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ABSTRACT
To mitigate impacts of climate-related reduced productivity of
French grasslands, a new insurance scheme bases indemnity
payouts to farmers on a Moderate Resolution Imaging
Spectroradiometer (MODIS)-derived forage production index
(FPI). The objective of this study is to compare several
approaches for deriving FPI from satellite data to assess
whether better relationships with forage productivity can be
attained. The approaches assess pasture productivity using as
five input factors estimated from remote sensing and ancillary
data, i.e.: (1) fraction of absorbed photosynthetically active
radiation (fAPAR); (2) radiation use efficiency estimates; (3) PAR
estimates; (4) leaf senescence modelling; and (5) growing sea-
son modelling . All the possible combinations from these five
factors, including different modalities to estimate some of them,
lead to 768 models. Model outputs are compared to reference
grassland production estimates provided by a mechanistic
model (Information et Suivi Objectif des Prairies – ISOP – sys-
tem) for a sample of 25 forage regions across France for the
years 2003, 2007, 2009, 2011, and 2012 (containing one humid,
two normal, and two dry years). Results revealed that: (1) the
baseline model based on the fraction of green vegetation cover
(fCover) seasonal integral has a reasonable linear relationship to
production estimates (standardized root mean square error –
SRMSE = 0.57 and coefficient of determination – R2 = 0.68); (2)
performance of the baseline model improved with a quadratic
function (SRMSE = 0.54 and R2 = 0.71); (3) 34 models outper-
form the baseline model. We, therefore, suggest to replace the
baseline model with the best-performing model (SRMSE = 0.42
and R2 = 0.83) in the insurance product. This model integrates
daily fCover with a water stress index and sums these over a
variable monitoring period in space and time characterized by
the phenological indicators start of season and end of season
derived from the fCover annual profile.
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1. Introduction

Grasslands are a key resource for livestock production. Animal breeders adjust the size of
their flocks and manage them based on an expected production potential. However,
drought can cause significant declines in grassland production (Boyer 2008; Mosnier,
Fourdin et al. 2014). Such events may force producers to look for alternative feed
sources on the market in order to face the constant demand by livestock and to prevent
economic losses or animal illnesses/deaths (Lemaire, Micol et al. 2006; Veysset, Bebin,
and Lherm 2007; Mosnier, Agabriel et al. 2008). Among existing solutions to limit the
impact of a loss in biomass production, insurance is interesting because it provides the
insured with an opportunity to buy additional animal feed and withstand the temporary
crisis (Noury, Fourdin, and Pauthenet 2013). However, traditional insurance policies
based on farm-based assessment of losses are impractical due to the difficulty of
estimating annual grassland production for insured individuals given that mowing and
grazing are common practices during the year (de Leeuw, Vrieling et al. 2014). It is a
challenge to propose a marketable forage insurance product that effectively accounts
for the annual variability in production and that can reach scale. Unlike traditional
insurance schemes that assess losses on an individual basis, index-based insurance
(IBI) offers payouts based on a biophysical index which triggers a payment to all insured
farmers within a geographically-defined space (Ceccato, Brown et al. 2008; Hazell and
Hess 2010). Remotely-sensed time series provided by medium resolution sensors have
the potential to monitor vegetation over large areas at a spatial resolution (approxi-
mately 250 m) matching the scale of grassland fields and with good acquisition fre-
quencies (Lu 2006; Cai, Yuan et al. 2014; Jin, Yang et al. 2014). The main challenge for IBI
is to minimize the basis risk, i.e. the situation where farmers do not get paid during
production shortfalls, or get paid when not facing losses. This requires that the index
correlates well with real losses experienced by the insured (Hellmuth, Osgood et al.
2009; Sandmark, Debar, and Tatin-Jaleran 2013). Grassland productivity estimates are
currently derived from

(1) mechanistic approaches, i.e. models that describe the physiological mechanisms
of grassland and their interaction with abiotic factors;

(2) semi-empirical approaches that simulate physiological processes with simpler
equations than mechanistic models and with a limited number of data and
mechanisms (Potter, Randerson et al. 1993; Field, Randerson, and Malmström
1995; Veroustraete, Sabbe, and Eerens 2002; Seaquist, Olsson, and Ardö 2003;
Maselli, Argenti et al. 2013; Rembold, Atzberger et al. 2013; Gilabert, Moreno et al.
2015);

(3) empirical approaches (Delécolle, Maas et al. 1992) that use simple models based
only on field measurements (Jouven, Carrère, and Baumont 2006) or remote-
sensing indices (Meroni, Marinho et al. 2013).

Mechanistic approaches are normally applied to small areas with homogeneous condi-
tions, but can be aggregated to generate productivity estimates at larger scales (Di Bella,
Faivre et al. 2004; Courault, Hadria et al. 2010). Nonetheless, due to their high data
demand, mechanistic approaches are cumbersome to implement at a national scale with
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complex spatial heterogeneity. Empirical approaches using models based on field
measurement of grassland productivity are also difficult to implement because they
are expensive, time-consuming and labour intensive (Maselli, Papale et al. 2009). In light
of these weaknesses, remote-sensing technology can fill a gap by contributing to
effective biomass estimation over larger regions (Gaitán, Bran et al. 2013; Gao, Xu
et al. 2013). Many remote-sensing approaches are based on a simple empirical relation-
ship between a remote-sensing index and biomass production, require significantly less
data as compared to mechanistic models, and are effective for monitoring large produc-
tion areas (Running, Nemani et al. 2004; Xu, Yang et al. 2007; Jin, Yang et al. 2014;
Meroni, Rembold et al. 2014, Meroni, Verstraete et al. 2014; Dusseux, Hubert-Moy et al.
2015) . However, given their empirical nature, these remote-sensing approaches need to
be calibrated for local conditions (Meroni, Marinho et al. 2013).

