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Abstract—Double-sided cooling based on planar packaging
method features better thermal performance than traditional
single-sided cooling based on wire bonds. However, this method
still faces thermal and electrical challenges in multichip SiC power
modules. Specifically, one is severe thermal coupling among parallel
bare dies, and the other is unbalanced current sharing due to un-
reasonable layout design. This article aims to explore the potentials
of SiC power devices in power module, which are higher current
capability and reliability. The proposed packaging method is called
interleaved planar packaging and can get rid of the optimizing
contradiction between thermal and electrical performance. In this
packaging method, there are two functional units: interleaved
switch unit and current commutator structure. Benefited from
the two units’ electromagnetic and thermal decoupling effects, the
interleaved power module features low loop inductance, balanced
current, low coupling thermal resistance, and even thermal distri-
butions. A 1200 V 3.25 mΩ half-bridge SiC power module based
on interleaved planar packaging is fabricated and tested to verify
this method’s superiority.

Index Terms—Multichip power module, packaging, parallel
MOSFETs, silicon carbide.

I. INTRODUCTION

W IDE band gap power device provides main impetus to the
development progress of power electronics. Due to high

blocking voltage, high operating temperature, fast switching

Manuscript received December 26, 2020; revised April 25, 2021 and June 15,
2021; accepted August 7, 2021. Date of publication August 20, 2021; date of
current version October 15, 2021. This work was supported by the National Key
Research and Development Program of China under Grant 2019YFE0122800.
Recommended for publication by Associate Editor K. Wada. (Corresponding
author: Laili Wang.)

Fengtao Yang, Lixin Jia, Laili Wang, Fan Zhang, Binyu Wang, Cheng
Zhao, and Jianpeng Wang are with the School of Electrical Engineering,
Xi’an Jiaotong University, Xi’an 12480, China (e-mail: yangfengtao@stu.xjtu.
edu.cn; lxjia@xjtu.edu.cn; llwang@mail.xjtu.edu.cn; zhangfan1990@mail.
xjtu.edu.cn; wangbinyu@stu.xjtu.edu.cn; zhaocheng3117@stu.xjtu.edu.cn;
wangjackmvp@stu.xjtu.edu.cn).

Christoph Friedrich Bayer is with the Fraunhofer Institute for Integrated
Systems and Device Technology IISB, 28452 Erlangen, Germany (e-mail:
christoph.bayer@iisb.fraunhofer.de).

Braham Ferreira is with the Department of Telecommunication
Engineering, University of Twente, 3230 Enschede, The Netherlands (e-mail:
j.a.ferreira@utwente.nl).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TPEL.2021.3106316.

Digital Object Identifier 10.1109/TPEL.2021.3106316

Fig. 1. Power module packaging structure. (a) Wire-bonding structure.
(b) Conventional double-sided cooling structure with side-by-side layout (par-
allel dies in same bridge are attached at same substrate).

speed, and low ON-resistance, SiC MOSFET is gradually taking
over Si-IGBT in various application fields [1], [2]. SiC power
module has the potentials to lift Si-IGBT application restrictions
with higher efficiency, higher power density, and higher reliabil-
ity. It has been widely accepted that packaging plays a significant
role in exploring SiC devices’ potentials. Both the parasitic
inductances and thermal resistances need to be addressed for
the power module packaging. With the proper packaging form,
SiC power modules are expected to operate at higher junction
temperature with smaller heatsink, thus reducing total size and
weight while maintaining high efficiency or system reliability
[3].

The conventional packaging method cannot fully use the
SiC device potentials [4]–[7]. Fig. 1(a) shows the wire-bonding
structure, which is extensively used. The wire bonds usually
bring extra inherent parasitic inductances, which typically take
a large part of the whole switching loop parasitic inductances
and lack current carrying capability. For thermal performance,
the single-sided cooling structure characterizes higher thermal
resistances with limited heat dissipation capability. Thus, wire-
bonding packaging is not preferred for SiC devices.

Some researchers use planar structures based on double-sided
cooling to decrease thermal resistance or loop inductance. The
typical structure is shown in Fig. 1(b). Several Si-based IGBT
double-sided power modules are fabricated in [8]–[16]. Other
researchers also develop the SiC double-sided cooling power
modules. In [17], a half-bridge double-sided cooling power mod-
ule, including single Si-IGBT and SiC-diode, uses the flexible
printed circuit board to alternate aluminum wire bonds. In [18], a
1200 V/200 A full-bridge SiC double-sided power module with
three parallel MOSFETs was fabricated. Liang [19] proposes a
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1200 V/100 A full SiC double-sided cooling module with two
SiC MOSFETs and two SiC diodes in parallel. This module also
integrates pin-fin cold plates and features high power density.
In [20], a 1200 V/180 A SiC double-sided power module that
optimizes the layout based on the P-cells/N-cells concept is
proposed. Benefited from the concept, this module features low
loop inductances. In summary, the mentioned literature usually
focuses on reducing thermal resistances or loop inductances, but
did not solve both problems at the same time. In higher power
applications, some researchers make submodules paralleled to
increase current capability. Other researchers parallel several
dies with side-by-side layout [see Fig. 1(b)]. But, the severe
thermal coupling and unbalanced current sharing among the
dies usually are ignored. The two problems bring challenges
in improving the current capability and reliability of SiC power
module.

