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A B S T R A C T

Electrochemical Impedance Spectroscopy (EIS) is a frequently used method to characterize electrodes for Solid
Oxide Fuel Cells (SOFC) or Electrolyzer Cells (SOEC). The porous microstructures, use of composite structures
and sometimes extra functional layers in an electrode, result often in impedance spectra that are difficult to
analyze. Transformation of the impedance into a distribution function of relaxation times (DFRT) is about to
become a new standard in EIS analysis.

This inversion to the τ-domain requires solving a Fredholm integral of the second kind, which is known as an
‘ill-posed inverse problem’. Hence the resulting DFRT's should not be trusted directly. In cases were impedance
data can be modelled satisfactory with an Equivalent Circuit (EqC), built of known dispersion relations (e.g.
(RQ), Gerischer, Finite Length Warburg) an analytic distribution function, G(τ), can be constructed. This can be
compared with the inversion results obtained from Fourier Transform (FT), Tikhonov Regularization (TR) and
multi-(RQ) CNLS fits (m(RQ)fit), thus allowing evaluation and validation of these methods This is illustrated in
this contribution with four examples of SOFC cathodes with quite different properties. The results apply equally
well to SOFC anodes (or SOEC cathodes).

1. Introduction

Solid Oxide Fuel Cell (SOFC) electrodes have a complex micro-
structure which strongly influences the impedance response. Grainsize,
porosity, surface morphology of the grains and the interface between
the electrode and electrolyte or barrier layer contribute to the im-
pedance through ionic and electronic transport and diffusion, surface
exchange and/or diffusion and bulk redox processes due to the induced
variation in the oxygen activity. Especially for composite electrodes the
synergy between the two phases [1] is an extra feature complicating
interpretation of the impedance spectra. Analysis of the electrode dis-
persions is not a simple task, model equivalent circuits (EqC's) must be
seen as a global approximation of the electrochemical transport and
transfer processes. A more fundamental approach is creating an accu-
rate microstructure model through Focussed Ion Beam (FIB) sectioning
of the electrode and taking sequential Scanning Electron Micoscope
(SEM) images. Using Finite Element Modelling (FEM) with optimized
materials parameters, such as diffusion constants, electronic and ionic
conductivities and oxygen exchange rates, a model impedance can be
simulated and compared with the actual measured dispersion. In a 2006
publication in Nature Materials, Wilson et al. [2] showed the power of

this technique on a YSZ/Ni cermet anode (yttria stabilized zirconia/Ni).
A very good match between measured and FIB-FEM modelled electrode
dispersion was found. Almar et al. [3] studied the Ba0.5Sr0.5Co0.8Fe0.2O
(BSCF) and La0.58Sr0.4Co0.2Fe0.8O3 − δ (LSCF) cathodes with FIB-FEM
modelling and impedance analysis. Timurkutluk and Mat have recently
presented a review on this method [4].

Unfortunately, the method is rather time consuming and costly.
Hence it is not well-suited for ‘every day’ electrode characterisation
procedures. A recent development in the analysis of Electrochemical
Impedance Spectroscopy (EIS) is the transformation of the data from
the frequency domain (impedance representation) to the τ-domain re-
sulting in a ‘Distribution (Function) of Relaxation Times’, or DFRT. The
DFRT presents the data as a set of peaks, on a log(τ) axis, which are
characteristic for specific processes that contribute to the electrode
impedance. The advantage is that this representation, G(τ), is ‘model-
free’, i.e. unbiased by a defined model. The data inversion requires
solving a Fredholm integral of the second kind:
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with Z(ωi) the data set, R∞ the high frequency cut-off resistance, Rp the
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polarization resistance or overall resistance of the dispersion. G(τ) is a
normalized function with ∫ −∞

∞G(τ)d ln τ = 1. The time constant, τ, is
the inverse of the frequency: τ = (2π f)−1 = ω−1. Solving Eq. (1) is
known as an ‘ill-posed inverse problem’, i.e. there are in principle many
solutions possible for G(τ). The requirement that G(τ) is always positive
puts a serious restriction on the number of possibilities. Several tech-
niques have been developed to invert impedance data to a DFRT:
Fourier Transform (FT) [5–8], Tikhonov Regularization (TR) [9–19],
Maximum Entropy (ME) [20,21]. All these methods require adjustment
of a special parameter in order to get an acceptable DFRT. The FT needs
a ‘window function’ for the inverse transform, generally a ‘Hann
window’ is used which is based on a cosine function [5]. In the Fourier
Transform used here a special hyperbolic tangent based function is used
[7,8]: TanH(α,β), where α controls the width and β the steepness of the
window sides (see ref. [7] for more details). The TR method needs the
adjustment of a Regularization Parameter (RP). A large RP leads to a
smooth curve with the danger of losing details, while a small RP results
in unwanted oscillations in the DFRT. The ME also requires the ad-
justment of a smoothing parameter.

