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The diameter at breast height (DBH) of trees and stands is not only a widely used plant functional trait in ecology
and biodiversity but also one of the most fundamental measurements in managing forests. However, systemati-
cally measuring the DBH of individual trees over large areas using conventional ground-based approaches is
labour-intensive and costly. Here, we present an improved area-based approach to estimate plot-level tree DBH
from airborne LiDAR data using the relationship between tree height and DBH, which is widely available for most
forest types and many individual tree species. We first determined optimal functional forms for modelling height-
DBH relationships using field-measured tree height and DBH. Then we estimated plot-level mean DBH by
inverting the height-DBH relationships using the tree height predicted by LiDAR. Finally, we compared the
predictive performance of our approach with a classical area-based method of DBH. The results showed that our
approach significantly improved the prediction accuracy of tree DBH (R? = 0.85-0.90, rRMSE = 9.57%-11.26%)
compared to the classical area-based approach (R? = 0.80-0.83, rRMSE = 11.98%-14.97%). Our study demon-
strates the potential of using height-DBH relationships to improve the estimation of the plot-level DBH from

airborne LiDAR data.

1. Introduction

The diameter at breast height (DBH) of trees and stands is not only a
widely used plant functional trait in ecology and biodiversity but also one
of the most fundamental measurements in forest inventories. DBH has
been widely used to estimate forest attributes (e.g. basal area, tree vol-
ume, biomass, tree size distributions and stand growth) at the individual
tree, plot or stand levels (Chang et al., 2015; Sahin et al., 2019; Wu et al.,
2019). In addition, DBH has also been used to understand tree vigor and
forest structures (Fu et al., 2020), characterize forest dynamics (Wu et al.,
2019) and make silvicultural decisions (e.g. rotation age, timber harvest
size and assortment) (Saarinen et al., 2017) as well as quantify ecological
and economic services of forest ecosystems (Liu et al., 2018). Thus,
reliable and up-to-date information on tree DBH is critical to supporting a
wide range of sustainable forest management activities (Liang, 2013).
Several ground-based tools (e.g. diameter tape, calipers and Biltmore
stick) are commonly used to measure the DBH of trees (Mokros et al.,
2018). However, using these techniques to regularly measure the DBH of

* Corresponding author.
E-mail address: lincao@njfu.edu.cn (L. Cao).

https://doi.org/10.1016/j.fecs.2023.100089

individual trees over large areas is time-consuming, labour-intensive and
expensive (Chave et al., 2005). Consequently, the search for other
effective methods for spatially explicit estimates of DBH has long been a
key topic in the fields of forest applications (Mokros et al., 2018; Yang
et al., 2020).

Airborne light detection and ranging (LiDAR) technology has recently
gained popularity in 3D estimates of forest structures from individual tree
level to landscape level (Kankare et al., 2014; Maltamo et al., 2017;
Moreira et al., 2021). The most common approach with airborne LiDAR
for wall-to-wall estimates of forest structural attributes (e.g. DBH, tree
height and basal area) is known as the area-based approach (Ducey,
2012). The area-based approaches are typically based on a statistical
model that links LiDAR-derived structural metrics to the field-measured
variables in sampled ground plots (White et al., 2013, 2017). As a
fundamental unit of the area-based approach, the plot provides more
enhanced spatial depictions of forest attributes that can also be sum-
marised to the plot level, allowing for flexibility in updating inventories
and avoiding the bias often introduced by the individual tree-based
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approach (Tompalski et al., 2018). Moreover, since the area-based
approach is suitable for a lower point cloud density, it is more
cost-effective in terms of laser data acquisition and computation. Lefsky
et al. (1999) initially laid out the theoretical basis for the area-based
approach and provided a practical example. They estimated the
plot-level mean DBH (referring to the arithmetic mean value of the
diameter of all trees at breast height within a plot, i.e., (DBH; + DBH; ...
+ DBH,)/n) of a Douglas fir forest using airborne LiDAR-derived struc-
tural metrics and reported an adjusted-R? value of 0.61. Hawbaker et al.
(2010) used the area-based approach with airborne LiDAR data to predict
the plot-level mean DBH of a mixed hardwood forest in eastern North
America and achieved an R? value of 0.48. In another study, Teobaldelli
et al. (2017) estimated the plot-level mean DBH of a Mediterranean forest
in southern Italy using the area-based approach and reached an R? value
of 0.699. Although these studies have demonstrated the feasibility of
area-based approaches for estimating the plot-level mean DBH, the
estimation accuracy remains relatively low.

