
Key Management Building Blocks for

Wireless Sensor Networks

Yee Wei Law†, Jeroen Doumen‡ and Marimuthu Palaniswami†

†The University of Melbourne, Australia
‡University of Twente, The Netherlands

ABSTRACT

Cryptography is the means to ensure data confidentiality, integrity and authentication in wireless

sensor networks (WSNs). To use cryptography effectively however, the cryptographic keys need

to be managed properly. First of all, the necessary keys need to be distributed to the nodes before

the nodes are deployed in the field, in such a way that any two or more nodes that need to

communicate securely can establish a session key. Then, the session keys need to be refreshed

from time to time to prevent birthday attacks. Finally, in case any of the nodes is found to be

compromised, the key ring of the compromised node needs to be revoked and some or all of the

compromised keys might need to be replaced. These processes, together with the policies and

techniques needed to support them, are called key management. The facts that WSNs (1) are

generally not tamper-resistant; (2) operate unattended; (3) communicate in an open medium; (4)

have no fixed infrastructure and pre-configured topology; (5) have severe hardware and resource

constraints, present unique challenges to key management. In this article, we explore techniques

for meeting these challenges. What distinguishes our approach from a routine literature survey is

that, instead of comparing various known schemes, we set out to identify the basic cryptographic

principles, or building blocks that will allow practitioners to set up their own key management

framework using these building blocks.

INTRODUCTION

A WSN key management scheme consists of three main components: (1) key establishment; (2)

key refreshment; (3) key revocation. Key establishment is about creating a session key between

the parties that need to communicate securely with each other. Key refreshment prolongs the

effective lifetime of a cryptographic key, whereas key revocation ensures that an evicted node is

no longer to able to decipher the sensitive messages that are transmitted in the network. A

thorough understanding of what role these components play and how they integrate with each

other is crucial to the design of key management frameworks. Just as importantly, the design has

to follow these WSN-specific guidelines:

Design Principle 1Favor computation over communication: In general, we do not mind doing a

little bit more computation just to save a few transmissions, as communication is three orders

of magnitude more expensive than computation.

Design Principle 2Minimal public-key cryptography: Public-key algorithms remain prohibitively

expensive on sensor nodes both in terms of storage and energy. The use of public-key

cryptography should be kept to a minimum, if necessary at all.

Design Principle 3Resilience: Severe hardware and energy constraint suggests that security should

never be overdone – on the contrary, tolerance is generally preferred to overaggressive

prevention. This reasoning leads us to design key management schemes that, instead of trying

to be perfectly secure, aim to be resilient.

Our goal in this article is to identify and introduce, based on these guidelines and the state of the

art in the literature, key management building blocks for WSNs.

An aspect of key management that is often overlooked in the WSN literature is the formal

verification of cryptographic protocols, that is, the use of formal methods in mathematics to prove

or disprove the correctness of these protocols. In protocol verification, the two most important

properties to verify are secrecy and authentication. However, these problems are well-known to be

undecidable (there is no way to tell whether the property is valid) if we assume the intruder can

construct an infinite number of messages, or if there can be an unbounded number of parallel

sessions (i.e., parallel executions of the same protocol). One approach to make the problem

decidable is to limit the number of parallel sessions. Much of the work that uses this strategy is

based on constraint solving. Our secondary goal in this article is to give a primer on protocol

verification via constraint solving, in the hope that protocol verification will become an integrated

step in the design of key management schemes for WSNs in the future.

The rest of the article is organized as follows. As preliminaries, we will first introduce the notation

for specifying cryptographic protocols. We will then discuss protocol verification by using

constraint solving. We will then introduce the building blocks in the three areas: key

establishment, key refreshment and key revocation. All protocols mentioned in the course of

discussion will be verified using constraint solving. Finally, we will give a brief conclusion.

NOTATION FOR PROTOCOL SPECIFICATION

The notation in Table 1 is used to specify cryptographic protocols for the rest of this article.