A different approach has been presented by the current authors with
the multi-(RQ) CNLS fit (abbreviated: m(RQ)fit [7,8,22]). In this
method impedance data is modelled with an increasing number of (RQ)
circuits in series, until an acceptable fit is obtained. (RQ) stands for the
parallel combination of a resistance, R, and a constant phase element
(CPE, symbol Q, with Y(RQ) = Y0(jω)ϕ) [23]. The (RQ) is also known as
the ZARC element [24]. The advantage is that each (RQ) has an ana-
lytical representation in the τ-domain (see Section 2). Hence, when the
impedance data can be resolved satisfactory with a series of (RQ)'s, the
Rp ∙ G(τ) is simply obtained by the summation of the respective
Rk ∙ Gk(τ) contributions [22]. Although this approach seems like ap-
plying a predefined model, the important criterion is how closely the m
(RQ)fit matches the actual measurement data. If the difference is in the
order of the noise in the data, the m(RQ)fit based Rp ∙ G(τ) is a proper
representation, as inserting this back in the integral of Eq. (1) directly
results in a close reconstruction of the data set.

A quite different technique is used by the group of Tsur [25–27].
They use an evolutionary programming technique in which a DFRT is
built from a pre-determined set of possible distribution functions. A
model impedance is reconstructed from the DFRT and compared to the
actual measurement. Automatically adjusting the number and type of
functions and their parameters through genetic coding, the optimum
match is found. The advantage is that no smoothing parameter or
window function is needed. It is, however, essential that a physical
interpretation can be given to the obtained set of distribution functions.

Besides the (RQ), a few other impedance functions have an analytic
τ-domain expression. In principle it is possible to derive the DFRT, G(τ),
directly from the imaginary part of the impedance function, using the
method presented by Fuoss and Kirkwood [28]:
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where z is a new variable defined as: z= ln (ω ⋅ τ0) = ln (τ0/τ). Z0 is
the dc-resistance and τ0 is the characteristic time constant of the im-
pedance function.

The aim of this publication is to provide a brief review of known
exact DFRT's for specific impedance dispersions (Section 2). In cases
where the impedance can be well-modelled with an ‘Equivalent Circuit’
(EqC), which contains one (or more) of these special functions, the
analytic DFRT can be calculated and compared with the DFRT's ob-
tained with various inversion techniques (notably the FT, TR and m
(RQ)fit). This will be illustrated with a number of real examples of
electrode materials in the subsequent Sections 3–6. Not only the proper
reproduction of the major time constants will be considered but also
how-well the reconstructed impedances match the original data sets.
This comparison will increase our insight in the application and

limitations of the inversion procedures.

2. Exact transforms

2.1. The (RQ) or ZARC

There are quite a few impedance functions that have an analytical τ-
domain expression. The best known is the parallel combination of a
resistance and a so-called Constant Phase Element or CPE with notation
(RQ). Here the circuit description code, as explained in ref. [29], is
used. The dispersion is a depressed semi-circle in the impedance re-
presentation. The admittance expression for the CPE is:

= ⋅Y ω Y jω( ) ( )Q
ϕ

0 (3)

Hence the impedance expression for a (RQ), ZARC [24] or Cole-Cole
relation [30] can be written as:
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With the characteristic time constant, = ⋅τ R Y0 0
ϕ . Applying the

transformation procedure of Eq. (2) yields the well-known DFRT for the
(RQ) dispersion [31]:
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This results in a symmetric function on a ln(τ) scale. The surface
area under the R ∙ G(τ) - ln(τ) curve is equal to R. The width of the
distribution function strongly depends on φ, as can be seen in Fig. 1.
The insert shows the dependence of the full width at half maximum
(FWHM, given in decades). When φ = 0.5, i.e. a diffusion type dis-
persion, the DFRT extends over a large range. The 10% limit covers 5.2
decades!

