions ĝα(ω):

ĝα(ω) = Nα(0)
∫

dξĜα(k,ω), (1)

where α = a,b is the band index and Nα(0) is the density
of states. In the following, we will use the retarded Green’s
function throughout and therefore we shall omit the index R.
In the Nambu notation the full Green’s functions have the form

Ĝα(k,ω) = ω̃ατ̂0 + ξα,kτ̂3 + φ̃ατ̂1

ω̃2
α − ξ 2

α,k − φ̃2
α

, (2)

where the τ̂i denote Pauli matrices in Nambu space. Here,
ξα,k = εα,k − εF is the dispersion at the Fermi energy. The
order parameter φ̃α = φ̃α(ω) and the renormalized frequency
ω̃α = ω̃α(ω) are complex functions of the ω. Correspondingly,
the quasiclassical ξ -integrated Green’s functions can be
written

g0α(ω) = −iπNα

ω√
ω2 − �̃2

α(ω)
, (3)

g1α(ω) = −iπNα

�̃α(ω)√
ω2 − �̃2

α(ω)
, (4)

where, �̃α(ω) = φ̃α(ω)/Zα(ω) and Zα(ω) = ω̃α(ω)/ω and are
complex functions. The quasiclassical Green’s functions are

obtained by numerical solution of the Eliashberg equations
[53–56]:

ω̃α(ω) − ω =
∑

β

∫ ∞

−∞
dzKω̃

αβ(z,ω)Re
ω̃β(z)√

ω̃2
β(z) − φ̃2

β(z)
,

(5)

φ̃α(ω) =
∑

β

∫ ∞

−∞
dzK

φ̃
αβ(z,ω)Re

φ̃β(z)√
ω̃2

β(z) − φ̃2
β(z)

. (6)

The kernels K
φ̃,ω̃
αβ (z,ω) of the fermion-boson interaction have

the standard form [53]:

K
φ̃,ω̃
αβ (z,ω) =

∫ ∞

−∞
d


λ
φ̃,ω̃
αβ B(
)

2

[
tanh z

2T
+ coth 


2T

z + 
 − ω − iδ

]
. (7)

For simplicity, we use the same normalized spectral function of
electron-boson interaction B(
) obtained for spin fluctuations
in inelastic neutron scattering experiments [57] for all the
channels. The maximum of the spectra is 
sf = 144 cm−1,
which determines the natural energy scale [28]. This spectrum
gives a rather good description of thermodynamical [58] and
optical [59,60] properties in the SC as well as normal states
[61]. Moreover, we will use all temperatures and energies,
expressed below, in the units of inverse cm (i.e., cm−1). The

matrix elements λ
φ̃
αβ are positive for attractive interactions

and negative for repulsive ones. The symmetry of the order
parameter in the clean case is determined solely by the

off-diagonal matrix elements. The case sgnλ
φ̃
αβ = sgnλ

φ̃
βα > 0

corresponds to s++ superconductivity and sgnλ
φ̃
αβ = sgnλ

φ̃
βα <

0 to the s± case. The matrix elements λω̃
αβ have to be positive

and are chosen λω̃
αβ = |λφ̃

αβ |. Further for simplicity we will omit

the subscripts ω̃ and φ̃ denoting λ
φ̃
αβ = λαβ and λω̃

αβ = |λαβ |.
Additionally, we also use the notation �a and �b for the real
band gap energy values.

In the strong-coupling approach, as opposed to the weak-
coupling limit, the gap functions are complex and frequency
dependent φ̃α = φ̃α(ω). One of the consequences is the
broadening of the quasiparticle peaks and appearing of the
finite density of states Nα(ω) = − 1

π
Img0α(ω) at zero energy.

