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Earth Observation Modeling Based on Layer Scattering Matrices 

W. VERHOEF 

National Aerospace Laboratory NLR, Anthony Fokkerweg 2, 1059 CM Amsterdam, The Netherlands 

The differential equations describing radiative transfer in vegetative canopies as given by Suits are generalized and 
solved to derive a layer scattering matrix. Layer scattering matrices can be applied to the calculation of optical 
parameters for multilayer ensembles according to the Adding method. The application to atmospheric scattering is 
demonstrated by explaining path radiance, sky radiance, and other quantities in terms of elements from a layer 
scattering matrix and a surhce reflectance matrix. By combining scattering matrices originating from atmospheric 
layers with those from earth objects, earth observation models can be constructed. These may become valuable tools in 
the study of various remote sensing problems. 

Introduct ion water bodies. This results in mathematical 
models that predict the intensity of 

Remote sensing of earth objects in the scattered or reflected radiation for given 
visible to middle infrared wavelength re- directions of sunlight and view as a func- 
gion is a powerful technique for providing tion of atmospheric and object parame- 
information on earth resources rapidly and ters. In this way the quantitative relation- 
over large areas. In the extraction of in- ships between object parameters and re- 
formation from multispectral digital image motely sensed data can be established for 
data acquired by remote sensing missions, given conditions of observation. An excel- 
several levels of sophistication can be dis- lent review of such models, with special 
tinguished. Some of these techniques, such emphasis on the applicability to remote 
as visual interpretation of enhanced color sensing problems, is given in Slater (1980). 
composite imagery or routines for auto- Of particular interest are the vegetation 
matic classification, already offer much canopy reflectance model of Suits (1972) 
valuable information for relatively little and the atmospheric model of Turner 
effort. In other cases, however, especially (1973), since these models are not too 
when quantitative data are to be ex- complex, require little computer proc- 
tracted, these techniques fall short be- essing power, and yet are reasonably re- 
cause the extraction of this type of infor- alistic. 
mation requires more insight into the The analytical model of Suits is based 
physical processes involved in the interac- on two extensions of the Kubelka-Munk 
tion of radiation with objects on earth (1931) theory, which describes the scat- 
and with the atmosphere. These interac- tering and extinction of isotropic diffuse 
tions can be investigated by the appli- fluxes in upward and downward direc- 
cation of radiative transfer theory to prob- tion. The first extension is the addition of 
lems such as atmospheric scattering and specular sunlight with its associate extinc- 
non-Lambertian reflection characteristics tion and scattering coefficients, which 
of objects like vegetation canopies and leads to the Dtmtley (1942) equations, 
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also applied in the AGR-model of Allen et of these techniques is not restricted to 
al. (1970); the second extension is the canopy reflectance, since there is no 
calculation of the radiance in the ob- fundamental reason why Suits' approach 
server's direction, from which the direc- could not be applied to atmospheric 
tional reflectance can be determined, scattering, for instance. The framework 
Apart from this, the coefficients of scat- presented is particularly useful for the 
tering and extinction are expressed in ob- construction of combined models of the 
ject parameters and in the angles of the earth-atmosphere system, leading to so- 
sun and of observation. In Verhoef (1984) called earth observation models, for which 
it is demonstrated that the estimation of many applications can be foreseen. 
the coefficients can be improved signifi- 
cantly, resulting in the more realistic SAIL Generalized Form of 
model. Suits' Differential Equations 

The Suits and SAIL models both rely 
on the assumption that the first iteration The Suits model for a uniform canopy 
in the method of the self-consistent field layer, as given in Suits (1972), in essence 
gives a good approximation of the real consists of the definition and solution of a 
flux field. This first approximation pre- system of four simultaneous linear dif- 
diets the radiance at the top of the canopy ferential equations, here given in gener- 
under the assumption that the diffuse up- alized form by 
ward and downward fluxes are still iso- 
tropic, which, of course, is not entirely d E ~ / d x  = kE~, (la) 

true. However, it is reasonable to assume dE  / d x  = - sE X + aE - oE+, (lb) 
that if absorption is strong, the diffuse 
fluxes are small, so that the result is d E ÷ / d x  = s'E~ + oE - a E ~ ,  (lc) 

