
International Journal of Approximate Reasoning 138 (2021) 38–66
Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar

A compositional approach to probabilistic knowledge

compilation

Giso H. Dal a,∗, Alfons W. Laarman b, Arjen Hommersom a,c, Peter J.F. Lucas a,d

a Institute for Computing and Information Sciences, Radboud University, the Netherlands
b Leiden Institute of Advanced Computer Science, Leiden University, the Netherlands
c Faculty of Science, Open University, the Netherlands
d Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, the Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 July 2020
Received in revised form 29 June 2021
Accepted 12 July 2021
Available online 2 August 2021

Keywords:
Bayesian inference
Knowledge compilation
Partitioning
Model counting

Bayesian networks (BN) are a popular representation for reasoning under uncertainty. The
analysis of many real-world use cases, that in principle can be modeled by BNs, suffers
however from the computational complexity of inference. Inference methods based on
Weighted Model Counting (WMC) reduce the cost of inference by exploiting patterns
exhibited by the probabilities associated with BN nodes. However, these methods require
a computationally intensive compilation step in search of these patterns, which effectively
prohibits the handling of larger BNs. In this paper, we propose a solution to this problem by
extending WMC methods with a framework called Compositional Weighted Model Counting
(CWMC). CWMC reduces compilation cost by partitioning a BN into a set of subproblems,
thereby scaling the application of state-of-the-art innovations in WMC to scenarios where
inference cost could previously not be amortized over compilation cost. The framework
supports various target representations that are less or equally succinct as decision-DNNF.
At the same time, its inference time complexity O(n exp(w)), where n is the number
of variables and w is the tree-width, is comparable to mainstream algorithms based on
variable elimination, clustering and conditioning.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The field of probabilistic inference has made considerable progress in the past three decades with the development
of novel probabilistic graphical models, such as Bayesian networks (BNs) and chain graphs [10]. In particular, Bayesian
networks (BNs) have become popular graphical models for reasoning under uncertainty, with applications in areas such as
medical diagnosis, speech recognition, weather forecasting, data mining, and so on [28,41]. Despite progress in probabilistic
inference, its NP-hardness remains a stumbling block for using exact inference. Often, researchers resort to employing
approximate probabilistic reasoning under such circumstances, which could provide practical results, but the computational
complexity of approximations remains NP-hard [11]. The current article focuses on exact approaches.

Unfortunately, BNs are not able to take advantage of many forms of independence that could improve their conciseness
even further. These forms include causal independence [31], context-specific independence (CSI) [4], and determinism [22].

* Corresponding author.
E-mail addresses: gdal@cs.ru.nl (G.H. Dal), a.w.laarman@liacs.leidenuniv.nl (A.W. Laarman), arjen.hommersom@ou.nl (A. Hommersom),

peter.lucas@utwente.nl (P.J.F. Lucas).
https://doi.org/10.1016/j.ijar.2021.07.007
0888-613X/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.ijar.2021.07.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2021.07.007&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:gdal@cs.ru.nl
mailto:a.w.laarman@liacs.leidenuniv.nl
mailto:arjen.hommersom@ou.nl
mailto:peter.lucas@utwente.nl
https://doi.org/10.1016/j.ijar.2021.07.007
http://creativecommons.org/licenses/by/4.0/

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
Fig. 1. Bayesian network with context-specific independence and determinism.

These are collectively referred to as local structure. Fig. 1 shows a partial BN in which local structure is not exploited. CSI
exists when probabilities in a conditional probability table (CPT) show uniformity for multiple configurations of the variables
they depend on. Note that determinism means that probabilities in a CPT are equal 0 or 1. Consider the CPT in Fig. 1b and
recall that P (D = 1 | A, B, C) = 1 − P (D = 0 | A, B, C), for any value of A, B , and C . It shows that any conditional probability
of D = 1 given evidence A = 0 is equal to zero. Fig. 1c shows how to represent the same CPT as a decision tree using 4
probabilities instead of 8. Similarly, causal dependence can be captured concisely using decision diagrams [45, Th.3].

Knowledge compilation (KC) [18] is a probabilistic reasoning approach that avoids the limitations of BNs by ‘compiling’
propositional theories into a symbolic representation –like the decision tree and diagrams above– that can be queried
efficiently. As the compilation step can be done offline, it can spend considerable computational resources, as long as
it yields a small symbolic representation. The queries can then be performed online, using for example weighted model
counting [6], which only takes linear time in the size of the symbolic representation [18]. Various symbolic formalisms have
been proposed for KC, e.g., [34],[29] and [44], which all have different characteristics in terms of compilation effort and
query times. And because this symbolic approach represents local structure concisely, like the decision tree in Fig. 1c and
the diagrams [45, Th.3], KC is generally seen as a method that renders many practical reasoning problems tractable [33].

Although the cost of KC can be amortized over multiple inference queries, it has still proven too costly in many scenar-
ios [1,8,14,33,35]. In particular, the compilation step might fail due to a lack of resources, limiting the applicability of KC. The
current article proposes Compositional Weighted Model Counting (CWMC), a framework for probabilistic inference that parti-
tions the compilation into subproblems, which are recomposed in the inference query. It builds upon, and extends [15]. This
compositional approach offers various advantages. In the first place, it can reduce the effort spent on compilation because
the decomposition of a propositional theory is known to yield smaller symbolic representations, which has previously been
shown in model checking [25,39,42] and is confirmed by our experiments (which show orders of magnitudes improvement
in Table 3). This improvement is offset by a potential increase in the time spent on inference, although our experiments
still demonstrate good performance due to the smaller representations. In the second place, the compositional approach is
independent of the chosen symbolic target representation, as we demonstrate by using four different target representations
in our experiments. As a consequence, the approach is to a certain extent orthogonal to the exploitation of local structure
by those representations as local structure can still be exploited within the partitioned subproblems. For instance, we show
that causal dependence is fully exploited when using decision diagram representations in the partitions.

CWMC consists of four phases that are outlined in Fig. 2. It also illustrates a comparison to traditional WMC. CWMC
employs a divide-and-conquer strategy where probabilistic networks are partitioned into independent subproblems. Each
subproblem forms a component that is compiled into a symbolic representation. The compiled subproblems are then com-
posed, circumventing any further compilation cost, such that probabilistic inference can be performed. An algorithm is
provided to evaluate the composed representation in order to perform inference with partitioned probability spaces.

This paper is organized as follows. Preliminaries are provided (Section 2). Then, we discuss the theoretical basis in
CWMC (Section 3) and the algorithm that exploits these ideas (Section 4). We show that this algorithm has a complexity
described by O(n exp(w)) (Section 5). Methods are provided for finding partitionings and compilation orders to support
CWMC (Section 6). Symbolic representations are supported that are less or equally succinct as decision-DNNF, e.g., SDDs,
OBDDs, WPBDDs (Section 7). Finally, empirical evaluation shows that both compilation and inference cost are reduced while
employing CWMC, sometimes by multiple orders of magnitude (Section 8).

2. Preliminaries and background

For convenience, we summarize some basic set and graph theory and also go through the basics of Bayesian networks.
We follow [30] in our notation. More detail will be provided about methods underlying weighted model counting, as this
forms the foundation on which the rest of the paper is built.
39

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
Fig. 2. The compositional framework.

2.1. Set and graph theory

The reader is assumed to be familiar with basic set theory. We use ⊂ for the strict (proper) subset relation, and ⊆ for
the non-strict (improper) subset relation. The symbol ∅ denotes the empty set, and |X | denotes the cardinality of set X , i.e.,
its number of elements.
40

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
Definition 1 (Partial ordering). Let X be a set and ◦ ⊆ X × X a binary relation, and (X, ◦) an ordered set. Then a,b ∈ X are
said to be comparable if a ◦ b or b ◦ a. Relation ◦ is a weak strict partial order if:

1. If a ◦ b and b ◦ c then a ◦ c (transitivity), and
2. If a ◦ b then not b ◦ a (asymmetry),
3. Not a ◦ b nor b ◦ a does not imply a = b (weakness).

Definition 2 (Total ordering). The set (X, ◦) is called totally ordered if every pair of elements in set X is comparable by ◦.
Otherwise, it is partially ordered.

We use ≺ to denote a strict binary relation. Within the context of this article, we only use partial orders that are both
weak and strict, and will henceforth simply refer to them as partial orders.

A (directed) graph G is defined as a pair (V , E), where V is a set of numbers, called nodes, and edges E ⊆ V × V are
ordered pairs of nodes. An undirected graph G is a graph with a symmetric edge relation, i.e., (u, v) ∈ E iff (v, u) ∈ E . Graph
GA = (A, E A) is an induced subgraph of G if A ⊆ V and E A ⊆ E ∩ (A × A), and GA is induced by A if E A = E ∩ (A × A). The
undirected version G∼ of G is induced by V that additionally has an edge (v, u) for each (u, v) ∈ E . We further define the
following functions for nodes A ⊆ V and v ∈ V :

(children) ch(A) � {ch(v)|v ∈ A} \A, with ch(v) � {u ∈ V |(v, u) ∈ E} , (1)

(parents) pa(A) �
{
pa(v)|v ∈ A

}\A, with pa(v) � {u ∈ V |(u, v) ∈ E} , (2)

(family) fa(A) � {fa(v)|v ∈ A} , with fa(v) � {v} ∪ pa(v), (3)

(ancestors) an(v) � the smallest A ⊆ V s.t. pa(v) ⊆ A and pa(A) ⊆ A (4)

(descendants) de(v) � the smallest A ⊆ V s.t. ch(v) ⊆ A and ch(A) ⊆ A (5)

(descendants & v) su(v) � de(v) ∪ {v} (6)

(root) rtG �
{

v ∈ V |paG(v) = ∅}1 (7)

For directed graphs, we visually represent nodes by circles and edges by arrows; for undirected graphs, nodes are also
represented by circles and edges as lines. We further allow nodes v ∈ V to be labeled with a variable; the associated variable
is denoted Xv . The set of variables associated with nodes A ⊆ V is denoted by X A , e.g., the variables associated with parents
pa(v) of v are denoted Xpa(v) , and the variable associated with the ith parent is denoted by Xpai(v) . If necessary, the relevant
graph G is indicated, e.g., XpaG(v) .

A path of length n from node u to v is a sequence of distinct nodes u = s0, . . . , sn = v such that (si−1, si) ∈ E for all
i = 1, . . . , n. A graph is cyclic if it contains a path where begin and end points coincide; otherwise it is acyclic. Graph G is a
Directed Acyclic Graph (DAG) if it is directed and acyclic. Graph G is connected if there is at least one path in G∼ between
every pair of nodes. A graph G can be decomposed into the union of connected components, where a connected component
is an A-induced subgraph GA of G that is connected, and there is no edge in G between A and V \ A. A component can
consist of multiple connected components.

Graph G is a tree if it is a DAG and each node has exactly one incoming edge, except for one: the root, which has zero
incoming edges.

2.2. Bayesian networks

A Bayesian network (BN) is a probabilistic graphical model (PGM) representing a concise factorization of a discrete
probability distribution, by modeling conditional independence relations among variables. Factoring consists here of writing
probabilities explicitly as conditional on other variables, represented as parent nodes in a BN (omitting, as much as possible,
any conditional independencies). This factorization is usually smaller or simpler than the original. BNs reduce the size of
representing a probability distribution from O(2n) to O(n2m), where n is the number of variables and m is the maximum
number of parents of any node.

Let X = {X1, . . . , Xn} be a set of random variables, that is sometimes interpreted as a n-tuple X = (X1, . . . , Xn). We make
no distinction between singleton sets X = {X1} and the variable X1. Values of a variable X1 are denoted in lower case,
e.g., x1 ∈ val(X1). We denote with P (X = x) the probability that (X1, . . . , Xn) = (x1, . . . , xn), i.e. Xi = xi , for i = 1, . . . , n. Let
J ⊆N , I ⊆ J , be (finite) sets of indices, X = {Xi | i ∈ J }, then XI = {Xi | i ∈ I, Xi ∈ X}.

Definition 3 (Bayesian Networks). A Bayesian network B = (G, P) is a DAG G = (V , E), with nodes V and edges E ⊆ V × V ,
that models a factorization of joint probability distribution P (XV) defined over random variables XV as:

P (XV = xV) =
∏

P (Xv = xv | Xpa(v) = xpa(v)), (8)

v∈V

41

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
Fig. 3. Bayesian network with local structure.

such that there is a one-to-one correspondence between nodes V and variables XV , and the conditional probability distri-
bution of Xv ∈ XV given its parents Xpa(v) is specified as P (Xv | Xpa(v)).

Definition 4 (Cardinality). Let X be a set of variables. The dimension, or cardinality, of Xi ∈ X is denoted car(Xi) � |val(Xi)|,
where val(Xi) denotes the set of Xi ’s values. Furthermore, car determines the cardinality of Y ⊆ X :

car(Y) �
∏

Yi ∈ Y

car(Yi). (9)

Example 1 illustrates the graphical representation of a BN, alongside its factorization, and conditional distributions as
Conditional Probability Tables (CPTs). Note that this simple example is designed to demonstrate the techniques presented
throughout this paper, and should not be considered a typical Bayesian network.

Example 1 (Bayesian Network). Fig. 3 shows a BN B defined over variables X = {A, B} (Fig. 3b), its CPTs (Fig. 3c) and corre-
sponding full joint probability distribution (Fig. 3a).

The CPTs of BN B exhibit local structure in the form of context-specific independence and determinism: probabilities
show uniformity (equality) given multiple configurations, and 0 and 1 probabilities are present. It is therefore possible to
find a more concise representation when taking this into account.

Let X be a set of random variables, A, B ⊆ X , then the posterior probability distribution of B with evidence A = a is
P (B | A = a). This distribution is obtained from P after probabilistic updating, in a process called inference. This key problem
in Bayesian reasoning is addressed in this article.