For φ = 1 the CPE becomes a capacitance. The DFRT of a (RC) is a
δ-function, i.e. a vertical spike at τ0 = R ∙ C. The surface area of
R ∙ G(RC)(τ) is not directly accessible from the graph, although mathe-
matically it still equals R. In order to make the contribution of a (RC)
better visible in the DFRT graph a Gauss function is applied as dis-
tribution function [7,8]:

⋅ ≈ −R G R
W π

eRC
τ τ W
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Fig. 1. Distribution functions for a (RQ) or ZARC as function of the frequency power, φ.
The insert shows the relation between φ and the full width at half maximum (FWHM in
decades) and the maximum G(τ0).
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The width (and height) is determined by the parameter W. With
W = 0.15 an acceptable representation of a (RC)-circuit is obtained,
while the reconstruction of the impedance from the DFRT shows only a
small deviation from the original dispersion. The overall distribution
function of a series of (RQ) and/or (RC) circuits is simply obtained by
addition of the separate DFRT's:

∑⋅ = ⋅R G τ R G τ( ) ( )p
k

k k
(7)

Rp is the polarization resistance or overall (dc-) resistance of the
total frequency dispersion.

2.2. Havriliak-Negami dispersion

The Havriliak Negami dispersion relation [32] is presented in the
impedance representation by:

=
+
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This is a very general dispersion relation, for γ= 1 the CPE or ZARC
relation is obtained. With β = 1 the Cole-Davidson expression results
[33]. A special case is the Gerischer [34] or chemical impedance
[35,36] which results for γ= 0.5 and β = 1:
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The full expression for the Havriliak-Negami dispersion is:
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Simulation of the H-N dispersion in a spread sheet is quite
straightforward with Eqs. (10), (11).

Several authors have presented an analytic expression for the τ-
domain representation of the H-N dispersion [17,37–39]. Here the ex-
pression by Bello et al. [38,39], corrected with the missing (τ/τ0)βγ

term, is used:
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Depending on the parameters β and γ a more or less asymmetric
peak is obtained. Fig. 2 shows the change of the DFRT for γ= 0.5 and β
increasing from 0.9 to 1 (resulting in a Gerischer DFRT). The peak
maximum is strongly dependent on β, rapidly going to infinity for β →
1.

2.3. Gerischer dispersion

Inserting β = 1 in Eq. (12b) yields ‘−∞’ for the argument of the
arctangent function, or atan(−∞) = −½π, hence θ= π. Inserting this
in Eq. (12a) directly yields the DFRT for the Gerischer, Eq. (9):
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Fig. 2 clearly shows the asymptotic behaviour at τ= τ0.

2.4. Finite Length Warburg

The Finite Length Warburg dispersion (FLW) has a shape that re-
sembles the Gerischer impedance. The significant difference is that the
FLW is based on a finite length diffusion problem, while the Gerischer is
based on semi-infinite diffusion coupled to a side reaction [34]. Because
of this side reaction the Gerischer shows a finite dc-resistance. The short
notation for the FLW, with R0 the dc-resistance, is given by:
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0

0
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It is not feasible to derive the DFRT for a FLW using Eq. (2) [22]. As
an intermediate step the fractal-FLW [40] is explored first. The im-
pedance expression for the f-FLW is given by:
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The full expression with separate real and imaginary parts becomes:
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With C = cos (ϕπ/2), S= sin (ϕπ/2), α = (ωτ0)ϕC and β =
(ωτ0)ϕS. Eq. (16) reduces for φ = 0.5 to the expression for the ideal
FLW:
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Very recently a full analysis has been presented of the transforma-
tion of Eq. (16), using the procedure of Eq. (2), into the DFRT for a f-
FLW [22]:
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With Q = (τ0/τ)ϕ and Y = exp [−2Q cos (ϕπ)]. The DFRT shows
several peaks, the number of peaks strongly depends on φ. When φ
approaches 0.5 the number of peaks increases very rapidly, see Fig. 3. A
remarkable point is that the time constant associated with the major
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peak, τ1 (see Fig. 3), lies below the characteristic time constant, τ0.
In ref. [22] it is shown how the DFRT curve of Eq. (18) changes in to

an infinite set of δ-functions when φ → 0.5. The positions, τk, of these δ-
functions are given by:

=
⋅ −
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k
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, 1, 2,k
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The mathematical surface area of the δ-functions is given by
Rk = 2τk ∙ R0, hence the δ-functions decrease monotonically with τk. A
δ-function in the τ-domain represents a (RC) impedance. Hence the
ideal FLW can also be represented by an infinite series of (RC)-circuits
(ref. [22]):
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Fig. 4 shows schematically the DFRT for the ideal FLW, the height of
the δ-functions indicate the mathematical surface areas, which is equal
to Rk.