Previous studies have shown that there is a strong relationship be-
tween tree height and tree DBH, though this relationship is species-
(functional-type) and/or site-specific (Temesgen et al., 2014; Jucker
et al., 2017; Chenge, 2021). Such a biological relationship between tree
height and DBH is significant and has been widely applied in practical
forest inventories. For example, the height-DBH relationship has proven
to be an effective tool for estimating timber volume and predicting
growth and yield (Mensah et al., 2018; Zheng et al., 2018; Cysneiros
et al., 2020). Using the height-DBH relationship, researchers also built
local height-DBH models to predict the missing tree heights from
field-measured DBH to determine volume, biomass and other forest pa-
rameters (Ng'andwe et al., 2019). Consequently, numerous height-DBH
models have been developed for different tree species using various
growth functions in the past (Chenge, 2021). Zhao et al. (2022)
demonstrated that the height-DBH model can also be used to estimate
individual tree DBH by an inverse of the height-DBH model. However, to
the best of our knowledge, no study has applied height-DBH relationships
to estimate plot-level DBH from airborne LiDAR data. The height-DBH
relationship is not just a statistical expression but has certain biological
connotations in some contexts (Bi et al., 2012). We hypothesise that the
involvement of this height-DBH biological relationship with airborne
LiDAR data could improve the predictive accuracy of plot-level DBH
estimates.

In this study, we propose a new area-based approach to estimate plot-
level mean tree DBH based on height-DBH relationships using airborne
LiDAR data. Specifically, we set out to (1) determine the optimal func-
tional forms for modelling height-DBH relationships for different tree
species using field measurements; (2) estimate plot-level mean tree
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height (referring to the arithmetic mean value of the height of all trees at
breast height within a plot, i.e. (hy + hy ... + hy)/n) and the two pa-
rameters of the optimal height-DBH models using airborne LiDAR data;
(3) estimate plot-level DBH by inverting the height-DBH relationships
using the tree height predicted by LiDAR and compare the predictive
performance of the improved area-based approach with a classical area-
based approach.

2. Materials and methods
2.1. Study area and tree species

The study was conducted in the Gaofeng Forest Farm (108°23' E,
22°58 N) (Fig. 1), a state-operated subtropical planted forest located
near the town of Nanning City of Guangxi Province in southwest China. It
covers an area of 5200 ha, with elevations ranging from 77 to 463 m
above sea level. The main soil type in the study area is lateritic red soil
with an average soil layer thickness of over 80 cm. The forest is domi-
nated by Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) and
Eucalypt (Eucalyptus robusta).

2.2. Data

2.2.1. Field data

The fieldwork was conducted from 16 January to 3 February 2018.
We established the plots by considering the indexes of tree species, stand
mixture, stand density, tree height, DBH and the topographic effects (i.e.
slope and aspect). The existing historical data of stands were used to
extract the indexes for stratifying the layers, and then the 49 plots (i.e.
Chinese fir (n = 20) and eucalypt (n = 29)) were finally selected by
considering the information in the layers. So these fixed-area square plots
across the study site were selected by a stratified sampling strategy in
order to cover the range of variability in the attributes for representing
the population (White et al., 2013). Each plot was 20 m x 20 m in size,
and a Trimble Juno T41/5 Handheld GNSS instrument (Trimble, Sun-
nyvale, CA, USA) was used to record the centre location of each plot. We
measured the height and DBH of all trees with a DBH > 5 cm within each
plot using a Vertex IV hypsometer (Haglof, Langsele, Sweden) and a
diameter tape, respectively. Table 1 presents a summary statistic of
plot-level mean tree height, DBH and stem density for different species
plots.

2.2.2. Airborne LiDAR data

We acquired airborne LiDAR data for the entire study site on 17 and
30 January 2018 using a RIEGL LMS-Q680i long-range airborne laser
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Fig. 1. Map of the study area and the dominant tree species. (a) the study area showing the distribution of sample plots; (b) Chinese fir forest; and (c) eucalypt forest.
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Table 1
Summary statistic of field-measured parameters. S.D.: standard deviation.
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Table 2
Description of the 33 generated LiDAR metrics.