Let B and R denote the Boolean and real domain, respectively. We use potential functions ϕ : Bm −→ R+
0 , as general-

izations of probability distributions. Although a potential function is not necessarily a probability distribution, we can use
them to represent any conditional probability distribution by defining:

ϕ(x1, . . . , xm) � P (X1 = x1, . . . , Xi = xi | Xi+1 = xi+1, . . . , Xm = xm)

Given two potential functions ϕ and ψ defined on sets of variables XV and XW respectively, we define the product of ϕ
and ψ , as:

(ϕ × ψ)(XV ∪W) � ϕ(XV) · ψ(XW)

Furthermore, potential functions can be marginalized. Suppose S ⊆ V , then
∑

S ϕ is also a potential defined by:(∑
ϕ

)
(V \ S) �

∑
ϕ(V)
S S

42

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66

,

2.3. Inference by weighted model counting

The WMC approach attempts to improve on the computational advantages of the factorization of a BN by employing
additional algebraic manipulations. The process is typically done in a framework where a BN is encoded as a Boolean
formula [6]. This formula is then compiled to a symbolic representation, e.g., a normal form, that respects the factorization
and improves it further to allow for more efficient inference. The computational complexity of inference is linear in the size
of this compiled symbolic representation if it adheres to a set of key properties identified by Darwiche [18]. We now review
this method and its 3 main steps in some detail, after we reiterate some basic definitions of Boolean logic. This section ends
with a discussion of the decisions diagram variant used in this article.

2.3.1. Boolean logic
A literal l is a Boolean variable x, or its negation x̄. We use 1 to denote the true and 0 to denote the false values. A

propositional formula (proposition for short) ψ is a literal, Boolean value (0 or 1), or a composite proposition with connectives
such as negation ϕ , conjunction (ϕ ∧ ψ), disjunction (ϕ ∨ ψ), and implication (ϕ =⇒ ψ), where ϕ and ψ are propositions,
with precedence of the connectives in that (descending) order. A proposition ϕ is in conjunctive normal form (CNF) if it is a
conjunction of clauses, where a clause is a disjunction of literals (l1 ∨ · · · ∨ ln). If whenever ϕ is satisfied by a model M (a
truth assignment to Boolean variables), the proposition ψ will also be satisfied by M , this will be denoted by ϕ |= ψ .

A proposition can be represented as a Boolean function f : Bm → B defined over m Boolean variables. The conditioning
of f on xi is defined as the projection f |xi←b(x1, . . . , xi, . . . , xm) = f (x1, . . . , xi−1, b, xi+1, . . . , xm), with b ∈ {0,1}. We use f |xi

and f |xi to denote f |xi←1 and f |xi←0, respectively. A Boolean function f depends on xi if f (x1, . . . , xi−1, 0, xi+1, . . . , xn) �=
f (x1, . . . , xi−1, 1, xi+1, . . . , xn). In the following we will often not make a distinction between a proposition ϕ and its asso-
ciated Boolean function f .

2.3.2. Boolean encoding, compilation and inference
Below, the three steps in turning a Bayesian network into a logical representation that is suitable for efficient weighted

model counting are reviewed.

Step 1: Bayesian network encoding BNs are defined over multi-valued domains and an encoding is required to transition to
the Boolean domain. To achieve this, we use a one-hot encoding for the variables, which introduces a Boolean variable xi for
each unique variable-value pair v ∈ val(Xi) [14].

Definition 5 (Bayesian Network encoding). Let B = (G, P) be a BN, with G = (V , E). The encoding of variables XV is equal to
a set of Boolean atoms at(XV):

at(XV) �
⋃

Xv∈XV

at(Xv), (10)

where at(Xv) �
⋃

u∈val(Xv)

at(u), (11)

where at(u) is a Boolean atom x, at(Xv) = {x1, . . . , xn} has a one-to-one mapping to values val(Xv) = {u1, . . . , un}, and for
at(XV) holds that at(Xk) ∩ at(Xl) = ∅ for all Xk, Xl ∈ XV with Xk �= Xl . Semantically, we say that Xv is equal to its jth value
if x j = 1.

Furthermore, we define bnvar(x j) = Xv and bnval(x j) = u j , with x j ∈ at(Xv), at(u j) = x j, u j ∈ val(Xv) and Xv ∈ XV . Fi-
nally, the function li(XV) provides the literals {x, x | x ∈ at(XV)}, i.e., atoms and their negations.

Probabilities are encoded in a propositional knowledge base according to Definition 6.

Definition 6 (Knowledge base). A propositional probabilistic knowledge base (PPKB) is a set of weighted formulas {〈ϕ1, ω1〉, . . . ,
〈ϕn, ωn〉}, where each propositional formula ϕi is associated with weight atom ωi , symbolically representing probability
pr(ωi) ∈ [0, 1]. The function pr returns 1 if no probability is specified for a given literal; in particular, pr(ωi) � 1. A PPKB is
written as a proposition by conjoining each pair 〈ϕi, ωi〉, that is syntactic sugar for (ϕi =⇒ ωi), or clause (ϕi ∨ ωi).

The factorization of BN B = (G, P), with G = (V , E), is encoded by adding clauses that ensure consistency with network
instantiations, i.e., assignments to the probabilistic variables, and clauses that capture the relation between instantiations
and probabilities. A weighted clause is added to the PPKB for every probability in conditional distribution P (Xv | Xpa(v)):

⋃
v∈V

⎛
⎜⎜⎜⎝

at least one︷ ︸︸ ︷〈 ∧
y∈at(Xv)

y,ω0

〉
∪

at most one︷ ︸︸ ︷⎛
⎝ ⋃

y,z∈at(Xv), y �=z

〈y ∧ z,ω0〉
⎞
⎠ ∪

probability encoding︷ ︸︸ ︷
⋃

y∈at(Xv), z1,..,zm∈ ∏
u∈pa(v)

at(Xu)

〈
y ∧ z1 ∧ · · · ∧ zm,ω(y, z1, . . . , zm)

〉
⎞
⎟⎟⎟⎠
43

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
where ω(y, z1, .., zm) is a fresh atom for the probability P (Xv = bnval(y) | bnvar(z1) = bnval(z1), . . . , bnvar(zm) = bnval(zm))

and ω0 an atom for the probability 0.1 This interpretation will later be used during inference. The encoding introduces a
unique atom, symbolizing the probability weight, for every unique probability in the CPT of Xv , thereby allowing multiple
equivalent probabilities to be associated with the same atom.

Example 2 (Bayesian Network encoding). Let BN B = (G, P), with G = (V , E), be defined over variables XV = {A, B} as
described in Example 1 and shown in Fig. 3. To encode the BN we add Boolean variables at(A) = {a1, a2, a3} and
at(B) = {b1, b2} (Definition 5).

PPKB KB is constructed by adding for every Xi ∈ X one-hot constraints for the values of Xi based on at(Xi) (‘at least
one’ and ‘at most one’), and adding a weighted formula for every probability in Xi ’s CPT (the ‘probability encoding’). The
probability mapping for variable A is pr(ω1) = 0.8, pr(ω2) = 0.1 and for variable B is pr(ω3) = 0.5. We do not encode
deterministic probabilities per CPT. Instead, pr(ω0) = 0.0 and pr(ω1) = 1.0, and pr returns 1.0 in all other cases.

The part of the PPKB for variable A is as follows:⎧⎪⎨
⎪⎩

at least one︷ ︸︸ ︷
〈a1 ∧ a2 ∧ a3,ω0〉,

at most one︷ ︸︸ ︷
〈a1 ∧ a2,ω0〉, 〈a1 ∧ a3,ω0〉, 〈a2 ∧ a3,ω0〉,

probability encoding︷ ︸︸ ︷
〈a1,ω1〉, 〈a2,ω2〉, 〈a3,ω2〉, . . .

⎫⎪⎬
⎪⎭

Weighted clauses are created for variable B analogously. The CNF representation follows directly from the PPKB definition:

(a1 ∨ a2 ∨ a3 ∨ ω0) ∧ (a1 ∨ a2 ∨ ω0) ∧ (a1 ∨ a3 ∨ ω0) ∧ (a2 ∨ a3 ∨ ω0) ∧
(a1 ∨ ω1) ∧ (a2 ∨ ω2) ∧ (a3 ∨ ω2) ∧ (b1 ∨ b2 ∨ ω0) ∧ (b1 ∨ b2 ∨ ω0) ∧
(a1 ∨ b1 ∨ ω3) ∧ (a1 ∨ b2 ∨ ω3) ∧ (a2 ∨ b1 ∨ ω3) ∧ (a2 ∨ b2 ∨ ω3) ∧ (a3 ∨ b1 ∨ ω0) ∧ (a3 ∨ b2 ∨ ω1)

The combination of the clauses (b1 ∨ b2 ∨ ω0) and (b1 ∨ b2 ∨ ω0) act as the constraints to ensure that variable B can
only be assigned one value. Either b1 or b2 can be true, not both, semantically imply B = 1 or B = 2. Note that clauses
with deterministic weights can be simplified, e.g., (b1 ∨ b2 ∨ ω0) ≡ (b1 ∨ b2 ∨ 0) ≡ (b1 ∨ b2), which will further simplify the
encoding.

The encoding includes the following models for variable A:

Models Weights

1 a1 a2 a3 ω1 ω2 pr(ω1) · pr(ω2) = 0.8 · 1 = 0.8
2 a1 a2 a3 ω1 ω2 pr(ω1) · pr(ω2) = 1 · 0.1 = 0.1
3 a1 a2 a3 ω1 ω2 pr(ω1) · pr(ω2) = 1 · 0.1 = 0.1

Note that the weighted model count sums to 1.0 for this selection of models. However, there are more models, e.g.,
model a1,a2,a3,ω1,ω2, model a1,a2,a3,ω1,ω2, etc. Only minimal models sum to 1.0, i.e., models with the most amount of
negations.

To yield a valid probability distribution we require that only minimal models participate in the model count. Minimal
models are those with the most amount of negations. One way to remove non-minimal models is by extending the encoding.
For every encoding formula 〈y ∧ z1 ∧ · · · ∧ zm, ω(y, z1, . . . , zm)〉 we add ω(y, z1, . . . , zm) =⇒ (y ∧ z1 ∧ · · · ∧ zm). This is also
referred to as a completion formula [23]. For example, the completion formulae for variable A in Example 2 are (a1 ∨ ω1),
(a2 ∨ ω2), and (a3 ∨ ω3). In our actual implementation, completion formulae are not explicitly added. We discuss how
non-minimal models are handled in Section 2.5.

Step 2: compiling to a concise symbolic representation To refactor a joint probability distribution P (X), a concise symbolic
representation is obtained through compilation that represents P (X)’s encoding. This seems an indirect route, but using
decision diagrams such as OBDD [5], d-DNNF [7], WPBDD [14], etc., to represent the PPKB provides access to a rich set
of tools specifically developed for the efficient manipulation of Boolean functions. These representations all take a subset
of a functionally complete Boolean language, a normal form, condensing the corresponding syntax trees into DAGs. Any
Boolean function can be represented within the chosen subset, but the conciseness differs, e.g., there are functions with
exponentially sized OBDD representation, but polynomial d-DNNF representations [18]. Manipulations, on the other hand,
such as conjoining or negating two represented formulas, are not always efficient. For example, conjunction is efficient in
OBDD, but not in d-DNNF representations. Indeed, every representation has a different balance between conciseness and
manipulation costs [18], so the selection must be made wisely.

1 So we have pr(ω0) � 0 and pr(ω(y, z1, . . . , zm)) � P (Xv = bnval(y) | bnval(z1), . . . , bnval(zm)).
44

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
Fig. 4. The semantics of a WPBDD node.

Step 3: inference Representations used in the context of WMC typically offer linear time inference. More specifically, this
holds for representations that are decomposable, deterministic and smooth [18]. OBDD, d-DNNF, WPBDD, and many more
have these properties. To realize model counting, and thereby inference, each node in the representation is visited once
while computing its semantics, hence the complexity of inference is linear. We provide the semantics for one such repre-
sentation, i.e., WPBDDs, in Section 2.4.

2.4. Decision diagrams

Many variants and extensions of decision diagrams exist for representing (and manipulating) Boolean functions [5,7,
18]. A Weighted Positive Binary Decision diagram (WPBDD) is one such decision diagram that is particularly well suited to
model probability distributions encoded as Boolean formulas [14]. A WPBDD is an ordered BDD that represents a concise
factorization of a Boolean formula f as a (rooted) directed acyclic graph with decision nodes, and two terminal nodes
labeled with 1 and 0 (Fig. 4a). Each non-terminal node v is labeled with a Boolean variable var(v) = xv and has two
children, hi(v) and lo(v), with a set of weight variables wg(v) at the edge to node hi(v). Edges to nodes hi(v) and lo(v) are
solid and dotted, respectively, as shown in Fig. 4b. Its logical equivalent is shown in Fig. 4c. The subgraph induced by nodes
su(v) represents Boolean function f v . If v is the root of the WPBDD, then f v = f . Formula f v is created by conditioning
f on the variables by which nodes U on the path from the root node to node v are labeled. If the edge to node hi(u) or
lo(u) is taken, then fu is conditioned on (at least) xu or xu , respectively. Note for instance that if hi(u) = v , then fu|xu = f v .
When handling weighted formulas, the weights of the clauses that are satisfied by conditioning f v on xv form the set
wg(v) = ωv associated with node v . Each root-terminal path contains a variable at most once, and in a particular total or
partial order. f p

v is the arithmetic equivalent to the logical f v , which in turn, could represent a probability distribution.
Extensive definitions and examples of WPBDDs that model probability distributions can be found in [14].

2.5. Removing unintended models

A WPBDD is logically equivalent to the encoding it represents. However, unintended models are present in the encoding
(see the remark after Example 2), and thus also in the WPBDD. They are removed during the conversion to the correspond-
ing arithmetic circuit. Luckily, this is achieved with a trivial one-to-one mapping. The conjunctions and disjunctions are
mapped to multiplications and additions respectively, and literals ωi are mapped to probabilities pr(ωi).

