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Chapter 1

Introduction

1.1 Motivation

Many Partial Differential Equations (PDEs) model problems in physics
and engineering that must satisfy bounds on some of the variables. For
instance, variables must be positive or satisfy a maximum constraint. If
one solves these PDEs numerically then it is crucial to satisfy these bounds,
otherwise the solution is not physically realizable and frequently the numer-
ical solution process will break down. In order to study bounds preserving
numerical discretizations, we will discuss in this PhD thesis two important
classes of nonlinear PDEs that have strict bounds on the solution, namely
degenerate parabolic PDEs and the hyperbolic compressible reactive Euler
equations.

Nonlinear, possibly degenerate, parabolic equations, describe many prob-
lems in science and engineering, such as radiative transport in the diffusive
limit, flow of electrons and holes in semi-conductor devices, heat and mass
transfer, combustion, flow in porous media, displacement of oil by water
in oil reservoirs and the evolution of a gas of fermionic and Bose–Einstein
particles. These phenomena are modelled for instance by the radiative
transport equation in the diffusive limit [65, 119], the drift-diffusion equa-
tion for semiconductors [13, 64], the heat equation [19], the porous media
equation [2, 112, 131], the Buckley-Leverett equation [13, 73], and the non-
linear Fokker-Plank equation modelling fermion and boson gases [21, 109].
Preserving bounds on the numerical solution of these parabolic and degen-
erate parabolic equations is non-trivial, but is further complicated by the
fact that many bounds preserving numerical discretizations for parabolic
equations also have a severe time step constraint.

1



2 CHAPTER 1. INTRODUCTION

A second important example of nonlinear PDEs where the solution must
satisfy bounds are the chemically reactive Euler equations, which model in-
viscid, compressible, reacting flows [10, 11, 14, 117, 118]. These equations
arise for instance in combustion problems. The study of such problems is
of great value in mitigating the risk of accidental fires, preventing the oc-
currence of gas explosions in industrial production processes, but also for
instance in the study of supernova explosions in astrophysics, and many
other applications [38, 81, 87]. It is very challenging to numerically simu-
late these problems since apart from ensuring positivity of density, pressure
and internal energy, the mass fractions of the different species must remain
in the domain [0, 1]. In addition, in high speed chemically reacting flows
the reaction speed can be much larger than the gas velocity. This leads to
numerical stiffness problems caused by the chemical reactions, which is one
of the main numerical challenges when computing reacting flows. Another
important issue with the chemically reactive Euler equations is that even
a stable numerical discretization can still produce spurious unphysical so-
lutions in the reaction zone [31, 81], unless one is using a sufficiently fine
spatial-temporal resolution in the numerical simulations, with time steps
close to the very small chemical time scales, or one uses subcell resolution
to capture these local phenomena.

So far most bounds preserving numerical discretizations use explicit
time integration methods. For many PDEs, especially higher order PDEs,
the time step restriction, which is necessary to ensure stability for explicit
time integration methods, generally results in excessively small time steps
[95, 132, 133, 134], e.g. τ 6 Chp, with τ the time step, C a positive
constant, h the mesh size, and p the highest order of the spatial derivatives
in the PDEs. In addition, enforcing positivity or other bounds on the
numerical solution frequently imposes further constraints on the time step
[83, 84, 94, 131].

An alternative to time-explicit discretizations is to use implicit time
integration methods, which generally allow larger time steps, but at the
cost of solving each time step a system of algebraic equations. Since bounds
preserving numerical discretizations often use limiters, which frequently
contain switches or varying stencils, it is nontrivial to combine time-implicit
methods with bounds preserving discretizations. The study of implicit
bounds preserving numerical discretizations will be an important topic in
this thesis.

Several implicit time integration methods, such as some Diagonally Im-
plicit Runge-Kutta (DIRK) methods [5, 18, 99], are stiffly accurate [61],
which results in excellent stability properties, especially for singularly per-
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turbed problems, but solving the resulting algebraic equations can be dif-
ficult and costly. Alternatively, semi-implicit time integration methods,
such as semi-implicit Spectral Deferred Correction (SDC) methods [89],
can alleviate the complexity of the algebraic equations that must be solved
each time step, but SDC methods may not be sufficiently stable for some
strongly nonlinear problems or have a relatively severe time step constraint.
Choosing a suitable time integration method therefore is nontrivial. For
problems with strong nonlinearities such as the nonlinear Fokker-Plank
equation with a singular solution or the chemically reactive Euler equations
with stiff source terms, fully implicit time integration method is therefore
a good choice and will be extensively used in this thesis. For equations
that can separate stiff and non-stiff terms, such as the Allen-Cahn equa-
tion, semi-implicit methods are more suitable. We will use the Allen-Cahn
equation therefore as a model equation for the development and analysis of
higher order accurate discretizations using semi-implicit time integration
methods, but the Allen-Cahn equation is also interesting in its own respect.

The Allen-Cahn equation was introduced by Allen and Cahn in [6]
to describe the motion of anti-phase boundaries in crystalline solids. At
present, using the phase field method [78, 97], the Allen-Cahn equation has
been widely used to model many complicated moving interface problems,
such as the process of phase separation of a binary alloy at a fixed temper-
ature [32, 46], the mixture of two incompressible fluids, phase transitions
and interfacial dynamics in materials science [6, 32]. In particular, spe-
cial phase separations may appear on static and dynamic surfaces, such as
phase separation on lipid bilayer membranes [63, 128] and dendritic crystal
growth on curved surfaces [93]. We will analyze in this thesis the stability
and prove optimal error estimates for higher order accurate semi-implicit
numerical discretizations of the Allen-Cahn equation. The main difficulty
here consists of the nonlinear term in the Allen-Cahn equation.

1.2 Bounds preserving numerical discretizations

Typically, bounds on the numerical solution of PDEs are enforced using
limiters. The main purpose of the limiter is to locally adjust the numerical
solution such that it meets the constraints. Since developing accurate and
efficient limiters is in general non-trivial, especially for higher order accu-
rate numerical discretizations, there is a vast literature on bounds preserv-
ing limiters. In two seminal papers [133, 134] Zhang and Shu proposed lim-
iters and adjustments to the numerical discretization that preserve bounds
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for higher order accurate Discontinuus Galerkin (DG) discretizations for
conservation laws. The basic idea of these limiters is to first ensure that
the element average of the numerical solution obtained with a first order
accurate time integration method satisfies the bounds. Next, they limit the
higher order accurate polynomial solution at the quadrature points in each
element since this are the only data used in the spatial discretization, and
finally they use explicit strong stability preserving Runge-Kutta methods
to obtain also higher order accuracy in time. The approach of Zhang and
Shu provides a clear framework for many types of PDEs, such as the Euler
equations of gas dynamics [134], the compressible Navier-Stokes equations
[132] and relativistic hydrodynamics [95].

During the past few years many bounds preserving numerical discretiza-
tions for nonlinear degenerate parabolic equations, for which preserving
positivity of the numerical solution is crucial, have been proposed. In [131],
the authors considered time-explicit Local Discontinuous Galerkin (LDG)
discretizations for the porous media equation and presented a limiter to
ensure the positivity of the solution. The authors in [84] proposed a mod-
ified limiter to preserve the maximum principle for time-explicit DG dis-
cretizations of the Fokker–Planck equation. This DG method is, however,
limited to third order accuracy. A uniformly accurate, entropy satisfying
time-explicit DG method for solving the linear Fokker–Planck equation is
presented in [85]. An important element in this algorithm is the use of a
truncation operator to ensure nonnegative solutions. In [83] the authors
developed time-explicit positivity preserving discretizations for the nonlin-
ear Fokker-Plank equation. Positivity of the numerical solution is enforced
using a reconstruction algorithm. The main disadvantage of these time-
explicit discretizations for degenerate parabolic PEDs is the severe time
constraint τ 6 Ch2.

For the chemically reactive Euler equations, which model inviscid com-
pressible flows with chemical reactions, shocks and detonations, the nu-
merical solution must be physically realizable. Many attempts have been
made to ensure that the bounds on the solution, such as nonnegative den-
sity and pressure, and mass fractions between zero and one, are preserved
[36, 37, 113], and to avoid spurious phenomena [10, 11, 108, 117, 118].
For instance, in order to avoid spurious solutions, a second order MinMax
scheme [108], a first order random projection method [10, 11], and Harten’s
essentially non-oscillatory (ENO) subcell resolution technique [117, 118]
were used to discretize the reaction part of the chemically reactive Euler
equations. Using splitting methods [51], the chemically reactive Euler equa-
tions can be divided into homogeneous equations and reaction equations,
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which alleviates the stiffness problems, but the authors in [36, 37, 113] all
use time-explicit discretizations in their bounds preserving schemes.

So far, nearly all positivity or bounds preserving numerical discretiza-
tions only work in combination with explicit time discretizations, which
may result in severe time step restrictions to ensure stability of the numer-
ical discretizations. These time step restrictions can be alleviated using
time-implicit integration methods.

In [94], Qin and Shu developed an implicit positivity preserving DG
discretization for conservation laws. They use an implicit Euler time inte-
gration method and the main idea to preserve positivity is to ensure that
in each time step the Jacobian matrix is an M -matrix. This approach is,
however, not easy to generalize to higher order accuracy in time and more
complicated systems such as the chemically reactive Euler equations. The
authors in [22] proposed a new Lagrange multiplier approach to construct
semi-implicit positivity preserving schemes for parabolic type equations
and solved the Lagrange multiplier using a cut-off approach. They further
extended this approach in [23] to construct bounds preserving schemes
for a class of semilinear and quasi-linear parabolic equations. In [111] an
alternative approach to obtain implicit bounds preserving discretizations
of PDEs was introduced, called the Karush-Kuhn-Tucker (KKT) limiter.
This method works well in combination with time-implicit discretizations.
The main idea of the KKT limiter approach is to reformulate time-implicit
numerical discretizations with bounds constraints imposed using Lagrange
multipliers as a nonlinear mixed complementarity problem. The resulting
algebraic equations are then solved using a semi-smooth Newton method.
Considering the potential of the KKT limiter approach to be combined
with higher order accurate time-implicit DG discretizations and its suit-
ability for large classes of PDEs, we will extensively investigate in this
thesis its potential to obtain accurate and efficient bounds preserving nu-
merical discretizations for degenerate parabolic PDEs and the chemically
reactive Euler equations.

1.3 Overview of main numerical techniques used
in this PhD thesis

In this section, we will give a brief summary of the main numerical tech-
niques used in this PhD thesis, namely the Local Discontinuous Galerkin
(LDG) method for spatial discretizations, the Spectral Deferred Correction
(SDC) method and the Diagonally Implicit Runge-Kutta (DIRK) method
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for time discretizations, and the Karush-Kuhn-Tucker (KKT) equations for
the solution of constrained optimization problems.

1.3.1 Local discontinuous Galerkin methods

The local discontinuous Galerkin method is an extension of the discontin-
uous Galerkin method, which is well suited for PDEs with higher order
derivatives. The DG method [34, 66] is a finite element method which uses
discontinuous, piecewise polynomials as basis functions. The DG method
results in an element-wise conservative numerical discretization, which is
particularly important for conservation laws. Due to the use of discontinu-
ous basis functions, DG methods are well suited for hp-mesh adaptation, in
which the local mesh is refined (h-adaptation) or the polynomial order of
the basis functions is adjusted (p-adaptation), and generally achieve a high
degree of parallelization. The DG method was first proposed by Reed and
Hill in [96] for the solution of the neutron transport equation. Cockburn
et al. [25, 27, 28, 29] subsequently extended the DG method to nonlinear
hyperbolic conservation laws, which resulted in many applications, also in-
cluding bounds preserving discretizations, e.g. [95, 132, 133, 134]. The DG
method has many advantages, such as flexibility and efficiency in handling
discontinuities and complex geometries, the use of highly nonuniform and
unstructured meshes, simple choices of trial and test spaces, and excellent
parallelizability.

The LDG method was put forward by Cockburn and Shu in [30] to deal
with PDEs that contain second order spatial derivatives. The main idea
of the LDG method is to apply the DG method after rewriting the higher
order PDEs as a first order set. We refer for general information about the
LDG method for linear cases to [35, 114, 125, 135] and for nonlinear cases
to [9, 56, 60, 123, 124]. The LDG method not only inherits the advantages
of the DG method, but also facilitates efficient handling of some higher
order derivative equations.

We take a two-dimensional scalar conservation law as an example to
introduce the LDG method

ut +∇ ·FFF (u) = ∇ · (A∇u), in Ω× (0, T ], (1.1)

with Ω an open bounded domain in R2, FFF (u) : R → R2 the flux function
and A a nonnegative constant. The subscript t refers to the time derivative
and ∇ is the nabla operator. For the LDG discretization, we rewrite (1.1)
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as the first order system

ut +∇ ·FFF (u) =∇ · (Aqqq), (1.2a)

qqq =∇u. (1.2b)

Let Th be a shape-regular tessellation of Ω with convex quadrilateral
elements K, and Qk(K) denote the space of tensor product polynomials
of degree at most k on each element K. The discontinuous finite element
spaces for the LDG discretization are defined as

V k
h = {v ∈ L2(Ω) : v|K ∈ Qk(K), ∀K ∈ Th},
WWW k

h = {www ∈ [L2(Ω)]2 : www|K ∈ [Qk(K)]2, ∀K ∈ Th},

which are allowed to have discontinuities across element interfaces. Let e
be an interior edge connected to the “left” and “right” elements denoted,
respectively, by KL and KR. If u is a function on KL and KR, we set
uL := (u|KL) |e and uR := (u|KR)|e for the left and right trace of u at e.

The LDG discretization of (1.2) is: Find uh ∈ V k
h , qqqh ∈WWW k

h, such that
for all vh ∈ V k

h , ppph ∈WWW k
h and elements K ∈ Th,∫

K
(uh)tvhdK −

∫
K
FFF (uh) · ∇vhdK +

∫
∂K

F̂FF (uLh , u
R
h ) · νννvhds

+

∫
K
Aqqqh · ∇vhdK −

∫
∂K

Aq̂qqh · νννvhds = 0, (1.3a)∫
K
qqqh · ppphdK +

∫
K
uh∇ · ppphdK −

∫
∂K

ûhppph · νννds = 0, (1.3b)

with ννν the outward normal vector at ∂K. Here F̂FF (uLh , u
R
h ), q̂qqh and ûh are

the so-called “numerical fluxes”, which should be chosen to ensure stability.
The numerical fluxes are single-valued functions defined at the cell edge,
and are related, respectively, to the traces of uh, qqqh on both sides of the
cell edge. The choice of numerical flux is not unique. For the convection
part, we usually choose monotone numerical fluxes satisfying the following
conditions [80] :

• Consistency: F̂ (u, u) = F (u).

• Continuity: F̂ (uL, uR) is at least Lipschitz continuous in both argu-
ments.

• Monotonicity: F̂ (uL, uR) is monotone non-decreasing for the first
argument uL, and monotone non-increasing for the second argument
uR, e.g. F̂ (↑, ↓).
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The Lax-Friedrichs flux [29] is often be chosen for F̂FF (uLh , u
R
h ), but also other

upwind schemes, for instance the Roe flux [80] or the HLLC flux [110], are
frequently used. For more details on approximate Riemann solvers, see
[80, 107]. Regarding the diffusion part, alternating fluxes are frequently
used for q̂qqh and ûh, namely q̂qqh = qqqLh , ûh = uRh or q̂qqh = qqqRh , ûh = uLh , which
provide stable and simple numerical fluxes [111, 121, 122, 123, 125].

1.3.2 Time discretizations

In this section, we will introduce semi-implicit Spectral Deferred Correction
(SDC) methods and Diagonally Implicit Runge-Kutta (DIRK) methods.
SDC methods are well suited for PDEs for which it is easy to separate
the stiff and non-stiff terms, such as phase field problems [49, 82] and the
phase field crystal equation [59]. For PDEs that need stiffly accurate time
discretizations, such as degenerate parabolic equations and the chemically
reactive Euler equations, we choose DIRK methods.

1.3.2.1 Spectral deferred correction methods

Spectral deferred correction methods, which were first proposed by Dutt,
Greengard and Rokhlin [39], are high order accurate stable time integration
methods for stiff and non-stiff problems. Minion extended in [89] SDC
methods to semi-implicit SDC methods to solve ODEs containing both stiff
and non-stiff terms. The basic idea of the SDC method is to replace the
original ODEs by the corresponding Picard integral equation and discretize
it using a Legendre–Gauss type quadrature. The resulting system is first
solved either by the Euler forward method (for non-stiff problems) or the
Euler backward method (for stiff problems). Next the solution is iteratively
improved, with each iteration resulting in one more order of accuracy. The
SDC method is a one step method and can be easily constructed for any
order of accuracy.

We consider the following model ODE system to introduce the semi-
implicit SDC method [89]{

ut = FS(t, u(t)) + FN (t, u(t)), t ∈ (0, T ],

u(0) = u0,

where FN is a non-stiff term and FS a stiff term, t is time and the subscript
t refers to the time derivative. In semi-implicit time discretizations, the
stiff term FS will in general be taken implicitly, and the non-stiff term FN
explicitly since for most PDEs the non-stiff term is not the reason for severe
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time step constraints. Especially when FN is a complicated term treating
FN explicitly will make the algebraic equations that must be solved each
time step in the SDC method easier to solve.

The SDC method can be summarized as follows. The time interval
[tn, tn+1] is divided into P parts with points tn,m, m = 0, 1, . . . , P such
that

tn = tn,0 < tn,1 < . . . < tn,P = tn+1.

Let τn,m = tn,m+1 − tn,m. We denote with ukn,m, k = 1, 2, . . . ,K the k-th

order approximation to u(tn,m), where the points {tn,m}Pm=0 are chosen as
the Legendre-Gauss-Lobatto nodes in the time interval [tn, tn+1]. Suppose
un is known, we calculate un+1 using Algorithm 1.

Algorithm 1 SDC methods
Compute the initial approximation:
u1
n,0 = un.

For m = 0, 1, . . . , P − 1
u1
n,m+1 = u1

n,m + τn,m(FS(tn,m+1, u1
n,m+1) + FN (tn,m, u1

n,m)).
Compute successive corrections:
For k = 1, 2, . . . ,K
uk+1
n,0 = un.

For m = 0, 1, . . . , P − 1

uk+1
n,m+1 = uk+1

n,m + τn,m(FS(tn,m+1, uk+1
n,m+1)− FS(tn,m+1, ukn,m+1))

+ τn,m(FN (tn,m, uk+1
n,m)− FN (tn,m, ukn,m))

+ Im+1
m (FS(t, uk) + FN (t, uk)),

where FS is treated implicitly, FN is treated explicitly, and Im+1
m (FS(t, uk) +

FN (t, uk)) is the integral of the P -th order interpolating polynomial using the P+1
points (tn,l, FS(tn,l, ukn,l) + FN (tn,l, ukn,l))

P
l=0 over the subinterval [tn,m, tn,m+1].

Finally, un+1 = uK+1
n,P .

The order of accuracy of the SDC method in Algorithm 1 is min(K +
1, P + 1). Compared with implicit-explicit (IMEX) methods [16, 100, 114,
115], semi-implicit SDC methods can be constructed easily and systemati-
cally for any order of accuracy.

1.3.2.2 Diagonally Implicit Runge-Kutta methods

Diagonally Implicit Runge-Kutta (DIRK) methods, which were introduced
by Butcher [18], are very useful for applications that require an implicit
time integration method.
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We give a description of the DIRK method using the following ODE,

ut = L(u, t).

Suppose that the numerical solution un at time tn is known. The numerical
solution at time tn+1 is obtained with a DIRK method by first solving for
each DIRK stage i, i = 1, . . . , s the following equations.

un+1,i =un + τn+1
i∑

j=1

aijL(un+1,j , tn + cjτ
n+1), i = 1, 2, · · · , s. (1.4)

Next, the solution at tn+1 is obtained from un+1,i using

un+1 =un + τn+1
s∑
i=1

biL(un+1,i, tn + ciτ
n+1), (1.5)

with τn+1 = tn+1 − tn. The coefficient matrix A = (aij) and vectors
b = (bi), c = (ci) describe the Runge-Kutta method and are defined in the

Butcher tableau
c A

b
. For discussing the stability property of (1.4)-(1.5),

we first define its stability function R(z) as

R(z) = 1 + zbT (I − zA)−1(1, . . . , 1)T ,

with A and b given by the Butcher tableau.

Definition 1.3.1 ([61]). (A-stable) A time integration method, whose sta-
bility domain S = {z ∈ C : |R(z)| 6 1} satisfies

{z ∈ C : Re z 6 0} ⊂ S,

is called A-stable.

Definition 1.3.2 ([61]). (L-stable) A time integration method is called
L-stable if it is A-stable and if in addition

lim
z→∞

R(z) = 0.

L-stable methods are well suited for stiff problems.
Runge-Kutta methods satisfying asi = bi, i = 1, . . . , s are called stiffly

accurate [61, 99], which makes A-stable methods L-stable and implies that
un+1
h = un+1,s

h . DIRK methods are easy to implement since the matrix A in
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DIRK methods has a lower triangular structure, which permits solving for
each stage individually rather than all stages simultaneously. This is com-
putationally more efficient than using fully implicit Runge-Kutta methods
such as Gauss-Radau methods that solve all Runge-Kutta stages simul-
taneously [61, 74]. The disadvantage of DIRK methods compared to fully
implicit Runge-Kutta methods is that more stage equations must be solved
to obtain the same order of accuracy.

For the bounds preserving implicit discretizations, we choose the stiffly
accurate DIRK methods. The Butcher tableaus of the higher order DIRK
methods used in this dissertation are:

• Second order DIRK method [5]

(aij) =

(
α 0

1− α α

)
, (bj) =

(
1− α α

)
, (ci) =

(
α 1

)
, (1.6)

where α = 1−
√

2

2
.

• Third order DIRK method [99]

(aij) =

 γ 0 0
1/2− γ/2 γ 0
1− δ − γ δ γ

 , (bj) =
(

1− δ − γ δ γ
)
,

(ci) =
(
γ 1/2 + γ/2 1

)
, (1.7)

where γ = 0.435866521508, δ = 0.25(5− 20γ + 6γ2).

