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Background: Accurate correction of x-ray scatter in dedicated breast com-
puted tomography (bCT) imaging may result in improved visual interpretation
and is crucial to achieve quantitative accuracy during image reconstruction and
analysis.
Purpose: To develop a deep learning (DL) model to correct for x-ray scatter in
bCT projection images.
Methods: A total of 115 patient scans acquired with a bCT clinical system were
segmented into the major breast tissue types (skin, adipose, and fibroglandu-
lar tissue). The resulting breast phantoms were divided into training (n = 110)
and internal validation cohort (n = 5). Training phantoms were augmented by
a factor of four by random translation of the breast in the image field of view.
Using a previously validated Monte Carlo (MC) simulation algorithm,12 primary
and scatter bCT projection images with a 30-degree step were generated from
each phantom.For each projection, the thickness map and breast location in the
field of view were also calculated. A U-Net based DL model was developed to
estimate the scatter signal based on the total input simulated image and trained
single-projection-wise, with the thickness map and breast location provided as
additional inputs. The model was internally validated using MC-simulated pro-
jections and tested using an external data set of 10 phantoms derived from
images acquired with a different bCT system. For this purpose, the mean rela-
tive difference (MRD) and mean absolute error (MAE) were calculated. To test
for accuracy in reconstructed images, a full bCT acquisition was mimicked with
MC-simulations and then assessed by calculating the MAE and the structural
similarity (SSIM). Subsequently, scatter was estimated and subtracted from the
bCT scans of three patients to obtain the scatter-corrected image. The scatter-
corrected projections were reconstructed and compared with the uncorrected
reconstructions by evaluating the correction of the cupping artifact, increase in
image contrast, and contrast-to-noise ratio (CNR).
Results: The mean MRD and MAE across all cases (min, max) for the internal
validation set were 0.04% (−1.1%, 1.3%) and 2.94% (2.7%, 3.2%), while for the
external test set they were −0.64% (−1.6%, 0.2%) and 2.84% (2.3%, 3.5%),
respectively. For MC-simulated reconstruction slices, the computed SSIM was
0.99 and the MAE was 0.11% (range: 0%, 0.35%) with a single outlier slice of
2.06%.For the three patient bCT reconstructed images,the correction increased
the contrast by a mean of 25% (range: 20%, 30%), and reduced the cupping
artifact. The mean CNR increased by 0.32 after scatter correction, which was
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2 AI-BASED SCATTER CORRECTION IN BREAST CT

not found to be significant (95% confidence interval: [−0.01, 0.65], p = 0.059).
The time required to correct the scatter in a single bCT projection was 0.2 s on
an NVIDIA GeForce GTX 1080 GPU.
Conclusion: The developed DL model could accurately estimate scatter in bCT
projection images and could enhance contrast and correct for cupping artifact
in reconstructed patient images without significantly affecting the CNR. The
time required for correction would allow its use in daily clinical practice, and
the reported accuracy will potentially allow quantitative reconstructions.

KEYWORDS
computed tomography, cone-beam breast CT, deep learning, Monte Carlo, scatter correction

1 INTRODUCTION

When not addressed, x-ray scatter can be one of the
main causes of degradation of image quality in x-ray
imaging. For example, in tomographic imaging, it can be
observed as a cupping artifact that affects the accuracy
of the measured signal intensity. Its consequences are
even more noticeable in cone beam computed tomogra-
phy (CBCT),due to the large area of irradiation.1–3 X-ray
scatter not only results in a potentially suboptimal visual
interpretation by radiologists, but also in quantitative
inaccuracies that can affect image analysis.

Different methods have been proposed to correct the
x-ray scatter signal in acquired images. In general, these
can be divided into two groups: scatter suppression
and scatter estimation.4 In body CBCT, the former com-
bines the use of an anti-scatter grid or collimation with
software post-processing;5–8 the latter consists of post-
processing approaches that aim to estimate the scatter,
and then correct the images by subtraction.9–13

The gold standard for scatter estimation is Monte
Carlo simulation (MC).2 However, although it can pro-
vide accurate estimates, its disadvantage lies in the time
required to obtain such results, which hinders its appli-
cation in clinical practice.4 For this reason, to estimate
the scatter in body CBCT images, algorithms based on
DL trained with MC-simulated patient data have been
developed.4,14–17

In breast imaging,dedicated breast computed tomog-
raphy (bCT)18–21 is not exempt from the effect of
scatter.22–24 In this modality, typically based on a CBCT
system, the patient lies prone on a table with an open-
ing through which the breast is placed. The x-ray tube
and the detector are mounted on a rotating gantry, and
a complete set of projections is obtained in a single revo-
lution around the pendant breast. These projections are
then reconstructed to obtain a 3D image capable of pro-
viding information about the anatomy of the breast and
the presence of lesions, optionally with iodine contrast
enhancement.25–28

