
On the Modeling of Correct Service Flows with BPEL4WS  

Manfred Reichert, Stefanie Rinderle, Peter Dadam 

Department Databases and Information Systems 
University of Ulm, D-89069 Ulm, GERMANY 

{reichert, rinderle, dadam}@informatik.uni-ulm.de 

Abstract: Frameworks for composing Web Services offer a promising approach 
for realizing enterprise-wide and cross-organizational business applications. With 
BPEL4WS a powerful composition language exists. BPEL implementations allow 
orchestrating complex, stateful interactions among Web Services in a process-
oriented way. One important task in this context is to ensure that respective flow 
specifications can be correctly processed, i.e., there will be no bad surprises (e.g., 
deadlocks, invocation of service operations with missing input data) at runtime. In 
this paper we subdivide BPEL schemes into different classes and discuss to which 
extent instances of these classes can be analyzed for the absence of control flow er-
rors and inconsistencies. Altogether our work shall contribute to a more systematic 
evolution of the BPEL standard instead of overloading it with too many features. 

1. Introduction 

Today there is a high need for active coordination of the various, distributed tasks neces-
sary to perform enterprise-wide or even cross-organizational business processes. Ser-
vice-oriented architectures offer a promising approach in this context. Usually, they pro-
vide a framework for specifying, implementing, and registering services as well as for 
composing them in a reliable and process-oriented manner [Al04]. The latter enables 
stateful interactions among services and provides the basis for process orchestration.  

So far different languages for Web Service composition and Web Service orchestration 
have been proposed [An03, Ch03, KMW03, HB03, NM02]. Among them are WSFL 
(Web Service Flow Language) and XLANG [Ch03]. While WSFL has followed a graph-
based approach for flow modeling, XLANG has been based on an algebraic language 
with block-based description concepts. BPEL4WS (Business Process Execution 
Language for Web Services – BPEL for short) represents a convergence of the ideas fol-
lowed by these two languages. It combines the graph oriented flow representation of 
WSFL with the block-based flow description of XLANG [An03].  

Main emphasis of this paper is put on selected modeling and verification issues related to 
BPEL control flow specifications. So far only few approaches exist which systematically 
deal with respective problems [BK03, Ma04]. As known from software development, 
errors which are detected in late phases of the development cycle are most expensive. 
For process-aware applications this means that design and implementation errors must 



be detected as early as possible. For example, service flows must not run into deadlocks 
at runtime or must not invoke service operations with missing input data. In principle, 
this can be achieved by using BPEL as flow description language since it allows to mo-
del the flow logic of business processes separately and independently from the imple-
mentation of the used Web Services [KMW03, Wo02]. Thus flow changes can be ac-
complished at a high level and without affecting service implementations. In this paper 
we subdivide BPEL control flow schemes into different classes and discuss to which 
extent instances of these classes can be analyzed for the absence of the mentioned errors. 
This discussion, in turn, shall contribute to the further evolution of BPEL.  

Section 2 summarizes basic concepts of the BPEL specification. In Section 3 we provide 
a classification of BPEL schemes, which is helpful for systematically dealing with issues 
related to control flow definition and verification. For each of the identified classes, 
Section 4 discusses to which degree correctness properties of corresponding BPEL 
schemes can be guaranteed. The paper concludes with a short summary in Section 5. 

2. Basic Concepts of BPEL4WS 

In this section we summarize selected features of BPEL4WS – background information 
which is needed for the further understanding of this paper. BPEL comprises a powerful 
process meta model for describing business processes based on the interactions between 
the process and its partners [An03]. The BPEL specification consists of an XML 
grammar and makes use of several well-known XML specifications (including WSDL 
1.1). For the sake of readability, however, in the following we mainly abstain from 
XML-based flow representations and use graphical illustrations instead.  

In a BPEL flow the interaction with each partner occurs through Web Service interfaces. 
The structure of respective relationships is encapsulated in partner links. Process activi-
ties may invoke service operations of partners synchronously or they may receive messa-
ges from service invocations of partners and reply to them asynchronously at a later 
point in time. A BPEL flow specifies how service interactions are coordinated. More 
precisely, BPEL allows modeling the service flow explicitly and independently from the 
implementation of the Web Services activity execution is based on. Finally, BPEL 
comprises modeling elements for dealing with activity failures. For example, designers 
may specify how activities are to be compensated at the occurrence of semantic failures.  