Plot types Statistic ~ Height DBH (cm)  Stem density
(m) (ha™)
Chinese fir plots (n = Mean 13.3 16.5 1245
20) Range 9.7-19.6 11.4-23.3  525-2450
S.D. 2.4 3.9 523
Eucalypt plots (n = Mean 15.9 12.6 1641
29) Range 8.0-30.4 5.5-23.5 725-2725
S.D. 4.6 4.0 576

scanner (RIEGL Laser Measurement Systems, GmbH, Horn, Austria)
mounted on a manned fixed-wing aircraft. The aircraft flew 750 m above
ground level with a flying speed of 180 km-h ™! and a flight line side-lap
of 65%. The LiDAR sensor recorded returned waveforms of laser pulses
with a temporal sample spacing of 1 ns (approximately 15 cm). The
LiDAR system was configured to emit laser pulses in the near-infrared
band (1550 nm) at a 300 kHz pulse repetition frequency and an 80 Hz
scanning frequency, with a maximum scanning angle of +£30° and a field
of view of 60° (RIEGL Laser Measurement Systems, GmbH, Horn,
Austria). The average LiDAR point density was 9.58 pulses~m’2 and the
average beam footprint size was 0.38 m.

After removing outliers of raw point clouds, we first filtered above-
ground return points using an improved progressive TIN densification
(IPTD) filter algorithm adapted from Zhao et al. (2016). Then, we
generated a 1-m digital terrain model (DTM) by calculating the average
elevation from the ground points within a rasterised cell grid. If there
were no returns within cell grids, these cell grids were filled by inter-
polation using an inverse distance weighted (IDW) algorithm. Finally, we
normalized the point clouds of the entire study area against the DTM data
and extracted point clouds of all sample plots using the coordinates of
plot positions. The normalized point clouds of Chinese fir and eucalypt
plots are shown in Fig. S1.

2.3. Derivation of LiDAR metrics

We extracted two sets of LiDAR structural metrics, i.e. standard
metrics and canopy metrics. The standard metrics consist of height-
related metrics (e.g. height percentile, mean height and skewness of
heights) and canopy return density-related metrics (e.g. densities, canopy
cover and canopy relief ratio). The canopy metrics include several canopy
volume (CV) metrics which represent a spatial organisation of the tree
material (e.g. trunk and foliage) and the total canopy volume within the
canopy, along with others, such as rumple index (Rumple), canopy gap
probability (Pgap), coefficient of variation of leaf area density (CvLAD)
and vertical complexity index (VCI). The VCI is a scale-independent
measure of the evenness of the vertical distribution of the LiDAR point
clouds with a scale of 0-1. The closer the VCI value is to 1, the more
uniform (i.e. homogeneous) the distribution, and the closer the VCI value
is to 0, the more uneven (i.e. heterogeneous) the distribution (van Ewijk
et al., 2011). Previous studies have shown that the above-mentioned
metrics can provide valuable information in estimating forest structural
parameters (Lefsky et al., 1999; Parker et al., 2004; Zhang et al., 2017,
2019; Cao et al., 2019). As a result, a total of 33 LiDAR metrics were
generated (Table 2). We calculated these LiDAR metrics in the FUSION
(US Forest Service, Seattle, WA, USA) and Matlab R2018b environments
(The Mathworks Inc., Natick, Massachusetts, USA).

2.4. Selection of LiDAR metrics

Previous studies have shown that many LiDAR metrics are highly
correlated to each other (Silva et al., 2016; Stitt et al., 2022). To avoid
potential multicollinearity issues between LiDAR metrics, we first per-
formed a variance inflation factor (VIF) analysis and retained the metrics
having a VIF value lower than 5 (Peereman and Hogan, 2022). Then, we
further calculated the Pearson's correlation coefficients (r) among the

LiDAR metrics Definition

Standard metrics (n = 23)
has, hsg, hys and hgs The percentiles of the canopy height distributions
(25th, 50th, 75th and 95th) of first returns

Mean height, max height, quadratic mean height,
cubic mean heights, standard deviation, variance,
coefficient of variation skewness and kurtosis of
the heights above ground of all first returns

The ratio of the third (L3) to the second (L2) L-
moments; The ratio of the third (L4) to the second
(L2) L-moments; the ratio of the second (L2) to the
first (L1) L-moments

The proportion of points above the quantiles (10th,
30th, 50th, 70th and 90th) to total number of

hmean; hmax: hSQRT’ hCURT; hstd,
hyar, Aev, Askewness and Akurcosis

hi, skewnesss M1, kurtosis and hy, cv

dy, ds, ds, d7 and dg

points
CCom Percentages of first returns above 2.0 m
CRR Canopy relief ratio ((mean — min)/(max — min))

Canopy metrics (n = 10)
Filled, Empty, OG, CG, Eu, The voxels filled in point clouds and empty voxels
Oligo within canopy spaces (Filled, Empty); the empty

voxels located above and below the canopy
respectively (OG, CG); the voxels located within an
uppermost percentile (65%) of filled grid cells of
that column and voxels located below the point in
the profile (Eu, Oligo)

Rumple The ratio of canopy outer surface area to ground
surface area
Pgap A gap probability measurement using the equation