3. Havriliak-Negami DFRT

The first example deals with the impedance of a pure Ca3Co4O9 + δ
(CCO) cathode in a symmetric cell with a Ce0.9Gd0.1O2.95 (CGO)

electrolyte, similar to results presented in [41]. The SEM micrographs
showed a somewhat flaky and inhomogeneous structure. Fig. 5 shows
the impedance, at 602 °C and pO2 = 1 atm, after subtraction of the
inductive contribution which is caused by the measurement system. The
data point close to 50 Hz was clearly an outlier and was removed from
the data set. The overall impedance does not show clear features and
cannot be modelled with a simple combination of a few (RQ)'s and/or a
Gerischer impedance. A Gerischer impedance could be expected based
on prior results obtained for composite CCO-CGO cathodes [1]. Three
transformation techniques were used to obtain a DFRT: FT, TR and m
(RQ)fit. The Fourier Transform method has been described in refs [7,8].
For the Tikhonov Regularization the freely available Matlab app
‘DRTtools’ was used [42]. ‘EqCWin95’ software [43] was used for the
CNLS-fit in the m(RQ)fit procedure. The m(RQ)fit [7,8] yielded a R-
4(RQ) circuit with χ2 = 4.4 ∙ 10−7, indicating an excellent fit, as can
also be seen in Fig. 5. In the m(RQ)fit the used EqC is presented as R-x
(RQ)y(RC), where x and y indicate the number of (RQ)'s and (RC)'s in
the EqC [22]. In the CNLS-fit the φ parameter of the CPE is sometimes
shifted to 1, which indicates a (RC) circuit. The error estimates of the
(RQ) parameters were in the range from ~2% to ~40%, indicating a
strong correlation. The DFRT is characterized by a sharp peak at ~0.3 s,
followed by a broad and lower peak as shown in Fig. 6.

Extension of the data set with a R(RQ) circuit at low and at high
frequency allowed for a numerical Fourier Transform with analytical
extension to −∞ and +∞ in ln(ω) [7,8]. The special Tanh(α,β)
window function, with α= 3 and β = 1.5 [7], was used in the reverse
Fourier Transform. This resulted in two less sharp peaks, see Fig. 6.

The Tikhonov Regularization (TR, RP = 10−3) of the data set
showed a rather strange dip at about 2 ∙ 10−2 s. This could be attributed
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to the missing data point at f= 50.1 Hz in the logarithmically spaced
frequency set. Inserting the simulated impedance at 50.1 Hz from the m
(RQ)fit alleviated this problem as can also be seen in Fig. 6. Both the FT
and the TR curves are quite close to each other.

In [8] it was shown that, depending on the shape, a Havriliak-Ne-
gami impedance dispersion could be easily modelled with a series of
(RQ)'s, using the m(RQ)fit method. The Gerischer represents an ideal
dispersion function, but for porous, inhomogeneous electrodes it might
well be replaced by a fractal form, i.e. by a H-N dispersion. This has
been observed previously for chromate-titanate based anodes [44].
Using an Excel spread sheet program a quite reasonable fit
(χ2 = 1.6 ∙ 10−6) was obtained for a R(RQ)high[H-N](RQ)low circuit,
where ‘high’ and ‘low’ indicate the position in the frequency range. The
simulated dispersion, presented also in Fig. 5, shows an excellent match
with the original data. Using the DFRT expressions for the (RQ)'s and
the H-N, Eqs. (5), (12a), (12b) the DFRT can be directly obtained. Fig. 7
shows that the H-N based DFRT is a close match to the FT and TR
DFRT's.