For illustration purposes we consider the process for handling a purchase order (as 
described in [An03]). The aim is to introduce the graphical notation on which we base 
our illustrations. Fig. 1 represents the basic logic of this process: Solid arrows represent 
sequencing. Free grouping of sequences represents concurrent activities and dotted ar-
rows represent links. The latter can be used, for example, to synchronize activities ar-
ranged in parallel so far. On receiving the purchase order from a customer the flow de-
picted in Fig. 1 initiates three tasks in parallel: calculating the final price for the order, 
selecting a shipper, and scheduling the production and shipment for the order. While 
some activities related to these tasks can be processed concurrently, there are others with 
dependencies between them. Particularly, shipping information is needed to send the 
shipping price, and the shipping schedule is required for completing the production sche-



duling. When completing the three tasks, the invoice is processed and sent to the cus-
tomer. As can be seen from Fig. 1, different kinds of activities can be used to describe 
the interaction and communication patterns between process and partners. Activity Re-
ceive Purchase Order, for example, corresponds to the service invocation of a customer. 
From the process viewpoint this activity represents a receive activity leading to the 
creation of a new flow instance. The flow itself invokes several service operations syn-
chronously at partner sites (invoke activities). Finally, the process replies to the received 
purchase order by sending a corresponding message to the customer (reply activity).  

 

Receive 
Purchase Order 

Process 
Invoice 

Assign 

Initiate  
Price Calculation 

Send  
Shipping Price 

Receive 
Invoice 

Decide on  
Shipper 

Receive  
Schedule 

Initiate Production 
Scheduling 

Complete Production 
Scheduling 

invoke activity receive activity reply activity assign activity sequence link sync link  

Fig. 1: Purchase order example (control flow perspective) 

Data flow between activities (not depicted in Fig. 1) can be specified by mapping input/ 
output messages of activities to process variables. Depending on the kind of activity, 
read or write access to these process variables can be allowed. A receive activity may 
only write process variables whereas a reply activity may only read them. Invoke 
activities may have both read and write access to variables (for details see [An03]).  

BPEL provides a multitude of possibilities to describe the desired flow logic. For examp-
le, Fig. 2 shows a WSFL-like modeling of the purchase order example, which is based 
on a graph of activity nodes and links. Generally, a wide variety of modeling facilities 
exist, including the assignment of transition conditions (i.e., predicates on flow va-
riables) to links and the definition of activity join conditions. As opposed to this, Fig. 3 
mainly reflects the XLANG-like modeling style which uses structured activities 
(sequence, flow) and two additional links to synchronize concurrent steps.  

3. Classification of BPEL Schemes 

As illustrated in Section 2, BPEL allows specifying the same control flow pattern in dif-
ferent ways [Wo02]. Basically, two modeling styles are supported: One of them follows 
a block-structured approach whereby control flow is modeled through the nested use of 
structured activities (sequence, flow, while, switch, pick). The other uses a 
graph-oriented approach based on nodes, links and related join / transition conditions.  



 

Receive 
Purchase Order 

Process 
Invoice 

Assign 

Initiate  
Price Calculation 

Send  
Shipping Price 

Receive 
Invoice 

Decide on  
Shipper 

Receive  
Schedule 

Initiate Production 
Scheduling 

Complete Production 
Scheduling  

Fig. 2: WSFL-like modeling based on a network of links   

 

Process 
Invoice 

Assign 

Initiate  
Price Calculation 

Send  
Shipping Price 

Receive 
Invoice 

Decide on  
Shipper 

Receive  
Schedule 

Initiate Production 
Scheduling 

Complete Production 
Scheduling 

Receive 
Purchase  

Order 

Sequence Flow 
(Sync) Link 

Activity 

 

Fig. 3: XLANG-like modeling with minimal use of links 

Generally, it is possible to mix both modeling styles by having links crossing the boun-
daries of structured activities (cf. Fig. 3). On the one hand BPEL enables high expres-
siveness as well as upward compatibility of WSFL and XLANG specifications; on the 
other hand this aggravates flow modeling, analysis and verification significantly.  