How to integrate parallel SiC MOSFETs in one power module
is a critical challenge. One of the reasons is SiC MOSFET charac-
terizes lower current capability because of small die size, which
is caused by a compromise between costs and lower yield in im-
mature manufacturing processes [21]. To improve the module’s
current capability, the common practice is parallelling several
dies . But, it usually causes unbalanced current sharing. Besides,
the current derating happens at high junction temperature. The
practical solution is also to integrate parallel SiC dies, and
unbalanced current sharing occurs similarly. Many researchers
have proposed some solutions from the packaging point of view.
Li [22] introduces the auxiliary source connection wire bonds
to weaken the unbalanced current, which is reduced from 7 to
3.5 A under the 10 A ON-state current. In [23], by changing
the wire bonds length to add the extra parasitic inductances into
the source interconnection of individual bare dies, the unbal-
anced current is diminished. In [24], a stacked-ceramic-substrate
structure is proposed to minimize the parasitic inductances and
balance the current sharing. In [25], a passive balancing method
that inserts one inductor and one resistor to balance current
sharing is introduced. Wang et al. [26], develop a double-ended
source layout for parallel bare dies to make a symmetrical power
loop to improve dynamical current sharing. However, all these
researches are only relative to the wire-bonding power module.
These methods cannot be applied to planar packaging modules
limited by structure and layout.

The other reason is the heat dissipation capability. Smaller
SiC die’s size mainly causes it. In the SiC planar module, the
smaller die dimension brings more severe thermal coupling from
two aspects.

1) Length and width of interconnection spacer must be re-
duced due to the small die size, and the thermal resistance
increases correspondingly. Benefited from the spacer, the
conventional double-sided power module can dissipate
heat to both sides. Once the spacers’ thermal resistance
increases, the vertical heat dissipation through spacers
will be weakened, and the thermal coupling in the lateral
direction will be strengthened.

2) The distances among dies are shortened in SiC power
module. In most cases, the volume of the module is
designed to be small. Thus, the module features lower

Fig. 2. General view of the power module based on interleaved planar pack-
aging method. (a) Power module. (b) Equivalent circuit.

loop inductances and higher power density. However, it
brings more severe thermal coupling because the adjacent
dies become closer.

In the conventional double-sided cooling power module inte-
grating SiC dies, the proportion of lateral heat transfer in dies’
power dissipation increases, and the thermal improvement is
diminished. Although the smaller die dimension facilitates the
improvement of power density, it inevitably raises the challenge
of thermal management.

In summary, from the perspective of heat dissipation and
current sharing capability, the conventional planar packaging
method based on double-sided cooling cannot make full use of
SiC device potentials. Solving these problems from the outside
of the power module is of limited effect, so a proper packaging
method is the best solution.

This article proposes a novel packaging method called inter-
leaved planar packaging. With the interleaved switch unit (ISU)
and current commutator structure (CCS), electromagnetic and
thermal decoupling can be simultaneously realized in the power
module. Thus, the thermal and electrical performance can be
significantly improved. It can break the limitation of the existing
packaging method and explore the full potentials of SiC devices.

The rest of this article is organized as follows. Section II
presents the details of the interleaved planar packaging method.
Both the electrical and thermal performance of the proposed
module is analyzed. Section III presents the details about fab-
rication progress. In Section IV, the relevant simulations and
experiments are conducted to validated the packaging method’s
superiority. Finally, Section V concludes this article.

II. INTERLEAVED PLANAR PACKAGING METHOD

In this section, the details of novel packaging method called
interleaved planar packaging are presented. For the convenience
of illustrating this method, a half-bridge power module is intro-
duced.

A. Half-Bridge Power Module Based on Interleaved Planar
Packaging Method

The general, lateral, and internal views of the proposed
half-bridge power module are shown in Figs. 2–4, respectively.
The half-bridge power module contains eight SiC MOSFET bare
dies. Four of them are paralleled as low-side switches (M1,
M2, M3, and M4) and others as high-side switches (M5, M6,
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Fig. 3. Lateral view of the power module based on interleaved planar pack-
aging method (only two parallel SiC MOSFETs in one side bridge are shown).

M7, and M8). Although the module uses the body diode to
perform as freewheeling diodes, this packaging method is still
suitable for the other forms with extra antiparallel diodes. The
green area in the Fig. 4 represents the diode reserved soldering
position. Soldering extra antiparallel diodes would not influence
relevant analysis. The top substrate and bottom substrate play
roles as electric conduction, thermal conduction, insulation, and
mechanical support. The insulation of the substrate is ceramic.
The spacer can conduct the current, transfer the heat dissipa-
tion, and guarantee electrical insulation distance. It consists
of copper-molybdenum-copper laminate and has an adjustable
coefficient of thermal expansion (CTE) that can be correlated
with dies and substrates.

This novel packaging structure consists of two parts: ISU and
CCS. The ISU features lower loop inductance and performs
a thermal decoupling effect. CCS is named from being func-
tionally similar to the current steering commutator in the direct
current machine. Its primary functions are to connect ISUs and
mitigate the current coupling effect that causes the unbalanced
current during switch transients.

B. Interleaved Switch Unit

The interleaved planar packaging method makes any two
adjacent parallel dies to interleave in spatial location. For better
interpretation, a definition called ISU is introduced.