Fig. 8 shows the relative residuals for the Kramers-Kronig test (data
validation) [45], the m(RQ)fit, the H-N based EqC fit and the residuals
for the impedances reconstructed from the FT and TR DFRT's. The
‘pseudo’ χ2 values indicate high quality data and excellent fits for the
CNLS-procedures. The FT reconstructed impedance shows some sys-
tematic deviation, while the TR shows a quite acceptable fit. The
Fourier Transform and the Tikhonov Regularization show in this

example clearly a good representation, assuming that the electrode
shows a fractal-Gerischer behaviour. The asymmetric shape of the
smaller peak at τ= 0.02 s can be taken as an indication for a H-N type
dispersion [8], although the observation is complicated by the larger
peak in Fig. 7.

This example clearly favours the TR and FT techniques. The m(RQ)
fit method overestimates the major contribution to the DFRT. The in-
terpretation with a ‘fractal-Gerischer’ does make sense, but further
analysis as function of temperature and/or pO2 should provide further
support for this model.

4. La0.6Sr0.4Co0.2Fe0.8O3 − δ cathode

The LSCF cathode has been subject of many studies [46]. The
cathode properties strongly depend on the microstructure of the elec-
trode, and hence on the sintering temperature, Ts. Too low a Ts causes
poor adhesion to the electrolyte resulting in an increase in the polar-
ization resistance, Rp. Too high a Ts causes increased sintering, resulting
in a more or less closed pore structure [47,48]. In that case the elec-
trode polarization is significantly increased with respect to the optimal
cathode, showing a broad impedance. Fig. 9 presents the dispersion for
a symmetric cell with LSCF cathodes, sintered at 1300 °C [47,48], as
function of pO2. In a previous DFRT-based study [7] it was indicated
that no simple EqC could be formulated that would satisfactory model
the data. A DFRT obtained by the genetic algorithm method [25] for a
single data set indicated the presence of two Gauss distributions and a
(RQ)-DFRT [7].

In this section the DFRT's obtained by the m(RQ)fit method and the
Tikhonov Regularization, TR, procedure are compared. Fig. 10 presents
m(RQ)fit derived DFRT's as function of selected pO2 values. For almost
all data sets a combination of up to 6 (RQ) and (RC) circuits were
needed for a good fit. Both the Kramers-Kronig data validation [45] and
the m(RQ)fit results showed (pseudo) χ2 values well below 10−6, in-
dicating both high quality data and a very good m(RQ)fit.

All m(RQ)fit DFRT's are characterized by a very broad distribution
and one sharp peak at low frequencies (τ1 ~ 0.7 s). This peak, which is
a Gauss function representing a (RC) contribution in the m(RQ)fit, is
marginally dependent on pO2. The very broad peak, at τ2, shows a
somewhat stronger pO2 dependence. The associated resistances, R1 and
R2, show a small but clear power dependence on pO2. The orders of the
dependence, m, are presented in the insert in Fig. 10. Table 1 sum-
marizes the m(RQ)fit results.

The TR transformations show a quite different picture, see Fig. 11.
The time constant, τ1, also stays more or less constant, the peak at the
second time constant, τ2, is less clear as for the m(RQ)fit method of
Fig. 10. At the high frequency side (τ < 10−4 s) cut-off noise is pre-
sent. Using the EqC for the pO2 = 0.94 atm dispersion a new simulation
was made over a frequency range from 0.1 MHz to 6.5 MHz. The TR
DFRT is shown in the insert of Fig. 11 together with the original TR-
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DFRT and the m(RQ)fit DFRT. At high frequencies (τ < 10−3 s) both
the extended TR and the m(RQ)fit DFRT's coincide quite nicely. Above
τ = 10−3 s both TR DFRT's coincide very well.

Fig. 12 show the m(RQ)fit derived DFRT's for selected temperatures,
fit results are summarized in Table 2. It is again characterized by two
major time constants, τ1 and τ2, with activation energies of respectively
52 and 80 kJ mol−1. At low temperatures even a third time constant
becomes visible. The TR transform clearly shows the major peak, the
second broader peak is less well defined, see Fig. 13. The shift of τ1 with
temperature, insert in Fig. 13, shows also an activation energy of

