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A B S T R A C T   

To avoid wetland degradation and promote sustainable wetlands use, decision-makers and managing institutions 
need quantified and spatially explicit information on wetland ecosystem condition for policy development and 
wetland management. Remote sensing holds a significant potential for wetland mapping, inventorying, and 
monitoring. The Wetland Use Intensity (WUI) indicator, which is not specific to a particular crop and which 
requires little ancillary data, is based on the Mean Absolute Spectral Dynamics (MASD), which is a cumulative 
measure of reflectance change across a time series of optical satellite images. It is sensitive to the compound 
effects of land cover changes caused by different agricultural practices, flooding or burning. The more frequent 
and intrusive management practices are on the land cover, the stronger the WUI signal. WUI thus serves as a 
surrogate indicator to measure pressure on wetland ecosystems. 

We developed a new and automated approach for WUI calculation that is implemented in the Google Earth 
Engine (GEE) cloud computing environment. Its automatic calculation, use of regular Sentinel-2 derived time 
series, and automatic cloud and cloud shadow masking renders WUI applicable for wetland management and 
produces high quality results with minimal user requirements, even under cloudy conditions. For the first time, 
we quantitatively tested the capacity of WUI to contribute to wetland health assessment in Rwanda on the na
tional and local scale. On the national scale, we analyzed the discriminative power of WUI between different 
wetland management categories. On the local scale, we evaluated the possible contribution of WUI to a wetland 
ecosystem health scoring system. The results suggest that the adapted WUI indicator is informative, does not 
overlap with existing indicators, and is applicable for wetland management. The possibility to measure use in
tensity reliably and consistently over time with satellite data is useful to stakeholders in wetland management 
and wetland health monitoring, and can complement established field-based wetland health assessment 
frameworks.   

1. Introduction 

Wetland area and quality are declining worldwide. Their unsus
tainable use has led to the degradation of many wetlands and the rapid 
dwindling of total wetland area, with inland wetlands being most 
affected (Davidson, 2014; Junk et al., 2013; Millennium Ecosystem 
Assessment (Program), 2005; IPCC, 2014; Schuyt, 2005). Wetlands 

support the livelihoods of local communities (Nabahungu and Visser, 
2011; Sakané et al., 2013; Turyahabwe et al., 2013), and provide a range 
of more widely distributed benefits to humankind, including biodiver
sity, water storage, water purification, flood mitigation, and food pro
vision (Junk et al., 2013; Keddy et al., 2009; Langan et al., 2018). 

Wetlands cover roughly 7% of the African continent (Junk et al., 
2013) and due to their fertile soils and higher water availability, they are 
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increasingly developed for agricultural use to counteract dependency on 
global food markets and reduce hunger and poverty (Dixon and Wood, 
2003; Rebelo et al., 2010; Rodenburg et al., 2014). Africa has the lowest 
self-sufficiency rate in cereals and, without increasing agricultural pro
ductivity through intensification and further expanding cropland area, 
will progressively suffer from food price volatility and food insecurity 
(van Ittersum et al., 2016). Therefore, using African wetlands to increase 
food supply without compromising their ecological functioning is 
interlinked with long-term food security goals (Dixon and Wood, 2003). 
Yet, agricultural use is among the main drivers of wetland degradation 
which have already caused great losses of wetland area across Africa 
(Chapman et al., 2001; Darrah et al., 2019; Junk et al., 2013; Mitchell, 
2013). The degradation of wetland ecosystems leads to habitat frag
mentation and biodiversity loss, and negatively affects agricultural 
productivity (Gordon et al., 2010; Leemhuis et al., 2017). 

Ecosystem health has become a useful concept to qualify ecosystem 
state and functioning. During the last decade of the 20th century, the 
ecosystem health concept evolved as an analogy to human health, where 
healthy refers to a state of vigour and resilience to stress (Mallee, 2017). 
In contrast to the concept of biological integrity that relates to the 
naturalness of an ecosystem in an evolutionary sense, it employs a socio- 
ecological perspective on ecosystem use and assumes that long-term 
sustainable ecosystem management is possible (Angermeier and Karr, 
2019; Mallee, 2017). Therefore, it has found widespread adoption in the 
context of ecosystem management where ecosystem health assessment 
can guide management decisions (Mallee, 2017). 

Since ecosystems are complex, their health cannot be measured 
directly, but indirectly through indicators (Kruse, 2019). Quantified 
biophysical and socio-economic indicators, compared side by side (Sun 
et al., 2015) or in the form of composite health indexes (Wu and Chen, 
2020), have been used to measure the health of wetland ecosystems. 
Wetland ecosystem integrity is threatened by unsustainable wetland use 
practices, for which Schuyt (2005) describes a lack of information as an 
underlying cause and encourages incorporation of the spatial dimension 
in planning and management processes. The East African countries of 
Kenya, Tanzania, Uganda, and Rwanda work with national wetland 
maps to better understand wetland occurrence, state, and changes and 
enable informed decision-making (Amler et al., 2015). Updating such 
maps in a consistent and timely manner represents a challenge in 
wetland mapping approaches (Steinbach et al., 2021). Thus, remote 
sensing technology provides the possibility to obtain consistent, 
continuous, low cost spatial and temporal information on wetlands. This 
implies a significant potential for mapping, inventorying, and moni
toring wetlands, particularly if remote sensing information can charac
terise wetland use and condition (Amler et al., 2015; MacKay et al., 
2009; Strauch et al., 2016). It can render data acquisition for these 
measurements more practical and automated, therefore resource effi
cient and has been identified as a source of information that deserves 
more attention (Beuel et al., 2016; Chen et al., 2019; Das et al., 2020; 
Higginbottom and Symeonakis, 2014; Marambanyika et al., 2017; 
Rashid and Aneaus, 2019; Sun et al., 2016; Wu et al., 2018). 

Remote sensing has already been tentatively deployed in the WET- 
Health approach, a wetland health assessment framework developed 
by Macfarlane et al. (2009) specifically for African wetlands and origi
nally designed as a practical, field-based framework to rapidly assess the 
ecological state of South African wetlands. The WET-Health approach 
was thereafter successfully applied in studies of selected wetlands in 
Malawi (Kotze et al., 2012) and Zimbabwe (Marambanyika et al., 2017). 
Beuel et al. (2016) and Behn et al. (2018) tested it in Uganda, Kenya, 
Tanzania, and Rwanda. The semi-quantitative method aims to provide a 
simplification of the complex wetland ecosystem processes that facili
tates their assessment by field surveyors, who give health scores from 
0 (unmodified, no impact) to 10 (completely modified, critical impact) 
in different categories. An overall average health score is then calculated 
from the separate wetland impact scores (Kotze et al., 2012; Macfarlane 
et al., 2009). 

WET-Health assumes that some land uses have more detrimental 
effects on wetland status than others, and that within each land use, 
impact scores can vary due to differences in land use intensity (Kotze 
et al., 2012; Macfarlane et al., 2009). WET-Health by default uses remote 
sensing to facilitate the planning of field visits (Kotze et al., 2012; 
Macfarlane et al., 2009), and can use image-derived land use land cover 
(LULC) maps and digital elevation models (DEM) (Kotze et al., 2012; 
Macfarlane et al., 2020; Marambanyika et al., 2017). This current use of 
static spatial information in WET-Health does not account for wetland 
characteristics that have a temporal dimension, like the intensity of use 
within and across land use classes and their changes over time. As such, 
WET-Health has barely tapped the potential of remote sensing to esti
mate the impact of different types of wetland use. Steinbach et al. (2021) 
suggest two wetland-specific map products that capture spatio-temporal 
variability which are relevant in this regard: The Sentinel-2-based 
Wetland Use Intensity (WUI) captures spectral changes on the wetland 
surface over time, and the Sentinel-1-based Surface Water Occurrence 
(SWO) reflects presence of surface water over a given period of time. 