• Fourth order DIRK method [99]

(aij) =


1/4 0 0 0 0
−1/4 1/4 0 0 0
1/8 1/8 1/4 0 0
−3/2 3/4 3/2 1/4 0

0 1/6 2/3 −1/12 1/4

 ,

(bj) =
(

0 1/6 2/3 −1/12 1/4
)
,

(ci) =
(

1/4 0 1/2 1 1
)
.
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1.3.3 Karush-Kuhn-Tucker system

Bounds on the numerical solutions will be enforced using the Karush-Kuhn-
Tucker (KKT) equations, which are frequently used in constrained opti-
mization [40, 41, 42, 77]. Consider the following constrained optimization
problem,

min
U

θ(U)

subject to U ∈ K, (1.8)

where the objective function θ : Rn → R is defined and continuously dif-
ferentiable on the closed set K with

K := {U ∈ Rn| h(U) = 0, g(U) 6 0} (1.9)

and h : Rn → Rl, g : Rn → Rm are vector-valued continuously differentiable
functions.

The general approach for the numerical treatment of (1.8) is based on
Lagrange multiplier theory [41, 42, 69]. Lagrange multipliers are of great
importance for the analysis of general constrained optimization problems
(1.8) and provide efficient and powerful methods for solving such problems.
Let L(U) = ∇Uθ(U). Assume that Abadie’s constraint qualification [41]
holds at U , which means that the tangent cone of K at U ∈ K is equal to
its linearization cone. If θ is a convex function and K a convex set, then
there exist vectors µ ∈ Rl and λ ∈ Rm such that [41, 42, 69, 90]

L(U, λ) := L(U) +∇Uh(U)Tµ+∇Ug(U)Tλ = 0, (1.10a)

−h(U) = 0, (1.10b)

0 > g(U)⊥λ > 0, (1.10c)

where µ and λ are the Lagrange multipliers used to ensure h(U) = 0 and
g(U) 6 0, respectively. The compatibility condition (1.10c) is equal to

gj(U) 6 0, λj > 0, and gj(U)λj = 0, j = 1, 2, . . . ,m.

The mixed complementarity problem (1.10) is the so called the KKT system
[41].

Note that the KKT system (1.10) is nonlinear and can not be solved
using standard Newton methods due to the compatibility condition (1.10c).
There are many semi-smooth Newton methods available for constrained
optimization problems [41, 42, 69]. In this thesis, we will use the active set
semi-smooth Newton algorithm stated in [111], since it provides a robust
Newton method with a good mathematical foundation.
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1.4 Thesis objectives and outline

We can summarize the main research objectives that will be discussed in
this PhD thesis as:

• Developing entropy dissipative higher order accurate time implicit
bounds preserving DIRK-LDG discretizations for nonlinear degener-
ate parabolic equations.

• Theoretically analyze the unique solvability and unconditional stabil-
ity of the positivity preserving DIRK-LDG discretizations for nonlin-
ear degenerate parabolic equations.

• Developing higher order accurate time implicit bounds preserving
DIRK-DG discretizations for the chemically reactive Euler equations.

• Analyzing the stability and obtain optimal error estimates for higher
order accurate SDC-LDG discretizations for the Allen-Cahn equation.

This dissertation is organized as follows: in Chapter 2, we will develop
entropy dissipative higher order accurate time implicit positivity preserv-
ing DIRK-LDG discretizations for nonlinear degenerate parabolic equa-
tions with a gradient flow structure. Also, the theoretical analysis of the
unique solvability and unconditional entropy dissipation of the numerical
discretization will be considered. In Chapter 3, we will construct higher
order accurate time implicit bounds preserving DIRK-DG discretizations
for the reactive Euler equations modelling multispecies and multireaction
chemically reactive flows. Special attention will be given to the elimina-
tion of spurious solutions in the chemical reaction zones. In Chapter 4,
stability and error estimates of second and third order accurate SDC-LDG
discretizations will be analyzed for the Allen-Cahn equation. Conclusions
and outlook will be given in Chapter 5.





Chapter 2

Entropy Dissipative Higher Order

Accurate Positivity Preserving

Time-Implicit Discretizations for

Nonlinear Degenerate Parabolic

Equations

Abstract

We develop entropy dissipative higher order accurate Local Dis-
continuous Galerkin (LDG) discretizations coupled with Diagonally
Implicit Runge-Kutta (DIRK) methods for nonlinear degenerate para-
bolic equations with a gradient flow structure. Using the simple alter-
nating numerical flux, we construct DIRK-LDG discretizations that
combine the advantages of higher order accuracy, entropy dissipation
and proper long-time behavior. The implicit time-discrete methods
greatly alleviate the time-step restrictions needed for stability of the
numerical discretizations. Also, the larger time step significantly im-
proves computational efficiency. We theoretically prove unconditional
entropy dissipation of the implicit Euler-LDG discretization. Next,
in order to ensure positivity of the numerical solution, we use the
Karush-Kuhn-Tucker (KKT) limiter, which couples the positivity in-
equality constraint with higher order accurate DIRK-LDG discretiza-
tions using Lagrange multipliers. In addition, mass conservation of
the positivity limited solution is ensured by imposing a mass conserva-
tion equality constraint to the KKT equations. The unique solvabil-
ity and unconditional entropy dissipation for an implicit first order
accurate in time, but higher order accurate in space, KKT-LDG dis-
cretizations are proved, which provides a first theoretical analysis of
the KKT limiter. Finally, numerical results are shown to demonstrate

15
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the higher order accuracy and entropy dissipation of the KKT-DIRK-
LDG discretizations for problems requiring a positivity limiter.

2.1 Introduction

Consider the following degenerate parabolic equation [13]{
ut = ∇ · (f(u)∇(φ(xxx) +H ′(u))), in Ω× (0, T ],

u(xxx, 0) = u0(xxx), in Ω,
(2.1)

with zero-flux boundary condition

∇(φ(xxx) +H ′(u)) · ννν = 0, on ∂Ω× (0, T ], (2.2)

where Ω is an open bounded domain in Rd, d = 1, 2, with unit outward
normal vector ννν at the boundary ∂Ω, u(xxx, t) > 0 is a nonnegative density
with time derivative denoted as ut, φ(xxx) is a given potential function for
xxx ∈ Rd, f,H are given functions such that

f : R+ −→ R+, H : R+ −→ R, f(u)H ′′(u) > 0, (2.3)

where R+ is the nonnegative real space. Here f(u)H ′′(u) can vanish for cer-
tain values of u, resulting in degenerate cases. The entropy corresponding
to (2.1) is defined by

E(u) =

∫
Ω

(uφ(xxx) +H(u))dΩ. (2.4)

Multiplying (2.1) with φ(xxx) +H ′(u) and integrating over Ω, with the zero-
flux boundary condition (2.2), together with (2.4), we obtain that the time
derivative of the entropy satisfies

d

dt
E(u) = −

∫
Ω
f(u)|∇(φ(xxx) +H ′(u))|2dΩ 6 0. (2.5)

System (2.1) can represent different physical problems, such as the porous
media equation [112, 131], the nonlinear nonlocal equation with a double-
well potential [19], the nonlinear Fokker-Plank model for fermion and boson
gases [1, 21, 109].

Recently, many numerical discretizations have been proposed for (2.1);
e.g. mixed finite element methods [17], finite volume methods [13, 19], Dis-
continuous Galerkin (DG) methods [83, 84, 85] and LDG methods [131].
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Regarding positivity preserving discretizations, Liu and Yu developed in
[84, 85], respectively, for the linear Fokker-Plank equation a maximum pre-
serving DG scheme and an entropy satisfying DG scheme, but these dis-
cretizations can not be directly applied to the general case given by (2.1).
Liu and Wang subsequently developed in [83] an explicit Runge-Kutta (RK)
time-discrete method for (2.1) in one dimension together with a positivity
preserving high order accurate DG scheme under some Courant-Friedrichs-
Lewy (CFL) constraints. For the porous media equation, an LDG dis-
cretization coupled with an explicit RK method was considered in [131],
which is similar to the DG method in [83], but it uses a special numerical
flux to ensure the non-negativity of the numerical solution. Cheng and
Shen in [22] propose a Lagrange multiplier approach to construct positiv-
ity preserving schemes for a class of parabolic equations, which is different
from (4.1), but contains the porous media equation.

For the time-step τ and mesh size h, the condition τ = O(h2) is needed
for stability in [83] and [131]. These explicit time discretizations therefore
suffer from severe time step restrictions, but currently there are no feasible
positivity preserving time-implicit LDG discretizations for (2.1). In this
chapter, we present therefore higher order accurate Diagonally Implicit
Runge-Kutta (DIRK) LDG discretizations, which ensure positivity and
mass conservation of the numerical solution without the severe time step
restrictions of explicit methods.

The LDG method proposed by Cockburn and Shu in [30] has many
advantages, including high parallelizability, high order accuracy, a simple
choice of trial and test spaces and easy handling of complicated geometries.
We refer to [26, 58, 106, 135] for examples of applications of the LDG
method.

For many physical problems, it is crucial that the numerical discretiza-
tion preserves the positivity properties of the Partial Differential Equations
(PDEs). Not only is this necessary to obtain physically meaningful solu-
tions, but also negative values may result in ill-posedness of the problem
and divergence of the numerical discretization. Positivity preserving DG
methods have been extensively studied by many mathematicians. However,
most positivity preserving DG methods are combined with explicit time-
discretizations [83, 126, 133, 134], for which numerical stability frequently
imposes severe time step restrictions. These severe time-step constraints
make explicit methods impractical for parabolic PDEs, such as (2.1).

Recently, Qin and Shu extended in [94] the general framework for estab-
lishing positivity-preserving schemes, proposed in [133, 134], from explicit
to implicit time discretizations. They developed for one-dimensional con-
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servation laws a positivity preserving DG method with high-order spatial
accuracy combined with the first-order backward Euler implicit temporal
discretization. This approach requires, however, a detailed analysis of the
numerical discretization to ensure positivity and it is not straightforward
to extend this approach to higher order accurate time-implicit methods.
Huang and Shen in [67] constructed higher order linear bound preserv-
ing implicit discretizations for the Keller-Segel and Poisson-Nernst-Planck
equations. Van der Vegt, Xia and Xu proposed in [111] the KKT lim-
iter concept to construct positivity preserving time-implicit discretizations.
The KKT limiter in [111] is obtained by coupling the inequality and equal-
ity constraints imposed by the physical problem with higher order accurate
DIRK-DG discretizations using Lagrange multipliers. The resulting semi-
smooth nonlinear equations are solved by an efficient active set semi-smooth
Newton method.

In this chapter, we consider a general class of nonlinear degenerate
parabolic equations given by (2.1) and aim at developing higher order ac-
curate entropy dissipative and positivity preserving time-implicit LDG dis-
cretizations. For the spatial discretization, we use an LDG method with
simple alternating numerical fluxes, which results in entropy dissipation
of the semi-discrete LDG discretization. For the temporal discretization,
we consider DIRK methods, which significantly enlarge the time step for
stability. The unconditional entropy dissipation of the LDG discretization
combined with an implicit Euler time integration method is proved theo-
retically. We construct positivity preserving discretizations using the KKT
limiter by imposing the positivity constraint on the numerical discretization
using Lagrange multipliers. The unique solvability of the resulting positiv-
ity preserving KKT system is proved. We will also prove the unconditional
entropy dissipation of the positivity preserving LDG discretization when it
is combined with the backward Euler time integration method. Numerical
results are given to demonstrate the accuracy and entropy dissipation of
the higher order accurate positivity preserving DIRK-LDG discretizations.

This chapter is organized as follows. In Section 2.2, we present the
semi-discrete LDG discretization with simple alternating numerical fluxes
for the nonlinear degenerate parabolic equation stated in (2.1) and prove
that the numerical approximation is entropy dissipative. Higher order ac-
curate DIRK-LDG discretizations, which enlarge the stable time step to a
great extent, are discussed in Section 2.3. The unconditional entropy dissi-
pation of the implicit Euler LDG discretizations are proved in Section 2.3.1.
In order to ensure positivity of the numerical solution and mass conserva-
tion of the positivity limited numerical discretizations, we introduce in Sec-
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tion 2.4.1 the KKT system. The higher order DIRK-LDG discretizations
with positivity and mass conservation constraints are formulated in Section
2.4.2 as a KKT mixed complementarity problem. The unique solvability
and unconditional entropy dissipation of the resulting algebraic system are
proved in Section 2.4.3. In Section 2.5, numerical results are provided to
demonstrate the higher order accuracy, positivity and entropy dissipation
of the positivity preserving KKT-DIRK-LDG discretizations. Concluding
remarks are given in Section 2.6.

2.2 Semi-discrete LDG schemes

2.2.1 Definitions, notations

Let Th be a shape-regular tessellation of Ω ⊂ Rd, d = 1, 2, with line or con-
vex quadrilateral elements K. Given the reference element K̂ = [−1, 1]d.
Let Qk(K̂) denote the space composed of the tensor product of polynomi-
als Pk(K̂) on [−1, 1] of degree at most k > 0. Here, we choose for Pk(K̂)
Legendre polynomials. The space Qk(K) is obtained by using an isopara-
metric transformation from element K to the reference element K̂. The
finite element spaces V k

h and WWW k
h are defined by

V k
h = {v ∈ L2(Ω) : v|K ∈ Qk(K), ∀K ∈ Th},
WWW k

h = {www ∈ [L2(Ω)]d : www|K ∈ [Qk(K)]d, ∀K ∈ Th},

and are allowed to have discontinuities across element interfaces. Let e
be an interior edge connected to the “left” and “right” elements denoted,
respectively, by KL and KR. If u is a function on KL and KR, we set
uL := (u|KL) |e and uR := (u|KR)|e for the left and right trace of u at e.

Note that L1(Ω), L2(Ω) and L∞(Ω) are standard Sobolev spaces, ‖u‖L2(Ω)

is the L2(Ω)-norm and (·, ·)Ω is the L2(Ω) inner product. For simplicity,
we denote the inner product as (u, v) := (u, v)Ω.

2.2.2 LDG discretization in space

For the LDG discretization of (2.1), we first rewrite this equation as a first
order system

ut =∇ · qqq,
qqq =f(u)sss,

sss =∇p,
p =φ(xxx) +H ′(u).
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Then the LDG discretization can be readily obtained by multiplying the
above equations with arbitrary test functions, integrating by parts over each
element K ∈ Th, and finally a summation of element and face contributions.
The LDG discretization can be stated as: find uh(t), ph ∈ V k

h , qqqh, sssh ∈WWW k
h,

such that for all ρ, ϕ ∈ V k
h and θθθ,ηηη ∈WWW k

h, we have

(uht, ρ) + L1
h(qqqh; ρ) = 0, (2.6a)

(qqqh, θθθ) + L2
h(uh, sssh;θθθ) = 0, (2.6b)

(sssh, ηηη) + L3
h(ph;ηηη) = 0, (2.6c)

(ph, ϕ) + L4
h(uh;ϕ) = 0, (2.6d)

where

L1
h(qqqh; ρ) :=(qqqh,∇ρ)−

∑
K∈Th

(q̂qqh · ννν, ρ)∂K , (2.7a)

L2
h(uh, sssh;θθθ) :=− (f(uh)sssh, θθθ), (2.7b)

L3
h(ph;ηηη) :=(ph,∇ · ηηη)−

∑
K∈Th

(p̂h, ννν · ηηη)∂K , (2.7c)

L4
h(uh;ϕ) :=−

(
φ(xxx) +H ′(uh), ϕ

)
. (2.7d)

Note that ννν is the unit outward normal vector of element K at its boundary
∂K. The “hat” terms in L1

h and L3
h are the so-called “numerical fluxes”,

whose choices play an important role in ensuring stability. We remark
that the choices for the numerical fluxes are not unique. Here we use the
alternating numerical fluxes

q̂qqh =qqqRh , p̂h = pLh , (2.8)

or

q̂qqh =qqqLh , p̂h = pRh . (2.9)

Considering the zero-flux boundary condition ∇(φ(xxx) +H ′(u)) · ννν = 0, we
take

q̂qqh · ννν = 0, ph = (ph)in (2.10)

at ∂Ω, where “in” refers to the value obtained by taking the boundary trace
from the inside of the domain Ω.



2.2. SEMI-DISCRETE LDG SCHEMES 21

2.2.3 Entropy dissipation

Theorem 2.2.1. For uh(t) ∈ V k
h , sssh ∈WWW k

h, the LDG scheme (2.6)-(2.10)
with f satisfying (2.3) is entropy dissipative and satisfies

d

dt
E(uh) = −(f(uh)sssh, sssh) 6 0,

which is consistent with the entropy dissipation property (2.5) of the PDE
(2.1).

Proof. By taking

ρ = ph, θθθ = −sssh, ηηη = qqqh, ϕ = −uht,

in (2.6a)-(2.6d), respectively, and after integration by parts, we have

(φ(xxx) +H ′(uh), uht) =− (f(uh)sssh, sssh)− (qqqh,∇ph) +
∑
K∈Th

(q̂qqh · ννν, ph)∂K

− (ph,∇ · qqqh) +
∑
K∈Th

(p̂h, ννν · qqqh)∂K

=− (f(uh)sssh, sssh)−
∑
K∈Th

(qqqh · ννν, ph)∂K

+
∑
K∈Th

(q̂qqh · ννν, ph)∂K +
∑
K∈Th

(p̂h, ννν · qqqh)∂K . (2.11)

Assume that e is an interior edge shared by elements KL and KR, then
νννR = −νννL. Replacing νννR with νννL and using the numerical fluxes (2.8), we
obtain

−
∑

KL
⋃
KR

(qqqh · ννν, ph)e +
∑

KL
⋃
KR

(q̂qqh · ννν, ph)e +
∑

KL
⋃
KR

(p̂h, ννν · qqqh)e

=− (qqqLh · νννL, pLh )e + (qqqRh · νννL, pRh )e + (qqqRh · νννL, pLh )e − (qqqRh · νννL, pRh )e

+ (qqqLh · νννL, pLh )e − (qqqRh · νννL, pLh )e = 0. (2.12)

Combining (2.11)-(2.12), using (2.4), boundary conditions (2.10) and the
condition on f (2.3), we get

d

dt
E(uh) = (φ(xxx) +H ′(uh), uht) = −(f(uh)sssh, sssh) 6 0.



22 CHAPTER 2. PARABOLIC EQUATIONS

Remark 2.2.2. For brevity, we will only consider in the remaining article
the numerical fluxes (2.8) and omit the discussion of the numerical fluxes
(2.9), but all results also apply to the numerical fluxes (2.9).

Remark 2.2.3. Compared to the spatial discretizations in [83, 131], we
choose the simpler alternating numerical fluxes (2.8) and (2.9), which greatly
simplifies the theoretical analysis of the entropy dissipation property of the
LDG discretization.

2.3 Time-implicit LDG schemes

The numerical discretization of the nonlinear parabolic equations (2.1) us-
ing explicit time discretization methods suffers from the rather severe time-
step constraint τ = O(h2). In this section, we will discuss therefore implicit
time discretizations that will be coupled with positivity constraints in Sec-
tion 2.4.

We divide the time interval [0, T ] into N parts 0 = t0 < t1 < . . . <
tN = T , with τn = tn − tn−1 (n = 1, 2, . . . , N). For n = 0, 1, . . . , N , let
un = u(·, tn) and unh, respectively, denote the exact and approximate values
of u at time tn.

2.3.1 Backward Euler LDG discretization

Discretizing (2.6) in time with the implicit Euler method gives the following
discrete system (

un+1
h − unh
τn+1

, ρ

)
+ L1

h(qqqn+1
h ; ρ) = 0, (2.13a)

(qqqn+1
h , θθθ) + L2

h(un+1
h , sssn+1

h ;θθθ) = 0, (2.13b)

(sssn+1
h , ηηη) + L3

h(pn+1
h ;ηηη) = 0, (2.13c)

(pn+1
h , ϕ) + L4

h(un+1
h ;ϕ) = 0. (2.13d)

Define the discrete entropy as

Eh(unh) =

∫
Ω

(unhφ(xxx) +H(unh))dΩ. (2.14)

We have the following relation for the discrete entropy dissipation.

Theorem 2.3.1. For all time levels n, the numerical solutions unh, u
n+1
h ∈

V k
h of the LDG discretization (2.13), with boundary condition (2.10) and
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conditions on f,H stated in (2.3), satisfy the following entropy dissipation
relation

Eh(un+1
h ) 6 Eh(unh), (2.15)

which implies that the LDG discretization is unconditionally entropy dissi-
pative.

Proof. By choosing, respectively, in (2.13a)-(2.13d) the following test func-
tions

ρ = pn+1
h , θθθ = −sssn+1

h , ηηη = qqqn+1
h , ϕ = −

un+1
h − unh
τn+1

,

we get(
φ(xxx),

un+1
h − unh
τn+1

)
+

(
H ′(un+1

h ),
un+1
h − unh
τn+1

)
=−

(
f(un+1

h )sssn+1
h , sssn+1

h

)
−
(
qqqn+1
h ,∇pn+1

h

)
+
∑
K∈Th

(q̂qqn+1
h · ννν, pn+1

h )∂K

− (pn+1
h ,∇ · qqqn+1

h ) +
∑
K∈Th

(p̂n+1
h , ννν · qqqn+1

h )∂K

=− (f(un+1
h )sssn+1

h , sssn+1
h )−

∑
K∈Th

(qqqn+1
h · ννν, pn+1

h )∂K

+
∑
K∈Th

(q̂qqn+1
h · ννν, pn+1

h )∂K +
∑
K∈Th

(p̂n+1
h , ννν · qqqn+1

h )∂K .

Together with (2.12), the numerical fluxes (2.8) and the boundary condition
(2.10), we obtain then(
φ(xxx),

un+1
h − unh
τn+1

)
+

(
H ′(un+1

h ),
un+1
h − unh
τn+1

)
= −

(
f(un+1

h )sssn+1
h , sssn+1

h

)
.