dominated by single scattering, which is d E o / d x  = wE~ + vE + uE ~ - KEo, 
described accurately. Also one may ex- 
pect that if absorption is weak, for in- (ld) 
stance, in the near infrared for vegetation in which x represents the vertical dimen- 
canopies, the multiply scattered flux be- sion, defined relative to the layer's thick- 
comes reasonably close to isotropic, so ness and set equal to zero for the top of 
that the first iteration still yields a fair the layer and to - 1 for the bottom of the 
approximation. Anyhow there does not layer. The coefficients are given in the 
seem to be much point in requiring an notation of Bunnik (1978) and are dimen- 
accuracy level of model output much sionless quantities. The variables are de- 
higher than that of the model input fined as follows: 
parameters, which is usually not very high. E~ = direct solar irradiance, 

This paper deals with the derivation of E = diffuse downward irradiance (as- 
general solutions to Suits' differential sumed isotropic), 
equations for homogeneous scattering E~ =diffuse upward irradiance (as- 
layers. These solutions appear in the form sumed isotropic), 
of layer scattering matrices and some E ,,= radiance in the observer's direc- 
mathematical techniques to manipulate tion, multiplied by ~r, or 
such matrices are discussed. Application E = ~ r L , ,  (2) 
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where L o is the radiance in the observer's vector of independent variables F is 
direction, formed, for which the following differen- 

Equations ( la ) - ( le )  are the Dunfley tial equation applies: 
equations, also applied in the AGR model 
of Allen et al. (1970). Equation (ld) is d 
introduced here as a condensed form of ~x(F)  = AF,  (5a) 

the two differential equations applied by with A = Y M Y  -1, (5b) 
Suits to describe the contributions to the 

radiance at the top of the canopy, which and where A is a diagonal matrix of 
are given by 

coefficients, which are the eigenvalues of 
matrix M, equal to k, m = (a 2 - 02) 1/2, 

d r o / d x  = rFo, (3a) 
- m ,  and - K .  If the components of F 

~rdL" /dx  = ( w E ,  + vE_ + uE+ ) F  o , are represented by F 1, F 2, F a, F 4, then the 
(3b) general solution is given by 

in which F o represents the fraction of F I =  81e kx, (6a) 
layer area observable from outside the F 2 = ~2e mx, (6b) 
canopy by direct line of sight and L~ is 

e - m x  (6c) the radiance at the top of the canopy. For /73 = 3 , 
the calculation of L' o both ways of de- 
scription are equivalent, but Eq. (ld) is F 4 = ~4 e-Kx, (6d) 
more compact, applies to upward radi- 
ance at any level within the layer, and .in which 81-84 are constants to be de- 
can be interpreted as a general radiative termined from boundary equations. In 
transfer equation, with ] = wEs + vE_ terms of the original fluxes, the general 
+ uE+ as the source function and K as solution is derived by applying the in- 
the extinction coefficient, verse transformation Y-~ to F, which 

yields 
Standard Solution 

E~ = 81e kx, (7a) 
The general solution of system (1) is 

found by a standard method, similar to E_ = Df i l e  k~ + h182e mx + h283e -m~, 

one applied by Chance and Cantu (1975) (7b) 
to the Duntley equations ( la)-( lc) .  In 

e - m x  this case system (1) is written in matrix- E+----CsSlek~+ 82emx+ 3 , (7c) 
vector notation by 

E o = n f i l e  kx + (hlCo - O o ) 8 2 e  mx 

d 
~xx(E) = ME, (4) + ( h2Co - Do)83e -~x  + ~4 e - K x .  