This study builds on Steinbach et al. (2021) by quantitatively testing 
an adjusted version of the WUI layer in Rwanda. Since a core element of 
wetlands is the hydrological cycle (Guo et al., 2017; Mahdavi et al., 
2018; Perennou et al., 2018) and a core element of the WET-Health 
approach is land use (Kotze et al., 2012; Macfarlane et al., 2009, 
2020), we also test the influence of SWO-derived surface water regime 
and of land use on WUI. Thus, we evaluate how WUI can be deployed to 
complement and upscale wetland health assessments and provide reli
able spatio-temporal information for the systematic assessment of 
wetland health. 

2. Study area and data 

2.1. Study area 

Rwanda is located in East Africa and bordered by Uganda, Tanzania, 
Burundi, and the Democratic Republic of the Congo. Rwanda is among 
the most densely populated countries in Africa (UN DESA, 2020), and 
consequently, its natural resources are under significant pressure to 
cater to food, water, and energy needs. Wetlands play a crucial role in 
meeting those needs (Hove et al., 2011; REMA, 2009; REMA, 2021), and 
cover between 10.6% (REMA, 2008) and 14.3% of the country (Stein
bach et al., 2021). Wetlands have progressively been included in policies 
to increase agricultural production (MINAGRI, 2018). Rwanda's Irriga
tion Master Plan shows that most of the irrigation potential in Rwanda 
lies in wetlands, making them a possible mainstay of food security 
(Malesu et al., 2010). Wetland agricultural development has therefore 
been a key element of agricultural development strategies (Malesu et al., 
2010; MINAGRI, 2009; MINAGRI, 2011; MINAGRI, 2018). 

The agricultural seasons are commonly subdivided into Season A 
(September to February), Season B (March to June), and the shorter 
Season C (July to September) which are related to the two rainy seasons 
from September to October/December and from February/March to 
May (Mohammed et al., 2016; Muhire and Ahmed, 2015). Wetland 
paddy rice is grown in Seasons A and B, vegetables and sweet potatoes 
are cultivated in Season C (MINAGRI, 2020) and perennial crops like 
sugar cane and tea are cultivated year round (Dufitumukiza et al., 2020; 
Veldman and Lankhorst, 2011). Other wetland activities include live
stock grazing, fishing, papyrus and reeds harvesting, peat, clay and 
gravel extraction (Beuel et al., 2016; Nabahungu and Visser, 2011; 
Uwimana et al., 2018a; van Dam et al., 2011). 

Three management categories subdivide Rwandan wetlands: use 
without specific conditions, use under specific conditions, and full 
protection (Government of Rwanda (GoR), 2010; REMA, 2008). Con
ditional use regulates drainage, agricultural use, and peat extraction in 
certain wetland types, including agriculturally used wetlands that sup
port a fraction of natural vegetation. Wetlands within internationally 
recognized protection categories like Ramsar sites, national parks or 
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reserves, as well as important water sources and dam marshlands are 
under full protection (REMA, 2008). 

Wetland use is putting wetland health under pressure. Agricultural 
use of Rwandan wetlands and adjacent uplands is associated with water 
contamination from farming inputs and with net negative water and 
nutrient yields and soil erosion (Karambizi et al., 2019; REMA, 2009; 
REMA, 2021; Uwimana et al., 2018b). Physical and chemical pollution 
from mining, industrial complexes, urban areas, waste disposal, and 
commercial large-scale farming compromise water quality (Nhapi, 
2011), and illegal use of harmful chemicals in agriculture and industry 
occurs sporadically (Umulisa et al., 2020). Restoring degraded wetlands 
and reversing the impact on biodiversity, soils, and water supplies has to 
take biophysical and socio-economic factors into account and is often 
not completely possible, as in the case of the Rugezi marsh, a Ramsar site 
of international importance (Grundling et al., 2018; Hategekimana and 
Twarabamenye, 2007; REMA, 2009). While wetland development is a 
priority, the Rwandan wetland management includes both development 
and rehabilitation efforts, such as erosion control or the relocation of 
economic wetland activities and informal settlements out of degraded 
sites (Ministry of Environment, 2020; United Nations (UN), 2015). 

2.2. Data 

2.2.1. Remote sensing imagery 
Table 1 gives an overview of the remotely sensed imagery used to 

compute and assess WUI. The Sentinel-1 and -2 imagery and Landsat 7 
and 8 imagery were acquired through the Google Earth Engine (GEE) 
cloud processing platform's data catalogue. The WUI layer was calcu
lated from Sentinel-2 images with <40% cloud cover, processed to the 
bottom of atmosphere reflectance Level-2A, for seven tiles and acquired 
over two years, from July 2019 to June 2021. 

Fig. 1 shows the footprints of the tiles. With two operational units, 
the Sentinel-2 satellite constellation has a revisit time of five days at the 
equator and delivers images at 10 to 60 m spatial resolution (Berger 
et al., 2012). 

The s2cloudless dataset from the GEE platform provides cloud 
probability for each Sentinel-2 image (Skakun et al., 2022) and is used 
for cloud masking. Sentinel-1 Ground Range Detected (GRD) imagery in 
Interferometric Wide Swath (IW) mode from relative orbit number 74 
was used for surface water detection and subsequent calculation of the 
Surface Water Dynamics (SWD) layer for the same observation period. 
The spatial resolution of this product is 20 m and is delivered resampled 
to 10 m in the GEE catalogue. As in Steinbach et al. (2021), only images 
in ascending mode were used, which are available every 12 days (Berger 
et al., 2012). Landsat 7 and 8 surface reflectance imagery at 30 m spatial 
resolution and a 16-day revisit time (Loveland and Irons, 2016) served 
for spectral comparison between the time of field data acquisition and 
the observation period. To maintain consistency in the length of image 
input period with the Sentinel-2 time series, the respective two-year 
time frames are July 2012 to June 2014 and July 2019 to June 2021. 
Landsat imagery below a cloud threshold of 20% was used, as this 
resulted in sufficient coverage for the subsequently created two com
posites while minimizing the probability of remaining artifacts after 
cloud and cloud shadow removal. For adjusting field data geometries to 
the reference period, the Norway International Climate and Forest 
Initiative (NICFI) Tropical Normalized Analytic Biannual best pixel 
composites at 4.77 m spatial resolution from January 2020 to June 2020 
were downloaded via the Planet QGIS Plugin (Planet, 2021). 

2.2.2. Rwandan wetland inventory and management categories 
Information on wetland management was obtained from a dataset 

published in a ministerial order on the use of wetlands in 2010 (Gov
ernment of Rwanda (GoR), 2010). This order officialised three man
agement categories and is based on a national wetland inventory 
established by the Rwandan Ministry of Environment (MoE, formerly 
Ministry of Natural Resources of Rwanda, MINIRENA) and the Rwandan 
Environment Management Agency (REMA) in 2008. The inventory 
represents a baseline of all Rwandan wetlands, their use, importance 
(local, national, or international), size, location and suggested man
agement category (REMA, 2008). Each wetland is allocated to a 

Table 1 
Remote sensing input datasets used in this study with respective spatial resolution, sensing period, number of images, and source.  