As with body CBCT, several approaches have been
proposed to avoid the undesirable effects of x-ray scat-
ter in bCT. Most of them suppress the scatter signal

by using anti-scatter grids or collimation, also combined
with software postprocessing.29–31 Moreover, solutions
were also proposed in which specific hardware was
developed and integrated into the bCT system to mit-
igate the effect of x-ray scatter.32–34 Similarly, fully
software-based solutions were also proposed to correct
for scatter in bCT images.35,36

However, most previous methods developed to cor-
rect for the scatter signal in bCT either required the
acquisition of an additional scan with an x-ray beam
blocker (resulting in the need for additional hardware
and yielding an increased dose and possibility of motion
artifacts),36 or they assumed the prior knowledge of
breast shape and tissue composition, possibly leading
to simplifications that may affect the accuracy of scatter
estimation.35

Therefore, in this work, we propose and validate a
software-based solution to estimate and correct the
x-ray scatter present in bCT images. The developed
method consists of a deep learning (DL) model for
scatter estimation trained on MC-simulated primary and
scatter bCT projections performed using patient-based
breast phantoms. The method is devised to estimate
the scatter directly from the input bCT projection image,
which is then subtracted from the acquired projection,
resulting in the desired correction.

2 MATERIALS AND METHODS

2.1 Patient-based phantom generation

A total of 115 previously-created patient-based
phantoms37,38 were used in this work. These were
obtained from patient scans acquired with a clinical
Koning breast CT (Koning Corp., Norcross, GA, USA)
installed at Radboud University Medical Center, which
were automatically segmented into the main tissues
present in the breast: adipose tissue, fibroglandular
tissue, and skin. The x-ray tube with a tungsten anode
was set to 49 kV.An aluminum filter of 1.6 mm (1.39 mm
Al 1st HVL) was used. Dose was set by the system
automatic exposure control.
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AI-BASED SCATTER CORRECTION IN BREAST CT 3

F IGURE 1 Example of a bCT patient-based phantom shown in the (a) sagittal, (b) coronal, and (c) axial views. Breast tissue 20%
represents the 15 slices (4.1 mm) of added tissue near the chest wall, composed of a homogeneous mixture of 80% adipose and 20%
fibroglandular tissue, by mass. This added tissue was inserted to compensate for the missing slices in the segmented breast CT phantoms, due
to image artifacts in the region close to the chest wall

Due to the artifacts inherent to the modality that
made the inclusion of information from the chest wall
unfeasible during segmentation,37 a total of 15 rows
in which the pectoralis muscle was present had to be
removed. However, a simplified version of the chest wall
was added back during the MC simulations. To make
sure that the phantom dimensions and location in the
field of view matched the original patient scans, we
compensated for this missing part by adding 15 slices
(thickness per slice 0.273 mm) of homogeneous tissue,
with each slice consisting of a dilation of the preceding
slice.Since no information about the tissue type present
in this region was available, this homogeneous breast
tissue was modeled as a mixture of 80% adipose and
20% fibroglandular tissue, by mass. The added tissue
ensures that the resulting scatter estimate from the MC
simulations is correct, including any backscatter onto
the detector from the patient’s chest. This extrapolated
region, unusable even uncorrected, was excluded when
measuring performance.An example of a patient-based
phantom is shown in Figure 1.

To increase the number of phantoms available to
train and validate the developed DL model (described in
Section 2.4), the initial number of patient-based phan-
toms was increased fourfold by random translation and
then separated to devote for either training the model
(n = 440 samples) or for validation (n = 20 samples).
To achieve realistic augmentations, each phantom was
translated up to 40 mm in a random direction along the
coronal plane, to account for different possible breast
positions in the field of view.

In addition, for independent testing, a set composed
of another ten previously generated patient-based
phantoms was collected. For this, ten patient scans
acquired with a completely different bCT system named
Doheny, developed and installed at the University
of California, Davis, were retrieved.21 The system
was equipped with an x-ray tube was set at 60 kV.
To filter the x-ray spectrum, a 0.2 mm copper filter
(1.5 mm Al 1st HVL) was used.20 A breast phantom
was generated from each of these patient scans

using the same method as that used for the first 115
phantoms.37,38

2.2 Monte Carlo primary and scatter
image simulation

The obtained samples were used to generate primary
and scatter projection images using a previously-
validated MC simulation algorithm based on the Geant4
toolkit (v10.07, December 2020).39,40 All simulations
were performed to replicate the geometry and acqui-
sition settings of the clinical bCT system installed at
Radboud University Medical Center. A 49 kV spectrum
filtered with 1.6 mm Al was modeled41 to match the 1st
half value layer of 1.39 mm Al previously reported.38