(Td) 
where E is the flux vector and M is the 
matrix of coefficients of system (1). By a The relation between F and Y. can also be 
linear transformation Y of vector E, a expressed by applying the forward trans- 
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formation Y to E, which yields directional reflectance if the boundary 
equations for a particular case are sub- 

81 ekx = E s ,  (8a) stituted. Since such a restriction to a par- 
( h i - h2 ) 8~e .... = ( h2C ~ - D~ ) E ,  ticular case would limit the applicability 

of the solution obtained, this paper will 
+ E - h~_E,, (8b) focus on the more general case of known 

incident fluxes at the top and the bottom 
( h I _ h2)83e  ,,,x = ( _ hlC'~ + D )E of the layer• 

- E + h i E + ,  (8c) 

Derivat ion of a Layer Scattering Matrix 
8 4  e K x  = __ HoE,  . _ C,,E 

+ D,,E+ + E) .  (8d) Equations (7) and (8) can be applied to 
calculate the outward fluxes from an iso- 

The constants introduced in Eqs. (7) and lated layer if the incident fluxes are given. 
(8) are given by The incident and outward fluxes of such a 

layer are illustrated in Fig. 1. The inci- 
h l = (a + m ) / o ,  (9a) dent fluxes are the downward fluxes at 

the top, E,(0) and E (0), and the up- 
h 2 = ( a -  m ) / o  = 1 / h ~ ,  (9b) ward fluxes at the bottom of the layer, 

C ~ = [ s ' ( k - a ) - s o ] / ( k  2 - m 2 ) ,  (10a) E ~ ( - 1 )  a n d E o ( - 1 ) .  
In this case the outward fluxes are found 

C,, = [v(K - a) - u o l / ( K  2 - me), as follows: 
A. Substitute E~(0), E (0), and 

(10b) E ~ ( - 1 )  in (7a), (7b), and (7c) to 
solve the constants 8~, 82, and 83. 

D~ = [ - s ( k  + a ) -  s'o]/(k 2 -  me), B. Apply (7a), (7b), and (7c) again to 

( l la)  calculate the outward fluxes E ( -  
1), E ( - 1 ) , a n d  E+(0). 

D,, = [ - u ( K  + a )  - v o ] / ( K  2 - m2), C. Substitute the solved outward fluxes, 
E ( - 1 )  and E ( - 1 ) ,  and the 

( l ib)  given incident fluxes, E ( - 1) and 
E o ( -  1), in (8d) to solve the con- 

H ,  = (uC~ + vD~ + w ) / ( K  + k ) ,  (12a) stant 84. 

H ,  = (sC,, + s'Do + w ) / ( K  + k )  (12b) D. Apply (8d) again for the top of the 
• layer to calculate the outward flux 

Eo(0). 
An important relation for the proof of The result can be expressed by the follow- 
reciprocity relations is given by ing set of equations: 

n, ,  + CoD ~ = U s + C~D,,, (13) 
E,(  - 1) = %~E~(0), (14a) 

which follows from applying Y Y  l = 1. E ( - 1) = %,tE~(O) + "r,t,tE (0) 
The general solutions presented by Eqs. 

(7) and (8) can be applied to calculate the + PdaE ~ ( -- 1), (14b) 
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Es(0 ) E°(0) 

x / 
E+(- l l  E_(-1) 

Eo(-1) Es{-1 } 

INCIDENT FLUXES OUTWARD FLUXES 

FIGURE 1. Illustration of the incident and outward fluxes for an isolated layer. 

E÷(O)=psaEs(O) The coefficients are divided in reflec- 
+PdaE(O)+TaaE+(- 1), tances p and transmittances T. Double 

indices are used to indicate the types of 
(14c) incident and outward flux involved, i.e., s 

Eo(0) = psoE,(0)+ pao E_ (0) refers to the direct solar flux E,,d refers 
to the diffuse fluxes E and E÷, and o 

+ TaoE+ ( - 1 ) +  TooEo(- 1), refers to the flux in the observer's direc- 
(14d) tion, symbolized by E o = ~rL o. In matrix 

notation the result is expressed by 
in which the coefficients are given by 

%s=e -k, [ E s ( - 1  ) 

Too=e -K , 

pa , t=(em-e-m) / (h lem-h2e-m) ,  /E+(o) 
T, h t=(h l_hz ) / (h , em_h2e-m) ,  [ E°(0) 

Pao=Co(1--VooTda)--DoPda,P'=C'(1--%'raa)--DsPaa ' '['s~ o o o lr ,0, 1 
Logo O.o T.o TooJLEo(-1) 

Zd° = D°( v°° - Tale) -- C°T°°Pad' (16) 

O,o = Ho(1 - T,~Too) 
o r  Eou  t = Z E i n  , where Z is the layer 

- Co%aToo - DoO~a. (15) scattering matrix. 
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BOTTOM ~ s  ) ~ Pdd (-1 ) 
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FIGURE 2. Flux interactions {or an isolated homogeneous scattering layer. 