There are two requirements on WPBDDs that guarantee that this operation removes the unintended models: (i) the
WPBDD must satisfy a particular partial ordering, and (ii) the delete rule, which removes nodes that have equivalent children.
A partial order is imposed between pairs of literals within a clause, where a literal weighted by 1 must precede a literal
weighted otherwise. For example, clause (a1 ∨ b1 ∨ ω3) produces partial ordering a1 ≺ ω3, b1 ≺ ω3, given that pr(a1) =
pr(b1) = 1 and pr(ω3) �= 1. The combined partial ordering produced by all clauses has the effect that all weight literals ωi
are located in the WPBDD after the set of literals by which they are implied, e.g., path a1, . . . ,b1, . . . ,ω3 or b1, . . . ,a1, . . . ,ω3
will exist given the imposed partial ordering. Other weight literals that are distinct from ω3 but originate from the same
CPT are guaranteed not to occur on any path from or to ω3, because they are implied by a different set of literals, and the
delete rule removes their occurrence on any path to and from ω3. We are left with an arithmetic function that has precisely
those models that are considered minimal.

3. The compositional framework

The Weighted Model Counting (WMC) approach is a state-of-the-art method to perform probabilistic inference and has
shown to be a powerful tool in practice. However, its wide-spread application is limited due to the cost of one of its core
components: compilation. We introduce the Compositional Framework (CF): a computational model to perform probabilistic
inference that relies on partitioning. The representations of the separate partitions are optimized and when combined with
45

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
Fig. 5. Partitioning a BN for Example 3.

WMC, CF provides the means to deal with the compilation overhead (see Fig. 2). CF can thus be seen independently of
WMC, and is therefore also introduced as such.

3.1. Partitioning

For the purpose of dividing a BN into subproblems, we define a partitioning of graph into subgraphs that are connected
components. A partitioning can be obtained by splitting a set of nodes into disjoint subsets of nodes that collectively cover
the entire set of nodes, each inducing a connected subgraph, ignoring edges that are not part of the induced subgraphs (i.e.
the cut set). Section 6 provides insight into the considerations and mechanics involved in determining a good partitioning.

Definition 7 (Graph partitioning). A partitioning of a graph G = (V , E), with nodes V and edges E , is a set of connected graphs
G1 = (V 1, E1), . . . , Gm = (Vm, Em) induced by a partition {V 1, . . . , Vm} of the vertex set V , i.e., G1 = G V 1 , etc. The cut set
associated with the partitioning is the set of edges connecting subgraphs in the original graph: E \⋃m

i=1 Ei .

By combining subgraphs (partitions), their associated variables and probability distributions, we arrive at the complete
description of the units of computation, called subproblems.

Definition 8 (Bayesian network partitioning). Let B = (G, P) be a BN. We say that B is partitioned into m subproblems S =
{S1, . . . , Sm} given a partitioning {G1, . . . , Gm} of graph G , where Gi = (V i, Ei). With subproblem Si = (V i ∪ paG(V i), Gi, ψi)

is associated a family of conditional probability distributions for each node in V i and a potential ψi defined as follows:

ψi(XV i , XpaG (V i)) =
∏

v∈V i

P (Xv | XpaG (v)) (12)

The domain of each subproblem Si is denoted by dom(Si) � V i ∪ paG(V i).

Example 3 (Bayesian Network partitioning). Consider the BN B = (G, P) in Fig. 5a. Fig. 5b shows a partitioning {G1,G2}, with
G1 = (V 1, E1), V 1 = {A, B}, and G2 = (V 2, E2), with V 2 = {C}. We use the partitions to define subproblems. Partition G1
gives rise to subproblem S1 = (Z1,G1,ψ1), and G2 induces subproblem S2 = (Z2,G2,ψ2) in Fig. 5c, where Z1 = V 1 = {A, B}
and Z2 = {B, C} �= V 2. Note that Z2 also includes B as extra vertex, as the family of conditional probability distributions of
C is conditioned on B , or as a potential ψ2(B, C) (for simplicity’s sake we make no distinction between nodes, e.g., A, and
variables, e.g., X A , in the examples).

Lemma 1 (Partitioned joint distribution). Let BN B = (G, P) be partitioned into m subproblems S = {S1, . . . , Sm}, Si = (Zi,Gi,ψi),
Gi = (V i, Ei). Then it holds that joint probability distribution P (XV) =∏m

i=1 ψi(X Zi).

Proof. The following deduction follows from Definition 8:

P (X) =
∏
v∈V

P (Xv | XpaG (v)) (Definition 3)

=
m∏

i=1

∏
v∈V i

P (Xv | XpaG (v)) (V 1, . . . , Vm partitions V , Definition 8)

=
m∏

i=1

ψi(X Zi) (Zi = V i ∪ paG(V i), Definition 8) �

Note that each conditional distribution P (Xv | XpaG (v)) in BN B is associated with one and only one subproblem. A
subproblem therefore also depends on the variables associated with the parents in V that are not in the partition G = (V , E)

by which it is induced, i.e., the parents that have been disconnected from their child nodes due to the partitioning operation.
Those parents are Xpa (V i) .
G

46

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
3.2. Composition

In order to explain how probabilistic inference works using a partitioned probability distribution, a comparison is drawn
with the junction-tree algorithm. An important property of junction trees, the graphical representation of the junction-tree
message passing algorithm, is the junction property [10,30]. Every node i in a junction tree represents a complete graph
(i.e., an undirected graph with all nodes connected to each other) built from a subset of nodes Ci from the original Bayesian
network; the junction property tells for any pair of junction tree nodes i, j it holds that Ci ∩ C j ⊆ Ck for every node k on
the path between i and j [30]. This property ensures that the probability distribution is consistent along every path of the
junction tree.

A composition-tree ensures probabilistic consistency for CWM in a similar way to how a junction-tree provides these
guarantees for the junction-tree algorithm. A composition-tree is induced by a partial ordering based on BN dependencies.
It forms a tree-structured graphical representation of how subproblems must be connected, or composed, in order to perform
inference.

Definition 9 (Proper composition ordering). Let BN B = (G, P) be partitioned into subproblems S . A partial order (S, ≺) is said
to be proper if dom(Si) ∩ dom(S j) �= ∅ then Si ≺ S j or S j ≺ Si holds, for i �= j.

Definition 10 (Composition-tree). Let (S, ≺) be a proper partial ordering for subproblems S = {S1, . . . ,Sm} (Definition 9). A
composition-tree T = (S,H) is a pair consisting of subproblems S and a directed rooted tree H = (U , F), with nodes U and
edges F ⊆ U × U , such that there is a one-to-one correspondence between nodes U and subproblems S , and there is a
directed path from u to v iff Su ≺ Sv , for u,v ∈ U .

As with junction trees, it is necessary to have consistent probability distributions along the paths of a composition-tree.
A composition-tree guarantees that there is a directed path between u and v if the associated subproblems Su and Sv

depend on an overlapping set of BN variables. However, unlike with junction-trees, it is not guaranteed that subproblems
on a path depend on the variables that the end-point subproblems have in common. The composition-tree is decorated
with the notion of context (Definition 11). The idea behind the context of a subproblem essentially is to extend the set
of variables upon which it depends with precisely those variables that are required for the junction property to hold. In
contrast to having this hold for only the nodes on the path between node u to v , this property also holds for endpoint v .
This will prove essential during inference, as described in the following section.

Definition 11 (Composition-tree context). Let T = (S, H) be a composition-tree, with tree H = (U , F), subproblems S , and
nodes Zu = dom(Su) of subproblem Su ∈ S . The context of node v ∈ U is defined as:

co(v) �

⎛
⎝X Z v ∪

⋃
u∈ch(v)

co(u)

⎞
⎠∩

⋃
s∈an(v)

X Zs . (13)

Algorithm 1 creates a (tree structured) composition-tree from a particular sequence of subproblems S based on the
dependencies of the underlying BN. Note that the definition of context in Algorithm 1 differs from Equation (13) in the
last term, by making use of the fact that an(v) ⊆ {1, ...,m} \su(v). This change is necessary because the composition-tree is
built bottom-up and node v does not have ancestors (yet). The end result is equivalent.

Example 4. Consider the BN B = (G, P), G = (V , E), defined over variables XV = {A, B, C} as illustrated in Fig. 5a. The BN is
partitioned into 3 subproblems S = {S1, S2, S3}, Si = (Zi,Gi,ψi), such that X Z1 = {A}, X Z2 = {A, B}, and X Z3 = {B, C}.

Let σ1 : {(1,1), (2,3), (3,2)}, σ2 : {(1,1), (2,2), (3,3)} and σ3 : {(1,2), (2,3), (3,1)} be permutation functions that induce se-
quences of subproblems S , e.g., Sσ3(1),Sσ3(2),Sσ3(3) = S2,S3,S1. Algorithm 1 is used to create composition-trees given these
sequences. The following composition-trees (Definition 10) are obtained: T = {T1, T2, T3}. Ti is created by calling Create-

CompositionTree(S, σi, 0). Sequence S2,S3,S1 for instance induces tree structured composition-tree T3, which corresponds
to partial ordering S2 ≺ S1, S2 ≺ S3. Ti is guaranteed to be a chain (or total ordering) if the final argument to the algorithm
is 1. Fig. 6 depicts the resulting subproblem orders and shows shared- and context variables.

Proposition 1 (Junction property). Let T = (S, H) be a composition-tree with graph H = (U , F) for subproblems S. Function co
associates precisely those random variables with nodes in U such that T satisfies the junction property: for each node s ∈ U on the
path from node u to v it holds that X Zu ∩ X Z v ⊆ co(s), for u,v ∈ U and nodes Zi = dom(Si) of subproblem Si ∈ S.

Proof. It follows directly from Definition 10 that there is a path between u and v in tree H iff the associated subproblems
share variables. Each node v ∈ U has at most one parent, because H is a rooted tree. Let u ∈ an(v), u,v ∈ U . Thus, the
sequence u, s1, . . . , sn, v contains all nodes on the path from u to v , with {s1, . . . , sn} = an(v)\(an(u) ∪ {u}). We must prove
that if X ∈ X Zu ∩ X Z v , then X ∈ co(si), for all 1 ≤ i ≤ n.
47

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
Fig. 6. Composition-trees created with Algorithm 1 for Example 4.

Algorithm 1 Create a composition-tree.

CreateCompositionTree(S, σ , b)

input: Subproblems S = {S1, . . . ,Sm}, Si = (Zi,Gi,ψi), Gi = (V i, Ei),
and permutation function σ and Boolean b.

output: Composition-tree T = (S,G), G = (V , E).

1 def co(v) {
2 return

(
X Z v ∪ ⋃

u∈ch(v)

co(u)

)
∩ ⋃

s∈{1,...,m}\su(v)

X Zs

3 }
4
5 def ord(σ , i) {
6 if (i > |σ |)
7 return ({} , {} , {})
8 else
9 (R, V , E) = ord(σ , i + 1)

10
11 v = σ(i)
12 V ′ = V ∪ v
13 U = {u ∈ R | X Z v ∩ co(u) �= ∅ ∨ b

}
14 E ′ = E ∪ {(v, u) | u ∈ U }
15 R ′ = (R\U) ∪ {v}
16 return (R ′, V ′, E ′)
17 }
18
19 (_, V , E) = ord(σ ,1)

20 return (S, (V , E))

Firstly, assume that v is a leaf and X ∈ X Zu ∩ X Z v . Then, co(v) = X Z v ∩⋃w∈an(v) X Z w , because ch(v) = {} (Definition 11).
It follows that X ∈ co(v), because u ∈ an(v), X Zu ⊆ ⋃w∈an(v) X Z w and X ∈ X Zu ∩ X Z v . This also holds true if v is not
a leaf, because the context can only be more inclusive if ch(v) �= {} (Definition 11). Secondly, co(sn) contains at least ⋃

w∈ch(sn) co(w) ∩⋃w∈an(sn) X Z w (Definition 11). It follows that X ∈ co(sn), because both the left and right operands of
the intersection contain X . Left operand: v ∈ ch(sn), co(v) ⊆⋃w∈ch(sn) co(w), and X ∈ co(v). Right operand: u ∈ an(sn),
X Zu ⊆⋃w∈an(sn) X Z w and X ∈ X Zu . Finally, for i = n − 1 down to 1, it follows that X ∈ co(si), because co(si) contains
co(si+1) ∩⋃w∈an(s) X Z w , where both operands contain X . X ∈ co(sn), therefore X ∈ co(sn−1), . . ., therefore X ∈ co(si+1).
n

48

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
Also X ∈⋃w∈an(sn) X Z w because u ∈ an(si) and X ∈ X Zu . We can now state that X ∈ co(s) if and only if there exists a u and
v such that s lies on the path from u to v and X ∈ X Zu ∩ X Z v , for s,u,v ∈ U . �
3.3. Inference

Next, we consider how information among conditional probability distributions is shared through message passing in
order to perform probabilistic inference in a way that is consistent with the joint probability distribution. Probabilistic
inference can generally be performed by variable elimination. The algebraic elimination required to perform inference cor-
responds exactly with graphical elimination using a composition-tree. Each intermediate step is related to an elimination
clique. If we consider a tree of these cliques, then each elimination step can also be thought of as message passing on
a clique tree. When CF is combined with WMC, a message is computed by performing weighted model counting on the
compiled representation of a particular subproblem. This is discussed in Section 4.

Definition 12 (Message Passing). Let BN B consist of nodes V . BN B is partitioned into subproblems S that form a
composition-tree T = (S, H) with graph H = (U , F). We define a sum-product equation for each u ∈ U , which are used
as messages from u to its parents. A message for each u ∈ U is defined as:

mu(C) �
∑

X Zu \C

ψu(X Zu)
∏

k∈chH(u)

mk(co(k) ∪ C), (14)

where Su = (Zu, Gu, ψu) and C ⊆ XV are configurations of variables.

Proposition 2 (Correctness message passing). Let BN B contain nodes V . BN B is partitioned into subproblems S that form a
composition-tree T = (S, H) with graph H. If node u is the root of H, then it holds that:

P (E = e) = mu(e),

where E ⊆ XV .