To address the limitations of mechanistic or empirical approaches, production effi-
ciency models (PEMs) have emerged (for a detailed review, see McCallum, Wagner et al.
2009). Also referred to as light use efficiency (LUE) models, they rely on the relationship
between the meteorological constraint of available sunlight reaching the vegetation and
the ecological constraint of the amount of leaf area available to absorb that solar energy
(Running, Baldochhi et al. 1999). PEMs require as input data on environmental variables,
including solar radiation, air temperature, water availability, and vegetation conditions.
The basic consideration underlying these models is that the estimation of grassland
biomass production over large areas (e.g. nation scale) can reach better precision by
suitably integrating multiple sources of remote sensing and ancillary data (Seaquist,
Olsson, and Ardö 2003; Launay and Guerif 2005; Maselli, Papale et al. 2009).

Presently, the predominant method to develop index-based insurance for grasslands
is to use an empirical approach with a vegetation index derived from satellite data to
estimate biomass production. We present some examples of operational products in
Table 1.

Among the eight products, six use vegetation indices and, for five, it is the normalized
difference vegetation index (NDVI) (Rouse, Hass et al. 1974). The reasons for using NDVI
likely include data accessibility, the spatial, and temporal resolutions offered by coarse
and moderate instruments, and the stronger relationship between NDVI and biomass
production (Huete, Didan et al. 2002; Wang, Adiku et al. 2005) as compared to what is
typically observed between rainfall indices and biomass (Barnett and Mahul 2007; Hazell
and Hess 2010; Rao 2010; Sandmark, Debar, and Tatin-Jaleran 2013).

In France, since the beginning of the 2000s, grassland damage from drought events is
estimated regionally with a mechanistic approach (Ruget, Novak, and Granger 2006). In
2015, Crédit Agricole Assurances Pacifica (Pacifica), associated with Airbus Defence & Space
(Airbus D&S), proposed an index-based insurance solution to assess local grassland produc-
tion losses (Geeraert 2012; Crédit Agricole 2013; Bergeot 2015). They developed an indicator
called the forage production index (FPI) that empirically estimates and monitors in near real-
time grassland biomass production in France. Rather than NDVI, the indicator uses the
fraction of green vegetation cover (fCover), which behaves similar as the common remote-
sensing parameter fraction of absorbed photosynthetically active radiation (fAPAR) (Baret,
Weiss et al. 2005). Derived from radiative transfer models, fCover is a biophysical parameter
that can overcome limitations of empirical vegetation indices such as the NDVI: dependency
on data processing level (raw, calibrated, reflectance) and sensors sources; saturation effect;
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sensitivity to cloud veils, soil colour, and presence of non-photosynthetic vegetation (Asner,
Wessman, and Archer 1998; Running, Nemani et al. 2004; Camacho and Torralba 2010;
Camacho and Cernicharo 2011). In a previous study (Roumiguié, Jacquin, Sigel, Poilve,
Hagolle, et al. 2015), a direct comparison between in situ grassland biomass measurements
and FPI derived from fCover measured with high resolution (HR) time series was conducted.
Recently, a complementary validation study was conducted with a bottom–up approach
(combining field, high, and medium spatial resolution scales) for validating the use of an
annual FPI as a surrogate for inter-annual biomass variation at a 1 km resolution (Roumiguié,
Jacquin, Sigel, Poilve, Lepoivre, et al. 2015). Results showed that FPI could be used as a proxy
to monitor annual biomass production of grasslands and its variations with a satisfactory
level of error (root mean square error – RMSE = 14.5 %). However, this level also indicates
that there may be scope for improvement.

The objective of this article is to evaluate if semi-empirical approaches based on PEM
can provide more accurate grassland biomass estimates than the fCover-based FPI
currently used in the French insurance product. This analysis should result in promising
avenues for further improvement of the forage production index.

2. Models to assess forage production

2.1. Baseline model

The empirical baseline model was described by Roumiguié, Jacquin, Sigel, Poilve,
Hagolle, et al. (2015) and can be written in the following form:

FPIn ¼
XEOS
i¼SOS

ðfCover GrasslandÞi � NPVð Þi; (1)

where SOS and EOS are start of season and end of season. For the baseline model, these
are fixed at, respectively, 1 February and 31 October. For any year n, the model sums the
daily grassland fCover between 1 February and 31 October (fCover Grasslandi) while
simultaneously subtracting the proportion of non-productive vegetation (NPV). This para-
meter represents the biomass that could not be harvested. It is an empirical value, fixed in
time and variable across space, based on statistical grassland biomass production data
provided by the French Ministry of Agriculture at the administrative department scale.

2.2. New models

2.2.1. Theoretical basis
The new models are based on the PEM (Monteith and Moss 1977), which estimates daily
gross primary productivity (Pi) as follows:

Pi ¼ RUEð Þi � PARð Þi � fAPARð Þi; (2)

where RUEi is the daily radiation use efficiency, fAPAR i is the daily fraction of photo-
synthetic active radiation and PARi is the daily photosynthetic active radiation.