In view of the following Taylor expansion

H(unh) =H(un+1
h ) +H ′(un+1

h )(unh − un+1
h )

+
1

2
H ′′(ξn+1)(un+1

h − unh)2, ξn+1 ∈ (unh, u
n+1
h ),

we have, using the conditions on f,H stated in (2.3) and the definition of
Eh in (2.14),

Eh(un+1
h )− Eh(unh) =

(
φ(xxx), un+1

h − unh
)

+
(
H(un+1

h )−H(unh), 1
)

=− τn+1
(
f(un+1

h )sssn+1
h , sssn+1

h

)
− 1

2

(
H ′′(ξn+1),

(
un+1
h − unh

)2)
6 0.
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2.3.2 Higher order DIRK-LDG discretizations

For higher order accurate implicit in time discretizations of system (2.6),
we use a Diagonally Implicit Runge-Kutta (DIRK) method [61]. Assume
we know the numerical solution at time level n, we obtain the solution
at time level n + 1 with a DIRK method by solving for each DIRK stage
i, i = 1, 2, · · · , s the following equations.(

un+1,i
h − unh
τn+1

, ρ

)
+

i∑
j=1

aijL
1
h(qqqn+1,j

h ; ρ) = 0, (2.16a)

(qqqn+1,i
h , θθθ) + L2

h(un+1,i
h , sssn+1,i

h ;θθθ) = 0, (2.16b)

(sssn+1,i
h , ηηη) + L3

h(pn+1,i
h ;ηηη) = 0, (2.16c)

(pn+1,i
h , ϕ) + L4

h(un+1,i
h ;ϕ) = 0. (2.16d)

Then the solution at time tn+1 is

(un+1
h , ρ) =(unh, ρ)− τ

s∑
i=1

biL
1
h(qqqn+1,i

h ; ρ). (2.17)

The coefficient matrices (aij) in (2.16a) and (bi) in (2.17) are defined in
the Butcher tableau. We choose for polynomials of order k = 1, 2, 3
the DIRK methods introduced in Section 1.3.2.2, respectively, that sat-
isfy asi = bi, i = 1, 2, · · ·, s, which implies un+1

h = un+1,s
h . The order of

these DIRK methods is k + 1. The above time discretization methods are
easy to implement since the matrix (aij) in the DIRK methods has a lower
triangular structure, which means that we can compute the DIRK stages
one after another, starting from i = 1 up to i = s. For detailed information
about the DIRK time integration method, we refer to [61].

2.4 Higher order accurate positivity preserving
DIRK-LDG discretizations

The positivity constraints on the LDG solution will be enforced by trans-
forming the DIRK-LDG equations with positivity constraints into a mixed
complementarity problem using the Karush-Kuhn-Tucker (KKT) equations
[41]. In the next sections, we will first define the positivity preserving KKT-
DIRK-LDG discretization. Next, we will consider the unique solvability
and unconditional entropy dissipation of the discrete KKT system.
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2.4.1 KKT-system

For the KKT equations [41], we define the set

K := {Ũ ∈ Rdof | h(Ũ) = 0, g(Ũ) 6 0}, (2.18)

with equality constraints h : Rdof → Rl and inequality constraints g :
Rdof → Rm being vector-valued continuously differentiable functions. The
inequality constraints are used to ensure positivity. The equality constraint
ensures that the limited DIRK-LDG discretization is mass conservative.
Mass conservation is a property of the unlimited DIRK-LDG discretization,
but one has to ensure that this property also holds after applying the
positivity preserving limiter.

Let L be the LDG discretization (2.16) for each of the DIRK stages
i = 1, 2, · · · , s, without a positivity preserving limiter. We assume that L
is a continuously differentiable function from K to Rdof . The corresponding
KKT-system [41] then is

L(Ũ) +∇
Ũ
h(Ũ)Tµ+∇

Ũ
g(Ũ)Tλ = 0, (2.19a)

−h(Ũ) = 0, (2.19b)

0 > g(Ũ)⊥λ > 0, (2.19c)

where µ ∈ Rl and λ ∈ Rm are the Lagrange multipliers used to ensure
h(Ũ) = 0 and g(Ũ) 6 0, respectively, Ũ ∈ Rdof are the LDG coefficients
in the KKT-DIRK-LDG discretization, and ∇

Ũ
denotes the gradient with

respect to Ũ . The compatibility condition (2.19c) is equivalent to

gj(Ũ) 6 0, λj > 0, and gj(Ũ)λj = 0, j = 1, 2, · · ·,m,

which can be expressed as

min(−gj(Ũ), λj) = 0, j = 1, 2, · · ·,m.

The KKT-system then can be formulated as

0 = F (z) =

 L(Ũ) +∇
Ũ
h(Ũ)Tµ+∇

Ũ
g(Ũ)Tλ

−h(Ũ)

min(−g(Ũ), λ)

 . (2.20)

Here z = (Ũ , µ, λ) ∈ Rdof+l+m, and F : Rdof+l+m → Rdof+l+m repre-
sents the DIRK-LDG discretization combined with the positivity and mass
conservation constraints. Note, the KKT system (2.20) is nonlinear and
F (z) is not continuously differentiable, as is necessary for standard Newton
methods, but semi-smooth. We will therefore solve (2.20) with the active
set semi-smooth Newton method presented in [111].
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2.4.2 Positivity preserving LDG discretizations

In this section, we will provide the details of the higher order accurate
positivity preserving DIRK-LDG discretizations (2.16) coupled with the
positivity and mass conservation constraints using Lagrange multipliers as
stated in (2.19).

Let Nk be the number of basis functions in one element. Let Ne be
the number of elements K in the tessellation Th of the domain Ω. We
introduce the following notation for the element-wise positivity preserving
LDG solution

Uh|K :=

Nk∑
j=1

ŨKj φ
K
j , QQQh|K :=

Nk∑
j=1

Q̃QQ
K

j φ
K
j

with K ∈ Th, φKj the tensor product Legendre basis functions in Qk(K),

and LDG coefficients ŨKj ∈ R, Q̃QQ
K

j ∈ Rd. We take in each element K ∈ Th
the test function ρ = φKj , j = 1, 2, · · · , Nk in the operator L1

h(QQQh; ρ) stated
in (2.7a). Since there are NkNe choices of ρ, we can define

L1
h(Q̃QQ) := L1

h(QQQh; ρ) ∈ RNkNe , (2.21)

with similar definitions of Lkh for Lkh, k = 2, 3, 4 stated in (2.7b)-(2.7d).

Representing the block-diagonal mass matrices for the scalar and vector
variables as M ∈ RNkNe×NkNe and MMM ∈ RdNkNe×dNkNe , respectively, the
operator L for DIRK stage i (i = 1, 2, · · · , s), as stated in (2.16a), can be
expressed as

L(Ũn+1,i) :=M(Ũn+1,i − Ũn) + τn+1
i∑

j=1

aijL1
h(Q̃QQ

n+1,j
), (2.22)

with LDG coefficients Ũn+1,i ∈ RNkNe . Similarly, using (2.16b), (2.16c)
and (2.16d), we have

Q̃QQ
n+1,i

=−MMM−1L2
h(Ũn+1,i, S̃SS

n+1,i
), (2.23a)

S̃SS
n+1,i

=−MMM−1L3
h(P̃n+1,i), (2.23b)

P̃n+1,i =−M−1L4
h(Ũn+1,i), (2.23c)

with LDG coefficients Q̃QQ
n+1,i

∈ RdNkNe , S̃SS
n+1,i

∈ RdNkNe , P̃n+1,i ∈ RNkNe .
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The constraints on the DIRK-LDG discretization can be directly im-
posed on the DG coefficients for each DIRK stage using the equality and
inequality constraints in the KKT-system (2.20). We obtain for each DIRK
stage i, with i = 1, 2, · · · , s, the LDG coefficients Ũn+1,i by solving the fol-
lowing KKT system for Ũn+1,i, L(Ũn+1,i) +∇

Ũ
h(Ũn+1,i)Tµ+∇

Ũ
g(Ũn+1,i)Tλ

−h(Ũn+1,i)

min(−g(Ũn+1,i), λ)

 = 0, (2.24)

where the positivity preserving inequality constraint g(Ũn+1,i) and the mass
conservation equality constraint h(Ũn+1,i) are defined as follows.

1. Positivity preserving inequality constraint

In each element K ∈ Th, we define the function g stated in (2.24) as

gKp (Ũn+1,i) = umin −
Nk∑
j=1

Ũ
K,(n+1,i)
j φKj (xxxp), p = 1, · · ·, Np, (2.25)

with Np the number of Gauss-Lobatto quadrature points, and xxxp the

Gauss-Lobatto quadrature points where the inequality constraints

Uh(xxxp) > umin are imposed. The use of Gauss-Lobatto quadrature rules

ensures that the positivity constraint is also imposed in the computation

of the numerical fluxes at the element edges where Gauss-Lobatto rules

have, next to the element itself, also quadrature points. Note, the

Gauss-Lobatto quadrature points xxxp are the only points used in the

LDG discretization and the positivity constraint umin therefore only

needs to be enforced at these points.

2. Mass conservation equality constraint

In order to ensure mass conservation of the LDG discretization when

the positivity constraint is enforced, we impose the following equality

constraint, which is obtained by setting ρ = 1 in (2.16a) and using the

numerical flux (2.8) or (2.9)

h(Ũn+1,i) =
∑
K∈Th

∫
K
Unh dK + τn+1

i∑
j=1

aij
∑
K∈Th

∂K∩∂Ω6=∅

(Q̂QQ
n+1,j

h · ννν, 1)∂K

−
∑
K∈Th

Nk∑
j=1

Ũ
K,(n+1,i)
j

∫
K
φKj (xxx)dK, (2.26)
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with Unh the KKT-DIRK-LDG solution at time tn.
For each DIRK stage i, the KKT-system (2.24) for the higher order

accurate positivity preserving LDG discretization is now defined. After
solving the KKT equations (2.24) for i = 1, · · · , s, the numerical solution
at time tn+1 is directly obtained from the last DIRK stage, Un+1

h = Un+1,s
h

since we use DIRK methods with asi = bi.

Remark 2.4.1. In order to ensure the positivity of the discrete initial
solution U0

h , we use the L2-projection coupled with the positivity constraint

(2.25), which is obtained by replacing Ũn+1,i with Ũ0. Mass conservation
of the positivity limited initial solution is ensured by the equality constraint

h(Ũ0) =
∑
K∈Th

∫
K
u0(xxx)dK −

∑
K∈Th

Nk∑
j=1

ŨK,0j

∫
K
φKj (xxx)dK.

The constraints on the L2-projection are imposed using KKT equations
similar to (2.20). In order to prevent pathological cases, we assume that
the limited initial solution satisfies

1

|Ω|
∑
K∈Th

∫
K
u0(xxx)dK > umin.

Remark 2.4.2. We emphasize that umin must be chosen strictly positive to
ensure that the positivity of the numerical solution is not violated by errors
due to the finite precision of the computer arithmetic.

2.4.3 Unique solvability and stability of the positivity
preserving LDG discretization

In Section 2.4.2, we have presented the positivity preserving LDG dis-
cretization for (2.1). In this section, we will consider the unique solvability
of the algebraic equations resulting from the backward Euler KKT-LDG
discretization. In the theoretical analysis we will also consider the entropy
dissipation of the positivity preserving backward Euler LDG discretization
and use periodic boundary conditions.

With (2.22)-(2.26), the positivity preserving backward Euler LDG dis-
cretization results now in the following KKT system,

L(Ũn+1) +∇
Ũ
h(Ũn+1)Tµn+1 +∇

Ũ
g(Ũn+1)Tλn+1 = 0, (2.27a)

−h(Ũn+1) = 0, (2.27b)

min(−g(Ũn+1), λn+1) = 0. (2.27c)
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Here L : RNkNe → RNkNe and

L(Ũn+1) :=M(Ũn+1 − Ũn) + τn+1BQ̃QQ
n+1

, (2.28)

MMMQ̃QQ
n+1

=Cd(Ũ
n+1)S̃SS

n+1
, (2.29)

MMMS̃SS
n+1

=AP̃n+1, (2.30)

MP̃n+1 =D(Ũn+1). (2.31)

From (2.21)-(2.23), we obtain that

BQ̃QQ
n+1

=L1
h(Q̃QQ

n+1
) ∈ RNkNe , (2.32)

Cd(Ũ
n+1)S̃SS

n+1
=− L2

h(Ũn+1, S̃SS
n+1

) ∈ RdNkNe , (2.33)

AP̃n+1 =− L3
h(P̃n+1) ∈ RdNkNe , (2.34)

D(Ũn+1) =− L4
h(Ũn+1) ∈ RNkNe , (2.35)

where

Cd(Ũ
n+1) =

 C(Ũn+1)
. . .

C(Ũn+1)

 ∈ RdNkNe×dNkNe , (2.36)

C(Ũn+1) ∈RNkNe . (2.37)

The constraints h : RNkNe → R, g : RNkNe → RNpNe are defined by

h(Ũn+1) :=
∑
K∈Th

∫
K
U0
hdK −

∑
K∈Th

Nk∑
j=1

Ũ
K,(n+1)
j

∫
K
φKj (xxx)dK, (2.38)

g(Ũn+1) :=(gK1
1 (Ũn+1), · · · , gK1

Np
(Ũn+1), · · · , gKNe1 (Ũn+1), · · · ,

g
KNe
Np

(Ũn+1)), (2.39)

with the definition of the constraints g
Kj
p , 1 6 p 6 Np, 1 6 j 6 Ne given

in (2.25).

2.4.3.1 Auxiliary results used to prove the solvability of the
KKT-system

In this section, we will introduce some auxiliary results, which will be used
in Section 2.4.3.2 to prove the unique solvability of the KKT-system (2.27).
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Definition 2.4.3. [41, Sections 1.1, 3.2] Let K be given by (2.18), given a
map L : K→ Rdof . The Variational Inequality (VI(K, L)) is to find Ũ ∈ K
such that

(y − Ũ)TL(Ũ) > 0, y ∈ K. (2.40)

The solution of VI(K, L) (2.40) is denoted by SOL(K, L).

Using the nodal basis function and the definition of g in (2.39) and
(2.25), the inequality constraint set in (2.18) can be written as

Kb := {Ũ ∈ Rdof | Ũmin
i 6 Ũi 6 Ũmax

i , i ∈ {1, · · · , dof}}, (2.41)

and we write Kb as

Kb =

N∏
ϑ=1

Knϑ , (2.42)

where Knϑ is a subset of Rnϑ with

N∑
ϑ=1

nϑ = dof . Thus for a vector Ũ ∈ Kb,

we write Ũ = (Ũϑ), where each Ũϑ belongs to Knϑ .

Definition 2.4.4. [41, Section 3.5.2] Let Kb be given by (2.41), a map
L : Kb → Rdof is said to be

a) a P-function on Kb if for all pairs of distinct vectors Ũ and Ũ ′ in Kb,

max
16ϑ6N

(Ũϑ − Ũ ′ϑ)T (Lϑ(Ũ)− Lϑ(Ũ ′)) > 0,

b) a uniformly P-function on Kb if there exists a constant $ > 0 such
that for all pairs of distinct vectors Ũ and Ũ ′ in Kb,

max
16ϑ6N

(Ũϑ − Ũ ′ϑ)T (Lϑ(Ũ)− Lϑ(Ũ ′)) > $‖Ũ − Ũ ′‖2.

Lemma 2.4.5. [41, Proposition 3.5.10] Let Kb be given by (2.41).
a) If L is a P-function on Kb, then VI(Kb, L) has at most one solution.
b) If each Knϑ is closed convex and L is a continuous uniformly P-

function on Kb, then the VI(Kb, L) has a unique solution.

Lemma 2.4.6. [41, Proposition 1.3.4] Let Ũ ∈ SOL(K, L) solve (2.40)
with K given by (2.18). If Abadie’s Constraint Qualification holds at Ũ ,
which means that the tangent cone of K at Ũ is equal to its linearization
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cone, then there exist vectors µ ∈ Rl and λ ∈ Rm satisfying the KKT
system (2.27).

Conversely, if each function hj (1 6 j 6 l) is affine and each function

gi (1 6 i 6 m) is convex, and if (Ũ , µ λ) satisfies (2.27), then Ũ solves
VI(K, L) given by (2.40) with K given by (2.18).

2.4.3.2 Existence and uniqueness of LDG discretization with
positivity and mass conservation constraints

In this section, we will prove existence and uniqueness of the KKT system
(2.27)-(2.39) using the unique solvability conditions discussed in Section
2.4.3.1.

Lemma 2.4.7. For periodic boundary conditions, the matrices B in (2.32)
and A in (2.34) satisfy BT = A.

Proof. In order to prove the symmetry of B in (2.32) and A in (2.34), we
define the bilinear function a : (V k

h ×WWW k
h)× (V k

h ×WWW k
h)→ R by

a(Pn+1
h ,QQQn+1

h ; ρ,θθθ) =(QQQn+1
h ,∇ρ)−

∑
K∈Th

(Q̂QQ
n+1

h · ννν, ρ)∂K

− (Pn+1
h ,∇ · θθθ) +

∑
K∈Th

(P̂n+1
h , ννν · θθθ)∂K .

Based on the definition of B in (2.32) using (2.7a), A in (2.34) using (2.7c),
we rewrite the above bilinear function a as follows:

a(Pn+1
h ,QQQn+1

h ; ρ,θθθ) =(%,Θ)

(
0 B
A 0

)
(P̃n+1, Q̃QQ

n+1
)T ,

with %,Θ the LDG coefficients of ρ,θθθ and P̃n+1, Q̃QQ
n+1

the LDG coefficients
of Pn+1

h ,QQQn+1
h , respectively.
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Interchanging the arguments of a, we get

a(ρ,θθθ;Pn+1
h ,QQQn+1

h ) =(θθθ,∇Pn+1
h )−

∑
K∈Th

(θ̂θθ · ννν, Pn+1
h )∂K

− (ρ,∇ ·QQQn+1
h ) +

∑
K∈Th

(ρ̂, ννν ·QQQn+1
h )∂K

=− (Pn+1
h ,∇ · θθθ) +

∑
K∈Th

(θθθ · ννν, Pn+1
h )∂K

−
∑
K∈Th

(θ̂θθ · ννν, Pn+1
h )∂K + (QQQn+1

h ,∇ρ)

−
∑
K∈Th

(ρ,ννν ·QQQn+1
h )∂K +

∑
K∈Th

(ρ̂, ννν ·QQQn+1
h )∂K ,

Using equality (2.12), the alternating numerical fluxes for θ̂θθ and ρ̂ in (2.8)
or (2.9), and the periodic boundary conditions, we obtain∑

K∈Th

(θθθ · ννν, Pn+1
h )∂K −

∑
K∈Th

(θ̂θθ · ννν, Pn+1
h )∂K =

∑
K∈Th

(P̂n+1
h , ννν · θθθ)∂K ,

−
∑
K∈Th

(ρ,ννν ·QQQn+1
h )∂K +

∑
K∈Th

(ρ̂, ννν ·QQQn+1
h )∂K =−

∑
K∈Th

(Q̂QQ
n+1

h · ννν, ρ)∂K .

Hence,

a(Pn+1
h ,QQQn+1

h ; ρ,θθθ) = a(ρ,θθθ;Pn+1
h ,QQQn+1

h ),

which implies

(%,Θ)

(
0 B
A 0

)
(P̃n+1, Q̃QQ

n+1
)T = (P̃n+1, Q̃QQ

n+1
)

(
0 B
A 0

)
(%,Θ)T

=(%,Θ)

(
0 AT

BT 0

)
(P̃n+1, Q̃QQ

n+1
)T . (2.43)

Since (Pn+1
h ,QQQn+1

h ) ∈ V k
h ×WWW k

h and (ρ,θθθ) ∈ V k
h ×WWW k

h are arbitrary func-
tions, relation (2.43) implies that A = BT .

Using (2.29)-(2.31) and Lemma 2.4.7, the operator L(Ũn+1) in (2.28)
can be written as

L(Ũn+1) =M(Ũn+1 − Ũn)

+ τn+1BMMM−1Cd(Ũ
n+1)MMM−1BTM−1D(Ũn+1). (2.44)
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Lemma 2.4.8. Given Ũn, the operator L in (2.44) is a uniformly P-
function on Kb.

Proof. Using relation (2.44) for L, for arbitrary Ũn+1
I , Ũn+1

II ∈ Kb, there
holds

L(Ũn+1
I )− L(Ũn+1

II ) = M(Ũn+1
I − Ũn+1

II )

+ τn+1BMMM−1Cd(Ũ
n+1
I )MMM−1BTM−1D(Ũn+1

I )

− τn+1BMMM−1Cd(Ũ
n+1
II )MMM−1BTM−1D(Ũn+1

II ). (2.45)

After subtracting and adding τn+1BMMM−1Cd(Ũ
n+1
I )MMM−1BTM−1D(Ũn+1

II )
in (2.45), we obtain

L(Ũn+1
I )− L(Ũn+1

II ) = M(Ũn+1
I − Ũn+1

II )

+ τn+1BMMM−1Cd(Ũ
n+1
I )MMM−1BTM−1(D(Ũn+1

I )−D(Ũn+1
II ))

+ τn+1BMMM−1(Cd(Ũ
n+1
I )− Cd(Ũn+1

II ))MMM−1BTM−1D(Ũn+1
II ). (2.46)

For i ∈ {1, · · · , NkNe}, with the definition of D in (2.35) using (2.7d), we
obtain that

(D(Ũn+1
I )−D(Ũn+1

II ))i

=

∫
Ω

H ′
NkNe∑

j=1

Ũn+1
I,j φj

−H ′
NkNe∑

j=1

Ũn+1
II,j φj

φidΩ

=

NkNe∑
j=1

(Ũn+1
I,j − Ũ

n+1
II,j )

∫
Ω
H ′′(ξn+1

1 )φjφidΩ, ξn+1
1 ∈ (Un+1

h,I , Un+1
h,II ),

and write

D(Ũn+1
I )−D(Ũn+1

II ) :=D
Ũ

(ξn+1
1 )(Ũn+1

I )− Ũn+1
II ). (2.47)

Similarly, for i, j, k ∈ {1, · · · , NkNe}, from the definition of Cd in (2.33),
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(2.36) using (2.7b), we obtain that

Cd(Ũ
n+1
I )− Cd(Ũn+1

II )

=

 C(Ũn+1
I )− C(Ũn+1

II )
. . .