Proof. Claim: Let subproblem Si ∈ S consist of nodes Zi , i.e., Zi = dom(Si). Suppose we take some node i in H, where i
and its descendants in H represent conditional distributions �i over a set of variables X�i ⊆ XV , then for any E ⊆ X�i it
holds that mi is a potential function over E such that:

mi =
∑

X�i \E

∏
ψ∈�i

ψ

This can be proven by structural induction on the subtree of H induced by i and its descendants. Suppose first that i is a
leaf node in H, then the property follows directly from Definition 12. Now suppose that i is not a leaf node, then by the
induction hypothesis, we have:

mi =
∑

X Zi \E

ψi

∏
k∈chH(i)

∑
X�k \(co(k)∪E)

∏
ψ∈�k

ψ

Observe that (X�k \ (co(k) ∪ E)) ∩ (X Zi \ E) = (X�k \ co(k)) ∩ X Zi = ∅ because variables from X Zi are part of co(k) if they
occur in X�k (Proposition 1). Furthermore, because the tree is induced by a proper ordering, each child will marginalize over
distinct sets of variables. Observe that

⋃
k(X�k \ co(k)) ∪ X Zi = X�i . It follows that:

mi =
∑

X Zi \E

∑
X�k \co(k),

k∈chH(i)

ψi

∏
k∈chH(i)

∏
ψ∈�k

ψ =
∑

X�i \E

∏
ψ∈�i

ψ

Finally note that for root node u it holds by Lemma 1 that P (XV) = (
∏

ψ∈�u
ψ)(XV). Hence, P (e) = (

∑
X�\E

∏
ψ∈�u

ψ)(e)
= mu(e). �
Example 5 (Message passing). Consider the partitioning in Example 4. Fig. 7 illustrates message passing on composition-tree
T3 = (S, H) (Fig. 6c) based on Definition 12. Example, for 6c, without evidence the messages are if e = ∅:

m1(A) = P (A)

m3(B) =∑C P (C | B)

m2(∅) =∑A,B P (B | A)m1(A)m3(B)

so we find that P (�) = m2(∅) = 1.
49

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
Fig. 7. Message passing for Example 5.

Now suppose e = {A = a}, then

m1(a) = P (a)

m3(B) =∑C P (C | B)

m2(a) =∑B P (B | a)m1(a)m3(B)

It follows that: m2(a) =∑B P (B | a)m1(a)m3(B) =∑B P (B | a)P (a)
∑

C P (C | B) = P (a).

The key insight here is that messages among subproblems can be reused, allowing you to pre-compute clique func-
tions/factors, and get new marginals quickly, as conditional probabilities are represented as clique potentials. A natural
ordering is to eliminate from the bottom leaves to the top. However, a composition-tree can be re-ordered with a different
node as root. Each message is the factor resulting from eliminating variables in descendant subproblems.

4. Compositional weighted model counting

Compositional inference (CI) can be instantiated with any method that computes marginal probabilities. Combined, the
subproblems that make up a composition-tree represent a probability distribution, where each subproblem represents a
disjoint portion of it. Inference consists of so-called edge computations, performed by message passing (Definition 12), and
node computations, which can be outsourced to a method that computes marginals. Weighted Model Counting (WMC) is
one such method.

The Achilles’ heel of WMC has always been the cost of knowledge compilation, which is exponential complexity in
the worst case [3]. WMC therefore is a much less favored method for problems of larger size, despite its acclaimed high
inference efficiency after compilation. To this end, we introduce Compositional Weighted Model Counting (CWMC), which
combines CF and WMC. CWMC allows for a divide and conquer strategy, where compiling multiple partitions can potentially
be much less costly compared to monolithic (or unpartitioned) compilation.

Partitioning has several advantages: (1) reduced compilation cost, and (2) improved capability of exploiting local structure
through independent compilation orderings for each subproblem. To elaborate, Example 3 provides a case where, in the
worst case, compilation is exponential in {A, B, C}. Through partitioning this reduces to exponential in {A, B} and {B, C}.
Now consider the extent to which compilation cost is reduced for problems of a much larger size. Partitioning thus provides
a scalable way to tackle compilation scenarios of high cost.

Secondly, the degree to which the problem structure can be exploited is determined by the ordering used during compi-
lation. An ordering that is good for one part of the network, might not be well suited for another. We improve upon this by
allowing subproblems to be compiled with independent orderings, rather than having one global ordering. This allows for
more fine-grained control to exploit structure and capturing network topology.

4.1. Inference by CWMC

Probabilistic inference is achieved by 4 distinct phases (also see Fig. 2).

1. Partitioning: Partition a BN into m subproblems.
2. Compilation: Encode and compile each subproblem.
3. Composition: Compose compiled subproblems.
4. Inference: Perform inference by WMC using the composed representation.

We provide a step by step walkthrough, where each phase is explained and demonstrated with examples. Insight is
provided into the advantages of partitioning in relation to WMC. The required additional considerations to retain a consistent
model count with regard to the probability distribution are introduced. The presented framework reduces compilation cost,
which allows WMC methods to be applied to practically any BN. WMC representations are supported that are less or
equally succinct as decision-DNNF. This includes for instance SDDs, OBDDs, ZBDDs, WPBDDs, and others. This is because
these representations can be converted to an equivalent Free Binary Decision Diagram (FBDD) [2] (Section 7). Without loss
of generality, a particular combination of encoding and target representation is used for demonstration purposes, producing
one variety of decision diagram, called Weighted Positive Binary Decision Diagram (WPBDD) [14].
50

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
Fig. 8. Partitioning a BN for Example 6 and 7.

4.2. Partitioning and compilation

Any BN can be partitioned using the principles introduced in Section 3.1. Once a BN is partitioned into subproblems,
a Boolean encoding must be obtained. This conversion allows the use of state-of-the-art compilation methods, which in
turn allows for efficient probabilistic inference by weighted model counting. The used Boolean encoding is presented in
Section 2.3.2.

Example 6 (Encoding a partitioned BN). Consider the BN B = (G, P) from Example 1. Fig. 8a shows a partitioning
{G1 = (V 1, E1),G2 = (V 2, E2)} of G that respectively induces subproblems S = {S1, S2}, where V 1 = {A} and V 2 = {B}.
S1 thus depends on XfaG (V 1) = {A}, and S2 depends XfaG(V 2) = {A, B}, respectively.

The probabilities of CPTs associated with each subproblem are encoded such that equal probabilities in a particular CPT
are mapped to the same Boolean atom. This is shown in Fig. 8b. A standalone encoding for subproblem S1 and S2 is given
below by Boolean functions f and g , respectively. Note that constraints for variable A are mentioned in both f and g (see
line 1 of both formulas), because both subproblems depend on A

f = (a1 ∨ a2 ∨ a3) ∧ (a1 ∨ a2) ∧ (a1 ∨ a3) ∧ (a2 ∨ a3) ∧ 1

(a1 ∨ ω1) ∧ (a2 ∨ ω2) ∧ (a3 ∨ ω2). 2

g = (a1 ∨ a2 ∨ a3) ∧ (a1 ∨ a2) ∧ (a1 ∨ a3) ∧ (a2 ∨ a3) ∧ 1

(b1 ∨ b2) ∧ (b1 ∨ b2) ∧ 2

(a1 ∨ b1 ∨ ω3) ∧ (a1 ∨ b2 ∨ ω3) ∧ (a2 ∨ b1 ∨ ω3) ∧ 3

(a2 ∨ b2 ∨ ω3) ∧ (a3 ∨ b1 ∨ ω4) ∧ (a3 ∨ b2 ∨ ω5). 4

Typically, and also in the case of WPBDDs, compilation is driven by an ordering on the variables. With CWMC, each
subproblem is compiled individually, thus each subproblem requires an ordering on the variables upon which it depends.
CWMC allows the use of independent- and even conflicting compilation orderings among subproblems.

Example 7 (Compiled representations of a partitioned BN). Consider the subproblems and their encoding formulas f and g
from Example 6. Fig. 9 shows compiled representation induced by conflicting orderings. Note that if an edge is weighted by
an atom that maps to probability one, then the weight is removed. If a weight maps to probability zero, then the weight
is removed and the edge’s target is changed to the 0-terminal. Hence, weights ω4 and ω5 are not present for this reason.
Details of the compilation process can be found in [14], or in the respective articles that introduce the otherwise preferred
symbolic target representation.

4.3. Composition

Probabilistic inference by WMC is traditionally performed by traversing the representation obtained through compilation,
whilst computing the underlying arithmetic function it actually represents. This achieves marginalization. The arithmetic
function is unique to the symbolic target representation that is chosen and is best explained by the articles that introduce
them.

With CWMC, we must somehow traverse the collection of compiled subproblems as if it were a monolithic repre-
sentation. We do this by composing the compiled subproblems according to the structure of a composition-tree. Every
child-parent pair is composed by connecting the 1-terminal of the parent subproblem to the root node of the child sub-
problem. Thus allowing a traversal across subproblems.
51

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
Fig. 9. Compiled representations of a partitioned BN for Example 7, where xi signifies x being equal to its ith value.

Fig. 10. Composed representation for Example 8 and 11.

Example 8 (Subproblem composition). Consider the compiled subproblems of Example 7. Fig. 10 shows composition-tree T
induced by sequence S1,S2 (Fig. 10a), and the composed representation that has a one-to-one mapping with T (Fig. 10b).

4.4. Inference

The typical WMC process compiles a BN monolithically. The obtained compiled representation has an underlying arith-
metic circuit that represents the sum-product formula in a factored form. This factored form can be evaluated with improved
efficiency if it is more concise than the original. The evaluation is performed while traversing the compiled representation.

4.4.1. Traversing monolithic representations
If a symbolic language is chosen that is decomposable, deterministic and smooth, then any path from root to leaf contains

a particular variable at most once [18]. A path in a compiled representation encodes a configuration, or assignment to all
contained variables. Taking the hi or lo edge at node v implies the assignment xv = 1 or xv = 0, respectively (see Fig. 4b).
If xv = 1, then evidence bnvar(xv) = bnval(xv) is semantically implied (see Definition 5). This way, we can sum over all
configurations of a BN and obtain the joint distribution.

Example 9 (Traversing a compiled subproblem). Consider only variable A in Example 1. The compiled representation is shown
in Fig. 11a. We have not optimized the representation in order to make the upcoming discussion easier. Otherwise, it would
look like Fig. 9b. The underlying logical circuit is shown in Fig. 11b (obtained with the circuit in Fig. 4c), and an instantiated
arithmetic circuit given evidence A = 3 is shown in Fig. 11c.

Each path from the root to the 1-terminal semantically implies evidence. There are three possible paths shown below. If
we have evidence prior to traversing the compiled representation, we only consider the paths that are consistent with the
evidence.

Path Logic Meaning
a3 → 1 a1 ∧ a2 ∧ a3 A = 3
a3 ��� a2 → 1 a1 ∧ a2 ∧ a3 A = 2
a ��� a ��� a → 1 a ∧ a ∧ a A = 1
3 2 1 1 2 3

52

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
Fig. 11. Performing inference in Example 9.

4.4.2. Traversing partitioned representations
Here, a BN is not compiled monolithically but partitioned. WMC entails traversing several compiled representations,

given the structure of a composition-tree. A path that ends in the 1-terminal of a parent subproblem can continue at the
root node of a child subproblem. The formula that is evaluated is provided by Definition 12. Although a directed path in a
compiled representation can contain a particular variable only once, it can still happen that a variable occurs multiple times
on a path that stretches across multiple subproblems. This could lead to an inconsistent assignment (multiple values are
assigned to the same variable), which leads to an inconsistent model count.

Given a composition-tree, if a parent subproblem is traversed and the path leading to the 1-terminal semantically im-
plies evidence A = 1, then the child subproblem must be traversed in such a way that all paths leading to its 1-terminal
are consistent with A = 1. No path must be allowed to semantically imply A �= 1. Continuing the traversal of the parent
subproblem will lead to paths that semantically imply A = 2, A = 3, and so on. Each time, the child subproblem must
be traversed in a way that is consistent with its parent’s evidence. If variable A has three possible values, then the child
subproblem must be traversed three times.

More generally, consistency is obtained by dynamic conditioning: given a composition-tree, we remove the models in
the child subproblem that semantically imply evidence that is inconsistent with ancestor evidence: the evidence that is
semantically implied by the path that stretches across all ancestor subproblems. This can be achieved by simply pruning
the paths in a compiled representation that lead to an inconsistent model count, or explicitly conditioning the compiled
representation on ancestor evidence. An algorithm for dynamic conditioning and an example is introduced later.

4.4.3. Consistent model counts
A key insight is that dynamic conditioning involves precisely those variables that are in a subproblem’s context. Context is

provided by a composition-tree. Also, any path that leads to a child subproblem, across its ancestor subproblems, instantiates
the child’s context variables. Thus prior to the child’s traversal, all context variables are known. The number of messages
that are sent from a child to a parent subproblem is equal to the number of configurations of the child’s context variables.

A message graph is introduced to capture this message passing structure, and expose opportunities for previously com-
puted messages to be reused.

Definition 13 (Message graph). Let T = (S, H), H = (U , F) be a composition-tree for the set of subproblems S . A message
graph U = (S, I) is a rooted DAG I = (W , H) such that there is a one-to-many mapping from nodes U to nodes W , with
edges H ⊆ W × W . Message graph U is induced by T such that:

1. Node u ∈ U maps to nodes Y , where Y ⊆ W . For each node y ∈ Y we define:

(a) Node y is labeled by Su ;
(b) Context co(y) � co(u);
(c) Evidence e y is associated with y, which is a distinct configuration of context co(y), i.e., e y �= ez with y �= z and

z ∈ Y . Note that |Y | = car(co(u)).

2. Edge (y, z) ∈ W iff (u, v) ∈ F and e y is consistent with ez , where u,v ∈ U , u �= v , u maps to Y and v maps to Z , Y ⊂ W ,
Z ⊂ W , y ∈ Y and z ∈ Z , i.e., e y has the same configuration as ez for variables co(y) ∩ co(z).

A message graph has a node v for each unique configuration ev of a subproblem’s context co(v). This configuration is
used for dynamic conditioning. Alternatively, a message graph has a node for each summation term computed by Defini-
tion 12. Each edge represents the passing of a message, while each node represents the computation of the message based
on dependent incoming messages from its descendants. A node’s computation can be reused by each of its parents. A node
with many parents thus has a distinct advantage over a node with few parents.
53

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
Fig. 12. Message graphs for Example 10.

Example 10 (Message graphs). Consider composition-trees T = {T1, T2, T3} from Example 4. Fig. 12 shows message graphs
U = {U1, U2, U3} induced by respective composition-trees T . Each node v in a message graph represents a subproblem Sv

given distinct evidence ev , with E = co(v). This evidence is depicted as labels on node v ’s incoming edges.