The parallel SiC MOSFETs are divided into different indepen-
dent units. In this interleaved power module, SiC MOSFET M1,
M2, M3, and M4 are divided into ISU1, ISU2, ISU3, and ISU4,
respectively. These ISUs’ locations in the power module are
shown in Fig. 5.

In one structure, the drain current ID and source current IS con-
ducting direction are opposite [see Fig. 6(a)]. In consequence,
the parasitic inductances LD and LS are diminished by the mutual
inductance effect. The mutual inductance weakening effect also
exists in adjacent ISUs. Next, we only discuss this effect among
the ISUs on the low-side half bridge, and the analysis on high-
side switches is similar. When the current conducts through four
low-side ISUs, any two adjacent structure’s current direction is
opposite [see Fig. 7(a)]. For instance, the current conducting
direction ISU2 is opposite of ISU1 and ISU3. At the current
switching transients, the magnetic flux induced by the ISU2
current loop influences ISU1 current loop and ISU3 current loop.
Based on Faraday’s law, that of two current loops will induce
the electromotive force (EMF). Considering the opposite current
direction, the EMF can be represented by a negative lump voltage

source Uinduced written as

U induced
21 = −M21

diisu2

dt
and U induced

23 = −M23
diisu2

dt
(1)

where diISU2/dt is the current slew rate in ISU2 loop, M21

and M23 are the equivalent mutual inductances in ISU1 current
loop and ISU3 current loop individually, and the minus sign
represents the resistance to current change referring to Lenz’s
law. In consequence, any current loop is subject to mutual
inductance weakening effect. In the proposed power module, the
self-inductances of ISU2 are approximately 1.76325 nH. Under
the effect of internal and ISU1s mutual inductance, ISU2’s
parasitic inductance is reduced 0.75981 nH and equal to 1.00342
nH (about 56.9%). Thus, the parasitic loop inductances are
diminished.

Besides, not only does this structure has superiority in electri-
cal characteristics, but also in thermal performance. The inter-
leaved planar packaging method shrinks the equivalent thermal
coupling resistance ξij (the detailed definition of ξij can be found
in the Appendix) by increasing the distance between adjacent
dies in the z-direction (see Fig. 8). Thus, the heat transfer path of
thermal coupling is elongated. Benefited from ISU, the proposed
half-bridge power module has even and faint thermal coupling
effect. This packaging method wholly utilizes the superiority of
the 3-D packaging-structure flexibility to increase heat transfer
distance but not swell power module size.

Notably, ξij are almost dependent on size of dies, dies’
location, and equivalent convection heat transfer coefficient
(htc) between heatsink and cooling systems [27], [28]. In some
SiC special applications, such as high ambient temperature
and traditional cooling methods are not available or inefficient,
optimizing ξij is a relatively efficient approach.

C. CCS and the Current Decoupling Effect

To perform correctly electrical conduction pathway, the ISUs
need a structure to connect. Thus, the CCS is proposed, and it
features low common parasitic inductance to attenuate current
coupling effect among parallel SiC MOSFETs. Fig. 5 shows the
CCSs’ location in the half-bridge power module. The current
conduction path is shown in Fig. 9. We can easily find the
mutual inductance effect existing on the CCS. The equivalent
circuit with the parasitic inductance distribution (not include
terminations) is depicted in Fig. 10. For the sake of simplicity,
the parasitic inductance distribution in the low-side bridge is
shown in Figs. 11 and 12. The inductances L1–L7, L16–L19

stand for the CCS’s parasitic inductances in low-side bridge.
These parasitic inductances already include mutual inductances
from other branches. Parts of these inductances exist in two
or more paralleling commutation branches, such as L2 in the
branches of M1, M2, and M3. So, these inductances are called
common parasitic inductances. Also, not all common parasitic
inductances are strongly relevant to current sharing. Some induc-
tances simultaneously affect two or more parallel SiC MOSFETs
at the switching transients, thus named current coupling parasitic
inductances. For example, L3 causes the unbalanced current
between M1 and M2 at switching transients. Next, further
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Fig. 4. Internal view of the power module based on interleaved planar packaging method. (a) Internal view (the wire bonds and termination are omitted).
(b) Partial section view.

Fig. 5. Location of the ISU and CCS in the whole half-bridge power module
(the right of axis surface is low-side). For simplicity purpose, the part of top
substrate is not shown.

Fig. 6. ISU with SiC MOSFET die. (a) Single ISU diagram. (b) Profile of bare
die (the backside pad is drain). (c) Equivalent circuit of ISU.

Fig. 7. Mutual inductance weakening effect. (a) Effect among low-side ISUs.
(b) Equivalent circuit.

explanations about common inductances and current coupling
inductances are presented.

Due to CCS, parasitic inductances of the interleaved power
module are more convoluted than regular power module. In
the power module, the commutation loop parasitic inductances

Fig. 8. Illustration of heat transfer pathway among four paralleling SiC MOS-
FETs in a certain htc. (a) Proposed structure. (b) Convectional structure.