Dataset Spatial resolution Acquisition 
period 

Number Source 

Sentinel-2 Level 2A 10 m (Bands 3, 4, 8) 
20 m (Bands 6, 11, 12) 

07/2019–06/ 
2021 

MQS: 50 images 
MQT: 43 images 
MQU: 49 images 
MRT: 53 images 
MRU: 44 images 
MTC: 50 images 
MTD: 92 images 

GEE catalogue (Gorelick et al., 2017) 

S2cloudless Cloud Probability 10 m 07/2019–06/ 
2021 

MQS: 50 images 
MQT: 43 images 
MQU: 49 images 
MRT: 53 images 
MRU: 44 images 
MTC: 50 images 
MTD: 92 images 

GEE catalogue (Gorelick et al., 2017) 

Sentinel-1 Ground Range Detected (GRD), 
Interferometric Wide Swath (IW) mode, Ascending 

5 × 20 m, resampled 
to 10 m (VV) 

07/2019–06/ 
2021 

Relative orbit no. 74 over 
Rwanda (2 tiles): 234 images 

GEE catalogue (Gorelick et al., 2017) 

Landsat 7 Enhanced Thematic Mapper (ETM+) 
Surface Reflectance (SR) 

30 m (Bands 1–5; 7) 07/2012–06/ 
2014 

Path 172, Row 61: 8 images 
Path 172, Row 62: 11 images 
Path 173, Row 61: 6 images 
Path 173, Row 62: 7 images 

GEE catalogue (Gorelick et al., 2017) 

Landsat 8 Observation Land Images (OLI) Surface 
Reflectance (SR) 

30 m (Bands 2–7) 07/2012–06/ 
2014 
07/2019–06/ 
2021 

Path 172, Row 61: 8 images 
Path 172, Row 62: 12 images 
Path 173, Row 61: 6 images 
Path 173, Row 62: 8 images 
Path 172, Row 61: 8 images 
Path 172, Row 62: 7 images 
Path 173, Row 61: 3 images 
Path 173, Row 62: 5 images 

GEE catalogue (Gorelick et al., 2017) 

PlanetScope Biannual Surface Reflectance Mosaics 4.77 m (Bands 1–4) 01/2020–06/ 
2020 

24 base map quads Norway International Climate and Forest 
Initiative (NICFI) (Planet, 2021)  
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management category based on an evaluation of its bio-physical char
acteristics and its importance for the environment and human use 
(REMA, 2008). Between these categories, wetland sizes differ notice
ably, as displayed in Fig. 2. While wetlands without specific use re
strictions are generally small in size, wetlands under specific use 
conditions are on average roughly ten times larger. Fully protected 
wetlands have the widest size range, as they include small spring wet
lands as well as large protected wetland complexes like the Akagera 
National Park which stretches along Rwanda's eastern border. 

We use the 2010 spatial dataset and refer to it as the legally binding 
and spatially explicit management framework and not to other variable 
information that was captured in the wetland inventory in 2008. 
Although there is a more recent ministerial order from 2017, it largely 
confirmed the wetlands' respective management categories. Some ex
ceptions are, for example, newly delineated wetlands or wetlands dis
associated from larger complexes (Government of Rwanda GoR, 2017). 
Since the 2017 dataset was not available as a spatial dataset but only in 
table format, we compared the spatial information in the 2010 dataset 
with the tabular information in the 2017 dataset and selected all wet
lands that stayed in the same management category and for which the 
area did not change by more than ±15% as compared to the baseline. 
Thus, only wetlands consistent in managerial conditions and approxi
mate boundaries between the two datasets were considered for further 
analysis. 

2.2.3. WET-Health field data 
According to the WET-Health approach, wetland health or the 

similarity to a wetland's reference condition, is assessed based on the 
assumption that human interference changes the natural quality and 
quantity of water and sediment flows, as well as the vegetation that 
wetlands carry. Therefore, the approach takes into account the four 
modules of hydrology, geomorphology, vegetation (Macfarlane et al., 
2009), and water quality (Kotze et al., 2012). According to Kotze et al. 
(2012), Beuel et al. (2016), and Macfarlane et al. (2020), the following 
components should be assessed to determine the deviation from full 
wetland health:  

• Hydrology: Intensity of irrigation and drainage management, 
assessed in terms of deviation from the natural level of wetness and 
the depth of drains and drain density  

• Geomorphology: Increased erosion and/or decreased accretion, 
caused by land use practices like tillage or artificial drainage, which 
may result in erosion gullies  

• Vegetation: Proportion of introduced to naturally occurring species, 
and invasion by alien or ruderal species; the intensity of cultivation 
practices 

• Water quality: Water chemistry and suspended matter, as influ
enced by leaching from cultivated soils and runoff from roads or 
infrastructure 

Indicators of human impact on wetland health are typically associ
ated with particular land uses. Therefore, the initial methodology 
increasingly evolved to define literature and expert-informed scores per 
land use class, where the scoring is predetermined and merely adjusted 

Fig. 1. Rwanda and the footprints of the Sentinel-2 tiles for which Wetland Use Intensity (WUI) was calculated.  

S. Steinbach et al.                                                                                                                                                                                                                               



Ecological Informatics 75 (2023) 102032

5

according to the field assessment (Beuel et al., 2016; Macfarlane et al., 
2020). A typical semi-natural wetland bearing reeds and grass vegeta
tion could, for example, score an average of 1.5 (hydrology: 1, geo
morphology: 0, vegetation: 4, water quality: 1) which is close to not 
being impacted. In contrast, homogeneous paddy rice agriculture could 
receive an average of 7.5 (hydrology: 10, geomorphology: 4, vegetation: 
9, water quality: 7), which is a high impact score. 

In this study, we use the WET-Health scoring sheet and method 
described by Beuel et al. (2016) who further adapted the approach by 
not considering hydrogeomorphic units (HGU), as proposed by Mac
farlane et al. (2009), but randomly distributed plots of 250 × 250 m size 
as their reference unit. These fixed units provide good comparability and 
a well-adapted size for on-the-ground sampling. Within the plots, 
polygons of homogeneous land use were delineated and scores were 
assigned according to wetland condition. These scores were derived 
from the general impact of the respective land use on wetland health. 
They were slightly increased or decreased according to further site- 
specific characteristics (Beuel et al., 2016). The data created by Beuel 
et al. (2016) constitute part of this study's reference wetland condition 
dataset. A team of wetland experts collected these data during a field 
survey in the East African countries of Tanzania, Uganda, Kenya, and 
Rwanda in 2013. The Rwandan dataset consists of 19 plots that partially 
or fully cover wetland area, and of 34 polygons of homogeneous land use 
in wetlands. Land use within wetlands was categorized into classes as 
shown in Table 2. Beuel et al. (2016) did not record impact trends and 
did also not apply scoring to the catchment area. 

This study's reference dataset was complemented with another 21 
plots (36 more polygons) that were surveyed in the centre and along the 
roads towards the east and north of the country during a field visit in 
Rwanda in August 2018. The field survey was conducted based on the 
WET-Health protocol and land use impact score scheme as described by 
Beuel et al. (2016). The two wetland experts who conducted the survey 
were instructed by members of the 2013 field survey. 

