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Abstract—Estimating the contribution of the forests to carbon
sequestration is commonly done by applying forest growth models.
Such models inherently use field observations such as leaf area
index (LAI), whereas a relevant information is also available from
remotely sensed images. This paper aims to improve the LAI
estimated from the forest growth model [physiological principals
predicting growth (3-PG)] by combining these values with the
LAI derived from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) satellite imagery. A Bayesian networks (BNs)
approach addresses the bias in the 3-PG model and the noise of
the MODIS images. A novel inference strategy within the BN has
been developed in this paper to take care of the different structures
of the inaccuracies in the two data sources. The BN is applied to
the Speulderbos forest in The Netherlands, where the detailed data
were available. This paper shows that the outputs obtained with
the BN were more accurate than either the 3-PG or the MODIS
estimate. It was also found that the BN is more sensitive to the
variation of the LAI derived from MODIS than to the variation of
the LAI 3-PG values. In this paper, we conclude that the BNs can
improve the estimation of the LAI values by combining a forest
growth model with satellite imagery.

Index Terms—Bayesian networks (BNs), leaf area index (LAI),
Moderate Resolution Imaging Spectroradiometer (MODIS), phys-
iological principals predicting growth (3-PG) model.

I. INTRODUCTION

FORESTS are traditionally important as sources of fuel,
building materials, paper, fiber, and timber. More recently,

their importance as major storehouses of carbon has been
realized, as well as their capacity to exchange carbon dioxide
(CO2) between the vegetation and the atmosphere, which can
affect the rate of climate change. Forest growth leads to carbon
fixation, and thus, it may turn out to be an important way
to diminish the rate of global warming. Modern silviculture
may increasingly be able to regulate the rate of forest growth.
The application of forest growth models could be helpful in
managing the forests by quantifying the storage amounts of
CO2 and by comparing different management scenarios [1], [2].

A commonly measured variable in the forests is the leaf area
index (LAI). For broadleaf canopies, the LAI is defined as the
one-sided green leaf area per unit of ground area, whereas for
coniferous canopies, it is defined as the hemisurface needle leaf
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area. In both instances, it is equal to the ratio of the total upper
leaf surface of the vegetation divided by the surface area of the
land on which the vegetation grows. The LAI values typically
range from 3 to 15, whereas in some cases, the LAI is greater
than 15 [3]. The LAI can be used to scale the measurements
of photosynthesis, transpiration, and light interception from the
leaf level to the canopy level. This can ultimately be used as
an indicator of forest growth. A major challenge is to make
a representative estimate of the LAI for large forest-covered
areas.

Traditionally, three independent ways are distinguished to
determine the LAI: by means of the measurements in the forest,
by means of applying a forest growth model, and by means of
a remote-sensing image. The LAI is directly or indirectly mea-
sured in the field. Direct methods normally involve destructive
sampling of canopy elements, and in large complex forest, it
may be impossible to collect sufficient samples to accurately
characterize the structure. Indirect methods include both light
interception instrumentation and hemispherical photography
[4]. Such measurements, however, are time consuming, in
particular, when obtaining a long time series. Process-based
models have been used to estimate the LAI. Several of these
models have been established recently, such as the physio-
logical principals predicting growth (3-PG) model developed
by Landsberg and Waring [1], the CABALA model [5], and
the FORGRO model [2]. The 3-PG model, which we focus
in this paper, is a process-based stand-level model of forest
growth. It requires readily available site and climatic data as
inputs, and it outputs the time course of stand development in
a form that is familiar to the forest manager, as well as the
LAI, biomass pools, stand water use, and available soil water.
Moreover, the model output and several 3-PG model parameters
(e.g., the average monthly root turnover rate, the fraction of
the net primary production (NPP) to the roots, the fertility
rating, the canopy conductance, and the ratio of soil organism
biomass) contain uncertainties. Such error is multiplicative, and
therefore, error in one parameter affects the determination of
the next parameter in the modeling chain [6], [7]. Similarly,
modern remote sensing can also provide the LAI estimates. For
instance, the Moderate Resolution Imaging Spectroradiometer
(MODIS) sensor provides eight-day global data sets of the LAI.
Such images, however, have a relatively coarse resolution as
compared to the size of the forest stand. MODIS imagery also
has uncertainties as instrument noise exists during image acqui-
sition, and atmospheric characteristics are constantly changing
[8], [9].

Statistical methods combining images with forest models and
observations may help to reduce uncertainties, thus attaining a
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Fig. 1. Basic structure part of the 3-PG and the causal influences of its
variables and processes. The symbols used stand for gross primary production
(GPP), NPP, air temperature (T ), vapor pressure deficit (VPD), water (H2O),
carbon dioxide (CO2), and LAI.

more accurate LAI estimated value. Graphical models [partic-
ularly the Bayesian networks (BNs)] provide a promising way
of dealing with this due to their ability to integrate different
sources and to deal with uncertainty in a probabilistic way.

A BN is a probabilistic methodology for combining graphs
and probabilities to express the relationships between variables
[10]. In a BN, each node represents a variable that has a value,
while the relations between the nodes are expressed in terms
of conditional probabilities. The input data may influence any
of the nodes. Once the data are obtained and assigned to the
node, a Bayesian mechanism propagates their values to the sub-
sequent nodes of the network. A BN can be used for the
combination of information coming from separate sources with
varying degrees of reliability. The BNs have been success-
fully applied to molecular biology, particularly in genetics and
biotechnology [11]–[13], forensic sciences [14], computer sci-
ence, image processing, and artificial intelligence studies [15].