This behavior is illustrated in Fig. 1. At zero temperature, the
DOS in the strong-coupling approach exhibits the coherence
peak N (ω) ∝ 1/

√
ω − � for ω � �(ω) and zero for ω <

�(ω) quite similarly to the weak-coupling case. But at
finite temperatures, the DOS becomes finite for ω < �(ω)
and the coherence peak is smeared out. This behavior is
completely different from the weak-coupling approximation.
The reason is that the gap function �(ω) in the strong-coupling
approximation is a complex function. Accounting for the
frequency dependence of the gap functions on the QPI is the
key issue of the present work. At the same time, one has to
point out that the DOS measurements are unable to distinguish
between s++ and s± order parameter symmetries; as is seen
from Eq. (3), the DOS depends on |�(ω,T )|. A phase-sensitive
QPI calculation is needed to bring out the contrast between the
two types of pairing symmetries.
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FIG. 1. Density of states for the bands a and b calculated in
strong coupling at various temperatures. The coupling constants
are λbb = 0.5, λab = 0.2, λba = 0.1, λaa = 3. The superconducting
critical temperature is Tc = 28 cm−1. The DOS is normalized with
respect to the normal state and is set equal to 1 for each band.

III. QUASIPARTICLE INTERFERENCE

The STM measures the differential conductance, which
is proportional to the local single-particle density of states
N (r,ω):

dI

dV
(r,ω) ∝ |M(r)|2N (r,ω),

where M(r) is the local tunneling matrix element. The local
density of states is related to the single-particle retarded
Green’s functions GR(r,r,ω):

N (r,ω) = − 1

π
ImTr

[
1 + τ3

2
ĜR(r,r,ω)

]
. (8)

Here, Tr[. . . ] is taken over both Nambu and band indices.
Although the tunneling matrix element may be important in the
multiband case, sharpening the spectral weight contribution of
some orbitals, the strong coupling does not affect the tunneling
matrix element. Since we want to focus here on the effects of
strong coupling the consideration is restricted by the impact
of a single impurity on the local density of states. In the
linear response approximation the perturbation of the density
of states form due to an impurity with the pointlike scattering

Û (r) = Uαβδ(r)τ3 reads [62]

δN (r,ω) = − 1

π
Im

∑
α,β

Tr

[
1 + τ3

2

∫
dV ′′Ĝα

clean(r − r′′,ω)

× Ûαβ(r′′)Ĝβ

clean(r′′ − r,ω)

]
(9)

for ω > 0. The negative values of ω can be obtained by
substitution τ3 → −τ3. Since in the response function the
bands are considered pairwise within the Born approximation,
we will consider below the scattering between two bands,
having in mind that one has to sum up the full response function
afterwards. Considering Eq. (9) in the momentum space and
keeping only the interband impurity scattering, which gives the
leading contribution for the momentum q close to the interband
vector Q, we define the QPI response function I (q,ω) as

δN(r,ω) = Uab

∫
d2q

(2π )2
eiqrI (q,ω).

The response function is given by the following expression:

I (q,ω) = − 1

2π

∫
d2p

(2π )2
ImTr

[
τ3Ĝ

a
clean(q + p,ω)

× τ3Ĝ
b
clean(p,ω)

] + (a ↔ b). (10)

A. The model

We apply the above formulation to develop the model for
the general pnictide case as discussed below. In the low-energy
limit considered here, the spectrum near the Fermi level can
be linearized:

ξb(p + q) ≈ βξa(p) + ε cos 2θ + δμ. (11)

Here, sgnβ > 0 for impurity scattering between two electron
or two hole bands, while sgnβ < 0 for scattering between
electron and hole bands. We assume constant density of

states Nα =
∫

δ(ξα,p)d2p/(2π )2 and |β| = vb/va , where va,b

are the Fermi velocities for the two bands. The parameter
ε = (kF vF )by − (kF vF )bx characterizes the ellipticity of the
electron bands, where kFy and kFx are the electron band Fermi
wave vectors. Here, θ is the angle between the vector p and
q. We have ε = 0 for scattering between two hole bands;
otherwise ε is finite. Finally, δμ accounts for the relative
energy shift of the Fermi surfaces and is given by the relation
δμ = (kF vF )a − (kF vF )b.