3. Methodology 

3.1. Wetland Use Intensity calculation 

For this study, we adjusted the WUI layer calculation as described by 
Steinbach et al. (2021), which is based on Mean Absolute Spectral Dy
namics (MASD) (Franke et al., 2012), and automated it to be run on the 
GEE platform. WUI is a cumulative measure of reflectance change across 
a time series of optical satellite images. It is sensitive to the compound 
effects of land cover changes caused by different land management 
practices. Frequent and intrusive management practices on the land 
cover have a stronger WUI signal than rare events or marginal practices 
(Steinbach et al., 2021). In contrast to their method of using manually 
selected images that are spread out across the seasons, we considered all 
images below 40% cloud coverage for the study area between July 2019 
and June 2021. Including cloudy images in the time series increases the 
number of observations, but requires thorough removal of clouds and 
cloud shadows. S2cloudless is a Sentinel Hub mono-temporal algorithm 
that uses machine learning on 10 spectral bands to detect clouds in 
Sentinel-2 imagery (Zupanc, 2017). S2cloudless has been shown to 
remove cloud reliably over different land covers and geographical re
gions, and to generally outperform the more cloud-conservative Sen2
Cor processor that is the ESA standard to generate Sentinel-2 Level 1C 
from Level 2A imagery (Skakun et al., 2022). We therefore selected this 
method to remove clouds and cloud shadow in the time series. 

The GEE platform provides readily-processed s2cloudless cloud 
probability data for the complete Sentinel-2 time series, which employs 
standard values for the s2cloudless processor model variables (Skakun 
et al., 2022). However, the user can still define thresholds for cloud 
probability, near-infrared (NIR) reflectance for cloud shadow detection, 
and the maximum distance from cloud edges to search for cloud shadow 
when applying the s2cloudless algorithm on a Sentinel-2 time series in 
GEE, A buffer parameter lets the user define cloud edge dilation 
(Braaten, 2020). As this time series included relatively cloudy images, 
the minimum cloud probability threshold was set to a comparably low 
value of 20%. A maximum NIR value, the maximum distance for cloud 
shadows, and buffer parameters of 0.15, 1 km, and 50 m, respectively, 
yielded good cloud and cloud shadow masking results. 

To avoid skewing the WUI values towards periods with more avail
able cloud-free pixels, a regular time series of median composites was 
produced. Visual comparison of the composites showed that if they were 
based on one and two months of image acquisition across the year 2020, 
they still had too many gaps due to cloud cover, which resulted in ar
tifacts in the WUI layer. Therefore, the observation period was set to two 
years, and bi-monthly composites were calculated from imagery from 
July 2019 to June 2021 to form a 2020 pseudo-year time series with six 
composites. This leaves the composites with nearly no missing data 

Fig. 2. Boxplots of lower boundary, median, and upper boundary of wetland 
sizes within the 95% confidence interval for the wetlands selected from the 
Rwandan national wetland inventory dataset. 

Table 2 
Land use classification in wetlands from the Rwandan WET-Health dataset 
by Beuel et al. (2016).  

Level 1 Level 2 

Agriculture Homogeneous 
Heterogeneous 

Grazing land Pastures 
Pastoral rangelands 

Semi-natural vegetation Reeds, grassland 
Scrubland 
Natural forest, woodlands 

Fallow Long term 
Recently used 

Mining Brick making 
Quarrying 

Industrial area   
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pixels while still capturing annual hydrological and phenological vari
ability. Then, the WUI equation was applied which is 

WUI =
1

m − 1
∑m− 1

t=1

(
1
n

∑n

i=b

⃒
⃒ρt

i − ρt+1
i

⃒
⃒

)

where m = number of observation dates, t = observation date, n =
number of spectral bands, i = index of summation, b = spectral band, 
and ρ = pixel reflectance. The input bands for Sentinel-2 derived WUI 
are the green, red, red-edge, NIR, and two short-wave infrared bands 
(SWIR) (bands 3, 4, 6, 8, 11, and 12). These bands are selected due to 
their sensitivity to vegetation and to represent a balance between the 
visible, NIR and SWIR wavelengths (Steinbach et al., 2021). 

To test how the defined period may influence the resulting WUI 
values, WUI layers based on two-year inputs from January 2019 to 
December 2020 and from January 2020 to December 2021 were created, 
as well as a layer based on three years of Sentinel-2 inputs for the bi- 
monthly composites from January 2019 to December 2021. As the 
three layers based on two years of input data were highly correlated, it 
can be assumed that the approach is robust against slight temporal shifts 
in the observation period. Moreover, as the 2020 pseudo-year layer and 
the layer based on three years of input data were also highly correlated, 
it can be deduced that a larger timespan for the data inputs does not 
considerably change or improve the resulting layer values. This 
confirmed the validity of the chosen input data timeframe. 

3.2. Surface Water Dynamics calculation 

The timing and frequency of change in surface water represent a 
critical influence on wetlands and their land cover types and can be 
assessed with radar remote sensing (Muro et al., 2018). Temporal 
changes in surface water extent also potentially affect WUI values irre
spective of actual land-use practices. To test for WUI sensitivity to the 
surface water regime, a Surface Water Dynamics (SWD) layer was 
calculated from Sentinel-1 imagery following the approach to compute 
Sentinel-1-based Surface Water Occurrence (SWO) as described by 
Steinbach et al. (2021). Accordingly, each Sentinel-1 scene was pre- 
processed and classified into water and non-water by applying the 
Otsu thresholding method (Otsu, 1979). Instead of creating a layer as the 
cumulative count of water presence per pixel, which is SWO, the pixel- 
wise changes from water (pixel value 1) to non-water (pixel value 0) or 
from non-water to water across the reference period were calculated by 
using an equation analogous to the WUI one: 

SWD =
1

m − 1
∑m− 1

t=1

( ⃒
⃒υt − υt+1

⃒
⃒
)

where m = number of observation dates, t = observation date, υ = pixel 
value. The result is a value between 0 and 1 with 0 indicating no changes 
within the observation period (always water or never water) and 1 
indicating a change in every time step. The examples in Fig. 3 show WUI 

Fig. 3. Examples of Wetland Use Intensity (WUI) and Surface Water Dynamics (SWD) in north-eastern Rwanda, where a) Wetland Use Intensity (WUI) and Surface 
Water Dynamics (SWD) are both high, b) WUI is low and SWD is high, c) WUI is high and SWD is low, and where d) WUI and SWD are both low. 
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and SWD in a wetland in north-eastern Rwanda where a) WUI and SWD 
are both high, b) WUI is low and SWD is high, c) WUI is high and SWD is 
low, and d) WUI and SWD are both low. 

3.3. WET-Health data 

To obtain a consistent dataset that is suitable for the July 2019 to 
June 2021 observation period of this study, the 2018 WET-Health 
dataset first had to be created from the field data, and the 2013 one 
was checked and updated in terms of polygon geometry and spectral 
coherence. 

The 2013 dataset was filtered to remove the industrial area class 
since buildings are expected not to change spectrally and therefore per 
se are not reflected in WUI. The remaining polygons were each 
compared to Google Earth's high spatial resolution imagery from within 
the study period, by using the time slider function. They were addi
tionally compared to Planet's best pixel composites from January to June 
2020 (Planet, 2021). Polygon boundaries were adjusted where homo
geneous land use geometries differed from 2013, which could for 
example happen due to changed riverbed or agricultural expansion. 
Where land use changed altogether, polygons were removed (e.g., from 
wetland agriculture to a golf course). 