Symbols Meaning
A, B, … Usually represent node A, B, …
NA, NB, … Usually represent a nonce (random number) generated by A, B, …
KAB Usually represents a key shared between A and B
E(K, M) Encryption of message M using key K
MAC(K, M) Message authentication code (MAC) of message M using key K
PRF(K, M) Pseudorandom function with key K applied to plaintext M
|| Concatenation operator
K’ New key for replacing K during re-keying

Table 1. Notation for specifying cryptographic protocols

It is important to note that when both E(K, M) and MAC(K, M) appear in the same message, the

encryption actually uses a sub-key generated from K, and the MAC uses another sub-key, also

generated from K. For example, given a pseudorandom function PRF(⋅,⋅) and a master key K, the

encryption sub-key can be derived as PRF(K, 1), whereas the MAC sub-key can be derived as

PRF(K, 2). The reason for not using K directly is that some cipher operation modes like the

popular CBC are susceptible to birthday attacks: if we use the same key to transform more than

O(2m/2) plaintexts, it becomes likely that two or more of these plaintexts might map to the same

ciphertext, allowing data forgery to occur. We say O(2m/2) is the birthday threshold. Using

different sub-keys for encryption and for authentication allows us to process more plaintexts

before reaching the birthday threshold. Also, unforeseen problems may arise if the same key is

used for encryption and authentication.

PROTOCOL VERIFICATION

A number of formal methods can be used for protocol verification, depending on the restriction we

impose on the attacker model. If we limit the number of parallel sessions, we can model a protocol

using the strand space model , and use constraint solving to verify its security properties

efficiently. The strand space model can be understood informally as a mapping of the notions on

the first column of Table 2, to the notions on the second column of Table 2.

Protocol Strand space model Example
Role: What a principal does in
the protocol

Strand: A sequence of events Initiator, responder, server

Complete run: A complete
iteration of the protocol

Bundle: A set of strands 
legitimate or otherwise 
hooked together where one
strand sends a message and
another receives that same
message, that represents a full
protocol exchange

1. Initiator → Attacker: …

2. Attacker → Responder: …

3. Responder → Attacker: …

4. Attacker → Initiator: …

Table 2．The strand space model

Basically, a protocol consists of roles that exchange messages with each other, and the messages

that ‘fly’ back and forth between the roles can be visualized as strands. A bundle is basically a

bunch of interleaving strands. A system scenario is a hypothetical instantiation of the protocol

between some specified principals with a specified outcome. For example, we can specify a

system scenario where the principals include one initiator, one responder, one server; we can then

define their roles, and specify the outcome as the attacker getting the session key  all of these

are our constraints. If we can find a bundle that satisfies these constraints, then we can say the

protocol does not satisfy the secrecy requirement. Note the fact that a bundle cannot be infinite

means we cannot model infinite number of parallel sessions. In WSNs, we are mainly after these

three security requirements:

 Secrecy: A session key must only be known to the communicating nodes.

 Authentication (implies integrity): A key establishment protocol must end with every party

properly authenticating the other parties it is communicating with. In other words, it must be

impossible for any intruder M to impersonate another node A whose keys (used in the key

establishment protocol) M does not have.

 Replay resistance: The meaning of replay attack on a role R is the possibility of

unauthenticated parties to cause R to run, i.e. for R to process replayed messages. If R

happens to maintain the states of every run, then it would be maintaining the incorrect states.

The beauty of this approach is that it can easily be implemented using Prolog. One example is

CoProVe (http://wwwes.cs.utwente.nl/coprove). All the protocols that are given in this article in

standard notation have been verified using CoProVe.

KEY ESTABLISHMENT

We start with the first component of key management: key establishment. In precise terms, key

establishment is a process or protocol whereby a shared secret key becomes available to two or

more parties, for subsequent cryptographic use. There are two types of key establishment

protocols:

1. key transport, where one party creates or otherwise obtains a secret value, and securely

transfers it to the other(s); and

2. key agreement, where two or more parties derive a shared secret as a function of information

contributed by, or associated with, each of the parties, (ideally) such that no party can

predetermine the resulting value.

A key pre-distribution protocol is a key agreement protocol whereby the resulting established keys

are completely determined a priori by initial keying material. Key pre-distribution is essential to

WSNs because (1) it minimizes the exchange of information, i.e., communication; (2) it does not

require any key distribution center (KDC). However, as we shall see, key pre-distribution is not

the only key establishment technique used in WSNs, because due to the resource constraints of

sensor nodes, we can rarely pre-distribute enough keying material such that any pair of nodes

http://wwwes.cs.utwente.nl/coprove

would be able to establish a session key. We will look at some key pre-distribution schemes later.