C(Ũn+1
I )− C(Ũn+1

II )

 ,

(C(Ũn+1
I )− C(Ũn+1

II ))ij

=

∫
Ω

(
f

(
NkNe∑
k=1

Ũn+1
I,k φk

)
− f

(
NkNe∑
k=1

Ũn+1
II,k φk

))
φjφidΩ

=

NkNe∑
k=1

(Ũn+1
I,k − Ũ

n+1
II,k )

∫
Ω
f ′(ξn+1

2 )φkφjφidΩ, ξn+1
2 ∈ (Un+1

h,I , Un+1
h,II ),

and write

C(Ũn+1
I )− C(Ũn+1

II ) :=

NkNe∑
k=1

[C
dŨ

(ξn+1
2 )]k(Ũ

n+1
I,k )− Ũn+1

II,k ). (2.48)

In order to estimate (2.46), with (2.47)-(2.48), we assume for arbitrary
Ũ ∈ Kb in (2.41), that

|C(Ũ)ij | 6c, |D(Ũ)i| 6 c,

|[C
Ũ

(Ũ)ij ]k| 6c, |D
Ũ

(Ũ)ij | 6 c, i, j, k ∈ {1, · · · , NkNe}, (2.49)

with c a positive constant, independent of Ũ . In the remainder of this
section c is a positive constant, but not necessarily the same.

Using (2.47)-(2.48) and assumption (2.49), we obtain the following two
estimates

(Ũn+1
I − Ũn+1

II )TBMMM−1Cd(Ũ
n+1
I )MMM−1BTM−1(D(Ũn+1

I )−D(Ũn+1
II ))

6‖B‖‖MMM−1‖‖Cd(Ũn+1
I )‖‖MMM−1‖‖BT ‖‖M−1‖‖D

Ũ
(ξn+1

1 )‖‖Ũn+1
I − Ũn+1

II ‖
2

6c‖Ũn+1
I − Ũn+1

II ‖
2,
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and

(Ũn+1
I − Ũn+1

II )TBMMM−1(Cd(Ũ
n+1
I )− Cd(Ũn+1

II ))MMM−1BTM−1D(Ũn+1
II )

6‖B‖‖MMM−1‖
NkNe∑
k=1

‖[C
dŨ

(ξn+1
2 )]k‖‖MMM−1‖‖BT ‖‖M−1‖‖D(Ũn+1

II )

‖‖Ũn+1
I − Ũn+1

II ‖
2

6c‖Ũn+1
I − Ũn+1

II ‖
2.

Then multiplying (2.46) with (Ũn+1
I − Ũn+1

II )T gives

(Ũn+1
I − Ũn+1

II )T (L(Ũn+1
I )− L(Ũn+1

II ))

=(Ũn+1
I − Ũn+1

II )TM(Ũn+1
I − Ũn+1

II ) + τn+1(Ũn+1
I − Ũn+1

II )TBMMM−1

Cd(Ũ
n+1
I )MMM−1BTM−1(D(Ũn+1

I )−D(Ũn+1
II )) + τn+1(Ũn+1

I − Ũn+1
II )T

BMMM−1(Cd(Ũ
n+1
I )− Cd(Ũn+1

II ))MMM−1BTM−1D(Ũn+1
II )

>σ‖Ũn+1
I − Ũn+1

II ‖
2 − 2cτn+1‖Ũn+1

I − Ũn+1
II ‖

2, (2.50)

where σ > 0 is the smallest eigenvalue of the symmetric positive mass
matrix M .

Choosing 0 < τn+1 6
σ

4c
, with ∀Ũn+1

I , Ũn+1
II ∈ Kb, we obtain that

(Ũn+1
I − Ũn+1

I )T (L(Ũn+1
I )− L(Ũn+1

II )) >
σ

2
‖Ũn+1

I − Ũn+1
II ‖

2, (2.51)

which implies that for τn+1 sufficiently small L(Ũn+1) is a uniformly func-
tion of Kb,

From Lemmas 2.4.5, 2.4.6 and 2.4.8, we obtain the main result of this
section.

Theorem 2.4.9. Given the DG coefficients Ũn and the positivity preserv-
ing backward Euler KKT-LDG discretization (2.27)-(2.39) with equality
constraint h ≡ 0. If assumption (2.49) is satisfied, then the KKT system
(2.27)-(2.39) with periodic boundary conditions has only one solution.

Corollary 2.4.10. Given the DG coefficients Ũn. If assumption (2.49)
is satisfied, then for the degenerate parabolic equation (2.1) with periodic
boundary conditions there exists only one solution satisfying the higher or-
der accurate in time, positivity preserving KKT-DIRK-LDG discretizations
(2.24) with equality constraint h ≡ 0.
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Proof. Since the DIRK coefficient matrix (aij) introduced in Section 2.3.2
is a lower triangular matrix, the structure of the DIRK-LDG discretizations
is similar to the structure obtained for the backward Euler LDG discretiza-
tion. The analysis therefore is completely analogous to Theorem 2.4.9.

2.4.3.3 Stability of the KKT-LDG discretization

Theorem 2.4.11. Given the numerical solution Unh ∈ V k
h of the positivity

preserving backward Euler KKT-LDG discretization (2.27)-(2.39). If as-
sumption (2.49) is satisfied, then the discrete entropy Eh stated in (2.14)
satisfies for n = 0, 1, · · · ,

Eh(Un+1
h ) 6 Eh(Unh ), (2.52)

which implies that the positivity preserving backward Euler KKT-LDG dis-
cretization with periodic boundary conditions is unconditionally entropy dis-
sipative.

Proof. From Lemma 2.4.6, we obtain that the LDG coefficients Ũn+1 of
the positivity preserving solution Un+1

h solve

(y − Ũn+1)TL(Ũn+1) > 0, ∀y ∈ K, (2.53)

with L given by (2.44) and K given by (2.18).
From assumption (2.49), we have that there exists a positive constant

c > c0 > 0 such that

Ũn+1 − cM−1D(Ũn+1) ∈ K. (2.54)

Next, we choose y = Ũn+1 − cM−1D(Ũn+1) in (2.53), which implies

−c(M−1D(Ũn+1))TL(Ũn+1) > 0. (2.55)

Using (2.44) and the fact that c > 0, we obtain that (2.55) implies the
inequality

D(Ũn+1)T (Ũn+1 − Ũn)

+τn+1D(Ũn+1)TM−1BMMM−1Cd(Ũ
n+1)MMM−1BTM−1D(Ũn+1) 6 0. (2.56)

From the definition of Cd in (2.33), (2.36) using (2.7b) and the conditions
on f stated in (2.3), we obtain that Cd(Ũ

n+1) is symmetric positive definite.
Hence using τn+1 > 0, we have

τn+1D(Ũn+1)TM−1BMMM−1Cd(Ũ
n+1)MMM−1BTM−1D(Ũn+1) > 0,
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which with (2.56) yields

D(Ũn+1)T (Ũn+1 − Ũn) 6 0. (2.57)

From the definition of D in (2.35) using (2.7d) and (2.57), we obtain the
bound (

φ(xxx), Un+1
h − Unh

)
+
(
H ′(Un+1

h ), Un+1
h − Unh

)
6 0. (2.58)

Using the following Taylor expansion

H(Unh ) =H(Un+1
h ) +H ′(Un+1

h )(Unh − Un+1
h )

+
1

2
H ′′(ξn+1

3 )(Un+1
h − Unh )2, ξn+1

3 ∈ (Unh , U
n+1
h ),

we obtain that (2.58) gives(
φ(xxx), Un+1

h − Unh
)

+
(
H(Un+1

h )−H(Unh ), 1
)

+
1

2

(
H ′′(ξn+1

3 ),
(
Un+1
h − Unh

)2)
6 0,

which implies, using the definition of Eh in (2.14), that

Eh(Un+1
h )− Eh(Unh ) =

(
φ(xxx), Un+1

h − Unh
)

+
(
H(Un+1

h )−H(Unh ), 1
)
6 0,

since (2.3) gives H ′′(ξn+1
3 ) > 0. This proves (2.52).

2.5 Numerical tests

In this section, we will discuss several numerical experiments to demon-
strate the performance of the KKT-DIRK-LDG positivity preserving algo-
rithm for the degenerate parabolic equation (2.1). In the computations, we
will consider the porous medium equation, the nonlinear diffusion equation
with a double-well potential and the nonlinear Fokker-Plank equation for
fermion and boson gases. Firstly, we will present in Section 2.5.1 the order
of accuracy of the DIRK-LDG discretizations with and without positivity
preserving limiter to investigate if the limiter negatively affects the accu-
racy of the discretizations. Next, we will present in Sections 2.5.3-2.5.5
test cases for which the positivity preserving limiter is essential. Without
the positivity constraint it is not possible to obtain a numerical solution or
only for extremely small time steps.
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In the computations, we take τ = α · h. If the Newton method during
strongly nonlinear stages requires a large number of iterations, it is gener-

ally more efficient to reduce the time step to
1

2
τ and restart the Newton

iterations. When the Newton method converges well, then τ is increased
each time step to 1.2τ , till the maximum predefined time step is obtained.

In order to avoid round-off effects, a positivity bound umin = 10−10 is
used in the numerical simulations, except for Section 2.5.1 where umin =
10−14. If it is not stated otherwise, the numerical results for 1D problems
are obtained on a mesh containing 100 elements and Legendre polynomials
of order 2. For 2D problems a mesh consisting of 30× 30 square elements
and tensor product Legendre polynomial basis functions of order 2 are used.

2.5.1 Accuracy tests

For the accuracy test, we use a uniform mesh with M elements and posi-
tivity bound umin = 10−14.

Example 2.5.1. We consider (2.1) on the domain Ω = (−1, 1) with Dirich-
let boundary conditions based on the exact solution and select the following
parameters

f(u) = u, H ′(u) = u2, φ(x) = 0, x ∈ Ω.

Then (2.1) with a properly chosen source term has the nonnegative solution

u(x, t) = exp(−t)(1− x4)5, x ∈ Ω.

We take α in the definition of the time step as α = 1. Tables 2.1-2.2
show that the DIRK-LDG discretizations with and without positivity pre-
serving limiter are convergent at the rate O(hk+1) for basis functions with
polynomial order ranging from 1 to 3. The errors and orders of accuracy
presented in Tables 2.1-2.2 indicate that the positivity preserving limiter is
necessary and does not negatively affect accuracy.

2.5.2 Porous media equation

For the porous media equation, f(u)H ′′(u) can locally vanish, resulting in
degenerate cases [13]. We test the asymptotic behavior of the numerical
solution and will show that the KKT limiter is necessary. The entropy
defined in (2.4), which should be non-increasing, is also computed.
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Table 2.1: Error in L∞− and L1− norms for Example 2.5.1 at time T = 1
without positivity preserving limiter.

Pk M ‖un − unh‖L∞(Ω) Order ‖un − unh‖L1(Ω) Order minunh
40 7.33E-003 – 1.03E-003 – -8.87e-005

1 80 1.24e-003 2.56 2.27e-004 2.18 -1.08e-005
160 2.63e-004 2.24 5.44e-005 2.06 -4.41e-007
320 6.05e-005 2.12 1.35e-005 2.01 -1.57e-008

40 1.70E-003 – 8.73E-005 – -1.60e-005
2 80 1.43e-004 3.57 8.07e-006 3.44 -1.79e-007

160 1.36e-005 3.39 9.40e-007 3.10 -6.24e-009
320 1.34e-006 3.34 1.16e-007 3.02 -2.07e-010

40 1.45e-004 – 6.00e-006 – -2.14e-006
3 80 9.87e-006 3.88 3.11e-007 4.27 -9.56e-008

160 5.51e-007 4.16 1.76e-008 4.14 -3.51e-009
320 3.50e-008 3.98 1.11e-009 3.99 -1.19e-010

Table 2.2: Error in L∞− and L1− norms for Example 2.5.1 at time T = 1 with
positivity preserving limiter.

Pk M ‖un − Unh ‖L∞(Ω) Order ‖un − Unh ‖L1(Ω) Order minUnh
40 7.33E-003 – 1.05E-003 – 2.05e-005

1 80 1.24e-003 2.56 2.27e-004 2.21 8.15e-007
160 2.63e-004 2.24 5.44e-005 2.06 2.77e-008
320 6.05e-005 2.12 1.35e-005 2.01 8.55e-010

40 1.70E-003 – 8.73E-005 – 6.15e-008
2 80 1.43e-004 3.57 8.08e-006 3.43 3.03e-007

160 1.36e-005 3.39 9.40e-007 3.10 1.08e-008
320 1.34e-006 3.34 1.16e-007 3.02 4.55e-010

40 1.45e-004 – 6.02e-006 – 1.00e-014
3 80 9.87e-006 3.88 3.13e-007 4.27 4.45e-008

160 5.51e-007 4.16 1.77e-008 4.14 1.21e-009
320 3.50e-008 3.98 1.11e-009 4.00 2.55e-011
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Example 2.5.2. In order to test degenerate cases, we choose the following
parameters in (2.1) on the domain Ω = (0, 1) with zero-flux boundary
conditions

f(u) = u, H ′(u) =
4

3

(
u− 1

2

)3

max

(
u,

1

2

)
, φ(x) = 0, x ∈ Ω,

and initial data

u(x, 0) =
1

2
− 1

2
cos(2πx), x ∈ Ω.

During the computations, the value of α for optimal convergence of the
semi-smooth Newton algorithm is most of the time close to 0.1. We present
the numerical solution in Figure 2.1 for basis functions with polynomial
order ranging from 1 to 3 and with the KKT limiter enforced. Values of
the Lagrange multiplier λ larger than 10−10 are shown in Figure 2.1, which
indicate that the positivity constraint works well since it is only active at
locations where the solution is close to the minimum value. The entropy
decay using the KKT limiter and polynomial basis functions of order 3
is presented in Figure 2.2, which result is consistent with the stability
analysis. In Figure 2.3, the numerical solution without KKT limiter and
for polynomial basis functions with order 3 is plotted. This computation
breaks down due to unphysical oscillations.

Example 2.5.3. We consider a 2D test case on the domain Ω = (−6, 6)2

with zero-flux boundary conditions by choosing in (2.1) the following pa-
rameters

f(u) = u, H ′(u) = 2u, φ(xxx) = 0, xxx ∈ Ω,

and initial data

u(xxx, 0) = exp

(
−1

2
|xxx|2
)
, xxx ∈ Ω.

The value of α in the definition of the time step ranges in this case be-
tween 0.1 and 1. Figure 2.4 presents the numerical solution with the KKT
limiter active and also the Lagrange multiplier λ. Considering the position
of the non-zero Lagrange multipliers, we can see that the limiter also works
well in the two dimensional case since it is only active in areas where posi-
tivity must be enforced. The entropy decay is plotted in Figure 2.5, which
is consistent with the stability result of the numerical solution. Without
KKT limiter, there will be unphysical oscillations, and the computation
will break down at some point in the computations.
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Figure 2.1: (Example 2.5.2) Numerical solution Uh for different orders of polyno-
mial basis functions P1-P3 with the KKT limiter enforced and Lagrange multiplier
λ (red dots).

2.5.3 Nonlinear diffusion with a double-well potential

Consider the nonlinear diffusion equation with double-well potential [72] on
the domain Ω = (−1.4, 1.4), which is obtained by choosing in (2.1) zero-flux
boundary conditions and the following parameters

f(u) = u, H ′(u) = u, φ(x) =
1

4
x4 − 1

2
x2, x ∈ Ω. (2.59)

This model is taken from [19]. We will test the evolution of the numerical
solution with and without KKT limiter, and also the decay of the entropy
(2.4). The value of α to compute the time step ranges between 0.01 to 0.1.
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Figure 2.2: (Example 2.5.2) Entropy Eh for P3 basis functions with the KKT
limiter enforced.
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Figure 2.3: (Example 2.5.2) Numerical solution Uh for P3 basis functions without
KKT limiter just before blow up.
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Figure 2.4: (Example 2.5.3) Numerical solution Uh for P2 basis functions with
KKT limiter enforced (Left) and Lagrange multiplier λ (Right).
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Figure 2.5: (Example 2.5.3) Entropy Eh for P2 basis functions with KKT limiter
enforced.
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Example 2.5.4. We consider (4.1) with (2.59) and the initial data

u(x, 0) =
0.2√
0.4π

exp

(
− x

2

0.4

)
, x ∈ Ω.

The numerical solution with the KKT limiter enforced and the values
of the Lagrange multiplier λ larger than 10−10 are shown in Figure 2.6.
These results indicate that the numerical solution tends to a steady state
and that the KKT limiter is only active at places where the positivity
constraint needs to be imposed. The entropy dissipation is presented in
Figure 2.7, which uniform decay coincides with our theoretical analysis.
For the numerical solution without KKT limiter, we observe that violating
the positivity constraint will result in discontinuities in the solution and a
breakdown of the computation, even for very small CFL number.

2.5.4 Nonlinear Fokker-Plank equation for fermion gases

We consider the nonlinear Fokker-Plank equation for fermion gases [13] on
the domain Ω = (−10, 10)2, for which we select the following parameters
in (2.1)

f(u) = u(1− u), H ′(u) = log
u

1− u
, φ(xxx) =

1

2
|xxx|2, xxx ∈ Ω, (2.60)

together with zero-flux boundary conditions.

Example 2.5.5. We consider (2.1) with (2.60) and initial data

u(xxx, 0) =
1

2
√

2π

(
exp

(
−1

2
|xxx− (2, 2)|2

)
+ exp

(
−1

2
|xxx− (2,−2)|2

)
+ exp

(
−1

2
|xxx− (−2, 2)|2

)
+ exp

(
−1

2
|xxx− (−2,−2)|2

))
, xxx ∈ Ω.

During the computations, the value of α in the definition of the time
step ranges between 0.1 and 1, but for most time steps α = 1. The nu-
merical solution at several time levels with the KKT limiter enforced and
the entropy dissipation are presented in Figures 2.8 and 2.9, respectively,
showing the time-asymptotic convergence of the numerical solution towards
a steady state. Without the KKT limiter, the computations break down,
even for very small CFL numbers.
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Figure 2.6: (Example 2.5.4) Numerical solution Uh for P2 basis functions with
KKT limiter enforced and Lagrange multiplier λ (red dots).

Figure 2.7: (Example 2.5.4) Entropy Eh for P2 basis functions with KKT limiter
enforced.
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Figure 2.8: (Example 2.5.5) Numerical solution Uh for P2 basis functions with
KKT limiter enforced.

2.5.5 Nonlinear Fokker-Plank equation for boson gases

Example 2.5.6. We consider a nonlinear Fokker-Plank equation for boson
gases with zero-flux boundary condition on a domain Ω = (−10, 10), which
requires the following parameters in (2.1)

f(u) = u(1 + u3), H ′(u) = log
u

(1 + u3)
1
3

, φ(x) =
x2

2
, x ∈ Ω.

The initial data is [13, 83]

u(x, 0) =
M

2
√

2π

(
exp

(
−(x− 2)2

2

)
+ exp

(
−(x+ 2)2

2

))
, x ∈ Ω,
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Figure 2.9: (Example 2.5.5) Entropy Eh for P2 basis functions with KKT limiter
enforced.

where M > 0 is the mass of u(x, 0).

For most time steps, the value of α in the definition of the time step
is 1. For the case M = 1, Figure 2.10 displays the numerical solution at
various times. Also, the locations and values of the Lagrange multiplier λ
and the entropy with the KKT limiter enforced are shown. The results in
Figures 2.10 and 2.11 indicate that the numerical solution tends to a steady
state, and that the Lagrange multiplier λ is needed to ensure that the
positivity constraint is satisfied. Without KKT limiter, the computations
break down, even for very small CFL numbers.

For this model equation, there is a critical mass phenomenon [1], which
states that solutions with a large initial mass blows-up in a finite time,
while solutions with small mass at initial time will not. The numerical
solutions with sub-critical mass M = 1 at times t = 5 and t = 10 and with
super-critical mass M = 10 at times t = 0.2 and t = 1 are shown in Figure
2.12 and Figure 2.13, respectively, and are in agreement with the results
shown in [1] and the numerical observation in [13, 83].

2.6 Conclusions

The main topic of this chapter is the formulation of higher order accurate
positivity preserving DIRK-LDG discretizations for the nonlinear degen-
erate parabolic equation (2.1). The presented numerical discretizations
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Figure 2.10: (Example 2.5.6): Numerical solution Uh for P2 basis functions with
KKT limiter enforced.

allow the combination of a positivity preserving limiter and time-implicit
numerical discretizations for PDEs and alleviate the time step restrictions
of currently available positivity preserving DG discretizations, which gen-
erally require the use of explicit time integration methods. For the spatial
discretization an LDG method combined with a simple alternating numer-
ical flux is used, which simplifies the theoretical analysis for the entropy
dissipation. For the temporal discretization, the implicit DIRK methods
significantly enlarge the time-step required for stability of the numerical dis-
cretization. We prove the existence, uniqueness and unconditional entropy
dissipation of the positivity preserving high order accurate KKT-LDG dis-
cretization combined with an implicit Euler time discretization. Numerical
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Figure 2.11: (Example 2.5.6): Entropy Eh for P2 basis functions with KKT
limiter enforced.

results are presented to demonstrate the accuracy of the higher order ac-
curate positivity preserving KKT-DIRK-LDG discretizations, which is of
optimal order and not affected by the positivity preserving KKT limiter.
The numerical solutions satisfy the entropy decay condition.
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Figure 2.12: (Example 2.5.6: M = 1): Numerical solution Uh for P2 basis
functions with KKT limiter enforced.
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Figure 2.13: (Example 2.5.6: M = 10) Numerical solution Uh for P2 basis
functions with KKT limiter enforced.



Chapter 3

Higher Order Accurate Bounds

Preserving Time-Implicit Discretizations

for the Chemically Reactive Euler

Equations

Abstract

We construct higher order accurate bounds preserving time-implicit
Discontinuous Galerkin (DG) discretizations for the reactive Euler
equations modelling multispecies and multireaction chemically reac-
tive flows. In numerical discretizations of chemically reactive flows,
the time step can be significantly limited because of the large differ-
ence between the fluid dynamics time scales and the reaction time
scales. In addition, the density and pressure should be nonnega-
tive and the mass fractions between zero and one, which imposes
constraints on the numerical solution that must be satisfied to ob-
tain physically realizable solutions. We address these issues using
the following steps. Firstly, we develop the Karush-Kuhn-Tucker
(KKT) limiter for the chemically reactive Euler equations, which im-
poses bounds on the numerical solution using Lagrange multipliers,
and solve the resulting KKT mixed complementarity problem using
a semi-smooth Newton method. The disparity in time scales is ad-
dressed using a fractional step method, separating the convection and
reaction steps, and the use of higher order accurate Diagonally Im-
plicit Runge-Kutta (DIRK) methods. Finally, Harten’s subcell reso-
lution technique is used to deal with stiff source terms in chemically
reactive flows. Numerical results are shown to demonstrate that the
bounds preserving KKT-DIRK-DG discretizations are higher order
accurate for smooth solutions and able to capture complicated stiff
multispecies and multireaction flows with discontinuities.
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3.1 Introduction

Consider the one-dimensional N -species chemically reactive Euler equa-
tions [11] {

Ut + F(U)x = S(U), (x, t) ∈ Ω× (0, tT ],

U(x, 0) = U0(x), x ∈ Ω,
(3.1)

with Dirichlet boundary conditions, where

U =



ρ
m
E
r1

. . .
rN−1

 , F(U) =



m
ρu2 + p

(E + p)u
ρuz1

. . .
ρuzN−1

 , S(U) =



0
0
0
s1

. . .
sN−1

 .