The flux interactions implied by the coef- By these definitions Eq. (16) can be re- 
ficients of the layer scattering matrix are written as 
illustrated in Fig. 2. Here the incident 
fluxes are p laeedin  a box, whereas the [ E d ( b ) ] = [ T d  Rt,][Ed(t)] (20) 
outward fluxes resulting from the interac- [ E"( t ) [ R, 7;, J[ E ' (  b ) ' 
tions are encircled. 

For the calculation of the directional 
in which the indices refer to downward reflectance it appears convenient to intro- 

duce subvectors of E and submatrices of (d), upward (u), top of the layer (t), and 
Z as follows: bottom of the layer (b). 

E d =  [E~ J, (17a) Applications 

Calculation of the directional reflectance 
E" = I E+ ] of a single homogeneous layer on 

Eo , (17b) a non-Lambertian reflecting surface 

I ~ The n°n-Lambe~ian reflectance °' a 
Td = %~ 0 (18a) surface can be expressed by a surface L'r~d 'rdd ' 

reflectance matrix R~, defined by 

Odd 
R = [r~d rdd] (9,1)  

r~,, rd,, " Rt= [ psd pdd ] (19a) 
Pso Pao ' 

7] =[rdd 0]. (19b) For the flux interactions at the surface, 
Lto "r,,, which is also the bottom of the layer, this 
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yields these reflectances 

EU(b) = RsEd(b). (22) (l_rddPda) ' (26a) 

From Eq. (20) it follows that r~ = Psd + ('rssrsd + "rsdrdd)'rdd/ 

Ed(b)= TaEa(t)+ RbEU(b), (23a) (l -- radPdd)' (26b) 

EU(t )=RtEd( t )+TuE"(b) .  (23b) r~°=Pa° +Zad(radza° +ra°%°)/ 
(1 -- radPaa ), (26c) 

By expressing the reflected flux vector 
EU(t) in the incident flux vector Ed(t) rs* = Pso + zs~r~o%o 
one obtains ( ~,~r~a + ~d rdd) zao 

+ (~d + ~s~rsdPda)rao%o 
Eu( t )=[R ,+T ~( I_R ~R b) -X R sTd]  + l_rddPad 

× Ed(t )  = R*Ea(t) ,  (24) (26d) 

The flux interaction diagram associated 
where R* is the resulting surface reflec- with these equations is presented in Fig. 
tance matrix of the ensemble and which 3. The directional reflectance factor of 
is given by the ensemble, r, is given by 

[r~ r~,] r= [r*E,(t)+r~oE_(t)] / 

R*=[r~* r~'o] [E~(t)+E_(t)] ,  (27) 

= R t + T~(I - RsRb) -~R~T a. in which E~(t) and E_(t)  are the direct 
(25) solar irradiance and the diffuse sky irradi- 

ance at the top of the layer. 

The elements of R* are described as Multilayer extensions 
follows: 

The resultant surface reflectance ma- 

r~' a = hemispherical reflectancefor trix of an ensemble of many (say N) 
homogeneous layers on a non-Lambertian 

hemispherical incidence, surface can be calculated easily if matrix 

r~  = hemispherical reflectance for direct equation (25) is applied recursively. This 
results in the following algorithm: 

incidence, Set R* = R,. 

r~o = directional reflectance for For layer ] = 1 - N  (lowest to highest): 
set R~ = R*; 

hemispherical incidence, compute Td, R b, R t, and T u for 

r~* = bidirectional reflectance, layer ]; 
R* = R t + Tu(I - nsnt,)-lR~Td . 

Applying matrix equation (25) yields for Next ]. 
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FIGURE 3. Flux interaction diagram for the combination of a scattering layer on top of a non-Lambertian 
reflecting surface. 