Algorithm 2 implements dynamic conditioning, based on the structure of a message graph, in order to compute marginal
probability P (E = e) given evidence e. Two structures are traversed to compute this probability: the message graph, and the
compiled subproblems associated with message graph nodes. Consider the message passing formula in Definition 12. The
two structures are responsible for computing a distinct part:

mu(E) �
∑

X Zu \E

ϕu(X Zu)

︸ ︷︷ ︸
Traverse
compiled

representation

∏
k∈chH(u)

mk(co(k) ∪ E)

︸ ︷︷ ︸
Traverse

message graph

Algorithm 2 incorporates evidence when computing the probability for a node with function ComputeNodeProbability.
For example, let evidence A = a, node v is labeled by Boolean xv , bnval(xv) = a and bnvar(xv) = A. In this instance
we can simply multiply the probability computed for the lo edge by 0, and the probability of the hi edge by 1. How
ComputeNodeProbability computes a probability depends on the symbolic language that is used. For WPBDDs one can look
at Fig. 4c and [14].

Note that Algorithm 2 is naive in that is does no caching at all. This is trivially added for both the message graph and the
compiled representations, by simply storing the nodes that have been visited, and using the probability that was previously
computed upon encountering a visited node.

Example 11 (Traversing the composed representation). Consider the composed representation from Fig. 10b. Fig. 13a shows the
corresponding message graph U . The subproblems are traversed according to the structure of message graph U .
54

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
Algorithm 2 Marginal inference, where directed graph Ci = (U , F) is the compiled representation of subproblem Si , with
nodes U and edges F = U × U .

ComputeProbability(U, e)
input: Message graph U = (S,I), with graph I , and evidence Q
output: Marginal probability P (E = e) given evidence e

1 r = rtI
2 return TraverseSubproblem(rtCr , r, e)

TraverseMessageGraph(w, e)
input: Message graph node w and evidence e.
output: Marginal probability given evidence e

1 R = {i ∈ ch(w) | ei is consistent with e}
2 return

∑
r∈R

TraverseSubproblem(rtCr , r, e)

TraverseSubproblem(v, w, e)
input: Node v of compiled representation C w , message graph node w and evidence e
output: Marginal probability of subproblem Sw given evidence e

1 if xv == 0 // false terminal
2 return 0
3 elseif xv == 1 // true terminal
4 return TraverseMessageGraph(w, e)
5 else // internal node
6 phi = TraverseSubproblem(hi(v), w, e ∪ bnvar(xv) = bnval(xv)) // add evidence
7 plo = TraverseSubproblem(lo(v), w, e)
8 p = ComputeNodeProbability(phi, plo, e) // language dependent arithmetic function
9 return p

Assume no evidence. We start traversal at root node v in message graph U . Note that Sv = S1. Consider the possible
paths leading to the 1-terminal previously mentioned in Example 9, e.g., a3 → 1 has semantic meaning A = 3.

We select the set of children of v that are consistent with the configuration determined by the traversal of the parent.
If Sv is traversed using path a3 → 1, then we have to select all child subproblems consistent with A = 3. Fig. 13 shows all
possible children, where edges are crossed out, and nodes are grayed out, that should not be traversed. Thus for path a3 → 1
only one child is selected (shown in Fig. 13d). The traversal of S1 and S2 in this way computes P1(A = 3)P2(B | A = 3).
Continuing the traversal computes P1(A)P2(B | A).

4.4.4. Combining components
For convenience, we now bring together the core components of CWMC in Definition 14: A BN is partitioned into a

set of subproblems; The subproblems are partially ordered based on the structure of the underlying BN (a proper partial
ordering) that induces a composition-tree; The composition-tree induces a message graph; Inference is performed using
message passing on the message graph.

Definition 14 (Composition problem). A composition problem is a tuple (B, S,T ,U) defined as follows:

1. B = (G, P) is a BN, with G = (V , E), defined over variables XV (Definition 3);
2. S is the set of subproblems by partitioning B (Definition 8);
3. T is a composition-tree for subproblems S (Definition 10);
4. U is a message graph induced by T (Definition 13).

The compositional algorithm. Algorithm 3 implements the compositional approach. It takes as input a Bayesian network
B defined over variables X and joint probability queries Q of the form P (E = e) with E ⊆ X). CompositionalInference

computes the marginal probability P (E = e) in four steps:

1. Partitioning. A BN B is partitioned into m subproblems S = {S1, . . . ,Sm} (Partition and CreateSubproblems);
2. Compilation. Each subproblem Si is compiled to a representation Ci , given an ordering σ that is determined

independently for each subproblem (DetermineCompilationOrdering, Algorithm 4);
55

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
Fig. 13. Traversing the composed representation for Example 8 and 11.

Algorithm 3 The compositional framework.

CompositionalInference(B, Q)

input: Bayesian network B, and queries Q of the form P (E = e),
with E ⊆ XV and V the nodes of B.

output: The marginal probability of each query in Q

1 // Phase 1: partitioning
2 cut = Partition(B)

3 S = CreateSubproblems(B, cut)
4
5 // Phase 2: compilation
6 for Si ∈ S
7 σ = DetermineCompilationOrdering(Si)

8 K = CreateCompilationTree(B,Si,σ ,0) // (Algorithm 4)
9 Ci = CompileSubproblem(Si,K)

10
11 // Phase 3: composition
12 σS = DetermineSubproblemOrdering(S)

13 T = CreateCompositionTree(S,σS ,0) // (Algorithm 1)
14 U = CreateMessageGraph(S,T) // (see Definition 13)
15 C = (B, S,T ,U) // composition problem
16
17 // Phase 4: inference
18 return

⋃
e∈Q

ComputeProbability(U, e) // (Algorithm 2)

3. Composition. A composition-tree T is created (CreateCompositionTree, Algorithm 1) for message graph U
(CreateMessageGraph). Composition problem C is constructed;

4. Inference. Inference is (repeatedly) performed by traversing the compiled subproblems (ComputeProbability, Al-
gorithm 2). They are composed according to T , and traversed according to message graph U .
56

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
Table 1
(Tree-)widths of the
composition-trees in
Fig. 6 for Example 12.

T1 T2 T3

w(v1) 3 3 5
w(v2) 6 6 0
w(v3) 0 0 0

w(Ti) 6 6 5

5. The cost of compositional inference

Probabilistic inference remains NP-hard, even in the approximate inference case [11]. Despite that, Bayesian network
inference algorithms have been highly successful in practical situations, by providing favorable runtime complexities when
measures of complexity of a network are bounded. CF and its message passing are inspired by the well-established theories
behind the junction-tree algorithm, for which tree-width is often used as the measure for complexity.

Definition 15 (Tree-width). [19] Given an ordered graph G = (V , E), the width of a node in an ordered graph is the number
of neighbors that precede it in the ordering. The tree-width of an ordering is the maximum width over all nodes. The path-
width of a graph is the tree-width over the restricted class of orderings that corresponds structurally to a chain (i.e., total
orderings).

It is known that partial orderings (i.e., those that graphically resemble a tree) induce representations that enjoy tighter
size upper bounds (based on tree-width) compared to total orderings (based on path-width) [19]. A composition-tree re-
sembles a tree and induces a message graph. There are potentially a very large number of possible message graphs given a
particular partitioning. The size of a message graph determines how many messages are passed, thus the tree-width of the
inducing composition-tree provides implications on the cost of inference.

The cost of inference is proportional to the tree-width of a particular partitioning. The tree-width of a partitioning is
equal to the lowest tree-width among all possible composition-trees, and the tree-width of a composition-tree is given in
Definition 16.

Definition 16 (Composition tree-width). Let T = (S, H), H = (U , F), be a composition-tree for subproblems S . The width of
node v ∈ U is defined as:

w(v) =
∑

u∈pa(v)

car(co(v)) · car(co(u)). (15)

The tree-width of composition-tree T is defined as:

w(T) = max {w(v)|v ∈ U } . (16)

Example 12 (Tree-width). Consider the composition-trees T1, T2 and T3 of Example 4 that induce the message graphs U1, U2
and U3 in Example 10, respectively. The node- and tree-widths of each of the composition-trees are listed in Table 1.
Recall that the number of edges in an induced message graph is equal to the number of messages that are passed during
inference. The composition-tree with the lowest tree-width coincides with the message graph with the least number of
edges, i.e., ordering T3 and message graph U3.

The compilation bottleneck can effectively be tackled by CF, but the cost of inference might increase in comparison.
Ideally, a partitioning is sought that optimizes both compilation time and inference time. We aim to provide insight into
the relation between the two here. Inference cost is influenced by (1) the quality of the partitioning, in turn determined
by cutset size, (2) the size of the message graph induced by the composition-tree, and (3) the variable orderings used to
compile individual subproblems.

CWMC is especially beneficial to symbolic target representations that are totally ordered. A hybrid form is created where
a message graph, that is tree ordered, consists of target representations, that are totally ordered. In this sense, these target
representations are extended by relaxing their total order into a partial order if the underlying BN allows it. This reduces
representation size as upper bounds on representation size are tighter based on tree-width, compared to path-width [19].
Inference time complexity is reduced to O(n exp(w)), where n = |X |, X a set of BN variables, and w is the tree-width of
composition ordering T .

A target representation is said to be deterministic if the disjuncts of any disjunction are pairwise logically inconsis-
tent [18]. OBDDs are deterministic because no decision can lead to ambiguity, thus each variable occurs only once on every
57

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
path from root to leaf. Partitioning violates this property and thereby introduces non-determinism. The possible increase
of inference cost stems from the relaxation of determinism in the used target representation, imposed by the partitioning.
The more variables are shared among subproblems, the more redundant decisions will have to be made (through dynamic
conditioning).

Determinism, however, was found to be a necessary condition for the ability to perform inference in linear time [18]:
While allowing non-determinism could potentially lead to more concise representations with polynomial time transforma-
tions, many other operations, such as inference, become intractable. Our compositional approach relies on a restricted form
of non-deterministic partitioning [1]. The restriction imposed here is that the smallest possible partitioned probability space
leaves conditional distributions intact.

Theorem 1 (Inference complexity). Let C = (B, S,T ,U) be a composition problem. The compositional approach offers inference time
complexity O(n exp(w)), where n = |X | and w is the tree-width of T , if the symbolic target representation chosen for compilation is
a subset of d-DNNF.

Proof. First we show that inference is of linear time complexity in the size of message graph U , if the symbolic target
representation chosen for compilation is a superset of d-DNNF, i.e., it contains the properties of decomposability and de-
terminism, which have been identified as key representational axioms for tractable (linear-time) probabilistic inference.
Various target representations adhere to these axioms, such as WPBDD, OBDD, and d-DNNF, where d-DNNF is the most
general representation that includes these two properties. Consider the propositional interpretation of these properties [18]:

• Decomposable: For each conjunction f 1 ∧ · · · ∧ f n , the conjuncts f 1, . . . , f n do not share variables;
• Determinism: For each disjunction f 1 ∨ · · · ∨ f n , every pair of disjuncts are logically contradictory, i.e., f i ∧ f j = 0, for

i �= j.

Some representations such as WPBDD also have the decision property, which states:

• Decision: Each disjunction is of the form (x ∧ fx) ∨ (x ∧ fx), where x is a variable and fx, fx the positive and negative
cofactors of f given x.

Note that any representation that satisfies the decision property is also deterministic.
We claim that the message graph satisfies the decision and decomposability axioms. Each internal node represents a

decision on an attribute, and each branch represents a distinct outcome of that decision. The decision here relates to the
configuration of context variables. Variables that are shared and additionally occur in a subproblem’s context are encoun-
tered more than once from root to leaf. Decomposibility is therefore ensured by dynamic conditioning. It follows that if the
target representation supports linear time model counting, that inference via model counting also requires linear time using
the composite representation.

Secondly, we prove that inference is of time complexity O(n exp(w)). Assume we have partitioned BN B = (G, P), G =
(V , E), into |V | subproblems. Then, there is a one-to-one correspondence between the nodes of the composition-tree T =
(U , F) and the BN. Each node u ∈ U then is a subproblem that represents a distribution coinciding with a CPT in the BN
(Definition 8). The number of times the CPT associated with u must be (dynamically) conditioned is determined by co(u),
i.e., O(exp(w)), where width w is equal to |co(u)| (Definition 16). It follows that inference time complexity is O(n exp(w)),
where n = |S| = |V | and w is the tree-width of T . �
Corollary 1. The compositional approach offers inference time complexity O(n exp(w)), where n = |XV | and w is the tree-width of
Bayesian network (G, P), with G = (V , E), if the symbolic target representation chosen for compilation is a subset of d-DNNF.

Proof. Note that there exists a composition tree that is equivalent to a junction tree. There is therefore a composition tree
with a tree-width that is bounded by the size of the largest set in the junction tree. Since this largest set in the junction tree
defines the tree-width of the Bayesian network, the inference time complexity follows immediately from Theorem 1. �

This complexity result is comparable to mainstream algorithms based on variable elimination, clustering and conditioning
(exponential in the network tree-width and linear in its size) [16]. However, space requirements can be reduced significantly
due to partitioning. Moreover, local structure can still be exploited like in the monlithic approach. For instance, causal inde-
pendence is defined within families [26]. Since the parent nodes always reside in the same partition as the child (possibly
in the context, as duplicates of nodes from another partition), any decision diagram representation can still fully exploit
this structure just like in the monolithic approach, yielding an exponential reduction in the number of parents [45]. Any
exploitation of structure that would be present in the monolithic (unpartitioned) representation is however not necessarily
present in the message graph. In the worst case, our inference algorithm might visit a partition more often than necessary,
given the presence of e.g. causal independence in the context variables. In future versions of our approach, we intend to
remedy this by performing inference in higher partitions in lock step with the lower partitions, synchronizing whenever a
58

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
(shared) context variable is encountered. This way the inference algorithm would also fully benefit from the causal infer-
ence. A downside would be that the order of context variables would become fixed across partitions, whereas our current
approach can exploit any order within a partition to further reduce its representation size.

