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Scaling universality at the dynamic vortex Mott transition
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The cleanest way to observe a dynamic Mott insulator-to-metal transition (DMT) without the interference
from disorder and other effects inherent to electronic and atomic systems, is to employ the vortex Mott states
formed by superconducting vortices in a regular array of pinning sites. Here, we report the critical behavior of
the vortex system as it crosses the DMT line, driven by either current or temperature. We find universal scaling
with respect to both, expressed by the same scaling function and characterized by a single critical exponent
coinciding with the exponent for the thermodynamic Mott transition. We develop a theory for the DMT based on
the parity reflection-time reversal (PT ) symmetry breaking formalism and find that the nonequilibrium-induced
Mott transition has the same critical behavior as the thermal Mott transition. Our findings demonstrate the existence
of physical systems in which the effect of a nonequilibrium drive is to generate an effective temperature and hence
the transition belonging in the thermal universality class.
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A Mott insulator [1–3] arising from the concurrent action
of the electron-electron correlations and electron trapping by
a periodic atomic potential is an exemplary manifestation of
many-body quantum physics [4–8]. A remarkable correspon-
dence between the quantum mechanics in a D-dimensional
system and the classical statistical mechanics of a D + 1-
dimensional system [9] leads to the conjecture about its
classical counterpart, a vortex Mott insulator that would form
in a type II superconductor if the density of the superconducting
vortices matches the density of the pinning sites [10,11].
Experimentally, the vortex Mott insulator was claimed in the
studies of the vortex matching effect in Ref. [12], and was
conclusively evidenced in Ref. [13] by measurements of the
compressibility of the vortex system localized by periodic
surface holes. The implications of the existence of the vortex
Mott state are far reaching. First and foremost, the Mottness
embraces not only the quantum but classical realm, thus
offering a perfect laboratory to study quantum many-body
physics by exploring classical vortex systems.

An enabling discovery of the current-driven vortex Mott
insulator-to-metal transition in a proximity array [14] provided
the first tangible example of a dynamic Mott transition having
settled the vortex quantum mechanical mapping on a firm
experimental basis. That the revealed nonequilibrium critical
behavior with respect to the nonequilibrium drive is the same
as that of a conventional thermal Mott transition with respect
to temperature raises a largely open class of questions. Among

these is a central issue in condensed matter physics: the
generalization of a thermodynamic phase transition to nonequi-
librium conditions. There have been tantalizing reports that in
systems where tuning parameters such as temperature, pres-
sure, or magnetic field alter the symmetry, the nonequilibrium
drive generates an effective temperature and the corresponding
transition appears in the conventional thermal universality
class [15,16]. The finding of Ref. [14] paves the way for further
generalizing this conclusion to a wider nontrivial class of phase
transitions.

A hallmark of an electronic Mott insulator-to-metal transi-
tion derived from the Hubbard model [17] is the change in the
electronic density of states (DOS) from a gapped (insulator)
to peaked (metal) shape [5,18,19] near the Fermi level. Hence,
the Mott transition can be detected by measuring the tunneling
differential conductance as a function of the particle density
and observing the change from a sharp dip, which reflects
a depletion of the electronic states at the Fermi level, to a
peak, which signals that a Mott metal has formed. An array
of vortices trapped in a lattice of pinning sites is a perfect
realization of the Hubbard model. In a dual vortex system,
the quantum particles–vortex correspondence manifests as a
mapping of the tunneling differential conductance of particles
onto the thermally activated differential resistance dV/dI .
Accordingly, the dip-to-peak reversal of the latter measured
as a function of the magnetic field heralds the vortex Mott
transition [14].
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FIG. 1. Experimental realization of charge-vortex duality for a
Mott insulator. (a) A sketch of the device. The device consists
of a square array of 270 × 270 superconducting Nb islands on a
conducting Au layer. On both sides of the array, a Nb bar is placed
to ensure the current passes through the array homogeneously. The
potential difference between the bars is measured as a function of
the external current and an external magnetic field perpendicular to the
plane of the array. (b) Scanning electron microscopy image of the
sample.