The objective of this paper is to explore the possibilities of
the BNs to improve LAI estimations by combining the 3-PG
model output with MODIS images. Ultimately, this may be
used as a predicting model of the LAI values. The study is
applied to a forest area in The Netherlands (Speulderbos forest),
where the detailed data are available for the calibration of the
3-PG model and for the validation of the BN.

A. 3-PG Model

The 3-PG model is a process-based stand-level model of for-
est growth. A full description of the 3-PG has been provided by
Landsberg and Waring [1] and Sands and Landsberg [16], and
a brief illustration of the model is shown in Fig. 1. It requires
basic silvicultural and readily available site and climatic data
as inputs and predicts as outputs the time course of the stand
development in a form that is familiar to the forest manager.
It further produces the LAI(LAI3PG), biomass pools, stand
water use, and available soil water. The 3-PG model bridges

the gap between conventional empirical models on the one
hand and process-based carbon balance models on the other
hand. It consists of five simple submodels: assimilation of
carbohydrates; distribution of biomass between foliage, roots,
and stems; determination of stem number; soil water balance;
and conversion of biomass values into variables of interest to
forest managers. It can be applied to plantations, i.e., even-aged
relatively homogeneous forests. Of interest in this paper is the
LAI3PG, being an important indicator of the vegetation status
and a key parameter in process-based models to quantify the
exchange of matter and energy flow between the vegetation and
the atmosphere. The 3-PG model has been used to estimate and
predict the LAI in different areas [7], [16].

The 3-PG model can be run for any number of years using
monthly weather data for each year or monthly averages for the
year. In this paper, we modified it to run for 16-day periods,
matching with the temporal resolution of MODIS images. A
major concern, however, is the quality of the output. Uncer-
tainty in the LAI output of the 3-PG model exists as the LAI
values may be modified by conditions or events that are difficult
to model or to predict, such as droughts and flooding or pests
and diseases. Several studies considered the uncertainty and
variation of 3-PG model parameters [16], [17]. Esprey et al. [6]
reported results from a sensitivity analysis of the 3-PG model,
in particular, concerning the LAI.

B. LAI Estimation Using MODIS Satellite Imagery

The estimation of the LAI from satellite imagery may serve
as a proxy for field measurements at regional and global
scales [18]. Many studies have been carried out to estimate
the LAI values from different satellite sensors, in particular,
using the MODIS sensors onboard the Earth Observing Sys-
tem Terra/Aqua platforms [8], [9], [19]. The MODIS sensor
produces a standard suite of global products characterizing
the vegetation cover, the LAI, and the fraction of absorbed
photosynthetically active radiation (FPAR) at the 1-km spatial
resolution based on observations and composited over an eight-
day period. Morisette et al. [20] reviewed techniques employed
in various countries to produce and evaluate the LAI products
derived from satellite measurements, and Yang et al. [8] sum-
marized the experience of several collaborating investigators
on the validation of the MODIS LAI products. In this paper,
we derived the LAI MODIS (LAIM ) from the normalized
difference vegetation index (NDVI) MODIS product every 16
days at a 250-m spatial resolution, thus matching the temporal
frequency of the 3-PG model and ground data. Hence, we refer
to this as a modified MODIS LAI to distinguish it from the
LAI MODIS product provided by NASA. Current techniques
for estimating LAI often failed to provide consistent values.
Estimating LAI from one satellite instrument MODIS is an
ill-posed inversion problem because the number of unknowns
is always larger than the available bands due to the nature of
the Earth’s complex environment. Furthermore, most LAIM

data products are not continuous in space and time because
of a cloud contamination and an insufficient number of data
points for retrieval. As a result, LAIM products need significant
improvements. For this reason, some methods for reducing
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noise and for constructing high-quality MODIS time-series for
further analysis have been formulated [21]. Qin et al. [22] esti-
mated the LAI from remote-sensing data by taking advantage
of the physical-model inversion. Xiao et al. [23] designed a
temporally integrated inversion method to produce spatially
and temporally continuous LAI products with relatively higher
quality. These methods, however, have their own strengths
and limitations. Uncertainty of the LAI remains, whereas the
BNs provide a framework to combine the model output with
the remotely sensed images to estimate the LAI values more
precisely.

C. Bayesian Network

A BN is a network consisting of nodes linked with directed
arcs (arrows) that allow us to carry out probabilistic reasoning.
It is a mathematical methodology of combining graphs and
probabilities to express relationships between variables iden-
tified by the nodes. Links in the network are configured as
a directed acyclic graph, i.e., a graph without feedback [24].
Each node in a BN indicates a random variable, which is either
discrete or continuous. The directed arcs linking the nodes are
usually expressed in kinship terms such as the parents of a node
(nodes with arrows pointing directly to this node), the children
of a node (nodes with arrows pointing from this node), and the
ancestors (parents at a higher level). These arcs are quantified
by conditional probability tables (CPTs). Such networks can be
designed using conventional scientific notions of cause and ef-
fect. For example, a node A with parents B1, . . . , Bn indicates
the existence of an arrow from each of the Bi’s, i = 1, . . . , n, to
A. There exists a CPT of Pr(A|B1, . . . , Bn)[10]. Conditional
dependence and independence of nodes in a graphical model
allows a substantial simplification of joint probabilities. For
instance, two nodes A1 and A2 are conditionally independent,
given a third set B, if all paths between A1 and A2 are separated
by a node B [10], [24]

