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Abstract
Landuse/landcover change (LULCC) and climate change (CC) impacts on streamflow 
in high elevated catchments are very important for sustainable management of water 
resources and ecological developments. In this research, a statistical technique was used 
in combination with the Soil and Water Assessment Tool (SWAT) to the Upstream Area 
of the Yangtze River (UAYR). Different performance criteria (e.g., R2, NSE, and PBIAS) 
were used to evaluate the acceptability of the model simulation results. The model pro-
vided satisfactory results for monthly simulations in the calibration (R2; 0.80, NSE; 0.78 
and PBIAS; 22.3%) and the validation period (R2; 0.89, NSE; 0.75 and PBIAS; 19.1%). 
Major landuse/landcover transformations from 1990 to 2005 have occurred from low 
grassland to medium grassland (2%) and wetlands (0.9%), bare land to medium grassland 
(0.2%), glaciers to wetland (16.8%), and high grassland to medium grassland (5.8%). The 
results show that there is an increase in average annual runoff at the Zhimenda station in 
UAYR by 15 mm of, which approximately 98% is caused by climate change and only 2% 
by landuse/landcover change. The changes evapotranspiration are larger due to climate 
change as compared to landuse/landcover change, particularly from August to October. 
Precipitation and temperature have increased during these months. On the contrary, there 
has been a decrease in evapotranspiration and runoff from October to March which depicts 
the intra-annual variations in the vegetation in the study area.

Keywords  Climate change · Land cover · Land use change · Mann Kendall · Qinghai 
Tibet · SWAT model · Yangtze River

1  Introduction

Changes in hydrological processes caused by anthropogenic activities like landuse/land-
cover change and climate change have resulted in multiple environmental problems (Li 
et al. 2019; Mittal et al. 2016; Wang and Cheng 2001b; Wang et al. 2007b, 2014; Yang 
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et al. 2019; Zhang et al. 2019, 2016). Rapid urbanization and human activities have a sig-
nificant impact on landuse and landcover (Zhou et  al. 2013). Landuse/landcover change 
(LULCC) and climate change (CC) ultimately have adverse effects on sustainable develop-
ment and water resources planning and management (Tekleab et al. 2014).

Many researchers investigated the impacts of LULCC on hydrological processes across 
the world (Asl-Rousta et  al. 2018; Chen et  al. 2014; Gong et  al. 2019; Marhaento et  al. 
2017a; Martínez-Salvador and Conesa-García 2020; Nadalromero et al. 2016; Setti et al. 
2020; Tian et al. 2014; Wang et al. 2014; Woldesenbet et al. 2017; Zuo et al. 2016). These 
studies focused on the changes in hydrological processes within river basins using hydro-
logical models (Fossey et al. 2016; Marhaento et al. 2017b; Sajikumar and Remya 2015). 
Some studies used hydrological models in combination with traditional statistical methods 
(like Mann Kendall and regression analysis) (Wagner and Waske 2016; Woldesenbet et al. 
2017; Xiaolian 2014; Yan et al. 2013, 2017; Zhang et al. 2014). These studies showed the 
impacts of landuse/landcover changes on hydrological systems for at basin level. However, 
few studies have paid attention to the attribution of changes in runoff (Yan et al. 2017; Zuo 
et al. 2016).

Recently some researchers concluded that impacts of LULCC and CC on streamflow in 
different regions differed due to variations in soil type, topography, anthropogenic activi-
ties, and climatic conditions (Chang et al. 2014; Wang et al. 2017; Zuo et al. 2016). Brun 
and Band (2000) stated that human developments increased streamflow and high floods, 
whereas it decreased variability in streamflow. Brandes et al. (2005) and Kim et al. (2002) 
found an increase in the extent of impermeable land cover which led to different impacts 
on baseflow and runoff. Moreover, Shi et al. (2014) evaluated that the rise in grassland has 
a negative impact on streamflow in downstream areas compared to upstream areas of the 
Luanhe River basin in China. Similarly, (Zuo et al. 2016) and Yan et al. (2017) concluded 
that LULCC has spatially varying effects on streamflow of the Loess Plateau of China. 
Henceforth, the impacts of LULCC on the hydrological cycle may differ among various 
regions with distinctive hydrological characteristics.