For each MC simulation, 2 × 108 x-rays were tracked.
This number of primary histories results in an estimated
maximum uncertainty lower than 10% in MC-simulated
images, based on the uncertainty estimation method
proposed by Sempau et al.42

During simulation, to recreate the geometry of the
bCT system,a 397 mm × 248 mm bCT indirect flat panel
detector was modeled as a 600 μm thick CsI scintillator
layer and a pixel size of 3.104 mm to obtain images of
128 × 80 pixels in size.

The measured distance from the source to the detec-
tor was 923 mm, while the isocenter was located at
650 mm from the source. The type of x-ray field used
was isotropic.

For each simulation, two outputs were obtained: the
primary projection and the scatter projection, the latter
involving the photons subjected to one or more interac-
tions before reaching the detector. For each sample, a
total of 12 simulations were performed, from 0◦ to 360◦

with a 30◦ step, to cover a complete gantry revolution.
Consequently,a total of 5460 primary and scatter pro-

jections of size 128 × 80 pixels were generated. To
obtain the images representing the total x-ray energy
absorbed in the detector,primary and scatter projections
were summed.
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4 AI-BASED SCATTER CORRECTION IN BREAST CT

2.3 Data preprocessing and deep
learning model inputs

All MC-simulated projection images were individually
normalized to the 95th percentile of pixel intensity
of the entire image. The DL model was trained
single-projection-wise, that is, single total projection
input, single scatter projection output, to maximize the
ratio between ease of learning and computational
efficiency.

However, only including 2D projection images as
network input would result in the lack of any information
in the third dimension, which can affect the scatter
magnitude and distribution. To account for this, and
still maintain a single projection-wise approach, two
additional parameters were calculated for each MC
simulated projection and provided as extra inputs to
the model. The first was the breast location, for which
the horizontal distance was calculated from the breast
center of mass to the center of the projection image
orthogonal to the view being processed. This input
addresses the effect on the scatter distribution of the
breast location along the direction orthogonal to the
projection being processed.The second additional input
was the breast thickness map associated with each
projection image, which was obtained by reconstructing
the acquired images and measuring the intersection
length of the ray going from the source to each pixel
of the imaged breast at the detector. This additional
input provides information on the third dimension of the
breast regarding its size and shape. To ease the training
of the model for scatter estimation, the thickness maps
were normalized to a similar range of pixel values as the
original simulated projections, by applying the negative
exponential thickness, as follows:

normalized thickness map

= exp (− thickness map∕100) (1)

Figure 2 shows an example for both additional inputs.

2.4 Deep learning model architecture
and training parameters

A U-Net-based43 convolutional neural network (CNN)
was developed as shown in Figure 3. The architecture
consists of a contracting path and an equally-formed
expansion path. In the contracting path, the number of
feature channels was doubled at each downsampling
step, with the input spatial dimensions being halved by
using 2 × 2 max pooling layers. In the expansion path,
the number of feature channels was doubled, as each
step consists of a resampling of the feature map through
2 × 2 upsampling layers.

The total images were set as the main input at the first
block of the contraction path,while the scatter projection
images were given to the network as pixelwise labels for
learning.

The output of each block from the contraction path
was concatenated to the corresponding up-sampling
block in the expansion path. The final layer was imple-
mented with 1 × 1 convolutions to map the channels to
the desired output.

For each convolutional layer of the network, padded
2D convolutions (padding = ‘same’) with filter size
64, kernel size 3 × 3, and He Uniform initialization
were implemented. Each convolution layer was fol-
lowed by batch normalization (momentum = 0.99,
epsilon = 0.001) and ReLU activation functions, except
for the last layer. This layer consisted of a 2D convolu-
tional filter with kernel size 1 × 1,and sigmoid activation.
At the network bottleneck, both additional inputs (breast
location and thickness map) were concatenated with the
projection image features obtained from the contraction
path. Specifically, the breast location was concatenated
directly to the deepest network layer, as typically per-
formed for the merging of scalar and convolutional
features.44

The thickness map was concatenated at the same
network depth, but, prior to concatenation, was further
processed with an additional downsampling block, act-
ing as a feature extractor.43 The thickness map was
concatenated at this location, instead of being given as
a second channel to the original input (breast projec-
tion), to avoid replicating high-resolution features related
to breast thickness from the contraction to the expansion
path. Since information on breast thickness is useful
only to provide extra three-dimensional information to
the network, concatenating it in the network bottleneck
(i.e., without replicating the thickness features between
the encoder and the decoder) allows to maximize the
training efficiency by making the learning of high-
resolution features only from the input breast projection
easier. Adam optimizer was used for training the model
(batch size = 8, learning rate = 10− 4, 2000 epochs).