Pr(A1|A2, B) = Pr(A1|B). (1)

II. MODEL DESCRIPTION

A. Initialization of the BN

The main purpose of the BN, as used in this paper, is to
enhance the correspondence between the LAI values from the
3-PG model and MODIS estimate. An important assumption
underlying the inference within the BN is that biophysical
models aim to describe a physical process characterized by
competition for resources and seasonality in as much detail as
possible. Complications in this process, however, may cause a
lack of understanding of the process or its parameters to support
such a detailed description. This results in an approximation of
the physical process only. Forest biophysical models invariably
iterate for a long time (typically 40–120 years) at a weekly
or monthly resolution, resulting in hundreds of iterations over
the lifetime of the trees in the forest. Small errors in a single
iteration quickly accumulate to a large bias even if the biophys-
ical process is well described. Satellite imagery, on the other

Fig. 2. BN for the ith iterations (i ≥ 1) every triple nodes Mi, Li, and Pi

indicates the network at time i and refers to the modified MODIS LAI, BN, and
3-PG modes, respectively. The double ellipses (nodes) indicate that the LAI is
a continuous stochastic variable.

hand, has an unknown error associated with it, for instance,
due to a suboptimal parametrization of the numerical analysis
routine or to atmospheric conditions. The BN takes the different
structures of the data quality into consideration when updating
the LAI values to input them into the next iteration of the
3-PG model.

We start by building a simple network consisting of two
nodes, namely, LAI3PG as the node P and LAIM as the
node M . To serve the objective of this paper, we introduce an
intermediate node to combine M1 and P1, called L1, where
the subscript indicates the time step 1, taking values from both
M1 and P1 [Fig. 2(a)]. This network contains two cliques of
a child node with its parents, namely, {M1, L1} and {P1, L1}.
The connection type in Fig. 2 is a converging connection type,
defined as a BN node with two or more parents, i.e., with two
or more arrows pointing to it [24]. The double ellipses (nodes)
indicate that LAI is a continuous stochastic variable and follow
the normal distribution as illustrated in Section III-C.

The quantitative part of the BN is a joint probability distri-
bution (JPD) written as a product of conditional probabilities
that describe the dependences between the variables of the
network. Given a set of variables L = {L1, . . . , Ln}, each with
its parents, the JPD of L is given by (Fig. 2)

Pr(L) =
n∏

i=1

Pr (Li|pa(Li)) (2)

where pa(Li) corresponds to the parent variables of Li (i.e.,
{Mi, Pi, Li−1}). A common type of a BN containing continu-
ous variables is the Gaussian Bayesian Network (GBN) [25]–
[27]. It is a BN where the JPD of L is a multivariate normal
distribution N(μ,Σ). The joint density is given by

f(L) = (2π)−n/2|Σ|−1/2 exp
{
−1

2
(L− μ)T Σ−1(L− μ)

}

(3)

where μ is the n-dimensional mean vector, Σ is the n× n
covariance matrix with determinant |Σ|, and T denotes the
transpose of a vector. The conditional probability distribution
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of Li that verifies the expression (2) is a univariate normal
distribution with density

f(Li|pa(Li))∼N

⎛
⎝μLi

+
#pa(Li)∑

j=1

βij

(
pa(Li)j−μpa(Li)j

)
, νLi

⎞
⎠

(4)

where μLi
is the expectation of Li, βij is the regression

coefficients of Li on its parents, #pa(Li) is the number of
parents of Li, and νLi

= ΣLiLi
− ΣLipa(Li)Σ

−1
pa(Li)

ΣT
Lipa(Li)

is the conditional variance of Li, given its parents. Here, ΣLiLi

is the unconditional variance of Li, ΣLipa(Li) is the covariances
between Li and its parents pa(Li), and Σpa(Li) is the covari-
ance matrix of pa(Li). For more details of the GBN concept,
we refer to [25] and [26], and for an illustrated example, we
refer to [28].

The conditional distribution (4) is recovered by considering
that

f (Li|pa(Li)) ∼ N

⎛
⎝μLi

+
#pa(Li)∑

j=1

βijpa(Li)j , νLi

⎞
⎠ . (5)

Under the assumption of Gaussianity, the variable Li is
completely specified by its expectation μ and covariance matrix
Σ, obtained from the conditional distribution.

Following Fig. 2(a), we notice that, at the first time step, the
marginal distribution of L1, given its parents (M1, P1), yields
the expectation and covariance as

E(L1) =βL1M1μM1 + βL1P1μP1 + μL1 (6)

ΣL1 =

⎛
⎝ σM1M1 0 σM1L1

0 σP1P1 σP1L1

σL1M1 σL1P1 σL1L1

⎞
⎠ . (7)

Here, E(·) refers to the expectation, and the subscript L1 of
ΣL1 refers to the covariance matrix at the first time step. Both
σL1L1 and E(L1) contribute to obtain LAI at the second time
step in the network (Fig. 2). Hence, the marginal distribution of
L1 is

L1 ∼ N (βL1M1μM1 + βL1P1μP1 + μL1 ,ΣL1). (8)

The estimated LAI values for P1 are obtained from the ground
truth values. At this stage, we assume that L1 follows the
same distribution as P1 in order to initialize and implement the
network with the truth values of the LAI. This assumption will
be generalized when the network will be extended, as shown in
the next section.