The impacts of LULCC and CC on runoff were evaluated by for instance (Hu et  al. 
2015; Karlsson et al. 2016; Ma et al. 2009; Marhaento et al. 2018; Tomer and Schilling 
2009). They reported that changes in landuse/landcover play a vital role in the variation of 
runoff, especially in subtropical areas. However, Chung et al. (2011) concluded that runoff 
changes significantly more due to climate change compared to landuse/landcover in the 
Anyangcheon watershed in Korea. Li et al. (2012) found that LULCC mainly influences 
runoff as compared to CC. Changming et al. (2003) and Daofeng et al. (2004) described 
that the runoff is primarily affected by CC in the source regions of the Yellow River. Wang 
et al. (2018) reported more significant impacts of LULCC on runoff as compared to CC 
in the Yangtze River delta. Therefore, it is evident from these studies that the impacts of 
LULCC and CC in different study areas replicate that different river basins experienced 
different impacts of climate change and landuse/landcover change due to differences in lan-
duse/landcover and other geographical characteristics. Therefore, there is a need to con-
duct a study in the study area that evaluates the main factors contributing to streamflow 
changes. Therefore, this study separates the impacts of climate change and landuse/land-
cover change on streamflow in the Upstream Area of the Yangtze River (UAYR).

Floods frequently occurred in the Yangtze River basin, causing lives and property losses 
(Ge et al. 2013; Wang et al. 2015; Wei et al. 2013a). The assessment of future changes in 
streamflow for this river basin is very important for the strategic planning and management 
of water resources. Therefore, the quantification of LULCC and CC impacts on runoff in 
the source regions of the Yangtze River is critical to investigate the flow regime behavior 
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due to climatic variability and landcover transformations. In this research, the Upstream 
Area of the Yangtze River (UAYR) was simulated using the semi-distributed physically-
based Soil and Water Assessment Tool (SWAT). The main focus was on the separation of 
the impact of landuse/landcover change (LULCC) and climate change (CC) on runoff by 
using the statistical technique "One Factor at A Time" (OFAT) combined with the SWAT 
model. The questions addressed in this research were; a) how has the climate and landuse/
landcover changed from 1985 to 2016? and b) what are their relative contributions to the 
runoff in UAYR? Though, the novelty of this study to address these questions is defined 
as 1); the application of a statistical conceptual framework and a semi-distributed hydro-
logical model in UAYR, 2); to suggest the modeling approach to assess the importance of 
climate change and landuse/landcover change for runoff changes in the UAYR and 3); to 
understand the dominant factor which controls the runoff in the UAYR.

2 � Material and Methods

2.1 � Study Area

The Yangtze River is the world’s third and china’s longest river with a drainage length of 
6300 km. The Upstream Area of the Yangtze River (UAYR) is located in the middle of 
the Qinghai Tibetan Plateau between longitudes 90°30′ E–97°15′ E, and latitudes 32°30′ 
N–35°50′ N. The total area of the UAYR is 137,000 km2 upstream of Zhimenda gauging 
station (Ahmed et al. 2020b), which is 17% of the area of the Qinghai Tibetan Plateau. There 
are 753 glaciers, which contribute 20% of the total runoff volume of the entire Yangtze River 
(Mao et al. 2016). The landcover consists of medium grassland, natural forest, natural lakes, 
permafrost, and seasonally frozen soils (Dong et al. 2002; Wang and Cheng 2001a; Wang 
et al. 2007a; Yang et al. 2002). There has been an increasing trend during 1964-2014 in the 
temperature variables (i.e., maximum, minimum, mean temperature, and diurnal tempera-
ture range); however, this increase is more pronounced in high elevated areas as compared 
to lower elevations in the UAYR (Ahmed et al. 2020a). Precipitation has also increased by 
1.3 mm year-1 for the Zhimenda sub-basin (Ahmed et al. 2020b). The river flow at Zhimenda 
hydrological station is mainly influenced by precipitation variations (Ahmed et al. 2020b). 
Daily climatic data were collected from the China Meteorological Department and monthly 
streamflow data from the Yangtze River Authority.