The loss function (L) consisted of a weighted mean
squared error. For this, the square error was calculated
by subtracting the ground truth MC-simulated image (y)
from the DL-estimated scatter image (ŷ). The loss was
weighted ten times more within the breast than in the
open field. The breast area was identified in each pro-
jection by global thresholding. The equation L can be
written as follows:

L =
1
n

n∑
i = 0

(
10 ∗

(
y(i)

breast − ŷ(i)
breast

)2

+
(

y(i)
open field − ŷ(i)

open field

)2)
(2)
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AI-BASED SCATTER CORRECTION IN BREAST CT 5

F IGURE 2 Example calculation of the two additional inputs: (a) shows a typical acquisition scenario where the source-detector and
isocenter-detector distances are known. The center of mass (CoM) of the breast is at a distance d from the isocenter. The x-ray beam (light
green) irradiating the breast and, as an example, a given x-ray beam (dark green line) are also shown. (b) shows how the horizontal distance
from the center of mass of the breast to the center of the orthogonal projection image (x-ray beam in light red) is calculated. In addition, in (c),
on the left, an example of the calculation of the intersection length of the beam from the source to one pixel of the imaged breast at the
detector. The thicknesses obtained for each of the pixels of the breast imaged on the detector form the thickness map. Equation (1) is applied to
normalize the map and the result is the image shown on the right

F IGURE 3 Schematic overview of the DL architecture used for scatter estimation. The total projection images of size 128 × 80 pixels were
defined as the main input, while the respective thickness maps and the breast center of mass distance were included at the network bottleneck

2.5 Deep learning model validation

DL-estimated scatter images were obtained from the
MC-simulated total images of the validation (n = 60 pro-
jections from 5 breast samples) and test set (n = 120

projections from 10 breast samples),and then compared
with the MC-simulated scatter images in the projection
domain. Comparison was also performed by stratifying
the validation and test set cases according to breast
thickness, breast density (calculated, by mass, in the

 24734209, 0, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.16185 by U

niversity O
f T

w
ente Finance D

epartm
ent, W

iley O
nline L

ibrary on [01/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 AI-BASED SCATTER CORRECTION IN BREAST CT

original breast phantoms), and breast location, to eval-
uate the potential correlation of these factors on the
scatter estimation error.

For model accuracy evaluation, the mean relative dif-
ference (MRD) and mean absolute error (MAE), both in
percentages, were computed for all comparisons only
considering the projected breast area (i.e.,excluding the
open field). The MAE in percentage was calculated as
follows:

MAE (%) =
100%

n

n∑
i = 1

|||||
yitrueMC

− yiestimatedDL

yitrueMC

||||| (3)

Where ytrueMC
and yestimatedDL

are vectors containing all
n pixels that conform the breast in the MC-simulated and
the DL-estimated scatter images, respectively.

In a previous work35 the effect of ignoring the chest
wall was evaluated and found to have a negligible impact
on the effectiveness of scatter correction (in addition
to the fact that, as already mentioned, this part of the
image is typically non-diagnostic due to image artifacts).
Consequently, to calculate MRD and MAE in both sets
(validation and test), the pixels of homogenous breast
tissue (see Section 2.1) added at the chest wall in each
projection were ignored.

2.5.1 Effect of additional input parameters

Next, the benefit of the additional inputs (breast loca-
tion and thickness map) was evaluated, by retraining
the network with only the input MC projection, and with
each of the extra inputs included. This comparison was
performed retrospectively, that is, the architecture,hyper-
parameters, and training conditions were not modified.
The error was calculated in each setting and plotted as
a function of mean breast thickness.

2.5.2 MC-simulated bCT acquisition

For a single phantom of the test set, MC simulations
were repeated to generate 300 projections with an
angular step of 1.2◦ (instead of a 30◦ step), to mimic
a complete bCT acquisition. From this MC-simulated
dataset, consisting of 300 primary (PMC) and scatter
(SMC) projections, and their corresponding 300 total
(TMC = PMC + SMC) projections, three reconstructions
were obtained and compared: the total uncorrected
reconstruction using the TMC projections, the primary-
only reconstruction from the PMC projections (or MC
ground truth), and the corrected reconstruction from the
T projections after DL-correction (P’= TMC−SDL). Image
reconstruction was performed in all cases using a max-
imum likelihood in transmission method (ML-TR).48 The
structural similarity (SSIM) obtained with the “struc-

tural_similarity” function of the skimage metrics module
(with sliding window size = 7) and the MAE between
100 slices (of the total ∼500 slices) of the DL-corrected
(P’) and MC ground truth (PMC) reconstructions were
calculated.