In order to better structure our discussions we classify BPEL schemes according to the 
control flow elements used for their definition. Doing so we distinguish between flow 
schemes with strict block structuring (Class-0), flow schemes with block structuring and 
controlled use of links (Class-1), and flow schemes with block structuring and arbitrary 
use of links (Class-2). Due to lack of space we omit a formal definition of the semantics 
of the BPEL language and the properties of the different schema classes. Instead we 
illustrate main issues by means of expressive examples. Class-0 is the most specific class 
which is subsumed by the two other ones. Its instances are defined by mixing basic and 
structured activities, but do not contain links. Class-1 relaxes this strict block structuring. 
However instances of this class must follow certain guidelines (i.e., restrictions) 
regarding the use of links (when compared to the current BPEL specification). Finally, 
Class-2 comprises all control flow schemes that can be currently described with BPEL. 
In particular, it contains schemes which can be solely modeled as network of nodes and 
links (and a surrounding flow activity). Due to lack of space, in this paper we exclude 
issues related to exception handling and compensation, and therefore do not further 
consider the BPEL constructs throw, scope, and compensation [An03]. 



3.1 Flows With Strict Block Structuring and Without Use of Links (Class-0) 

Class-0 contains all schemes that can be described by means of both basic and structured 
activities. Doing so, sequences, branchings, and loops can be modeled in a block-
oriented fashion with well-defined start/end nodes. Such control blocks may be nested 
but are not allowed to overlap. Note that Class-0 already supports flow activities for en-
abling concurrent activity executions. However, links are excluded for instances of this 
class. An abstract example is depicted in Fig. 4. As shown in [KHB00], pure block struc-
turing does not provide same expressiveness as it can be obtained by the use of graph-
based languages with arbitary use of links. However, the block concept is sufficient for 
many practical cases. In particular, it is advantageous with respect to structuring of flows 
and verification of static as well as dynamic flow properties. 

 

E 

C 

A B 

D 

seq 

seq flow 

seq 

... 
<sequence> 
   <flow> 
       <sequence> 
            activity A 
            activity B 
       </sequence> 
       <sequence> 
            activity C 
            activity D 
       </sequence> 
    </flow> 
       activity E 
</sequence> 
...  

Fig. 4: Example of a BPEL schema corresponding to Class-0 

3.2 Flows with Block Structuring and Arbitrary Use of Links (Class-2) 

Generally, BPEL flow activities enable the expression of complex synchronization 
dependencies between (concurrent) activities nested directly or indirectly within them. 
For this the BPEL link construct can be used. First, we summarize basic properties of 
links as defined in the BPEL specification [An03]. Then we discuss issues related to 
BPEL schemes based on both structured activities and links with (arbitrary) transition 
conditions. Respective schemes constitute the most generic BPEL schema class 
(Class-2), but may aggravate flow analyses and verification by orders of magnitudes. 

BPEL Link Concept: Each link has one activity nested directly or indirectly within a 
flow activity as its source and one such activity as its target. Additionally, links (or their 
source activity respectively) may be associated with a transition condition, which repre-
sents a Boolean expression on process variables. When completing an activity the transi-
tion conditions of its outgoing links are evaluated. Depending on the results, links are ei-
ther signaled as True or False.1 In turn, an activity X with incoming links has a join con-
dition; i.e., a Boolean expression on the status of these links. As necessary prerequisite 
for executing X all incoming links must have been signaled and its join condition been 
evaluated to True (default). If an explicit join condition is missing, it is implicitly re-
quired that at least one incoming link is signaled as True. When an activity’s join condi-

                                                           
1 If a link has no related transition condition attribute, it is deemed to be present with value True. 



tion evaluates to True, its execution can be started on condition that all other precondi-
tions are met. However, if the join condition evaluates to False, activity execution will 
be skipped and outgoing links be signaled as False. This, in turn, may lead to a dead 
path elimination.2 

 ... 
<flow> 
   <links> 
       <linkname = “L_AB”/> 
       <linkname = “L_AD”/> 
       <linkname = “L_FE”/> 
       … 
   </links> 
   activity A 
       <source linkName = “L_AB” transitionCondition=”d>0”/> 
       <source linkName = “L_AD” transitionCondition=”d≤0”/> 
   activity B 
       <target linkName = “L_AB”/> 
       <source linkName = “L_BE”/> 
   … 
   activity E 
       joinCondition = “(L_BE OR L_DE) AND L_FE” 
       <target linkName = “L_BE”/> 
       <target linkName = “L_DE”/> 
       <target linkName = “L_FE”/> 
   <sequence name = “S”> 
        activity F 
           <source linkName = “L_FE”/> 
        activity G 
   </sequence> 
</flow> 
... 