B. Scattering at q = Q

The direct integration over ξ and the angle gives the
following expression:

I (q = Q,ω) = −
√

NaNb

2
Im[K(ω)F (ω)], (12)

where the coherence factor K(ω) is

K(ω) =
[
�̃a�̃b − ω2

EaEb

± 1

]
(13)
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and

F (ω) = 1√
|β|−1ε2 − [

√|β|ZaEa +
√

|β|−1(ZbEb + δμ)]2

+ 1√
|β|−1ε2 − [

√|β|ZaEa+
√

|β|−1(ZbEb−δμ)]2
.

(14)

Here, Eα =
√

ω2 − �̃2
α is the quasiparticle energy spectrum.

In the coherence factor K(ω) the sign “+” corresponds to
the scattering between two electron or two hole bands, while
“−” to the case of the scattering between electron and hole
bands. One can immediately notice that the response function
for intraband scattering at q = 0 vanishes due to the coherence
factor for all ω. In our study, we have focused completely on the
interband interaction aspect of the phenomenon. This implies
the choice of the “−” sign in the relation for the coherence
factor given by Eq. (13).

1. Zero ellipticity

The hole bands around the � point can be considered in
a good approximations as a circle (ε = 0). For simplicity,
in discussing the two cases for the band ellipticity ε, we
shall assume the system to be in the weak-coupling regime,
and hence take �̃α/β to be real and write it as �a/b for
the smaller (hole band) and larger (electron band) band gap
energy, respectively. We start with perfectly matching hole
bands (δμ = 0), having the gap functions �a(ω) > �b(ω).
The same ratio of the gap functions is used in the relation
below. For the sake of simplicity, we put β = 1 for further
analysis. The function I (ω) diverges as ±Re[1/

√
ω − �b]

for ω > �b and as 1/
√|ω − �a| for ω close to �a . The

sign in front of the first singularity depends on the sym-
metry of the order parameter. The sign “−” corresponds to
s± superconductivity, while “+” to s++ superconductivity.
However, the sign in front of the second singularity does not
depend on the superconducting order parameter symmetry.
The mismatch of the bands creates nonzero δμ, which
considerably changes the ω dependence of the response
function. For very large values of δμ, there is an additional
dip at ω∗ =

√
(�2

a + �2
b + δμ2)2 − 4�2

a�
2
b/(2|δμ|) at energy

greater than �a . The divergence for energies near �a remains
as 1/

√
ω − �a for ω∗ > �a . The case for finite band ellipticity

is considered below.

2. Finite ellipticity

For scattering between two electron bands, the essential
role is played by the ellipticity of the electron bands, i.e.,
ε. Here, we have distinct cases: (a) |ε| + |δμ| < �b,
(b) |ε| + |δμ| > �b and ||ε| − |δμ|| < �a , and (c)
||ε| − |δμ|| > �a . For case (a) one finds the behavior
similar to the scattering between two hole bands, i.e., the
appearance of a dip. In case (b) in addition to 1/

√
ω − �b

and 1/
√

�a − ω a new divergence of 1/
√

ω − ω1 appears at
ω1 =

√
[�2

a + �2
b + (δμ + |ε|)2]2 − 4�2

a�
2
b/[2(|δμ| + |ε|)].

In case (c) one additional divergence 1/
√

ω − ω2 occurs at
ω2 =

√
[�2

a + �2
b + (δμ − |ε|)2]2 − 4�2

a�
2
b/(2||δμ| − |ε||).

C. Scattering at q = Q + q̃

Now we consider the quasiparticle interference due to
interband scattering at the vector q̃ = q − Q. For small q̃ one
can use the approximation ξb(p + q) ≈ βξa(p) + ε cos 2θ +
vbq̃ cos(θ − φ) + δμ, where φ is the angle between the vector
q̃ and Q. The F function in Eq. (12) has the form

F (ω,φ) =
〈 √|β|ZaEa +

√
|β|−1ZbEb

(
√|β|ZaEa +

√
|β|−1ZbEb)2 + |β|−1[ε cos(2θ ) + vbq̃ cos(θ − φ) + δμ]2

〉
θ

, (15)

where 〈. . . 〉θ is the averaging over the angle. The integration
over the angle can be easily performed in two limits of ε �
vbq̃ (setting vbq̃ = 0) and ε 
 vbq̃ (setting ε = 0). In the
second limit we recover the expression similar to Eq. (14)
with substitution ε → vbq̃.