2.2 � Modified Mann‑Kendall Test and Sen’s Slope Estimator

The Modified Man-Kendall (MMK) test (Yue and Wang 2004) and Sen’s slope estimator 
(Sen 1968) were used for the detection and quantification of trends in hydro-meteorological 
variables, respectively. The significant values of ρk were used for calculation of a correc-
tion factor n

n∗
s

.

where “n” is the number of observations, “ns*” is the “effective number of observation 
counts for autocorrelation”, and “k” is the autocorrelation function for the rank of the 

(1)
n

n∗
s

= 1 +
2

n(n − 1)(n − 2)
×
∑n−1

k=1
(nk − k)(n − k − 1)(n − k − 2)
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observations. Details of the MMK test are provided in Yue and Wang (2004) and details of 
Sen’s slope estimator in Sen (1968).

2.3 � Soil and Water Assessment Tool (SWAT)

SWAT is a semi-distributed hydrological model developed by (Arnold and Fohrer 2005). It 
has been widely applied to simulate and predict hydrological processes by using the water 
balance principle with varying soil and land use types and management strategies in large 
and complex basins (Abbas and Xuan 2019; Chung et al. 2011; Jin et al. 2019a, b; Karlsson 
et al. 2016; Li et al. 2019; Oliveira et al. 2019). It can also be used in small agricultural water-
sheds to simulate soil erosion and loss (Hussain et al. 2019). SWAT divides a basin into its 
several sub-basins, and each sub-basin is further divided into several hydrological response 
units (HRUs). An HRU is a homogeneous combination of landuse/landcover, soil, and slope 
of the catchment The SWAT model calculates the water balance for each HRU and accumu-
lates outflows from all HRUs at the outlet level of the basin. The water balance equation and 
more detailed explanation is provided in Abbaspour et al. (2007), and Zhang et al. (2019).

The SCS-CN (Soil Conservation Service-Curve Number) method was used for esti-
mating surface runoff using daily rainfall, while evapotranspiration was calculated by the 
Penman-Monteith equation and flow routing with the Muskingum method in SWAT. The 
ArcGIS SWAT (ArcSWAT-2012) model was applied to the UAYR, and the study area 
was divided into 17246 HRUs and 790 sub-basins (Fig. 1). Figure 2 shows the data sets 

Fig. 1   Study area with hydro-meteorological stations in the Upstream Area of the Yangtze River (UAYR)
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required as input for the SWAT model simulation. The SWAT model input database used 
for this study is provided in Table 1.

2.4 � Model Calibration and Validation

The monthly streamflow data of Zhimenda station from 1985-2000 are used for calibration 
and the data from 2001-2016 for validation. The spin-up period is from 1980-1984. The 
auto-calibration tool, SWAT-CUP with the Sequential Uncertainty Fitting version 2 (SUFI-
2) algorithm, was used for calibration (Abbaspour 2013). The model was calibrated repeat-
edly with eight iterations and 500 simulations for each iteration on a daily basis. First, the 
initial ranges of the parameters were determined, and iterations were carried out until the 
optimal values of each parameter were obtained. The calibration was carried out to achieve 
acceptable values of the coefficient of determination (R2) as objective function, and addi-
tionally the Percentage bias (PBIAS) and Nash-Sutcliffe Efficiency (NSE) as evaluation 
criteria in the calibration and validation period (Moriasi et al. 2007).

where QOBS,i , QMEAN , and QSIM,i are observed, mean observed, and simulated flows, respec-
tively. The NSE defines the scattering of observed and simulated values on a 1:1 scale line 
on a graph, while a value of 1 is the best fit (Nash and Sutcliffe 1970). Negative and positive 
values for the percentage bias (PBIAS) represent the model’s under and over-estimation, 
whereas a value of zero is the ideal condition (Moriasi et al. 2007).

(2)R2 =
[
∑N

i=1
(QOBS,i − QMEAN) − (QOBS,i − QMEAN)]

2

∑N

i=1

�

QOBS,i − QMEAN

�2∑N

i=1

�

QSIM,i − QMEAN

�2

(3)PBIAS =

∑N

i=1

�

QSIM,i − QOBS,i

�

∑N

i=1
QOBS,i

× 100

(4)NSE = 1 −

∑N

i=1

�

QOBS,i − QSIM,i

�2

∑N

i=1

�

QSIM,i − QMEAN

�2

Fig. 2   SWAT modeling input raster and forcing data sets
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2.5 � Scheme for Separation of Climate Change and Landuse/Landcover Change 
Impacts