2.6 Application on clinical data

In addition to the tests performed on MC simulations,
the scatter was corrected on three bCT patient images.
These images were acquired with the bCT system
installed at Radboud University Medical Center for an
unrelated, ethics-approved trial.

To estimate the scatter present in these images, the
bCT projections were resized to 128 × 80 and the
model was applied. Then, the estimated scatter of the
complete set was again resized to match the bCT acqui-
sition dimensions. Finally, the estimated scatter was
subtracted from the uncorrected images,and the results
used for reconstruction.

To evaluate the reduction of the cupping artifact due
to the scatter correction, visual and quantitative com-
parisons of the corrected and uncorrected bCT images
were performed. For the former, 10 × 300 pixel pro-
files through specific axial slices were plotted. For the
latter, ten ROIs of 20 × 20 pixels were placed on dif-
ferent regions of fibroglandular and adipose tissues
in the reconstructed images, and the ROI mean val-
ues were measured and quantitatively compared.These
ROIs were also used to calculate the local contrast as
the difference of the measured fibroglandular and adi-
pose divided by the adipose values, for both uncorrected
and corrected images.

Furthermore, the obtained mean values from the dif-
ferent ROIs were compared to the theoretical linear x-ray
attenuation values for adipose and fibroglandular tis-
sues, to evaluate the recovery of voxel values compared
to the theoretical attenuation values.45–47 Linear attenu-
ation coefficients were calculated for an x-ray energy of
27.8 keV, the average x-ray energy of the spectrum used
for image acquisition. Reconstructed patient images
were obtained by using ML-TR48 with beam hardening
correction to the mean energy of the spectrum.49

As a result, a range of x-ray linear attenuation val-
ues between 0.279–0.318 cm−1 and 0.385–0.416 cm−1

for adipose and fibroglandular tissues was used, con-
sidering the variability of x-ray attenuation proper-
ties reported for breast tissues across patients and
publications.45–47

2.7 Noise effect evaluation after scatter
correction

After scatter correction by subtraction,an increase in the
magnitude of high-frequency noise in the reconstructed

 24734209, 0, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.16185 by U

niversity O
f T

w
ente Finance D

epartm
ent, W

iley O
nline L

ibrary on [01/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



AI-BASED SCATTER CORRECTION IN BREAST CT 7

F IGURE 4 Histogram indicating average breast thickness
distribution for the training (light blue), validation (dark cyan), and test
(blue) sets. The number of projections in the training set (5280),
validation set (60), and the test set (120) is expressed as a
percentage with respect to the total number of cases in each dataset

CBCT images could be expected.50 This could yield
a reduction in the contrast-to-noise ratio (CNR) of the
scatter-corrected image, which may negatively impact
the benefit of scatter removal.51 Therefore, the effect
of noise after scatter correction was evaluated. For this,
the ROIs for the local contrast calculation, described in
the previous section, were used to calculate the CNR
according to the following equation:

CNR =

|||𝜇̄fibroglandular − 𝜇̄adipose
|||√

𝜎2
figroglandular+𝜎

2
adipose

2

(4)

Where 𝜇̄ and σ2 are the mean and variance, respec-
tively, measured in each ROI. The CNR was calculated
for the three uncorrected and DL-corrected bCT patient
images, separately. To avoid the influence of the ROI
location on the CNR calculation,the CNR was calculated
between all 100 pairs of fibroglandular and adipose
ROIs per bCT patient image. The CNR difference mea-
sured at the same ROI location pairs before and after
correction was tested for significance using a mixed
effects 2-way ANOVA with the scatter correction as fixed
effect and the ROI locations as random effect.

3 RESULTS

Figure 4 shows the distribution (in percentage) of the
mean thicknesses of the breast samples that formed
the training, validation, and tests sets, for all simulated
projections.

In the training set, the model achieved a mean MRD
and MAE between MC-simulated and DL-estimated
scatter projections of 0.1% (range: −0.5%, 0.5%) and
3.1% (range: 2.5%, 3.4%), respectively. The calculated

mean MRD and MAE across all cases for the validation
set was 0.04% (range:−1.1%, 1.3%) and 2.94% (range:
2.7%, 3.2%), respectively. One sample in the validation
set was found to have thickness along the direction
of x-rays outside the range of 27—108 mm defined
by the training set, as shown in Figure 4. Therefore,
the mentioned sample was considered an outlier and
excluded from the calculation of these average errors.
For the test set, the MRD and MAE were −0.64% (range:
−1.6%, 0.2%) and 2.84% (range: 2.3%, 3.5%), respec-
tively. Individual errors on a projection level are shown in
Figure 5, as a function of the mean breast thickness.