A similar procedure, known as the Ad- deriving the resultant scattering matrix of 
ding method of van de Hulst (1980), has a two-layer combination as follows: 
been used by Cooper et al. (1982). They If the layers are indexed 1 and 2 for 
applied it to the calculation of canopy upper and lower, and the levels are indi- 
reflectance according to a finite element cated by 0, 1, and 2, then the following 
method based on finite thickness leaf equations apply: 
layers and finite angular intervals of leaf 
slope and zenith angles of incidence and Ed(1) = T,~IEa(0)+ R~IEU(1), (28a) 

scattering. E~'(0) --- Rt~Ed(0)+ T,~E"(1), (28b) 
Sometimes, for instance, when flux in- 

tensities at intermediate levels in a multi- Ea(2) = TazEd(1)+ R~,2E"(2 ), (29a) 
layer ensemble have to be calculated, it 
will be necessary to determine the corn- E"(1) = Rt2Ed(1)+ :/;,2E"(2). (29b) 
plete scattering matrix of an N-layer com- 
bination. This can be achieved by first The scattering matrix of the two-layer 
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ensemble is defined by Proof of reciprocity relations 

The coefficients of Suits' differential 
E a ( 2 ) ] = [  Ta* R~]IEa(0) ]  (30) equations (1), as determined according to 
EU(0) [Rt* T*J[EU(2) ' Suits (1972) or as given for the SAIL 

model in Verhoef (1984), show the follow- 
Application of Eqs. (28) and (29) yields hag reciprocity relations: If the directions 

of solar incidence and of observation are 
] interchanged, the couples (k, K), (s, u) 

Ta* R~ and (s', v) commute and the coefficients 
[ R* Tt* ] a, o, and w remain the same. As a conse- 

quence, for the constants of Eqs. (9)-(12) 
T a 2 ( I - R b l n t ~ ) - l T a x  it is found that the couples (C~,Co), 

( D~, Do), and ( ns ,  no)  also commute, 
= Rt'z + Ta2(I - RblRt2)  - IRblT"2 whereas h 1 and h a are invariant. For the 

R t ~ + Tu 1 ( I - R t 2 R b 1 ) - ~ R t 2 Td 1 coefficients of the layer scattering matrix 
of Eqs. (15) this means that the couples 

T " l ( I - n t 2 n b l ) - l T " 2  ('rs~,'roo), (P~a, Pao), and ('r~a,'rao) com- 
(31) mute and Pan, ran, and P~o are invariant. 

The reciprocity relation for Pso of Eqs. 
Recursive application of (31) for calcula- (15) is not obvious, since the expression 
tion of the scattering matrix of an N-layer mentioned is not symmetric. A more sym- 
ensemble leads to an algorithm more metric expression is found ff %a and P~a 
complex, but otherwise similar to that for are substituted. This yields 
the surface reflectance matrix of an 
N-layer ensemble. Pso = ( Ho + CoD~)(1 - ~'~Zoo) 

- [CoO~(1 - ,ran,too ) 
Infinite refleetanees 

+C, 
The surface reflectance matrix of a layer 

of infinite optical thickness follows im- + [CoC~%o~'~ + DoD~]Paa, (33) 
mediately from Eqs. (15) by setting all 
transmittances equal to zero and by talc- which is symmetric except for the first 
ing the limit m ~ oo for Pan, which equals term. However, from Eq. (13) it follows 
h e. The result can be expressed by that H o + CoD ~ equals H, + CsD o, so that 

P~o is also invariant under interchanging 
Jr $7 ra ~ ] the positions of sun and observer. 

= The reflectance matrix of a single ho- 
R7 [ r~°~ ra~ ] mogeneous layer on top of a reflecting 

surface shows reciprocity relations if the 
= [ C~ - D~h 2 h2 ]. reflectance matrix of the surface also has 

[ n o - D o ( C s -  Dsh2) C o -  Doh2 ] this property, i.e., the couple (r~a, rao ) 
should commute and ran and r~o should 

(32) be invariant. In this case it can be shown, 
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by employing Eqs. (9.6), that the couple range. The result can be expressed by 
( r2* I, r~'o) commutes and r~d and rs* are 
invariant. By applying Eqs. (26) recur- ~rL,,(t ) = (E(  ~ cos 02)p ..... 
sively, the proof of the reciprocity rela- 
tions can be extended to any number of + ( E  ° cos 0~)(%~r~d + %drdd)'r, lo /  
homogeneous layers. 