Climate change and Landuse/Landcover change are two largely independent factors 
(Zhang et al. 2008), and both of these might cause changes in the hydrological response 
of a river basin. To separate the impact of CC and LULCC on runoff, we adopted the 
"One Factor at A Time" (OFAT) approach (Yang et  al. 2017a, b). Figure  3 presents 
the streamflow responses to landuse/landcover change and climate change. Changes in 
streamflow due to CC for two landuse/landcover patterns (L1 and L2) are ΔQC1 and 
ΔQC2. ΔQC1 will be closer to ΔQC2 when there is a smaller change in landuse/landcover 
(ΔL), i.e., a smaller difference between L1 and L2. The average of ΔQC1 and ΔQC2 is 
used to denote the impact of CC on hydrological processes (ΔQC). Similarly, changes in 
hydrological components due to landuse/landcover changes under climatic conditions 
C1 and C2 are ΔQL1, and ΔQL2, respectively. The average of ΔQL1 and ΔQL2 denoted 
as ΔQL represents the change due to LULCC. Equation (7) describes the total change in 
the flow regime (ΔQ).

Meteorological data for the periods 1980-2000 (C1) and 2001-2016 (C2) were 
selected in this study. The landuse/landcover maps of 1990 and 2005 represent the lan-
duse/landcover patterns for the two periods, namely L1 and L2, respectively. In Fig. 3; 
C1 (1985-2000), C2 (2001-2016), L1 (1990), and L2 (2005) are the climate and landuse/
landcover input in two periods. ΔC and ΔL are the climate change and the land use/
cover change during the two periods. The hydrological component (i.e., runoff or evapo-
transpiration) values at point A, B, C, and D are QL1

C1
 , QL2

C1
,QL2

C2
 , and QL1

C2
 , respectively. A 

(5)ΔQC =
1

2
(ΔQC1 + ΔQC2) =

1

2
(QL1

C2
− QL1

C1
) + (QL2

C2
− QL2

C1
)

(6)ΔQL =
1

2
(ΔQL1 + ΔQL2) =

1

2
(QL2

C1
− QL1

C1
) + (QL2

C2
− QL1

C2
)

(7)ΔQ = ΔQL + ΔQC = QL2
C2

− QL1
C1

Fig. 3   A schematic diagram of 
separating the effects of climate 
change and landuse change on 
hydrological processes. (modi-
fied from Yang et al. (2017a, b)

187Separation of the Impact of Landuse/Landcover Change and Climate…



1 3

calibrated SWAT model was applied to each of the four scenarios derived from these 
two climate data periods and two landuse/landcover maps (Fig. 4).

3 � Results and Discussion

3.1 � Changes in Hydrological and Meteorological Variables

The annual mean streamflow at Zhimenda hydrological station, total annual precipitation, 
and annual mean temperature was derived from monthly time series. Decadal trend mag-
nitudes of these hydro-meteorological variables during 1980–2016 are shown in Fig. 5. A 
decreasing insignificant (P>0.05) trend for annual precipitation was found during the first 
decade (1980-1990), whereas all other decades showed significantly (P<0.05) increasing 
trends. The highest increase was found during the 2000-2010 period (89.3 mm per decade), 
followed by 85.2 mm per decade during the 2011-2016 period.

For annual mean air temperature, during 1980-1990, 1990-2000, and 2010-2016 dec-
ades, a decreasing trend was found, while for 2000-2010, an increasing trend was observed. 
Insignificant (P>0.05) trends were found during 1980-1990 and 1990-2000, whereas dur-
ing the 2000-2010 and 2010-2016 decades, significant trends in mean temperature were 
observed. A significant trend of 1.32 ℃ per decade during 2000-2010 and -0.70 ℃ per 
decade occurred during 2010-2016.

Annual streamflow decreased during 1980-1990 and 2011-2016 decades, while for 
1990-2000 and 2000-2010, it increased. The significantly increasing trend rate was 91.7 m3 
sec-1 decade-1 during 2000-2010, and a significantly decreasing trend with a magnitude of 
-129.9 m3 sec-1 decade-1 was observed during 2010-2016.