In WSNs, key establishment is required to support these basic communication modes: (1) global

broadcast, or flooding; (2) local broadcast; (3) unicast. Hence, we will discuss the key

establishment protocols in the context of supporting these communication modes. Note that for

each mode, we can in theory either use symmetric-key cryptography or public-key cryptography,

but we are honoring by restricting ourselves to using symmetric-key cryptography. The following

discusses how key establishment can be done to support the three basic communication modes.

Global broadcast

In doing a global broadcast, a node (sender) intends to broadcast a message to all other nodes

(receivers) in the network. The security objective is to ensure the integrity, authenticity and

optionally the confidentiality of the messages from the sender to the receivers. The sender cannot

share a key with all the receivers, because then any of the receivers can forge messages. The

sender also cannot share a different key with each of the receivers, because this solution is not

scalable. Instead, the standard solution for integrity and authentication is µTESLA (the “micro”

version of the Timed, Efficient, Streaming, Loss-tolerant Authentication Protocol) .

Figure 1. Keys are released according to a schedule in SPINS

To bootstrap the protocol, the sender first generates a one-way key chain (K0, K1, …, Kn), where

Ki+1 = h(Ki), i = 0,…,n-1 and h() is a collision-resistant hash function (i.e., a one-way hash

function that is also collision-resistant), and distributes the root of the key chain Kn to the receivers

securely. Kn is called the commitment of the key chain. For this protocol to work, the clocks of the

sender and the receivers must be synchronized. The sender and the receivers divide time into

intervals. If during time interval i, the sender broadcasts a message Mi, the sender appends Mi with

a Message Authentication Code (MAC) of Mi generated with Ki. The receivers cannot authenticate

Mi until δ intervals later, when the sender would broadcast Ki. (Figure 1). The receivers

successfully authenticate the sender if Ki+j = hj(Ki), where Ki+j is the key released in time interval i-

j (j can be any value between δ and n-i, assuming n-i > δ). Note that the keys are released in the

reverse order, because an attacker cannot re-generate the key chain in the reverse order due to the

“one-wayness” of collision-resistant hash functions.

Since keys are distributed along with messages, µTESLA by itself cannot provide confidentiality.

In this respect, a global key is usually used alongside µTESLA to provide data confidentiality.

Local broadcast

In doing a local broadcast, a node (sender) intends to broadcast a message to all its neighbors

(receivers). The security objective is to ensure the integrity, authenticity and optionally the

confidentiality of the messages from the sender to the receivers. As before, we may use µTESLA

to provide integrity and authentication, and a cluster key (a key shared between a node and its

neighbors) to provide confidentiality. Alternatively, we may relax the time synchronization

requirement, because the receivers are just one hop away from the sender. The following protocol

to be described is originally designed for passive participation  a data communication paradigm

in which a node would suppress its own transmission if it overhears its neighbor(s) transmitting

similar data. This alternative protocol is essentially µTESLA, used with a cluster key, but without

a key disclosure schedule. In this protocol, the sender distributes, as in µTESLA, a commitment of

its key chain, and additionally a cluster key to the receivers (which are also the sender’s

neighbors) . The rationale behind using this key combination is as follows:

 if only the key chain is used, the keys in the key chain would have to be broadcast in the

clear, and in the absence of time interval differentiation, a cluster-outsider would be able to

forge messages using these keys;

 if only the cluster key is used, authentication of the sender cannot be achieved;

 but if used together, the cluster key can be used to encrypt messages as well as hide the key

chain keys from cluster-outsiders; and at the same time, the key chain keys can be used for

authentication.

The disadvantage of this protocol is that a malicious insider is still able to forge messages to other

receivers. Note that this protocol is not suitable for global broadcasts because a global broadcast

travels more than one hop, and the lack of time intervals allows a malicious upstream receiver to

forge messages to downstream receivers.

Unicast

Unicast is one-to-one communication. The security objective is to ensure the integrity, authenticity

and optionally confidentiality of the messages exchanged between two communicating nodes.

Denote the two nodes by A and B. We only deal with the case where A and B are neighbors,

because when A and B are multiple hops away, we can usually secure one hop at a time. Our goal

is to establish a session key between A and B, which in the WSN literature is called a pairwise key.

Random key pre-distribution The prevalent strategy for establishing pairwise keys is random

key pre-distribution (RKP) (aka probabilistic key sharing). The general idea is to prepare a pool of

keying material, called the key pool; and to each sensor node, distribute a random fixed-size subset

of keying material from the key pool. The keying material belonging to a node is called the node’s

key ring. Denote the key pool size as P and key ring size as K. Having potentially different subsets

of the key pool, two neighboring nodes can only establish a pairwise key at a certain probability

that is related to P and K; that is, a node may not be securely connected to all its neighbors.