6. Optimizing the framework

The bottleneck of the WMC approach is compilation, however, the compositional approach reduces both compilation and
inference cost if the partitioning, subproblem- and compilation orders are selected with care. The size of target represen-
tations depends on the ordering that is imposed on the variables during compilation. Subsequently, the ordering in which
compiled subproblems are composed influences inference cost, which in turn is dictated by the partitioning.

6.1. Finding a partitioning

Partitioning influences both compilation and inference cost, and obtaining one of high quality is therefore crucial. Ex-
haustively trying to find an optimal partitioning with the corresponding variable orderings is intractable. A good partitioning
is found by using a scoring function that provides implications to its quality, based on the size of the resulting target rep-
resentation.

Any optimization technique may be used to find a partitioning. Simulated annealing was chosen to perform this task, al-
though there are many alternatives (e.g., local search, evolutionary algorithms, etc). The scoring function to be introduced for
composition-trees (Section 6.2) is combined with a metric for minimizing cutset size. They are combined using a harmonic
mean. Subproblems with the largest score are recursively split until a desirable overall bound is reached. Dealing with con-
nected components in the moralized graph of the BN is beneficial, as produced symbolic representations are typically much
smaller.

6.2. Finding a composition-tree

Let C = (B, S,T ,U) be a composition problem. A composition-tree is found by providing Algorithm 1 with an ordering
on S . The context of the nodes in a composition-tree T = (S, H), H = (U , F), provides implications to the size of the
message graph U . The message graph is the most dominant factor in determining inference cost. To find a good composition-
tree, any optimization technique may be used to find an ordering that minimizes Equation (17).∑

v∈U

w(v), (17)

where width w is provided by Definition 16.

6.3. Finding a compilation ordering

The same principles of tree-width and context that apply to composition-trees (Definition 11) can be applied to compi-
lation orderings. Just as for composition-trees, a directed tree can be created from any (partial) ordering.

Definition 17 (Proper compilation ordering). Let B = (G, P) be a BN with DAG G = (V , E). A partial order (XV , ≺) is said to
be proper if Xfa(u) ∩ Xfa(v) �= ∅ then Xu ≺ Xv or Xv ≺ Xu , with u,v ∈ V .

Definition 18 (Compilation-tree). Let (XV , ≺) be a proper partial ordering for BN B = (G, P), G = (V , E). A compilation-tree
K = (XV , H) is a directed rooted tree H = (U , F), with nodes U and edges F ⊆ U × U , such that there is a one-to-one
correspondence between nodes U and nodes V , and there is a directed path from u to v iff Xu ≺ Xv , for u,v ∈ U .

Definition 19 (Compilation-tree context). Let K = (XV , H) be a compilation-tree with graph H = (U , F) for BN B = (G, P),
G = (V , E). The context of node v ∈ U is defined as:

co(v) �

⎛
⎝XfaG (v) ∪

⋃
u∈chH(v)

co(u)

⎞
⎠∩

⋃
u∈anH(v)

XfaG (u). (18)

Note that co is differently defined for composition- and compilation-trees. Context is also used for compilation-trees. In
fact, the size of the largest context set is often referred to as the tree-width. Algorithm 4 is a work efficient implementation
of Definition 19, with near linear time complexity in the number of (subproblem) BN variables. It takes as input a sequence
of BN variables and induces a partial ordering based on BN connectivity. A compilation-tree is induced by the partial
ordering that is consistent with Definition 18. The number of root nodes it returns is equal to the number of connected
components in the (subproblem) BN. Note that the compilation-tree is guaranteed to be induced by a total ordering, creating
59

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
Algorithm 4 Create a compilation-tree.

CreateCompilationTree(B, Si, σ , b)

input: BN B = (G, P), subproblem Si = (Zi,Gi,ψi),
permutation function σ over variables X Zi and Boolean b

output: Compilation-tree (X Zi ,H), H = (U , F).

1 Z = Zi

2 U = {}, F = {}, W = {}
3 for j = |X Zi | to 1
4 v = σ(j)
5 U = U ∪ {v}
6 F = F ∪ {(v, u)|u ∈ W , Xv ∈ co(u) ∨ b}
7 H = (U , F)

8 W = (W \chH(v)) ∪ {v}
9 Z = Z\ {v}

10 co(v) =
(

XfaG (v) ∪ ⋃
u∈chH(v)

co(u)

)
∩ ⋃

z∈Z
XfaG (z) .

11
12 return (X Zi , (U , F))

Table 2
Computing scoring functions for Example 13.

v1 v2

MDD Number of nodes vi
∏

Y ∈co(vi)

car(Y) 1 3

Total number of nodes
∑

v∈{v1,...,vi }
∏

Y ∈co(v)

car(Y) (Eq. (19)) 1 4

WPBDD Number of nodes vi
∏

Y ∈co(vi)∪Xvi

car(Y) 3 6

Total number of nodes
∑

v∈{v1,...,vi }
∏

Y ∈co(v)∪Xv

car(Y) 3 9

a chain, if the final argument to CreateCompilationTree is 1. This is useful for those target representations that are induced
by total orderings, such as OBDDs.

Given a subproblem Si = (Zi,Gi,ψi), a compilation-tree is created by providing a sequence of X Zi (as permutation
function σ) to Algorithm 4. The context of nodes in a compilation-tree K = (X Zi , J), J = (W , K), provides implications to
the size of symbolic representations to be produced through compilation. A permutation is transformed into a compilation-
tree with Algorithm 4 and scored by Equation (19). This score is used to compare a permutation to other permutations.
Any optimization technique may be used to traverse the search space of all possible permutations of X Zi to find a good
compilation-tree by minimizing Equation (19). In our experiments, we have used simulated annealing to achieve this.∑

v∈W

car(co(v)). (19)

To minimize the chance of integer overflow, the product term can be substituted with
∑

X∈co(v) log10(car(X)), which is
proportionally equivalent. Actually, Equation (19) can be tailored to behave as the upper bound for most of the (binary)
decision diagram types used as target representation in recent work. For WPBDDs, the context variables co(v) of node v in
the compilation-tree would simply have to be unioned with {Xv }, and Equation (19) recomputed. This is demonstrated in
Example 13.

Example 13. Consider the BN of Example 1. Assuming no local structure, Fig. 14 shows a multi-valued decision diagram,
given ordering A ≺ B (Fig. 14b), and a WPBDD given induced ordering a1 ≺ a2 ≺ a3 ≺ b1 ≺ b2. It shows how Equation
(19) relates the upper bound for MDDs and WPBDDs, which is computed in Table 2. The underlined numbers it contains,
computed by Equation (19), are equal to the number of MDD and WPBDD nodes.

Equation (19) is computed for monolithic representations as well as individual subproblems.

7. Related work

Probabilistic inference is a difficult problem in Artificial Intelligence [11]. The use of logic remains to play an important
role in AI [17,27], even though there are successful techniques that do not require modeling or reasoning such as neural
60

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
Fig. 14. Showing the relation between context and representation size for Example 13.

networks [9]. Inference by Weight Model Counting (WMC) is a logical approach that has been very successful in solving
reasoning problems in the past decade [6–8,14]. WMC is just one out of a collection of algebraic approaches that also
includes, but is not limited to, Symbolic Probabilistic Inference (SPI) [43], Recursive Conditioning (RC) [16], the bucket
elimination algorithm [19] and sum-product networks [46].

These approaches essentially perform inference in the same way, by (first) trying to find the most concise factorization
of the function that computes marginal probabilities. For the sum-product approach, this factorization is recorded as a sum-
product network [46], for the WMC approach it can be recorded into a large variety of (target) representations. The process
of obtaining such a concise representation is also referred to as Knowledge Compilation (KC) [18]. KC is acknowledged as a
challenging approach that makes many practical reasoning problems tractable [33].

Numerous target representations have been used to concisely model probability distributions, providing more concise
factorizations than BNs in the presence of local structure. Examples include Deterministic Decomposable Negation Normal
Form (d-DNNF) [7], Sentential Decision Diagrams (SDD) [8], Probabilistic SDDs (PSDD) [32,44], Ordered Binary Decision
Diagrams (OBDD) [40], Zero-suppressed BDDs (ZBDD) [35], And/Or Multi-Valued Decision Diagrams (AOMDDs) [34], Proba-
bilistic decision graphs [29], Weighted Positive BDDs (WPBDD) [14], Multi-Valued Decision Diagrams [1], Algebraic Decision
Diagrams (ADD) [21], among others. Unfortunately, the cost of compiling a BN into a symbolic representation remains a
bottleneck. However, learning its structure seems even more costly [32].

We tackle the issues that related work has revealed concerning compilation cost using a framework that relies on parti-
tioning [15], also leading to possibilities for parallel computation [12,13]. The proposed approach bears resemblance to RC,
in that inference is also solved as a set of subproblems [16]. The notion of conditioning out the variables in a subproblem
that it shares with ancestor subproblems, is similar. Contextual information being passed upward in a dtree corresponds to
that in a composition-tree. Both lead to tree decompositions, that reduce the connectivity of the network. It is therefore
no coincidence that inference time complexity is comparable to RC (exponential in the network tree-width and linear in its
size), and therefore also comparable to mainstream algorithms based on variable elimination and clustering [16].

However, there are key differences. RC decomposes a network into smaller subnetworks that are then solved recursively
using the same method until single-node subnetworks can be solved. The disintegration of the network into its smallest
61

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
(single-node) components is not required with CWMC, and arguably disadvantageous even. It is encouraged to allow state-
of-the-art compilers to play to their strength, i.e., finding a concise representation (by exploiting local structure) over an as
large as possible subproblem. Also, each execution of RC answers only a single query, while CWMC results in a compact
structure that can be amortized over potentially a very large number of queries.

The work in this paper can also be understood in the framework of structured message passing [24] (SMP). In SMP, a
so-called structured cluster graph is introduced which is a very generic graph representation where nodes and edges are
associated with parametric functions. The authors show that message passing algorithms can in principle be applied to these
graphs. More concretely, the authors introduce an algorithm that exploits sparse tables or algebraic decision diagrams and
introduce context-specific independence and determinism in its messages using approximate methods. The algorithm in this
paper is quite different: the main purpose of the proposed algorithm is to enable exact inference using structured cluster
graphs. The surprising observation is that even with large cluster graphs, significant performance gains can be reached,
without approximating the posteriors. In contrast, for SMP algorithm, the variance increases if the cluster size increases.

Partitioning of propositional theories has also been exploited in model checking to speed up and distributed symbolic
approaches using decision diagrams [25,39,42]. These approaches rely on predefined window functions for partitioning. The
CWMC approach, on the other hand, performs the partitioning prior to compilation using a syntactic approach informed by
the structure of the BN. While this allows fewer partitions than windowing functions would, it also makes the approach
more compositional, allowing for example different variable orderings in each partitioned subproblem.

The most general language that is known to support efficient model counting is d-DNNF [18]. Although it is currently
not transparent how to adapt d-DNNF to the proposed framework, a strict subset, called decision-DNNF, can be converted
into an equivalent Free Binary Decision Diagram (FBDD) with only a quasi-polynomial increase in representation size [2].
Thus, the proposed method applies to representations that are less or equally succinct as decision-DNNF, e.g., SDDs, OBDDs,
ZBDDs, WPBDDs.

WMC has recently been extended to Weighted Model Integration (WMI), which can be used to solve probabilistic reason-
ing problems that involve both discrete and continuous probability distributions [37]. It is shown that standard knowledge
compilation techniques apply to WMI, leading to exact and approximate solvers [20,38]. Based on this finding, we argue
that the proposed partitioning technique in this article can extend WMI for representations that are less or equally succinct
as d-DNNF when dealing with non-linear real arithmetics. The weighted model integral for a non-factorizable weight func-
tion is obtained by adding up the weighted model integrals for the factorizable weight functions into which the problem
decomposes. Every time knowledge compilation is applied within this framework, partitioning can also be applied. We leave
this for future work.

8. Empirical results

Several publicly available Bayesian networks2 are used to evaluate the performance of compilation and inference while
employing the proposed compositional approach. All experiments ran on a system with AMD Opteron 6376 processors, with
500+ Gb of RAM.

8.1. Compilation

The main goal of the following experiments is to show the improvement in compilation cost provided by the CWMC
framework. However, we also provide a compilation comparison to SDDs,3 OBDDs4 and d-DNNFs.5 CWMC is orthogonal to
the language used. Observed improvements therefore have implications for the mentioned languages, because they can also
be used in the CWMC framework.

A compiler was implemented that supports compilation to partitioned WPBDDs (induced by chain- or total orders) and
t-WPBDDs (induced by tree- or partial orders).6 Table 3 contains compilation runtimes for both aforementioned representa-
tions. Monolithic compilation as well as partitioned compilation was reviewed for multiple partitionings.

The compilation experiment was set up as a head-to-head procedure that invokes the compilers of respective represen-
tations, i.e., the same steps are performed in the same order to produce each representation to ensure a fair comparison.
Partitioned (t-)WPBDDs, (t-)WPBDDs, SDDs and OBDDs are produced by (1) encoding each BN as a Boolean formula (Sec-
tion 2.3.2); (2) one (total) variable ordering is created per BN using the popular minimum-fill greedy heuristic. Although this
heuristic is proven to produce reasonable approximations, we have further optimized the produced ordering using simulated
annealing based on the methods described in Section 6. Orders are relaxed into partial orders based on BN constraints for
t-WPBDDs (Algorithm 4); (3) the same compilation ordering is used for all languages. Firstly, a respective representation is
created for each individual CPT. Secondly, CPT representations are conjoined until the final representation is obtained. This
compilation type is referred to as bottom-up [8]. Compilation runtimes reported in Table 3 only concern step 3.

2 BN collection is available at https://github .com /gisodal /wmc /tree /master /data /net.
3 The SDD compiler is available at http://reasoning .cs .ucla .edu /sdd.
4 The CUDD compiler (for OBDDs) is available at http://vlsi .colorado .edu /~fabio.
5 The ACE compiler (for d-DNNFs) is available at http://reasoning .cs .ucla .edu /ace.
6 The WPBDD compiler/model counter is available at https://github .com /gisodal /wmc.
62

https://github.com/gisodal/wmc/tree/master/data/net
http://reasoning.cs.ucla.edu/sdd
http://vlsi.colorado.edu/~fabio
http://reasoning.cs.ucla.edu/ace
https://github.com/gisodal/wmc

Table 3
Compilation runtime (milliseconds), where |A(X)| are the number encoding variables for BN variables X , - implies compilation failure by exceeding 15
minutes or 500Gb of RAM memory.