Here ρ is the density, u the velocity, m = ρu the momentum, E the total
energy, and zj (j = 1, . . . , N) the mass fraction of the j-th species with
N∑
j=1

zj = 1, and rj = ρzj . In the following, we compute zN always using

zN = 1−
N−1∑
j=1

zj ,

which automatically ensures conservation of species. The pressure is ob-
tained from the equation of state

p = (E − 1

2
ρu2 − q1ρz1 − . . .− qNρzN )(γ − 1), (3.2)

where qj is the enthalpy of formation for the j-th species and γ the ratio
of specific heat at constant pressure cp and constant volume cv. Physical
realizability requires that the density ρ and pressure p are nonnegative and
the mass fractions zj satisfy zj ∈ [0, 1], j = 1, . . . , N . The source terms
sj (j = 1, . . . , N) describe the chemical reactions. For R reactions of the
form

ν ′1,rX1 + ν ′2,rX2 + . . .+ ν ′N,rXN → ν ′′1,rX1 + ν ′′2,rX1 + . . .+ ν ′′N,rXN ,

r = 1, . . . , R,
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for the species Xj and stochiometric coefficients ν ′j,r and ν ′′j,r, the rate of
production of species j for the above chemical reaction can be written as

sj = Mj

R∑
r=1

(ν ′′j,r − ν ′j,r)

[
kr(T )

N∏
k=1

(
ρzk
Mk

)ν′k,r]
, j = 1, 2, . . . , N, (3.3)

where Mj denotes the molar mass of the j-th species and kr(T ), which is a

function of the temperature T =
p

ρ
(see [117, 118]), indicates the reaction

rate. In this chapter, we take

kr(T ) =

{
BrT

αr , T > Tr,

0, T 6 Tr,
(3.4)

where for each reaction r, Tr is the ignition temperature, Br and αr are
the pre-exponential factor and the index of temperature, respectively.

The system of equations (3.1) generally will be stiff [31] since the
time scale of the reaction equations Ut = S(U) will be an order of mag-
nitude smaller than the time scale of the homogeneous Euler equations
Ut +F(U)x = 0. This stiffness presents a serious challenge to the design of
higher order accurate and efficient numerical discretizations. In particular,
in high speed chemically reacting flows, the reaction speed can be much
faster than the gas flow, which can easily result in spurious numerical re-
sults [31, 81], including wrong propagation speeds and incorrect locations
of discontinuities. In addition, the stiff source terms in the chemically re-
active Euler equations can severely limit the time step size when explicit
time integration methods are used. A second challenge for numerical dis-
cretizations of the chemically reactive Euler equations is to ensure that
the numerical solution is physically realizable, namely density and pressure
must be nonnegative, and mass fractions should be between zero and one.

Many attempts have been made to avoid spurious phenomena when
solving the chemically reactive Euler equations [10, 11, 108, 117, 118] and
to ensure that the physical bounds are preserved in the numerical discretiza-
tion [36, 113]. For example, using the splitting methods discussed in [51],
the chemically reactive Euler equations can be divided into homogeneous
equations and reaction equations. In order to locate the proper position
of discontinuities in the reaction part and to avoid spurious solutions, a
second order MinMax scheme [108] and a first order random projection
method [10, 11] were proposed, but these methods are difficult to gener-
alize to higher order accuracy. Harten’s essentially non-oscillatory (ENO)
subcell resolution technique [62], which preserves higher order accuracy,
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was utilized in [117, 118] for time-explicit finite difference methods in the
reaction part.

Positivity preserving DG discretizations of the chemically reactive Euler
equations were obtained in [113] by extending the method presented in [134]
to preserve the positivity of density, pressure, and mass fractions, except
for the mass fraction zN . The basic idea in [113] is based on the maximum-
principle-preserving technique presented in [134], but since individual mass
fractions do not satisfy a maximum principle it is not easy to extend this
approach to preserve the upper bound for the mass fractions. Using the
bounds preserving technique presented in [24, 43, 44, 86], high-order bounds
preserving DG methods for multicomponent chemical reactive flows were
established in [36, 38].

In general, explicit time discretization methods are chosen to solve
the chemically reactive Euler equations with stiff source terms, see e.g.
[108, 113, 117, 118, 127], but these methods frequently result in severe time
step constraints to ensure stability of the numerical discretization. In [36],
the time step was enlarged by modifying the explicit exponential Runge-
Kutta (RK)/multistep time-discrete methods as in [68], but this high-order
bounds preserving DG method only works on very fine meshes. For implicit
time-discrete methods, the backward Euler method was chosen for the reac-
tion equations in [10, 11], but this numerical discretization is only first order
accurate. Also, it is difficult to extend the method in [10, 11] to high-order
discretizations since the reaction operator in this numerical discretization is
highly dependent on the time discretization method. Recently, Qin and Shu
in [94] established a positivity-preserving implicit Euler DG time discretiza-
tion for one-dimensional hyperbolic conservation laws. Since no high-order
strong-stability-preserving RK method can be written as a convex combi-
nation of backward Euler methods [53], this approach can not be directly
extended to high-order methods. Van der Vegt, Xia and Xu in [111] con-
structed a time-implicit bounds preserving DG discretization for parabolic
Partial Differential Equations (PDEs) by coupling the bounds constraints
with a higher order accurate Diagonally Implicit Runge-Kutta (DIRK) DG
discretization using Lagrange multipliers. The resulting equations are the
well-known Karush-Kuhn-Tucker (KKT) equations [41, 42] and the bounds
preserving scheme is therefore called KKT-limiter. The KKT equations are
solved using a semi-smooth Newton method, which can properly deal with
the non-smoothness of the resulting algebraic equations.

In this chapter, we will present novel time-implicit higher order ac-
curate bounds preserving DIRK-DG discretizations by extending the KKT
limiter concept proposed in [111] to the chemically reactive Euler equations.
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We split these equations into a homogeneous part and a reaction part us-
ing fractional step methods. The higher order accurate bounds preserving
DIRK-DG discretizations for the homogeneous equations are constructed
using the KKT approach in order to ensure that the density and pressure
are positive and the mass fractions between zero and one. Also, a con-
straint projection is used to ensure that the bounds on the mass fractions
during the reaction step are obeyed.

Due to the numerical dissipation in shock-capturing schemes, the loca-
tion of discontinuities in the flow variables can be incorrect, which can acti-
vate the source term in an unphysical manner and result in incorrect shock
speeds and spurious solutions in the shock region. We address this problem
by modifying Harten’s higher order ENO subcell resolution method used
in [117, 118].

The KKT bounds preserving limiting approach presented in this chap-
ter can be seen as a general framework to enforce bounds on the numerical
solution which can be easily adapted to other stiff and non-stiff problems
and offers great flexibility to ensure that various constraints on the ex-
act solution are preserved. Since the KKT bounds preserving limiter is
connected to the numerical discretization of the Euler equations using La-
grangian multipliers, the limiting procedure is independent of the specific
numerical discretization or flow equations. The KKT limiter thus can also
be used in combination with discretizations of the chemically reactive Euler
or Navier-Stokes equations with a general equation of state and different
reaction models. The use of DIRK methods is also interesting for possi-
ble extensions to the compressible reactive Navier-Stokes equations, which
have an additional time step constraint due to the viscous terms. Also,
implicit methods are more efficient when one is interested in steady state
solutions. An alternative to the DIRK time discretizations would be the use
of Implicit-Explicit (IMEX) time discretizations. Several IMEX schemes
can preserve positivity and Total Variation Bounded (TVB) bounds during
the time integration step, e.g. [52, 88, 103], but this does not guarantee
that these properties are preserved for the fully discrete scheme. Designing
IMEX-DG discretizations that inherently preserve bounds using the max-
imum principle preserving techniques in [132, 133] is non-trivial and still
an open question. The KKT limiter concept discussed in this chapter can,
however, also be used in combination with IMEX time discretizations, but
this is beyond the scope of this chapter.

The organization of this chapter is as follows. Using operator split-
ting techniques, we split in Section 3.2.1 the chemically reactive Euler
equations into a homogeneous part and a reaction part. The higher or-
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der DIRK-DG discretizations for both parts are presented in Section 3.2.2.
Further, using the KKT limiter, which is discussed in Section 3.3.1, we
present in Sections 3.3.2 and 3.3.3, respectively, higher order bounds pre-
serving DIRK-DG discretizations for the homogeneous and reaction parts
of the chemically reactive Euler equations. A semi-smooth Newton method
to solve the semi-smooth nonlinear algebraic equations resulting from the
DIRK-DG discretizations with KKT limiter is presented in Section 3.4.
The detailed algorithm, which can be seen as a template to construct time-
implicit bounds preserving schemes for chemically reactive flows, is given
in Section 3.5. In Section 3.6, numerical results for both the Euler equa-
tions and the chemically reactive Euler equations are presented to show
that the bounds constraints are necessary and do not negatively affect the
higher order accuracy for smooth solutions. For discontinuous solutions,
we can see that the algorithm discussed in Section 3.5 accurately captures
discontinuities and is more robust and allows a significantly larger time
step than the algorithm presented in [36]. Concluding remarks are given in
Section 3.7. In this chapter we will focus on the main idea how to develop
higher order accurate DIRK-DG discretizations combined with the bounds
preserving KKT limiter for the chemically reactive Euler equations, and
only discuss the one dimensional case.

3.2 Time-implicit DG discretizations

When computing discontinuous solutions of hyperbolic conservation laws
with inhomogeneous stiff source terms, spurious numerical results may be
produced due to the different time scales of the homogeneous part and the
chemically reactive part. In order to deal with this disparity in time scales,
we adopt in Section 3.2.1 fractional step methods to split the chemically
reactive Euler equations (3.1) into a homogeneous part and a reaction part.
In Section 3.2.2, DIRK-DG discretizations for both parts will be presented.

3.2.1 Fractional step approach

For high speed chemically reacting flows, we use operator splitting algo-
rithms to deal with the stiffness in the equations. With these algorithms,
we split the chemically reactive Euler system (3.1) into a homogeneous
Euler equation and a reaction equation

Ut + F(U)x =0, (3.5a)

Ut − S(U) =0. (3.5b)
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The convection operator A represents the solution operator of (3.5a), and
the reaction operator R is the solution operator of (3.5b).

The time interval [0, tT ] is divided using the time steps τn such that∑
n

τn = tT and tn =
n∑
j=1

τ j . Given the solution Un at time tn, the solu-

tion at time tn+1 can be computed with the second order Strang-splitting
algorithm in [102] as

Un+1 = A
(
τn+1

2

)
RNr(τn+1)A

(
τn+1

2

)
Un +O(τ2), (3.6)

where

RNr(τ) = R
(
τ

Nr

)
· · ·R

(
τ

Nr

)
︸ ︷︷ ︸

Nr

.

Here Nr = 1 is the original Strang-splitting algorithm. For test cases with
fast reaction rates, Nr should be larger than one, see [118] and also [76] for
a study of Nr–values, otherwise the reaction zone will be under resolved
in time, which results in inaccurate solutions and possibly also in spurious
numerical solutions.

For third order accurate discretizations, we will use the third order
operator splitting algorithm presented in [70], but also other third order
operator splitting algorithms could be used [15, 33, 51, 79].

3.2.2 DIRK-DG discretizations

In this section, we will summarize the DG discretization of the chemically
reactive Euler equations combined with higher order DIRK time integration
methods [61]. The numerical discretizations of (3.5a) will be combined in
Section 3.3.2 with the KKT limiter, resulting in bounds preserving time-
implicit DG discretizations. In order to deal with stiff source terms, we will
discuss in Section 3.3.3 the use of Harten’s subcell resolution technique in
the numerical discretization of the reaction part.

For the DG discretization, we consider a partition of the domain Ω =
[a, b] using Ne + 1 points

a = x 1
2
< x 3

2
< · · · < xNe+ 1

2
= b,
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and denote element Kj , 1 6 j 6 Ne as Kj = (xj− 1
2
, xj+ 1

2
). The reference

mesh size h is denoted as

h = max
16j6Ne

|xj+ 1
2
− xj− 1

2
|.

The discontinuous finite element spaces are defined as

V k
h = {v ∈ L2(Ω) : v|Kj ∈ Pk(Kj), j = 1, · · · , Ne},
VVV k
h = (V k

h )N+2,

where Pk(Kj) denote the polynomials of degree k ≥ 0 on each element Kj .

In the numerical discretizations, we will first consider the homogeneous
Euler equations (3.5a) with N species. The DG discretization is: Find
Uh(t) ∈ VVV k

h, such that for all Vh ∈ VVV k
h

∫
Ω

(Uh)tVhdΩ +H(Uh;Vh) = 0, (3.7)

is satisfied, where

H(Uh;Vh) = −
∫

Ω
F(Uh)(Vh)xdΩ +

Ne∑
j=1

(
F̂j+ 1

2
Vh(x−

j+ 1
2

)− F̂j− 1
2
Vh(x+

j− 1
2

)

)
,

here we use the local Lax-Friedrichs flux [98] defined as

F̂j+ 1
2

=F̂
(
Uh(x−

j+ 1
2

),Uh(x+
j+ 1

2

)

)
=

1

2

(
F(Uh(x−

j+ 1
2

)) + F(Uh(x+
j+ 1

2

))− αj
(
Uh(x+

j+ 1
2

)− Uh(x−
j+ 1

2

)

))
,

with αj = ‖
√
γp/ρ+ |u|‖

L∞(x−
j+ 1

2

, x+
j+ 1

2

)
the maximum wave speed in the

homogeneous Euler equations and x±
j+ 1

2

= lim
ε↓0

(xj+ 1
2
± ε) at xj+ 1

2
, j =

0, · · · , Ne.

Next, we will discretize the semi-discrete formulation (3.7) in time using
DIRK methods. The approximate solution at time tn is denoted as Unh =
Uh(·, tn). Assume that we know the numerical solution at time level n,
then we can compute the solution at time level n + 1 using the following
steps. Given the Butcher tableau with matrix (aij) and vector (bi), with
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asi = bi, i = 1, · · ·, s. We compute the s intermediate DIRK stages i (i =
1, · · · , s) by solving the nonlinear equations∫

Ω
(Un+1,i

h − Unh )VhdΩ + τn+1
i∑

j=1

aijH(Un+1,j
h ;Vh) = 0, (3.8)

for the intermediate solutions Un+1,i
h . The intermediate solutions Un+1,i

h

are obtained from (3.8) using a semi-smooth Newton method after they are
coupled with the bounds preserving KKT limiter, which will be discussed
in Sections 3.3 and 3.4. Then the solution at time t = tn+1 is equal to

Un+1
h = Un+1,s

h . (3.9)

We use the DIRK methods presented in Section 1.3.2.2. For polynomials
of order k = 1 and 2, we use, respectively, the Butcher tableaux (1.6) and
(1.7). Note these DIRK schemes satisfy asi = bi, i = 1, · · ·, s and are
stiffly accurate. The order of accuracy of these DIRK methods is k + 1.
Since the matrix (aij) in DIRK methods has a lower triangular structure,
which means aij = 0 if j > i, DIRK methods can be easily implemented
by successively solving the DIRK stages for i = 1, · · · , s. For detailed
information about DIRK time-discretization method, we refer to [61].

For the reaction equations (3.5b), the DIRK-DG discretization can be
straightforwardly obtained by taking the L2-inner product in space with
test functionsWh ∈ VVV k

h combined with the DIRK time integration methods,∫
Ω

(Un+1,i
h − Unh )WhdΩ− τn+1

i∑
j=1

aij

∫
Ω
S(Un+1,j

h )WhdΩ = 0,

i = 1, · · · , s, (3.10)

with the solution at time tn+1 given by (3.9).

3.3 Bounds preserving DG discretization

Physical realizability requires that the solution of (3.1) has a nonnegative
density ρ and pressure p and that the mass fractions zj (1 6 j 6 N) are in

the interval [0, 1], with

N∑
j=1

zj = 1. In general, it is very difficult to develop

time-implicit DG discretizations of the chemically reactive Euler equations
that intrinsically satisfy these constraints. In this chapter we will therefore
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follow a different approach. Following the procedure we outlined in [111]
for the construction of bounds preserving DG discretizations of parabolic
PDEs using the KKT limiter concept, we impose the constraints on ρ, p
and zj (1 6 j 6 N−1) explicitly using Lagrange multipliers. The resulting
KKT equations are, however, only semi-smooth and can not be solved
efficiently with standard Newton methods. We use therefore the active
set semi-smooth Newton method presented in [111] to solve the nonlinear
algebraic equations of the KKT-DIRK-DG discretization of the chemically
reactive Euler equations with explicitly imposed bounds.

In Section 3.3.1, we will summarize the KKT equations that result
from the combination of the DIRK-DG discretization with the bounds con-
straints. Next, we will discuss in Section 3.3.2 the constraints on ρ, p and
zj (1 6 j 6 N − 1) and how to impose these constraints on the stages
in the DIRK-DG discretization of the homogeneous Euler equations (3.8).
Since discontinuities that appear in the convection step will be smeared
due to numerical dissipation, this can result in incorrect shock positions
and reaction rates. We will discuss in Section 3.3.3 how to deal with this
issue and also present a constrained L2-projection to preserve the bounds
on the mass fractions zj (1 6 j 6 N) in the reaction equations (3.10).

3.3.1 Imposing bounds on the DG discretization

The numerical solution of the DG discretization in each element K is ex-
pressed as

Uh|K :=

Nk∑
j=1

ÛKj φφφ
K
j , (3.11)

with basis functions φφφKj ∈ VVV k
h and DG coefficients ÛKj . We collect all DG

coefficients in the vector Û ∈ Rdof , with dof the number of DG coefficients.
In order to ensure that the DG discretization satisfies the bounds on ρ, p
and zj (1 6 j 6 N), we need to impose additional constraints on Û . Define
the set

K := {Û ∈ Rdof | g(Û) 6 0},

with g : Rdof → Rdof ′ a differentiable function with the inequality con-
straints, see Section 3.3.2, that must be imposed on the DG coefficients Û .
Denote ∇

Û
the gradient with respect to Û . Let L : Rdof → Rdof be the

unconstrained DIRK-DG discretization (3.8)-(3.9), which is continuously
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differentiable. The corresponding Karush-Kuhn-Tucker (KKT) equations
[41] are then

L(Û , λ) := L(Û) +∇
Û
g(Û)Tλ = 0, (3.12a)

0 > g(Û)⊥λ > 0, (3.12b)

where λ ∈ Rdof ′ are the Lagrange multipliers used to ensure that the con-
straint g(Û) 6 0 is satisfied. Here ⊥ denotes the perpendicularity between
two vectors. For the compatibility condition (3.12b), we have that

gj(Û) 6 0, λj > 0, and gj(Û)λj = 0, j = 1, · · · , dof ′,

which is equivalent to

min(−gj(Û), λj) = 0, j = 1, · · · , dof ′.

Then with F : Rdof+dof ′ → Rdof+dof ′ , the KKT-system (3.12) can be
formulated as

0 = F (z) =

(
L(Û , λ)

min(−g(Û), λ)

)
, (3.13)

with z = (Û , λ). Note the KKT system (3.13) is nonlinear and F (z) is
only semi-smooth [69, 42] due to the compatibility condition (3.12b). This
implies that standard Newton methods, which require F to be continu-
ously differentiable, will not be efficient to solve (3.13). In Section 3.4 we
will therefore discuss the global active set semi-smooth Newton method
presented in [111] and adapt this method to solve the bounds preserving
DIRK-DG discretization for the chemically reactive Euler equations.

Remark 3.3.1. The bounds constraints in the KKT limiter are only ac-
tive at grid points where the numerical solution does not satisfy the physical
bounds. Imposing the exact physical constraints at these nodes does not in-
fluence the numerical discretization elsewhere and preserves the conserva-
tion properties of the DG discretization. This was investigated in detail in
[111], where it was shown that enforcing element wise conservation in the
KKT limiter, next to the physical bounds, has no effect on the numerical
solution. Hence, the conservation properties of the DG discretization, and
in particular the shock speeds and shock positions, are not affected by the
KKT limiter.
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3.3.2 Constraints on the homogeneous Euler equations

Since the density ρ and pressure p must be nonnegative, and mass fractions
zj (1 6 j 6 N) must be in the interval [0, 1] and also satisfy the equality

constraint

N∑
j=1

zj = 1, we need to impose these constraints explicitly in the

KKT algorithm discussed in Section 3.3.1.
Imposing these constraints at all points in an element would be pro-

hibitively expensive and also very difficult, especially for higher order ac-
curate discretizations. This is, however, not necessary since in the DG
discretization only data at the element and face quadrature points are
used. The physical constraints therefore only need to be imposed at the Nq

quadrature points used in the DG discretization. These constraints then
are expressed in terms of the DG coefficients Û in (3.11) since these are
the unknown variables in the DG discretization. We use Gauss-Lobatto
quadrature points, which are both inside the element and at element faces.
This ensures that the bounds are also preserved in the flux calculations.