Annual biomass production (Bn), integrating the leaf senescence function Di, and the
growing season characteristics, is computed in Equation (3).
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Bn ¼
XM
m¼1

XEOSð Þm

i¼ðSOSÞm
Pm;i � Dm;i

0
@

1
A; (3)

where m is the number of phenological cycles within the year, Di is the function that
simulates leaf senescence during vegetative growth based on leaf life span (l), SOS and
EOS are the two phenological indicators used to determine SOS and EOS.

2.2.2. Factor description
fAPAR i describes the fraction of the total received photosynthetically active radiation
that is absorbed by the vegetation. It can be directly estimated from optical remote-
sensing data through radiative transfer models or through empirical relationships with
vegetation indices. In our study, we considered two biophysical parameters: fCover is
the one currently used to calculate FPI and fAPAR is the traditional parameter prescribed
to implement PEM (Monteith and Moss 1977; McCallum, Wagner et al. 2009); and one
vegetation index, i.e. the NDVI.

The grassland RUEi is defined as the ratio between the above-ground dry matter and
the absorbed radiation following defoliation (Duru, Adam et al. 2009). In our study, RUEi
is modelled by the following equation:

RUEi ¼ Ti � Si � Gi �Wi; (4)

where Ti, Si, Gi, and Wi are efficiency-reducing factor for temperature, season, phenology,
and water stress, respectively. The effect of nutrient availability is not estimated, as
recommended by Duru, Adam et al. (2009) and Cros, Duru et al. (2003), due to lack of
data. Season and phenology effect corresponds to the modification of assimilates
allocation between aerial biomass and root during vegetative growth. The first three
factors can be modelled (Cai, Yuan et al. 2014):

Ti ¼ 0:037þ 0:09� ti � 0:0022� t2i ; (5)

where ti is the daily mean temperature in °C;

Si ¼ �0:6j
180

þ 2:5þ 32
0:6
180

� �
; (6)

where j is the number of days from 1 January to day i;

Gi ¼ �2:9� 10�6
� �

d2i þ ð6:27�
1; if di < l

10�3Þdi � 1:88; if l � di < 2l
0:64; if di � 2l

8<
: ; (7)

where l is equal to 700°C according to Duru, Adam et al. (2009) giving a range between
500°C and 800°C depending on the species and di is the daily degree-day in °C.

Wi can be estimated from the ratio between actual and potential evapotranspiration
(Maselli, Papale et al. 2009, Maselli, Argenti et al. 2013). Maselli, Papale et al. (2009) proposed
this specific index to improve biomass estimation in arid and semi-arid regions. Vegetation
index and biophysical parameters, such as NDVI, fCover, or fAPAR are sensitive to long
duration water limitation because optical remote-sensing data can detect changes in
canopy structure and defoliation. However, these data do not catch brief water shortages
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that could induce a decrease in the RUE. Wi is interesting to observe during drought
situations as it requires only a limited number of climatic data (temperature, rainfall, and
radiation).

Wi ¼ 0:5þ 0:5 ai
ei
; if ai < ei

1; if ai > ei

�
; (8)

where ai is the daily actual evapotranspiration and ei is the daily potential
evapotranspiration.

PARi is estimated with Equation (9) as a proportion of the daily solar radiation (ri)
according to Gilabert, Moreno et al. (2015) with a value of 48 % based on Gosse, Varlet-
Grancher et al. (1986):

PARi ¼ 0:48� ri: (9)

The proportion of senescent vegetation in the production estimate is determined by
modelling leaf senescence (Di) presented in Equation (10). Until the time the first cohort
of leaves begin to senesce (di < l), we assumed that no senescent material is present. For
the following cohort of leaves (di > l), the senescent material of day i depends on the
daily biomass production at the day of emergence of these new leaves (Pdi�l), modified
with a senescence rate calculated according to the daily mean temperature (ti), the leaf-
life span (l), and a constant coefficient of remobilization (γ = 0.15) corresponding to the
fraction of senescent biomass reallocated in green matter (Duru, Adam et al. 2009, Duru,
Cruz et al. 2010). The importance to integrate the contribution of leaf senescence in the
production model was addressed by Duru, Adam et al. (2009):

Di ¼ 0; if di < l
1� γð Þ � Pðdi�lÞ � ti

l ; if di > l

�
; (10)

where l is equal to 700°C according Duru, Adam et al. (2009) giving a range between
500°C and 800°C depending on the species, ti is the daily mean temperature in °C, and di
is the daily degree-day in °C (see Section 3.3 for definition of equations).

Richardson, Keenan et al. (2013) demonstrated the ability of phenological indicators
to be used as proxy to monitor climatic and environmental effects on grassland phenol-
ogy. They concluded the necessity to consider those indicators characterizing vegetation
growth while estimating vegetation productivity. Figure 1 illustrates the phenology
variability of grasslands in five forage regions (FRs), represented by a mean fCover
profile observed between 2003 and 2012, which shows that several locations have a
double growing cycle due to their specific climatic conditions.

In this work, growing season characteristics are addressed by introducing two mod-
alities in Equation (3) to calculate annual biomass production (Bn), i.e. (a) the monitoring
period defined by two phenological indicators, the SOS and the EOS, and (b) the number
of phenological cycles (m) of grassland within a year.