Bayesian
Network

4 subproblems
t-WPBDD

2 subproblems
t-WPBDD

4 subproblems
WPBDD

2 subproblems
WPBDD|at(X)| t-WPBDD WPBDD OBDD SDD d-DNNF

sachs 24 0.148 0.115 0.100 0.790 0.471 0.286 1.932 29.119 92.179
student farm 25 0.117 0.101 0.106 0.816 0.519 0.335 1.403 4.646 118.641
printer ts 58 0.230 0.216 0.198 1.015 0.729 0.604 1.757 6.628 97.956
boblo 60 0.213 0.198 0.213 0.929 0.607 0.494 3.792 27.920 118.202
child 60 0.195 0.199 0.331 0.903 0.605 0.563 4.564 96.344 117.620
insurance 89 0.494 2.187 20.365 1.292 2.395 27.508 267.967 12337.980 680.771
weeduk 90 18.415 18.973 6.091 98.887 44.697 4.206 429.110 - 3472.012
alarm 105 0.407 0.474 0.467 1.183 1.052 1.040 10.085 400.158 157.163
water 116 5.185 17.134 1635.935 8.002 23.789 1060.444 16034.149 - 1009.578
powerplant 120 0.268 0.281 0.361 1.022 0.819 0.764 9.409 119.856 159.193
carpo 122 0.426 0.407 0.420 1.401 1.159 1.200 13.910 119.122 137.955
win95pts 152 0.874 1.199 1.386 2.548 3.670 5.784 193.919 902.473 173.762
hepar2 162 1.444 1.684 1.567 2.344 2.628 4.722 414.316 31119.984 287.980
fungiuk 165 22.186 28.469 45.559 11.098 15.086 322.238 1667.940 - 12193.593
hailfinder 223 1.061 2.382 3.748 2.136 3.757 16.494 422.270 14350.353 354.151
3nt 228 0.696 0.727 2.397 1.892 2.161 9.393 344.902 4259.798 424.939
4sp 246 0.849 0.819 5.090 1.973 2.436 20.175 991.545 7041.476 573.015
barley 421 611.830 9294.794 23290.743 340.912 854.859 248800.832 - - -
mainuk 421 584.409 8456.920 23443.483 322.308 872.767 35236.875 - - -
andes 440 3.267 5.159 224.648 17.217 130.747 - - - 7785.916
pathfinder 520 17.279 17.506 18.057 48.054 49.029 62.378 22741.434 137591.643 2813.821
mildew 616 42.611 43.675 576.852 43.677 38.928 830.392 244920.444 - 885305.099
munin1 992 11.929 13797.173 53899.548 131.640 - - - - -
pigs 1323 4.444 13.538 348.872 46949.737 - - - - 20623.511
link 1793 174.897 414.150 19412.863 - - - - - -
diabetes 4682 1297.221 2024.698 2622.924 - - - - - -
munin2 5376 96.809 263.800 926.789 - - - - - 235544.805
munin3 5601 52.350 1046.767 1088.710 - - - - - 102338.718
munin4 5645 718.358 1705.222 2565.931 - - - - - 162054.255
munin 5651 1407.531 2143.027 2360.196 - - - - - 161133.160

Unfortunately, ACE (producing d-DNNFs) could not be conformed to the compilation procedure, as it does not have a
library interface. It also does not accept a compilation ordering as input. ACE reports several runtimes of various operations,
e.g., encoding-, initialization time, etc. Table 3 solely reports ACE’s compile time. Several approaches were used to optimize
SDD compile time. An SDD is compiled using an ordering type called a vtree [8]. SDDs were compiled using a balanced
vtree. These were induced by orders optimized using multiple different scoring functions. Right-aligned vtrees produced
SDDs that have the same number of operators as OBDDs (after having translated n-ary operators to n-1 binary operators).
This is known [8]. Although these representations are equal, compilation times were consistently higher for SDDs than those
for OBDDs and are therefore omitted. Note that better compilation times have been reported using different vtrees [8], but
proposed methods remain a significant improvement.

Observe in Table 3 that partitioned compilation often leads to speedups of multiple orders of magnitude and progres-
sively improves when increasing the number of subproblems, especially for larger BNs. For smaller BNs, this is not always
the case. The explanation lies with the size of produced representations reported in Table 4. Partitioned representations can
increase in size because cutset variables are present in multiple subproblems. This redundancy only leads to an increase
for small BNs in practice. Generally, the size reduces and does so for two reasons. Local structure is better exploited, and
constraints that encode edges in a partitioning’s cutset are not represented in the compiled structure. These constraints
are encoded by the message graph, which is a dynamically inferred structure used during inference (see Section 3.2). Note
that the representation sizes of d-DNNFs and t-WBDDs are quite similar, in particular for the large BNs. However, compiling
t-WPBDDs is around two orders of magnitude faster and improves even further by orders of magnitude with partitioning.
As a result, there are multiple instances where a BN can now successfully be compiled that previously could not be given
resource constraints.

8.2. Inference

Algorithm 2 was implemented to perform probabilistic inference as part of the compositional approach.6 A comparison
is made with model counter ACE.5 The inference experiment was setup as a head-to-head procedure, where each inference
method computes a particular query. Queries are created randomly, i.e., with a random number of observed variables and a
random configuration. A query is created and fed to each method. This process repeats for 30 minutes per network. In the
end, each method has computed the same set of queries. Table 5 reports the average runtime per query.

For a fair comparison, none of the methods were optimized using conditional independence, e.g., by only traversing
conditionally dependent subproblems. Also, the number of subproblems is no longer fixed as with compilation. In addition,
the WMC methods do not take advantage of caching, such that every query requires to be completely recomputed in order
G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
63

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66

Table 4
Representation size (number of binary operators), where |A(X)| is the number encoding variables for BN variables X , - implies compilation failure by
exceeding 15 minutes or 500Gb of RAM memory.

Bayesian
Network

4 subproblems
t-WPBDD

2 subproblems
t-WPBDD

4 subproblems
WPBDD

2 subproblems
WPBDD|at(X)| t-WPBDD WPBDD OBDD SDD d-DNNF

sachs 24 95 77 82 98 77 73 534 4437 510
student farm 25 41 43 80 41 43 76 366 1879 221
printer ts 58 33 33 33 32 30 29 118 671 117
boblo 60 97 93 160 152 136 206 1439 6429 371
child 60 117 151 267 121 159 400 2814 16664 1069
insurance 89 390 1698 28049 421 1439 27004 236560 4508128 31599
weeduk 90 1526 1531 1540 5866 3007 2151 37272 - 15001
alarm 105 321 449 470 235 519 693 4620 64797 1373
water 116 2973 18891 339581 2103 26037 237117 9498498 - 21297
powerplant 120 190 239 244 164 296 504 3899 44511 1285
carpo 122 222 237 301 260 311 909 4836 19209 1049
win95pts 152 525 1180 1582 965 2847 4558 21523 154946 2577
hepar2 162 1215 1466 1496 1379 2596 7675 49892 417093 6785
fungiuk 165 2003 4216 6563 6769 8202 9289 187140 - 48600
hailfinder 223 973 1587 3169 1261 3731 7426 116514 3098190 6489
3nt 228 501 575 3088 697 1144 9130 73004 1581601 5626
4sp 246 617 663 7421 692 1529 21904 147678 1824426 8245
barley 421 75595 560856 18156823 70507 440698 104535392 - - -
mainuk 421 74209 532850 17813603 90106 429885 13408167 - - -
andes 440 2896 5609 378413 13969 54950 - - - 480184
pathfinder 520 3689 3747 3848 28842 30191 35471 1151753 3697971 10580
mildew 616 6701 6782 205617 7674 12694 424448 11610911 - 734902
munin1 992 12185 3469305 22270466 49784 - - - - -
pigs 1323 4625 24855 528055 30066054 - - - - 521776
link 1793 194891 541288 27704409 - - - - - -
diabetes 4682 1061818 2139899 3202034 - - - - - -
munin2 5376 80606 227125 1130577 - - - - - 1348670
munin3 5601 52076 985793 1114785 - - - - - 711667
munin4 5645 440412 1236879 1461146 - - - - - 1379331
munin 5651 942741 1275268 1435672 - - - - - 1410553

Table 5
Inference runtime averaged per query (milliseconds),
where - implies inference failure by exceeding 15 sec-
onds, or compilation failure (see Table 3).

Bayesian
Network

Partitioned
t-WPBDD t-WPBDD d-DNNF

sachs 0.023 0.011 2.975
student farm 0.035 0.016 2.813
printer ts 0.007 0.006 2.852
boblo 0.054 0.034 3.713
child 0.345 0.036 5.695
insurance 7.486 1.874 36.884
weeduk 0.607 0.262 30.908
alarm 0.187 0.115 6.513
water 25.176 74.135 33.512
powerplant 0.025 0.032 6.249
carpo 0.138 0.037 5.739
win95pts 0.371 0.635 9.680
hepar2 0.247 1.133 18.659
fungiuk 18.822 5.290 42.814
hailfinder 25.137 1.747 19.618
3nt 18.411 8.250 21.559
4sp 5.748 1.277 30.043
barley 1399.542 1798.278 -
mainuk 1377.117 1782.512 -
andes 178.610 185.205 144.691
pathfinder 5.394 0.639 30.686
mildew 351.788 552.496 208.582
munin1 7183.857 6836.045 -
pigs 248.866 70.266 179.088
link 9893.431 - -
diabetes 968.839 618.687 -
munin2 107.788 207.768 384.055
munin3 828.535 140.398 263.751
munin4 280.275 318.687 402.651
munin 377.117 302.675 416.733
64

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
to get as close to the core method as possible. The time a method can take to perform inference is limited to 15 seconds,
because CWMC is able to succeed within this timeframe for both compilation and inference combined with all networks.

It is known that partitioning a problem into m + 1 as opposed to m subproblem can lead to exponential reductions [36].
An attempt is therefore made via simulated annealing to automatically find a good partitioning. A BN partitioning is guaran-
teed to produce m connected components by creating a spanning tree of the BN and removing m − c edges, where c is the
number of connected components in the BN without partitioning, and m ≥ c. The connected components in the spanning
tree induce connected components in the BN. A partitioned t-WPBDD is guaranteed to consist of at least 2 and at most 12
connected components during the experimentation.

Partitioned compilation has lead to speedups of orders of magnitude, even for a very limited number of subproblems
like 2 and 4. Table 5 shows that inference cost is also reduced in multiple instances when employing the compositional
approach. Any increase or decrease in inference cost is closely related to the quality of the partitioning and the composition-
tree used to induce the message graph. Any constraint not present in the compiled subproblems given its partitioning must
be inferred by the message graph. A small overhead is incurred every time a switch is made from subproblem to subprob-
lem. However, in practice we see reductions regardless of this overhead. Data locality plays a major role in performance.
Quite simply, there are more cache misses for monolithic representations than there are for composed representations. This
was confirmed using a profiler. Not only are composed representations typically much smaller than monolithic ones, caching
is done per subproblem, which are even smaller still. From a theoretical perspective, this is further aided by the improved
ability to capture local structure in subproblems, leading to more concise representations for critical parts of the BN.

Inference cost can be further improved in the future. For instance, conditional independence can be used to dynamically
prune the composed representation. This leads to significant reductions in inference cost for large sets of probabilistic
queries. Also, working with subproblems provides opportunities for parallel processing [13]. In addition, our focus regarded
the validity and value of compositional compilation and inference. Improving the quality of partitioning will result in overall
reductions for both compilation and inference.

9. Conclusion

Weighted Model Counting (WMC) has been recognized as a state-of-the-art technique for exact probabilistic inference.
It improves further the factorization of a BN by exploiting local structure ([8,14,40]). However, it requires a computationally
intensive compilation task in order to yield an optimized representation upon which efficient inference can be performed.
As a result, this method cannot be used in many real-world domains. We have proposed a framework, called Composi-
tional Weighted Model Counting (CWMC), that extends existing state-of-the-art compilers and model counters to tackle
computation costs. These include the SDD, CUDD and WPBDD compilers, and the ACE and CACHET model counters.

Several advantages emerge when using CWMC. From a theoretical point of view, CMWC allows for a flexible representa-
tion because subproblems are compiled locally. For example, if subproblems make use of a representation where a variable
ordering is imposed, then this ordering may vary between subproblems. As a consequence, this provides more fine-grained
control to exploit BN structure and topology. Furthermore, since subproblems are compiled locally, the complexity of reason-
ing can be kept under control more easily by exploiting ideas from Boolean factorization where exponential reductions in
runtime have been observed [36]. While the worse-case inference complexity of CWMC is similar to existing Bayesian net-
work inference methods, i.e., O(n exp(w)), where n is the number of variables and w is the tree-width of the network, we
observe in experiments that inference can be several magnitudes more efficient using the proposed compositional approach
compared to standard WMC methods.

The experimental evaluation reveals several benefits: (1) the compilation cost is drastically reduced while using only
a limited number of partitions, (2) the representations obtained are much smaller, thus reducing resource requirements,
and (3) inference cost has also decreased in several instances. Future work will include refining methods to obtain better
orderings and partitionings to improve these results, and reducing inference cost by exploiting conditional independence
and parallel processing.

The reduction in compilation cost can either be reinvested in a search for even more concise representations, or can
inspire to handle much larger Bayesian networks than previously possible. Additionally, WMC methods have only been
scarcely applied when dealing with dynamic data, as any changes would require the recompilation of the entire represen-
tation. Using the proposed partitioning approach, this would not be necessary. Merely the partition(s) that represent the
affected part(s) of the BN would have to be recompiled. With the proposed work we strive to overcome (at least in part)
the current limitations of WMC based methods, and cater to the growing need for algorithms that can deal with very big
Bayesian networks or Bayesian networks that are based on dynamic data.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
65

G.H. Dal, A.W. Laarman, A. Hommersom et al. International Journal of Approximate Reasoning 138 (2021) 38–66
References

[1] J. Amilhastre, H. Fargier, A. Niveau, C. Pralet, Compiling CSPs: a complexity map of (non-deterministic) multivalued decision diagrams, Int. J. Artif.
Intell. Tools 23 (2014) 146–166.

