
Ontology-Based Context-Aware Service Discovery
for Pervasive Environments

Pravin Pawar
Architecture and Services of Network Applications group

Department of EEMCS
University of Twente, The Netherlands

P.Pawar@utwente.nl

Andrew Tokmakoff
Telematica Instituut

The Netherlands
Andrew.Tokmakoff@telin.nl

Abstract— Existing service discovery protocols use a service
matching process in order to offer services of interest to the
clients. Potentially, the context information of the services and
client can be used to improve the quality of service matching. To
make use of context information in service matching, service
discovery needs to address certain challenges. Firstly, it is
required that the context information should have unambiguous
representation. Secondly, the mobile devices should be able to
disseminate context information seamlessly in the fixed network.
And thirdly, dynamic nature of the context information should
be taken into account. The proposed Context Aware Service
Discovery (CASD) architecture deals with these challenges by
means of an ontological representation and processing of context
information, a concept of nomadic mobile context source and a
mechanism of persistent service discovery respectively. This
paper discusses proposed CASD architecture, its implementation
and suggests further enhancements.

I. INTRODUCTION
Service Oriented Architecture (SOA) is a software

architecture approach which assumes a collection of services
that communicate with each other to achieve a common goal.
The SOA paradigm includes advertising, discovery and
utilization of diverse services by means of service directories.
The principal components of a SOA consist of a service,
service description, service advertising and discovery and
artifacts [13]. A service is a contractually defined behavior that
can be implemented and provided by a component for use by
another component. The service description consists of the
technical parameters, constraints and policies that define the
terms to invoke the service. The service advertises its service
description for potential clients. A client interested in accessing
the service obtains information about the existence of a service,
its applicable parameters and terms through service discovery.
An artifact specifies the associated data model for the service
(such as XML schemas and web-service descriptions) to which
a client should bind for using the service. A service provider
may make an entry into the service directory to reference the
artifact and explain how to bind to it. The clients may retrieve
this information and use it to bind to the artifacts [13].

Ongoing miniaturization and power efficiency of mobile
devices have led to widespread availability of devices that have
an increasing amount of processing power and storage, and that
support multiple wireless network interfaces connecting to
various auxiliary devices and to the Internet. These advances

enable mobile devices to consume services published in the
service discovery network. However, the existing service
discovery protocols match the services considering only the
keywords from the user’s query and the terms in the service
descriptions [2]. These protocols do not consider the context
information of the services and clients. Context is a situation of
an entity (person, place or object) that is relevant to the
interaction between a user and an application [6]. Context-
aware computing is a paradigm closely related to mobile
computing [5]. Mobile clients usually prefer using services
based on several context parameters such as location, time, user
identity and profile, device capabilities etc [16]. This indicates
that the client and services context information influences the
quality of service matching. However, context information is
highly interrelated and has many alternative representations
that makes it difficult to interpret and use. One possible
solution is to use ontologies to specify the interrelations among
context entities and ensure common, unambiguous
representation of these entities [2].

This work considers that a context source provides access
to context information [17]. To facilitate scalable development
of a context source, storage and retrieval of context information
and easy addition of the context source, the context source
should provide standardised support for applications. Since a
service as part of SOA paradigm provides a well-defined
functional behavior, modeling a context source as service
should provide a standardised functionality for the
development of context-aware applications.

Usually, entities such as service directories are hosted in the
fixed network. In contrast, context information such as
location, user profile etc. is generally collected from the mobile
device used by the client. To facilitate publishing mobile
context sources in the fixed network, the necessary framework
offering this functionality should address the following
challenges: (i) uncertain lifetime of mobile devices (e.g., loss
of battery power, loss of connection), (ii) frequent change of
used network infrastructures (e.g., switching between ad-hoc
and managed networks) and (iii) the role of mobile devices
shifts from lightweight clients to data providers.

In the vision of Ambient Intelligence [1], it is expected that
homes become places populated by numerous heterogeneous
devices that are connected both to themselves and also to the
outside world. These devices can be embedded but may also be
mobile within the home making use of wireless commnications

technologies. In such a situation, it is reasonable to foresee that
homes will make use of a gateway device that can both interact
with in-home services and also enable interaction between
services located in different homes. One candidate technology
that can be utilised to realise such a gateway is the OSGi
service platform [14].