For the developed models, the modalities SOS/EOS and m can present variable
values. Regarding SOS/EOS, the values can be fixed as in the baseline model or made
spatially and temporally variable according to the grassland growth cycle. In our study,
they are determined annually at the FR scale from the analysis of the fCover time series.
For m, it can be adjusted to simulate a uni- (m = 1) or bi-modal (m = 2) seasonality for
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the grassland within the year. The interest of such a modification is to consider the
annual biomass production (Bn) as the result of one or two growing cycles. Choosing a
bi-modal seasonality has an influence on the growing degrees day (di) and on the SOS/
EOS values.

3. Materials and methods

3.1. Application site

Hentgen (1982) divided France into 229 homogeneous agro-climatic regions, or Forage
Regions (FR), having similar grassland production potential. The study sites here are
composed of various FRs with one FR representing one spatial unit for the model
validation. A sample of 25 FRs is selected using the same criteria as in Di Bella, Faivre
et al. (2004) (altitude, grassland percentage, temperature, and rainfall) in order to
represent areas with different climatic situations. Figure 2 illustrates the site condition
variability of these FRs. The grassland percentage represents the surface classified as
grassland cover, according to the land-cover classification rules of the FPI processing
chain (Roumiguié, Jacquin, Sigel, Poilve, Lepoivre, et al. 2015), divided by the total area
of the FR. Temperature and rainfall variables correspond, respectively, to the tempera-
ture and the annual cumulated rainfall averaged over 10 years (2003–2012).

For model validation, five years representing specific climatic situations are selected.
Figure 3 shows the annual, spring, and summer rainfall and temperature variations for
the five selected years compared to a historical reference (2003–2012) observed in the
25 FRs. Drought conditions in France during 2003 and 2011 are prominent. In 2003,
drought affected vegetation during spring and summer with elevated summer tempera-
tures. In 2011, water scarcity and hot temperatures were only observed during the
spring. Figure 3 also points out abundant rainfall and hot temperatures in spring
suitable for forage production in 2007. Finally, 2009 and 2012 represent normal climatic
years for the study sites.

Figure 1. Grassland phenology variability in five forage regions. Curves correspond to the mean
fCover observed between 2003 and 2012. Colours of the curves allow identifying the corresponding
forage region on the map.
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Figure 3. Annual, spring and summer (a) rainfall and (b) temperature variations for the five selected
years compared to a historical reference (2003/2012) observed in the 25 FRs.

Figure 2. Characterization of the 25 FRs selected for the study according to altitude, grassland
surface percentage, temperature, and rainfall, both averaged over 2003–2012.
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3.2. Remote-sensing data

In this study, biophysical products (fAPAR and fCover) are obtained from a biophysical
inversion of daily reflectances image provided by Moderate Resolution Imaging
Spectroradiometer (MODIS) and Medium Resolution Imaging Spectrometer (MERIS)
sensors as described in Roumiguié, Jacquin, Sigel, Poilve, Lepoivre, et al. (2015).
Products of the processing chain are 10 day synthesis of biophysical parameters deliv-
ered at 300 m spatial resolution. NDVI data come from the MODIS vegetation index
product (MOD13Q1), distributed by the National Aeronautics and Space Administration
(NASA) and the United States Geological Survey (USGS) and corresponding to 16 day
synthesis at 250 m spatial resolution. NDVI is computed from atmospherically-corrected
bi-directional surface reflectances that have been masked for water, clouds, heavy
aerosols, and cloud shadows (Huete, Justice, and Van Leeuwen 1999).

Given the medium spatial resolution of the images, pixel reflectances may be com-
posed of spectral responses from different land-cover types. A disaggregation method
based on a statistical approach applied to reflectances is used to determine fAPAR, fCover,
and NDVI for grassland (Faivre and Fischer 1997). This method estimates vegetation
indices or biophysical parameters values for each land-cover class present in the mixed
observation (determined from a land-cover map) and the a priori knowledge of each land-
cover class’s contribution to each pixel (local aspect) (Roumiguié, Jacquin, Sigel, Poilve,
Lepoivre, et al. 2015). Consequently, fAPAR, fCover, and NDVI, relating to grassland cover,
are calculated at an Elementary Statistical Unit (ESU) scale of 6 km×6 km.

Finally, the remote-sensing indices are averaged at the FR scale according to grass-
land surface in each ESU. Figure 4 illustrates the three time series of ‘grassland’ remote-
sensing indices available for a FR in southern France in 2003.

3.3. Climatic data

Climatic data are provided by Météo-France. Visible radiation, rainfall, and temperature
variables from the SAFRAN/F database (Quintana-Seguí, Le Moigne et al. 2008; Vidal,
Martin et al. 2010) are selected. These reanalysis data are derived from a numerical
weather model that incorporates station observations. These data are interpolated at an

Figure 4. Example of the three time series of ‘grassland’ remote sensing indices available for a
forage region situated in South of France in 2003.
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8 km × 8 km grid using a digital elevation model and are available at a daily step. Time
series of these variables are produced for each FR by averaging grid values within the
area of interest. Additional climatic variables are calculated in order to introduce them in
the computation of the different physiological effects modelled (see Section 2). The daily
mean temperature (°C) is given by Equation (11):

ti ¼
18; if Tmax;iþTmin;i

2 > 18

0; if Tmax;iþTmin;i

2 < 0
Tmax;iþTmin;i

2 otherwise

8><
>: ; (11)

where Tmax,i is the daily maximum air temperature and Tmin,i is the daily minimum
temperature.