Results. We create an egg-crate periodic pinning potential
patterning a square array of 270 × 270 Nb islands with a
lattice constant a = 250 nm on a 40-nm-thick base layer of
Au on Si/SiO2, as shown in Fig. 1. The islands are 45 nm in
height and 142 ± 5 nm in diameter. Additionally, we placed
Nb bars on either side of the array structure to ensure uniform
current injection. The superconducting transition temperature
of the array, Tc = 2.8 K, is determined as the midpoint of the
transition in the temperature-resistance curve. For our square
array, the magnetic field at which the number of vortices
matches the traps is B0 = �0/a

2, where �0 = πh̄/e is the flux
quantum. It is convenient to introduce the vortex filling fraction
f = B/B0, so that f = 1 corresponds to one vortex per lattice
cell. We measure current-voltage characteristics with small
steps in magnetic field and temperature and obtain dV (f )/dI

curves by numerical differentiation. From these data, the phase
boundary was determined by tracking the position of the dip-
to-peak reversal as a function of current (I ) and temperature
(T ). The details of the measurement technique are given in
the Supplemental Material [20]. Figure 2(a) presents the phase
diagram of the Mott states in the T -I coordinates summarizing
the experimental results of our work. Representative sets of
dV/dI curves are shown in Figs. 2(b) and 2(c). These data were
taken using a standard lock-in technique near the transition
with very small steps of 5 μT in magnetic field, 0.5 μA in
current [Fig. 2(b)], and 5 mK in temperature [Fig. 2(c)]. The
isothermal plots of Fig. 2(b) display the expected dip-to-peak
reversal upon increasing the current. The separatrix current
I0 divides between the insulating I < I0 and metallic I > I0

phases. Note the asymmetry in the dV/dI behaviors at f < 1
and at f > 1. The loci of I0(T ) yield phase transition lines
in Fig. 2(a) for f < 1 and f > 1. Fixing the current I � I0

and then varying the temperature yields similar dip-to-peak
reversal behavior [see Fig. 2(c)]. Subtracting the separatrices
from the dV/dI data yields the fanlike set of curves displayed
in Figs. 2(d) and 2(e), indicating a transition from insulating
(bent down towards f = 1) to metallic (bent up) behaviors.

Critical scaling. We start our analysis with the following
question: Is the observed current-driven dip-to-peak flip indeed
a purely dynamic effect, or rather a mere result of the heating
due to current-induced vortex motion? To answer it, let us
consider the quantityN (T ,B) = dV/dI − V/I that measures
the degree of nonlinearity. Figures 3(a) and 3(b) show the color
plots of N (T ,B) in coordinates f -I and f -T , respectively.
The bright red regions (“red flames”) indicate domains of
strong nonlinearity that arise around f = 1. Apart from the
critical region near the transition, the plots are predominantly
blue in color. This shows that the response of the system is
almost linear, dV/dI ≈ V/I . Since dissipation is proportional
to I · V and the experiment is carried out at constant I , the
dissipation is higher where R is larger. Within the experimental
range of currents and temperatures across the transition, the
resistance grows linearly R ∝ |b| ≡ |1 − f | upon deviation
from f = 1. This reflects the linear increase of the density of
vortex “holes” or the excess vortices that mediate the motion of
the vortex system upon deviation from f = 1 [see Figs. S2(c)
and S2(d) in SM], and implies that the mobility of vortices
remains nearly unchanged in our experiment. Therefore, had
the nonlinearity originated from heating, it could have only
increased with increasing |b|. The observed effect is the op-
posite: The nonlinearity associated with a dip-to-peak reversal
exists only in the nearest vicinity of f = 1. Hence the heating
from vortex motion is negligible and cannot cause the observed
dip-to-peak flip in the differential resistance.

It is worth especially emphasizing that the observed tran-
sition identified by nonlinear I -V behavior is not vortex
depinning, i.e., eliminating the barriers for vortex motion either
by applied current or by thermal fluctuations. This is evidenced
by the fact that the measuring currents are considerably lower
than the depinning Josephson critical current characterizing
the activation barriers [14] and by the above observation
that nonlinearity concentrates at integer f where pinning is
maximal.

A detailed examination of hundreds of recorded dV/dI

curves versus temperature and magnetic field uncovers a strik-
ing and far-reaching affinity between current and temperature
manifestations in the DMT critical behavior. The scaling anal-
ysis of the DMT using the representative set of dV/dI curves
from Figs. 2(b) and 2(c) is shown in Fig. 4. The benchmarks
of the Mott transition are the scaling relations governing the
behavior of dV/dI in the critical region [4–7,14],

dV

dI
(b,I,T ) − dV

dI
(b,I,T )|I=I0 ∝ FI

( |I − I0|
bεI

)
, (1)

dV

dI
(b,I,T ) − dV

dI
(b,I,T )|T =T0 ∝ FT

( |T − T0|
bεT

)
, (2)

where εI and εT are exponents describing the current- and
temperature-driven critical behaviors near DMT, respectively,
and b ≡ |f − 1|.