We assessed the spectral similarity as another indication of the 
polygon's viability as a reference with a Change Vector Analysis (CVA) 
(Malila, 1980). First, Landsat 7 and 8 images (32 and 23 images per 
sensor, respectively) from a reference period of July 2012 to June 2014 
were cloud-masked and a median composite was created. Then, for 
comparison to the spectral characteristics during the study period, 32 
Landsat 8 images from July 2019 to June 2021 were cloud-masked and a 
second median composite created. The periods were chosen to be of 
similar length for comparability, to cover the whole study period, and to 
rule out phenological impacts on reflectance values. Lastly, the differ
ence between the two composites was calculated and CVA was con
ducted on a difference image from the two composites, using all 
available bands in the visible, NIR and short-wave infrared (SWIR) do
mains. Due to the unimodal distribution of the difference image, Rosin 
thresholding (Rosin, 2001) was applied to differentiate between 
changed and unchanged pixels. Since the result showed only negligible 
changes in singular pixels within the WET-Health polygons, none of the 
remaining polygons were discarded. 

To create the 2018 dataset from field data, high spatial resolution 
Google Earth imagery from the study period and Planet best pixel 
composites from January to June 2020 (NICFI) were interpreted to 
establish the homogeneous land use polygon boundaries within the 
plots. Scoring was done according to the land use impact on wetland 
condition and based on the preliminary scores from the field where we 
used the land use impact score sheet provided by Beuel et al. (2016). In 
the final merged reference dataset, each polygon represents a data point 
with WET-Health scores, mean WUI, and mean SWD. It contains a total 
of 65 polygons. The spatial distribution of WET-Health polygons for 
2013 was random with a few adjustments based on field conditions 
(Beuel et al., 2016). This was not the case for the 2018 data set, but land 
use proportions were approximately the same in both data sets as dis
played in Table 3, so that the overall proportion of the complete dataset 
can be described as representative of land use classes in the study area. 
An overview of the plot locations is presented in Fig. 4. 

3.4. Evaluation of WUI for wetland health assessments 

The calculation procedure of WUI (Steinbach et al., 2021) was 
adjusted to allow processing on a regular time series for a pseudo-year 
with two years of input imagery. Firstly, the result of the 2017 anal
ysis was visually compared to the current 2020 layer concerning values, 
visible structures, and artifacts. However, no direct comparison of the 
methods is possible, since the Sentinel-2 time series over the study area 
in the GEE data catalogue, which the new method relies on, only starts in 

2019. Therefore, the 2017 WUI layer from Steinbach et al. (2021) could 
not be recalculated with the new method. 

Secondly, we plotted the WUI distribution within the official wetland 
management categories to evaluate how the WUI layer reflects wetland 
management at a national scale. The inventory includes the use without 
specific conditions, use under specific conditions, and full protection 
categories, which refer to increasing regulation and imply decreasing 
use intensity from the first to the last category. Since the wetland areas 
under the three categories largely differ in total area, random points 
were created within the Rwandan wetland area, labelled according to 
the management category, and 500 points per category were randomly 
selected. A density plot visualized the WUI values for these points and a 
one-way Analysis of Variance (ANOVA) was used to determine whether 
the difference between these categories was significant. To fulfil the 
requirement of normal distribution, the analysis was applied to the 
logarithmic values. Tukey's Honestly Significant Difference (HSD) Test 
determined post-hoc the patterns of difference between class means 
(Abdi and Williams, 2010). As a further statistical separability measure 
between management category distributions, we calculated the Jeffries- 
Matusita (JM) distance, which takes into account class mean and value 
distribution, and is commonly used to evaluate remote sensing-based 
classifications (e.g., Bruzzone et al., 1995; Dabboor et al., 2014; Dal
ponte et al., 2013; Visser et al., 2013). JM is implemented in the R 
package ‘varSel’ (Dalponte et al., 2013). 

Lastly, the WUI layer was assessed at a local scale by comparing it to 
WET-Health field data. The reference for this variant of the WET-Health 
approach are areas of homogeneous land use within plots of 250 × 250 
m size (Beuel et al., 2016). Therefore, the means of WUI and SWD were 
calculated for each WET-Health polygon. Correlation analysis between 
WUI and the WET-Health field data determined the association of WET- 
Health scores and WUI values, and correlation between SWD and WUI, 
as well as WET-Health scores the potential direct influence of the surface 
water regime on WUI values and WET-Health scores. As the Shapiro- 
Wilk test for normality showed that neither the WET-Health average 
and individual module scores, nor WUI and SWD polygon mean values 
were normally distributed, the non-parametric Spearman and Kendall 
correlation coefficients were employed. Since the logic of the WET- 
Health approach, in particular of its latest version, assumes a direct 
relationship between land use and wetland health (Macfarlane et al., 
2020), we tested if land use is an equally strong determinant of WUI. In 
contrast to the WET-Health scores and SWD polygon means, WUI 
allowed for logarithmic transformation to normal distribution with 
equal variances across land use classes. Thus, we used a one-way 
ANOVA test for significant differences between land use classes. 

4. Results 

4.1. Comparison of the WUI calculation approaches 

Fig. 5 shows a wetland in northeast Rwanda, which is a major rice 
growing area (Malesu et al., 2010), as represented in the 2020 WUI 
layer, in the 2017 WUI layer, and in the corresponding LULC layer from 
Steinbach et al. (2020). Most of the wetland area is classified as 
seasonally flooded agricultural land, but both WUI layers provide a more 
detailed account of the area. They display the structures of rice plots and 

Table 3 
Land use classes, number of WET-Health polygons with the contribution from 
the 2013 and 2018 datasets in parentheses, and number of pixels per land use 
class in the merged reference dataset.  

Land use class Number of polygons (2013/2018) Number of pixels 

Agriculture 31 (18/13) 7354 
Grazing land 7 (4/3) 1502 
Semi-natural vegetation 22 (11/11) 5950 
Mining 5 (3/2) 187  
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a gradient from higher to lower values from the northeast to the 
southwest. The 2017 layer has higher values in the northeast and lower 
values in the southwest, whereas the 2020 layer has relatively high 
values throughout. The WUI values of the latter range from 51.73 to 
879.42, whereas the values of the former range from 48.00 to as high as 
1210.20. The high values in the 2017 dataset could be artifacts due to 
missing values because of cloud cover, or the result of one of the input 
images capturing a peak time in the rice phenology of the fields in the 
northeast of that wetland. In both cases, it can be assumed that each 
input image has a higher impact on the resulting layer than in the case of 
the 2020 dataset. Here, the compositing approach and the larger number 
of input layers relativize phenological peaks or troughs. At the same 
time, while the semi-automatic approach captures the phenological 
peak in some plots, it misses the peak in other plots nearby, which may 
have theirs slightly earlier or later, due to different planting dates, va
rieties, or dates of fertilizer application. The automatic approach that 
uses bi-monthly composites ensures a more comprehensive temporal 
coverage, which may explain the evenly higher, but not extremely high 
WUI values in the 2020 dataset. 

4.2. Ability of WUI to reflect wetland management practices 

Fig. 6 shows density plots for the 500 samples per wetland man
agement category as a representation of value distribution, their average 
values and standard deviations. Wetlands under full protection have the 
overall lowest values (mean = 141, std.dev. = 86). However, not the 
wetlands under conditional use (mean = 241, std.dev. = 140), but the 
wetlands under unrestricted use exhibit the next higher value range 
(mean = 179, st.dev. = 83). They also have the widest value distribution 
and the highest standard deviation. The one-way ANOVA showed that 
there was a statistically significant difference in logarithmic WUI values 

between at least two of the management categories (F(2, 1497) = 116.5, 
p < 0.001). Table 4 contains the results of the Tukey HSD test and the JM 
distances. According to the Tukey HSD test, WUI values differ signifi
cantly between each of the management category pairs, but the differ
ence between the protected category to the other two is visibly more 
pronounced. The JM distance serves as another statistical measure be
tween the WUI value distribution within the three management cate
gories. It does not require normal value distribution and was therefore 
applied to the WUI values without logarithmization. The calculation 
results confirm the Tukey HSD test results. The distance is greatest be
tween the protected and the conditional use categories with 0.53. The 
JM distance is lower the conditional and unrestricted use categories and 
lowest between the protected and unrestricted use categories, with 0.44 
and 0.23, respectively. 