(Nground/Niota); Nground is the number of pulses
having the last return down to the ground; Niotal is
the total number of all returns

CvLAD Variation within the vertical leaf area density
profile
VCI Distribution of abundance of returns in specified

height bins. VCI = — Y"1 [p; In(p;)]/In(HB), where
HB is the total number of height bins, and p; is the
proportional abundance of LiDAR returns in height
bin i

remaining metrics using a “corrplot” package in R version 3.6.1 (R Core
Team, 2008). We retained the metrics with low correlation (|r| < 0.7)
(Dormann et al., 2013). Pearson's correlation coefficient confirmed that
the |r| values of all pairs of remaining metrics determined by VIF were
lower than 0.7 (Fig. 2). As a result, we selected 11 out of 33 LiDAR
metrics for use in subsequent prediction models (Table 3).

2.5. Models for DBH estimation

2.5.1. Classical area-based approach

We used a classical area-based approach for plot-level DBH estimates
as a comparison of the improved area-based approach proposed in this
study. In the classical area-based approach, we established the plot-level
statistical regression relationships between LiDAR metrics and field-
measured mean DBH using the following formula:

Di=f(Xin),i=1,+,n,n >m, (€Y

where D; denotes field-measured mean DBH of plot i, X;, denotes the mth
LiDAR metrics derived from plot i, f denotes predictive function, either as
parametric or non-parametric models.

The random forest (RF) algorithm is one of the most commonly used
non-parametric regression approaches for predicting forest attributes in
LiDAR-based forest inventory (Belgiu and Dragu, 2016). One of the main
benefits of using the RF algorithm is that multiple predictive variables
can be incorporated without making assumptions about their statistical
distribution or covariance structure (Belgiu and Dragu, 2016). Thus, we
also employed the RF for estimating DBH in the classical area-based
approach. For the RF algorithm, there are two key parameters, i.e. the
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Fig. 2. Cross-correlation matrix of the 11 LiDAR metrics determined by the
variance inflation factor (VIF); see Table 3 for definitions of the metrics.

Table 3
Selected LiDAR metrics for DBH estimations in this study based on the variance
inflation factor (VIF) analysis.

LiDAR Definition

metrics

hey Coefficient of variation of the heights above ground of all first returns

Ryurtosis Kurtosis of the heights above ground of all first returns

Ay, skewness Ratio of the third (L3) to the second (L2) L-moments

d; Proportion of points above the 10th quantiles to the total number of
points

ds Proportion of points above the 50th quantiles to the total number of
points

do Proportion of points above the 90th quantiles to the total number of
points

oG Empty volume that voxels located above the canopy

Eu Euphotic volume that voxels located within an uppermost percentile

(65%) of filled grid cells of that column

Rumple The ratio of canopy outer surface area to ground surface area

Pgap A gap probability measurement using the equation (Nground/NiotaD);
Nground is the number of pulses having the last return down to the
ground; Ny, is the total number of all returns

CvLAD Variation within the vertical leaf area density profile

number of decision trees (ntree) and the number of variables to randomly
sample as candidates at each split (mtry), which need to be defined by
users. In this study, default settings (ntree = 500 and mtry = 1/3 of the
number of feature variables) were selected to train the RF regression
models, since previous studies have shown that the default parameter
setting often leads to a more accurate model prediction (Belgiu and
Dragu, 2016; Zhao et al., 2019). We implemented RF model using the R
package “randomForest” in this study. The RF models were constructed
using Chinese fir plots, eucalypt plots and pooled plots.

2.5.2. Improved area-based approach

The improved area-based approach consists of several steps (Fig. 3).
First, we determined the forms of the optimal fitting functions for
modelling field-measured tree height-DBH relationships. To do so, we
selected 10 equations (Table 4) with tree height (H) and DBH (D) as
candidate functions (f) since previous studies demonstrated these func-
tions have a relatively low unexplained variance when fitting height-DBH
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relationships (Huang and Titus, 1992; Tuan et al., 2019). We classified
the entire datasets into three different groups (i.e. Chinese fir plots,
eucalypt plots and pooled plots) (Table 5). The pooled plots contained
the measured individual trees from all plots to establish more reliable
height-DBH models and we used their tree heights and DBH values to
model height-DBH relationships. We randomly divided the total samples
of each group into training (70%) and validation (30%) data sets for
developing general height-DBH models and evaluating their perfor-
mance. We evaluated candidate functions with training data sets to select
the best function forms for pooled plots, Chinese fir plots and eucalypt
plots, respectively. We used the R? (coefficient of determination), RMSE
(root-mean-square-error) and rRMSE (relative RMSE) as measures to
assess the accuracies of height-DBH models from training data sets and
used the MAE (mean absolute error) and MAPE (mean absolute percent
error) to evaluate the validation performance of height-DBH models.