Growing degree days correspond to the accumulated mean temperature (ti) through-
out the growing season (Equation (12)). Grassland phenology is driven by thermal time,

di ¼
XI

i¼ SOSð Þ
ti: (12)

For the computation of the water stress index (Wi), the actual evapotranspiration (ai)
and the potential evapotranspiration (ei) are, respectively, evaluated with daily rainfall
(pi) (Equation (13)) and the Jensen–Haise formula (Jensen and Haise 1963) (Equation
(14)). Both are cumulated over the previous 30 days as recommended by Maselli, Argenti
et al. (2013):

ai ¼
XI

i�30

pi; (13)

ei ¼
XI

i�30

ri
L
� 0:025� ti þ 0:08

� �
; (14)

where L is the latent heat of vaporization for water with a density of 1000 kg m−3 and at
20°C. (=2.45), ri is the daily global radiation, and ti is the daily mean temperature.

3.4 Reference grassland production data

Validation data are provided by the ISOP system (Donet, Ruget et al. 1999, 2000). In this
system, grassland production estimated at a daily step for each FR with a mechanistic
model adapted to grassland (Simulateur Multidisciplinaire pour les Cultures Standard –
STICS Prairies) (Brisson, Mary et al. 1998), using climatic, soil, and grazing system data as
inputs. Published data, delivered at FR scale, represent the variation of annual produc-
tion compared to a historical reference (1982–2009). For the validation procedure,
production data of the chosen FR/years are selected (Ruget F., personal communication).
Figure 5 illustrates the spatial and temporal variations of production over the application
sites (Ruget, Delécolle et al. 2001). It shows that two FRs have an average production
higher than 8.1 tonnes of dry matter per hectare (t DM ha–1) while three others are four
times less (2.2 t DM ha–1). Substantial variation around the average production exists
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due to inter-annual weather variability. For example, production during a dry year (2003)
was substantially lower than during a humid year (2007).

3.5. Methods

3.5.1. Model accuracy assessment
A total of 768 models are tested against grassland production data. The models are the
result of different combinations of factors (5) and various options to estimate each of
them. These include three modalities for fraction of absorbed photosynthetically active
radiation (factor 1); for RUE (factor 2), two modalities for temperature (Ti), season (Si),
phenology (Gi), and water stress (Wi); two modalities for PAR (factor 3); two modalities
for leaf senescence modelling (Di) (factor 4); for the growing season characteristics
(factor 5), two modalities for the monitoring period (SOS/EOS) and the number of
phenological cycles (m). The annual biomass production (Bn) obtained with these

Figure 5. Grassland production, given by the ISOP model, of the 25 FRs selected for 2003, 2007,
2009 and in average of the 5 years studied.
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models are evaluated by comparing each of them to grassland production estimates
provided by the Information et Suivi Objectif des Prairies (ISOP) system (Yn), considered
to be the reference. We establish linear and power function regressions according to
Equation (15).

Values for the power function are obtained to satisfy the assumption of a normal
distribution of the residuals. To this end, a transformation of the dependent variable
(Bn,z) is realized (Box and Cox 1964):

ðYn;zÞx ¼ a� Bn;z þ bþ ε; (15)

where Yn,z is the validation production data, Bn,z is the modelled production data for the
year n and the forage region z, ε is the remaining error, a and b are parameters of the
regression. For a linear regression function, x is equal to 1. For a power regression
function, x is different to 1.

A k-fold cross validation is performed to determine the prediction error (Rodriguez,
Perez, and Lozano 2010). For each model, the validation production dataset (containing
125 observations) is divided in threefold with 100 replications. Regression is trained on
twofold (84 observations) and a measure of the performance is assessed with the
remaining fold (42 observations). As the key performance criterion, we use the standar-
dized root mean square error (SRMSE) given by the Equation (16), as it is a good
indicator of a model predictive power (Loehlin 2004):

SRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
Yi�Bið Þ2
n

r

SD Yið Þ ; (16)

where Yi are the observed values, Bi are the modelled values, n is the number of
observations and SD is the standard deviation.

Statistical tests on residuals are carried out to evaluate regression model validity.
Residual normality and homoscedasticity are, respectively, assessed with Jarque–Bera
(Jarque and Bera 1980)/Shapiro–Wilk (Royston 1992), and Breusch–Pagan (Breusch and
Pagan 1979; Cook and Weisberg 1983) tests. All regressions with at least one of the
statistical tests presenting a p-value less than 0.1 are excluded in order to select those
that are the most robust and valid.

3.5.2. Model inter-comparison procedure
Figure 6 summarizes the comparison procedure between the baseline and new
models. The first step consists of establishing regression models with linear and
power functions using all the validation production data, resulting in an SRMSE
and p-value for all models. The SRMSE provided by the baseline model is defined
as a threshold (SRMSEBaseline). Among the new models, only those that had valid
statistical tests on residuals and an SRMSE value smaller than SRMSEBaseline are
retained. For these models, analysis of the linear and power regression proportion
enables identification of the best regression function type. Next, for each model, the
value (x) that minimizes the SRMSE is selected by interpretation of the value (x)
variation according to SRMSE.
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In a second step, the validation production dataset is divided in two according to
the climatic years. The objective is to examine the ability of the selected to accu-
rately perform under different meteorological conditions. One set of data is com-
posed of years 2003 and 2011, representing drought conditions resulting in low
levels of biomass production. The other set contains 2007, 2009, and 2012 years
and corresponds to humid or normal conditions with normal or above average
biomass production. For the two sets, the same accuracy assessment is applied as
for the full dataset.