However by adjusting P and K, it is possible to make a network securely connected with high

probability.

In RKP, this is how two nodes establish a session key: When a node is added to the network, the

node initiates shared-key discovery, by broadcasting a list of identifiers that identify the keys it

has. The neighbors reply with their lists of key identifiers. By comparing the lists, the new node

and its neighbors discover what key(s) they share. Session keys are then derived from the shared

key(s), for example, by applying a PRF on the XOR of the shared key(s). The disadvantage of this

approach is that it allows an attacker to find out which keys a node is holding, giving room to the

attacker to attack strategically. An alternative approach is, instead of picking keying material

randomly for a node, to pick the keying material according to the result of a PRF. For example,

the key index of node A’s i-th key is given by PRF(A, i). Using this approach, a node can by just

knowing the ID of its neighbor, determine the indexes of its neighbor’s keys.

Different variants of RKP can be instantiated depending on what we use as ‘keying material’:

 Symmetric key : The simplest case is to use a single symmetric key as keying material. In

this case, every node is imprinted with K keys chosen at random from a key pool of size P.

When a node A is compromised, A’s keys may be used to compromise other secure channels

that do not involve A, since the keys might be stored in some other nodes outside A’s

communication range as well.

 Polynomial : In this case, the key pool consists of P symmetric t-degree bivariate

polynomials over a finite field q, i.e., a pool of polynomials of the form

, 0

(,)
t

i j
i j

i j

f x y a x y
=

= ∑ with aij = aji; aij, x, y ∈ q; and q is a prime chosen to be much

larger than the number of nodes as well as the desired key length. Denote this set of

polynomials by {f1(x, y),...,fP(x, y)}. Every node A is then imprinted with K polynomial shares

1
(,),..., (,)

Ki if A y f A y , by choosing different i1, i2, ..., iK randomly from {1,...,P}. By

shared-key discovery, node A and B can find out which polynomials they have in common. If

that polynomial is f1(x, y), then without loss of generality, A and B can establish a session key

with each other by calculating the key as f1 (A, B), and as f1 (B, A) respectively. When a node

A is compromised, A’s polynomial shares 1
(,),..., (,)

Ki if A y f A y can only be used to

compromise secure channels that involve A, unless the attacker manages to compromise t+1

shares of one of the shared polynomials.

 Matrix : In this case, the key pool consists of P matrices M1, M2, ..., MP of size N×(t+1) over

finite field q, where N is the expected total number of nodes in the network; t is a security

parameter; and q is a prime chosen to be much larger than N as well as the desired key length.

The matrices are generated in three steps: First, a Vandermonde-like matrix G of size

(t+1)×N over finite field q is generated using a primitive element s of q:

2 3

2 2 2 3 2 2

2 3

1 1 1 ... 1

...

() () ... ()

() () ... ()

N

N

t t t N t

s s s s

G s s s s

s s s s

 
 
 
 =
 
 
  

M M M O M
(1)

At the second step, P random symmetric matrices D1, D2, ..., DP of size (t+1)×(t+1) are

generated. Thirdly and finally, the final matrices are calculated as M1 = (D1·G)T, M2 =

(D2·G)T, ..., MP = (DP·G)T. G has the following useful properties: (1) since s is a primitive

element and N<q, s, s2, …, sN are all unique and can be used as the nodes’ IDs; (2) any t+1

columns of G are linearly independent. The following are what get distributed to the j-th

node: (1) the j-th column of G，denoted G(j); (2) the j-th row from each of 1 2
, ,...,

Ki i iM M M

, denoted 1 2
(), (),..., ()

Ki i iM j M j M j , where different i1, i2, ..., iK are randomly chosen from

{1,...,P}. Therefore in theory, each node has to store 1 matrix column and K matrix rows; but

in practice, each node only has to store the 2nd element of its assigned column and K matrix

rows, because all elements of the same column are just different powers of the 2nd element

of the column. For example, the 1st node only has to store s, the 2nd node only has to store s2

and so on. By shared-key discovery, node i and j can find out which matrices they have in

common. If that matrix is M1, then without loss of generality, i and j can establish a session

key with each other by calculating the key as M1(i)G(j), and as M1(j)G(i) respectively. Note

that M1G = GTD1
TG is symmetric, hence M1(i)G(j) = (M1G)ij = (M1G)ji = M1(j)G(i), i.e., node i

and node j are able to derive the same session key. When node j is compromised, node j’s

matrix rows 1 2
(), (),..., ()