Based on this motivation, the work reported in this paper
focuses on the following topics:

i) Design of a Context-Aware Service Discovery (CASD)
service which can determine the most suitable service by
taking into account the context information of both, the
service and client

ii) In the event of a context change or the appearance of
new services, if a more suitable service is found, then
the client is notified of this more appropriate service by
means of a persistent service discovery mechanism

iii) Modeling context sources as services and providing
standardized functionality for updating and retrieving
context information

iv) A context source on a mobile device that can participate
in the fixed network as a nomadic mobile context source

v) Use of ontologies for context representation and
processing during the service matching process

Section II of the paper describes the CASD model. It
briefly explains the role of elements involved in CASD.
Section III elaborates on the CASD algorithm and presents an
example which further helps to understand the concepts of

CASD. Section IV covers technical realization of CASD whilst
Section V summarises and proposes future work.

II. CONTEXT AWARE SERVICE DISCOVERY ARCHITECTURE
The conceptual model for CASD is shown in Figure 1. In

this model, every service and client may have one or more
context sources. The context source is a service that provides
context information of the associated service or client. The
services and context sources register with the service directory
so they can be discovered. A service has knowledge about its
context sources and the service description contains a reference
to its context sources. The CASD service is also a service and is
discoverable by the client. The client requests for a suitable
service with the CASD service. The CASD service retrieves
the services matching the service type specified by the client
after querying the service directory. Such services are referred
as basic matching services. Basic matched services are those
which are returned by a regular discovery service (i.e. protocols
that do not consider context information when performing
service discovery such as, for example, that proposed in [3]).
The CASD service collects the context information of the basic
services and client. It further filters the basic services based on
the context information to return the most suitable service to
the client. Our approach is similar to that outlined in [12],
except that we evaluate client context information using the
client's context source instead of relying on static Service
Registry context information.

Figure 1. Context Aware Service Discovery Model

The proposed CASD service uses ontologies for modeling
context information. Ontology is an explicit formal
specification of how to represent the objects, concepts and
other entities that are assumed to exist in some area of interest
and the relationships that hold among them [11]. In our work,
ontologies provide a shared vocabulary for specification of
client and service context information. Querying the set of
services is tightly coupled with the ontologies referred to
represent the client and services context information. The
following sections explain the elements of the CASD model
shown in Figure 1.

A. Context Aware Service Discovery Service
The CASD service provides the following interfaces:

i) Once-off service discovery: This interface allows clients to
query services based on their context information. The
client sends the type of desired service, reference to the
client context sources and query based on ontological
representation of service context and client context. The
CASD service returns the service which satisfies the client
query.

ii) Persistent service discovery: Persistent service discovery
is particularly useful when a client is in a dynamic
environment and has a need to continually obtain a handle
to the best service. In this case, in addition to the
parameters used with one-time service discovery, the
client also registers a callback interface with the CASD
service. The CASD service store and processes the client
request whilst the client remains subscribed for persistent
service discovery. The CASD service re-evaluates the
current service sent to the client when triggered by a client
context change, a service context change or when a new
service matching the type of desired service registers with
the service directory. This approach is similar to reactive
discovery proposed in [4], except in our case, it is the
CASD which triggers service discovery re-evaluation

based on context changes, rather than the client itself.

B. Context sources
As previously noted, context sources are modeled as

services and register with the service directory. A context
source provides the following interfaces for its clients:

i) Get context: This interface allows clients to obtain the
context information. The client should specify the context
parameter it is interested in and the context source
provides the value of requested parameter.

ii) Subscribe context: This interface allows the client to
subscribe for the context change event. The client should
send a callback interface over which the context change
notification is sent.

The context source also provides a context warehouse
where context information can be stored. Context updater is the
component which updates the context information at the
context warehouse. The context source later distributes this
context information to the subscribed clients. The context
source, on registration with a service directory provides a
reference to its owner i.e. service or CASD client. The service
and client can further provide this reference to the CASD
service for collecting and subscribing context information.