4.3. Wetland condition assessment using WUI and the WET-Health 
approach 

In Fig. 7, a scatterplot visualizes mean WUI per polygon against 
WET-Health average scores for each land use class, coloured according 
to land use class. WUI values in the agriculture class are the highest, 
averaging at 236.02, followed by mining with 215.81, grazing land with 
202.76, and semi-natural vegetation with 185.22. Semi-natural vege
tation and agriculture exhibit the highest standard deviations with 
115.14 and 103.11, respectively, whereas standard deviations are 
markedly lower in the grazing land and mining classes with 56.98 and 
43.67. Mining shows the smallest range of values for both WUI and WET- 
Health, with consistently high WET-Health scores and intermediate WUI 
values. Grazing land shows a wide range in both WET-Health scores and 
in WUI values, whereas agriculture and, except for two outliers, semi- 
natural vegetation cover a specific range in WET-Health scores, but a 

Fig. 4. Overview of the 250 × 250 m plot locations displayed as points for the 2013 (yellow) and 2018 (purple) WET-Health datasets. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. Side-by-side zoom-in on a) the Wetland Use Intensity (WUI) layer from the 2020 pseudo-year and b) the WUI layer from Steinbach et al., 2021 which is based 
on manual selection and semi-automated cloud masking. C) shows Land Use Land Cover (LULC) from Steinbach et al. (2021, 2020). 

Fig. 6. Density plots of Wetland Use Intensity (WUI) value distribution within the wetland management categories protected, conditional use, and unrestricted use. 
Solid lines show the mean value for each category and dashed lines one standard deviation below and above the mean. 
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wide range in WUI values. The result of the ANOVA on the logarithmic 
WUI values confirms that WUI values in none of the land use classes 
differ significantly from the values in one of the other classes (F(3, 61) =
0.628, p = 0.6). 

The scatterplots of WET-Health averages and WUI against mean SWD 
in Fig. 8 a) and b) show no clustering according to the surface water 
regime. Little to highly dynamic surface water regimes occur across the 
whole WET-Health and WUI value ranges (0.25 to 9.5 and 81.99 to 
503.11). Fig. 9 with a) Spearman and b) Kendall correlograms of SWD, 
WUI values, the four WET-Health module scores (hydrology – WH 
Hydro, water quality – WH Water, Vegetation – WH Veg, Geo
morphology – WH Geom), and the average WET-Health score (WH 
Average) thus indicates no significant correlation between SWD and 
WUI, nor between SWD and the WET-Health module scores. In contrast, 
for both the Spearman and the Kendall tests for correlation, all WET- 
Health modules are highly intercorrelated at α = 0.05. For both tests, 
the highest correlation occurs between the hydrology module and the 
average (Spearman: r = 0.94, Kendall: r = 0.83), whereas the lowest is 
found between the water and vegetation modules (Spearman: r = 0.68, 
Kendall: r = 0.56). The WUI values are correlated with part of the WET- 
Health module scores. They do not correlate with the hydrology and 

water quality module WET-Health scores, but are positively correlated 
with the geomorphology (Spearman: r = 0.25, Kendall: r = 0.19), 
vegetation (Spearman: r = 0.26, Kendall: r = 0.19), and average WET- 
Health scores (Spearman: r = 0.27, Kendall: r = 0.19). This correla
tion is significant, but a lot weaker than the intercorrelation of the WET- 
Health modules. 

5. Discussion 

5.1. Improvements through automating WUI assessment 

Wetland development and agricultural intensification have the po
tential to increase economic output and improve food security in many 
African countries (Kwesiga et al., 2019; Kyalo and Heckelei, 2018; 
Rebelo et al., 2010; Rodenburg et al., 2014). Information on wetland 
condition is crucial to understand the impact that their development has 
on the ecosystem, and monitoring is required to ensure the effects stay 
within the desired boundaries. Remote sensing data can expand the 
spatial and temporal scales of field-based monitoring and thus enhance 
sustainability in spatial planning (Thamaga et al., 2021). A challenge to 
the adoption of remote sensing technology is the required technical 

Table 4 
Results of the Tukey Honest Significant Differences (HSD) test on the logarithmic Wetland Use Intensity (WUI) values across wetland management categories and 
Jeffries-Matusita distance between WUI values across wetland management categories.  

Wetland management category pair Tukey HSD difference of logarithmic WUI values (p < 0.001***) Jeffries-Matusita distance of WUI values 

Use under specific conditions / Full protection 0.51*** 0.53 
Use without specific conditions / Full protection 0.30*** 0.23 
Use without specific conditions / Use under specific conditions − 0.21*** 0.44  

Fig. 7. Scatterplot with marginal density plots of Mean Wetland Use Intensity (WUI) and of the averaged WET-Health scores coloured according to land use class. As 
it is a constant value, no density curve for the WET-Health scores in the land use class “mining” is shown. 
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capacities in planning agencies (Leemhuis et al., 2017; Nkundabose 
et al., 2020). 

A key intention of developing a new and fully automated approach to 
calculating WUI was therefore to develop a meaningful remote sensing 
product related to wetland condition, and to make it more applicable 
and easy to use while increasing the number of input images and pre
serving or improving the informative value as compared to the semi- 
automatic approach suggested by Steinbach et al. (2021). When 
comparing the result to that of the initial calculation approach, only a 
few singular artifacts exist in both layers, proving the sustained layer 
quality. For the 2017 layer, the reason is missing observations in indi
vidual images and the relatively strong impact that these have on the 
result compared to the 2020 layer. For the 2020 layer, there are almost 
no missing values due to the compositing, although some artifacts 
occurred where cloud and cloud shadow were not properly picked up 
and masked by the automatic cloud masking method. In both instances, 
the WUI method captured spectral changes in wetland vegetation and 
water-relevant bands across the annual hydrological cycle and all three 
agricultural seasons (cf. MINAGRI, 2020). However, the new method 

required no further user input, pre- or post-processing steps, and can 
therefore be seen as more objective, more comparable, and robust across 
time steps. Moving the input period six months forward, backward, 
extending it to three instead of two years, and testing the results for 
correlation (which was high) all supported the robustness of the 
approach. 

The main difference between the semi-automatic approach and the 
newly-developed automatic one is that the former is based on a 
maximum of 8 hand-picked images per Sentinel-2 tile, predominantly 
across the year 2017, with a few complementary images from 2016 to 
compensate for large gaps in the time series. The few remaining clouds 
and cloud shadows were removed with an object-based image classifi
cation approach and each one was verified manually. In contrast to this 
approach, the challenge of frequent cloud cover, which is also reported 
in other tropical wetland studies conducted with optical imagery (Hardy 
et al., 2020; Thonfeld et al., 2020b), is solved by increasing the number 
of input images through a higher cloud threshold, automatic cloud 
masking, and using a time frame of two years for bi-monthly composites 
which ensures a regular time series and improves the input image basis. 

