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  Probabilistic analysis of a thermosetting 
pultrusion process    
   Abstract:    In the present study, the effects of uncertain-

ties in the material properties of the processing compos-

ite material and the resin kinetic parameters, as well as 

process parameters such as pulling speed and inlet tem-

perature, on product quality (exit degree of cure) are 

investigated for a pultrusion process. A new application 

for the probabilistic analysis of the pultrusion process is 

introduced using the response surface method (RSM). The 

results obtained from the RSM are validated by employing 

the Monte Carlo simulation (MCS) with Latin hypercube 

sampling technique. According to the results obtained 

from both methods, the variations in the activation energy 

as well as the density of the resin are found to have a rela-

tively stronger influence on the centerline degree of cure 

at the exit. Moreover, different execution strategies are 

examined for the MCS to investigate their effects on the 

accuracy of the random output parameter.  
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1     Introduction 
 Pultrusion is a continuous process of manufacturing com-

posite profiles having a constant cross-sectional area. It 

has been widely used for producing high-strength and 

lightweight composite structures such as wind turbine 

blades, ballistic resistance panels, spars of ship hulls, 

thin-wall panel joiners, door/window frames, and drive 

shaft of vehicles. A schematic representation of the 

process can be seen in  Figure 1  . The reinforcing material 

(rovings/mats) and the resin matrix are pulled together 

via a pulling mechanism through the preforming guiders. 

The wetted reinforcements advance through a heating die 

and then the cured product is cut into desired final length 

by a saw mechanism. 

 Virtual manufacturing, in essence applying a numeri-

cal process simulation, is an important step toward 

designing enduring and better-functioning products in 

the pultrusion process as well as in other manufacturing 

processes. There have been several numerical modeling 

studies specific to the thermo-chemical simulation of the 

pultrusion process in the literature. Generally, numeri-

cal techniques such as the finite difference method and 

the finite element (FE) method with control volume (CV) 

technique or the nodal CV (NCV) technique have been 

used for the simulation of the process  [1 – 7] . According 

to the results obtained in  [1 – 7] , similar temperature and 

cure degree behaviors have been found. For example, 

the temperature of the composite initially lags behind 

the die temperature; however, the composite tempera-

ture exceeds the die temperature during curing due to the 

internal heat generation of the resin. As a means of sup-

porting the numerical thermo-chemical modeling of the 

pultrusion process, experimental studies of various com-

posite profiles have been carried out in  [8 – 13] . However, 

the studies  [1 – 14]  are limited by the deterministic pre-

scription of the process and its material parameters. The 

uncertainties in the simulation of composite manufactur-

ing processes, particularly resin transfer molding (RTM), 

have been studied by several researchers  [15 – 18] . In  [15] , 

the effect of variation in the isothermal curing tempera-

ture and the resin kinetic parameters on cure time was 

investigated for the RTM process using the Latin hyper-

cube sampling (LHS) technique. It was concluded that the 

statistical variation in the curing temperature was found 

to have a greater impact on the curing time as compared 

with the change in the resin kinetic parameters. The same 

sampling technique was used in  [16]  in order to explore 

the uncertainties in the preform permeability, the resin 

viscosity, and the kinetic parameters for the RTM process. 

The random output variables were determined as the fill 

time and the maximum cure inside the composite at the 

end of the non-isothermal filling process during RTM. In 

 [17] , the probability of process-induced deformations of a 
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composite part exceeding a specified allowable tolerance 

was calculated by using the first-order reliability method 

(FORM) integrated with a deterministic modeling tool, 

which simulates the various physical phenomena during 

processing of composite structures. In  [18] , the sensitivi-

ties and the probabilities of the maximum and minimum 

process temperatures and the cure degree were investi-

gated for the prescribed random input variables by imple-

menting a gradient-based reliability analysis, i.e., FORM. 

Following the sensitivity analysis, an efficient two-level 

reliability-based design optimization approach was per-

formed in order to minimize the cure cycle time and asso-

ciated manufacturing cost for an RTM-kind process. Apart 

from the composite manufacturing processes, probabilis-

tic analyses of various engineering applications  [19 – 23]  

have been investigated by using the probabilistic design 

system (PDS) toolbox of ANSYS  [24] . 