After setting the test functions Vh = φφφkh ∈ VVV k
h, the unconstrained DIRK-

DG discretization (3.8) for stage i (i = 1, · · · , s) can be expressed as

L(Ûn+1,i) = M(Ûn+1,i − Ûn) + τn+1
i∑

j=1

aijH̃(Ûn+1,j), (3.14)

with

H̃(Û) := H(Uh;φφφkh),

and mass matrix M .
Using the expression for Uh in terms of the basis functions (3.11), we can

explicitly express each component of Uh in terms of the basis functions, e.g.
for the i-th DIRK stage with φKj ∈ V k

h , we have for the density in element
K the expression

ρ
K,(n+1,i)
h (x) =

Nk∑
j=1

ρ̂
K,(n+1,i)
j φKj (x),

with similar expressions for mh, Eh, rh,1, · · · , rh,N−1. The inequality con-
straints on ρ, p, zj (1 6 j 6 N) are imposed in each element K at the
quadrature points xl, 1 6 l 6 Nq, e.g.

gKρ = (gKρ1 , . . . , g
K
ρNq

).
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The bounds on the DG coefficients Ûn+1,i = (ρ̂n+1,i, m̂n+1,i, Ên+1,i, r̂ n+1,i
1

, . . . , r̂ n+1,i
N−1 ) in the DIRK-DG discretization (3.8) can now be stated as

i. Positivity Constraints

gKρl (ρ̂
n+1,i) =ρmin − ρK,(n+1,i)

h (xl), l = 1, . . . , Nq, (3.15)

gKpl (Û
n+1,i) =pmin − pK,(n+1,i)

h (xl), l = 1, . . . , Nq, (3.16)

gK(zj)l
(ρ̂n+1,i, r̂ n+1,i

j ) =−
r
K,(n+1,i)
h,j (xl)

ρ
K,(n+1,i)
h (xl)

, l = 1, . . . , Nq,

j =1, . . . , N − 1, (3.17)

where we use the equation of state (3.2) and zN = 1 −
N−1∑
j=1

zj in (3.16) to

express the dependence of the pressure on the conservative variables.

ii. Maximum Constraints

gK(zN )l
(ρ̂n+1,i, r̂ n+1,i

1 , . . . , r̂ n+1,i
N−1 )

=
N−1∑
j=1

r
K,(n+1,i)
h,j (xl)

ρ
K,(n+1,i)
h (xl)

− 1, l = 1, . . . , Nq. (3.18)

Note, for the constraints on the mass fractions we impose zj > 0 (j =

1, . . . , N − 1) and
N−1∑
j=1

zj 6 1 at all quadrature points. The condition

zN = 1−
N−1∑
j=1

zj will ensure then that all mass fractions are in the interval

[0, 1] and total mass is conserved.

The constants ρmin, pmin are the bounds imposed on the density or
pressure. In order to prevent that the density or pressure become negative
due to small numerical truncation errors, if not stated otherwise, we set
ρmin = pmin = 10−10.

In order to simplify notation, we combine all inequality constraints into
a single vector

g = (gρ, gp, gz1 , . . . , gzN )T (3.19)
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with gρ = (gK1
ρ , . . . , g

KNe
ρ ) and similar expressions for the other terms gp, gz1

, . . . , gzN . For the semi-smooth Newton method discussed in Section 3.4, it

is crucial to note that g depends on the DG coefficient Û .

For each DIRK i-stage, the KKT equations for the bounds preserving
DIRK-DG discretizations can now be expressed as

L(Ûn+1,i, λ) := L(Ûn+1,i) +∇
Û
g(Ûn+1,i)Tλ = 0, (3.20a)

0 > g(Ûn+1,i)⊥λ > 0, (3.20b)

with

∇
Û
g
(
Ûn+1,i

)
=

∂g

∂Ûn+1,i
∈ R(N+2)NqNe×(N+2)NkNe .

Here L: R(N+2)NkNe → R(N+2)NkNe is the DIRK-DG discretization (3.14),
g: R(N+2)NkNe → R(N+2)NqNe the inequality constraints (3.19) and λ ∈
R(N+2)NqNe the Lagrange multipliers.

The KKT equations for DIRK stage i can be concisely expressed as the
following system of non-smooth algebraic equations

0 = F (Ûn+1,i, λ) =

(
L(Ûn+1,i, λ)

min(−g(Ûn+1,i), λ)

)
. (3.21)

After solving (3.21) with the semi-smooth Newton algorithm, discussed is
Section 3.4, we obtain the DG coefficients Ûn+1,i, which gives using (3.11)
the DG solution Un+1,i∗

h . Next, monotonicity of the numerical solution is

enforced by applying the TVB limiter [27, 29] to Un+1,i∗
h , which results

in the updated DG coefficients Ûn+1,i, and after (3.21) is solved for all
Runge-Kutta stages gives the numerical solution Un+1

h .

The physical constraints are thus imposed implicitly, coupled with the
DIRK-DG discretization, whereas the monotonicity constraint is enforced
after the solution of the KKT-DIRK-DG equations for each Runge-Kutta
stage is obtained.

Solving the DIRK-DG equations without imposing the physical con-
straints coupled with the DIRK-DG discretization can easily result in un-
physical solutions and thus in the breakdown of the Newton algorithm. In-
cluding the TVB limiter as a constraint to the DIRK-DG equations would,
however, make the algorithm unnecessarily complex and is not necessary
for stability.
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3.3.3 Constraints on the reaction equations

When solving the homogeneous Euler equations (3.5a), all standard shock-
capturing schemes will produce smeared discontinuities in the shock re-
gions. For stiff reaction equations, the smeared discontinuities will then
result in inaccurate shock locations. This activates the source terms in an
unphysical way, which can result in incorrect shock speeds and spurious
solutions. Since it is impractical to resolve the very small chemical reac-
tion scales, a stable and accurate algorithm must be obtained based on the
data from the shock capturing scheme. We will follow here the process
outlined in [117, 118, 127] using the Harten’s subcell resolution technique
[62]. First, we will discuss an algorithm that can identify elements that
contain discontinuities. Next, after computing the correct shock locations
in the reaction zone, we will reconstruct the temperature, mass fractions
and density on both sides of the discontinuity using data in the neighbor-
ing elements, which are less polluted by the numerical dissipation in the
discontinuity.

In order to better explain the reaction operator, we rewrite the source
term S(U) in (3.5b) as S(T, ρ, z1, . . . , zN ) and denote its non-zero compo-
nents sk (k = 1, 2, . . . , N).

We will use the following algorithm:

1. Identification of correct position of discontinuities
a.) We use one mass fraction to identify elements that contain true

discontinuities inside the region with the smeared discontinuities. For this
identification, we choose a mass fraction zk that has a zero value in the
left-hand side state. If there is more than one such mass fraction or none,
we choose the mass fraction with the biggest jump in the smeared discon-
tinuities.

b.) Next, we use the minmod-based discontinuity indicator [117] on the
selected mass fraction zk to identify elements with discontinuities. Element
Kl = [xl− 1

2
, xl+ 1

2
], l = 1, . . . , Ne, is identified as being in the shock domain

if |Cl| > |Cl−1| and |Cl| > |Cl+1| (with at least one strict inequality), where

Cl = minmod{(z̄k)l+1 − (z̄k)l, (z̄k)l − (z̄k)l−1},

with (z̄k)l =
1

|Kl|

∫
Kl

zkdKl the element average of the mass fraction zk in

element Kl that is selected under 1.a. We also check whether neighboring
elements Kl−1 and Kl+1 also contain a discontinuity, but for simplicity of
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exposition, we assume in the remainder that this is not the case.

2. Improve accuracy of temperature, mass fractions and den-
sity in discontinuities

If element Kl is identified to contain a discontinuity, we obtain modified
values of the temperature T , mass fractions zk (k = 1, 2, . . . , N) and density
ρ in element Kl using{
T̃ (x) = pl−1(x;T ), z̃k(x) = pl−1(x; zk), ρ̃(x) = pl−1(x; ρ), if x 6 xt

T̃ (x) = pl+1(x;T ), z̃k(x) = pl+1(x; zk), ρ̃(x) = pl+1(x; ρ), if x > xt,

(3.22)

with pl±1(x; y) the DG solution for variable y in elements Kl±1, with y
either the temperature T , mass fractions zk (k = 1, . . . , N) or density
ρ. The position xt of the shock location is the solution of the following
conservation relation∫ xt

x
l− 1

2

pl−1(x;E)dx+

∫ x
l+1

2

xt

pl+1(x;E)dx− Ēl∆x = 0, (3.23)

where pl(x;E) is the DG solution of the energy E in element Kl in the
convection step and Ēl the average energy in element Kl. The energy E is
chosen because it is a conserved variable.

It is not necessary to compute the exact shock location xt in element
Kl by solving (3.23) accurately. One only needs to know if a quadrature
point in element Kl is on the left or right side of the shock location xt
to determine if the temperature, mass fractions and density need to be
computed from either the left or right element connected to element Kl.
In order to decide this, we use the criterion x > xt if χ(xl− 1

2
)χ(x) < 0, and

x 6 xt otherwise, where

χ(x) =

∫ x

x
l− 1

2

pl−1(x;E)dx+

∫ x
l+1

2

x
pl+1(x;E)dx− Ēl∆x.

Note, when ∆x is small enough then (3.23) will have a unique solution.

3. Modify DIRK-DG discretization for reaction step

Next, we use T̃ , z̃k (k = 1, . . . , N), ρ̃, obtained from (3.22), instead of
T, zk (k = 1, . . . , N), ρ in the explicit parts of the DIRK-DG discretization
of the reaction step (3.10). At every DIRK stage i (i = 1, . . . , s), we modify
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(3.10) therefore as∫
Ω
Un+1,i
h VhdΩ =

∫
Ω
Unh VhdΩ

+ τn+1
i−1∑
j=1

aij

∫
Ω
S(T̃n+1,j

h , ρ̃n+1,j
h , (z̃1)n+1,j

h , . . . , (z̃N )n+1,j
h )VhdΩ

+ τn+1aii

∫
Ω
S(Tn+1,i

h , ρn+1,i
h , (z1)n+1,i

h , . . . , (zN )n+1,i
h )VhdΩ. (3.24)

Then after modifying Un+1,s
h obtained from (3.24) using Steps 1 and 2, the

solution of the reaction equations at time tn+1 is∫
Ω
Un+1
h VhdΩ =

∫
Ω
Unh VhdΩ

+ τn+1
s∑
i=1

asi

∫
Ω
S(T̃n+1,i

h , ρ̃n+1,i
h , (z̃1)n+1,i

h , . . . , (z̃N )n+1,i
h )VhdΩ. (3.25)

4. Impose constraints on the mass fractions
Finally, for the reaction equations, we apply a constrained L2-projection

of Un+1
h computed in (3.25) to obtain the DG coefficients Ûn+1 that also en-

sure Un+1
h satisfies the bounds on the mass fractions stated in Section 3.3.2.

The constrained L2-projection is obtained by replacing L(Û) in (3.12) with
the L2-projection and using the same constraints on the mass fractions as
discussed in Section 3.3.2 for the KKT-DIRK-DG discretizations.

3.4 Semi-smooth Newton method

The nonlinear algebraic equations F (Ûn+1,i, λ) (3.21), resulting from the
KKT equations (3.20), are only semi-smooth. A function F (x) is semi-
smooth at x ∈ Rd if F is locally Lipschitz continuous and directional dif-
ferentiable at x and

lim
x+h∈DF ,|h|→0

F ′(x+ h;h)− F ′(x;h)

|h|
= 0, (3.26)

with DF the set of points at which F is differentiable, h ∈ Rd and F ′ the
directional derivative of F , see [69, Theorem 8.2]. For the rather techni-
cal definition of semi-smoothness, we refer to [42]. The semi-smoothness
of F (Ûn+1,i, λ) prevents the usage of a standard Newton method, which
requires F to be continuously differentiable in order to converge. We use
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therefore the active set semi-smooth Newton method presented in [111]
to solve (3.21). This semi-smooth Newton method uses the concept of a
quasi-directional derivative [69].

We assume that D ⊂ Rdof+dof ′ , with dof = (N+2)NkNe, dof
′ = (N+

2)NqNe, is an open set and F : D → Rdof+dof ′ is directionally differentiable
and locally Lipschitz continuous. Assume that there exists a z0 ∈ D such
that

S := {z = (x, λ) ∈ D| |F (z)| 6 |F (z0)|}

is bounded. The quasi-directional derivative [69] satisfies the following
conditions.

Definition 3.4.1. G : S × Rdof+dof ′ → Rdof+dof ′ is a quasi-directional
derivative of F : D → Rdof+dof ′ on S, when for all z, z∗ ∈ S, the following
three conditions hold

(F (z), F ′(z; d)) 6 (F (z), G(z; d)),

G(z; td) = tG(z; d), for all d ∈ Rdof+dof ′ , z ∈ S and t > 0,

(F (z∗), F 0(z∗; d∗)) 6 lim supz→z∗,d→d∗(F (z), G(z; d)), for all z → z∗,

d→ d∗,

where F ′(z; d) is the directional derivative of F at z in the direction d,
F 0(z∗; d∗) is the Clarke generalized directional derivative of F at z∗ in the
direction d∗, which is defined as

F 0(z∗; d∗) = lim
y→z∗

sup
t↓0+

F (y + td∗)− F (y)

t
.

The search direction d in the semi-smooth Newton method is then the
solution of the mixed linear complementarity problem

F (z) +G(z; d) = 0, z ∈ S, d ∈ Rdof+dof ′ . (3.27)

Given the global merit function θ(z) =
1

2
|F (z)|2, it is proven in [111] that

the use of a quasi-directional derivative ensures a bound on the Clarke
generalized directional derivative of θ(z),

θ0(z∗; d∗) 6 −2θ(z∗).

Hence the search direction d obtained from (3.27) always provides a descent
direction for the global merit function θ(z∗). If θ(z) = 0, then this also
implies F (z) = 0.
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The crucial element in the semi-smooth Newton method (3.27) is the
quasi-directional derivative G. Based on the definition of L stated in
(3.20a), we take L = (L1,L2, . . . ,L(N+2)NkNe)

T . Set z = (Ûn+1,i, λ) ∈
R(N+2)NkNe+(N+2)NqNe and the search direction

d = (dU , dλ) ∈ R(N+2)NkNe+(N+2)NqNe ,

where

dU = (dρ, dm, dE , dr1 , . . . , drN−1) ∈ R(N+2)NkNe

is the search direction with respect to Ûn+1,i = (ρ̂n+1,i, m̂n+1,i, Ên+1,i,
r̂ n+1,i

1 , . . . , r̂n+1,i
N−1 ) and dλ ∈ R(N+2)NqNe is the search direction with respect

to λ.

Based on the analysis in [111] and using D
Ûn+1,iL(z)·dU = Dρ̂n+1,iL(z)·

dρ+Dm̂n+1,iL(z)·dm+D
Ên+1,iL(z)·dE+D

ẑ n+1,i
1
L(z)·dz1+. . .+D

ẑ n+1,i
N−1
L(z)·

dzN−1 , we obtain the following expression for the quasi-directional deriva-
tive

Gl(z; d) =D
Ûn+1,iLl(z) · dU +DλLl(z) · dλ,

l ∈ N(N+2)NkNe , (3.28a)

Gl+(N+2)NkNe(z; d) =−D
Ûn+1,igl(Û

n+1,i) · dU , l ∈ αδ(z), (3.28b)

Gl+(N+2)NkNe(z; d) = max(−D
Ûn+1,igl(Û

n+1,i) · dU , (dλ)l),

l ∈ β1δ(z), (3.28c)

Gl+(N+2)NkNe(z; d) = min(−D
Ûn+1,igl(Û

n+1,i) · dU , (dλ)l),

l ∈ β2δ(z), (3.28d)

Gl+(N+2)NkNe(z; d) =(dλ)l, l ∈ γδ(z), (3.28e)

where the following sets are used to define G(z; d)

Nn = {j ∈ N | 1 6 j 6 n} ,
αδ(z) =

{
j ∈ N(N+2)NqNe | λj > −gj(x) + δ

}
,

β1δ(z) =
{
j ∈ N(N+2)NqNe | − gj(x)− δ 6 λj 6 −gj(x) + δ,

Fj+(N+2)NkNe(z) > 0
}
,

β2δ(z) =
{
j ∈ N(N+2)NqNe | − gj(x)− δ 6 λj 6 −gj(x) + δ,

Fj+(N+2)NkNe(z) 6 0
}
,

γδ(z) =
{
j ∈ N(N+2)NqNe | λj < −gj(x)− δ

}
.
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Using the procedure outlined in [111] Appendix, it can be shown that G
satisfies, for any δ > 0, the conditions stated in Definition 3.4.1. Therefore,
G provides a suitable search direction for the global semi-smooth Newton
method. In order to use the quasi-directional derivative G given by (3.28)
in the semi-smooth Newton method, we introduce the following sets

Λ11
βδ

(z, d) := {j ∈ β1δ(z) | −DÛn+1,igj(Û
n+1,i) · dU > (dλ)j},

Λ12
βδ

(z, d) := {j ∈ β1δ(z) | −DÛn+1,igj(Û
n+1,i) · dU 6 (dλ)j},

Λ21
βδ

(z, d) := {j ∈ β2δ(z) | −DÛn+1,igj(Û
n+1,i) · dU > (dλ)j},

Λ22
βδ

(z, d) := {j ∈ β2δ(z) | −DÛn+1,igj(Û
n+1,i) · dU 6 (dλ)j},

and combine these sets into

Λ1
δ(z, d) := αδ(z) ∪ Λ11

βδ
(z, d) ∪ Λ22

βδ
(z, d), (3.29a)

Λ2
δ(z, d) := γδ(z) ∪ Λ12

βδ
(z, d) ∪ Λ21

βδ
(z, d). (3.29b)

The quasi-directional derivative G in (3.28) can then be written as the
Jacobi matrix

G(z; d) = Ĝ(z)d,

with

Ĝ(z) =

(
D
Ûn+1,iLl(z)|l∈N(N+2)NkNe

DλLl(z)|l∈N(N+2)NkNe

−D
Ûn+1,igl(Û

n+1,i)|l∈Λ1
δ(z,d) δlj |l,j∈Λ2

δ(z,d)

)
, (3.30)

where δlj is the Kronecker delta function. Hence, the equations for the
search direction d are equal to

F (z) + Ĝ(z)d = 0. (3.31)

The details of the semi-smooth Newton algorithm are given in [111].
During the Newton iterations both the Jacobian matrix (3.30) and the

sets (3.29) are continuously updated. In general, after a few iterations, the
proper sets will be obtained and the Jacobian matrix elements will only
change smoothly. The semi-smooth Newton method then closely resem-
bles a standard Newton method. It is possible that during the Newton
iterations the matrix Ĝ(z) is poorly conditioned. The linear system (3.31)
is therefore solved using a minimum norm least squares method, which
basically makes the algorithm a Gauss-Newton method [69]. To further
improve the condition number, we apply simultaneously iterative row and
column scaling in the L∞-norm, which is described in detail in [7, 111].
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3.5 Algorithm for stiff multispecies detonation
problems

We split the reactive Euler equations as discussed in Section 3.2.1 into a
homogeneous part and a reaction part. The DIRK-DG discretizations for
these two parts are given in Section 3.2.2. In order to obtain physically
relizable numerical solutions, bounds constraints using the KKT limiter are
imposed on the DIRK-DG discretization of the convection part in Section
3.3.2 and on the reaction part in Section 3.3.3.

The chemically reactive Euler equations are now solved using the fol-
lowing steps. Assume we know the numerical solution at time tn, then the
numerical solution at time tn+1 is obtained by successively computing the
convection and reaction operators with the fractional step approach. Here
we take the fractional step method (3.6) as an example to describe the
algorithm.

Algorithm 2 Bounds preserving KKT-DIRK-DG method based on split-
ting method (3.6)

Given the DG coefficients Ûn at time tn.
Homogeneous part:

For all DIRK stages i = 1, 2, . . . , s, do
(i) Solve (3.21) for a time step τn+1/2 with the semi-smooth Newton method

discussed in Section 3.4. This will provide the DG coefficients Ûn+ 1
2 ,i∗.

(ii) In order to ensure monotonicity of the numerical solution, apply a TVB
limiter [27, 29] to the DG solution obtained from the DG coefficients

Ûn+ 1
2 ,i∗, which results in the updated DG coefficients Ûn+ 1

2 ,i.
end
Ûn+ 1

2 = Ûn+ 1
2 ,s.

Reaction part:
For Nr steps, do

(iii) Solve the DIRK-DG discretizations (3.24) and (3.25) of the reaction
equations with a time step τn+1/Nr.

(iv) Apply the L2-projection with the mass fraction constraints enforced.
end

Homogeneous part:
(v) Repeat steps (i)-(ii).

The numerical solution Ûn+1 for the chemically reactive Euler equations at time
tn+1 using the fractional step method (3.6) is obtained.

Remark 3.5.1. Algorithm 2 results in a higher order bounds preserving
DG discretization for stiff and non-stiff problems. For non-stiff problems,
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we only need to do steps (i)-(ii) of Algorithm 2 for the homogeneous part.

3.6 Numerical tests

In this section, we will present tests of the bounds preserving KKT-DIRK-
DG discretizations of the chemically reactive Euler equations, both for
problems with smooth and discontinuous solutions. We will also show
test cases for the homogeneous Euler equations. In order to demonstrate
the necessity of preserving the bounds on the solution and the accuracy-
preserving property of the KKT-DIRK-DG discretizations, we will compare
for test cases with a smooth solution the minimum and maximum values of
the solution and the errors in the numerical solution of the KKT-DIRK-DG
discretization with and without bounds constraints.

The time step τ is based on the CFL number, τ = CFL · h/vref , with

reference velocity vref =
∥∥∥√γph/ρh + |uh|

∥∥∥
∞

. For numerical efficiency,

it is important to have a good balance between the number of Newton
iterations in each DIRK stage and the time step. If the Newton method
does not converge within a predefined number of iterations, we restart the
computation with time step τ/2, while if the Newton algorithm converges
well then the time step will be increased to 1.2τ until the maximum CFL
number is obtained. In practice, this provides a good balance between the
number of Newton iterations and the time step size, which is constantly
adjusted to account for the dynamics in the reactive flow.

3.6.1 Euler equations

We first consider test cases of the homogeneous Euler equations.

Example 3.6.1. (Accuracy test) In order to demonstrate the necessity of
imposing bounds on the density and pressure and the higher order accuracy
of the KKT-DIRK-DG discretizations, we consider the homogeneous Euler
equations for γ = 1.4 and the exact solution

ρ(x, t) = (1 + 0.9999 sin(x− t))/10, u(x, t) = 1, p(x, t) = 1, x ∈ [0, 2π].