B. Updating of the BN

The previous section formulated the basis of a BN. Now, we
extend the BN over multiple time steps. To do so, the value of
L1, after being derived from the BN, is inserted into the 3-PG
model to update the LAI value at its next iteration [Fig. 2(b)].
This graphical representation is similar to Fig. 2(a), but it refers
to the second time step. The arrow from L1 to L2 links the first

time step to the second time step, indicating that the new LAI
value in L2 is conditionally determined by the previous LAI
value L1. This system can further be extended toward more than
two time steps [Fig. 2(c)]. To deal with Li, for i ≥ 2, and the
prior probability distribution of the LAI, the following equation
applies:

Li = (1− α)λMi + αPi + (1− λ)(1− α)Li−1 (9)

where α and λ are the weighing values, defined as α =
|(Mi −Mi−1)/Mi−1| and λ = |(Pi − Pi−1)/Pi−1|. They are
proportional to the change in the LAI values obtained from the
MODIS images and 3-PG output.

Expression (9) includes the BN output from the previous
time step (Li−1) to ensure that the LAI values in the new node
are consistent with the LAIM images, the LAI3PG, and the
BN output (LAIBN) at the previous iteration. This is based
on the assumption that the LAI values do not sharply change
in a short period of time. In fact, this choice for α and λ
addresses the deviation between the LAI field data (LAIFD),
LAI3PG values, and LAIM images at two consecutive time
steps. Weighing these values as in (9) reduces the impact
of large discrepancies between the LAI values of 3-PG and
MODIS, as shown in Section III-E.

In Fig. 2(b), the distribution at node L2 can be expressed as

f (L2|M2, L1, P2)

∼ N (μL2 + βL2M2M2 + βL2L1L1 + βL2P2P2, νL2) . (10)

Now, the expectation of L2 can be found as

E(L2) = μL2 + βL2M2μM2 + βL2L1μL1 + βL2P2μP2 (11)

and the covariance can be found as

ΣL2 =

⎛
⎜⎝

σM2M2 0 0 σM2L2

0 σL1L1 0 σL1L2

0 0 σP2P2 σP2L2

σL2M2 σL2L1 σL2P2 σL2L2

⎞
⎟⎠ . (12)

Thus, the marginal distribution of L2 is equal to

L2 ∼ N (μL2 + βL2M2μM2 + βL2L1μL1 + βL2P2μP2 ,ΣL2) .
(13)

The previous expressions for the expectation and variance of
the LAIBN are considering two iterations. For n iterations, the
network is as follows (Algorithm 1; Fig. 3).

1) For i = 1, it is assumed that the P1 and L1 values are the
observed ground values. This assures that the BN starts
with realistic values. The expectation and variance for L1

are calculated from (6) and (7). The new LAI value is
inserted into the 3-PG model to update the LAI value at
the second time step. Next, the 3-PG model produces a
new LAI value, represented as the node P2 in the network.

2) For i ≥ 2, we define Li as in (9), and the distribution of
Li|Mi, Li−1, Pi is equal to

f (Li|Mi, Li−1, Pi)

∼ N
(
μLi

+βLiMi
Mi+βLiLi−1Li−1+βLiPi

Pi, νLi

)
(14)
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Fig. 3. Workflow process of improving the LAI value.

whereas the expectation and the variance of Li after the
network propagation are

E(Li) =μLi
+ βLiMi

μMi
+ βLiLi−1μLi−1 + βLiPi

μPi
(15)

ΣLi
=

⎛
⎜⎝

σMiMi
0 0 σMiLi

0 σLi−1Li−1 0 σLi−1Li

0 0 σPiPi
σPiLi

σLiMi
σLiLi−1 σLiPi

σLiLi

⎞
⎟⎠ . (16)

To obtain ΣLi
, i ≥ 1, the algorithm presented by Shachter

and Kenley [26] is used.
Hence, the marginal distribution of Li is

Li∼N
(
μLi

+βLiMi
μMi

+βLiLi−1μLi−1 +βLiPi
μPi

,ΣLi

)
.

(17)

New LAI values obtained as output from the BN Li

are compared with the LAIFD to asses the agreement
between them. This new BN output is inputted into the
3-PG model to update the LAI value, whereas the 3-PG
model produces new LAI values, represented as a node
(Pi+1) in the network.

Algorithm 1: BN Implementation
input: Iteration number (N), LAIM , LAI3PG.
Output: Updated values of the forest growth parameter

“intermediate BN node.”
Initial step: for i←− 1;
L1node←− f(M1node, P1node);
L1data←− P1data←− fielddata;
after the BN propagates
L1 ∼ N(βL1M1μM1 + βL1P1μP1 + μL1 ,ΣL1);
Update the 3-PG model with L1 (which represents P2 in the
network);
for i← 2 toN do

Linode←− f(Minode, Li−1node, Pinode);
calculate Li data as (9);
after the BN propagates
Li ∼ N(μLi

+ βLiMi
μMi

+ βLiLi−1μLi−1 +
βLiPi

μPi
,ΣLi

)

Statistical validation;
if Li ≈ LAIFD then

the BN output is close to field observation;
else

Update the 3-PG model with Li (which
represents Pi+1 in the network);

end
end

C. Sensitivity of the BN

Several methods have been proposed to measure the accuracy
of the LAI derived from satellite imagery. Verger et al. [29]
evaluated the performance of the LAI derived from multisource
images and their mutual agreement. Uncertainty in the LAI
values derived from the MODIS images is introduced by fac-
tors like atmospheric variation and functioning of the sensor.
Similarly, the reliability of the 3-PG estimates depends on
the accuracy of its input parameters. A full modeling of the
uncertainty is beyond the frame of this paper. However, we
assess the sensitivity of the BN when the input values LAIM

and LAI3PG are varied in steps of 0.25 units within the interval
[−1, 1]. The sensitivity is also assessed when LAIM and
LAI3PG values are varying simultaneously.