 In the present paper, a new application for the 

probabilistic analysis of the pultrusion process is pre-

sented. The effects of the uncertainties in the pultrusion 

process parameters on the degree of cure at the die exit 

were investigated. The deterministic analysis was based 

on a thermo-chemical model of the pultruded AS4/Epon 

9420/9470/537 carbon fiber/epoxy composite rod. It was 

performed for validation purposes using the FE with 

NCV (FE/NCV) method. For the probabilistic analysis, 

Monte Carlo simulation (MCS) and the response surface 

method (RSM), which is the first contribution of its kind in 

the numerical modeling of pultrusion process, were per-

formed. The LHS technique was used in the MSC and the 

RSM for generating the sample data. For this purpose, the 

PDS toolbox of ANSYS was utilized incorporated with a 

parametric deterministic model developed by the authors 

using its own scripting language, the ANSYS Parametric 

Design Language (APDL). This approach gives a better 

understanding of the effect of the variations or uncertain-

ties inherently present in the process and makes it easier 

or more practical to predict how large and sensitive the 

scatter of the output parameters (e.g., exit degree of cure) 

with respect to scatter in the input design parameters is. 

In other words, this study provides practical information 

about the robustness of the process model.  

Fibers Fiber guides

Resin bath

Pulling direction

Heating die Puller Saw

 Figure 1      Schematic view of a pultrusion process.    

2    Governing equations 
 The steady-state heat transfer equation in a two-dimen-

sional cylindrical coordinate system for the composite rod 

can be written as follows  [4] : 
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 where  T  is the temperature,  u  is the pulling speed,   ρ   is 

the density,  C  
 p 
  is the specific heat, and  k  

 z 
  and  k  

 r 
  are the 

thermal conductivities in the axial or pulling direction ( z ) 

and in the radial direction ( r ), respectively. Lumped mate-

rial properties are used for the pultruded composite rod 

and are assumed to be constant. The internal heat genera-

tion  q  (W/m 3 ) due to the exothermic reaction of the epoxy 

resin can be expressed as  [8]  

    
(1- ) ,f rq V Qρ=
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 where  V  
 f   is the fiber volume fraction,   ρ   

 r 
  is the density of 

the epoxy resin, and  Q  is the specific heat generation 

(W/kg) due to the exothermic cure reaction of the resin. 

 The expression of the degree of cure (  α  ) can be written 

as the ratio of the amount of heat generated [ H ( t )] during 

curing to the total heat of reaction  H  
 tr  , i.e.,   α    =   H ( t )/ H  

 tr  . 

The rate of the degree of cure,  R  
 r  , can be written as an 

 Arrhenius type of equation  [8] : 
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 where  K  o  is the preexponential constant,  E  is the  activation 

energy,  R  is the universal gas constant, and  n  is the order 

of reaction (kinetic exponent).  K  o ,  E , and  n  can be obtained 

by curve-fitting procedure applied to the experimental 

data evaluated using the differential scanning calorimetry 

(DSC) tests  [8] . As a result,  Q  [Eq. (2)] can be expressed as 

follows: 
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 By using the chain rule, the rate of degree of cure (d  α  /d t ) 
can be expressed as 
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,

d d
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 and from Eq. (5), the steady-state resin kinetics equation 

is written as 
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 which is used in the thermo-chemical analysis of the pul-

trusion process.  

3    Numerical implementation 
 The FE/NCV method, which is well documented in the lit-

erature  [2, 3] , was implemented for the steady-state simula-

tion of the pultrusion of the composite rod using the APDL 

 [24] . The internal heat generation [Eq. (2)], together with 

the resin kinetics equation [Eq. (3)], was coupled with the 

energy equation [Eq. (1)] in an explicit manner in order to 

obtain a fast numerical procedure since internal heat gen-

eration is highly nonlinear  [25] . The degree of cure was sub-

sequently updated explicitly for each NCV using Eq. (6) in 

its discretized form. The upwind scheme was used for the 

space discretization of the cure degree ( u ∂  α  /  ∂ z ) in Eq. (6) 

in order to obtain a stable solution. The degree of cure, as 

well as the internal heat generation, was updated explicitly 

at each node, as mentioned before, according to the calcu-

lated steady-state nodal temperature data in ANSYS.  