Fig. 9. Structure and current conduction path of low-side bridge CCS (solid
line represents the current through top substrate while dotted line represents the
current through bottom substrate; red line represents the drain current while blue
line represents the source current).

usually include the drain/source inductances, which only locate
in the power loop, and the common source inductances, which
coexist in the power loop and gate loop. Because of Kelvin con-
nection in the proposed module, the common source inductances
are very small and can be ignored. So, there are two kinds of
loop inductances. One is the peculiar inductance, such as L5

and L9, which only affect the M1. And peculiar inductances
exist in ISU and CCS. Others are common parasitic inductances
that concurrently affect two or more parallel MOSFETs. These
common inductances exist in the CCS. The distribution is shown
in Fig. 11, and the equivalent circuit is shown in Fig. 10. Table I
gives L1–L19 inductance values extracted by ANSYS Q3D at
100 MHz solution frequency.
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Fig. 10. Circuit of parasitic inductance distribution in the half-bridge power
module (the inductances in shadow area represents the IPU’s parasitic induc-
tances, others are CCS’s parasitic inductances).

Fig. 11. Diagram of parasitic inductance distribution in power module of low
side bridge.

TABLE I
SIMULATION RESULTS OF PARASITIC INDUCTANCES

The unbalanced current between low sides bridge is expressed
as (B3) in the Appendix. There are two factors to inducing unbal-
anced current: peculiar inductances and common inductances.
For example, the unbalanced current between the iM1 and iM2

is correlative to the peculiar inductances, which are the L5, L9,
L13, L16 in M1 branch, the L4, L8, L12 in M2 branch, and the
common inductances L3. It is noted that L3 exists in the M2 and

Fig. 12. Diagram of parasitic inductance distribution with the current conduc-
tion path. (a) M1. (b) M2. (c) M3. (d) M4.

Fig. 13. Kelvin connection and the elimination of mutual inductance (the
backside of bare die is drain electrode pad; the gate loop is represented by blue
solid line and the power loop current is indicated by red symbols).

M3 current branches but causes an unbalanced current between
the M1 and M2 branches. The reason is that L3 couples the
diM3/dt to M2 branch but not M1 branch. In the first equation
of (B3), the term “L3·d(iM1+iM3)/dt” demonstrates the current
coupling effect. By the way, L2 is the common inductance
between the M1 and M2 current branches and does not bring
an unbalanced current. It is better to name L3 as the coupling
parasitic inductance between the M1 and M2 current branches.
The sum of peculiar inductances in the M1 or M2 branch is small
due to the mutual inductance eliminating effect and has far little
influence on current sharing performance [29]. Thus, the sum
of peculiar inductances in each parallel branch can be replaced
by L′

D, and (B3) is rewritten as (2), shown at the bottom of next
page.

In the (2), d(iM1 − iM2)/dt, d(iM2 − iM3)/dt,
d(iM3 − iM4)/dt and d(iM1 − iM4)/dt are the difference
slope between the two current branches and features much
smaller values than the branch current slope. So, these different
slopes can be neglected compared with the branch current
slope. It is then apparent that the rest terms are all relative to
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Fig. 14. Half-bridge power module fabrication progress.

the coupling inductances, such as L2, L3, and L18, which cause
unbalanced current between the M3 and M4 current branches.
It means that the coupling inductances are the main factors of
unbalanced current.

It can be summarized about current coupling effect. The loop
parasitic inductances, including common source inductances
and drain/source inductances, are the primary medium of current
coupling. The common source inductances have an immense
influence on unbalanced current, and many researchers have
studied it. Not all the drain/source parasitic inductances have a
considerable effect on unbalanced current. They can be divided
into three types determined by different current coupling effects.

1) Peculiar inductance, which only exists on the single paral-
lel branch, has little influence on unbalanced current. The
current coupling effect does not perform through peculiar
inductances.

2) Common inductance existing in the two current branches
does not influence the unbalanced current, referring to two
concerned current branches. There is no current coupling
effect.

3) Common inductance exists on one of the two current
branches while also exists on other current branches. It
couples the current change of other current branches to the
two concerned branches and causes unbalanced current.
So, it is called the coupling inductance. The bigger cou-
pling inductance is, the more severe unbalanced current
occurs.

Benefited from CCS, the half-bridge power module has little
coupling inductance and more balanced current.

D. Optimization for Gate Loop

Two optimization methods—the Kelvin connection and the
specific layout—are introduced to eliminate the adverse parasitic
inductances. Kelvin connection is adopted to eliminate negative
feedback in gate loop. As illustrated in Fig. 13, the power loop
and the gate loop have a common terminal “source electrode
pad”. It means that the power loop and gate loop are separated
at the source electrode pad with a large conductive area. The
common source inductance can be considered as being almost
eliminated, and the two loops are decoupled. Furthermore, wire
bonds are utilized to connect the gate loop from bare dies to

substrate. Thus, the gate loop mainly conducts on the XY plane
while the power loop conducts the XZ plane. The magnetic flux
induced by power loop barely penetrates the surface enclosed
of gate loop. So, the gate loop mutual inductance induced by
power loop is nearly equal to zero (less than 0.012 nH simulated
by ANSYS Q3D).

III. FABRICATING PROGRESS OF INTERLEAVED PLANAR

PACKAGING METHOD

A 1200 V 3.25 mΩ half-bridge power module is fabricated
in the laboratory. The main fabricating progress is shown in
Fig. 14 and Table II presents the details about main components
and materials.