III. BN IMPLEMENTATION: THE SPEULDERBOS

FOREST IN THE NETHERLANDS

A. Study Area

The Speulderbos forest is located at 52◦15′08′′ N,
05◦41′25′′ E (Fig. 4), covering 2390 ha, near the village of
Garderen, The Netherlands. A climate station is placed within a
dense 2.5-ha Douglas fir (Pseudotsuga menziesii) stand planted
in 1962. The tree density is 785 trees ha−1. The tree height in
1995 was approximately 22 m, and it has increased to 32 m in
2006. Dominant species in the neighborhood of the Douglas fir
stand are the Japanese Larch (Larix kaempferi), Beech (Fagus
sylvatica), Scotch Pine (Pinus sylvestris), and Hemlock (Tsuga
spp) [30], [31].
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Fig. 4. Map of The Netherlands with the MODIS images of the derived LAI
of the study area (acquired on August 13, 2007) with a 250-m spatial resolution.
(a) Map regions of The Netherlands. (b) Speulderbos forest. (c) Study area
around the tower (tower coordinate 52◦15′08′′ N, 05◦41′25′′ E).

The forest floor is covered with a needle layer on which little
vegetation is present. A trunk space and a crown layer can be
discriminated, whereas the trunk space with a few branches and
needles reaches a height of approximately 10 m. The single-
sided LAI varies between 8 and 11 throughout the year [32].
The stand is surrounded by a larger forested area of approx-
imately 50 km2. The nearest edge is at a distance of 1.5 km
southeast from the site. A small clearing of 1 ha is situated to
the north of the stand [33].

B. Data Description

The study is primarily based on the MODIS TERRA land
satellite collection 5 data and fieldwork measurements from
July 2007 to September 2009.

1) Ground Data: The ground data were collected at the
observation tower of the Speulderbos forest, which is equipped
with a weather station and various scientific instruments. The
following data were captured as needed by the 3-PG model:

1) climate data: 16-day mean temperature, solar radiation,
rainfall, vapor pressure deficit, and frost days;

2) site factors: site latitude, maximum available water stored
in the soil, and soil fertility rating;

3) initial conditions: stem, root, and foliage biomass; stock-
ing; and soil water at some time;

4) 3-PG parameters: parameters characterizing the modeled
species.

In addition, the LAI was measured in the ground to validate
the estimates of the LAIBN values. The LAI is indirectly
measured from the canopy transmission by the inversion of the
measurements of the photosynthetically active radiation (PAR)
above and below the canopy. The PAR data are acquired from
the Speulderbos forest using four sensors placed at the tower.
Two are located at the top of the tower to record the PAR
outside the canopy forest in two opposite directions: an upward
looking sensor to measure the incoming sun radiation and a
downward looking sensor to measure the reflected radiation
from the canopy. The other two sensors are located below the
forest canopy to record the PAR inside the forest. These sensors
are also located in two opposite directions: an upward looking
sensor to measure the radiation penetration through the canopy
coming from the sun and a downward looking sensor to record
the reflected radiation from the soil and the forest components.
The PAR data are recorded every minute during daytime. The
calculation of the LAI from the PAR data is based on the
relationship between the leaf area and the light transmittance,
described by the Beer–Lambert model [34]. This model utilizes
the light canopy transmittance in the Beer–Lambert equation
to assess the monthly LAI of a tropical deciduous forest. The
daily average LAIFD has been computed from the recorded
PAR data after the LAI calculated at every minute of the solar
noon. Furthermore, to verify the spatial variation of the LAI,
measurements were randomly taken around the tower using
LAI-2000 Plant Canopy Analyzer (Li-COR) between the days
274 and 287 of 2008 since they were significantly correlated
(R2 = 0.74). As shown by the studies in the area [32], we
adjusted the ground LAI observations of Douglas fir trees in
Speulderbos by a clumping factor.

Based on the agreement of the temporal resolution of the
MODIS images and 3-PG model, the LAIFD measurements
have been computed by averaging the LAI daily average every
16 days, which consolidated a set of 50 LAIFD values and
which were used to validate the BN output.

The LAI measurements by ground techniques, however, are
affected by random errors and bias [4], [35], [36]. The mea-
surements of the PAR are usually concentrated around the solar
noon to avoid high solar angles relative to the zenith. Hence,
an uncertainty of the PAR measurement arises as to whether
the solar angles should be expressed relative to a normal to the
inclined surface or to the solar zenith angle.

2) MODIS Data: The low spatial resolution of the LAI
MODIS product, however, limits the utility at local scales, as
in this paper. To increase the resolution to 250 m, we derived
the LAI from the 250-m NDVI MODIS product (MOD13Q1)
by establishing the relation between the NDVI and the FPAR.
A stronger relation exists between the FPAR and the NDVI
than between the LAI and the NDVI [37], [38]. A linear
relationship between the NDVI and the FPAR is present, which
is approximately linear for green vegetation [39], [40]. This
relationship is sensitive to soil background, irradiance quality,
and canopy structure.