Fig. 4   Schematic diagram adopted for SWAT modelling results of all scenarios
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The MMK test was carried out for the entire study period to analyze statistical reli-
ability, and the results are presented in Table  2. The monthly precipitation significantly 
increased (P<0.05) in February, May, June, October, and November, whereas it decreased 
significantly in December. On the other hand, temperature found significantly increas-
ing trend throughout the year and the magnitude of this rising trend was larger during the 
winter months (January, February, and December) compared to the rest of the year. Mean 
monthly flows showed insignificant trends during May, July, and December, while for the 
rest of the year, they have a significantly increasing trend (Table 2).

3.2 � Changes in Landuse/Landcover

Table 3 and Fig. 6 show the landuse/landcover changes (LULCC) in the Upstream Area of 
the Yangtze River (UAYR) between 1990 and 2005. The dominant landuse/landcover was 
low grassland with more than 45% coverage. Bare land is the second dominant landuse/
landcover in both periods, covering about 24%. Medium grassland, water, high grassland, 
and wetlands are the other significant landcover types in the UAYR (Table 3). The landuse/
landcover during 1990 was compared to the landuse/landcover in 2005, and it was found 
that the area with low grassland, water, high grassland, shrub, and sparse woodland has 
decreased by 105 km2, 87 km2, 78 km2, 19 km2, and 4 km2, respectively. Moreover, the 
area with medium grassland, bare land, and wetland has increased by 113 km2, 84 km2and 
46 km2, respectively.

Fig. 5   Temporal changes in annual precipitation (mm/decade), temperature (℃/decade) and runoff (m3/sec/
decade) from 1980 – 2016. S denotes the trend magnitude per decade whereas bold values represent a sig-
nificant at 0.05 confidence level
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A LULCC transformation matrix is presented in Table 4 and Fig. 7, which shows the 
transformations of the different landuse types. Keeping in view the objective of this study, 
we focused on the transformation of the major landuse/landcover changes. These major 
landuse/landcover changes may have significant impacts on hydrological processes. This 
analysis showed that high grassland has changed to bare land (603.6 km2), low grassland 
(559.1 km2), and medium grassland (351.28 km2), which can be attributed to large‐scale 
deforestation programs in early 2000 (Liang et al. 2015). Bare-land has increased mainly 
by the transformation from low grassland (5182.7 km2), medium grassland (2433. 8 km2), 
and water (943.9 km2). Feng et al. (2015) reported that the changes in unused land were 
caused by climate change.

Table 2   Modified Mann Kendall test statistic results of precipitation, mean temperature and streamflow 
during 1980-2016

Bold values show the significantly increasing/decreasing trends at a 5% confidence level

Precipitation (mm) Temperature (℃) Streamflow (m3/sec)

Month Z Trend / Decade Z Trend / Decade Z Trend / Decade

Jan -0.48 -0.05 6.08 0.78 3.00 4.2
Feb 2.5 0.22 9.83 0.92 3.09 2.7
Mar 0.13 0.01 7.89 0.36 2.92 3.7
Apr 1.43 0.68 6.25 0.46 4.03 14
May 7.40 4.49 8.49 0.32 1.92 14.6
Jun 8.58 4.46 7.68 0.42 3.55 35
July 1.80 6.01 12.47 0.57 -0.28 -16.7
Aug 4.58 6.21 12.07 0.56 3.30 97.8
Sep 1.03 1.23 6.06 0.45 2.84 82.4
Oct 4.54 2.09 6.86 0.38 2.21 46.4
Nov 4.9102 0.36 6.0268 0.48 3.32 19.3
Dec -2.4353 -0.19 7.0196 0.62 1.49 3.70

Table 3   Changes in landuse and landcover in the Upstream area of the Yangtze River (USYZ) between 
1990 and 2005

Landuse
/Landcover

1990s 2005s Change

Area (km2) Area (%) Area (km2) Area (%) Area (km2) Area (%)

Dry land 55 0.040 62 0.04 7 0.005
Natural Forest 21 0.015 21 0.02 0 0.000
Shrub 355 0.25 336 0.24 -19 -0.014
Sparse woodland 106 0.08 102 0.07 -4 -0.003
High grassland 4127 2.94 4049 2.88 -78 -0.056
Medium grassland 26536 18.91 26649 18.99 113 0.081
Low grassland 63534 45.28 63429 45.21 -105 -0.075
Water 6745 4.80 6658 4.74 -87 -0.062
Glacier 1187 0.84 1212 0.86 25 0.018
Settlement 13 0.009 15 0.01 2 0.001
Bare land 33867 24.14 33951 24.20 84 0.060
Wet land 3761 2.68 3807 2.71 46 0.033
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Dominant landuse/landcover transformations, having changed particular landuse types 
with more than 15 km2 from 1990 to 2005, are presented in Table 5. These dominant lan-
duse changes were mainly from low grassland to medium grassland, low grassland and 
sparse woodland to wetlands (unused land), high grassland to medium grassland, and 
medium grassland to water. Most of these changes will ultimately increase the canopy 
cover, which leads to more transpiration, interception, and less streamflow.