52 kJ mol−1.
This impedance study of the LSCF cathode sintered at 1300 °C was

part of a series with different Ts: 1100 °C, 1200 °C and 1300 °C. The
polarization resistances have quite different activation energies, resp.
140 kJ mol−1, 120 kJ mol−1 and 52 kJ mol−1. This clearly indicates a
distinct difference in the dominating electrode processes between the
cathodes sintered at 1100 °C and 1200 °C and this electrode. The ca-
pacitance associated with τ1 is 0.27–0.44 F ∙ cm−2 (~170 F ∙ cm−3 at
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Table 1
Fit results for the LSCF cathode dispersions as function of pO2. The EqC resulting from the
m(RQ)fit and the pseudo χ2 values (CNLS-fit and KK-validation) are presented.

pO2/atm m(RQ)fit EqC χCNLS
2 × 106 χKK

2 × 106

0.94 4(RQ)2(RC) 0.11 0.15
0.47 3(RQ)3(RC) 0.66 0.28
0.20 4(RQ)2(RC) 0.36 0.24
0.04 4(RQ)2(RC) 0.69 0.68
0.01 4(RQ)2(RC) 0.65 0.46
5 ∙ 10−3 3(RQ)3(RC) 0.47 0.65
1 ∙ 10−3 3(RQ)2(RC) 0.41 0.14
3.7 ∙ 10−4 3(RQ)1(RC) 0.22 0.10
2.3 ∙ 10−5 3(RQ)3(RC) 0.28 0.17
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Table 2
Fit results for the LSCF cathode dispersions as function of temperature. The EqC resulting
from the m(RQ)fit and the pseudo χ2 values (CNLS-fit and KK-validation) are presented.
(Obvious outliers have been removed from the data).

T/°C m(RQ)fit EqC χCNLS
2 × 106 χKK

2 × 106

500 3(RQ)2(RC) 0.30 0.33
525 3(RQ)2(RC) 1.4 1.9
550 4(RQ)1(RC) 1.2 1.5
575 4(RQ)1(RC) 1.4 2.0
600 3(RQ)2(RC) 0.85 0.1
625 3(RQ)2(RC) 0.61 0.15
650 3(RQ)1(RC) 0.80 0.29
675 3(RQ)1(RC) 0.70 0.23
700 3(RQ)1(RC) 1.1 0.21
725 3(RQ)1(RC) 1.3 0.26
750 3(RQ)1(RC) 1.3 0.19
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750 °C), which is well below the 1135 F ∙ cm−3 for the redox capaci-
tance at 750 °C estimated for dense thin films of LSCF [49,50]. Never-
theless this capacitance can be assigned to the redox capacitance of
LSCF, assuming that a limited layer thickness of the electrode is active.
The associated resistance, with Eact ~ 55 kJ mol−1 (up to 650 °C), could
then be assigned to the lattice transfer of adsorbed oxygen. Un-
fortunately, in literature there is no reliable data available on the
oxygen incorporation step. Even for the overall oxygen exchange rate
for LSCF (comprising the dissociation and incorporation steps) con-
flicting results appear in literature.

5. Electrode dispersion with a Gerischer

An extensive study on the electrode behaviour of La2NiO4 + δ (LNO)
cathodes has been presented in ref. [51]. The screen printed LNO
cathodes showed a typical EqC consisting of a Gerischer dispersion in
series with a (RQ) at high frequencies. Fig. 14 shows the dispersions as
function of pO2 at 600 °C. The instrumental inductance and electrolyte
resistance have been subtracted from the dispersions. The drawn lines
show an excellent CNLS-fit of the model EqC with the measured data.
The microstructure showed an open porosity with well-defined crys-
tallites with an average grain size of 340 nm.

In this case we can compare the exact EqC-derived DFRT with the m
(RQ)fit and TR methods. Fig. 15 shows the combination of these DFRT's
at pO2 = 0.01 atm. The Gerischer impedance shows a clear (RC) type
dispersion at the low frequency limit [8]. The inversion of a (RC) is
problematic because the associated distribution function is a δ-function

in the τ-domain [7]. For a pure Gerischer dispersion two peaks are
obtained with the m(RQ)fit method as demonstrated in refs [7,8]. The
EqC derived DFRT in Fig. 15 is characterized by an asymptotic function
(Eq. (13): GGeri(τ0) = ∞) and a very broad symmetric distribution
function, i.e. the inverse of a (RQ). Neither the m(RQ)fit nor the TR
inversion can correctly model this behaviour. The m(RQ)fit in Fig. 15
shows two peaks, at τ~ 20 ms and τ~ 45 ms, which can be assigned to
the (RQ) at τ= 20 ms and the Gerischer at τ = 55 ms. The insert shows
the two related time constants derived from the CNLS-fit with the EqC
(inset in Fig. 14). The CNLS-fit results for the EqC and the m(RQ)fit are
summarized in Table 3.