Figure 6 shows the MRD, in percentage, plotted as a
function of breast density and of breast location, for the
validation and test sets.The obtained Pearson’s correla-
tion coefficients calculated with the MRD as a function
of breast location and breast density (by mass) were:
0.05, and −0.122 for the validation set; while for the test
set, the computed values were:−0.217 and −0.190.

Figure 7 shows some example error maps between
the MC-simulated and DL-estimated scatter projections
obtained for two samples, one per bCT system (and
therefore one for the internal validation, and one for the
external test set). Error maps show the relative absolute
percent error calculated pixelwise.

3.1 Extra inputs effect

Figure 8 shows the effect of the two additional param-
eters used as input to the model on the validation and
test performance.Numerical results are listed in Table 1.

3.2 Monte Carlo simulated bCT
acquisition

The SSIM computed over the evaluated set of 100
reconstructed slices was 0.99 and the MAE was 0.11%
(range: 0%, 0.35%) with a single slice outlier of 2.06%.
For that specific reconstructed slice where the outlier
was found, the pixelwise difference between the recon-
structed image of the ground truth and the estimated by
DL was calculated, as shown in Figure 9.

In Figure 10, profiles were plotted for a single recon-
struction slice from a full MC simulation 300 projection
set.

3.3 Application in clinical data

In Figure 11, profiles for a reconstructed slice of three
different bCT patient acquisitions are shown.The model
was found capable of accurately correcting the cupping
artifact present in the uncorrected acquired images.

Figure 12 shows the box plots of the mean attenu-
ation values for fibroglandular and adipose tissue, for
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8 AI-BASED SCATTER CORRECTION IN BREAST CT

F IGURE 5 The (a) mean relative difference (MRD) and (b) mean absolute error (MAE), in percentage, between the MC-simulated and
DL-estimated scatter images, as a function of breast thickness for each projection in the training, validation, and test set

F IGURE 6 Mean relative difference (MRD), in percentage, between the MC-simulated and DL-estimated scatter images, plotted as a
function of (a) breast density, and (b) breast location, to evaluate the effect of these factors on the scatter estimation error for the validation and
test sets

TABLE 1 Achieved accuracy for each of the evaluated combinations: No extra inputs (None), only thickness maps as extra input, only
breast location as extra input and then, both extra inputs (thickness maps and breast location). The calculated MRD and MAE (min, max) were
listed for the validation and the test set

Extra inputs to the network None
Thickness
maps

Breast
location Both

Validation set MRD Mean 0.51% −0.09% 0.96% 0.04%

Min. −1.84% −1.69% 0.24% −1.11%

Max. 3.88% 2.00% 2.44% 1.30%

MAE Mean 3.19% 3.28% 3.03% 2.94%

Min. 2.75% 2.89% 2.75% 2.69%

Max. 4.45% 3.86% 3.52% 3.21%

Test set MRD Mean −0.64% −1.20% −0.08% −0.64%

Min. −3.35% −2.93% −0.92% −1.63%

Max. 1.86% 1.97% 0.87% 0.24%

MAE Mean 3.00% 3.86% 2.89% 2.84%

Min. 2.27% 2.39% 2.36% 2.27%

Max. 4.03% 5.01% 3.24% 3.46%

Abbreviations: MAE, mean absolute error; MRD, mean relative difference.
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AI-BASED SCATTER CORRECTION IN BREAST CT 9

F IGURE 7 Example of error map between the MC-simulated and DL-estimated scatter images for two samples (in rows, one per
acquisition system) at different acquisition angles (in columns, 0◦, 90◦, 180◦, and 270◦). Error maps show the relative absolute percent error
(range: 0% to 10%) calculated pixelwise

the three evaluated patient cases,both uncorrected,and
corrected with the developed DL model. As shown in
the Figure, scatter correction could recover the average
voxel values to the linear attenuation coefficient found in
literature for both tissues.

The calculated contrast improvement for each patient
case P1, P2, and P3 was 25%, 30%, and 20%, respec-
tively. The mean CNR increased by 0.32 after scatter
correction, which was not found to be significant (95%
confidence interval: [−0.01, 0.65], p = 0.059). The resid-
ual distribution did not deviate from normal (p = 0.84).
Figure 13 shows the box plots of the calculated CNRs
for the three evaluated patient cases. The differences
were found in both directions and are small, with the
median values differing by less than 10%.