(1 - rddPdd) 

A t m o s p h e r i c  scattering + ( E~? cos 02 ) ~,22r2oz,,, 

The procedures outlined in the previ- + (E(2,cosO~)(%d + %2r~aP,~d)r, to%o/ 
ous sections can also be applied to the 
modeling of radiative transfer in the 

(1 - rddPd d ), (35) atmosphere. In this case the scattering 
and extinction coefficients of system (1) 
are to be estimated on the basis of optical which can be equated to 
depths, scattering phase functions, and 
absorption characteristics of different at- ~rLo(t ) = ~rL,,, + ~rLob + E~,,nq,,T 
mospheric constituents, such as air, aero- 
sols, water vapor, etc. If this has been + EskyrdoT (36) 
done, then the reflectance matrix of the 
combination atmosphere-earth can be or 
calculated by Eqs. (26), of which espe- 
cially Eq. (26d) is interesting because of ~rLo(t ) = ~rLp + EtotrT , (37) 
its applicability to earth observation prob- 

lems in the visible to middle infrared and in which the following quantities have 
region of the spectrum. Assuming that been identified: 
the extraterrestrial spectral solar irradi- L~,,,---atmospheric path radiance, 
anee on a plane perpendicular to the 
sunrays is given by E °, and that there is Lpt , =background albedo contribution 

to path radiance, 
no diffuse downward irradiance at the Lp =total  path radiance, 
top of the atmosphere, the upward radi- E ..... ---solar irradiance at ground level, 
anee at the top of the atmosphere Lo(t ) /~sky = sky irradiance at ground level, 
follows from Eto t =total downward irradiance at 

ground level, 
~rLo(t) = (EOcos02), r2,,*, (34) r~,, =object's bidirectional reflectance 

factor, 
rd, , =object's directional reflectance 

where 0~ is the solar zenith angle. Sub- for hemispherical incidence, 
stitution of (26d) in (34) leads to an r =object's directional reflectance 
expression in which several terms can be factor, 
identified as quantities relevant to satel- T =object-sensor transmittance. 
lite remote sensing in the optical spectral The separate terms of Eqs. (36) and (37) 
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are given by equation for E o becomes 

*rLoa=(E°cosO, )P ,o ,  (38a) d E o / d x =  - w E , - u E  - v E +  + KE  o, 

*rLpb = Eupw~',t o, (38b) (45) 

with which leads to the general solution 

E.p,  = ( EO cosO,)(.r, sr, d + .r, drdd) /  84 eKx= - H ; E , - C ~ E _  + DO'E+ + E o, 

(1 - rddPdd), (39) (46) 

E s ~ =  (E °cos0,)%,, (40a) where the constants are given by 

T = % o  , (40b) H ' = ( s O o + s ' C o + w ) / ( K - k ) ,  

Esky = (E ° cos 0,)(%d + "rs,r, dOdd)/ (47a) 

(1- -  radPdd) , (41) C : =  - D  o, (4719) 

L .  = roa + r . b ,  (42) D o' = - C  o, (47c) 

E t o  t = E s u  n -11- Esky , (43) and in which C o and D o are defined as in 
Eqs. (10b) and (l lb).  The flux Eo at the 

r = (r, oEs~ + rdoE~ky)/Etot . (44) bottom of the layer, Eo( - 1), is solved as 
follows: 