Fig. 16 shows the development of the m(RQ)fit with pO2. At higher
pO2 (> 0.11 atm) the m(RQ)fit reveals two sharp peaks, besides the
broader peak assigned to the (RQ). This has been observed before [7,8].
In the insert the peak positions, τ1, τ2 and τ3, are compared with the
actual EqC values (see insert in Fig. 15). The DFRT at higher pressures
develop a second sharp peak at τ2, which has the same pO2 dependence
as the major peak. Hence τ1 and τ2 are part of the same distribution
function for the Gerischer. The order, m, is somewhat lower than ob-
served for the EqC derived DFRT, see insert in Fig. 16. τ3 is clearly
linked to τ(RQ).

The Tikhonov and Fourier Transform DFRT show much broader,
and almost identical, distribution functions as presented in Fig. 17. The
peak positions, τ1, show the same pO2 dependence, but are shifted to
lower τ values. Further peaks are less well developed and difficult to
estimate. In this case the m(RQ)fit method has a small advantage over
the TR or FT method as it can resolve most time constants.

Fig. 14. Impedance diagrams of a symmetric LNO cathode on CGO as function of pO2 at
600 °C. The applied EqC is presented. The brackets show the inductance and electrolyte
resistance that have been subtracted.
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Table 3
Fit results for LNO cathode as function pO2. Both the m(RQ)fit and the EqC CNLS-fit are
presented with the respective pseudo χ2 values (including the KK-validation).

pO2/atm m(RQ)fit
EqC

χCNLS
2 × 106 EqC χCNLS

2 × 106 χKK
2 × 106

0.78 2(RQ)
2(RC)

0.027 LR(RQ)G 0.041 0.033

0.60 2(RQ)
2(RC)

0.030 LR(RQ)G 0.044 0.028

0.21 4(RQ) 0.028 LR(RQ)G 0.066 0.028
0.11 4(RQ) 0.034 LR(RQ)G 0.068 0.034
0.05 4(RQ) 0.025 LR(RQ)G 0.091 0.025
0.01 3(RQ)

1(RC)
0.059 LR(RQ)G(RQ) 0.15 0.059
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6. FLW dispersion

As indicated in the introduction, the microstructure of the electrode
has a significant influence on the shape and magnitude of the im-
pedance. Here we consider the impedance of pure CCO deposited by
Electrostatic Spray Deposition (ESD) [52]. In contrast to the example in
Section 3, this electrode shows a structure with well-defined micro-
crystals. Details on the preparation procedure and further character-
izations will be part of a future publication. Measurements were per-
formed on a symmetric cell with CGO as electrolyte. Fig. 18 shows a
compilation of normalized impedances measured at temperatures in the
range 600–800 °C. Normalization was done by subtracting the instru-
mental inductance and electrolyte resistance, followed by dividing the
remaining dispersions by the polarization resistances. Almost all im-
pedances (except for the lowest temperatures) show an identical dis-
persion, characterized by a 45° line at high frequencies, followed by a
more or less (RC) type dispersion at low frequencies. It can be regarded
as a Finite Length Warburg type dispersion, which is not uncommon for
SOFC electrodes.

Fig. 19 shows an impedance at 751 °C which could be fitted by the
series combination of two FLW elements (FLW-A and FLW-B). This
however is an approximation, it is more likely that the FLW-like

dispersion is due to a combination of parallel FLW functions with a
distribution in the diffusion length (with = ∼τ Dℓ /0

2 ). The m(RQ)fit re-
sulted in a 2(RQ)2(RC) circuit, which was used for the inversion to a
DFRT. The relative errors remained for the most part below 0.2%, in-
dicating a very good fit.

Fig. 20 shows the DFRT's for the dispersion of Fig. 19. The dis-
tribution function for the two FLW fit could be directly calculated using
Eq. (19). The δ-functions have been replaced for better visibility by
Gauss peaks using Eq. (6). The m(RQ)fit shows a reasonable match with
the FLW-DFRT with respect to position of the first peaks at τ1. The TR-
DFRT with RP = 10−4, shows a rather broad peak overlapping the two
FLW-peaks. The peaks below 0.03 s have been enlarged 10 times for
better visibility (dashed lines). The FT-DFRT (not shown) is in shape
quite similar the TR-DFRT, with an identical peak position.