4     Validation case: deterministic 
analysis 

 The deterministic thermo-chemical pultrusion simula-

tion of a composite rod taken from the literature  [8]  was 

performed as a validation case. The temperature and the 

cure degree distributions were predicted with a given 

die wall temperature profile based on the experimental 

work of Valliappan et  al.  [8] . The model geometry and 

the boundary conditions are shown in  Figure 2   (left). An 

axi-symmetrical model was used since the die wall tem-

perature profile [ T  
 w 
 ( z ) in Figure 2] was assumed to be con-

stant throughout the periphery of the rod. Graphite fiber 

reinforcement (Hercules AS4-12K) and epoxy resin (SHELL 

EPON9420/9470/537) system were used for the compos-

ite. The thermo-physical properties of the composite are 

taken from [8] and given in Figure 2 (right). The resin 

kinetic parameters used in the simulations were the fol-

lowing  [8] :  H  
 tr 
   =  323,700 (J/kg),  K  

0
   =  191,400 (1/s),  E   =  60,500 

(J/mol), and  n   =  1.69. The preheating temperature of the 

composite rod, i.e.,  T  
 left   in Figure 2, was taken as the 

resin bath temperature, 38 ° C. The initial cure degree of 

the composite was assumed to be 0. In order to reach 

the steady state, the convergence limits were defined as 

the maximum temperature and cure degree difference 

between the new time step and the old time step, and 

these were set to 0.001 ° C and 0.0001, respectively. 

 The steady-state temperature and cure degree dis-

tributions were predicted using the deterministic model 

with a pulling speed of 30 cm/min. The centerline temper-

ature and degree of cure profiles are depicted in  Figure 3  . 

It is seen that the results were found to agree well with 

the experimental data (for temperature) and the predicted 

data (for the degree of cure) provided in  [8] . This shows 

that the employed deterministic thermo-chemical model 

gave converged results with a reliable solution. It is seen 

in Figure 3 that the centerline temperature of the compos-

ite became higher than the die wall temperature in a dis-

tance of approximately 380 mm from the die inlet due to 

the internal heat generation. The peak temperature of the 

composite was found to be approximately 205 ° C, and the 

centerline degree of cure at exit was calculated as 0.844.  

5    Probabilistic analysis 

5.1    Probabilistic methods 

 In the present work, two different probabilistic approaches, 

in particular, the MCS and the RSM, were implemented 

using the ANSYS PDS toolbox. The MCS is a sampling-

based method, whereas the RSM is a curve fitting or 

surrogate modeling method that is used to approximate 

 Figure 2      Schematic view of the pultrusion model of the composite rod and the corresponding boundary conditions (left). Material proper-

ties of the composite rod (right).    
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a function in terms of its variables. The details of these 

methods are explained in the following. 

5.1.1    MCS 

 The MCS is one of the most common sampling techniques 

used for uncertainty or sensitivity analyses. It is based on 

random sampling of the input parameters for each simu-

lation loop. The simulation loop or sample mentioned 

here indicates the iterative execution of a random param-

eter set. The LHS is selected for the sampling method 

since no overlap among the sample points is guaranteed, 

which provides more random (in other words, distributed 

wide apart) sampling procedure than the direct sampling 

technique does  [20, 24] . Assuming that the deterministic 

model is correct, the MCS theoretically converges to the 
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 Figure 3      Predicted temperature (top) and degree of cure profiles 

(bottom) at the centerline of the composite rod.    

correct probabilistic results with an increasing number 

of samples. This also forces the tails of a distribution to 

participate in the sampling process, which is often not the 

case in real-world applications having a limited number of 

samples  [19] . In order to capture the tails in a probability 

density function, an extremely large number of simula-

tions is required for the MCS. For a given probability of 

failure ( p  
 f 
 ), the minimum number of sample points,  N  

 min 
 , 

required for the MCS is defined as  [26, 27]  

    

2

1-
,

f
min

f

p
N

p δ
∝

 

(7)

 

 where   δ   is the desired accuracy of the simulation result. 