After we selected the optimally fitting function forms of general
height-DBH models, we used them to fit the height-DBH relationships of
each plot. Then, we calculated plot-level 5y and $; by a non-linear least
square (NLE) function when modelling the height-DBH relationship of
each plot. Next, we estimated plot-level H, 5y and ; by selected LiDAR
metrics in RF models. Finally, we estimated the plot-level DBH from an
inverse function of LiDAR-reconstructed height-DBH relationships with
input variables (i.e. estimated plot-level H, o and f$1) through the
following formula:

H=f(D),D € (0,+0) = D =f"(H),D € (0, +o0), 2

where H and D are LiDAR-predicted tree height and DBH, respectively.
f1is the inverse function of f.

2.6. Model accuracy assessment

The performance of the developed plot-level RF models of DBH, H,
Po and p; was evaluated through a leave-one-out cross-validation
(LOOCV) analysis, which uses a single observation from the original set
as validation data and the remainder as training data. This process was
iterated until all observations in the sample set are used once as valida-
tion data. Specifically, we repeated the LOOCV process for Chinese fir
plots, eucalypt plots and pooled plots 20, 29 and 49 times, respectively.
We assessed the predictive performance of each RF model using R? and
rRMSE (%) within the LOOCV and selected the model with the best
performance.

3. Results
3.1. Optimal height-DBH models

Table 6 shows the most accurate general height-DBH models for
Chinese fir plots (R% = 0.76, RMSE = 1.71, tRMSE = 12.91%), eucalypt
plots (R? = 0.73, RMSE = 2.51, rRMSE = 16.44%) and pooled plots (R?
= 0.51, RMSE = 3.34, rRMSE = 22.76%). The height-DBH model for
pooled plots produced the lowest accuracy in terms of fitting perfor-
mance and validation performance (MAE = 2.60, MAPE = 18.87%). The
height-DBH model for Chinese fir plots achieved slightly better valida-
tion performance (MAE = 1.33, MAPE = 11.06%) than the height-DBH
model for eucalypt plots (MAE = 1.94, MAPE = 14.71%).

Fig. 4 shows the optimal height-DBH relationships with the fitted
curves for different plot types using logarithmic, linear and Meyer fitting
functional forms, respectively.

3.2. Estimation of plot-level mean tree height and the two parameters of the
height-DBH models

Table 7 shows the prediction accuracy of plot-level mean tree height
and the two parameters of the height-DBH models using airborne LiDAR
data. The accuracy of tree height prediction for the pooled plots was the
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Fig. 3. Outline of the workflow of the study; DTM: digital terrain model, DBH: mean diameter at breast height, H: mean tree height, height-DBH: height-DBH

relationship. D = f~ L(H): DBH's inverse function.

Table 4
Ten candidate height-DBH models evaluated in this study. H: tree height (m), D:
tree diameter at breast height (cm), y and $;: parameters to be estimated.

Eq.no.  Models Equations References

Two-parameters functions: H = f(D)

1 Linear H =13+p,D+ p; Mensah et al. (2018)
2 Power H =13+ p,D" Tuan et al. (2019)
3 Exponential ~H = 1.3+ f, exp (4,D) Gao et al. (2016)
4 Logarithm H =13+p,InD+ p, Baral (2017)
5 Wykoff B i Wykoff et al. (1982)
H =13+ exp (/30 +1+D
6 Meyer H =1.3+ fy[1 — exp (-4, D)] Meyer (1940)
7 Naslund D 2 Pukkala et al. (1990)
H=13+ (7>
Po + $1D,
8 Curtis 13 D\~ Curtis (1967)
H=13+p, <ﬁ)
9 Bertalanffy H =13+ fy[1 —exp (—p,D)]>  Von Bertalanffy (1949)
10 Hossfeld Ho134 poD? _ Sharma (2009)
(p1 +D)
Table 5

Statistics of the number of training and validation samples in different groups
employed for modelling height-DBH relationships.

Groups Number of total Number of Number of
samples training samples validation samples
Chinese fir plots 851 596 255
(n =20)
Eucalypt plots (n 1817 1272 545
=29)
Pooled plots (n = 2668 1868 800
49)

highest (R? = 0.89, rRMSE = 9.49%), followed by eucalypt plots (R* =
0.88, rRMSE = 10.36%) and Chinese fir plots (R?> = 0.83, rRMSE =
15.21%). For the prediction of the two parameters of the height-DBH
models, f; generally yielded relatively higher accuracy than fj. The ac-
curacy of 8y and p prediction for the pooled plots was the highest (R? =

0.89-0.96, rRMSE = 7.16%-13.36%), followed by Chinese fir plots (R2
= 0.86-0.89, rRMSE = 13.08%-14.22%) and eucalypt plots (R? =
0.74-0.78, rRMSE = 18.78%-19.89%).