IV. NUMERICAL ANALYSIS AND RESULTS

In the following, we will apply the above general formu-
lation to FeBSs, using the electron-boson spectral function,
successfully used by Popovich et al. [58] for the thermal
studies and by Charnukha et al. [59] for optical conductivities
for the description of BaKFeAs at optimal doping. According
to [59], the original four-band model for Ba1−xKxFe2As2 can
be reduced to an effective two-band model, where the first band
is formed by the inner hole pocket with the gap �b, while the
second band with the gap �b < �a consists of a combination
of two electron pockets and an outer hole pocket. Within this

two-band model we will calculate the response I (q,ω) at q
values around the nesting vector Q = (π,π ).

The model is studied in the beginning with ε = δμ = 0
and later in the paper, we consider finite values of δμ

and ε, as is the case with pnictides. Hence, the model
has broader implications for other high-Tc superconduc-
tors. In this case, we have only two characteristic en-
ergy values, namely the energies of the gaps �a and
�b. Our purpose is to identify certain peculiarities of the QPI
response for the s++ and s± pairing symmetries. The resulting
real-valued energy gaps in Nα(ω), as discussed in Fig. 1, are
�a = 83 cm−1, while �b = 17 cm−1 at T = 0, which gives a
gap ratio �a/�b = 4.82.

In Fig. 2, we discuss the temperature evolution of the
response function for s++ and s± symmetry. First, at tem-
perature T = 1 cm−1, the QPI response vanishes for ω < �b

for both s++ and s± order parameters, since there is no
excitation at the energy below �b at zero temperature. In
the whole temperature range, the response function for s++
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FIG. 2. The response function I (ω) for the s++ and s± case with
the strong-coupling λ matrix defined as (λaa = 3, λab = ±0.2, λba =
±0.1, λbb = 0.5) and Tc = 28 cm−1. Here “+” is for the s++ case
and “−” for the s+− case. Below we will put only the absolute values
for the coupling constants.

superconductivity is positive for all values of ω, while in the
s± case, for energies around the smaller gap, it is negative.
As the temperature increases, the response related to the s±
symmetry turns positive at much lower energies, while for the
s++ case, the response peak shows a gradual shift towards the
energy interval between the two band gaps. To sum up, the
main feature that help us to distinguish between the response
behavior for the s++ and s± symmetry cases is the robustness
of the sign of the peaks near the small band gap �a over a
broad range of T < Tc.

Figure 3 shows 3D plots depicting the variation of I (ω)
simultaneously with temperature T and energy ω for the
case of perfect nesting, i.e., q = Q. For s++ symmetry, at
low temperatures and ω � �b, we consider the slice in the
region 0 < T < 10 cm−1 that shows a small sharp peak which
dips smoothly as the temperature rises. Moving towards high
energies and at low temperatures, the peak around the second
band gap energy is very strong and decays much slower with
rising temperature and energy, compared to the first peak, while
in the s± case, we see the difference for the first band peak
as the response at low temperature and low energy is inverted
(at ω � 20 cm−1) and has large magnitude. This is the main
feature that is reflected throughout our analysis. The peaks
around the first band gap energy are a robust indication of the
difference between the two symmetry cases, viz., s++ and s±.