The details of the fabrication process are follows.
1) Step1: SiC MOSFET bare dies are attached to the active

metal bonding (AMB) substrate using Au80Sn20 solder.
The Au80Sn20 eutectic solder has high thermal conduc-
tivity, good creep resistance, high liquidus point, and well
wettability. Silicon nitride ceramic features high bend-
ing strength and better thermal conductivity to perform
better in harsh environments. The attaching progress is
conducted in the vacuum oven to prevent oxidation with
a peak temperature up to 380 °C and held for 1 h to get a
high melting point.

2) Step 2: as shown in Fig. 14, five-mile thin wire bonds
connect the source and gate of dies to AMB bare copper
for gate loop. As mentioned above, the gate loop made
up of wire bonds forms the Kelvin connection and is not
influenced by the power loop.

3) Step 3: with the help of a graphite boat to fix the posi-
tion, the spacer, top, and bottom substrate are soldered
together using Au-Sn solder in the vacuum oven with
a peak temperature of up to 430 °C. The encapsulating
silicon gel is not used for thermal and current experimental
measurement.

IV. SIMULATION AND EXPERIMENTAL RESULTS

A. Thermal Performance Under Low htc

The thermal performance utilizing the interleaved planar
packaging method is validated by extracting the thermal cou-
pling matrix (TCM). First, the feasibility of fabricating progress
is validated. Besides, considering the proposed structure, the
thermal infrared radiation camera cannot measure SiC MOSFET

dies’ temperature. So, the fiber optic temperature sensor is
used to acquired bare dies’ thermal data. Fig. 15 shows the
TCM measurement platform, and Table III introduces the details
of experimental equipment. Other details on measurement are
shown in Figs. 16 and 17.

To get each parallel dies’ self-heating and thermal coupling
resistances, we adapt the approach presented in the Appendix.
In detail, one die is only applied to a series of power dissi-
pations. The temperature rise, which is caused by self-heating
and coupling power dissipation, can be gained from the fiber
optic temperature sensor. Fig. 18 shows the experiment thermal
response curve. In this experiment, SiC MOSFETs operate in the

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on March 21,2023 at 12:51:25 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: INTERLEAVED PLANAR PACKAGING METHOD OF MULTICHIP SiC POWER MODULE 1621

TABLE II
COMPONENTS AND MATERIALS IN THE PROPOSED POWER MODULE

Fig. 15. Diagram of TCM measurement platform.

TABLE III
DETAILS OF EXPERIMENTAL EQUIPMENT

Fig. 16. Experimental fixture. (a) Power module with gate driver connector.
(b) Details of gate driver connector.

Fig. 17. Diagram of thermal measurement.

Fig. 18. Diagram of experimental thermal response curves under a series of
power dissipation on M1. (a) M1 thermal response curve and (b) is M2.

ohmic region to get a certain power dissipation. Then, a series of
P-ΔT curves can be got in the terminal application. According
to (A5), the slew rate k of these curves represents self-heating
or coupling thermal resistances. In Fig. 33, a series of power
dissipation from 0.5 to 3 W stepping 0.5 W is applied on the
die M1, and the static temperature can be obtained from the
thermal response curve. Thus, the proposal’s TCM under low
htc can be gotten as (C1). Even thermal resistance distribution
in (C1) demonstrates that the power module does not have fatal
defects like pseudosoldering, cold soldering, and unacceptable
void rate [30], [31]. The fabricating progress of the interleaved
planar packaging method is reasonable and feasible.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

iM2 − iM1 =
[
L′

D
d(iM1−iM2)

dt + L3
d(iM1+iM3)

dt

]
/Ron

iM3 − iM2 =
[
L′

D
d(iM2−iM3)

dt − L3
d(iM1+iM3)

dt + L17
d(iM1+iM2)

dt

]
/Ron

iM4 − iM3 =
[
L′

D
d(iM3−iM4)

dt + (L2 + L18)
d(iM1+iM2+iM3)

dt + L3
d(iM1+iM3)

dt

]
/Ron

iM4 − iM1 =
[
L′

D
d(iM1−iM4)

dt + (L2 + L18)
d(iM1+iM2+iM3)

dt + L17
d(iM1+iM2)

dt + L3
d(iM1+iM3)

dt

]
/Ron

(2)
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Fig. 19. Diagram of two simulation power module (Kelvin gate/source ter-
mination is not shown). (a) Interleaved planar power module. (b) Convectional
side-by-side power module.

Fig. 20. Planar power module with pin-fin heatsinks.

Fig. 21. Temperature distribution between (a) conventional and (b) interleaved
power module. This view is the vertical section of whole power module with
heatsinks.

Fig. 22. Temperature distribution between the conventional and interleaved
power module.

Fig. 23. Comparison of equivalent thermal coupling resistances.

Fig. 24. Temperature deviation in the conventional and interleaved power
module versus different htc.

Fig. 25. Photograph of the double pulse test setup.

B. Thermal Performance Under High htc

To illustrate the thermal performance under high htc, we
conduct several simulations via ANSYS ICEPAK. There are
two reasons as follows.

1) Unlike the wire-bonding power module, the dies’ temper-
ature must be measured by the contact-type probe without
module capsulation. It is not sensible to conduct long-term
thermal experiments for safety consideration;

2) Several obvious and uncontrollable factors exist in power
module, such as solder layer defects, the characteristic
consistency of devices, substrate, and spacer. Laboratory
fabrication cannot avoid these problems well. The ex-
perimental result may not indicate thermal performance
correctly.