Ki i iM j M j M j can only be used to compromise secure channels

that involve node j, unless the attacker manages to compromise t+1 rows of

1 2
 or or ... or

Ki i iM M M , because any t+1 rows of 1 2
 or or ... or

Ki i iM M M are linearly

independent. This technique is actually inspired by maximum distance separable code.

We now consider the case where A and B do not share any key, but each has a secure link to a

common neighbor S. In this case, A and B can still establish a session key through S acting as a

trusted third party. The following key transport protocol can be used to establish a session key KAB

between A and B via S:

1. A → S: NA || B || MAC(KAS, NA || B)

2. S → A: E(KAS, E(KBS, NS || KAB)) || MAC(KAS, NA || B || E(KBS, NS || KAB))

3. A → B: A || E(KBS, NS)

4. B → S: B || NB || A || MAC(KBS, NS || B || NB || A)

5. S → B: E(KBS, KAB) || MAC(KBS, NB || A || E(KBS, KAB))

6. B → A: Ack, MAC(KAB, Ack)

This protocol has been verified with CoProVe to be (1) secure with respect to the secrecy of KAB,

(2) secure in the mutual authentication between A and B, and (3) secure against replay attacks on S

.

LEAP+ An alternative scheme to RKP, as part of LEAP+ , is as follows:

1. First, embed an initial key KIN in every node.

2. Upon bootstrapping, every node A derives its own master key as KA = PRF(KIN, A), and set its

timer to fire at time Tmin later. Tmin is the estimated minimum amount of time for an attacker to

compromise a node. A sends out a HELLO message containing its ID.

3. As long as the timer has not fired, if A hears a HELLO message from a neighbor B, it will

derive the pairwise key as KBA = PRF(PRF(KIN, A), B). If B receives A’s HELLO message

first, then the pairwise key would be KAB = PRF(PRF(KIN, B), A) instead.

4. When the timer fires, KIN is erased from memory.

This scheme is however only useful for static networks, since after KIN is erased, a node can no

longer derive pairwise keys.

EBS Exclusion Basis Systems (EBS) is a variation of the symmetric-key version of RKP .

Basically, instead of choosing K out of P keys at random, EBS chooses K out of P keys uniquely

for each node, so there are only P!/[K!(P-K)!] ways of choosing, and there can only be a

maximum of P!/[K!(P-K)!] nodes. By picking K > P/2, EBS makes sure every pair of nodes share

at least one key, hence guaranteeing the network is connected. The drawback of this scheme is

that, when a node is compromised, only P-K keys, or less than half of the keys in the key pool

remain intact. Because of this, a WSN that uses EBS is most often compartmentalized into

clusters, with a different key pool assigned to each cluster.

KEY REFRESHMENT

As mentioned, different sub-keys are used for encryption and for authentication because that

would allow the birthday threshold to be reached more slowly, but the birthday threshold will

eventually be reached. The standard solution to further delay the birthday threshold from being

reached is key refreshment, i.e., the process of refreshing shared secrets periodically as a mean to

increase the birthday threshold (the cryptography literature generally uses ‘key refreshment’ and

‘re-keying’ interchangeably, but we reserve ‘re-keying’ for the process that follows key

revocation). There are two mainstream approaches :

1. Parallel re-keying: We start with keys Kenc,0 and Kmac,0. The i-th (i = 1, 2, ...) refreshed keys

are PRF(Kenc,0, i) and PRF(Kmac,0, i). Note: Kenc,0 and Kmac,0 can be generated from the same

master key K0 via PRF(K0, 1) and PRF(K0, 2).

2. Serial re-keying: We start with key K0. The 1st refreshed keys are PRF(K0, 1) and PRF(K0, 2),

respectively for encryption and MAC. The i-th (i = 2, 3, ...) refreshed keys are

0

1 times -1 times

PRF(PRF(...PRF(,0)...,0) ,1)
i i

K
−

1 4 2 4 3 1 2 3 and
0

1 times -1 times

PRF(PRF(...PRF(,0)...,0) , 2)
i i

K
−

1 4 2 4 3 1 2 3 , again

respectively for encryption and MAC.