In the region of subgap energies and low temperatures, the
s++ response shows a negative gradient while the s± curve is
almost flat and is negative, and for the same energies at high
temperatures, the behavior is similar for both the symmetries
and hence it is indistinguishable in this region. Beyond that,
the graph shows a monotonically decreasing trend for both s++
and s± response functions and does not provide any interesting
distinguishable feature apart from the greater signal strength
for the s++ curve, compared to the latter. As we move to the
higher temperatures, a bump in the response function arises,
which is appreciably diffused and broadened as compared to
the ones at low temperatures. This behavior of the response

FIG. 3. 3D plots of the response function vs temperature at fixed
energy ω for s++ (upper) and s± (lower) cases, respectively. The
coupling parameters are the same as used above.

function is the same in both the s++ and s± cases for T >

25 cm−1 as stated in Fig. 2.
In Fig. 4, we have I (ω) vs energy ω plotted at various

temperatures with very strong coupling parameters λ̃ and a
raised transition temperature, i.e., Tc = 46 cm−1. In the subgap
region, for the s++ case, we identify a peculiar behavior of the
response function (compare to Fig. 2) as it goes to negative
values and peaks just like the response for the s± case. In
summary, for the energies near the second band gap, the
behavior of response function for both the symmetry cases is
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FIG. 4. The QPI response function for the s++ and s± case at very
strong couplings λ̃, i.e., λaa = 6, λbb = 1, λab = 0.2, λba = 0.4 with
the transition temperature Tc = 46 cm−1.

indistinguishable apart from their relative strengths. However,
we again observe that the response peaks near the smaller gap
are a defining and distinguishing feature even for a very strong
coupling case.

In the following, we present the study of the response
function behavior with respect to the changes in parameters
such as the ellipticity ε of the electronlike bands, the shifted
Fermi energy δμ between the holelike and the electronlike
bands, and the experimentally tunable electron momentum
parameter vbq̃, which points in the radial direction to the
electron band Fermi surface. Here, q̃ is tuned in order to
obtain the correct matching condition for the shifted Fermi
energy surface, as discussed later, and to study the response
behavior closer to the region of Fermi surface instability, as
followed from Eq. (15).

In Figs. 5 and 6, we plot in 2D and 3D the behavior of the
q-resolved response function for both symmetry cases, with
variation in the electronlike quasiparticle momentum q̃ using
Eq. (15) and setting the ellipticity and surface energy to zero.
We also assume that the momentum vector q̃ is directed along
Q and hence, the angle φ = 0. The finite value of q̃ relates to
the fact that we are probing the Fermi surface of the electron-
like band pocket. We have ||ε| − |δμ|| < �a satisfied in this
case. For the peak near larger band gap energy, the amplitude
and the sign of the peak are robust and distinguishing features.

We see that the energy dependence of the response function
at finite q̃ shows three peaks. Two of these are momentum
independent and correspond to the gaps in the bands �a and
�b, while the third peak has a strong q̃ dependence. The
strong difference between s++ and s± symmetries is seen only
for the first peak at the energy of the small gap. For the s±
order parameter the response function at ω = �b is negative,
while for s++ it is positive. It leads to the conclusion that
for determining the symmetry of the order parameter, one has
to consider the response function at momenta close to the
nesting vector Q, and find the momentum-independent peaks.
The smallest of these peak will determine the symmetry of the
order parameter.

FIG. 5. 2D plots of the QPI response function I (ω) vs ω and
the momentum q for the strong-coupling case with ε = δμ = 0 at
temperature T = 1 cm−1. The values of the coupling constants are
λaa = 3, λab = 0.2, λba = 0.1, λbb = 0.5.

The QPI response at energies close to the second gap �a is
shown in Fig. 2 for q̃; i.e., (q − Q) has opposite sign compared
to the results presented by Hirschfeld et al. [47], using a similar
model in the weak-coupling regime. The results presented in
Figs. 5 and 6 clearly demonstrate that with the increase of q̃, the
sign of the second peak reverses. In this respect, our results do
not contradict those of [47]; the q-integrated response function
was presented to be dominated by large q values. Moreover,
our q-resolved results provide more information about the QPI
response behavior. In particular, for nonzero ellipticity ε or
the nonzero chemical potential shift δμ, we have obtained an
additional mode at energies above �b as shown in Figs. 5–11.