The schematic diagram of simulating power module is shown
in Fig. 19. A conventional layout that features side-by-side dies,
like the structures in [13], [14], and [16], is also researched.
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Fig. 26. Photograph of the double pulse test fixture.

Fig. 27. Details of DPT fixture. (a) Gate driver board. (b) Decoupling capac-
itors. (c) Power module with gate driver connector.

Fig. 28. Diagram of current measurement for current sharing.

Fig. 29. Turn-ON switching waveforms.

Fig. 30. Turn-OFF switching waveforms.

Fig. 31. Turn-ON switching waveforms among the low-side paralleling SiC
MOSFETs.

Fig. 32. Turn-OFF switching waveforms among the low-side paralleling SiC
MOSFETs.

Because of the symmetrical layout, the low-side bridge’s thermal
distribution is the same as the high-side bridge [32]. So, the low-
side bridge is studied. Fig. 20 shows the whole finite-element
method (FEM) module, including the power module and pin-fin
heatsink. The FEM module is simulated with water coolant
entering the inlet at 22 °C at 12 L/min flow rate under total
3000 W power dissipations. The results are shown in Figs. 21 and
22. The conventional power module’s maximum temperature is
155.82 °C while 135.17 °C in the interleaved power module.
Fig. 22 shows the temperature mismatch that the maximum
temperature deviation in the conventional module is 12.34 °C
while 3.40 °C in the interleaved module (the reason for abnormal
temperature distribution including M4 and M5 is that the area
between that of two dies is slightly bigger than paralleling dies in
order to solder AC terminal), and it is evident that the interleaved
module has better even temperature distribution. The result
demonstrates that the interleaved structure effectively reduces
the thermal resistance and the uneven thermal coupling effect.

Furthermore, the TCM under high htc is conducted to further
illustrate the thermal performance. A series of power dissipa-
tions from 50 to 250 W are applied on the parallel SiC MOSFET

dies in low-side half bridge. The boundary is forced convection
with water coolant entering the inlet at 22 °C at 4 L/min flow
rate. Figs. 34 and 35 show the simulation temperature rises
versus a series of power dissipations in the convectional and
interleaved power module, respectively. Equation (C2) and (C3)
in the Appendix are the TCMs of conventional and interleaved
power modules, respectively. From these two TCMs, it can be
concluded that the equivalent thermal coupling resistance of
adjacent die decreases by approximately 57%. As shown in
Fig. 23, the equivalent thermal coupling resistances decrease a
lot. The different temperature rises between two power modules
is mainly caused by the different degree of thermal coupling,
and the inconsistency of thermal coupling effect causes the un-
even temperature in one power module. The interleaved module
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Fig. 33. Experimental temperature rises with a series of power dissipation P in the proposed power module. (a) P is applied on the die M1. (b) P is applied on
the die M2. (c) P is applied on the die M3. (d) P is applied on the die M4.

Fig. 34. Simulation temperature rises with a series of power dissipations P in the proposed power module. (a) P is applied on die M1. (b) P is applied on die M2.
(c) P is applied on die M3. (d) P is applied on die M4.

Fig. 35. Simulation temperature rises with a series of power dissipations P in the conventional power module. (a) P is applied on die M1. (b) P is applied on die
M2. (c) P is applied on die M3. (d) P is applied on die M4.
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characterizes smaller and more even thermal coupling effect.
Given the influence of different coolant temperatures between
inlet and outlet which causes uneven thermal distribution, the
interleaved module still has better thermal performance. So,
it has better robustness in thermal performance of balancing
temperature distribution.

Furthermore, a simulation referring to temperature deviation
and htc is conducted. A group of htc under total 2000 W power
dissipations is applied to the conventional and proposed module.
The results are shown in Fig. 24. The interleaved module features
a more balanced temperature distribution in the whole htc range
(100–10000 W/m2·K). Therefore, the thermal performance of
the proposal is superior to the convention cooling under low htc.
The even temperature distribution, which is mainly determined
by thermal coupling effect, is essential to the module lifetime.
Ferreira et al. [34] has verified that mitigating the temperature
mismatch can prolong the B10 lifetime of the most thermal
stressed die and the whole module.

C. Electrical Performance

In this section, the fabricated half-bridge power module is
tested by double pulse test (DPT) at room temperature. The
experimental equipment and DPT fixture are shown in Figs. 25
and 26, respectively. Fig. 27 shows the details of DPT fixture.
The current probe inserts into inside of module (see Fig. 28)
and measures the spacer current. Because the measurement
current is the sum of two or three or four spacers’ current, the
gained current data need to be calculated. To improve the voltage
insulation class, we immerse the power module in insulated oil.
Consequently, the fabricated module is tested under 400 V/150 A
for safety consideration. The low-side switches are tested while
high-side switches keep turn-OFF. The signals offered by signal
generator are applied on driver board, which offers a +15/0 V
gate pulse with the gate on and off resistances of 5Ω.