flow

C 

E 

B 

D 

A 

d > 0 

G 

S 

F 

d � 0 

 

Fig. 5: Example of a BPEL schema corresponding to Class-2 

Mixed Use of Structured Activities and Links: Class-2 represents the most generic 
schema class and contains all control flow patterns that can be described by means of 
BPEL. A simple example is depicted in Fig. 5. In particular, flow schemes from Class-2 
can be defined by the mixed use of structured activities and links. Doing so, activity join 
conditions as well as link transition conditions can be based on arbitrary Boolean 
expressions (on link states and process variables respectively). Generally, a link may 
cross the boundary of structured activities; i.e., its source activity may be nested within a 
structured activity, but its target activity may be not, and vice versa.  An example for this 
is shown in Fig. 5: The depicted flow contains a boundary-crossing link named L_FE 
that starts at activity F (directly nested within a sequence) and ends at activity E.  

On the one hand modeling flows as network consisting of basic / structured activities and 
links (with arbitrary join / transition conditions respectively) provides higher expressive-
ness when compared to pure block structuring. On the other hand, it aggravates flow an-
alyses which is disadvantageous with respect to schema maintenance and evolution. An-
other severe problem of BPEL arising in connection with the use of structured activities 
and links concerns link semantics. As an example take activities A, B, and C, and assume 
that they are to be executed sequentially. To express this either one may use a sequence 
activity and embed A, B, and C within it in desired order (cf. Fig. 6 a) or one may nest A, 
B, and C within a flow activity and enforce the desired order by inserting links A → B 
and B → C (cf. Fig. 6 b). Obviously, in the given case the resulting flow schemes Sseq and 
Slink are trace equivalent; i.e., each execution log producible on Sseq can be created on Slink 
as well, and vice versa. However, things become more difficult if activities nested within 
a structured activity S have to be synchronized with activities outside S.  
                                                           
2 The BPEL attribute suppressJoinFailure must be set to "yes" in order to initiate a deadpath elimination in the 
given context. Otherwise, fault joinFailure will be thrown which, in turn, leads to interruption of the flow. 



 

B 

seq

A C 

flow 

A C B 

Sseq a) b) Slink 
links

 

Fig. 6: Modeling a sequence of activities A, B, and C 

Take the above example. Assume that B has a conditional dependency on activity X out-
side the sequence; i.e., B is target of a link with X as its source and P(X, B) as related 
transition condition. Considering this we obtain schemes Sseq

* and Slink
* (cf. Fig. 7). At 

first glance both seem to be trace equivalent again. However, this is not the case if the 
default link semantics of BPEL is used. Then the join condition of B corresponds to the 
disjunction of the status of all incoming links targeted to this node. Suppose that both A 
and X are completed and P(X,B) evaluates to False. Taking schema Sseq

* the (default) join 
condition of B evaluates to False. In this case, either the standard fault joinFailure will 
be thrown or a deadpath elimination be initiated. In any case activity B will not be per-
formed. By contrast, when regarding Slink

* the join condition of B will always evaluate to 
True even if link X → B is signaled as False. The reason for this different execution 
behavior is that the desired execution order between A and B is described by means of a 
link with B as its target. Since this link has no transition condition it is always signaled 
as True when completing activity A. Thus the (default) join condition of activity B will 
always evaluate to True independently from whether X → B is signaled as True or False. 

 

B 

seq

A C 

flow 

A C B 

Sseq* a) b) Slink* 

X X P(X, B)

JoinCond(B) � P(X, B)   (Default) JoinCond(B) � P(X, B) � True   = True (Default) 

P(X, B)

flow
Transition condition:

 

Fig. 7: Link semantics and related problems 

This simple example demonstrates that the mixed use of structured activities and links 
with arbitrary setting of activity join and link transition conditions may cause undesired 
side-effects. In particular, a BPEL schema that meets the execution behavior as intended 
by the designer may not do this anymore when changing this schema. Currently, there is 
no systematic and sufficient support for adequately dealing with such side-effects.  

As indicated the block concept is advantageous with respect to the structuring of flows 
and the verification of static as well as dynamic flow properties. As opposed to this, the 
modeling of flows by a network of activities and links with (arbitrary) transition 
conditions is more expressive in several respects, but aggravates flow verification and 
flow changes significantly. For example, data flow analyses and validation may suffer 
from the "uncontrolled" use of both transition and join conditions. 