Hence, we again argue that the peak near the first band gap
energy, i.e., ω ≈ �b(ω), is the only strong distinguishing fea-
ture for the phase-sensitive experiments for the gap symmetry
measurements.

So far, we have explored the region around the nesting
vector Q = (π,π ) with scattering between the smaller/inner
holelike band to the outer/larger averaged electronlike band.
Now, we focus on the scattering of the quasiparticles from
the electronlike band to the outer holelike band with larger
gap value, i.e., �̃a2(ω) → �̃b1/b2(ω). In Fig. 7, we plot
the response function for various values of the electronlike
quasiparticle momentum q̃ over the full spectrum of energy ω

with equal band gap functions. For this, we modify Eq. (13)
by the substitution of the full gap function �̃a(ω) → �̃b(ω);
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FIG. 6. 3D plots of the QPI response function I (ω) vs ω and
momentum q with the zero ellipticity ε = 0 and zero shifted Fermi
surface energy δμ = 0 for the strong-coupling case at temperature
T = 1 cm−1. The values of the coupling constants are λaa = 3, λab =
0.2, λba = 0.1, λbb = 0.5.

i.e., we replace the inner hole band gap function with the
outer/larger hole band gap function, such that we also replace
all the corresponding renormalization functions, i.e., Za → Zb

and the related density of states.
For s++ symmetry, we find that the response function for

the energies ω < �a is zero over a large range and becomes
nonzero only at ω = 75 cm−1 and remains positive afterwards.
This is in contrast to the behavior of the response function
given in Fig. 5, for the same symmetry, where the function
goes through the zero towards the negative peak situated near

FIG. 7. 2D plots of the QPI response function I (ω) vs ω and
momentum q for the strong-coupling case, with �a = �b, and ε =
δμ = 0 at temperature T = 1 cm−1, and with the coupling constants
given as λaa = 3, λab = 0.2, λba = 0.1, λbb = 0.5.

the larger gap energy, i.e., �a . Only for q̃ = 0, we have a
response function that stays positive over the full energy range.
At energies ω � �a , we observe that the response function
peaks are shifted towards higher energies with increase in q̃ in
both figures. However, in Fig. 7, for the s++ case, there are only
single positive peaks, i.e., only a single mode, for all the q̃.

In the s± case, as depicted in Fig. 7, the response
function amplitude has a very large value, in fact an order
of magnitude larger, than the s++ case in the same figure
and also in comparison to the response amplitudes in Fig. 5
for both the s++ and s± symmetry cases. The reason for
such a behavior is the contribution of the divergent term
Im((�(ω)2 + ω2)/(�(ω)2 − ω2)) in strong coupling in the
coherence factor K(ω) for the s± case, instead of a constant
scalar multiple for the s++ case [see Eq. (13)]. In the region
ω ≈ �a , there is a large negative peak of the response function.
At ω > �a both the graphs in the upper and lower panel of
Fig. 7 are qualitatively similar for the increasing value of q̃,
along with the presence of an additional mode, which is shifted
towards higher values of ω, in all the cases without exception.

Although a difference is present between both the symme-
tries at ω ≈ �a for this scattering, it only exists within a very
narrow energy range. Hence, we shall confine the study to the
previous case of the scattering of quasiparticles between the
smaller/inner holelike band and the gap-averaged electronlike
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FIG. 8. 2D plots of the QPI response function I (ω) vs ω,
momentum q and the shifted Fermi surface energy δμ for the
strong-coupling case at temperature T = 1 cm−1. In the inset, the
dependence of |I (q − Q)| is shown at fixed energy close to the smaller
gap, i.e., ω ≈ 18 cm−1. The values of the coupling constants are
λaa = 3, λab = 0.2, λba = 0.1, λbb = 0.5.

bands to study QPI. In the following, we emphasize that this
robustness of the QPI response peak, with respect to various
parameters, provides an ideal tool to probe the order parameter
phase symmetry.