It should be emphasized that the p and • A. Assume that the incident fluxes 
parameters refer to the atmosphere and E,(0), E_(0), E + ( -  1), and Eo(0 ) 
the r parameters to reflectance of the are given and calculate the outward 
earth's surface. Since the surface of the fluxes E,( - 1), E_ ( - 1), and E+ (0) 
earth is not homogeneous, the parameters according to equations (7a)-(7c). 
rsd and rdd, which determine the diffuse B. Substitute E,(0), E_(0), E÷(0), and 
upwelling irradiance at the bottom of Eo(O ) in Eq. (46) to solve 84. 
the atmosphere, should be interpreted C. Apply (46) again for the bottom of 
as average reflectances, describing the the layer (x = - 1) to solve Eo( - 1). 
earth's albedo over a large area. In order The result can be expressed by 
to extend this simple atmospheric model 
so that it may include also calculation of Eo( - 1) = %oE,(O)+ Zdo E_ (0) 
the sky radiance distribution over the 

+ PaoE+ ( - 1)+ %oEo(O), hemisphere, an expression for the bidirec- 
tional transmittance of a single homoge- (48) 
neous layer is derived. In this case the 
flux E o is directed downwards from top in which "rdo, Pdo, and %0 are as given by 
to bottom of the layer and the differential Eqs. (15), and the bidirectional transmit- 
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tance ~:,o of the layer is given by given by 

.r~,, = H{,(  Z~. - % o )  - Cop,~d%, - Do.c.~,t" a = ~ - o ' =  a + o ,  (52) 

(49) which means that eigenvalue m = ( a  2 -  
0-0) 1/2 approximates (2ao)  t/e if a is small, 

The term H g ( z s s  - %o) becomes inde- and which becomes equal to zero for a = 
terminate for K = k, which occurs if the 0. Taking the limit m ~ 0 in the expres- 
zenith angles of the sun and of observa- sions for PJ,t and r,~ d, it is found that 
tion are equal. In that case this term must these become 
be replaced by  the limit for K ~ k, which 

equals ( s D  o + s ' C  o + w) ' r ,~ .  P,,,t = o / ( a  + 1) = o / ( o  + 1), (53a) 
Since E (0) and Eo(O ) can be assumed 

equal to zero, and E+ ( - 1) for the atmo- Lid = 1 / ( a  + 1) = 1 / ( a  + 1). (53b) 
sphere-ear th  system equals Eup w as given 
by Eq. (39), Eq. (48) can be rewritten as The sum of both equals 1, which could be 

expected since it was assumed that there 

~Lsky = ['rso ÷ Pdo(%sGd ÷ Tsdrdd)/ w a s  n o  a b s o r p t i o n .  

(1  - rd,,Pdd)] E~ ) cos 0 s. (50) Earth observation simulation models 

The techniques discussed in the previ- 
This expression can be used to estimate ous sections are suitable as "modules" for 
the sky radiance at any position in the sky the construction of more complex models 
(except the solar disc) for any solar zenith including, for instance, atmospheric scat- 

angle, tering and directional reflectance proper- 
In some regions of the spectrum the ties of several types of objects like vegeta- 

atmospheric absorption coefficient a may tion, bare soil, and water surfaces. Such 
be assumed equal to zero. This case earth observation models may become 
requires a special solution of the diffuse valuable tools for the study of various 
reflectance Pda and the diffuse transmit- problems related to remote sensing data 
tance Ltd, since these become inde- collection and interpretation, of which 
terminate for a = 0, if calculated accord- some are mentioned below: 
ing to Eqs. (15). This is explained as - - sensor  design and mission planning; 
follows: The extinction coefficient for dff- - -correc t ion  for atmospheric effects; 
fuse fluxes, x, can, because of energy - -correc t ion  for object-dependent di- 
conservation, be expressed as rectional reflectance effects; 

- -extract ion of object-related informa- 
x = a + a + o' ,  (51) tion. 

A very powerful combination results if an 
in which o and o '  are the backscatter earth observation simulation model is 
coefficient and the forward scattering interfaced to an image processing system, 
coefficient for diffuse fluxes, respectively, since this will provide the possibility to 
The attenuation coefficient a, which is test image processing techniques on 
used in Suits' differential equations, is model-generated images and to evaluate 
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models on the basis of comparison with pertaining to Suits' equations still holds in 
real imagery, first approximation. 