We compare numerical results of the higher order DIRK-DG discretiza-
tions with and without imposing the positivity constraints. The positivity
constraint ρmin is taken here as 10−14 in order to account for small trun-
cation errors. The CFL numbers are chosen as 1 for P1 polynomials, 0.5
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for P2 polynomials. In Tables 3.1 and 3.2, we present the order of ac-
curacy and the minimum value of ρh, with and without the KKT limiter.
These tables show that the positivity-preserving KKT limiter preserves the
nonnegativity of the density and does not negatively affect the order of ac-
curacy. Without the KKT limiter, on relatively coarse meshes for P1 basis
functions there are negative values of ρh, which cases are marked with a
cross. When the mesh resolution increases or for P2 basis functions, which
are more accurate, the negative density values disappear.

Table 3.1: (Example 3.6.1) Accuracy test for the homogeneous Euler equa-
tions without KKT limiter at time tT = 1, a × indicates a result with a
negative density.

Ne L∞(Ω) norm Order L1(Ω) norm Order Minimum ρh
10 × – × – ×

P1 20 × × × × ×
40 × × × × ×
80 × × × × ×
160 2.64E-005 2.01 4.54E-005 1.99 9.537068E-07

10 3.71E-004 – 5.88E-004 – 1.292250E-04
P2 20 4.98E-005 2.90 7.32E-005 3.01 6.385523E-05

40 6.40E-006 2.96 9.14E-006 3.00 2.118774E-05
80 8.11E-007 2.98 1.14E-006 3.00 1.018187E-05
160 1.02E-007 2.99 1.43E-007 2.99 1.275602E-05

Table 3.2: (Example 3.6.1) Accuracy test for the homogeneous Euler equa-
tions with KKT limiter at time tT = 1.

k Ne L∞(Ω) norm Order L1(Ω) norm Order Minimum ρh
10 6.53E-003 – 1.15E-002 – 1.000068E-14

P1 20 1.78E-003 1.88 3.13E-003 1.88 1.000025E-14
40 4.70E-004 1.92 7.09E-004 2.14 2.064498E-05
80 1.25E-004 1.91 1.89E-004 1.91 2.998577E-05
160 3.01E-005 2.05 4.63E-005 2.03 1.629531E-05

10 3.71E-004 – 6.04E-004 – 1.734736E-04
P2 20 4.98E-005 2.90 7.32E-005 3.04 6.385523E-05

40 6.40E-006 2.96 9.14E-006 3.00 2.118774E-05
80 8.11E-007 2.98 1.14E-006 3.00 1.018187E-05
160 1.02E-007 2.99 1.43E-007 2.99 1.275602E-05

In Examples 3.6.2 and 3.6.3, the test cases are computed using P2 poly-
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nomials and the third order DIRK time-integration method [99].

Example 3.6.2. (Double rarefaction) In this test case, we consider the
homogeneous Euler equations with initial solution

(ρL, uL, pL) = (1,−2, 0.4) in [−1, 0], (ρR, uR, pR) = (1, 2, 0.4) in [0, 1].

We use 200 elements, γ = 1.4 and CFL = 1.2 for most time steps.
The density and pressure are shown in Figure 3.1 together with the exact
solution. The positivity preserving KKT limiter works well and ensures
positivity of density and pressure. Without the KKT limiter, there will be
some unphysical negative values of the density and pressure.
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Figure 3.1: (Example 3.6.2) Solution of homogeneous Euler equations at time
tT = 0.2. (a) KKT-limited numerical solution ρh and exact solution ρ, (b) KKT-
limited numerical solution ph and exact solution p.

Example 3.6.3. (Sedov blast wave problem [75]) Next, we consider the
homogeneous Euler equations for the initial solution

(ρ, u, p) = (1, 0, 10−9) in [−1, 1],

except in the central cell, where we set p = 100. These initial conditions
result in the Sedov blast wave problem.

For this case, we use 800 elements, γ = 1.4 and CFL = 1 for most time
steps. Since the initial solution for this test case is related to the number
of elements, we compute the reference solutions also for 800 elements and
CFL = 0.05 using the bounds preserving DG method in [36]. Figure 3.2
shows that the bounds preserving DIRK-DG discretization ensures positiv-
ity of the density and pressure. Without the positivity constraints, there
will be some unphysical negative values of density and pressure.
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Figure 3.2: (Example 3.6.3) Solution of the homogeneous Euler equations for the
Sedov blast wave problem at time tT = 0.5. (a) KKT-limited numerical solution
ρh and reference solution ρ, (b) KKT-limited numerical solution ph and reference
solution p.

3.6.2 Chemically reactive Euler equations

In this section, we will investigate the performance of the KKT-DIRK-
DG algorithm on the chemically reactive Euler equations. As reference
solutions, we use the algorithm in [36] with piecewise P1 polynomials on
a mesh with 5000 elements for Examples 3.6.5-3.6.7 and 2000 elements for
Examples 3.6.8-3.6.9. For the time integration of the reference solution,
we use a second-order accurate multistep time integration method with
CFL = 0.05 for Examples 3.6.5-3.6.7 and CFL = 0.01 for Examples 3.6.8-
3.6.9. In the following, we compute the test cases in Examples 3.6.5-3.6.7
with the KKT-DIRK-DG method using Algorithm 2 with P2 polynomials,
the third order fractional step method [70] and the third order DIRK time-
discrete method [99]. The test cases in Examples 3.6.8-3.6.9 are computed
with P1 polynomials, the second order fractional step method (3.6) and the
second order DIRK time-discrete method [5].

Example 3.6.4. (Accuracy test) By taking N = 2 and u = 1, p = 0, s1 =
−cr7 in (3.1), we obtain the following convection-reaction system [36]{

ρt + ρx = 0,

rt + rx = −cr7.
(3.32)

The parameter c is a constant and can be used to adjust the stiffness of
the equations. The equations become more stiff as c increases. In this test
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case, we take c = 10000, which makes (3.32) a very difficult test case to
compute. The initial solutions are given as

ρ(x, 0) = (2 + sin(x) + cos(x))/10, r(x, 0) = (1 + sin(x))/10, x ∈ [0, 2π].

We consider second and third order accurate DIRK-DG discretizations
with and without the bounds preserving KKT limiter. We take CFL =
1 for P1 polynomials and CFL = 0.5 for P2 polynomials. The number
of intermediate reaction steps Nr = 2. The mass fraction rh/ρh should
be between zero and one. The minimum and maximum values of rh/ρh,
with and without KKT limiter, are shown in Tables 4.3 and 4.4. These
tables show that Algorithm 2 maintains an order of accuracy O(hk+1) for
a polynomial order k and preserves the bounds. This indicates that the
KKT limiter works properly and does not harm the accuracy. Without the
KKT limiter, the bounds are violated on relatively coarse meshes.

Table 4.3: (Example 3.6.4) Accuracy test of convection-reaction system (3.32) without KKT limiter
at time tT = 1.

Ne L∞(Ω) norm Order L1(Ω) norm Order Minimum rh/ρh Maximum rh/ρh
10 5.82E-003 – 9.48E-003 – -6.210755E-02 1.031343E+00

P1 20 1.60E-003 1.86 2.33E-003 2.02 -1.521221E-02 1.004196E+00
40 4.38E-004 1.87 5.74E-004 2.02 -2.557660E-03 9.943711E-01
80 1.15E-004 1.93 1.43E-004 2.01 -7.806174E-04 9.925336E-01
160 2.91E-005 1.98 3.58E-005 2.00 -9.150088E-05 9.916861E-01
10 9.06E-004 – 7.70E-004 – 3.176584E-04 9.923696E-01

P2 20 1.19E-004 2.93 8.59E-005 3.16 4.304911E-04 9.917059E-01
40 1.63E-005 2.87 1.07E-005 3.01 1.010852E-04 9.918443E-01
80 2.08E-006 2.97 1.33E-006 3.01 2.563580E-07 9.916889E-01
160 2.62E-007 2.99 1.68E-007 2.98 2.756807E-05 9.916604E-01

Table 4.4: (Example 3.6.4) Accuracy test of convection-reaction system (3.32) with KKT limiter at
time tT = 1.

Ne L∞(Ω) norm Order L1(Ω) norm Order Minimum rh/ρh Maximum rh/ρh
10 6.13E-003 – 1.14E-002 – 9.993497E-15 9.861364E-01

P1 20 1.67E-003 1.88 2.72E-003 2.07 1.000095E-14 9.959969E-01
40 4.38E-004 1.93 6.34E-004 2.10 4.972616E-04 9.933924E-01
80 1.15E-004 1.93 1.52E-004 2.06 6.788640E-05 9.923583E-01
160 2.91E-005 1.98 3.71E-005 2.03 1.083892E-04 9.916715E-01
10 9.08E-004 – 7.87E-004 – 1.352766E-03 9.921466E-01

P2 20 1.19E-004 2.93 8.70E-005 3.18 4.833784E-04 9.916945E-01
40 1.63E-005 2.87 1.16E-005 2.91 8.211523E-05 9.914553E-01
80 2.08E-006 2.97 1.36E-006 3.09 1.964713E-06 9.916889E-01
160 2.62E-007 2.99 1.71E-007 2.99 2.794314E-05 9.916604E-01

Example 3.6.5. (Detonation in two species gas [10]) In this test case, we
consider two species in the chemically reactive Euler equations (3.1) with
source term

s1 = −K(T )ρz,
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where γ = 1.2, q1 = 50, q2 = 0 and

K(T ) =

{
230.75, T > 3,

0, T 6 3.

The computational domain is [0, 100] and the initial solution is defined as

(ρ, u, p, z1, z2) =


(2.0, 4.0, 40.0, 0.0, 1.0), x 6 10,

(3.64282, 6.2489, 54.8244, 0.0, 1.0), 10 < x 6 20,

(1.0, 0.0, 1.0, 1.0, 0.0), x > 20.

The exact solution consists of a right moving detonation wave, a right
moving rarefaction wave, a right moving contact discontinuity, and a left
moving rarefaction wave before the right moving rarefaction catches the
detonation wave.

For this test case, we use 400 elements. In order to have a good bal-
ance between the number of Newton iterations and the time step, we take
the maximum CFL number as CFL = 0.1. In this test case, Nr = 1 in-
termediate reaction steps already ensures the correct propagation speed of
discontinuities, but in order to obtain a more accurate numerical solution,
we take Nr = 10. Figure 3.3 shows that the bounds for density, pressure
and mass fraction are preserved and all waves are captured correctly, which
implies that Algorithm 2 is able to compute the correct position and speed
of the detonation wave.

Example 3.6.6. (Two detonations in a two species gas [10]) The parame-
ters γ, q1, q2, K(T ) used in this test case are similar to those in Example
3.6.5. The computational domain is [0, 100] and the initial solution is de-
fined as

(ρ, u, p, z1, z2) =


(1.79463, 3.0151, 30.0, 0.0, 1.0), x 6 10,

(1.0, 0.0, 1.0, 1.0, 0.0), 10 < x 6 90,

(1.79463,−8.0, 21.53134, 0.0, 1.0), x > 90.

The exact solution contains a right moving detonation and a left moving
strong detonation. After some time, there is a collision between the two
detonations.

In this example, we use 400 elements and the number of intermediate
reaction steps is set to Nr = 24. In order to have a good balance between
the number of Newton iterations and the time step, we take the maximum
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Figure 3.3: (Example 3.6.5) KKT-limited numerical solution of chemically re-
active Euler equations at time tT = 8, mesh 400 elements, CFL = 0.1, Nr = 10.
Reference solution at time tT = 8, mesh 5000 elements, CFL = 0.05 obtained
using the algorithm in [36]. (a) KKT-limited numerical solution ρh and reference
solution ρ, (b) KKT-limited numerical solution ph and reference solution p, (c-d)
KKT-limited numerical solutions (z1)h2, (z2)h2 and reference solutions z1, z2.

CFL number as CFL = 0.1. The profiles of density, pressure, and mass
fraction are shown in Figure 3.4. Clearly, the shock speed and position are
captured well. Also, the density and pressure are positive, and all mass
fractions are between zero and one.

Example 3.6.7. (Detonation wave with three species and one reaction
[11, 117]) We consider the one-step chemical model (3.1) for a hydrogen-
oxygen mixture

2H2 +O2 → 2H2O.
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Figure 3.4: (Example 3.6.6) KKT-limited numerical solution of chemically re-
active Euler equations at time tT = 6, mesh 400 elements, CFL = 0.1, Nr = 24.
Reference solution at time tT = 6, mesh 5000 elements, CFL = 0.05 obtained
using the algorithm in [36]. (a) KKT-limited numerical solution ρh and reference
solution ρ, (b) KKT-limited numerical solution ph and reference solution p, (c)
KKT-limited numerical solutions (z1)h2, (z2)h2 and reference solutions z1, z2.

The parameters in (3.2)-(3.4) are chosen as γ = 1.4, T1 = 2, B1 =
106, α1 = 0, q1 = 100, q2 = q3 = 0, M1 = 2, M2 = 32, M3 = 18.
The computational domain is [0, 50] and the initial solution is defined as

(ρ, u, p, z1, z2, z3) =

{
(2.0, 8.0, 20.0, 0.0, 0.0, 1.0), x 6 2.5,

(1.0, 0.0, 1.0, 1/9, 8/9, 0.0), x > 2.5,

with z1 the mass fraction of H2, z2 the mass fraction of O2, and z3 the
mass fraction of H2O.

The exact solution consists of a detonation wave, followed by a contact
discontinuity and a shock, all moving to the right. In this example, we use
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400 elements and the number of intermediate reaction steps Nr = 20. In
order to have a good balance between the number of Newton iterations and
the time step, we take the maximum CFL number as CFL = 0.1. Also,
in this case Nr = 1 is already sufficient to obtain the correct propagation
speed of discontinuities. We compare the results with the algorithm in
[36] for the same number of elements and CFL number as used for the
KKT-DIRK-DG algorithm. The reference solution is obtained using the
algorithm in [36] on a mesh with 5000 elements and CFL = 0.05.

We observe in Figure 3.5 spurious numerical solutions when the bounds
preserving DG method in [36] is used on the same mesh and CFL number as
the KKT-DIRK-DG method. On a much finer mesh with 5000 elements,
CFL = 0.05 the results of [36] are the same as for the KKT-DIRK-DG
discretization. All discontinuities for density, pressure and mass fractions
are captured correctly by the KKT-DIRK-DG discretization on the 400
element mesh, which indicates that our algorithm is already accurate on a
considerably coarser mesh than the method presented in [36].

Example 3.6.8. (Detonation wave with four species and one reaction [11,
117]) We consider the chemically reactive Euler equations (3.1) with four
species and the reaction

CH4 + 2O2 → CO2 + 2H2O.

The parameters in (3.2)-(3.4) are chosen as γ = 1.4, T1 = 2, B1 =
106, α1 = 0, q1 = 500, q2 = q3 = q4 = 0, M1 = 16, M2 = 32, M3 =
44, M4 = 18. The computational domain is [0, 10] and the initial solution
is given as

(ρ, u, p, z1, z2, z3, z4) =

{
(2.0, 10.0, 40.0, 0.0, 0.2, 0.475, 0.325), x 6 2.5,

(1.0, 0.0, 1.0, 0.1, 0.6, 0.2, 0.1), x > 2.5,

with z1 the mass fraction of CH4, z2 the mass fraction of O2, z3 the mass
fraction of CO2, and z4 the mass fraction of H2O.

The exact solution consists of a detonation wave followed by a contact
discontinuity and a shock, all moving to the right. In this example, we
use 300 elements and take Nr = 1, CFL = 0.2. The reference solution
is obtained using the algorithm in [36] on a mesh with 2000 elements and
CFL = 0.01. Figure 3.6 shows that all shock waves and wave speeds for the
density, pressure and mass fractions are captured correctly and the bounds
preserving KKT-DIRK-DG discretization works well in this multispecies
example.
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Figure 3.5: (Example 3.6.7) Numerical solutions of chemically reactive Euler
equations at time tT = 4, mesh 400 elements, CFL = 0.1, Nr = 20. Also shown,
solutions at time tT = 4 using the algorithm [36] on a mesh with 400 elements,
CFL = 0.1, and for 5000 elements, CFL = 0.05 (reference solution). (a) numerical
solution ρh1 obtained with KKT-DIRK-DG discretization, numerical solution ρh2

obtained with bounds preserving DG method in [36] and reference solution ρ, (b)
numerical solution ph1 obtained with KKT-DIRK-DG discretization, numerical
solution ph2 obtained with bounds preserving DG method in [36] and reference
solution p, (c-e) numerical solutions (z1)h1, (z2)h1, (z3)h1 obtained with KKT-
DIRK-DG discretization, numerical solutions (z1)h2, (z2)h2, (z3)h2 obtained with
bounds preserving DG method in [36], and reference solutions z1, z2, z3, with
z1, z2, z3, respectively, the H2, O2 and H2O mass fraction.
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Figure 3.6: (Example 3.6.8) KKT-limited numerical solution of chemically re-
active Euler equations at time tT = 0.5, mesh 300 elements, CFL = 0.2, Nr = 1.
Reference solution at time tT = 0.5, mesh 2000 elements, CFL = 0.01 using the
algorithm in [36]. (a) KKT-limited numerical solution ρh and reference solution ρ,
(b) KKT-limited numerical solution ph and reference solution p, (c-f) KKT-limited
numerical solutions (z1)h, (z2)h, (z3)h, (z4)h and the corresponding reference so-
lutions. Here z1, . . . , z4 denote, respectively, the mass fractions of CH4, O2, CO2

and H2O.
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Example 3.6.9. (Detonation wave with five species and two reactions
[11, 36, 117]) Consider the chemically reactive Euler equations (3.1) with
a two-step chemical model with 5 species for a hydrogen-oxygen-nitrogen
mixture

H2 +O2 → 2OH, 2OH +H2 → 2H2O,

with nitrogen appearing as a catalyst. The parameters in (3.2)-(3.4) are
chosen as γ = 1.4, T1 = 2, T2 = 10, B1 = B2 = 106, α1 = α2 = 0, q1 =
q2 = q5 = 0, q3 = −20, q4 = −100, M1 = 2, M2 = 32, M3 = 17, M4 =
18, M5 = 28. The computational domain is [0, 10] and the initial solution
is given as

(ρ, u, p, z1, z2, z3, z4, z5) =

{
(2.0, 10.0, 40.0, 0.0, 0.0, 0.17, 0.63, 0.2), x 6 2.5,

(1.0, 0.0, 1.0, 0.08, 0.72, 0.0, 0.0, 0.2), x > 2.5,

with z1 the mass fraction of H2, z2 the mass fraction of O2, z3 the mass
fraction of OH, z4 the mass fraction of H2O, and z5 the mass fraction of
N2.

The exact solution consists of a detonation wave followed by a rarefac-
tion wave and a shock, all moving to the right. In this example, we use
500 elements and take Nr = 20. For most time steps CFL = 0.1. The
reference solution is obtained using the algorithm in [36] on a mesh with
2000 elements and CFL = 0.01. Figure 3.7 shows that the density and
pressure are positive, and all mass fractions are between zero and one. Al-
gorithm 2 is able to capture the correct propagation speed and position of
the detonation wave and works well in this multispecies and multireaction
example.

3.7 Conclusions

In this chapter, we propose a higher order bounds preserving time-implicit
KKT-DIRK-DG algorithm for the chemically reactive Euler equations mod-
elling multispecies and multireaction chemically reactive flows. This algo-
rithm combines several important features when solving stiff chemically
reacting gas flows, namely, higher order accuracy, preservation of the phys-
ical bounds on the density, pressure and mass fractions, good accuracy
on coarse meshes and large time steps compared to existing time explicit
methods, e.g. [36]. In addition, we can consider Algorithm 2 as a template
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Figure 3.7: (Example 3.6.9) KKT-limited numerical solution of chemically reac-
tive Euler equations at time tT = 0.35, mesh 500 elements, CFL = 0.1, Nr = 20.
Reference solution at time tT = 0.35, mesh 2000 elements, CFL = 0.01 using the
algorithm in [36]. (a) KKT-limited numerical solution ρh and reference solution
ρ, (b) KKT-limited numerical solution ph and reference solution p, (c-g) KKT-
limited numerical solutions (z1)h, (z2)h, (z3)h, (z4)h, (z5)h and the corresponding
reference solutions. Here z1, . . . , z5 denote, respectively, the mass fractions of H2,
O2, OH, H2O and N2.
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to solve both stiff and non-stiff chemically reacting gases with strict preser-
vation in the numerical solution of the physical bounds. The KKT-DIRK-
DG algorithm is already used in [111] for two dimensional parabolic PDEs
and extension of the algorithm to the two dimensional chemically reactive
Euler equations will be considered in future work. The extension of the
constraints imposed on the reaction equations from one to two dimensions
is discussed in [117, 127]. A disadvantage of the presented KKT-DIRK-
DG algorithm is its dependence on operator splitting methods. Higher
order accurate splitting methods become rather involved, requiring many
intermediate steps. Numerical results demonstrate the optimal order of ac-
curacy for smooth problems and excellent preservation of the bounds when
using the KKT-DIRK-DG discretizations for the chemically reactive Euler
equations.



Chapter 4

Stability Analysis and Error Estimates of

Local Discontinuous Galerkin Methods

with Semi-Implicit Spectral Deferred

Correction Time-Marching for the

Allen-Cahn Equation1

Abstract

This chapter is concerned with stability and error estimates of Lo-
cal Discontinuous Galerkin (LDG) discretizations coupled with semi-
implicit Spectral Deferred Correction (SDC) time integration meth-
ods up to third order accuracy for the Allen-Cahn equation. Since
the SDC method is based on a first order convex splitting scheme,
the implicit treatment of the nonlinear terms results each time step
in a nonlinear system of equations, which increases the difficulty of
the theoretical analysis. For the LDG discretizations coupled with
second and third order accurate SDC methods, we prove the unique
solvability of the numerical solutions through a standard fixed point
argument in finite dimensional spaces. By carefully choosing the test
functions, we prove energy stability with an upper bound for the time
step that is independent of the mesh size. In addition, we derive op-
timal error estimates for the fully discrete LDG-SDC discretization.
Numerical examples are presented to illustrate our theoretical results.