The advantage of using these approaches is as follows. Suppose the key length is k. If the session

key is not refreshed, the birthday threshold is 2k/2. If the session key is refreshed every 2k/3 function

invocations (where ‘function’ is either encryption or MAC), the session key can be refreshed 2k/3

times before birthday attack is likely to succeed. In other words, the birthday threshold is

increased from 2k/2 to 22k/3.

For WSNs, serial re-keying is preferred, because in parallel re-keying, the counter i and the key K0

have to be stored, and if a node is compromised, these information would allow an attacker to

generate all past keys in addition to future keys. In other words, parallel re-keying does not

provide forward security. On the other hand, in serial re-keying, only the term

0

1 times -1 times

PRF(...PRF(,0)...,0)
i i

K
−

1 4 2 4 3 1 2 3 needs to be stored, and this does not allow any past key to be

generated due to the non-invertibility of PRF.

KEY REVOCATION AND RE-KEYING

Key revocation is the process of removing keys from operational use prior to their originally

scheduled expiry, for reasons such as node capture. When a node is found to be compromised, a

key revocation list is constructed and broadcast using µTESLA to the whole network. The list

contains the ID of the compromised node, and optionally the indexes of the node’s keys  these

keys are keys from the key pool, and there is a mechanism for calculating these indexes based on

the node ID as described previously, so storing the key indexes is optional. The process of

removing keys is usually accompanied by re-keying. Because of this, the main challenge for doing

key revocation efficiently is to do re-keying efficiently. Let us consider the types of keys that need

to be replaced in case of a key revocation:

1. Global broadcast keys: In the context of µTESLA, the key chain commitments that reside in

the nodes do not need to be replaced, because all the nodes do is to wait for new keys from

the key chain to be disclosed anyway. On the other hand, the global key needs to be replaced.

2. Local broadcast keys: Similarly, only the cluster key needs to be replaced.

3. Unicast keys: There are two scenarios: either the revoked keys are only used for the secure

channels that involve the evicted node(s), or the keys might actually be used elsewhere in the

network for the secure channels that do not involve the evicted node(s) at all. The first

scenario applies to LEAP+ , the polynomial-based and matrix-based RKP schemes, whereas

the second scenario applies to EBS and the symmetric-key-based RKP scheme because a

key in these schemes is potentially shared by nodes distributed all over the network (all these

schemes are mentioned in the last section). For EBS, re-keying is essential, because every

node contains more than half of the keys from the key pool. For symmetric-key-based RKP,

re-keying is less urgent, because in this case, a node’s key ring is typically much smaller than

the key pool size. Therefore, as long as the compromised keys from the key pool (“pool

keys” for short) are properly revoked, the network should only suffer from reduced

connectivity (counting only secure links).

Now the types of keys to be replaced are known, the next issue to consider is how the new keys

are generated and transported to the target nodes. At first sight, it seems that to renew the global

key, there is a vast amount of literature on secure group communication that we can borrow

techniques from. However, these techniques do not translate well to WSNs, mainly because they

do not consider the multi-hop transportation of the new keys to the nodes. Furthermore, for WSNs,

the logical first step is to renew the compromised pool keys, because the pool keys are used to

derive pairwise keys, and the pairwise keys in turn are used to transport other keys. The following

describes the procedures:

 The new pool keys can either be generated centrally or in a distributed fashion . In the latter

case, some nodes are tasked with the generation of certain keys, e.g. the i-th node generates

the i-th pool key. Either way, the problem is getting the new keys to the right nodes. As

mentioned, re-keying is essential for EBS. When a node is compromised, P-K out of P keys

in the key pool remain secure, and all uncompromised nodes must have at least one of these

P-K keys (this is not the case for RKP!). Suppose without loss of generality the compromised

keys are K1,..,Km. For each intact key Ki (i = m+1,…,P), the message E(Ki, E(K1, K1
’) || … ||

E(Km, Km
’)) is generated, and µTESLA-broadcast to the network. Every node will then be able

to replace their compromised keys and derive new pairwise keys. On the other hand, for

symmetric-key-based RKP, re-keying is not crucial, and is actually not efficient to execute.

 The new cluster keys are generated by the nodes themselves. After setting up a pairwise key

with a neighbor, a node transmits its cluster key to the neighbor, encrypted using the new

pairwise key.