The time needed to correct the 300 projections of size
1024 × 640 pixels from a bCT scan is 58 s on a computer
unit with an AMD Ryzen Threadripper 1950 × 16-Core
Processor and NVIDIA GeForce GTX 1080 GPU. The
calculated time involves each of the steps of the pipeline
for obtaining the scatter-corrected image:normalization,
calculation of thickness maps and of the horizontal dis-
tance, scatter estimation, inversion of the normalization
to scale the intensity of the obtained scatter image to
the input, and subtraction of the scatter image.

4 DISCUSSION

In this work, we developed a DL model to estimate the
x-ray scatter signal in bCT projection images. When
evaluated against MC simulations, the model could
achieve accurate results in projection domain. When
evaluated in reconstruction domain,both on simulations
and on patient data, the model could correct for the
cupping artifacts due to the presence of scatter, could
increase the image contrast,and could recover the voxel
values to the expected linear attenuation coefficient.

The proposed model was devised to estimate the
scatter from a single bCT projection, with three-
dimensional image information learned through the two
extra inputs provided (breast location in the orthogo-
nal direction, and thickness map). When evaluating the
effect of these two additional inputs on the model per-
formance, the former achieved a further decrease in
the dispersion of error values, and the latter helped
avoid larger errors with increasing average breast thick-
ness. These findings, therefore, confirmed the need for
the inclusion of these two parameters for an optimized
learning. In addition, they show that a single-projection-
wise approach, when supplemented with these addi-
tional inputs, can yield accurate scatter estimates.
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10 AI-BASED SCATTER CORRECTION IN BREAST CT

F IGURE 8 Mean relative difference (MRD) plotted as a function of average breast thickness from the validation and test set for the model
trained: (a) without extra inputs, (b) with only the thickness maps added as extra input, (c) with only the breast location information added as
extra input; and (d) with both the thickness maps and the breast location information added as extra inputs (equal to Figure 5a after removing
outlier). The light blue band in each panel represents the range of values (min, max) of the data in panel (d)

F IGURE 9 Reconstructed slice with outlier value: (a) Monte Carlo ground truth, (b) deep learning (DL) corrected, and (c) pixelwise error, in
units cm−1, obtained by subtracting both images

Moreover, because there is no useful information that
can be analyzed from the reconstructed image due to
the aforementioned artifacts, the chest wall was not
taken into account in the error calculation. In any case,

if the chest wall would have been removed completely,
the resulting effect would have been minor, since Shi
et al., showed that ignoring the chest wall has a neg-
ligible effect on the performance of scatter correction,
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AI-BASED SCATTER CORRECTION IN BREAST CT 11

F IGURE 10 Example of profiles obtained for a Monte Carlo ground truth (red), deep-learning corrected (blue), and Monte Carlo
uncorrected (green) for an MC-simulated reconstruction slice. Monte Carlo uncorrected refers to the total uncorrected reconstruction using the
TMC projections

mainly due to the strong signal attenuation in the chest
wall region.35

The appropriateness of our DL approach seems to
be also confirmed when put in perspective with previ-
ously reported findings obtained with DL models trained
on MC simulations, performed mainly on body CBCT.
For example, Maier et al., who presented a U-Net-
based approach for scatter estimation in body CBCT4

reported that, in fully reconstructed images, the calcu-
lated MAE between DL-estimated and MC-simulated
scatter images for different anatomical regions was less
than 1.8%. Furthermore, the time required for the esti-
mation of scatter per projection was reported to be
≈0.01 s. In this work, when analyzing the error in the
reconstructed images,the calculated MAE was less than
1%, while the time required to correct the scatter was
≈0.2 s per bCT projection. Of course, while this com-
parison is a further confirmation of our findings, direct
comparison is not possible due to inherent differences
in datasets and imaging systems.

MC based on GPU has been under research and
development over a number of years,52 often requir-
ing simplification of some of the physical simulation
processes. Although performing GPU-based MC simu-
lations has resulted in orders of magnitude speedup, it
appears that an MC-GPU approach would still require
∼10 h to correct a full scan of 300 bCT projections.53

Importantly, our results seem to indicate no relevant
dependency of the estimated accuracy as a function
of breast thickness, density, and location in the field of
view.This suggests that a satisfactory scatter correction
can be achieved even for large, very dense breasts, and
even if the breast is not positioned precisely at the bCT
isocenter during acquisition.Only a single exception was
found (Figure 5), for which the estimation error (MAE)

was found considerably higher (although still lower than
5%). However, this specific phantom presented an aver-
age breast thickness of 90 mm or higher in all simulated
projections,being far from the training thickness distribu-
tions and being above the 90th percentile, according to
previous literature.55–57

The profiles obtained from the DL-corrected patient
bCT scans (Figure 11) showed a good agreement
with the reported theoretical x-ray linear attenuation
values for adipose and fibroglandular tissue in recon-
structed bCT images. Furthermore, the correction could
also achieve an increase in image contrast of 25%–
35% compared to the uncorrected reconstructions. This
increase in contrast was similar to that obtained in pre-
vious work aimed at scatter correction in bCT images,
achieved through the acquisition of a second image
with a perforated tungsten plate at the exit of the x-ray
tube.33 Therefore, our approach seems to yield state-
of -the-art findings, but with the important advantage of
not requiring any additional hardware components or the
acquisition of any additional images.