It is seen that  N  
 min 

  is inversely proportional with  p  
 f   

and   δ  . For instance, for a given probability of 0.9999 

( p  
 f    =  1-0.9999  =  0.0001) in the tail, around 1 million sample 

points are needed in order to ensure a 10% accuracy of 

the estimated result from the MCS. It should be noted that 

the main focus of the present work was not on the evalu-

ation of very low probabilities (tail probabilities). Despite 

the high computational cost, the MCS does not use any 

assumptions or simplifications on the input-output 

parameters, which makes it easy to use. 

 The results of the MCS are based on the statistical 

procedures such as calculation of the mean, the stand-

ard deviation, the cumulative density functions, and the 

correlations. The cumulative distribution function (CDF), 

here denoted as  F  
 i  , of a sampled data is derived from the 

cumulative binomial distribution function  [19, 24, 28] : 

    

-(1- ) 0.5,
N

k k N k
i i

k i

N
F F

k=

⎛ ⎞
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⎝ ⎠
∑
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 where the CDF of the  i th sample data out of  N , i.e.,  F  
 i  , is 

solved numerically in ANSYS for the data sorted in ascend-

ing order. 

 In the present study, a linear correlation was used 

between the two random variables, e.g., the  i th random 

input variable and the  i th output variable. The correlation 

coefficients are calculated according to the following rela-

tion in ANSYS  [24] : 

    

2 2

( - )( - )

,

( - ) ( - )

n

i i
i

p n n

i i
i i

x x y y
r

x x y y
=

∑

∑ ∑
 

(9)

 

 where  r  
 p 
  is the correlation coefficient between the two 

random variables  x  and  y ,  n  is the sample size, and  x ̅; and 

 y ̅; are the mean of the sample data  x  and  y , respectively.  
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5.1.2    RSM 

 A true input-output relationship used in the MCS is 

replaced with an approximation function in the RSM. The 

response surfaces are generated with the use of conven-

tional design of experiments (DOE). The accuracy of the 

results depends on the number of sample points or the 

DOEs employed in the RSM. There are two main steps in 

the RSM: The first one is the calculation of the random 

output parameters by performing sufficient simulation 

loops based on the sample points, i.e., generation of the 

response surfaces with the DOEs. The sample points or 

the DOEs are located in the space of the random input 

variables where the approximated mathematical function 

can be obtained most efficiently. The second step is the 

application of a linear regression analysis to determine 

the coefficients of the approximation function, which is 

typically a quadratic polynomial defined as 

    
0

1 1 1

ˆ ,
n n n

i i ij i j
i i j

y c c x c x x
= = =

= + +∑ ∑∑
 (10) 

 where   ŷ  is the approximation function,  n  is the sample size, 

 x  
 i   values are the random input variables,  c  

0
  is the coefficient 

of the constant term,  c  
 i   values are the coefficients of the 

linear terms, and  c  
 ij   values are the coefficients of the quad-

ratic terms. In order to calculate these coefficients, a linear 

regression procedure  [29]  is utilized such that the sum of the 

squared differences between the true simulation results and 

the values of the approximation function, i.e., the magni-

tude of the residual, is minimized. Once the coefficients in 

Eq. (10) are estimated, then Eq. (10) can be used directly for 

the calculation of the output parameter instead of looping 

through the deterministic FE model. Hence, evaluating the 

quadratic polynomial thousands of times may require only 

a couple of seconds of computation time, whereas the use of 

the original model may take minutes to hours. This approxi-

mation method is sufficient in many cases of engineering 

applications if the output or response parameter is a con-

tinuous or smooth function of the input variables. 