Considering the complexity of radiative 
Discussion transfer in the atmosphere-earth system 

with its massive amounts of data neces- 
The mathematical framework pre- sary to describe the boundary conditions, 

sented, with the theoretical examples of the variability of scattering and reflection 
applications shown in the preceding sec- processes, and the vertical and horizontal 
tion, seems attractive as a simple but heterogeneities found in reality, it is not 
powerful tool for the construction of corn- feasible or even desirable to construct a 
bined radiative transfer models of the model which takes all this into account. 
atmosphere-earth system. The method is For complex systems of this kind, abstrac- 
quite comprehensible, easy to visualize by tions of reality are inevitable and with the 
means of flux interaction diagrams, flexi- rather drastic simplifications in the pre- 
ble in the number of layers and different sent model the accuracy of its simulation 
media, and requires little computer proc- results is not expected to be better than 
essing power. However, the relative sim- 10% or 20% on average. 
plicity of the model also forces a drastic Finally, it should be emphasized that 
abstraction of reality, which in some cases the proposed theory is not meant to sug- 
may lead to unacceptable errors. In ad- gest an improvement of any existing spe- 
dition to this, it should be noted that the cial purpose atmospheric or vegetation 
method relies on a first iteration in the scattering model, but rather first priority 
calculation of the radiance field. This ap- was given to putting both types of model 
proximation is composed of a contribu- into a common framework. Results of 
tion due to single scattering and one due simulation experiments in the future will 
to multiple scattering by interaction with have to establish the necessity of making 
the initially assumed semi-isotropic dif- refinements. 
fuse fluxes. It may be expected, however, 
that this first approximation of the radi- Conclusion 
ance field is already reasonably close to 
the one obtained after convergence to the The five differential equations applied 
final self-consistent flux field (which by Suits to the calculation of the di- 
satisfies the complete radiative transfer rectional canopy reflectance have been 
equation in any direction and at any depth reduced to four generalized differential 
in the layer), at least with regard to aver- equations, implying a four-flux radiative 
age intensity. If the diffuse flux is low transfer theory with nine coefficients. If 
with respect to the direct solar flux, the the nine coefficients of scattering and 
result is dominated by single scattering, extinction are expressed as dimensionless 
which is modeled as accurately as possi- quantities, then the thickness of a layer 
ble. On the other hand, if the diffuse flux becomes a redundant parameter. The 
is relatively high, then multiple scattering generalized differential equations have 
dominates, but in that case the diffuse been applied to a single homogeneous 
flux becomes closer to isotropic, so that scattering layer leading to a solution in 
the assumption of semi-isotropic fluxes terms of various reflectance and transmit- 
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tance factors, which form nine elements Veenman en Zonen, Wageningen, The 
of a layer scattering matrix. Layer scatter- Netherlands. 
ing matrices can be combined easily by Chance, J. E., and Cantu, J. M. (1975), A 
Adding methods to calculate optical par- study of plant canopy reflectance models, 
ameters of multilayer ensembles and they Final report on faculty research grant, Pan 
greatly facilitate the proof of reciprocity American University, Edinburg, TX 78539. 
relations. It  has been demonstrated that Cooper, K., et al. (1982), Reflectance of a 
in principle it is possible to apply the vegetation canopy using the Adding meth- 
method  to atmospheric scattering as well, od, Appl. Opt. 21(22):4112-4118. 
since quantities like the path radiance, Duntley, S. Q. (1942), The optical properties 
sky radiance, and solar and sky irradiance of diffusing materials, 1. Opt. Soc. Am. 
can be explained in terms of elements of 32(2):61-70. 
layer scattering matrices. Application of Kubelka, P., and Munk, F. (1931), Ein Beitrag 
t h e  m e t h o d  to t he  c o m b i n e d  zur Optik der Farbanstriche, Ann. Tech. 
a tmosphere-ear th  system leads to the de- Phys., 11:593-601. 
velopment  of earth observation models, Slater, P. N. (1980), Remote Sensing. Optics 
which can be employed for the study of and Optical Systems, Addison-Wesley, Ad- 
many  problems related to remote sensing vanced Book Program, Reading, MA. 
in the visible to middle infrared region of Suits, G. H. (1972), The calculation of the 
the spectrum, directional reflectance of a vegetative 

canopy, Remote Sens. Environ. 2:117-125. 
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