 The new global key is generated centrally and subsequently broadcast to the network. The

generator does the following :

1. The generator generates the new global key as Kg
’.

2. The generator broadcasts the hash of Kg
’
, h(Kg

’), to the network using µTESLA. Every

node in the network caches h(Kg
’). This hash will be used later to verify Kg

’.

3. The generator broadcasts Kg
’ to its neighbors encrypted with its cluster key. The

neighbors individually verify Kg
’ with the hash h(Kg

’) they have received earlier. The

generator’s neighbors then re-encrypt Kg
’ with their own cluster keys and broadcast the

re-encrypted Kg
’ to their respective neighbors. The process continues until Kg

’ reaches

every node in the network. This flooding process can be made more efficient, by

optimizing the underlying routing protocol, but the principle remains the same.

CONCLUSION AND FUTURE DIRECTIONS

In this article, we introduce the key management building blocks for WSNs based on a clear set of

design guidelines and the state of the art in the literature. Along with our discussion, we stress the

importance of protocol verification, giving one sample protocol that has been verified. Future key

management architectures can be designed based on these building blocks. Integrating these

components however is a challenging task, as there are many aspects to consider. For example, an

energy-efficient key management architecture should be optimized for the underlying routing

protocol and vice versa. Secure data aggregation also needs to be taken into account. Meanwhile,

existing building blocks can be further improved. In fact, the polynomial and matrix technique in

random key pre-distribution can be further generalized; and re-keying for symmetric-key-based

random key pre-distribution is actually a difficult problem. Mostly importantly, the perpetual

quest is to lower the resource requirements of key management.

ACKNOWLEDGEMENT

This work is sponsored by the ARC Research Network on Intelligent Sensors, Sensor Networks

and Information Processing (ISSNIP), and DEST International Science and Linkage Grant.

REFERENCES

[1] M. Abdalla and M. Bellare. Increasing the lifetime of a key: A comparitive analysis of the

security of rekeying techniques. In T. Okamoto, editor, Advances in Cryptology –

ASIACRYPT 2000, volume 1976 of LNCS, pages 546–565. Springer-Verlag, 2000.

[2] W. Du and J. Deng and Y. S. Han, P. K. Varshney, J. Katz, and A. Khalili. A pairwise key

predistribution scheme for wireless sensor networks. ACM Trans. Inf. Syst. Secur.,

8(2):228--258, 2005.

[3] L. Eschenauer and V.D. Gligor. A key-management scheme for distributed sensor networks.

In Proc. 9th ACM conference on Computer and communications security, pages 41–47.

ACM Press, 2002. ISBN 1-58113-612-9.

[4] F. Javier Thayer Fabrega, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces: Why

is a security protocol correct? In Proceedings of The 1998 IEEE Symposium on Security and

Privacy, pages 160-171. IEEE Computer Society Press, 1998.

[5] S.-R. Kim. Scalable hash chain traversal for mobile devices. In Computational Science and

Its Applications ICCSA 2005, volume 3480 of LNCS, pp. 359-367. Springer-Verlag,

2005.

[6] Y.W. Law, R. Corin, S. Etalle, and P.H. Hartel. A formally verified decentralized key

management architecture for wireless sensor networks. In the 4th IFIP TC6/WG6.8

International Conference on Personal Wireless Communications (PWC 2003), volume 2775

of LNCS, pages 27–39. Springer-Verlag, September 2003. ISBN 3-540-20123-8.

[7] D. Liu, P. Ning, and R. Li. Establishing pairwise keys in distributed sensor networks. ACM

Trans. Inf. Syst. Secur., 8(1):41 77, 2005.

[8] M. Moharrum and M. Eltoweissy and R. Mukkamala. Dynamic combinatorial key

management scheme for sensor networks. Wireless Communications and Mobile Computing,

volume 6, issue 7, pp. 1017-1035. John Wiley & Sons, Ltd., 2006.

[9] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J.D. Tygar. SPINS: Security Protocols for

Sensor Networks. In Proceedings of the 7th Ann. Int. Conf. on Mobile Computing and

Networking, pages 189–199. ACM Press, 2001. ISBN 1-58113-422-3.

[10] S. Zhu, S. Setia, and S. Jajodia. LEAP+: Efficient security mechanisms for large-scale

distributed sensor networks. ACM Trans. Sen. Netw., 2(4):500-528, 2006.