The results are shown as Figs. 29-32. Figs. 29 and 30 show
the switching waveforms of the low-side total switching charac-
teristics. The overshoot voltage is about 33 V (8% of the 400–V
voltage). The ring frequency of the VDS is about 69.04 MHz.
According to the datasheet, the MOSFETs parasitic capacitance
is about 1.4 nF at 400 V with four parallel SiC MOSFETs. The
loop parasitic inductance can be calculated by

L =
1

4π2f2Coss
= 3.8 nH . (21)

The simulation result is 3.14 nH (by ANSYS Q3D). Noted
that there are two reasons for the deviation between simulation
and experiment. One is the parasitic capacitance of four parallel
SiC MOSFETs is an estimated value. The other reason is the
parasitic capacitances between the MOSFET’s electrode and
cooper layer of the substrate.

Figs. 31 and 32 shows the current sharing performance among
the low-side parallel SiC MOSFETs. The maximum unbalanced
current is 2.5 A (about 6% of the steady-state current). The re-
sults show that the interleaved module features excellent current
sharing.

D. Discussion

For thermal improvement, the interleaved planar packaging
method has two advantages in thermal performance: low tem-
perature rise and balanced thermal distribution. Benefited from
the ISU, the coincidence of heat transfer path between adjacent
dies is reduced (as shown in Fig. 8). After that, the temperature
rise is smaller than the conventional module. As the lower ξij in
the proposal under high htc, the thermal coupling effect is weak
compared to the whole heat transfer process. The temperature
mismatch is degraded. Traditional cooling methods are not avail-
able or inefficient at high ambient temperature, such as water
liquid cooling and air cooling. The up-to-date method which
can work at high temperature is expensive and complicated [35],
[36]. It is hard to enhance the module thermal performance by
improving the htc. Utilizing the interleaved packaging method is
an effective way to improve cooling capability. It is significant to
further make full use of SiC devices at high ambient temperature.

For electrical improvement, there are two mutual inductance
weakening effects: in the inner ISUs and among ISUs. Benefited
from two weakening effects, the proposal features low loop par-
asitic inductances and low common coupling inductances. The
CCS guarantees the correct electrical connection and features
low common coupling inductance, which performs current cou-
pling effect. As demonstrated in the experiment, the power mod-
ule has excellent switching performance and current sharing.

V. CONCLUSION

This article proposes a novel packaging method called
interleaved planar packaging. Utilizing this method, a
1200 V/3.25 mΩ half-bridge power module prototype is fabri-
cated. For thermal performance, the thermal coupling resistance
of adjacent dies is reduced by 57%, and the module gets excel-
lent even thermal distributions. For electrical performance, this
power module features low loop inductance which is 3.8 nH.
The low parasitic inductance evidently reduces the turn-OFF

voltage overshoot. The maximum unbalanced current is about
six percent of the steady-state current. The quite low rate ensures
the thermal and electrical balance in the power module.

The proposed packaging method is not only confined to the
power module presented in this article. Based on the concept of
ISU, the power module can possess better electrical and thermal
performance with the CCS guaranteeing the proper electrical
connection. It gets rid of the optimizing contradiction between
electrical and thermal performance. Compared to conventional
planar power module, this packaging method can parallel more
SiC MOSFETs with better current sharing and cooling capability.
In a harsh environment, such as high ambient temperature or
no active cooling system, the interleaved planar module also
features excellent thermal performance.

APPENDIX

A. Definition of Equivalent Thermal Coupling Resistance

The temperature rise of the ith bare die due to the jth bare die’s
thermal coupling is defined asΔTcoupl_ij, and the coupling heat
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transfer rate is Pcoupl_ij . So, the thermal coupling resistance can
be written as

Rcoupl_ij =
ΔTcoupl_ij

Pcoupl_ij
, (i �= j). (A1)

Then, we use the symbol βij for representing the propor-
tion of Pcoupl_ij to jth bare die’s total power dissipation Pj.
Equation (A1) can be modified as

Rcoupl_ij =
ΔTcoupl_ij
Pcoupl_ij

Pj Pj

=
ΔTcoupl_ij

βijPj
. (A2)

According to (A2), the ith bare die’s thermal coupling tem-
perature rise affected by the Pj can be obtained as

ΔTcoupl_ij = Rcoupl_ij · (βijPj). (A3)

Furthermore, we can define the equivalent thermal coupling
resistance ξij as follows:

ξij = Rcoupl_ijβij (A4)

or

ξij =
ΔTcoupl_ij

Pj
. (A5)

The TCM, which exposes the level of thermal coupling effect,
can be written as (A6) shown at the bottom of this page, where

ΔTj is the temperature rise of jth bare dies, Rii is the self-heating
resistance. Equation (A6) also can be simplified as

ΔTi = RiiPi +

j∑
j=1,i�=j

ξijPj , (i, j = 1, 2, 3, · · · , n) . (A7)

Equation (A5) provides an approach to calculating ξij. We
can apply Pj on the jth bare die and measure the ith bare
die’s temperature rise. In the meanwhile, (A4) reveals which
parameters domain the thermal coupling effect. Notably, ξij is
not affected by Pj but Rcoupl_ij and βij.

B. Analysis of the Unbalanced Current

According to the Kirchhoff laws, the voltage drop of each par-
allel branches loop parasitic inductances including the common
inductances can be expressed as (B1)–(B2) shown at the bottom
of this page [35], where the UDC is the dc-bus voltage, the Uh

is the voltage drop between the DC+ and ac terminals, UM is
the voltage drop between the drain and source of the low-side
half-bridge SiC MOSFETs. We can assume that the resistances of
parallel SiC MOSFETs Ron are equal at the same moment. Thus,
the unbalanced current between low-side bridges is expressed
as (B3) shown at the bottom of this page.