Using the formal procedure introduced in Ref. [21] for
determining these critical exponents based on evaluating the
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FIG. 2. Vortex dynamic Mott insulator-to-metal transition. (a) The temperature-current phase diagram of the vortex Mott states. The left
and right panels present the transition line between the insulating and metallic states at f < 1 and f > 1, respectively. In the former, the
elementary excitations are vortex holes, i.e., some of the traps lack vortices. In the latter, the elementary excitations are the excess vortices, i.e.,
some traps contain more than one vortex. (b) A set of differential resistance vs filling factor curves taken at different currents in the critical
region at temperature T = 1.0 K. The set corresponds to a currentwise crossing of the phase boundary. The currents increase from the bottom
to the top; the range of currents is shown in the color legend. The black dotted line is the separatrix dV/dI |I=I0 , I0 = 51.0 μA, for f > 1. The
separatrix divides current ranges corresponding to the vortex Mott insulator (at I < I0, dV/dI bends down as f → 1) and vortex Mott metal
(at I > I0, dV/dI turning up as f → 1). (c) A similar set of differential resistances vs filling factor curves, but taken at different temperatures
and fixed current I = 50.5 μA. The temperature increases from the bottom to the top and corresponds to the temperaturewise crossing of the
phase boundary line. The black dotted line is the separatrix dV/dI |T =T0 , T0 = 1.0 K, for f > 1. (d), (e) The differential magnetoresistances
dV/dI after subtracting the separatrices dV/dI |I=I0 and dV/dI |T =T0 , respectively. The fanlike sets of curves visualize the dynamic Mott
transition.

derivative of the dynamic resistance with respect to I (or T ) at
its critical value I0 (T0), we arrive at

[∂(dV/dI )/∂I ]I0 ∝ b−εI , [∂(dV/dI )/∂T ]T0 ∝ b−εT . (3)

Plotting [∂(dV/dI )/∂I ]I0 and [∂(dV/dI )/∂T ]T0 as functions
of b on a log-log scale should yield straight lines with slopes
equal to −εI and −εT, respectively. The results of this procedure
are displayed in Figs. 4(a) and 4(b). The data are indeed the
straight lines for both current and temperature derivatives, and

FIG. 3. The critical region of the vortex dynamic Mott transition.
The color plots of the measure of degree of nonlinearity N =
dV/dI − V/I as a function of the filling factor f and current at
T = 1.0 K (a) and as function of f and temperature at I = 90 μA
(b). The color legend is the same for both plots.

the linear fit yields exponent values εI = 0.64 ± 0.02 and εT =
0.63 ± 0.03. Note that the approach employed for determining
the scaling exponents uses only the values of the derivatives of
the dynamic resistance at the critical point as given by Eq. (3).
This gives us a good starting point for the scaling analysis of the
entire set of data following Eqs. (1) and (2). In Figs. 4(c) and
4(d) we plot the data of Figs. 2(b) and 2(c) as functions of the
scaling variables |I − I0|/bεI and |T − T0|/bεT , respectively.
The collapse of the data on the single curves is excellent,
over two orders of magnitude of scaled abscissas for identical
values of exponents εI = 2/3 and εT = 2/3. The same εI

for the current-driven transition was reported previously [14]
for a similar proximity system, but with distinctly different
parameters. Namely, the critical temperature was significantly
higher, 7.3 K, and the island separation was smaller by a factor
of 2 compared to the present case. More results of the scaling
analysis supporting the universality of the critical exponents
are given in SM. As a next step we superimpose the scaling
curves from Figs. 4(c) and 4(d) by dividing the temperature
abscissa by the factor r = 1.5 × 104 K/A, which on a log
scale corresponds to a mere shift of the curves [see Fig. 4(e)].
The striking collapse of the isocurrent and isothermal scaling
curves heralds universality of the critical scaling at the DMT.
The identity of the scaling functions FI and FT from Eqs. (1)
and (2), together with the equality εI = εT, establishes the
interchangeability of the temperature and current effects in
the critical region. Finally, the collapse evidences the lin-
ear relation between the current- and temperature-induced
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FIG. 4. Scaling analysis of the dynamic Mott transition. (a), (b) The log-log plots of [∂(dV/dI )/∂I ]I0 and of [∂(dV/dI )/∂T ]T0 vs b, both
shown by symbols. The solid lines show the linear fits. (c) The semilog plot of the differential magnetoresistances dV/dI after subtracting
the separatrix dV/dI |I=I0 presents the same data as Fig. 2(d) as a function of the scaling variable |I − I0|/b2/3. The perfect collapse onto two
generic scaling curves for I < I0 and I > I0 at εI = 2/3 evidences the critical behavior of the current-driven vortex Mott transition. (d) The
semilog plot of the differential magnetoresistances dV/dI after subtracting the separatrix dV/dI |T =T0 presents the same data as Fig. 2(e) as
a function of the scaling variable |T − T0|/b2/3. This illustrates the critical behavior of the temperature-driven crossing of the DMT transition
line. (e) The plots from (c) (blue symbols) and (d) (red symbols) perfectly collapse on top of each other upon rescaling the abscissa of (d) by a
factor 1/r with r = 1.5 × 104 K/A, evidencing the identity of the FI and FT scaling functions defined by Eqs. (1) and (2). The inset shows the
segment of the phase transition line. The blue and red arrows stand for current-driven and temperature-driven crossings of the transition line,
respectively.