Overall, three groups of models that outperformed the baseline model are obtained
depending on whether the whole validation dataset is considered (group 1) or different
validation datasets for dry years (group 2) and for humid or normal years (group 3). For
each group, the factors/variable modalities that have been added in the developed
models are observed to see how much they contribute in the improvement of the
biomass production estimates.

Figure 6. Overall procedural flowchart for inter-comparison of models.
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4. Results

4.1. Models overall performance estimation

Given all possible combinations of the five factors added in the developed models, 768
models are tested. In relation to the complete validation dataset, model inter-compar-
ison indicates that 64 developed models outperform the baseline model based on the
SRMSE. Of these models, for 91% (including the baseline model) the SRMSE is smaller
when applying a power function. Consequently, the power function, rather than a linear
function is retained for consecutive analysis.

Figure 7 presents the scatterplot of the power value (x) and the SRMSE of the 64
models outperforming the baseline model. Smallest SRMSE values tend to be obtained
with values for x of approximately 0.5–0.6. This suggests a quadratic link between
observed and modelled biomass production data, illustrated for the baseline model in
Figure 8. With a linear function, SRMSEBaseline is equal to 0.57 and coefficient of deter-
mination (R2) to 0.68 (Figure 8(a)) whereas with a power function, SRMSEBaseline is equal
to 0.54 and R2 to 0.71 (Figure 8(b)). We decide to fix the power value (x) for all models to
0.50 in order to have a more consistent comparison between models and reduce
overfitting problems. When reconsidering all 768 models and fixing x to 0.5, a total of
74 models outperform the baseline model. The best model is based on a biomass
production function using the fCover accumulated over a variable monitoring period
and integrating the water stress and season effects. For this model, the SRMSE is 0.42
and the R2 = 0.83 (Figure 8(c)). Precision of biomass prediction is 23% higher than with
the baseline model.

When dividing the validation dataset into dry and normal/humid years, the baseline
model performs better in normal or humid conditions (SRMSEBaseline = 0.63 for dry;
SRMSEBaseline = 0.52 for normal/humid). For this division, fewer models improve the
production estimates in normal or humid conditions (38 of 74 with an average improve-
ment of 7% and a maximum of 20%) than for the dry condition (67 of 74 with an

Figure 7. Scatterplots of the power value in the regression (x) and the SRMSE for the 64 models
outperforming the baseline model.
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average improvement of 9% and a maximum of 22%) as compared to the baseline
model. Figure 9 presents the scatterplots between the observed (Y) and modelled (B)
productions for the (a) baseline model and (b) best models estimated by considering
only either dry years (2003 and 2011) or normal/humid years (2007, 2009, and 2012). The
best model for dry years is more complex (incorporating fCover cumulated over a
variable monitoring period, water stress, season, temperature, and radiation) than for
normal/humid years (fCover accumulated over a variable monitoring period and water
stress).

In conclusion, the baseline model performs well irrespective of the group of years
considered. This confirms the earlier FPI validation results obtained in previous studies
(Roumiguié, Jacquin, Sigel, Poilve, Hagolle, et al. 2015, Roumiguié, Jacquin, Sigel, Poilve,
Lepoivre, et al. 2015) and corroborates findings of Jung, Verstraete et al. (2008) that
recommended using an empirical model based on a remote-sensing index to estimate
biomass production. But, results of the performance analysis lead to the identification of
two sources of improvements for the FPI computation method:

Figure 8. Scatterplots of the baseline model with (a) linear and (b) power regression functions
(x = 0.50) between the observed (Y) and modelled (B) productions with the baseline model and
considering the whole validation dataset. Dashed black line highlights the power function link
between the two datasets. (c) Scatterplots of the power regression function (x = 0.50) between the
observed (Y) and modelled (B) productions with the best performing model.

INTERNATIONAL JOURNAL OF REMOTE SENSING 1927



(1) use of a power function instead of a linear function;
(2) integrating ancillary data in semi-empirical models corroborating the conclusions

of Seaquist, Olsson, and Ardö (2003).

4.2. Individual assessment of biomass production function factors

For the 74 models that outperform the baseline model and classified according to the
climatic context (group 1: all years; group 2: dry years; group 3: normal/humid years), the
distribution of variables/factors tested is analysed. Results are presented in Table 2.
Models based on a biophysical parameter (fAPAR, fCover) perform in general better than
models based on NDVI (89% or more of the developed models are based on a biophy-
sical parameter), with a preference for fCover. Further, inclusion of the water stress effect
results in a significant improvement for FPI computation, especially during drought. We
find that the RUE should be estimated at least with the water stress effect but not with
the senescence function (92–96% of developed models do not contain the senescence
function). The fraction of models that used temperature, phenology and season effects
are about 50%, suggesting the need for further analysis of its importance. PAR is not
found to be an important element for the models. Finally, looking for a unique FPI

Figure 9. Scatterplots between the observed (Y) and modelled (B) productions of the (a) baseline
and (b) best developed model estimated by considering only either drought years (2003 and 2011)
or normal/humid years (2007, 2009, and 2012).
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model for all grassland in France, the growing season has to be modelled as uni-modal
growth cycle and with a monitoring period variable in space and time.