 A central composite design (CCD) is one of the com-

monly used and popular designs for fitting second-order 

response surfaces (quadratic polynomials). It is widely 

used in practice due to its efficiency in terms of the number 

of required function evaluations  [29] . The total number of 

sample points is determined according to the following 

relation for the CCD design in ANSYS  [24] : 

    
-2 2 1,n f n+ +

 (11) 

 which is used to form the corresponding  n -dimensional 

hypercube (response surface) for the number of input 

variables  n . Here,  f  is the fraction of the factorial points 

used in ANSYS based on  n   [24, 29] . In other words, a CCD 

is composed of two axis points per input variable (i.e., 2 n ), 

factorial points at the corner of the hypercube (i.e., 2  n-f    ), and 

one central point located at the center of the hypercube.   

5.2    Description of the probabilistic model 

 For the probabilistic analysis of the pultrusion process, 

the pulling speed, fiber volume ratio, inlet temperature, 

all the characteristic material properties, and the resin 

kinetic parameters are considered as the random input 

parameters (RIPs).  Table 1   summarizes the total of 14 RIPs 

and their distributions. Here, GAUSS denotes the Gauss-

ian (normal) distribution with a mean (  μ  ) and a standard 

deviation (  σ  ), where   σ    =    μ    ×   COV  and  COV  is the coefficient 

of variation. In general, the statistical characteristics are 

obtained from extensive data collection and data analy-

sis. In the present study, the mean values of the RIPs were 

taken from the deterministic analysis and the standard 

deviations were estimated based on engineering intuition 

and common available data from the literature  [18, 30] . 

The first three RIPs (process parameters) are more con-

trollable than the material properties, i.e., RIPs between 4 

and 10 (Table 1), and hence, the  COV s of the first three RIPs 

selected were lower than the  COV s of the RIPs between 4 

and 10. The last four RIPs are related with the resin kinetic 

parameters, which are obtained from a curve-fitting pro-

cedure of the DSC data where deviation from the fitting 

may exist  [31, 32]  (i.e., 0.01 is used for  COV  in this work). 

The centerline degree of cure at the exit (CDOCE) is taken 

as the random output response since it directly affects the 

expected mechanical properties of the product as well as 

the possibility of the defects. 

 Two different probabilistic case studies (case 1 and 

case 2), each having two subcases, were performed, and 

the summary of these case studies is given in  Table 2  . The 

total number of DOEs used in the RSM was calculated from 

the relation given in Eq. (11). In Eq. (11),  f  was specified as 

3 and 6 for case 1 ( n   =  10) and case 2 ( n   =  14), respectively, as 

reported in ANSYS  [24] . As a result, 149 sample points for 

case 1 and 285 sample points for case 2 were obtained from 

the expression presented in Eq. (11) for the CCD design in 

the RSM. The details of the case studies are explained in 

the following.

A.    Case 1: Only the first 10 RIPs were used for the MCS 

(case 1.1) and the RSM (case 1.2) in order to determine 

the effect of the variation in the process parameters 

and the material properties on the variation of the 

output parameter.  
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6      I. Baran et al.: Probabilistic analysis of a thermosetting pultrusion process

 –   Case 1.1: An MCS having a total of 1000 simulations 

(samples) was performed based on three different 

MCS options to investigate their effects on the accu-

racy of the output parameter:  

 –   Case 1.1a (full MCS): 1000 simulations were divided into 

one repetition (cycle) such that all 1000 samples were 

initially selected at once by using the LHS technique.  

 –   Case 1.1b (incremental MCS): 1000 simulations were 

divided into 10 repetitions such that the 1000 simu-

lations were performed in 100 simulations with 10 

repetitions. This added more randomness to the LHS 

procedure.  

 –   Case 1.1c (adaptive MCS): 1000 simulations were 

divided into one repetition with the adaptive stopping 

criterion option where the MCS was terminated before 

the total simulations were done if the convergence 

criterion was met. This states that the change in the 

mean and standard deviation of the random output 

parameter should be lower than or equal to 0.001 in 

the consecutive MCS iterations.  

 –   Case 1.2: The RSM was utilized where 149 DOEs (sam-

ple points) were required for generating the response 

surface (quadratic polynomial) for 10 RIPs by using 

the CCD design. In addition to the DOEs, 10,000 Monte 

 Table 1      Statistical characteristics of the RIPs for the pultrusion process.  