We used the FPAR values from the LAI/FPAR 8-day L4
global 1 km (MOD15A2) and the NDVI values from the vegeta-
tion indices 16-day L3 global 250 m (MOD13Q1) as well. We
found a linear relationship between the NDVI and the FPAR
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Fig. 5. Two normal Q–Q plots and histograms with the normal curve of
LAIM . (a) Sixteen pixels covering the study area. The Q–Q plot and histogram
of one LAI MODIS observation for 16 pixels. (b) Series of a single pixel
followed from the 50 LAIM images during 50 observation times. The Q–Q
plot and histogram of the 50 LAI MODIS images for one pixel.

with R2 = 0.71, the linear relationship was defined by com-
paring the 16-day FPAR composites with the 16-day MODIS
NDVI products during the time period (July 2007–September
2009), and we calculated the 250-m LAI as [41]

LAI = − ln(1− FPAR)
k

(18)

where FPAR is the FPAR at 250-m spatial resolution derived
from the 250-m NDVI based on the relationship equation be-
tween them and k is the extinction coefficient. For the illustrated
example in the next section, the modified MODIS LAI data are
used for two years and two months.

C. LAI Frequency Distribution

Two tests of normality (Shapiro–Wilk and Lilliefors) were
applied in order to verify the frequency distribution of the LAI
values in each one of the MODIS images and the 3-PG model.

1) Modified MODIS LAI: The normality tests of the LAI
values are taken in terms of spatial and temporal resolution. The
tests were first applied to a single LAIM image for the whole
study area (16 pixels with 250-m spatial resolution). Second,
the tests were applied to the pixels at one location at successive
LAIM images during the full study period (July 2007 until
September 2009 at a 16-day temporal resolution). The Q–Q
plots and the histograms of the LAIM values [Fig. 5(a) and
(b)] show some deviations from normality, but according to the
tests of normality, the LAIM data do not deviate from a normal
distribution [Table I(a)].

2) LAI Output of the 3-PG Model: A test of normality has
next been applied to the 16 LAI output values from the 3-PG
model that was run at the same spatial and temporal resolution
as the LAIM images. Although Fig. 6(a) and (b) shows that
these values deviate from normality, these values were not

TABLE I
TWO NORMALITY TESTS. (a) NORMALITY TESTS FOR THE LAIM .
COLUMN (A) IS COMPOSED OF 16 PIXELS COVERING THE STUDY

AREA, AND COLUMN (B) IS A SERIES OF A SINGLE PIXEL FOLLOWED

FROM 50 LAIM IMAGES DURING 50 OBSERVATION TIMES.
(b) NORMALITY TESTS FOR THE LAI3PG. COLUMN (A) IS COMPOSED

OF 16 LAI3PG SIMULATED VALUES, AND COLUMN (B) IS A SERIES

OF 50 OUTPUT VALUES DURING THE TIME SERIES (50 ITERATIONS)

Fig. 6. Normal Q–Q plots and histograms with the normal curve of the
LAI3PG. (a) Sixteen LAI3PG simulated values. The Q–Q plot and histogram
of the 16 LAI simulated values of the 3-PG model. (b) Series of 50 LAI3PG

during the full study period. The Q–Q plot and histogram of the 50 LAI values
of the 3-PG model across the studied period.

significantly different from normality [Table I(b)] according to
the implemented tests.

D. Example Application

We run the BN during 50 iterations, corresponding to a time
period of 26 months, and we consider a homogeneous area of
1 km2 around the climate station in the Speulderbos forest.
Such an area is covered with 16 LAI values of the modified
MODIS LAI at 250-m spatial resolution. We observe the LAI
output values from the 3-PG model, which was executed simul-
taneously in the BN for 50 iterations, also producing 16 values
per iteration for 16-day periods. The MODIS and the 3-PG
model were thus harmonized. The first two steps of the BN are
presented here as explained in Algorithm 1, and the reminder
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Fig. 7. LAI distribution of the Speulderbos forest obtained from four sources,
namely, the field data, the 3-PG model, the MODIS images, and the BN, during
the period July 2007–September 2009.

iterations are similar to the second iteration. The results are
shown in Fig. 7 as follows.

1) First Iteration: The first iteration initializes the BN in its
three nodes, namely, M1, L1, and P1. The data of nodes P1 and
L1 are the same and are acquired from the field data. Hence,
P1 = L1 ∼ N(7.47, 1.04), and M1 ∼ N(4.81, 7× 10−3).

The conditional distribution of L1|M1, P1 is equal to

μ̂L1|M1,P1 =βL1M1M1 + βL1P1P1 + μ̂L1

= 2.77× 10−15M1 + 1× P1 + μ̂L1 (19)

where βL1M1 and βL1P1 are the regression coefficients relating
L1 to M1 and P1, respectively. The regression coefficients are
close to zero or one at this first iteration step, but they will
deviate from zero and one in the subsequent iterations as the
bias in the 3-PG model leads to an accumulation of error. The
marginal distribution of L1 is hence found by implementing the
network with the data in (6) and (7). We thus have

E(L1) = 7.44× 10−15(4.81) + 7.47 + 7.47 = 14.94 (20)

ΣL1 =

⎛
⎝ 0.007 0 1.7× 10−17

0 1.04 1.04
1.7× 10−17 1.04 2.08

⎞
⎠ . (21)

Then, the distribution of node L1 after BN propagation is
equal to L1 ∼ N(14.94, 2.08).