Fig. 8. a) WET-Health score and b) Wetland Use Intensity (WUI) plotted against Surface Water Dynamics (SWD), including their density curves.  

Fig. 9. A) Spearman and b) Kendall correlograms of mean Wetland Use Intensity (WUI) values per polygon and mean Surface Water Dynamics (SWD) with WET- 
Health scores in the categories hydrology (WH Hydro), water quality (WH Water), vegetation (WH Veg), geomorphology (WH Geom), and average (WH Average), at 
α = 0.05. Non-significant correlations are crossed out. 
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The new method for calculating WUI is fully automated in the cloud- 
based GEE processing environment, has low computational re
quirements, facilitating operational usage for wetland management. 
Various authors report a lack of applicability of geoinformation science 
outputs in operational wetland management (e.g., Hardy et al., 2020; 
Ludwig et al., 2019; Siles et al., 2019). Our automated method of 
generating WUI with open access spatial data that is globally available 
through long-term operational satellite platforms, and user-friendly, 
accessible software helps address this gap. 

5.2. WUI for large-scale wetland health assessment in Rwanda 

The importance of wetland ecosystem services is widely recognized, 
which entails the need for national wetland inventories and wetland 
condition monitoring (Muro et al., 2020; Rapinel et al., 2023). In 
Rwanda, the government regulates wetland use through different 
governmental institutions, which ensure that wetland resources are 
optimally used at the intersection of the different and partly conflicting 
wetland activities (Heermans and Ikirezi, 2015). Official categorization 
of wetland uses (Government of Rwanda (GoR), 2010) is supposed to 
help to keep wetlands in a healthy and thus productive condition in the 
long run (Heermans and Ikirezi, 2015; REMA, 2008). 

Large-scale coverage of meaningful information on ecosystem con
dition is a critical ecological indicator requirement (Burgass et al., 
2017), in particular when working on national scales. WUI can be 
calculated for large areas such as the whole of Rwanda, where WUI 
values show different distributions across the official wetland manage
ment categories. This suggests that the WUI layer is able to reflect 
wetland management practice regulations, assuming they are imple
mented according to the management plan. That the WUI values are 
inverted for the conditional and unrestricted use category, where more 
intensive management is allowed in the unrestricted use category, does 
not necessarily mean that WUI fails to reflect actual wetland manage
ment. The Government of Rwanda (GoR) categorizes wetlands accord
ing to certain characteristics and functions, and to what is evaluated to 
be an optimal use considering multiple factors (Government of Rwanda 
(GoR), 2010; REMA, 2008). Consequently, particularly the wide flood
plain wetlands in the centre, south, and northeast of the country, which 
are well suited for intensive agricultural production, fall into the cate
gory of conditional use. In contrast, wetlands in the unrestricted use 
category are often narrow, overall smaller, and in many instances may 
not have the bio-physical characteristics that allow for intensive 

cultivation practices. Hence, WUI tends to be lower in these wetlands. 
An additional exploratory comparison of WUI values across a subset 
excluding very small and very large wetlands below 50 and above 500 
ha still resulting in overall higher values in the former category sub
stantiates this possible explanation (c.f. Fig. 10). This confirms that, in 
order to make complete ecosystem assessments, quantitative indicators 
need to be contextualized with local expert knowledge (Haase et al., 
2018). 

Management categories regulate how wetlands can be used. That 
does not mean that all allowed practices are actually applied. The 
comparison of WUI values across the Rwandan wetland management 
categories nevertheless shows that it can differentiate between wetland 
management systems. This insight may be used to monitor whether WUI 
value distributions are stable over time, shift up- or downward, or 
change their range within a management category. Depending on the 
type of change, shifts may signal that regulatory efforts are successfully 
implemented, or that further action is needed. Moreover, the presented 
method can be applied for the intercomparison of WUI values across 
regions to estimate the pressure on wetland ecosystems in other specific 
management categories, like Ramsar sites, habitat management areas, 
or agricultural growth corridors. Changes in wetland ecosystems are 
often determined through land use and land cover classification and 
change detection (e.g., Ballanti et al., 2017; Eid, 2020; Luvuno et al., 
2016; Thonfeld et al., 2020a). Analyses through determination of 
changes that are more subtle and may therefore not directly lead to a 
change in land cover class are less frequent, but needed as these can 
nevertheless impact biophysical wetland functioning (Muro et al., 
2018). WUI could add to the latter set of remote sensing based wetland 
monitoring approaches. The impact of land management on wetland 
health is complex, but reliable and continued spatial information on use 
intensity at the national to regional scale, as can be provided by the WUI 
layer, serves as an indicator of an important pressure, which can inform 
decision-makers and guide wetland managers to targeted interventions. 

5.3. WUI for local-scale wetland health assessment 

WUI can also contribute to wetland health assessment at the local 
scale, of which the WET-Health approach is an example that was already 
thoroughly tested in southern and East Africa, including field-based and 
remote sensing-supported modifications (c.f. Behn et al., 2018; Beuel 
et al., 2016; Dumakude and Graham, 2017; Kotze et al., 2012; Mar
ambanyika et al., 2017). Marambanyika et al. (2017) acknowledge an 

Fig. 10. Density plots of Wetland Use Intensity (WUI) value distribution within the wetland management categories protected, conditional use, and unrestricted use 
for wetlands between 50 and 500 ha size. Solid lines show the mean value for each category and dashed lines one standard deviation below and above the mean. 
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inherent subjectivity in the field-based assessment of the WET-Health 
modules through surveyors, and underline that remote sensing-based 
indicators such as WUI can add objectivity to wetland health assess
ments. Also, the newest version of the WET-Health approach relies more 
heavily on land surface data (Macfarlane et al., 2020), which has a high 
potential to integrate more remote sensing data. Yet, none of the listed 
studies has considered time series products including time series-derived 
data on use intensity. 

WET-Health tries to reduce double-counting by assessing each of the 
modules hydrology, geomorphology, vegetation, and water quality 
separately (Beuel et al., 2016; Kotze et al., 2012). Nevertheless, when 
comparing the WET-Health module and average scores for patches of 
homogeneous land use within 250 × 250 m plots across Rwanda, the 
module scores are highly correlated. This is logical since impact scores in 
all modules are given according to specific land uses. Although the 
impact differs among modules, high environmental impact land uses 
usually entail high impact scores across all modules, although to a 
differing degree. Kotze et al. (2012) acknowledge these feedback effects 
between modules despite their separate assessment. This aspect of 
redundance could be interpreted as a strength of WET-Health, which 
makes the scoring more robust against outliers in any one of the cate
gories. However, integrating different types and multiple sources of data 
can greatly enhance the performance of wetland assessments and 
monitoring systems (Beißler and Hack, 2019; Strauch et al., 2022). Thus, 
furthering the integration of remote sensing technology could add a 
dimension to field-based wetland health assessments that is comple
mentary and not yet sufficiently exploited. 

That WUI values are correlated with certain WET-Health modules 
and with the average score indicates that WUI is associated with the in- 
situ wetland health assessment. That the correlation is weak implies that 
the addition of a WUI-derived module may add information to the 
wetland health assessment that is verified to be related to wetland 
condition but not provided by the other modules. Such complementarity 
of meaningful data is generally desired when combining multiple in
dicators to measure environmental systems (Angermeier and Karr, 
2019). In addition, WUI is not measurably influenced by the surface 
water regime and in contrast to the WET-Health assessment, it also does 
not directly depend on a specific land use class. This can be of interest in 
particular for agriculturally used land and for semi-natural vegetation, 
where WET-Health scores have a manifestly smaller range compared to 
WUI values. 