Fig. 6   Land use/cover pattern for 1990 and 2005 in the Upstream Area of the Yangtze River (UAYR)

191Separation of the Impact of Landuse/Landcover Change and Climate…



1 3

Ta
bl

e 
4  

L
an

du
se

/la
nd

co
ve

r t
ra

ns
fo

rm
at

io
n 

m
at

rix
 fr

om
 1

99
0 

to
 2

00
 in

 U
SY

Z

La
nd

us
e/

La
nd

co
ve

r 
20

05
 (k

m
2 )

Tr
an

sf
or

m
at

io
n 

M
at

ri
x

Ba
re

 
La

nd
D

ry
 

La
nd

G
la

ci
er

N
at

ur
al

 
Fo

re
st

H
ig

h 
G

ra
ss

la
nd

Lo
w

 
G

ra
ss

la
nd

M
ed

iu
m

 
G

ra
ss

la
nd

Se
ttl

em
en

t
Sh

ru
b

Sp
ar

se
 

W
oo

dl
an

d
W

at
er

W
et

 L
an

d
G

ra
nd

 
To

ta
l

La
nd

us
e/

 
La

nd
-

co
ve

r 
19

90
 

(k
m

2 )

Ba
re

La
nd

24
07

9
3

14
9

1
60

4
51

70
24

89
1

31
8

92
9

39
3

33
85

6

D
ry

La
nd

0
14

0
0

0
22

14
0

2
0

2
0

54
.2

8

G
la

ci
er

13
5

0
84

5
0

4
13

2
11

0
0

0
4

37
11

68
N

at
ur

al
Fo

re
st

2
0

0
9

0
1

8
1

0
0

0
0

20

H
ig

h
G

ra
ss

la
nd

64
0

1
4

0
24

04
55

4
38

8
0

0
0

55
21

40
68

Lo
w

G
ra

ss
la

nd
51

83
20

17
5

0
55

9
48

51
4

74
33

3
93

17
19

36
97

9
64

91
2

M
ed

iu
m

G
ra

ss
la

nd
24

34
7

6
8

35
1

73
28

14
93

6
5

11
3

25
39

0
23

9
25

84
1

Se
ttl

em
en

t
1

3
0

0
0

2
5

0
0

1
1

0
12

Sh
ru

b
12

6
0

1
5

87
14

0
4

73
3

8
0

34
0

Sp
ar

se
W

oo
dl

an
d

5
0

0
1

0
14

38
0

7
42

0
0

10
5

W
at

er
94

4
6

2
1

42
20

27
33

9
0

2
3

27
18

10
5

61
89

W
et

La
nd

44
8

0
14

0
36

93
3

23
1

0
0

0
85

18
19

35
65

G
ra

nd
 T

ot
al

33
88

2
60

11
96

20
40

04
64

78
6

26
03

0
13

32
0

99
61

28
35

92
14

01
35

192 N. Ahmed et al.



1 3

3.3 � Model Calibration and Validation

Simulated runoff is overestimated (e.g., in August 1989 and August 1993) and under-
estimated (e.g., in August 2005 and September 2014) during peak flows (Fig. 9). The 
monthly R2, NSE, and PBIAS values for the calibration period (1985-2016) are 0.80, 
0.78, and 22.3%, respectively, and for the validation period (2001-2016), the R2, NSE, 
and PBIAS values are 0.83, 0.75 and 19.1%, respectively (Fig.  8, Table  6). These 
results indicate that the SWAT model is a robust simulation tool that can be used to 
simulate hydrological processes and to assess climate change and landuse change 
impacts in the upstream area of the Yangtze River. The results presented in Table  6 

Fig. 7   Transition of landuse/landcover from 1990 to 2005 in UAYR​

Table 5   Major landuse/landcover 
transformations from 1990 to 
2005 in USYZ

Major LULCC Transformations Net Changed 
Area (km2)