[2] P. Beame, J. Li, S. Roy, D. Suciu, Exact model counting of query expressions: limitations of propositional methods, ACM Trans. Database Syst. 42 (1)
(2017) 1–46.

[3] B. Bollig, I. Wegener, Improving the variable ordering of OBDDs is NP-complete, IEEE Trans. Comput. 45 (1996) 993–1002.
[4] C. Boutilier, N. Friedman, M. Goldszmidt, D. Koller, Context-specific independence in Bayesian networks, in: International Conference on Uncertainty in

Artificial Intelligence, 1996, pp. 115–123.
[5] R.E. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE Trans. Comput. 100 (1986) 677–691.
[6] M. Chavira, A. Darwiche, On probabilistic inference by weighted model counting, Artif. Intell. 172 (2008) 772–799.
[7] M. Chavira, A. Darwiche, M. Jaeger, Compiling relational Bayesian networks for exact inference, Int. J. Approx. Reason. 42 (2006) 4–20.
[8] A. Choi, D. Kisa, A. Darwiche, Compiling probabilistic graphical models using sentential decision diagrams, in: European Conference on Symbolic and

Quantitative Approaches to Reasoning and Uncertainty, 2013, pp. 121–132.
[9] A. Choi, R. Wang, A. Darwiche, On the relative expressiveness of Bayesian and neural networks, Int. J. Approx. Reason. 113 (2019) 303–323.

[10] R.G. Cowell, A.P. Dawid, S.L. Lauritzen, D.J. Spiegelhalter, Probabilistic Networks and Expert Systems, 1999.
[11] P. Dagum, M. Luby, Approximating probabilistic inference in Bayesian belief networks is NP-hard, Artif. Intell. 60 (1993) 141–153.
[12] G.H. Dal, W.A. Kosters, F.W. Takes, Fast diameter computation of large sparse graphs using GPUs, in: International Conference on Parallel, Distributed

and Network-Based Processing, 2014, pp. 632–639.
[13] G.H. Dal, A.W. Laarman, P.J.F. Lucas, Parallel probabilistic inference by weighted model counting, in: International Conference on Probabilistic Graphical

Models, 2018, pp. 97–108.
[14] G.H. Dal, P.J.F. Lucas, Weighted positive binary decision diagrams for exact probabilistic inference, Int. J. Approx. Reason. 90 (2017) 411–432.
[15] G.H. Dal, S. Michels, P.J.F. Lucas, Reducing the cost of probabilistic knowledge compilation, J. Mach. Learn. Res. 73 (2017) 141–152.
[16] A. Darwiche, Recursive conditioning, Artif. Intell. 126 (2001) 5–41.
[17] A. Darwiche, Three modern roles for logic in AI, in: Symposium on Principles of Database Systems, 2020, pp. 229–243.
[18] A. Darwiche, P. Marquis, A knowledge compilation map, J. Artif. Intell. Res. 17 (2002) 229–264.
[19] R. Dechter, Bucket elimination: a unifying framework for probabilistic inference, in: Learning in Graphical Models, 1998, pp. 75–104.
[20] P.Z. Dos Martires, A. Dries, L. De Raedt, Exact and approximate weighted model integration with probability density functions using knowledge com-

pilation, in: International Conference on Artificial Intelligence, vol. 33, 2019, pp. 7825–7833.
[21] J.M. Dudek, V. Phan, M.Y. Vardi, ADDMC: weighted model counting with algebraic decision diagrams, in: International Conference on Artificial Intelli-

gence, 2020, pp. 1468–1476.
[22] N. Friedman, M. Goldszmidt, Learning Bayesian networks with local structure, in: Learning in Graphical Models, 1998, pp. 421–459.
[23] M.A. Genesereth, N.J. Nilsson, Logical Foundation of Artificial Intelligence, 1987.
[24] V. Gogate, P. Domingos, Structured message passing, in: Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, 2013,

pp. 252–261.
[25] O. Grumberg, T. Heyman, A. Schuster, A work-efficient distributed algorithm for reachability analysis, Form. Methods Syst. Des. 29 (2) (2006) 157–175.
[26] D. Heckerman, J. Breese, Causal independence for probabilistic assessment and inference using Bayesian networks, IEEE Trans. Syst. Man Cybern. 26

(1996) 826–831.
[27] T.C. Henderson, R. Simmons, B. Serbinowski, M. Cline, D. Sacharny, X. Fan, A. Mitiche, Probabilistic sentence satisfiability: an approach to PSAT, Artif.

Intell. 278 (2020) 103–118.
[28] A. Hommersom, P.J.F. Lucas, M. Velikova, G.H. Dal, MoSHCA - my mobile and smart health care assistant, in: International Conference on e-Health

Networking, Applications and Services, 2013, pp. 188–192.
[29] M. Jaeger, Probabilistic decision graphs, combining verification and AI techniques for probabilistic inference, Int. J. Uncertain. Fuzziness Knowl.-Based

Syst. 12 (2004) 19–42.
[30] S.L. Lauritzen, Graphical Models, 1996.
[31] W. Li, P. Poupart, P. van Beek, Exploiting structure in weighted model counting approaches to probabilistic inference, J. Artif. Intell. Res. 40 (2011)

729–765.
[32] Y. Liang, J. Bekker, G. Van den Broeck, Learning the structure of probabilistic sentential decision diagrams, in: International Conference on Uncertainty

in Artificial Intelligence, 2017.
[33] P. Marquis, Compile!, in: International Conference on Artificial Intelligence, 2015, pp. 4112–4118.
[34] R. Mateescu, R. Dechter, R. Marinescu, AND/OR multi-valued decision diagrams (AOMDDs) for graphical models, J. Artif. Intell. Res. 33 (2008) 465–519.
[35] S.-i. Minato, K. Satoh, T. Sato, Compiling Bayesian networks by symbolic probability calculation based on zero-suppressed BDDs, in: International Joint

Conference on Artificial Intelligence, 2007, pp. 2550–2555.
[36] A. Mintz, M.C. Golumbic, Factoring Boolean functions using graph partitioning, Discrete Appl. Math. 149 (2005) 131–153.
[37] P. Morettin, A. Passerini, R. Sebastiani, Advanced smt techniques for weighted model integration, Artif. Intell. 275 (2019) 1–27.
[38] P. Morettin, S. Kolb, S. Teso, A. Passerini, Learning weighted model integration distributions, in: International Conference on Artificial Intelligence, 2020,

pp. 5224–5231.
[39] A. Narayan, J. Jain, M. Fujita, A. Sangiovanni-Vincentelli, Partitioned ROBDDs-a compact, canonical and efficiently manipulable representation for

Boolean functions, in: Proceedings of International Conference on Computer Aided Design, 1996, pp. 547–554.
[40] T.D. Nielsen, P.-H. Wuillemin, F.V. Jensen, U. Kjaerulff, Using ROBDDs for inference in Bayesian networks with troubleshooting as an example, in:

International Conference on Uncertainty in Artificial Intelligence, 2000, pp. 426–435.
[41] R. Paredes, L. Dueñas-Osorio, K. Meel, M. Vardi, A weighted model counting approach for critical infrastructure reliability, in: International Conference

on Applications of Statistics and Probability in Civil Engineering, 2019.
[42] D. Sahoo, S. Iyer, J. Jain, C. Stangier, A. Narayan, D.L. Dill, E.A. Emerson, A partitioning methodology for BDD-based verification, in: International

Conference on Formal Methods in Computer-Aided Design, 2004, pp. 399–413.
[43] R.D. Shachter, B. D’Ambrosio, B. Del Favero, Symbolic probabilistic inference in belief networks, in: International Conference on Artificial Intelligence,

vol. 90, 1990, pp. 126–131.
[44] Y. Shen, A. Choi, A. Darwiche, Tractable operations for arithmetic circuits of probabilistic models, Adv. Neural Inf. Process. Syst. 29 (2016) 3936–3944.
[45] G. Torta, P. Torasso, On the role of modeling causal independence for system model compilation with OBDDs, AI Commun. 20 (1) (2007) 17–26.
[46] H. Zhao, M. Melibari, P. Poupart, On the relationship between sum-product networks and Bayesian networks, in: International Conference on Machine

Learning, 2015, pp. 116–124.
66

http://refhub.elsevier.com/S0888-613X(21)00112-2/bib3385FCB1A352BE9715A4735E78FA4E9Ds1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib3385FCB1A352BE9715A4735E78FA4E9Ds1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibCE263B1DCD54F2AFE8E1C8FCB3E1810Es1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibCE263B1DCD54F2AFE8E1C8FCB3E1810Es1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib10CA54F76D4A9935389162EB5B3045BDs1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibE2A8154CA4E36822E89DF911FAEDD344s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibE2A8154CA4E36822E89DF911FAEDD344s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib0128675032D50F0D66D37BA72576A1E1s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibF6B80C531E9AD75B19A7FC98C31E9648s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibE7C5529F8BDB200ECEED84870920518Cs1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib7E7886D3937E9ED2431ADEC7DE39C977s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib7E7886D3937E9ED2431ADEC7DE39C977s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib5FACAE9AA66D9E179E7EC16DF76781E8s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib84F41505144F7F6274D6F68AD828E7F0s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibC2E884C2241CCDEBEE4845F1B50BADA7s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibB0A189E9AC23BB6E49FA4BA539CC34D3s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibB0A189E9AC23BB6E49FA4BA539CC34D3s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib5DB072B4A4A4D1735E08F5CCD78B5104s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib5DB072B4A4A4D1735E08F5CCD78B5104s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibCA814E93696377FEBE8BEB4F5E02E4A7s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib371102E93734099CB2EE09FEACE68BDCs1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib9A94E54F4574EA029CAC10E29CF50DB7s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib8DE8A4AC21BA1DF1051A0188322A1D98s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib031188AE58F1EEFB6BEAA0BFA3902B2As1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib2B15454F9B6FAAD5C183C960C631B0C8s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibA557CF2B7B35E2A33D6F8485E1023E03s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibA557CF2B7B35E2A33D6F8485E1023E03s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib65437F3879DBA0C698542B509A300D77s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib65437F3879DBA0C698542B509A300D77s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibFC18E0A843286C69A8F4F79AA87E68BBs1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibF743D750707E0534BBC7302E54C61A1Es1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib1C6D3D3D8AE018F94D0D0654A0EBDBC3s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib1C6D3D3D8AE018F94D0D0654A0EBDBC3s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibB651FBB4790B8EA30FF749E43B43F33Fs1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibB069EC4EDB7DC796F19082A0E188B658s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibB069EC4EDB7DC796F19082A0E188B658s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib57B1F959B00A57B24EAF9752C08CEDE3s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib57B1F959B00A57B24EAF9752C08CEDE3s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib13D6157B050069A39A533048ED740E16s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib13D6157B050069A39A533048ED740E16s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibCB4F3290D18636F811855370400E7FBAs1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibCB4F3290D18636F811855370400E7FBAs1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib3FC84E9F88C33D034702D477CD6BF1F2s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibAC73FE95A749DA003053776EAA0E0886s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibAC73FE95A749DA003053776EAA0E0886s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibD659DD0481157FD8972B7F86EF7C0AFFs1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibD659DD0481157FD8972B7F86EF7C0AFFs1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib1EE94395BBE6ED57D47BB3C26F39FF4Ds1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib3A9DA943E24B878BC621E3A590D6F0AAs1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibC9FE44FE5A6634AD314FB7A32ACE0018s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibC9FE44FE5A6634AD314FB7A32ACE0018s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib2251CA238FC066DFF286120403A1CA1Cs1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibD02C887B4D51BFCF110522F57B2FAC21s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib91CCD40AD06600BEFA98D06C4DC7891Bs1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib91CCD40AD06600BEFA98D06C4DC7891Bs1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibE3C38C78DB081B1EE46B661081CF3B2As1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibE3C38C78DB081B1EE46B661081CF3B2As1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib7078FA5B2E25C1ED860390325661AF11s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib7078FA5B2E25C1ED860390325661AF11s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib2B72BDF33FE191FF199B3D5D0B2CB266s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib2B72BDF33FE191FF199B3D5D0B2CB266s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibEAC5D0907861E9D3BCE52FF55051003As1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibEAC5D0907861E9D3BCE52FF55051003As1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib99BE1CCC989652BDD2A5D9AE555A572Bs1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib99BE1CCC989652BDD2A5D9AE555A572Bs1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib56661027686A3965DAB68642B3B6B936s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bib40B7E6276E16C577E8A945100757C88Bs1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibC3A4EB9F629E034E0068A2C310183B24s1
http://refhub.elsevier.com/S0888-613X(21)00112-2/bibC3A4EB9F629E034E0068A2C310183B24s1

	A compositional approach to probabilistic knowledge compilation
	1 Introduction
	2 Preliminaries and background
	2.1 Set and graph theory
	2.2 Bayesian networks
	2.3 Inference by weighted model counting
	2.3.1 Boolean logic
	2.3.2 Boolean encoding, compilation and inference
	Step 1: Bayesian network encoding
	Step 2: compiling to a concise symbolic representation
	Step 3: inference

	2.4 Decision diagrams
	2.5 Removing unintended models

	3 The compositional framework
	3.1 Partitioning
	3.2 Composition
	3.3 Inference

	4 Compositional weighted model counting
	4.1 Inference by CWMC
	4.2 Partitioning and compilation
	4.3 Composition
	4.4 Inference
	4.4.1 Traversing monolithic representations
	4.4.2 Traversing partitioned representations
	4.4.3 Consistent model counts
	4.4.4 Combining components

	5 The cost of compositional inference
	6 Optimizing the framework
	6.1 Finding a partitioning
	6.2 Finding a composition-tree
	6.3 Finding a compilation ordering

	7 Related work
	8 Empirical results
	8.1 Compilation
	8.2 Inference

	9 Conclusion
	Declaration of competing interest
	References