3.3. Performance comparsion between the classical area-based approach
and the improved area-based approach

Fig. 5 shows the field-measured versus LiDAR-estimated mean DBH
using the classical area-based and the improved area-based approach for
Chinese fir plots, eucalypt plots and pooled plots, respectively. For the
classical area-based approach, the prediction accuracy for the eucalypt
plots (R? = 0.83, rRMSE = 11.98%) was slightly higher than that of the
Chinese fir plots (R? = 0.80, rRMSE = 14.97%) and pooled plots. For the
improved area-based approach, the prediction accuracy of the DBH for
eucalypt plots was the highest (R? = 0.90, rRMSE = 9.57%), followed by
pooled plots (R? = 0.88, rRMSE = 10.49%) and Chinese fir plots R? =
0.85, rRMSE = 11.26%).

In comparison, the improved area-based approach yielded relatively
higher accuracy (R?> = 0.85-0.90, rRMSE = 9.57%-11.26%) than the
classical area-based approach (R? = 0.80-0.83, rRMSE = 11.98%
14.97%). Specifically, the prediction accuracy of the DBH for eucalypt
plots was significantly higher than that of Chinese fir plots.

4. Discussion

The results of this study showed that the new area-based approach
with airborne LiDAR data considerably improved the accuracy (R* =
0.85-0.90, rRMSE = 9.57%-11.26%) of the DBH estimation at the plot
level. This demonstrated the effectiveness of combining the height-DBH
relationship with airborne LiDAR data for estimating plot-level DBH.

With classical area-based approaches, most previous studies on esti-
mating plot- or stand-wise DBH have often shown limited performance
(e.g. Muhamad-Afizzul et al., 2019; Ozkan et al., 2022). This may be
explained by the volatile relationship between the mean DBH and the
LiDAR-derived metrics used in the developed models. Due to the “top--
to-bottom” scanning mode of airborne LiDAR systems, the LIDAR metrics
used to describe stand structure are generally derived from the vertical
distribution of LiDAR returns. These metrics often reflect the complexity
of the canopy vertical structure whereas most of them do not sufficiently

Table 6

The optimal height-DBH models established using field measurements; significance level of F-test p-value: *p < 0.05.
Types Models Equations R? RMSE rRMSE (%) MAE MAPE (%)
Chinese fir plots Logarithm H = 1.3 + 6.890InD - 6.403 0.76* 1.71 1291 1.33 11.06
Eucalypt plots Linear H = 1.3 + 0.960D + 2.497 0.73* 2.51 16.44 1.94 14.71
Pooled plots Meyer H = 1.3 + 23.967[1 - exp(-0.067D)] 0.51* 3.34 22.76 2.60 18.87
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Fig. 4. The optimal height-DBH relationships with fitted curves using field measurements; each curve with various colours represents the height-DBH relationship of
each plot and this curve was fitted by the selected fitting functional form from Table 6, but plot-level 3, and f; of each curve were recalculated when modelling the
height-DBH relationship of each plot; a: height-DBH curves of Chinese fir plots fitted by a logarithmic model; b: height-DBH curves of eucalypt plots fitted by a linear
regression model; c¢: height-DBH curves of pooled plots fitted by a Meyer model. (For interpretation of the references to colour in this figure legend, the reader is

referred to the Web version of this article.)

Table 7
Accuracy results of predictive plot-level tree height (H) and two parameters (o
and f;) of the selected height-DBH models for Chinese fir plots, eucalypt plots
and pooled plots using LiDAR metrics; significance level of F-test with p-value: *p
< 0.05.