In addition, no statistically significant difference in
CNR values was found between the DL scatter-
corrected and uncorrected reconstructions, the calcu-
lated CNR values are close to each other for all three
cases and their differences vary in sign, indicating that
the CNR in the images is not really affected by the scat-
ter correction. Although relative noise increases when
the estimated scatter is subtracted from the projec-
tion, contrast also increases, keeping the ratio between
noise and contrast comparable and, therefore, accurate
quantitative information can be obtained without com-
promising the detectability, at least as represented by
CNR. The small contribution of the scatter image esti-
mated by the developed DL method to the total noise
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12 AI-BASED SCATTER CORRECTION IN BREAST CT

F IGURE 11 Example of profiles obtained for the three selected slices of reconstructed patient bCT images, both uncorrected and
DL-corrected. The filled band represents the obtained range of x-ray linear attenuation values for fibroglandular (fuchsia) and adipose tissue
(pink)

of the corrected image could be expected and may
be attributable to the employed U-Net functioning as
a denoiser in which many convolution layers help to
generate noise-free or negligible noise output.54

In this study, we showed that the developed method
can allow for quantitative image reconstruction, while it
results in similar CNR values compared to uncorrected

images. These factors point to the utility of the method
in increasing image quality. However, although the CNR
results are encouraging, they are not necessarily predic-
tive of clinical task performance,which could be affected
by other factors, such as higher noise correlations. In
this work, we did not specifically test our approach for
any clinical task, such as microcalcification detection
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AI-BASED SCATTER CORRECTION IN BREAST CT 13

F IGURE 12 Boxplots showing the average voxel values for three reconstructed uncorrected and DL-corrected bCT patient images. The
average voxel value was calculated in each patient image in 10 ROIs, half placed on adipose tissue (panel a) and half on fibroglandular tissue
(panel b). The measured average thickness for each case was 74, 78, and 72 mm, respectively. The filled bands represent the range of x-ray
linear attenuation values published for adipose (pink) and fibroglandular (fuchsia) tissues. The horizontal line inside the boxes (red) indicates
the median while the upper and lower limits of the boxes represent the first and third quartiles. The whiskers represent the maximum and
minimum values which are shown on the plot

F IGURE 13 Boxplots showing the CNR values for the three
example cases. The horizontal red line inside the boxes indicates the
median, the boxes represent the first and third quartiles, and the
whiskers represent the maximum and minimum values

performance.Of course,to further evaluate the appropri-
ateness of our methods for patient image correction and
clinical tasks, future work could include a larger image
dataset and human or model observers for compre-
hensive validation of the developed method on clinical
data.

A limitation of the developed work is the poten-
tial dependency of the accuracy in scatter prediction
for very large breasts (although, as mentioned, this
effect was relevant only for breast above the 90th
percentiles55–57). For this reason, to enlarge the range
of the population currently considered, larger sam-
ples will be included in our training set during future
investigations.

As a second limitation, the model was developed con-
sidering only a single bCT acquisition setting. If the
imaging conditions vary considerably, the model must
be re-trained.

In our future research, we plan to use the devel-
oped model to correct the scatter in contrast-enhanced
dynamic bCT.28 Since this involves using multiple differ-
ent exposure settings, we will extend our work to gener-
alize to the different spectra in this new system. Thanks
to scatter correction, accurate image reconstruction will
be possible, allowing for the correct quantification of
contrast-enhancement from breast tissues and lesions,
a recognized biomarker of breast lesion malignancy and
aggressiveness.

5 CONCLUSION

We developed a DL model to estimate the x-ray scatter
signal in bCT projection images. This model was able to
estimate scatter with high accuracy, resulting in scatter-
corrected images with improved contrast and without
significantly affecting the CNR. These corrected images
can therefore potentially be useful to improve diagnos-
tic performance and, importantly, yield quantitative bCT
image reconstructions where voxel values reflect the
true physical properties of breast tissues. Furthermore,
the short time required by the model to estimate (and
correct) the x-ray scatter can allow its use in daily clinical
practice.
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