3.3 Flows with Restricted Use of Links (Class-1) 

We now sketch useful restrictions and suggestions regarding the application of links. 
Basic to this is the observation that in most cases we do not require full expressiveness 
of BPEL in order to adequately capture the business processes deployed in today’s 
organizations. Very often control flow can be already expressed by the nesting of 
structured and basic activities. If this is not sufficient, in addition, one can use links to 
synchronize activities from parallel branches. However, this should be done in a 
controlled way in order to avoid the described problems. In particular 

1. links should not be used to express an activity sequence if this sequence can be 
defined by the use of a structured activity (sequence) as well. This design 
principle, for example, is not met by the flow schemes from Fig. 5 and Fig. 6 b). 

2. one should avoid the use of attributed links (i.e., links with transition conditions) at 
all. This would contribute to avoid undesired side-effects when deleting or inserting 
links (cf. Fig. 7). Note that BPEL already allows to specifiy conditional branchings 
of different semantics by means of structured activities (switch, pick).  

Adherence of these restrictions offers advantages with respect to flow modeling, 
analysis, and verification. In order to follow the second guideline, for instance, the use of 
links with fixed join semantics of their target nodes offers a promising perspective. We 
consider two "link patterns" in this context. Both have a pre-fixed semantics and can be 
used for synchronizing activities nested directly or indirectly within a flow activity: 

• A weak link X → Y defines a delay dependency between X and Y (arranged in 
parallel so far). As necessary prerequisite for executing Y either activity X must 
have been completed or X cannot be performed anymore (except due to a loop back).  

• A strict link X → Y defines a causal dependency between X and Y. As prerequisite 
for executing Y we require that X must have been successfully completed.  

These link types allow designers to capture an intermediate synchronization point bet-
ween parallel paths. Generally, such an inter-branch synchronization cannot be ex-
pressed using basic and structured activities only. Both weak and strict links can be 
simply realized. If we solely use these link patterns the join condition of an activity 
corresponds to the conjunction of the status of all strict links targeted to this activity. In 
particular, the use of weak links does not have any effect on the join condition of its tar-
get node but only delays the start of the respective activity. In any case, all BPEL 
restrictions concerning the use of links must be met for weak / strict links as well, e.g., 
respective links must not cause deadlocks or cross boundaries of a loop block. Weak 
links are useful for practical cases since they represent the most common application of 
the BPEL link concept. As an example, take the purchase order process and its 
representation depicted in Fig. 3 – both links may possess semantics "weak". By con-
trast, strict links are required in rather seldom cases. They are useful to synchronize an 
activity nested within a switch activity with an activity nested within a pick activity.  

In our experience, most control flow patterns can be described by the combined use of 
(structured) activities and the above link types. In particular, when applying link-related 



schema changes undesired side-effects can be avoided. We assign flow schemes based 
on such a mixed use of structured activities and weak/strict links to Class-1. An example 
of a flow schema from Class-1 is depicted in Fig. 8. Since activity F and C respectively 
are performed in any case, flow behavior will be the same independently from whether a 
weak or a strict link is used. Interestingly, the depicted schema shows same execution 
behavior as the one from Fig. 5. However, the use of links has been reduced to a 
minimum (according to the described guidelines). Obviously, when substituting C → D 
by inverse link D → C in Fig. 8, link semantics – weak or strict – has influence on the 
flow behavior. More precisely, when using weak link D → C activity C will be performed 
either when D is completed or disabled. The latter case occurs if the upper branch of the 
switch block (d > 0) is chosen. As opposed to this, using strict link D → C, C will be 
only executed if D has been successfully completed.  

 

flow 

G 

seq 

d>0 

d � 0 

B 

D 

switch 

A 

seq 

C 

E 

F 

seq 

 

Fig. 8:  Representation of the flow schema from Fig. 5 as schema instance of Class-1 

Of course, one may define other link patterns as well. For example, the distinction 
between links crossing the boundary of structured activities and links for which this is 
not the case may be advantageous in several respects. However, in the following we 
restrict our considerations to weak and strict links since they cover most practical cases. 

4. Verifying the Correctness of BPEL4WS Specifications 

In this section we cope with correctness issues related to the definition and change of 
BPEL control flow schemes. We discuss important requirements arising in this context 
and sketch whether and – if yes – how they can be met for BEPL schemes of the 
different classes. In Section 4.1 we summarize characteristic problems related to the 
definition and change of BPEL control flow schemes. In Sections 4.2 - 4.4 we then 
sketch how the different model classes from Section 3 cope with these problems. 