It is clear that neither the Tikhonov regularization nor the Fourier
transform is capable in recognizing the two major peaks related to the
two FLW dispersions. On the other hand, a more complex FLW-related
function might be possible with a distribution in the diffusion length
and hence in the characteristic time constant, τ0.

7. Discussion

It is clear from the previous Sections 3–6 that different inversion
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techniques can lead to quite different shapes of the distribution func-
tions. Yet, the reconstructed impedances show generally a very good
match with the original data, see Figs. 8 and 19, and results presented
in [7,8,22]. This indicates that different DFRT shapes can properly re-
present the measured data set in the τ-domain. With the help of a set of
exact distribution functions (Section 2) it is possible to present reliable
DFRT's for impedance data that can be resolved with a realistic EqC, see
e.g. Fig. 15 for the LNO electrode (Section 5). When (RC) type disper-
sions are present (this includes also the Gerischer and FLW) then the FT
and Tikhonov inversion methods show a clear deviation from the exact
DFRT. In general both the FT and Tikhonov inversions give quite si-
milar results as shown in Section 3, Fig. 7, and in Section 5, Fig. 17. The
m(RQ)fit technique can often resolve the impedance spectra close to the
experimental noise level. However, with the Gerischer and the FLW an
overestimation of the number of peaks can occur [7,8,22], i.e. the ap-
pearance of a ‘satellite’ peak.

The position of the time constants obtained from a TR or FT in-
version can deviate from the exact positions derived from a realistic
EqC, see e.g. Fig. 17. The trend (i.e. the order of the pO2 dependence,
m), however, is very close as can be seen in the insert in Fig. 17. It
seems that, in the case of the Gerischer type dispersion, the m(RQ)fit
derived time constants are quite close to the exact ones, despite the
appearance of a satellite peak for the Gerischer, see the insert in Fig. 16.

An important point is, of course, the quality of the data. As shown in
Section 3, the Tikhonov Matlab app [42] requires well-spaced data
points. Removing an outlier results in a distortion of the DFRT. Re-
placement of the outlier with an interpolated data point restores the
DFRT. Another point is the frequency range which should be as large as
possible. With the FT method the frequency range is extended on both
sides, but this is not ‘model free’ as a simple R(RQ) circuit is used for the
extension. For the TR method the low frequency limit data point should
be close to the dc-point, otherwise a broad hump appears at the high τ
limit, as can be seen in Figs. 6 and 11.

Zhang et al. [18] have shown that increasing the number of data sets
per decade improves the Tikhonov inversion for a Gerischer type dis-
persion. But taking 100 data points per decade is for routine use not
advisable. In a subsequent publication [19] Zhang et al. have presented
a ‘high precision approach’ Tikhonov based inversion, in which also the
errors between the measured impedance and reconstructed impedance
are involved. Effat and Ciucci [53] have recently presented an im-
proved inversion method, based on Bayesian regularization, which in-
volves the use of ‘prior models’. Hopefully these new methods will
become available to the scientific community, as has been done pre-
viously by Wan with the ‘DRTtools app’ [42].

8. Conclusions

The distribution function of relaxation times has become an im-
portant tool for electrochemical impedance spectroscopy. It is, how-
ever, still a technique that needs to be applied with care. Comparison of
the ‘exact’ distribution function from a viable Equivalent Circuit with
the DFRT derived with one of the inversion techniques, as described in
this contribution, will help in understanding the limitations. Especially
(RC)-type dispersions (including the Gerischer and the FLW) provide
poor representations in the τ-domain when using the standard available
techniques (TR, FT). The m(RQ)fit has some advantage in this case, as it
shows the time constants more accurately than the TR or FT method,
but it can also produce ‘satellite’ peaks for the Gerischer of FLW dis-
persions. The drawback of the m(RQ)fit is that it is not guaranteed to
provide an acceptable fit, sometimes a ‘negative’ (RQ) is encountered
(not presented here). It is to be expected that advanced inversion
techniques [19,53] will become available in the near future.
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