A context source may also be mobile. In the proposed
work, a mobile context source is nomadic mobile service. A
nomadic mobile service (described in [9]) provides the
flexibility of allowing a mobile device to participate in the
service discovery network and offer these services to the clients
located anywhere in the Internet. Mobile Service Platform
(MSP) proposed in [9] acts as a supporting infrastructure to
extend the SOA paradigm to the mobile device. MSP is a
middleware that facilitates the development and deployment of
nomadic mobile services. MSP addresses the challenges
involved in publishing a mobile context source in the fixed
network (Pl. refer Section I). A nomadic mobile service

Figure 2. Mobile and Fixed context sources

providing context information is herewith referred to as
nomadic mobile context source. As shown in Figure 2, a
nomadic mobile context source prototyped using MSP is
composed of two components: 1) context service running on
the mobile device; and 2) representation of the device service
in the fixed network which is referred to as a surrogate. The
other entities shown in Figure 2 will be discussed in Section IV
on implementation of CASD.

C. Client
The client of CASD service also has associated context

sources. The client is aware of the context parameters of a
service. Based on this knowledge, the client specifies a query
to the CASD service. The query sent by the client describes the
constraints that should to be applied to the prospective services
(e.g., printing services that should be the closest, and/or the
fastest).

D. Reasoner
The reasoner component is responsible for matching the

suitable services based on client context and service context.
For this purpose, CASD service sends the context information
of all the basic matching services and client to the reasoner.
The reasoner retrieves the services which match the client
requirements and informs CASD service of its selection.

III. CONTEXT AWARE SERVICE DISCOVERY ALGORITHM
AND EXAMPLE

This section explains the CASD algorithm and describes an
example to explain various concepts referred in this paper.

Though this example is simple, it helps to understand the
working of proposed CASD algorithm, the use of ontologies
and further, it can provide the guidelines for developing
complex applications.

A. CASD service algorithm
The sequence diagram for the proposed CASD service is
shown in Figure 3. The description of various labeled steps is
as follows:
1. The client submits a request to the CASD, indicating the

type of service it is interested in, a constraint expression on
the matching and also a reference to its context source.

2. The CASD service uses the service directory to obtain a
set of basic services that match the requested service type.
In case of the request for persistent service discovery, the
CASD service registers with the service directory to be
notified when a new basic service appears in the network.

3. The CASD service retrieves the service information of
each basic service to obtain reference to its context
sources.

4. For each of these context sources, the CASD service
requests the current context. Additionally, in case of the
request for persistent service discovery, the CASD service
subscribes to the context change event of every context
source.

5. The collected context information of the basic services is
stored in a structure called a service graph.

6. The CASD service further collects the context information
of the client and in case of persistent service discovery,
subscribes to the context change event of the client context
sources.

Figure 3. Sequence diagram for context aware service discovery

7. The CASD service populates the client query with client
context information and passes query and services graph to
the reasoner. In case of persistent service discovery, the
service graph is persisted in the database for later retrieval.

8. The reasoner matches the client query with each of the
service in the service graph and returns a matching service
(if any).

9. The CASD service passes a service reference to the client
which can use the service as per service semantics.

10. After receiving a context change event (or when a new
basic service appears in the network), the CASD service
retrieves the stored service graph from the database and
updates the existing service’s context information (or
appends the context information of new service). The
CASD service sends this graph for matchmaking to the
reasoner.

11. The reasoner further informs the CASD service if a new
service matching client criteria is found.

B. CASD example
The example scenario described herewith is part of a

broader scenario chartered by ISTAG [8]. This scenario is
outlined as follows:

“Dimitrios, a 32 year-old employee of a major food-
multinational, is taking a coffee at his office’s cafeteria.
Dimitrios is wearing, embedded in his clothes (or in his own
body), a voice activated ‘gateway’ or digital avatar of himself,
familiarly known as ‘D-Me’ or ‘Digital Me’. During the coffee
time, D-Me ‘rings’ Dimitro about a call from his wife using a
pre-arranged call tone. Dimitrios takes up the call with one of
the available Display phones of the cafeteria. D-Me can always
point at the closest functioning one display phone!”

This scenario is interesting from the CASD perspective, as
D-Me can use the CASD to obtain a handle on the closest
functioning display phone service. The following components
contribute to this CASD scenario:

i) Display phone Service: All the display phones in
Dimitros’ office offer a display phone service. These
services register with the service directory so that CASD
service can discover them. Display phone offers a service
of connecting to other display phone and facilitate a video
call between the caller and callee.

ii) D-Me: D-Me is a client of the CASD service and uses it to
find the closest available display phone (so that Dimitrios
can communicate with his wife). An advanced device such
as D-Me could potentially provide various context
information of the user. In this scenario, Dimitrios’
location within the office is important.

iii) Display phone service context source: In this case, a
context source of the display phone service provides the
location of the display phone and its availability.

iv) D-Me context source: The D-Me context source provides
Dimitrios’ location.