Area 
changed 
(%)

Low Grassland to Medium Grassland 104.5 2.0
Bare Land to Medium Grassland 54.9 0.2
Medium Grassland to Water 51.2 2.1
Low Grassland to Wet Land 45.8 0.9
High Grassland to Medium Grassland 36.9 5.8
Glacier to Wet Land 22.8 16.8
Sparse Woodland to Wet Land 20.1 427.4
Bare Land to Shrub 18.2 0.1
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indicate that the water balance and the basic rainfall-runoff relationships, including the 
intra-annual variabilities, are well captured. The results of selected performance crite-
ria are within the range of "good performance," as classified by Moriasi et al. (2007) 
and provided in Table 7.

3.4 � Impacts of Climate Change and Landuse/Landcover Change on Runoff

In this study, the impacts of climate change (CC) and landuse/landcover change (LULCC) 
on streamflow were determined using simulated results rather than observed data (Yang 
et al. 2017a). Table 8 presents the simulated streamflow for all four scenarios, as described 
in the methodology section. It shows the combination of different LULCC and CC impacts 
for 1990 and 2005. The impact of climate change on runoff was estimated by using Eq. (5) 
using the differences between scenario I and II, and scenario III and IV. The results show 
an increase in runoff by 15 mm, which is approximately 98% of the change in average 
annual runoff at Zhimenda station in UAYR. The LULCC impact on runoff was estimated 
by using Eq. (6). The results reveal that landuse/landcover change also increased runoff, 
but by only 0.3 mm, which accounts for approximately 2% of the change in average annual 
runoff in UAYR. These findings reveal that the impact of climate change is much larger as 
compared to landuse/landcover change in the UAYR.

The intra-annual variations in ET and runoff are presented in Fig. 9. It is noteworthy 
that there is a significant increase in ET and runoff from August to October, while there 
is a remarkable decrease in ET and runoff values in May to July due to climate change 

Fig. 8   Monthly observed and simulated runoff and observed precipitation during (a) Calibration period 
(1985-2000), (b) Validation period (2001-2016))
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(Fig.  9a). However, the lowest values of ET and runoff are observed in June. Precipita-
tion and temperature have also significantly increased during these months (i.e., May-July). 
The ET values are positively correlated with the runoff changes due to CC from August to 
October. The variations in ET and runoff due to LULCC are shown in Fig. 9b. ET and run-
off values are gradually increasing from May to September, however they are decreasing 
from October to March, which illustrates the intra-annual variations in the vegetation in the 
study area. Moreover, ET and runoff are also positively correlated from May to September 
as it is the growing season in the study area.

These increasing and decreasing values of runoff and evapotranspiration are a clear rep-
resentation of intra-annual variations of precipitation. During the study period, the trans-
formation of landuse/landcover from lower grassland to medium grassland and wetland 
could have led to an increase in evapotranspiration (Yang et al. 2017a). The impact of cli-
mate change on runoff is higher as compared to landuse/landcover change, which is incon-
sistent with the findings of (Hu et al. 2015; Karlsson et al. 2016; Ma et al. 2009; Tomer and 
Schilling 2009).

They investigated that changes in landuse/landcover play a vital role in the variation of 
runoff, especially in (sub)tropical areas. However, Changming et al. (2003) and Daofeng 

Table 6   Optimal values with their ranges for sensitive parameters used in calibration

CN2 Moisture condition SCS curve number, ALPHA_BF Baseflow recession constant, GW_DELAY 
Groundwater delay coefficient (days), GWQMN Threshold water level in shallow aquifer for base flow 
(mm), SMFMX Melt factor for snow in June (mm H2O/˚C-day), SMFMN Melt factor for snow in December 
(mm H2O/˚C-day), SMTMP Snow melt base temperature (˚C), SFTMP Snowfall temperature (˚C), Snow-
pack temp lag factor, ECSO Soil evaporation compensation factor, HRU_SLP average slope steepness, 
SOL_K Saturated hydraulic conductivity (mm/h), SOL_BD Soil bulk density (g/cm-3), SNOCOVMX Areal 
snow coverage threshold at 100%. “v” and “r” at the start of each parameter represents parameter value is 
“replaced a given value” and “multiplied by (1+ a given value)” respectively