LiDAR Evaluation Forest types
dicti ind
PISCICEOHS mndexes Chinese fir Eucalypt Pooled
plots plots plots

H R? 0.83% 0.88* 0.89%
rRMSE (%) 15.21 10.36 9.49

Po R? 0.86* 0.74* 0.89*
TRMSE (%) 13.08 19.89 13.36

b R? 0.89* 0.78* 0.96*
rRMSE (%) 14.22 18.78 7.16

take into account horizontal structure arrangement, indicating they are
generally more height-related but less diameter-related (Coomes et al.,
2017; Moran et al., 2018). Bouvier et al. (2015) and Véga et al. (2016)
thus suggested that an area-based approach should consider involving
the metrics that have the potential to provide information on plot hori-
zontal heterogeneity. The canopy volume metrics (e.g. OG and Eu) and
the Rumple (Fig. 2) employed in our study have been demonstrated to
take into account horizontal structure within the model prediction. This
may explain why our DBH models generated by the classical approach
maintained a relatively high predictive performance (R? > 0.80).
Another reason explaining these results may be the fact that Chinese fir
and eucalypt plots of our research site were established in almost
single-layered pure stands with relatively even-sized diameter distribu-
tions and such stand structure characteristics, thereby producing a rela-
tively strong relationship between mean DBH and LiDAR data at the plot
or stand level (Nasset et al., 2004). In this regard, the classical area-based
approach for DBH estimates is more dependent on the characteristics of
the input datasets and forest conditions (Moran et al., 2018).

Unlike plot-level mean DBH, mean tree height can be predicted more
accurately either in single- or multi-layered forests due to the attribute
characteristics of airborne LiDAR itself. In the improved area-based
approach, retrieval of mean tree height from airborne LiDAR permits
its use in the prediction of mean DBH via the height-DBH models. Sub-
stantially, the relationship between tree height and DBH is an inherent
functional trait of the tree itself that reflects the evolutionary competition
and a balance between tree growth and survival within a stand and this
kind of relationship always are biologically interpretable rather than
merely understood as a statistical relationship (Chave et al., 2005; Bi
et al., 2012). The significant increases in the DBH predictions of our

results may be explained by the fact that our improved area-based
approach made DBH predictions no longer directly dependent on the
unstable relationship with the LiDAR metrics. Moreover, compared to the
classical area-based modeling, our approach gained more mechanistic
understanding and interpretability for the DBH predictive models by
incorporating intrinsic physiological height-DBH relationships.

We confirmed that the best optimal height-DBH models varied
significantly among tree species (Table 6). This is in line with the findings
of Cysneiros et al. (2020) and Mensah et al. (2018), who indicated spe-
cies dependency in height-DBH models. This might be explained by the
reason that tree architectural and physiological differences showed to be
species-specific. In this case, eucalypt is a fast-growing and high-yielding
plantation species and it is highly intensively managed with a shorter
rotation than Chinese fir in our study site. Thus, the stable height-DBH
relationship with a seemingly constant growth rate in young Eucalypt
forests could be well captured linearly, while comparatively, the
concave-shaped logarithmic function was selected as the optimal func-
tion for Chinese fir plots. Our finding that the species-specific height-DBH
models outperformed the generic model (i.e. pooled plots) is not sur-
prising, as these models without consideration of species information
might embody much hierarchical and heterogeneous forest structure
information and result in large systematic errors (Kearsley et al., 2017;
Mensah et al., 2018). As pointed out in Mensah et al. (2018), the generic
models can provide a cost-effective (fewer field measurements and in-
ventory efforts) and relatively accurate (for large-scale application)
approach but these models are less accurate at local or fine-scale appli-
cation, especially for species in environments (Kearsley et al., 2017).
Thus, to increase the geographical generality and the prediction accuracy
of height-DBH models, incorporation of a site (e.g. stand age) and climate
variables (e.g. precipitation) could be considered in our future works
since these variables have proven to the interactive effects on height-DBH
models (Zhang et al., 2018; Sharma et al., 2019; Cui et al., 2022).

The height-diameter relationship of trees in a forest stand can vary by
plots with different variations; hence, there is a need to incorporate plot-
level height-DBH variations into the models (Chenge, 2021). In this
study, we calibrated the height-DBH models of each plot by modulating
their gy and p; values. To do this, our improved area-based approach
allowed us to derive localised gy and p; values of each plot by fitting
field-measured data using the optimal height-DBH models and estimate
these two parameters by LiDAR metrics. Surprisingly, both gy and f;
yielded high predictive accuracies in our study (Table 7). One potential
explanation that could be offered is their strong correlation with tree
height. Previous studies have noted that strata-specific predictive models
had a positive impact on final estimations compared to unstratified
models (Bouvier et al., 2015; Latifi et al., 2015; Zhang et al., 2017, 2019;
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Cao et al., 2019). But such a conclusion is not an absolute one. Latifi et al.
(2015) reported only slight improvements when using forest-type strat-
ification for biomass estimations. The outcomes that unstratified models
showed higher performance than stratified models were also reported by
Hollaus et al. (2007), Tonolli et al. (2011) and Mcroberts et al. (2013),
which were similar with our results (Table 7). Our predictive fy and
models of the pooled plots in Table 7 had relatively higher performance
than those of the species-specific plots. However, it might also be noted
that both gy and f; of species-specific plots and pooled plots were
conferred different biological meanings depending on the their selected
allometric H-D models. For instance, the f; of Meyer is an asymptote
parameter representing the maximum attainable tree height, whereas the
Bo (i.e. slope term) of Linear function for eucalypt plots represents the
increment rate of tree height with diameter and the Logarithm function's
Po of Chinese fir plots is actually a scale parameter, which could control
the scale size (i.e. height range) of the curve distributions. The Sy of
Meyer for pooled plots could be more directly related to the tree height
and therefore it was well predicted by the LiDAR metrics than the fj of
species-specific plots. For H estimations, the H model of Chinese fir plots
obtained the lowest prediction accuracy in our results. This may be due to
the fact that Chinese fir forests had more uneven-sized stands and
possessed higher inequality of tree size than Eucalypt forests and their
sharp treetops were difficult to be hit by narrow laser pulses due to their
unique conical crowns, resulting in an underestimate of H and an un-
apparent accuracy improvement of stratified Chinese fir models
compared to the general models of pooled plots. The H model of pooled