Based on these results, a new semi-empirical model for the FPI can be defined with
the Equation (17) to compute the annual biomass production and improve the baseline
model given by Equation (1):

Bn ¼
XEOSð Þ

i¼ SOSð Þ
fCover Grasslandð Þi � RUEð Þi; (17)

where the RUEi is equal to the Wi (see Equation (8)) and SOS/EOS values are determined
annually at the FR scale from the analysis of the fCover time series.

Among the 34 developed models outperforming the baseline model across all
validation datasets, eight correspond to Equation (17) with an average improvement
with baseline’s SRMSE of 18.6%. Table 3 shows the contributions of the SOS/EOS and
RUE factors, independently or combined, to the improvement of estimate precision
through the SRMSE. Distribution of the residuals for the baseline and best developed
models are given in Figure 10. Both factors are relevant to improve the precision of
biomass estimates given by the baseline model. But, with a decrease of the baseline
SRMSE and an increase of the baseline R2 of −13% and +10%, respectively, the RUE
factor estimated with the water stress effect seems to contribute more than the SOS/EOS
factor. This result confirms the important role of the RUE factor and the water stress
index to better estimate grassland biomass production. Results of statistical tests (nor-
mality and homoscedasticity) are also provided in Table 3 to complete models perfor-
mance analysis. Compared to the baseline model, the significance of the variables is
confirmed with a more stable model.

5. Discussion

The basic idea assessed here is that production efficiency model (PEM) principle inte-
grating meteorological data should improve the baseline FPI model. Opposed to this
idea is the advice expressed among others by Coops, Ferster et al. (2009) to run models
with less demanding data rather than considering that exogenous variables are correctly
mapped and improve estimates. In this section, we discuss:

Table 2. Distribution in percentage of the variable/factor tested with the different validation dataset.

Variables/factors
Group

1 (n = 74)
Group 2
(n = 67)

Group 3
(n = 38)

fCover/fAPAR/NDVI 61/31/8 63/34/3 68/21/11
PAR, no/yes 61/39 57/43 92/8
Temperature, no/yes 55/45 54/46 68/32
Phenology, no/yes 47/53 48/52 45/55
Water stress, no/yes 14/86 12/88 16/84
Season, no/yes 49/51 51/49 50/50
Senescence, no/yes 96/4 96/4 92/8
Monitoring period Fixed/variable 30/70 31/69 21/79
Phenological cycle, 1/2 67/33 63/37 76/24

n indicates the number of models in each group. Numbers in bold correspond to the majority.
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(1) which variables/factors improve estimates and how they should be integrated in
an operational context;

(2) which variables/factors are not relevant and should be abandoned or studied
further;

(3) how satellite images provided by new sensors and evolution of methodology in
PEM could reduce basis risk in index-based insurance.

5.1. On the operational implementation of identified improving factors

Two tested factors are clearly identified as key improvements in the FPI computation:
incorporating the RUE including the water stress RUE reduction, and accounting for
spatial and temporal variability of the growing season. The RUE as moderated by the
water stress index (Maselli, Argenti et al. 2013) proved effective for the generation of
more accurate FPI models. Nonetheless, its inclusion would require an operational (near
real time) access to accurate meteorological variables (temperature, rainfall, and radia-
tion) (de Leeuw, Vrieling et al. 2014).

The second major improvement concerns the implementation of a variable monitor-
ing period. Meroni, Verstraete et al. (2014) showed that a properly identified start and
end of season contributes to a better production estimate. In fact, forage insurance
programmes in East Africa also incorporate a spatially variable period for integrating
NDVI, based on phenological analysis of NDVI time series (Vrieling, Meroni et al. 2016). A
limitation of our study is the developed methodology to observe phenological indica-
tors. For this study we applied an empirical (visual) analysis of the remote-sensing index
temporal profiles and did not implement an automated approach. We acknowledge that
this should be in principle easy to achieve in future, given that a good range of methods

Figure 10. Distribution of the residuals for the (a) baseline and (b) best developed models.
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has been developed for the extraction of phenological parameters from image time
series (Beurs and Henebry 2010; Meroni, Verstraete et al. 2014).

5.2. Explanations for why potential improving factors are not relevant

Results obtained for the temperature effect and radiation are not in agreement with
literature. For the first one, our hypothesis is that the size of the geographic unit used to
establish the regression between observed and modelled annual grassland production is
too coarse and as a consequence results in smooth RUE values. This makes that extreme
local temperatures are not well represented at the FR scale, because they are averaged
over a large area (median equals 184,933 ha for the 25 FR). At the municipality level
(approximately 1500 ha) corresponding to FPI scale computation, we expect that tem-
perature extremes may be better represented and consequently its effect on photosynth-
esis may be more realistic (Cai, Yuan et al. 2014). So, it may still be relevant to incorporate
the temperature effect in the RUE computation when focussing on smaller areas.

Our results suggest that PAR does not need to be integrated into the new model, as
also recommended by Piñeiro, Oesterheld, and Paruelo (2006). While on the one hand
this may cause an incomplete representation of the PEM, other studies also reveal a
negative correlation between gross primary production (GPP) and global radiation (PAR)
in grassland over the globe (Beer, Reichstein et al. 2010; Cai, Yuan et al. 2014) with high
levels of insolation leading to high photosynthetic rate but also to high temperatures
and evapotranspiration rates, thereby increasing the water stress. In addition, as
Quintana-Seguí, Le Moigne et al. (2008) explain in their study, radiation provided by
the SAFRAN/F Database present an important RMSE, which could lead to decrease new
model accuracy instead of increasing it.