⎡
⎢⎢⎢⎢⎣

ΔT1

ΔT2

· · ·
ΔTi−1

ΔTi

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

R11 ξ12 · · · ξ1,j−1 ξ1,j
ξ21 R22 · · · ξ2,j−1 ξ2,j

...
...

. . .
...

...
ξi−1,1 ξi−1,2 · · · Ri−1,j−1 ξi−1,j

ξi,1 ξi,2 · · · ξi,j−1 Ri,j

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

P1

P2

...
Pi−1

Pi

⎤
⎥⎥⎥⎥⎥⎦

(A6)

⎡
⎢⎢⎣
UDC − Uh − UM1

UDC − Uh − UM2

UDC − Uh − UM3

UDC − Uh − UM4

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

L11 L1 + L2 + L17 + L18 + L19 L1 + L2 + L3 + L18 + L19 L1 + L19

L1 + L2 + L17 + L18 + L19 L22 L1 + L2 + L18 + L19 L1 + L19

L1 + L2 + L3 + L18 + L19 L1 + L2 + L18 + L19 L33 L1 + L19

L1 + L19 L1 + L19 L1 + L19 L44

⎤
⎥⎥⎦

⎡
⎢⎢⎣
diM1/dt
diM2/dt
diM3/dt
diM4/dt

⎤
⎥⎥⎦

(B1)
⎧⎪⎪⎨
⎪⎪⎩

L11 = L1 + L2 + L3 + L5 + L9 + L13 + L16 + L17 + L18 + L19

L22 = L1 + L2 + L4 + L8 + L12 + L17 + L18 + L19

L33 = L1 + L2 + L3 + L6 + L10 + L14 + L18 + L19

L44 = L1 + L7 + L11 + L15 + L19

(B2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iM2 − iM1=
[
(L5 + L9 + L13 + L16)

diM1

dt − (L4 + L8 + L12)
diM2

dt + L3
d(iM1+iM3)

dt

]
/Ron

iM3 − iM2=
[
(L4 + L8 + L12)

diM2

dt − (L6+L10+L14)
diM3

dt − L3
d(iM1+iM3)

dt + L17
d(iM1+iM2)

dt

]
/Ron

iM4 − iM3=
[
(L6+L10+L14)

diM3

dt −(L7+L11+L15)
diM4

dt +(L2+L18)
d(iM1+iM2+iM3)

dt +L3
d(iM1+iM3)

dt

]
/Ron

iM4 − iM1=
[
(L5 + L9 + L13 + L16)

diM1

dt −(L7+L11+L15)
diM4

dt +(L2+L18)
d(iM1+iM2+iM3)

dt +L17
d(iM1+iM2)

dt

+L3
d(iM1+iM3)

dt

]
/Ron

. (B3)
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

29.54 28.49 28.45 28.22 27.97 27.82 27.71 27.63

28.75 29.27 28.57 28.33 28.05 27.90 27.79 27.71

28.49 28.57 29.12 28.45 28.19 28.02 27.90 27.82

28.19 28.33 28.45 29.05 28.43 28.23 28.22 27.97

27.97 28.22 28.23 28.43 29.05 28.45 28.33 28.19

27.82 27.90 28.02 28.19 28.45 29.12 28.57 28.49

27.71 27.79 27.90 28.05 28.33 28.57 29.27 28.75

27.63 27.71 27.82 27.97 28.22 28.45 28.49 29.54

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2317 0.0234 0.0156 0.0037 0.0017 0.0005 0.0003 0.0001

0.0243 0.2319 0.0231 0.0162 0.0026 0.0018 0.0005 0.0004

0.0184 0.0242 0.2307 0.0233 0.0108 0.0026 0.0017 0.0006

0.0055 0.0189 0.0242 0.2367 0.0153 0.0113 0.0026 0.0002

0.0002 0.0026 0.0113 0.0153 0.2367 0.0242 0.0189 0.0055

0.0006 0.0017 0.0026 0.0108 0.0233 0.2307 0.0242 0.0184

0.0004 0.0005 0.0018 0.0026 0.0162 0.0231 0.2319 0.0243

0.0001 0.0003 0.0005 0.0017 0.0037 0.0156 0.0234 0.2371

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2395 0.0546 0.0169 0.0063 0.0018 0.0008 0.0004 0.0002

0.0568 0.2326 0.0530 0.0166 0.0043 0.0018 0.0008 0.0004

0.0200 0.0547 0.2318 0.0535 0.0112 0.0045 0.0019 0.0009

0.0096 0.0193 0.0553 0.2373 0.0331 0.0116 0.0045 0.0021

0.0021 0.0045 0.0116 0.0331 0.2373 0.0553 0.0193 0.0096

0.0009 0.0019 0.0045 0.0112 0.0535 0.2318 0.0547 0.0200

0.0004 0.0008 0.0018 0.0043 0.1166 0.0530 0.2326 0.0568

0.0002 0.0004 0.0008 0.0018 0.0063 0.0169 0.0546 0.2395

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C3)

C. Simulation and Experiment Results

(C1)–(C3) shown at the top of this page.
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