effects and rules out the heating origin of the current-driven
transition.

Discussion. The experimental value εT = 2/3 coincides
with a similar exponent for the thermodynamic Mott tran-
sition in an electronic system [22]. This implies that the
thermodynamic Mott critical behavior extends onto far-
from-equilibrium DMT. Following the ideas of Ref. [16],
we generalize the derivation of the Landau functional in
Ref. [18] onto the DMT by including the driving current
on the same footing as temperature. In the presence of the
current, the linear form eliminating the quadratic term in
the Landau functional for the order parameter generalizes
to L(|f − 1|,T − T0,I − I0) ≡ constf (f − 1) + constT (T −
T0) + constI (I − I0). Accordingly, the condition that L =
0 near the transition [18] implies that constT (T − T0) +
constI (I − I0) = 0 if we put f = 1. This gives rise to (T0 −
T )/(I0 − I ) = −const � (dT0/dI0). Making use of the phase
diagram in Fig. 2(a), one finds, at T0 = 1.0 K, (dT0/dI0) =
1.7 × 104 K/A, in fair agreement with the experimental rescal-
ing factor 1.5 × 104 K/A. To understand the meaning of
this factor, we recall that the energy that sets the depth
of the potential well localizing vortices is estimated for a
square sinusoidal egg-crate potential as 0.2EJ [23], where

the Josephson coupling of a single junction EJ = (h̄/2e)ic,
ic = Ic/(N − 1) is the critical current for a single junction,
Ic is the critical current of the array, and N is the number
of rows in the array. In this case we find that the funda-
mental temperature-to-current conversion ratio for a Joseph-
son junction array [T/I ] ≡ 0.2EJ /[(N − 1)kBic] = 1.77 ×
104 K/A, which nicely compares with the experimental r =
1.5 × 104 K/A. That [T/I ] � r indicates that the dielectric
breakdown of the Mott insulator occurs under the condition
that vortices are still pinned, which is in accord with our direct
observation.

Identical scaling functions and the resulting interchange-
ability of current and temperature have far-reaching conse-
quences, most notably, that the dynamic critical behavior of the
Mott transition would teach us about thermodynamic criticality
as well. To describe the scaling, we, following the approach
of Ref. [18], write the Ginzburg-Landau free-energy functional
density for the fluctuating part of the vortex system near f = 1
as (see SM)

F = D|∇�|2 + m2|�|2 + u|�|4, (4)

where D is the stiffness of the excess vortices system, and
m and u are respectively the mass and interaction parameters
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that govern the mean-field transition. Then, the equation for
overdamped vortex motion assumes the form

∂�

∂t
− i(I/ρ)x� = D∇2� − m2� − 2u|�|2�, (5)

where ρ represents viscous damping, and I is the applied
imaginary current driving vortices that appeared as a result
of the gauge transformation transforming the vector poten-
tial into a scalar one. This equation is formally identical
to a nonlinear Schrödinger equation in Euclidean time for
a particle subject to an imaginary electric field. Applying
the technique of Refs. [24,25] (see also Ref. [20]), we find
(I0 − I )3/2 scaling near the DMT, in full accord with exper-
imental observations. Note that our description of the DMT
rests on the general properties of non-Hermitian Hamiltonians
rather than on the peculiarities of Mott systems. A general
principle is that if at small drives the open dissipative system’s
non-Hermitian Hamiltonian is endowed with PT symmetry,
the out-of-equilibrium phase transition manifests as a PT

symmetry breaking of the eigenstates at some threshold driving
field.
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