Furthermore, WUI considers a time series instead of one point in 
time, which is an asset in wetland landscapes with both natural and 
anthropogenically induced dynamics (Guo et al., 2017; Mahdavi et al., 
2018; Perennou et al., 2018). To estimate temporal dynamics to a 
certain degree, a surveyor would have to conduct multiple field visits or 
otherwise rely on information provided by locals, observation of signs of 
periodicity, and experience. In contrast, WUI can cover long time pe
riods consistently and is temporally scalable. This can be of particular 
importance for Environmental Impact Assessments (EIA), which are 
conducted before any larger wetland development project in Rwanda 
and in other countries and ideally accompany them over an extended 
period (Aryampa et al., 2021; George et al., 2020; Heermans and Ikirezi, 
2015; Nkundabose et al., 2020). They consider the effects of wetland 
development and intensification on aspects like water resources, soil and 
atmosphere, flora and fauna (Aryampa et al., 2021). Technical equip
ment, training, and transparency can be challenges to successfully 
conducting an EIA (George et al., 2020). The analysis provides evidence 
that WUI can serve as a broad standalone indicator that can be used to 
map the status and monitor the development of use intensity, and thus a 
critical driver of wetland health or ill-health. It could also be considered 
for integration into established field and remote sensing-based wetland 
health assessments like the WET-Health approach that can in turn factor 
into applied management elements, such as EIA. This adds a layer of 
spatially disaggregated, objective, reliable, geographically, and tempo
rally scalable information to wetland monitoring and management. 

5.4. Limitations 

There are limitations to this study attributable to the analysis, to the 
data basis, and to the value of WUI in the management context. WUI is 
designed as a broad indicator that captures the spectral changes due to 
compound effects of different and interlinked land management prac
tices and the sensitivity analysis of the relationship between land use 
class, WUI and SWD indicates that WUI is an independent data layer. But 
its informative value could only be inferred from the assumption that 
wetland use intensity is reflected in spectral changes over time, in 
combination with the statistical analyses. In contrast, a direct associa
tion with specific combinations of land management practices was not 
established and would require comprehensive spatio-temporal reference 
data of target combinations of management practices. Also, much finer 
wetland management e.g., to which degree management intensity is 
reflected for annual versus perennial crops like tea, which is charac
terized by continuous practices like plucking and pruning (Karuri, 
2021), could not be discerned in this study. Although wetlands carrying 
both types of crops were sampled, the sample size did not suffice for a 
more detailed investigation. 

Due to the length of the observation period, interannual differences 
are flattened out. To assess long-term baselines, longer input periods for 
the pseudo-year can be employed. But in general, the shortest input 
period possible should be used, since land use and land use intensity may 
change over time and would not be captured accurately. This period 
depends on cloud cover and on the number of available input images. 
Despite the frequent and extensive cloud cover over the study area, the 
two-year input period and bi-monthly composites provided adequate 
results, covered all seasons, and had a minimum of artifacts. However, in 
less cloudy areas it should be considered to reduce the maximum cloud 
coverage to obtain clearer imagery, reduce the composite timeframe to a 
month, or reduce the input period to a year. Evaluating the number of 
available input images and their cloud cover percentage for the periods 
in the time series help guiding these decisions. 

The data used for reference and comparison are sources of analytical 
uncertainty. Both the time that part of WET-Health data was collected 
and the year the national wetland dataset was established do not 
correspond to the study period. However, reverting to historical data can 
be an advantage where current-year information is unavailable and can 
be turned into valid reference data, e.g., through spectral comparison or 
sample filtering (Lin et al., 2022; Maas et al., 2019; Muhammad et al., 
2015; Padial-Iglesias et al., 2021). We present a way of reusing WET- 
Health data from 2013 for its application in the 2019–2021 period by 
evaluating spatial and spectral changes and discarding or updating 
incoherent reference polygons. Yet, there is inherent uncertainty that is 
propagated into the statistical results and that could not be quantified. 
For the national wetland management dataset, it can be assumed that 
the management framework remains in place from the time the 
respective order comes into force onwards. Therefore, this type of 
reference data does not expire until a new order is enacted. However, as 
an amendment was passed in 2017, the available spatial dataset had to 
be filtered, which introduces uncertainty. The selection of only the un
changed wetlands can bias the dataset towards the ones that are 
managed in a way that does not lead to the expansion nor to the 
reduction of wetland area. The accepted change of ±15% in area ac
counts for a certain range. Yet, this must be considered in the evaluation 
of the results' accuracy. 

In the wetland management context, WUI, as a single information 
layer, cannot replace thorough investigations. To determine the type of 
wetland (e.g., Mandishona and Knight, 2022) or evaluate wetland user 
systems (e.g., Gebrekidan et al., 2020) and derive possible implications 
of changes in wetland use and use intensity, knowledge of the bio- 
physical and socio-economic processes and interactions are needed to 
comprehensively understand their functioning. Further, specific aspects 
that threaten the ecosystem and wetland communities' livelihoods like 
water and soil pollution (De Troyer et al., 2016; Sekomo et al., 2011; 
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Uwimana et al., 2018a) cannot be derived directly with such a remote 
sensing product. However, we contend WUI can serve to rapidly assess 
cumulative use pressures on wetland health to spatially guide where 
such investigations should take place. It can be applied in addition to 
ground-based survey methods and contribute to often neglected follow- 
up studies on the environmental impact of wetland development efforts 
(George et al., 2020), in particular where resources are scarce. 

6. Conclusions 

The wetland health concept is closely tied to the idea of sustainable 
wetland use. It acknowledges the need to reconcile different land uses 
and maintain long-term wetland productivity to be able to meet the 
current and future need for food, water, and energy in East Africa. 
Wetland health assessments need to include a range of variables to be 
able to depict the condition and sustainability of use practices. There
fore, it would be a misjudgement to claim that established approaches 
should be completely replaced by remote sensing-based information. 
However, their contribution lies in the possibility of scalability, 
repeatability, and taking into account time series, since wetlands are 
characterized by seasonal, annual, and sometimes even decadal fluctu
ations. Meaningfulness and complementarity are important criteria that 
wetland health indicators need to meet. The presented WUI layer pro
vides spatially consistent information on spectral changes on the 
wetland surface over time and is able to distinguish between different 
wetland management categories. It is linked to some existing field-based 
wetland health indicators, but only weakly associated with them, and 
thus does not duplicate information. WUI can be calculated in a fully 
automated manner, globally, in an open access processing environment, 
and with freely available data. This increases the applicability of the 
approach for long-term monitoring. 

In Rwanda, regular agricultural surveys are conducted. These cap
ture data on key agricultural indicators like inputs and yields, which can 
serve as determinants of agricultural use intensity. That means that 
consistent information on a key pressure on wetland ecosystems is 
already available, although it is not wetland specific and reported in a 
spatially aggregated form. In addition, remote sensing-based approaches 
like WUI provide spatially disaggregated location-specific and nuanced 
data on use intensity across land uses as a pressure that wetlands are 
subjected to. It can therefore complement wetland surveys at different 
scales, pinpoint clusters of high or low use intensity for management 
planning, and be incorporated in wetland health monitoring strategies, 
where the highest added value may exist in other East African regions 
with less frequent in-situ surveys, or generally in less accessible areas. As 
the Sentinel-2 image database grows, further research should explore 
the comparison of WUI between time steps to measure trends and shifts 
as well as across regions, other wetland management categories, and 
between specific agricultural use practices. 
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