Sr. No. Parameters Optimal Value Min. Value Max. Value

1. r__CN2.mgt -0.5 -0.7 0.2
2. v__ALPHA_BF.gw 0.4 0 1
3. v__GW_DELAY.gw 30 70 150
4. v__GWQMN.gw 0.9 0 2.5
5. v__SMFMX.bsn 8 6 23
6. v__SMFMN.bsn 2.5 5 14
7. v__SMTMP.bsn 2 0 8
8. v__SFTMP.bsn 1 -6 2
9. v__TIMP.bsn 0.6 0 1
10. v__ESCO.hru 0.95 0 1
11. v__HRU_SLP.hru 0.5 0 1
12. r__SOL_K().sol 0.1 -0.5 1
13. r__SOL_BD().sol 1.25 -0.3 1
14. v__SNOCOVMX.bsn 58 0 200

Table 7   Performance criteria 
results for calibration and 
validation of SWAT model

Period R2 NSE PBIAS

Calibration (1985-2000) 0.80 0.78 22.3%
Validation (2001-2016) 0.83 0.75 19.1 %
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et  al. (2004) concluded that runoff is mainly affected by climate change in the source 
regions of the Yellow River, and this is similar to the findings of this study for the upstream 
area of the Yangtze River. The findings of Wang et al. (2018) in the delta area of the Yang-
tze River are also consistent with the findings of our study. It is evident from these stud-
ies that these two factors (landuse/landcover and climate) resulted in different impacts on 
hydrological processes in various study areas depending on the spatial heterogeneity of 
these factors and the characteristics of the study areas (size, slope, soil types, etc.).

This study reveals that the results of the separation of climate change and landuse/
landcover change impacts on runoff were more accurate and acceptable (Hu et  al. 2015; 
Wei et  al. 2013b). A comprehensive approach that combines the effects of landuse/land-
cover and climate change is essential to assess the impact on hydrological processes. The 

Table 8   Simulated average annual precipitation (mm), runoff (mm) and under different Climate Change 
(CC) and Landuse/Landcover change (LULCC) scenarios

Scenarios Climate data Landuse/
Landcover

Precipitation
(mm)

Runoff
(mm)

ΔQ due to 
CC and 
LULCC
(mm)

Runoff change
Percent%

S1 1985-2000 1990 330.2 52.9 - - -

S2 1985-2000 2005 331.3 53.4 ΔQC 15.0 98
S3 2001-2016 1990 376.6 68.1 ΔQL 0.3 2
S4 2001-2016 2005 376.6 68.3 ΔQ 15.3 100

Fig. 9   Monthly changes in the evapotranspiration and runoff due to (a) Climate change, (b) Landuse/Land-
cover change
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various uncertainties may affect the modeling results and the identification and separation 
of impacts. For example, parameter selection is an important source of uncertainty in most 
hydrological models, which may affect the separation (Li et  al. 2009; Tian et  al. 2014). 
Moreover, selecting the appropriate hydrological model will also affect the results (Karlsson 
et al. 2016). It is preferable to use multiple models in future studies to analyze the separation 
of climate change and landuse/landcover impacts on runoff.

4 � Conclusion

In the present study, the SWAT model was used to separate the impacts of climate change 
and landuse/landcover change on runoff in the Upstream Area of the Yangtze River 
(UAYR). This research combines the robustness of the SWAT model for the separation of 
the two driving factors and statistical approaches. The main conclusions achieved from this 
study are:

•	 There has been an increase in average annual runoff at Zhimenda station in UAYR of 
15 mm in the period 1985-2016, where approximately 98% of the change has been 
caused by climate change and only about 2% has been caused by landuse/landcover 
change.

•	 There has been a significant increase in evapotranspiration (ET) and runoff from 
August to October, while there has been a remarkable decrease in ET and runoff values 
in May to July due to climate change.. Precipitation and temperature have also signifi-
cantly increased during these months.

•	 Simulated runoff is overestimated (e.g., in August 1989 and August 1993) and under-
estimated (e.g., in August 2005 and September 2014) during peak flows. The Objective 
function (R2) was 0.80 and 0.83 for calibration and validation period, respectively. In 
addition, NSE and PBIAS found 0.78, 22.3 % (for calibration) and 0.75 and 19.1% (for 
validation) respectively.
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