In Fig. 8, the graphs depict the behavior of the QPI
response function for very large shifted Fermi surface energy,
i.e., δμ = 300 cm−1, and the comparison with the case of zero
δμ and nonzero value vbq̃ for both the symmetry cases. The
behavior of vbq̃ is shown by dashed curves as the momentum
vector q̃ varies from small to large values and connects the
two order parameters on the Fermi surfaces when it is of
the order (π ) . The black curve shows the behavior of the
response function for zero momentum and large shifted Fermi
surface energy. The red dashed curve for zero δμ and large
vbq̃ shows the difference in the two cases with a shifting of
the peak that arises for ω > �a .

For the equal values of both the parameters, the behavior
is depicted by the blue dotted curve, where the inverted peaks
near the first and second band gap energies are almost equal
in magnitude. Finally, the green curve shows the case for very
large electronlike quasiparticle momentum in comparison to
the shifted Fermi surface energy and shifted peak is shown to
be highly dispersed.

As stated previously, the most robust feature is the peak
of the response function around the first band gap energy,
which does not change the sign-reversing behavior with the
change in parameters, viz., δμ, ε, or q̃ in Eq. (15). Hence, this
characteristic of the QPI response function presents itself as a
very useful feature for the probe of order parameter symmetry
between the s++ and s± case, via the c-axis measurements
from the FT-STM studies.

The inset in the upper panel of Fig. 8 depicts the strong
dependence of the magnitude of the peak on the parameter
q̃. For the perfect nesting case, i.e., q = Q, we observe
the maximum in response function magnitude. For a fixed
δμ and for the energy chosen to be near �a , we have the
experimentally tunable parameter q̃ start at zero and scan over
larger values. The peaks of |I (q̃)| in both the symmetry cases
emerge for some optimal value of the momentum, i.e., when
q̃ becomes of the order δμ [in accordance with Eq. (15)]. At
small values of q̃, this magnitude of the peaks is quite small,
and hence, to observe this experimentally, we need to find the
match between the large value of q̃ and δμ to sample such
behavior correctly.

V. SUMMARY AND CONCLUSION

We have analyzed the problem of the identification of the or-
der parameter symmetry for the Fe-based superconductors via
the QPI measurements. For this purpose, we have developed a
theory of the quasiparticle interference in multiband supercon-
ductors based on strong-coupling Eliashberg approach. In the
particular case of a two-band system, we consider two possible
pairing symmetries: the s± state, when the sign of the order
parameters changes between the hole and the electron bands,
and the more conventional s++ state.

The obtained results confirm the concept that the QPI
is a phase-sensitive technique and may help to determine
pairing symmetry in Fe-based superconductors, and in general
could be applicable to other multiband superconductors. We
calculate energy, temperature, and momentum dependencies
of the QPI response and point out qualitative differences
between the response in the s± and s++ cases. Application
of the Eliashberg approach allows us to take into account
self-consistent retardation effects due to strong coupling and to
properly describe temperature dependence of the QPI response
function at various energies. Further, we have analyzed various
regimes of the Fermi surface anisotropy by taking into account
the influence of Fermi surface ellipticity.

We have argued from the analysis that, in general, for
q ≈ Q, there are three singularities of the response function.
Two of these are momentum independent (weak momentum
dependence) ω ≈ �a,b(ω) and one having a strong momentum
dependence. Only the momentum-independent (weak momen-
tum dependence) peak, corresponding to the lowest gap value
�b, may serve as a universal probe for the gap symmetry in the
multiband superconductors. We emphasize that our analysis
presents a convincing case in favor of the QPI measurements
as a phase-sensitive test of the gap symmetry for the FeBSs.
This conclusion is based on the robustness of the response
function peak near the smaller gap energy and is independent
of the exact nature or shape of the energy bands.
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APPENDIX

Here, we show the 2D and 3D graphs for the response
function variation with shifted Fermi surface energy δμ versus
the energy ω and with the electronic band ellipticity, ε = 0,
for both the s++ and s± cases, as discussed in the main text in
Sec. III B.