2) Second Iteration: The new LAI value L1 is inserted
into the 3-PG model to calculate the development of the
forest over the next time step. This produces the LAI value
at the next period. At this time step, the network consists
of four nodes, namely, M2, L1, P2, and L2. The probability
distribution of the new P2 after receiving an updated LAI
and after running the 3-PG model is P2 ∼ N(15.39, 0.0006),
whereas M2 ∼ N(4.51, 0.013), L1 ∼ N(14.94, 2.08), and

TABLE II
MEAN VALUES (MEAN), RMSEs, AND REs FOR THE

VARIOUS WAYS TO ESTIMATE THE LAI

L2 ∼ N(4.77, 0.016) according to (9). Therefore, the
expectation and variance of L2|M2, P2, L1 are

μ̂L2|M2,L1,P2 = μ̂L2 +βL2M2M2+βL2L1L1+βL2P2P2

= 4.77+0.99×M2−0.05×L1+0.06×P2 (22)

and the covariance can be found as

ΣL2 =

⎛
⎜⎝

0.013 0 0 0.013
0 2.08 0 0.88
0 0 0.0001 1.2× 10−5

0.013 0.8 1.2× 10−15 0.029

⎞
⎟⎠ . (23)

Therefore, the value of LAI (L2) is distributed as L2 ∼
N(9.41, 0.029).

By observing the difference of this last value with the LAI
field observation, we get |7.49− 9.41| = 1.92, whereas the
difference between the 3-PG LAI output, when the 3-PG is
executed alone, and the LAIFD is equal to |7.49− 8.59| = 1.1.

At this time step, the LAIBN is still far from the validation
data LAIFD, whereas after a few iterations, LAIBN converges
more rapidly than LAI3PG (see Fig. 7). Later iterations are
similar to the second iteration.

The BN has been implemented using the C++ code. Initially,
the 3-PG model produces 16 LAI values that are combined with
the LAIM values in the BN, which introduces the expectation
and variance of the LAI.

E. Results

Fig. 7 shows the LAI values estimated from the BN for a
period of 26 months, along with the LAI derived from MODIS
images, the 3-PG model, and ground observations. The accu-
racy of the LAI 3-PG output is tested using the root mean square
error (RMSE) and the relative error (RE) rate with respect to the
LAI ground observation. We found an RMSE of 2.7 and an RE
of 37.4%. On average, the LAI3PG was 9.6, while the LAIFD is
7.05 (Table II). The 3-PG overestimated the LAI values across
the studied period.

The modified MODIS LAI shows a high deviation with
respect to the LAIFD, with an RMSE and an RE of 3.2
and 44.1%, respectively (Table II). Overall, for this paper,
the average LAIM of 3.9 indicates an underestimation of the
LAI values with respect to the LAIFD. Conversely, as shown
in Section III-D, after the first iteration, the BN yields more
accurate LAI estimates than the 3-PG model and the MODIS
images (Table II). For the 26-month period, we notice that
the combination of the MODIS image and the 3-PG in a BN
reduces the RMSE to 1.5 and the RE to 14.5%.

Fig. 8 shows the output of the sensitivity test implemented
by independently varying the LAI3PG and LAIM values. As
shown in the figure, the BN is more sensitive to the variations
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Fig. 8. Sensitivity test of the BN after independently varying the LAI3PG

and LAIM values in steps of 0.25 units within the interval [−1, 1] across the
studied period applied in the Speulderbos forest.

Fig. 9. Sensitivity test of the BN after simultaneously varying the LAI3PG

and LAIM values in steps of 0.25 units within the interval [−1, 1] over the
studied period applied in the Speulderbos forest.

in the LAIM than to the variations of the LAI3PG values.
Hence, for an added variation of the LAI to the MODIS LAI,
the resulting error of the BN is larger than when adding the
same variation to the 3-PG estimates. Furthermore, as shown in
Fig. 9, large errors of the LAI are obtained when the LAIM and
the LAI3PG are simultaneously varied. We found a maximum
error of 0.74 with LAIM + 1 and LAI3PG − 1.

IV. DISCUSSION

In this paper, a methodology is presented to improve esti-
mates of forest growth based on the manipulation of the LAI
values using a BN that combines the LAI output of the biophys-
ical 3-PG model with the LAI derived from satellite imagery.

We used the BN to infer the updated LAI values from those
predicted by the 3-PG model and the values reported by the
modified MODIS LAI. As shown in Fig. 7, the deviation of the
BN output and ground measurement is lower than the deviation
between the 3-PG model output and the ground measurement,
indicating that the LAI output of the BN is more accurate than
that of the 3-PG model output alone and is closer to the ground
measurement. The high LAI values from the 3-PG (Fig. 7) are
due to an uncorrected simulation. Moreover, a sensitivity test of
the 3-PG’s parameters could help the BN in improving the LAI
estimates. The 3-PG is executed using a specific set of species
and site parameters from 1962, when the forest was planted, to
2007, when we started implementing the BN, to generate the
initial conditions of the foliage, root, and stem biomass. These
initial conditions were used as inputs into the 3-PG model and
were combined with the MODIS images when using the BN.