This work uses the Web Ontology Language (OWL) [15] to
describe the context ontology. OWL is a semantic markup
language that can be used to publish and share ontologies on
the Internet. A resource in OWL is represented as a class, and
the relationship between resources is shown using properties.

To represent context information, a context source must create
an individual of the class and connect two individuals by the
property. Figure 4 shows how the context ontology has been
mapped to the context information by a Display phone service
context source. The Display phone service informs the CASD
service about the context ontology it is referring to and a
reference to the context source which provides the required
context information in the form of a graph.

Figure 4. Mapping context ontology to the context information

Similar to the Display phone service context source, the D-
Me context source maps context ontology to represent location
information of Dimitrios. The Context Updater component of
the D-Me context source updates location information that it
obtains from a sensor.

The query sent by D-Me to the CASD service is expressed
in SPARQL [18]. SPARQL is a flexible query language for
OWL graphs. The query says: ‘Provide me a display phone
service the location of which is the same as Dimitrios’ location
and the service is not busy’.

After receiving this query, the CASD service collects the
context information of all the basic Display phone services
(those received by the service directory) and stores it in a data
structure called as service graph. The Display phone service
graph is further sent to the reasoner for matching services
which have same location as that of Dimitros and which are not
busy. This work uses Jena [10] for matchmaking, which is a
framework for building semantic web applications. It includes
a rule-based inference engine, support for ontologies, a
querying mechanism, and a persistent storage capability. When
a client issues a persistent service discovery request, Jena’s
persistent storage capability is used. For this purpose, Jena
stores the service context information in a MySQL database.

IV. CASD IMPLEMENTATION AND FURTHER WORK
In this work, CASD has been realized using Jini [19]

technology which follows the basic principles of SOA. The Jini
infrastructure is built on top of the Java application
environment. Jini uses Java Remote Method Invocation (RMI)
as an underlying network protocol, e.g. RMI enables Jini
clients to dynamically download code (service proxy) which is
needed to access Jini services. The Jini infrastructure enables
Jini services to register with Lookup services through discovery
and join protocols. In this work, CASD service, other services
in the network and context sources are Jini services. A service

directory is equivalent to the Jini lookup service. A reference to
the context source is serviceID, which is obtained when a
context source registers with Jini lookup service. The services
provide information about their context sources and context
ontology they are referring to, using Service Entry feature of
Jini. In Jini, a Service Entry provides additional information
about the service. A context source uses the remote eventing
mechanism provided by Jini to notify changes in context
information. A client (in this case the CASD service) interested
in the context information implements a remote event listener
interface to receive remote events. The CASD service also
subscribes to the Jini lookup service so that it can be notified
when new basic services are registered.

As shown in Figure 4, a mobile context source participates
as a service in the fixed network using the Mobile Service
Platform (MSP). The MSP design is based on the Jini
Surrogate Architecture Specification [20], which enables
devices that can not directly participate in a Jini Network to
join a Jini Network (with the aid of a third party). MSP consists
of an HTTPInterconnect protocol to meet the specifications of
the Jini Surrogate Architecture and provides a custom set of
APIs for building and running services on a mobile device. The
context service in the fixed network exports a service proxy to
the Jini lookup service. The CASD service uses this proxy to
communicate with a context source, as shown in Figure 2.

V. SUMMARY AND FUTURE WORK
This paper presents our ongoing work in the area of

augmenting traditional service discovery mechanisms with
context-awareness. It introduces the concept of persistent
service discovery. This mechanism promises to simplify the
design of clients in pervasive environments as they need not
actively search for the best services when their context
changes. This added simplicity is due to the fact that they will
be dynamically notified of better service matches as they
become available. Further work needs to be done in
determining the network and computational impact of this
functionality on both the client and the server.

We plan to extend the existing CASD system for
deployment as a bundle operating within an OSGi runtime. By
moving the CASD into an OSGi home gateway, we benefit in
three ways. Firstly, the CASD is able to be easily updated
since OSGi provides simple mechanisms to manage the
lifecycle of its deployed bundles. Secondly, having the CASD
hosted in a home gateway also provides simple access to the
home’s network (be it fixed and/or wireless). Thirdly, the
CASD can be re-engineered to easily make use of other
bundles that can aid it in its task, such as regular service
discovery and the Context Comparator Service. The Context
Comparator Service will leverage some of the experience we
have already gained with the use of Jena. It will make use of
the context ontology and the client’s query for service
discovery to evaluate both the client and services contexts for
aspects such as closest, fastest, cheapest etc.