First, in Fig. 9, the trend for the response function at zero
ellipticity is presented. The response curve near the second
band gap energy has a sharp small negative peak and a

FIG. 9. 2D plots of the QPI response function I (ω) vs ω and
the shifted Fermi surface energy δμ for the strong-coupling case at
temperature T = 1 cm−1 at ellipticity ε and the momentum q̃ = 0.
The values of the coupling constants are λaa = 3, λab = 0.2, λba =
0.1, λbb = 0.5.

broadened secondary peak as the δμ values increase. The
second peak shifts away from �a with larger values of shifted
Fermi energy between the electronlike and holelike pockets
and for very large δμ the two lower peaks become relatively
similar in strength. The positive peak around the same energy
interval also shows a shift towards ω > �a and flattens out
at very high δμ value. Here again we observe that the peaks
around the smaller band gap are a robust feature with respect
to the variation in the parameters.

The 3D graph in Fig. 10 shows the change in response
function as we move from ω < �b to the region ω > �a .

FIG. 10. 3D plots of the QPI response function I (ω,δμ) vs ω

and the nonzero Fermi surface energy δμ at zero ellipticity for the
strong-coupling case at temperature T = 1 cm−1 for s++ and s±.
There is a large amplitude for the response function in the region δμ =
[100,200] for the latter case. The values of the coupling constants are
λaa = 3, λab = 0.2, λba = 0.1, λbb = 0.5.
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FIG. 11. 2D plots of the QPI response function I (ω) vs ω and the
ellipticity ε for the strong-coupling case with value of shifted Fermi
surface energy δμ and the momentum q̃ = 0, at temperature T =
1 cm−1. The values of the coupling constants are λaa = 3, λab = 0.2,
λba = 0.1, λbb = 0.5.

The response function gets the inverted peak near the second
band gap energy in both the cases and there is a secondary
dip that shifts towards higher energy with increasing shifted
Fermi surface energy. The shift of the second peak at ω > �a

is observed. There is almost similar amplitude of the QPI
response in both the cases with the strong coupling around
the region ω = �b for the ε = 0 case as compared to Fig. 2.
For higher energies and larger chemical potential, apart from
strong peaks, we have no other distinguishing feature for both
the cases except for the QPI peak around the smaller band
gap, �b. The effect of the relative shift of the Fermi surface
energy to a nonzero value shows that there is a rather strong
suppression of the second response peak in the s++ case as
compared to the s± in the region ω ≈ �a as compared to the
finite ellipticity case discussed below.

In Figs. 11 and 12, we present the change of the response
function with variation in the band ellipticity ε as in Eq. (14)
and setting the shift in Fermi surface energy δμ = 0 with
2D and 3D graphs. The larger ellipticity values lead to
the inversion of the peak around the second band gap,
which reaches its maximum value around ε = 200 cm−1 and
thereafter the overall amplitude drops, with the positive peak
dampening strongly and shifting towards higher ω values. The
peaks near the first band gap energy are unaltered by the change
of the ellipticity and hence present a strong case for the probing
of the gap symmetry based on QPI experiments.

FIG. 12. 3D plots of the QPI response function I (ω) vs ω and the
ellipticity ε for the strong-coupling case with value of shifted Fermi
surface energy δμ and the momentum q̃ = 0, at temperature T =
1 cm−1. The values of the coupling constants are λaa = 3, λab = 0.2,
λba = 0.1, λbb = 0.5.

Additionally, for the energies close to the second band gap
energy and with a large ε, the response function is negatively
peaked for both the cases and has a stronger peak around
ε = 200 cm−1 with a very strongly damping for very high
ellipticity values. In both the cases, we observe the shifting
and high suppression of the positive peak towards energies
ω > �a and the negative response peak just falls off very
slowly without the shift. This confirms our assertion that the
smaller band gap peak is a promising feature that could be used
as a universal tool for the pairing symmetry measurements.
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