plots performed better that of eucalypt plots. One reason for explaining
this may be the fact that there was variability between the plot species,
but lower intra plot variability in pooled plots (e.g. standard deviation of
field-measured H = 4.2 m) compared to eucalypt plots (e.g. standard
deviation of field-measured H = 4.6 m).

To our knowledge, no study has estimated two parameters of height-
DBH models at the plot level using LiDAR metrics. This study provides
new insights as our area-based approach calibrated height-DBH models
of each plot and consequently improved plot-level DBH estimates by an
inversion of these localised height-DBH models and LiDAR-predicted
mean tree heights. This manner can help specific areas to achieve plot-
specific height-DBH models and magnitude and spatial distribution
mapping of wall-to-wall DBH using the improved area-based approach,
which will contribute to the understanding of stand growth and support
precise silviculture and sustainable management across varied forest
stands in subtropical planted forests. However, an accurate mapping of
tree species classification is also an essential prerequisite for spreading
the improving area-based approach to extrapolate plot-wise DBH over
larger coverage. Therefore, future studies should endeavor to make some
potential improvements, such as coupling those optical spectral indices
that greatly favor tree species classification into our approach. In addi-
tion, since our study was conducted in a plantation area with relatively
homogeneous canopy vertical structures, the promotion and large-scale
application of our approach still requires further verification in forests
with more complex structures, such as natural forests. Moreover, in our
study, the localized H-D relationships were determined by in-situ
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measurements of individual tree DBH and tree height, which is labour
intensive and also costly. In recent years, UAV-borne LiDAR has become
particularly notable in enhanced forest inventories due to its light weight,
low cost, flight route flexibility and high repeatability etc. (Gao and
Zhang, 2021). UAV-borne LiDAR systems can accurately measure tree
height by high density point clouds (Puliti et al., 2020; Corte et al., 2020).
Terrestrial LIDAR and Mobile LiDAR (e.g. backpack or hand-held) sys-
tems have excellent advantages in estimating tree DBH because they have
the strong capability to characterize 3D under-canopy structures (e.g.
tree trunks and branches) (Liang et al., 2019). Thus, if we want to
establish the localized height-DBH models without using in-situ tree
height and measurements in the future, we could use the combination of
UAV-borne LiDAR data and Terrestrial/Mobile LiDAR data to obtain the
fused point clouds (characterizing the complete forest vertical structure),
and then extract a sufficient number of individual tree parameters
(height (from UAV LiDAR) and DBH (from Terrestrial/Mobile LiDAR)) to
establish localized height-DBH models. Once the localized height-DBH
models are established, we could finally extrapolate the developed
area-based approach in this study for larger coverage using
airborne/UAV-borne LiDAR data to make “wall-to-wall” predictions of
localized height-DBH models, for predicting DBH in the study site.

5. Conclusions

In this study, we proposed an improved area-based approach for plot-
level DBH estimates using airborne LiDAR data based on height-DBH
relationships. We also compared the performance of our approach with
a classic area-based approach. Results showed that our approach signif-
icantly improved the plot-level DBH estimates. In the improved area-
based approach, plot-level mean tree height and two parameters (i.e.
Bo and f1) of height-DBH models were predicted with good accuracies,
which greatly contributed to the improvements of plot-level DBH esti-
mates. Our approach can help foresters acquire DBH products at the plot
level that meet the demands of the forestry industry in a LiDAR-aided
forest inventory, which could improve our understanding of the
ecological functions of forests, improve forest treatments and support
sustainable forest management.
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