4.1 A Selection of Typical Control Flow Problems 

Particularly, the following important requirements have to be met:  

1. Flows must be deadlock-free, i.e., there is no situation where a flow instance has not 



yet reached a correct final state but no activity can be finished anymore.  

2. The flow must terminate exactly once for each initiation; i.e., it must terminate 
completely without any residual branch being still under execution.  

3. Each activity X should be reachable; i.e., starting with a correct initial state there 
must be a valid sequence of activity executions and outputs that will lead to activa-
tion of X.  

4. A receive and a reply activity, which belong to same synchronous invocation of a 
complex operation, both must be present in the flow schema. The reply activity is to 
be executed exactly once in case the corresponding receive activity is carried out.  

In order to exclude these problems the following basic issues must be addressed: The T-
Problem (Termination Problem) is to determine whether flow execution will always 
terminate correctly (i.e., Req. 1 and 2 are met). The I-Problem (Initiation Problem) 
problem is to check whether there is a sequence of activities leading to activation of a 
particular activity (i.e., Req. 3 is met) – generally, respective flow checks have shown to 
be NP-complete [HOR98]. Finally, the S-Problem (Synchronization Problem) is to check 
whether receive / reply activities are correctly used within a flow schema (cf. Req. 4). 

4.2 Ensuring Control Flow Correctness for Flow Schemes of Class-0 

Flow schemes with strict block structuring guarantee the above control flow properties 
almost for free: On condition that some fairness assumptions are met (e.g., no infinite 
loops, each branch of a switch activity to be selectable) the flow will always properly 
terminate and each flow activity will be reachable; i.e., the T-Problem and the I-Problem 
are uncritical for schemes from Class-0. Furthermore the S-Problem can be easily 
decided when transforming the BPEL schema into a canonical graph-based 
representation and by applying simple analyses on the generated graph.  

4.3 Ensuring Control Flow Correctness for Flow Schemes of Class-1 

Regarding flow schemes with block structuring and restricted use of links we must deal 
with additional issues in order to avoid the mentioned control flow problems. To deal 
with the T-problem, for example, we must ensure that link usage does not lead to dead-
lock-causing cycles. Fig. 9 depicts two examples: In Fig. 9 a) orders are solely defined 
by the use of links whereas the schema from Fig. 9 b) uses links as well as a sequence 
activity for this purpose. In both cases a deadlock will occur during flow execution. 

 a) 

b) 

Deadlock-causing 
links! 

A C B E D 

X 

B A C D E 

X flow 

flow 

seq

Deadlock-causing 
links! 

 

 

c) 

B A C D E 

X 

AND split AND join 

control link (sync) link

cycle via control and  
sync links � deadlock 

 

 

Fig. 9: Two models with deadlock-causing links and internal graph-based representation 



It would certainly be no good idea to treat these similar cases in different ways. Thus a 
canonical graph-based representation of the flow contributes to detect respective 
problems quickly and by means of well-known procedures. Following this, the lower 
schema (of Class-1) has to be translated into a corresponding graph-based representation 
(cf. Fig. 9 c) in order to perform the necessary graph analyses (in the given example with 
respect to absence of deadlock-causing cycles).  

Another example of a BEPL schema (of Class-1), which is not deadlock-free, is depicted 
in Fig. 10. Activity G will not be activated and a deadlock will occur if the upper branch 
(i.e., activity C) of the switch activity is selected for execution. Obviously, the use of a 
strict link does not make sense in this context and should therefore be prohibited. 
Generally, to detect respective deadlocks, we must perform more expensive reachability 
analysis (again based on a canonical graph-based representation of the flow schema). 
Such analyses have shown to be NP-complete, but for the given schema class we can 
additionally benefit from the (partial) block structuring of the flow schemes (and of 
related graph-based representation). If only weak links are used, deadlocks can be solely 
detected on basis of (less complex) cycle tests. This result is of high practical relevance 
since the most common use of the link concept corresponds to semantics of weak links.  

 

C1 

else 

C 

switch

B 

seq 

E 

seq

flow 

F G H 

A J D 

strict link

seq 

 

Fig. 10: Incorrect use of a strict link 

Regarding the I-problem similar considerations can be made. If solely weak links are 
used, task reachability does not constitute a problem due to the special semantics of this 
link type. By contrast, in certain cases the use of strict links could lead to situations 
where an activity cannot be activated (e.g., activity G in Fig. Fig. 10).  