No.    Parameter    Symbol    Unit      μ      COV    Distribution  

1  Pulling speed    u   cm/min  30  0.02  GAUSS

2  Fiber volume fraction    V  
 f     –   0.622  0.02  GAUSS

3  Inlet temperature    T  
 left     ° C   38  0.02  GAUSS

4  Density of resin     ρ   
 r 
   kg/m 3   1260  0.05  GAUSS

5  Density of fiber     ρ   
 f    kg/m 3   1790  0.05  GAUSS

6  Specific heat of resin    C  
 pr 

   J/kg-K   1255  0.05  GAUSS

7  Specific heat of fiber    C  
 pf    J/kg-K   712  0.05  GAUSS

8  Thermal conductivity of resin    k  
 r 
   W/m-K   0.2  0.05  GAUSS

9  Thermal conductivity of fiber in  r -axis   ( k  
 r 
 )  f    W/m-K   11.6  0.05  GAUSS

10  Thermal conductivity of fiber in  z -axis  ( k  
 z 
 )  f    W/m-K   66.0  0.05  GAUSS

11  Total heat of reaction    H  
 tr 
   J/kg   323,700  0.01  GAUSS

12  Pre-exponential constant    K  o   1/s   191,400  0.01  GAUSS

13  Activation energy    E   J/mol   60,500  0.01  GAUSS

14    Order of reaction     n      –     1.69    0.01    GAUSS  

 Table 2      Summary of the probabilistic case studies.  

        Analysis 
type  

  Number 
of RIPs  

  Number of 
MCS loops  

  Number 
of DOEs  

Case 1  Case 1.1  MCS   10  1000   – 

  Case 1.2  RSM   10  10,000  149

Case 2  Case 2.1  MCS   14  1000   – 

    Case 2.2    RSM    14    10,000    285  

Carlo runs were performed for exploiting the response 

surface, which took only about a couple of seconds.  

B.   Case 2: All the RIPs in Table 1 (total of 14) were used for 

the MCS (case 2.1) and the RSM (case 2.2) in order to 

investigate the effect of the variation in the resin kinetic 

parameters as well as the process parameters and mate-

rial properties on the variation in the output parameter.  

 –   Case 2.1: An MCS with LHS having a total of 1000 sam-

ples was performed according to the results of case 1.1 

based on the best MCS option found so far.  

 –   Case 2.2: RSM was utilized where 285 DOEs plus 10,000 

MCS runs were performed for 14 RIPs using the CCD.      

6    Results and discussion 

6.1    Case 1 

 In order to obtain statistical significance (to have a more 

general conclusion), a total of 10 separate MCS runs, i.e., 

10  ×  1000 simulations, were performed for case 1.1 (i.e., for 

each option: case 1.1a, full MCS; case 1.1b, incremental 

MCS; and case 1.1c, adaptive MCS). The 10,000 sequen-

tial runs required about 80 h using a Intel 2.3 GHz quad 

core processor. The results and discussion of case 1 are 

explained in the following: 

1.     Table 3   shows the mean values of the linear cor-

relation coefficients between the RIPs and the cor-

responding output parameter (the CDOCE) for 10 

separate runs. It is seen that the mean values of the 

correlation coefficients were very close to each other 

for the three options of case 1.1, which indicates that 

the MCS converged for 1000 samples.  
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2.   However, the standard deviations of the 10 runs for 

these three options differed, as seen in  Table 4   as a 

percentage of the mean values given in Table 3. The 

incremental MCS option had the lowest magnitude 

of standard deviation for the 6 RIPs out of 10, i.e.,  u , 

 V  
 f  ,   ρ   

 f  ,   ρ   
 r  ,  C  

 pf  , and  C  
 pr  . This shows that the incremental 

MCS is more accurate than the full MCS and the adap-

tive MCS since the LHS produced more random and 

diverse solutions in the incremental MCS.  