The phenology effect (Gi), the senescence leaf modelling (Di) and the possibility of
having a variable number of phenological cycles while modelling the growing season
(m), do not contribute to better models in our framework. This result is in contradiction
with literature (Cros, Duru et al. 2003; Duru, Adam et al. 2009; Vrieling, Meroni et al.
2016). For the phenology effect (Gi) and the senescence leaf modelling (Di), they are
traditionally parameterized at species level or using plant functional traits characteristics
(Duru, Adam et al. 2009). It requires a priori knowledge on the detailed grassland species
composition. In our study, given the spatial resolution of remote-sensing images (300 m)
used to characterize grassland vegetation condition, it is not possible to work at this
particular level. So, we consider grasslands as mono-species where phenological devel-
opments are not species-dependent and use a common parameterization for all grass-
land types. For the number of phenological cycles while modelling the growing season
(m), Vrieling, Meroni et al. (2016) find it relevant because of the existence of two
important growth grassland cycles within the year as observed in Kenya. In the case
of France, the usefulness of this variable does not seem to be so important. Annual
grassland production is mainly driven by the spring period (around 75%) (Pottier,
Michaud et al. 2012). For all these reasons, these three factors should not be further
considered as potential improvements. On this account, we, therefore, support
McCallum, Wagner et al. (2009) suggesting that the FPI model has to keep a reasonably
low level of complexity in order to be practical and operational.
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5.3. On the potential of additional remote-sensing data to bring improvements

First, it is of interest to consider other variables in the FPI computation to estimate RUE
factor. The water stress index (Wi) and the temperature effect (Ti) are obtained from
three climatic variables (temperature, rainfall, and radiation) provided by SAFRAN-
Meteo-France. This database is only available for research purposes and cannot be
used by private companies for commercial purposes. In the framework of the develop-
ment of a commercial product, it is mandatory to identify other reliable data sources
that can be used in future and are available in near real time. Beyond existing weather
station networks and databases collecting in situ measurements, climatic variables
estimated from remotely sensed data constitutes an exploratory field in both PEMs
and index-based Insurance. For example, NASA provides evapotranspiration data
(MOD16) with a spatial resolution of 1 km and a temporal resolution of 8 days. These
data are employed for global modelling of GPP (Yang, Guan et al. 2014). Rainfall
estimates are also available from thermal infrared and passive micro-wave sensors
(Dinku, Funk, and Grimes 2008; Hellmuth, Osgood et al. 2009). Such operational data
sources should be further tested within our model comparison framework.

Second, higher spatial and temporal resolution remote-sensing data provided by the
new generation of sensors such as Sentinel-2 have the potential of improving the accuracy
of PEMs for grassland productivity estimation. Direct monitoring of grassland vegetation
activity at the scale of the plot becomes possible. There are three main consequences:

(1) the error in the production estimation attached to the disaggregation step, com-
pulsory while processing moderate spatial resolution remote-sensing data could
reduce (Roumiguié, Jacquin, Sigel, Poilve, Lepoivre, et al. 2015), which in turn can
decrease the basis risk;

(2) factors and parameters relying on plant functional traits can be considered in the
modelling stage as, at the plot scale, grassland species differentiation is possible;

(3) the potential of application of the FPI is increased with new opportunities to use it
in countries where ground reference data to run calibration/validation of the
model at the required spatial scale are lacking (Rembold, Atzberger et al. 2013).

6. Conclusion

To improve an index-based insurance product for grassland production in France, 768
models are tested to estimate biomass production based on all possible combinations of
five factors studied. Outputs are compared with data provided by a mechanistic model
(ISOP system) over a sample of 25 forage regions and for 5 contrasted climatic years
(humid, normal and dry). Our results reveal that:

(1) the baseline model based on the fCover integral gives satisfactory results
(SRMSE = 0.57 and R2 = 0.68);

(2) a quadratic link characterizes the relationship between the observed and esti-
mated biomass production values and a power regression function (x = 0.5) is
proposed to increase quality and robustness of our estimates (SRMSE = 0.54 and
R2 = 0.71);
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(3) among the developed models, 34 outperform the baseline regardless of the
climatic context and lead to increased accuracy of production estimates;

(4) from these findings, a new semi-empirical model for FPI is defined to compute
the annual biomass production and improve the baseline model (SRMSE = 0.42
and R2 = 0.83). It is still based on fCover but enriched with a water stress index
and the phenological indicators SOS/EOS that are spatially and temporally
variable according to the grassland growth cycle given by the fCover temporal
profile. From the best 34 models identified, 8 correspond to this new FPI model
and provide, on average, a decrease of the SRMSE of 18.6 % compared to the
SRMSEBaseline.

(5) While the results obtained with many of the factors included in the new FPI model
corroborate findings in the literature, results for others tested factors are not in
agreement with previous studies as they do not increase the models’ quality
(McCallum, Wagner et al. 2009; Cai, Yuan et al. 2014). We conclude that, pheno-
logical and season effects in the RUE factor, the PAR factor, the senescence leaf
modelling, and consideration of multiple phenological cycles (m) for grasslands
within a year should not be included in the new FPI model. However, concerning
the temperature effect on photosynthesis and its relevance highlighted in the
literature (Duru, Adam et al. 2009), further investigation is warranted using
validation data at finer spatial scales.
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