ACKNOWLEDGEMENTS
The authors would like to thank Cristian Hesselman, Henk

Eertink, Sorin Iacob and Aart van Halteren who contributed to

the development of some of the concepts outlined in this paper.
This work has been conducted as part of the Amigo project
(IST-004182), which is partially funded by the European
Commission.

REFERENCES
[1] E. H. L. Aarts, et.al., “Ambient Intelligence”, First European

Symposium, EUSAI 2003, Veldhoven, The Netherlands, November 3.-
4, Springer 2003.

[2] T. Broens et. al., "Context-Aware, ontology based, service discovery",
Proceedings of the European Symposium on Ambient Intelligence 2004
(EUSAI'04), LNCS 3295, Eindhoven, the Netherlands, 2004.

[3] C. Campo et. al., "PDP and GSDL: A New Service Discovery
Middleware to Support Spontaneous Interactions in Pervasive
Systems.", PerCom Workshops 2005, pp. 178-182.

[4] L.Capra, S. Zachariadis and C. Mascolo. "Q-CAD: QoS and Context
Aware Discovery Framework for Adaptive Mobile Systems". University
College London, Tech Report RN/04/18. Sept. 2004.

[5] G. Chen and D. Kotz, “A Survey of Context-Aware Mobile Computing
Research”, Technical Report TR 2000-381, Dept. of Computer Science,
Dartmouth College, 2000.

[6] D. Dey, “Providing Architectural Support for Context-Aware
applications”, PhD thesis, Georgia Institute of Technology, 2000.

[7] C. Doulkeridis and N. Loutas, M. Vazirgiannis. "A System Architecture
for Context-Aware Service Discovery". International Workshop on
Context for Web Services (CWS'05), Paris, France, July 2005.

[8] K. Ducatel et. al., “Scenarios for Ambient Intelligence in 2010”, ISTAG
report, February 2001.

[9] A. T. van Halteren and P. Pawar, “Mobile Service Platform: A
Middleware for Nomadic Mobile Service Provisioning”, 2nd IEEE
International Conference On Wireless and Mobile Computing,
Networking and Communications WiMob 2006, Montreal ,Canada, June
2006.

[10] HP Labs, "Jena - A Semantic Web Framework for Java",
http://jena.sourceforge.net/, October 2005.

[11] R. Jakkilinki, N. Sharda and I. Ahmad, “Ontology-Based Intelligent
Tourism Information Systems: An overview of Development
Methodology and Applications”, Proceedings of Tourism Enterprise
Strategies – 2005, Melbourne, Australia, July 2005.

[12] C. Lee and A. Helal, "Context Attributes: An Approach to Enable
Context-awareness for Service Discovery," Third IEEE/IPSJ
Symposium on Applications and the Intrnet, Orlando, Florida, January
2003.

[13] D. Nickull, “Service Oriented Architecture Whitepaper”, Adobe
Systems Inc., 2005.

[14] OSGI Alliance, "The OSGi Service Platform - Dynamic services for
networked devices", http://www.osgi.org, 2006.

[15] OWL, "OWL Web Ontology Language Reference",
http://www.w3.org/TR/owl-ref/.

[16] Z. Salvador et. al., “Architectures for ubiquitous environments”, IEEE
International Conference on Wireless and Mobile Computing,
Networking and Communications, WiMob 2005, Volume 4, pp. 90-97,
Montreal, Canada, August 2005.

[17] B. Shishkov and P. Dockhorn Casta, “AWARENESS Service
Infrastructure D2.10 - Architectural specification of the service
infrastructure”, https://doc.freeband.nl/dscgi/ds.py/Get/File-60592,
Freeband Awareness project, 2005.

[18] "SPARQL Query Language for RDF", http://www.w3.org/TR/rdf-
sparql-query/.

[19] Sun Microsystems, “The JINI Architecture Specification”,
http://www.sun.com/software/JINI/specs/ JINI1_2.pdf, December 2001.

[20] Sun Microsystems, “JINI Technology Surrogate Architecture
Specification”, http://surrogate.JINI.org/sa.pdf, October 2003.