3.   The overall mean of the first three rows in Table 3 

(correlation coefficients) is given as mean in the last 

row of the table. The same correlation coefficients, 

i.e., mean, are seen as a bar plot in  Figure 4   (right). As 

seen from this plot,   ρ   
 r 
  had the highest (and only) posi-

tive correlation coefficient ( r  
 p 
   =  0.587), and the rest had 

a lower negative correlation with the CDOCE. Here, a 

positive correlation indicates that the input param-

eter is directly proportional with the output param-

eter and vice versa. The corresponding sensitivities 

are also given in the pie chart in Figure 4 (right) based 

on the correlation coefficients. The percentage values 

indicate how sensitive the CDOCE is with respect to 

the statistical variations in the RIPs.  

4.   The CDF of the CDOCE is shown in Figure 4 (left) for 

10 runs of each MCS option described in case 1.1. It is 

seen that the CDFs for all runs (3  ×  10) were found to be 

close to each other.  

5.   The sampling range of the CDOCE was found to be 

approximately between 0.823 and 0.869 (i.e., 0.844 

in average with 0.7% standard deviation), as seen 

from the horizontal axis of Figure 4 (left). The value 

of the CDF at each point indicates the probability 

of the CDOCE being less than a certain level. For 

instance, the probability of the CDOCE being less than 

0.835 is approximately 5%, whereas the probabil-

ity of the CDOCE being greater than 0.852 is around 

100 – 90  =  10%.  

6.   In case 1.2, 10,000 MCSs exploiting the response sur-

face that require 149 DOEs were performed. The CDFs of 

case 1.1 (1000 MCSs) and case 1.2 (RSM — 10,000 MCSs) 

are depicted in  Figure 5   by using the Gauss plot in order 

to better visualize the tails of the distribution. Of 10 

results taken from the incremental MCS option, one is 

depicted in Figure 5 for case 1.1 (1000 MCS). It is seen 

that the MCS results were found to agree with the RSM 

results in general; however, at the tails of the CDFs for 

the MCS, results diverged from the RSM results because 

of the limited sample size, as aforementioned.     

6.2    Case 2 

 The MCS with the LHS was performed for 1000 samples in 

case 2.1 based on the incremental MCS option defined in 

case 1. On the other hand, in case 2.2, 10,000 Monte Carlo 

runs exploiting the response surfaces that require 285 

DOEs were performed. The results and discussion of case 

2 are explained in the following:

1.    The correlation coefficients between the RIPs (total of 

14) and the CDOCE are given as a bar plot in  Figure 6   

 Table 3      Mean values of the correlation coefficients between the RIPs and the random output parameter (CDOCE) for 10 runs based on each 

MCS options in case 1.1.  

     u      V   f      ( k   z  )  f      ( k   r  )  f       k   r        ρ    f        ρ    r       Cp   f       Cp   r       T   left    

Case 1.1a   -0.470  -0.491  -0.018  -0.018  -0.283  -0.284  0.590  -0.102  -0.086  -0.013

Case 1.1b   -0.470  -0.502  -0.009  -0.020  -0.273  -0.295  0.594  -0.108  -0.080  0.002

Case 1.1c   -0.468  -0.496  -0.008  -0.011  -0.260  -0.307  0.578  -0.105  -0.087  -0.022

Mean    -0.470    -0.496    -0.012    -0.016    -0.272    -0.296    0.587    -0.105    -0.085    -0.011  

   Case 1.1a, full MCS; case 1.1b, incremental MCS; and case 1.1c, adaptive MCS.   

 Table 4      Standard deviations of the correlation coefficients between the RIPs and the random output parameter (CDOCE) for 10 runs based 

on each MCS options of case 1.1.  

     u      V   f      ( k   z  )  f      ( k   r  )  f       k   r        ρ    f        ρ    r       C p    f       C p    r       T   left    

Case 1.1a   -4.31  -4.46  -151.81  -234.90  -11.93  -10.34  3.30  -28.24  -39.25  -118.55

Case 1.1b   -3.17  -1.49  -301.09  -214.99  -11.74  -3.48  1.83  -25.45  -31.83  1525.34

Case 1.1c    -6.28    -4.01    -479.34    -206.85    -9.18    -6.79    3.19    -37.10    -51.67    -264.34  

   The standard deviation values are given in percentage (%) of the mean values given in Table 3.   
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case 1.1 for 10 runs) between the RIPs and the CDOCE are shown in the bar plot, and the corresponding sensitivities are shown in the pie 
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 Figure 5      CDFs of case 1.1 (1,000 MCS with LHS) and case 1.2 (RSM + 10,000 MCS) in the form of a Gauss plot.    