The strength of the presented methodology lies in the use
of two sources of information and a combination of these in
a BN to improve the estimate of the LAI values. It addresses
two long-standing issues in biophysical modeling and satellite
image analysis. In biophysical modeling, uncertainties in the
model and its parameters lead to an accumulation of error over
time (multiple iterations), which give the model output a bias.
This bias can be reduced by refinement and proper parameter-
ization of the model, but often, the available data of the bio-
physical system are not accurate enough to refine the model or
to reduce the uncertainty in the parameters. In satellite remote
sensing, there are varying instrument and environmental con-
ditions that lead to errors, which are difficult to correct unless
detailed local terrain and atmosphere conditions are available.
The combination of these two sources of information provides
a mechanism to reduce the bias in the biophysical model by
integrating a data source that has no long-term bias but an error
that is evaluated in the inference mechanism of the BN.

A major contribution of this paper lies in the combination of
remote-sensing images with the 3-PG model within a BN. As
a strategy for the consideration of these two products in a BN
node, we resorted to the mathematical formulation in (9). From
this equation, we can identify the intermediate node of the BN
based on the contribution of all of the MODIS images, 3-PG
output, and previous BN output. However, to account for the
uncertainty in both MODIS images and 3-PG model, weighing
factors are introduced. This new expression also includes the
BN output of the previous iteration due to the fact that the LAI
values have no large changes within a relatively short period
of time.

Regarding the influence of the input sources to the BN
accuracy (Fig. 7), we found out that the BN is more sensitive to
the variation in the LAIM than to the variation in the LAI3PG

(Fig. 8). This indicates that LAIM has a significant influence
on the BN. Hence, the BN proposed in this paper gives more
weight to LAIM (9), but it is sensitive as well to LAI3PG when
they vary simultaneously (Fig. 9). Prices LAIM as an input may
help to get prices LAIBN as an output. Improving the accuracy
of the method when the input sources are less sensitive is an
area for future studies.

Also, some other issues require further work. For instance,
the spatial resolution of the MODIS images (250 m) is insuf-
ficient in representing the spatial variability and distribution
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of trees within the forest. This brings additional uncertainty
into the LAI estimation, which could be reduced by using
finer resolution satellite imagery such as ASTER at 15–30-m
resolution. Such spatial refinement would be particularly useful
in assessing the variability in the reflectance and, thus, in the
associated LAI values in smaller forest patches. Furthermore,
the uncertainties in the example application (Section III-D) that
may result by the neighborhood of the 16 pixels have an impact
on the resulting output of the BN. This may be addressed with
a subpixel remote-sensing approach. Lastly, the multisource
image fusion technique could improve the BN output so that
the LAI is estimated more frequently.

In addition, the seasonal changes of the LAIBN (Fig. 7) are
not clear and smooth, whereas the modified LAIM shows a
good agreement with the expected seasonal changes of the LAI
through the year. As shown in Fig. 7, the LAIBN increased
rapidly in May 2008 and 2009, indicating that the LAIBN

during the growing season follows the modified LAIM due to
the weighing equation (9). The LAIBN after a few iterations,
however, drops, showing an unexpected seasonal growth. This
inappropriate BN output is due to the fact that the LAIBN is
affected by the high LAI3PG values. Apparently, the LAIBN

estimates reduce the uncertainties of the 3-PG output. Further-
more, the BN needs a long time series until the LAIBN gets
close to the LAIFD and represents the changes in the seasonal
growth. Fig. 7 shows that the LAIBN started far from the
LAIFD and converged to the LAIFD only after more than seven
months, corresponding to 13 iterations.

Regarding the applicability of our approach, the proposed
BN requires satellite imageries and field data to estimate the
LAI. The remote-sensing data are often not available or of
unknown quality due to atmospheric characteristics such as the
presence of clouds and aerosols. Likewise, ground observations
may be partly or entirely absent as some areas are difficult
to reach or the instruments for field survey are too expensive
for the national forest survey institutes. The use of the BNs,
however, can be useful in dealing with this problem, which will
be considered in further research.

In this paper, we selected a homogeneous forest area. This
assumption has been verified after a significant correlation was
found between the measured LAI at and around the tower
(R2 = 0.74). Homogeneity, however, rarely occurs within the
forests. Nonhomogeneity of the forests is difficult to ad-
dress when extracting the biophysical parameters from remote-
sensing images, particularly for relatively small areas. This may
prohibit the extension of our method toward a more general
applicability.

Spatial data are becoming increasingly important for forest
vegetation management and decision making. Better estima-
tions of the biophysical parameters provide forest managers
information on forest growth, which may help in getting a better
understanding of the forest and which ultimately can serve as
an informative factor in climate change. The forest canopy data
(e.g., vegetation parameters like LAI) play a major role in the
simulation of the surface energy balance and, therefore, weather
and climate prediction. It may also be useful for the forest
scientists and the Intergovernmental Panel on Climate Change
to apply it in directly or indirectly assessing the carbon stored
in the forest, which is one of the important current issues in
climate change mitigation and adaptation strategies.

V. CONCLUSION

This paper has presented a BN for improving the LAI
estimation by combining the 3-PG output with that derived
from remote-sensing imagery. Some concepts of the BN are
introduced and summarized. A new equation (9) is defined
according to the relative error of the MODIS images and the
3-PG output. We have illustrated the framework by implement-
ing the BN for the Speulderbos forest in The Netherlands. The
study leads to the following conclusions.

1) A BN is able to integrate the LAI values that come from
different sources into a single reasoning framework.

2) By using the satellite images, the output of the 3-PG
forest growth model is improved. It closely matches the
mean forest growth estimate, and it substantially reduces
both the RMSE and the RE.
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