4.4 Flow Schemes of Class-2 (Block Structuring and Arbitrary Use of Links) 

When regarding arbitrary BPEL schemes from Class-2 (i.e., flow schemes with arbitrary 
use of BPEL model elements and links) things become much more difficult. In particu-
lar, in BPEL there are many ways for expressing the same control flow pattern and for 
configuring the flow behavior (e.g., with respect to handling of join failures). However, 
this variety and flexibility makes it a very tough job to study and verify the flow beha-
vior at buildtime (if possible at all). Regarding the use of transition conditions, for 
example, several problems exist. They range from variables not correctly initialized 
when a related predicate (e.g., a transition condition or a loop condition) is evaluated up 
to flow behaviors on which we cannot decide at buildtime. An activity with two 
outgoing links, for example, may now represent an AND split and then an XOR split 



depending on the current values of the variables used for evaluating the respective 
transition conditions. However, this mixed semantics significantly aggravates flow 
verifications.  

5. Summary 

We have described different BPEL schema classes and sketched to which extent their in-
stances can be analyzed for the absence of design errors. As illustrated the full expres-
siveness of BPEL4WS is usually not needed to cover today’s business processes.  In 
order to reduce complexity and to provide the basis for more advanced process functions 
(e.g., supporting dynamic flow changes [RD98, RRD03]) a good compromise would be 
to make use of the flow structuring and the presented link guidelines as far as possible. 
Furthermore we need a common formal graph model for representing (arbitrary) BPEL 
schemes. Such a graph-based representation is not only fundamental with respect to flow 
verification, but may also serve as basis for defining a precise formal and operational 
semantics for BPEL flows. In summary, we have made similar considerations regarding 
other BPEL concepts (e.g., flow of data). We believe that the further development of 
BPEL would benefit by a more systematic and critical treatment of the existing proposal. 
Unfortunately, at the moment, the discussion mainly focuses on how to introduce 
additional modeling concepts and thus additional complexity to the BPEL specification. 

References 

[Al04] G. Alonso, F. Casati et al: Web Services, Springer, 2004 
[An03] T. Andrews et al: Business Process Execution Language for Web Services, V. 1.1, 

May 2003 
[BK03] F. Breugel, M. Koshkina: Verification of business processes for web services. 

Technical Report CS-2003-11, York University, Ontario, CA 
[Ch03] S. Chandrasekaran: Composition, performance analysis and simulation of web ser-

vices. Master thesis, University of Georgia, USA, 2003  
[HB03] R. Hamadi, B. Benatallah: A Petri net-based model for Web Service composition. 

Proc. 14th Australasian Database Conference, Adelaide, Australia, 2003. 
[HOR98] A. ter Hofstede, M. Orlowska, J. Rajapakse: Verification problems in conceptual 

workflow specifications. Data & Knowledge Engineering, 24(3):239–256, 1998 
[KHB00] B. Kiepuszewski, A. ter Hofstede, C. Bussler: On structured workflow modeling. Proc. 

CAiSE'00, Stockholm, June 2000, LNCS 1789, pp. 431-445. 
[KMW03] R. Khalaf, N. Mukhi, S. Weerawarana: Service-oriented composition in BPEL4WS.  

Proc. WWW'03, Budapest, May 2003 
[Ma04] A. Martens: Analysis and reengineering of Web Services. Proc. ICEIS'04, Porto, 2004 
[NM02] S. Narayanan, S. McIlraith: Analysis and Simulation of Web Services. Proc. 11th Int'l 

Conf. World Wide Web, 2002 
[RD98] M. Reichert, P. Dadam: ADEPTflex – Supporting Dynamic Changes of Workflows 

Without Losing Control. JIIS, 10(2):93-129, 1998 
[RRD03] M. Reichert, S. Rinderle, P. Dadam: On the Common Support of Workflow Type and 

Instance Changes Under Correctness Constraints. Proc. CoopIS’03, Nov. 2003 
[Wo02]  P. Wohed, W.M.P. van der Aalst, M. Dumas, A. ter Hofstede: Pattern Based Analysis 

of BPEL4WS. TR FIT-TR-2002-04, Queensland University of Technology, Australia 