for case 2.1. It is seen that the  E  (activation energy) had 

the highest correlation coefficient (negative) and the 

magnitude was close to 1 ( r  
 p 
   =  0.964), indicating that 

 E  was strongly correlated (i.e., inversely proportional) 

with the CDOCE. This agrees with a similar observa-

tion obtained in  [18]  for the RTM process, where the 

effect of the variation in  E  on the maximum and mini-

mum cure degree was found to be significant. The 

corresponding sensitivities are depicted as a pie chart 

in Figure 6. It is seen that the parameter  E  covered 

almost 57% of all the sensitivity distribution and the 

rest of the RIPs were sorted in a similar manner as in 

case 1.  

2.   The five most sensitive linear correlation coefficients 

among the RIPs and the CDOCE in case 2 are given 

in  Table 5  . It is seen that the linear correlation coef-

ficients were almost the same for the two cases, i.e., 

case 2.1 and case 2.2.  

3.   The Gauss plots of the CDFs in case 2, together with 

those in case 1, are shown in  Figure 7  . It is seen that 
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 Figure 6      Linear correlation coefficients between the RIPs and the CDOCE in the bar plot and corresponding sensitivities in the pie chart for 

case 2.1.    
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 Figure 7      Gauss plots of the CDFs calculated in case 1 and case 2.    

 Table 5      Five most sensitive linear correlation coefficients between 

the RIPs and the CDOCE in case 2.  

     E       ρ    r       n      V   f       u   

Case 2.1 (MCS)  -0.964  0.107  -0.114  -0.087  -0.065

Case 2.2 (RSM)    -0.962    0.130    -0.111    -0.097    -0.105  

the overall MCS results agreed with the RSM results. 

The sampling range of the CDOCE was found to be 

approximately between 0.725 and 0.915 in case 2, 

which was wider than the range found in case 1. This 

shows that the variation in the resin kinetic param-

eters (especially in  E ) had a more significant effect on 

the CDOCE as compared with the variation in the pro-

cess parameters and the material properties.  

4.   The mean and the standard deviation of the CDOCE were 

calculated approximately as 0.843 and 3.3% in case 2.      

7    Conclusions 
 In the present work, a deterministic thermo-chemical sim-

ulation for the pultrusion of a composite rod was carried 
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out and the results were found to agree well with the data 

from the literature  [8] . After validating the deterministic 

model, a probabilistic analysis of the pultrusion process 

was performed in which two different probabilistic case 

studies were investigated. For this purpose, the MCS and 

the RSM, which is the first contribution of its kind for the 

probabilistic modeling of pultrusion, were employed. The 

LHS technique was utilized for the sampling procedure in 

the ANSYS PDS toolbox. The outcomes of this study are 

summarized as follows: 

1.    The effects of the MCS options in ANSYS were inves-

tigated in case 1.1, and it was found that the most 

accurate statistical results were obtained by dividing 

the total number of simulations (samples) into repeti-

tions; i.e., a total of 1000 simulations were performed 

in 100 simulations with 10 repetitions using the LHS 

(here denoted as the  “ incremental MCS ” ).  

2.   In both cases, i.e., in case 1 and case 2, it was con-

cluded that the overall MCS results (total of 1000 sam-

ples) were almost converged to the results obtained 

from the RSM. Note that the tails of the probability 

density function was not considered in this work.  

3.   Variation in the density of the resin was found to have 

the most significant influence (positive correlation) 

on the CDOCE out of 10 RIPs in case 1.  

4.   On the other hand, 14 RIPs were considered in case 2, 

and it was found out that variation in the activation 

energy ( E ) of the resin has a very strong correlation 

(negative) with the CDOCE. This shows that varia-

tion in the resin kinetic parameters (especially in  E ) 

has a more significant effect on the CDOCE as com-

pared with variation in the process parameters and 

the material properties. Hence, it is very important to 

characterize the resin system correctly while using  E  

together with the resin density.      
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