1Based on: F. Yan, Y. Xu. Stability Analysis and Error Estimates of Local Dis-
continuous Galerkin Methods with Semi-Implicit Spectral Deferred Correction Time-
Marching for the Allen-Cahn Equation. Journal of Computational and Applied Mathe-
matics, 376(2020), 112857.
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4.1 Introduction

Let Ω be a bounded domain with dimension d ≤ 3 and 0 < T < ∞. We
analyze Local Discontinuous Galerkin (LDG) discretizations coupled with
semi-implicit Spectral Deferred Correction (SDC) time integration methods
for the Allen-Cahn equationut −∆u+

1

ε2
f(u) = 0, in Ω× (0, T ],

u(xxx, 0) = u0(xxx), in Ω,
(4.1)

with the Neumann boundary condition

∂u

∂ν
= 0, at ∂Ω× (0, T ], (4.2)

where f(u) = Ψ′(u) and Ψ(u) =
1

4
(1 − u2)2. Since Allen-Cahn equation

satisfies a maximum principle [82], the solution u in (4.1) will take values in
a bounded interval. In the bounded interval, we take f(u) = Ψ′(u), while
outside the interval, f is chosen such that f is globally derivable Lipschitz
continuous. Then we can assume,

max
u∈R
|f ′(u)| ≤ CL, (4.3)

where CL is a positive constant, and we might as well require CL > 1.
In order to describe the motion of anti-phase boundaries in crystalline

solids, Allen and Cahn [6] originally proposed the well-known Allen-Cahn
equation. Subsequently, numerous numerical studies have been devoted
to the Allen-Cahn equation, for instance, using finite difference methods
[3, 12], finite element methods [47, 48, 50, 130], Discontinuous Galerkin
(DG) methods [46, 129] and LDG methods [55]. For the time integration
first order accurate time integration methods [3, 46, 47, 130], first and
second-order accurate implicit-explicit (IMEX) methods [48], implicit Ad-
ditive Runge-Kutta (ARK) methods and Diagonally Implicit Runge-Kutta
(DIRK) methods [129] have been used. Recently, Guo et al. [55] pre-
sented LDG schemes for the Allen-Cahn equation that are coupled with
semi-implicit SDC time integration methods. The authors in [55] did not
theoretically analyze the stability and error results of the second and third
order accurate SDC-LDG discretizations.

For some Partial Differential Equations (PDEs), especially those with
nonlinear terms, we often need to use higher order accurate numerical dis-



4.1. INTRODUCTION 89

cretizations in space and time to get sufficiently accurate numerical solu-
tions. Recently, the stability was analyzed and error estimates were ob-
tained for LDG discretizations combined with IMEX Runge-Kutta (RK)
time discretizations up to third order accuracy for the one-dimensional
linear advection-diffusion equation [114], the one-dimensional nonlinear
convection-diffusion equation [115] and the multi-dimensional nonlinear
convection-diffusion equation [116]. Stability and error estimates were ob-
tained in the sense that the time step ∆t is only required to be upper-
bounded by a positive constant independent of the mesh size h. In [48],
the authors consider first and second-order accurate IMEX finite element
discretizations in one and multiple dimensions for the Allen-Cahn equation
and prove energy stability in a similar sense as in [114, 115, 116]. The pur-
pose of this chapter is to study the stability and obtain error estimates for
LDG discretizations combined with second and third order accurate SDC
time integration methods for the Allen-Cahn equation.

The SDC method, as well as the integral deferred correction (InDC)
method [16], is based on low order time integration methods, followed by
iterative accuracy improvements. In comparison with RK methods, the
SDC method is easy to construct for any order of accuracy. More general
information about semi-implicit SDC methods coupled with an LDG dis-
cretization can be found in [57, 120]. Applications of the SDC method are
presented in [49, 55, 59, 82].

The LDG method belongs to the class of DG methods. DG methods are
finite element methods with discontinuous, piecewise polynomials as basis
functions, which were first proposed by Reed and Hill in [96]. DG methods
have many advantages over other finite element methods, such as suitabil-
ity for highly nonuniform and unstructured meshes, mesh adaptation and
parallel computing. For more information, we refer to [25, 27, 28, 29]. By
extending the DG method, Cockburn and Shu in [30] introduced the LDG
method to deal with PDEs that contain second order spatial derivatives.
The idea of the LDG method is to apply the DG method after rewriting
higher order equations as a system of first order equations. We refer for gen-
eral information about the LDG method for linear cases to [26, 35, 114, 125]
and for nonlinear cases to [9, 56, 60, 121, 122, 123] .

The main contribution of this chapter is to prove stability and error
estimates of LDG discretizations coupled with second and third order ac-
curate SDC time discretizations for the Allen-Cahn equation (4.1)-(4.2).
Since the implicit treatment of the nonlinear term u3 results in a nonlinear
system, we prove the unique solvability of the fully-discrete numerical dis-
cretizations by using a standard fixed point argument in finite dimensional
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spaces. Compared with Runge-Kutta type semi-implicit time integration
methods [114], the SDC time discretization is, however, more difficult to
analyze. For the stability analysis of the third order accurate SDC-LDG
scheme and the error estimates of the second and third order accurate
SDC-LDG schemes, we will extensively use property (4.3) to deal with the
nonlinear term in the Allen-Cahn equation. By a careful selection of the
test functions, energy stability and error estimates for the second and third
order accurate time-discrete LDG schemes are obtained in the sense that
the time step ∆t requires only a positive upper bound, which is independent
of the mesh size h.

The rest of this chapter is organized as follows. In Section 4.2, we
will introduce some notations, projection operators, and the SDC scheme
that will be used in the following analysis. In Section 4.3, we will present
the LDG discretization combined with a second order semi-implicit SDC
method for the Allen-Cahn equation (4.1), and prove unique solvability, sta-
bility and error estimates. A similar analysis for the third order SDC-LDG
discretization will be presented in Section 4.4. In Section 4.5, numerical
results are provided to verify the theoretical analysis. Concluding remarks
are given in Section 4.6.

4.2 Preliminaries

In this section, we will introduce the finite element spaces, some nota-
tions, the definition of norms, and the SDC scheme to be used later in
this chapter. We will also present some projection operators and related
interpolation properties for the finite element spaces that will be used in
the error analysis.

4.2.1 Finite element spaces

Let Th be a regular subdivision of Ω with line, rectangular or cubic elements
K in, respectively, 1D, 2D or 3D, Γ denotes the union of the boundary of
elements K ∈ Th, i.e. Γ = ∪K∈Th∂K, and Qkk(K) denotes the space of
tensor product polynomials of degree at most k ≥ 0 on each element K. In
particular, we have Qkk(K) = Pk(K) in one dimension.

The finite element spaces V k
h and WWW k

h are defined as

V k
h = {v ∈ L2(Ω) : v|K ∈ Qkk(K), ∀K ∈ Th},
WWW k

h = {www ∈ [L2(Ω)]d : www|K ∈ [Qkk(K)]d, ∀K ∈ Th},
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which spaces are allowed to have discontinuities across element faces. Let
e be an interior edge shared by the “left” and “right” elements, denoted
KL and KR. If u is a function on KL and KR, we set uL

.
= (u|KL) |e and

uR
.
= (u|KR)|e.

4.2.2 Notations

For a positive integer N , let 0 = t0 < t1 < . . . < tN = T be a given partition

of [0, T ] with time step ∆t =
T

N
, and tn = n∆t, n = 0, 1, . . . , N . Note

that un = u(·, tn), qqqn = qqq(·, tn). We denote Un and QQQn as the approximate
values of u and qqq at tn (n = 0, 1, . . . , N) , respectively.

For convenience in the analysis, we denote throughout this chapter by
C a positive constant independent of h , which may depend on the solutions
of our problems.

4.2.3 Inner products and norms

The inner products are denoted by

(u, v)K =

∫
K
uvdK, (u, v)∂K =

∫
∂K

uvds,

(ppp,qqq)K =

∫
K
ppp · qqqdK, (ppp,qqq)∂K =

∫
∂K

ppp · qqqds,

for the scalar variables u, v and the vector variables ppp, qqq, respectively. For
any positive integer i, we define some norms over the domain Ω as

‖η‖L2(Ω) =

∑
K∈Th

‖η‖2L2(K)

 1
2

,

‖η‖Hi(Ω) =

∑
K∈Th

‖η‖2Hi(K)

 1
2

,

‖η‖L∞(Ω) = max
K∈Th

(
ess sup
x∈K

|η(x)|
)
,

where

‖η‖L2(K) = (η, η)
1
2
K , ‖η‖Hi(K) =

∑
|α|≤i

‖Dαη‖2L2(K)

 1
2

.

For simplicity, we denote ‖η‖ := ‖η‖L2(Ω), (u, v) := (u, v)Ω.
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4.2.4 Projections and properties

In what follows, we will introduce projections for one-dimensional and
multi-dimensional problems.

• One-dimension

For all u ∈ H1(Ω), we define the interpolation operators P± as

P± : H1(Ω)→ V k
h ,

equipped with(
P+u, v

)
Kj

= (u, v)Kj , ∀v ∈ Pk−1(Kj), P+u(xj−1) = u(xj−1), (4.4)(
P−u, v

)
Kj

= (u, v)Kj , ∀v ∈ Pk−1(Kj), P−u(xj) = u(xj), (4.5)

where Kj = (xj−1, xj). If u ∈ Hk+1(Ω), there holds (see [35])

‖u− P±u‖ ≤ Chk+1‖u‖Hk+1(Ω).

• Multi-dimensions

For the two-dimensional case, we describe the projection operator P−

for scalar functions as

P− = P−x ⊗ P−y ,

where the subscripts x and y denote the one-dimensional projections de-
fined in (4.5) on a rectangular element X ⊗ Y = [xj−1, xj ]× [yj−1, yj ].

Given that πx and πy are the standard L2 projections in the x and y
direction, respectively, the projection Π+ for vector-valued functions φφφ =
(φ1(x, y), φ2(x, y)) ∈ [H1(Ω)]2 is defined by

Π+φφφ =
(
P+
x ⊗ πyφ1, πx ⊗ P+

y φ2

)
: [H1(Ω)]2 → [Qkk(X ⊗ Y)]2,

which satisfies(
Π+φφφ−φφφ,∇w

)
X⊗Y = 0, ∀w ∈ Qkk(X ⊗ Y),

and((
Π+φφφ(xi−1, ·)−φφφ(xi−1, ·)

)
· ννν, w(x+

i−1, ·)
)
Y = 0, ∀w ∈ Qkk(X ⊗ Y),((

Π+φφφ(·, yj−1)−φφφ(·, yj−1)
)
· ννν, w(·, y+

j−1)
)
X

= 0, ∀w ∈ Qkk(X ⊗ Y).
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For the three-dimensional case, we refer to [26].
The projections defined above have the following approximation prop-

erties. If u ∈ Hk+1(Ω), φφφ ∈ [Hk+1(Ω)]2, we have (see [35])

‖P−u− u‖ ≤ Chk+1‖u‖Hk+1(Ω), (4.6)

‖Π+φφφ−φφφ‖ ≤ Chk+1‖φφφ‖Hk+1(Ω). (4.7)

The projection P− on Cartesian meshes has the following superconver-
gence property (see Lemma 3.7 in [35]).

Lemma 4.2.1. Assume η ∈ Hk+2(Ω), ρρρ ∈ WWW k
h, then the projection P−

satisfies

|(η − P−η,∇ · ρρρ)Ω − (η − P̂−η,ρρρ · ννν)Γ| ≤ Chk+1‖η‖Hk+2(Ω)‖ρρρ‖Ω,

with P̂−η = (P−η)L.

4.2.5 Spectral deferred correction scheme

Dutt, Greengard and Rokhlin in [39] constructed the SDC method to ob-
tain high order accurate stable time integration methods. Next, Minion
in [89] presented the semi-implicit SDC time integration method. Here we
will only discuss the second and third order semi-implicit SDC methods
proposed by Minion in [89].

Consider the ODE system{
ut = FS(t, u(t)) + FN (t, u(t)), t ∈ [0, T ],

u(0) = u0,
(4.8)

where FN is a non-stiff term and FS is a stiff term. For the Allen-Cahn
equation (4.1), we have

FN =
1

ε2
u, FS = ∆u− 1

ε2
u3.

We subdivide the time interval [tn, tn+1] using the points tn,m for m =
0, 1, . . . , P such that

tn = tn,0 < tn,1 < . . . < tn,P = tn+1.

Let ∆tn,m = tn,m+1 − tn,m and ukn,m denote the k-th order approximation

to u(tn,m). We choose the points {tn,m}Pm=0 as the Gauss-Lobatto nodes in
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[tn, tn+1]. Starting from un, the second and third order time accurate SDC
algorithms to calculate un+1 are

• Second order accurate SDC scheme

u1
n,0 =un,

u1
n,1 =u1

n,0 + ∆tn,0(FS(tn,1, u
1
n,1) + FN (tn,0, u

1
n,0)),

u2
n,0 =un,

u2
n,1 =u2

n,0 + ∆tn,0(FS(tn,1, u
2
n,1)− FS(tn,1, u

1
n,1))

+ I1
0 (FS(t, u1) + FN (t, u1)),

where I1
0 (FS(t, u1) + FN (t, u1)) is the integral of the linear interpolating

polynomial using the two points (tn,l, FS(tn,l, u
1
n,l)+FN (tn,l, u

1
n,l)), (l = 0, 1)

over the subinterval [tn,0, tn,1].

Finally, we have un+1 = u2
n,1.

• Third order accurate SDC scheme

Compute initial approximation:

u1
n,0 = un.

For m = 0, 1

u1
n,m+1 = u1

n,m + ∆tn,m(FS(tn,m+1, u
1
n,m+1) + FN (tn,m, u

1
n,m)).

Compute successive corrections:

For k = 1, 2

uk+1
n,0 =un.

For m = 0, 1

uk+1
n,m+1 =uk+1

n,m + ∆tn,m(FS(tn,m+1, u
k+1
n,m+1)− FS(tn,m+1, u

k
n,m+1))

+ ∆tn,m(FN (tn,m, u
k+1
n,m)− FN (tn,m, u

k
n,m))

+ Im+1
m (FS(t, uk) + FN (t, uk)),

where Im+1
m (FS(t, uk) + FN (t, uk)) is the integral of the quadratic interpo-

lating polynomial using the three points (tn,l, FS(tn,l, u
k
n,l)+FN (tn,l, u

k
n,m))

(l = 0, 1, 2) over the subinterval [tn,m, tn,m+1].

Finally, we have un+1 = u3
n,2.
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4.3 LDG discretization combined with second
order accurate SDC time integration method

In this section, we will present the second order time accurate SDC-LDG
scheme for the Allen-Cahn equation (4.1)-(4.2) in Ω ∈ Rd with d ≤ 3.

4.3.1 Fully-discrete SDC-LDG scheme

We use the second order semi-implicit SDC method introduced in Section
4.2.5 for the time discretization. Then the fully-discrete SDC-LDG dis-
cretization for (4.1) reads as: find Un,1, Un+1 ∈ V k

h , QQQn,1,QQQn+1 ∈WWW k
h, such

that for all v ∈ V k
h and φφφ ∈WWW k

h, we have

(Un,1 − Un, v)K =−∆t[(QQQn,1,∇v)K − (Q̂QQn,1 · ννν, v)∂K ]

− ∆t

ε2
(U3

n,1 − Un, v)K , (4.9)

(Un+1 − Un, v)K =−∆t[(QQQn+1,∇v)K − (Q̂QQn+1 · ννν, v)∂K ] +
∆t

2
[(QQQn,1,∇v)K

− (Q̂QQn,1 · ννν, v)∂K ]− ∆t

2
[(QQQn,∇v)K − (Q̂QQn · ννν, v)∂K ]

− ∆t

ε2
(U3

n+1 − Un, v)K +
∆t

ε2
(U3

n,1 − Un, v)K

− ∆t

2ε2
(U3

n,1 − Un,1, v)K −
∆t

2ε2
(U3

n − Un, v)K , (4.10)

(QQQn,1,φφφ)K =− (Un,1,∇ ·φφφ)K + (Ûn,1, ννν ·φφφ)∂K , (4.11)

(QQQn+1,φφφ)K =− (Un+1,∇ ·φφφ)K + (Ûn+1, ννν ·φφφ)∂K . (4.12)

Here ννν is the outward unit vector of element K at ∂K. The “hat” terms at
∂K in (4.9)-(4.12) are the so-called “numerical fluxes”, which are functions
that should be chosen to ensure stability. We remark that the selection
of the numerical fluxes is not unique. Here we make the following simple
choices:

Q̂QQn,1 = QQQRn,1, Q̂QQn+1 = QQQRn+1, Ûn,1 = ULn,1, Ûn+1 = ULn+1. (4.13)

In view of the boundary condition (4.2), we take at ∂Ω,

Q̂QQn,1 · ννν = 0, Q̂QQn+1 · ννν = 0, Ûn,1 = (Un,1)in, Ûn+1 = (Un+1)in, (4.14)

where (Un,1)in and (Un+1)in refer to values obtained from the interior of
the boundary elements.
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For convenience in the analysis, we set

Γ+
K(φφφ, v) :=− (φφφ,∇v)K + (φφφR · ννν, v)∂K ,

Γ−K(v,φφφ) :=− (v,∇ ·φφφ)K + (vL, ννν ·φφφ)∂K . (4.15)

Then equations (4.9)-(4.12) can be written as

(Un,1 − Un, v)K =∆tΓ+
K(QQQn,1, v)− ∆t

ε2
(U3

n,1 − Un, v)K , (4.16)

(Un+1 − Un, v)K =∆tΓ+
K(QQQn+1, v)− ∆t

2
Γ+
K(QQQn,1, v) +

∆t

2
Γ+
K(QQQn, v)

− ∆t

ε2
(U3

n+1 − Un, v)K +
∆t

ε2
(U3

n,1 − Un, v)K

− ∆t

2ε2
(U3

n,1 − Un,1, v)K −
∆t

2ε2
(U3

n − Un, v)K , (4.17)

(QQQn,1,φφφ)K =Γ−K(Un,1,φφφ), (4.18)

(QQQn+1,φφφ)K =Γ−K(Un+1,φφφ). (4.19)

We define F∂K as

F∂K(QQQ,U)
.
= (QQQR · ννν, U)∂K + (QQQ · ννν, UL)∂K − (QQQ · ννν, U)∂K . (4.20)

Using νννR = −νννL, the following property for F∂K(QQQ,U) is easy to show.

Lemma 4.3.1. Assume e is an internal face shared by the elements KL

and KR, then we have

F∂KL∩e(QQQ,U) + F∂KR∩e(QQQ,U) = 0, ∀QQQ ∈WWW k
h, U ∈ V k

h .

4.3.2 Existence and uniqueness

In the following, we assume that Un and QQQn are known and we will prove
existence and uniqueness of the numerical solutions at time tn+1 for system
(4.16)-(4.19).

Theorem 4.3.2. The second order semi-implicit SDC-LDG scheme (4.16)-
(4.19) is uniquely solvable if the time step satisfies the condition

∆t <
ε2

3CL − 1
,

with CL the Lipschitz constant in (4.3) and ε the coefficient in the Allen-
Cahn equation (4.1).
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Proof. With Un and QQQn known, we first prove that (Un,1,QQQn,1) is well-
defined.

• Existence of (Un,1,QQQn,1)

Let XnXnXn .
= (Un,1,∆t

1
2QQQn,1) and Skh

.
= V k

h × ∆t
1
2WWW k

h. After multiplying
(4.18) by ∆t, we sum equations of (4.16) and (4.18) over the elements
K ∈ Th, and write this expression for Gh : Skh → Skh as

(Gh(XnXnXn),χχχ) = 0, ∀χχχ ∈ Skh.

It is obvious that Gh is continuous.
Using Lemma 1.4 in Chapter 2 of [104], by Schauder’s fixed point theo-

rem, Gh($$$) = 0 has a solution $$$ ∈ Bq = {χχχ =
(
χ1,∆t

1
2χχχ2

)
∈ Skh : ‖χχχ‖2 =

‖χ1‖2 + ∆t‖χχχ2‖2 ≤ q2} if (Gh(χχχ),χχχ) > 0 for ‖χχχ‖ = q. For more detailed
information, we refer to [45] and Chapter 13 in [105].

To prove (Gh(χχχ),χχχ) > 0, recalling the boundary conditions in (4.14)
and Lemma 4.3.1, there holds∑

K

Γ−K(χ1,χχχ2) =
∑
K

(−(χ1, ν ·χχχ2)∂K + (χχχ2,∇χ1)K + (χ̂1, ννν ·χχχ2)∂K)

=
∑
K

(−(χ̂χχ2 · ννν, χ1)∂K + (χχχ2,∇χ1)K) = −
∑
K

Γ+
K(χχχ2, χ1). (4.21)

Then we have

(Gh(χχχ),χχχ) = (χ1 − Un, χ1) + ∆t‖χχχ2‖2 +
∆t

ε2
(f(χ1)− f(0), χ1)

+
∆t

ε2
(χ1 − Un, χ1)

>

(
1

2
+

∆t

2ε2

)
‖χ1‖2 −

(
1

2
+

∆t

2ε2

)
‖Un‖2 + ∆t‖χχχ2‖2 −

CL∆t

ε2
‖χ1‖2

>

(
1

2
+

(1− 2CL)∆t

2ε2

)
‖χ1‖2 −

(
1

2
+

∆t

2ε2

)
‖Un‖2 + ∆t‖χχχ2‖2, (4.22)

which is positive if ‖χχχ‖ is large enough, provided

∆t <
ε2

2CL − 1
. (4.23)

• Uniqueness of (Un,1,QQQn,1)
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Assuming that Un,1,QQQn,1 and Ũn,1, Q̃̃Q̃Qn,1 both satisfy (4.16) and (4.18),
we have

(Un,1 − Ũn,1, v)K =∆tΓ+
K(QQQn,1 − Q̃̃Q̃Qn,1, v)

− ∆t

ε2
(f(Un,1)− f(Ũn,1) + Un,1 − Ũn,1, v)K ,

(QQQn,1 − Q̃̃Q̃Qn,1,φφφ)K =Γ−K(Un,1 − Ũn,1,φφφ).

Let
v = Un,1 − Ũn,1, φφφ = ∆t(QQQn,1 − Q̃̃Q̃Qn,1).

Using (4.21) and summation over all elements K ∈ Th yields

‖Un,1 − Ũn,1‖2 + ∆t‖QQQn,1 − Q̃̃Q̃Qn,1‖2

+
∆t

ε2
(f(Un,1)− f(Ũn,1) + Un,1 − Ũn,1, Un,1 − Ũn,1) = 0.

Due to the Lipschitz condition (4.3) on f , we have(
1 +

∆t

ε2
− CL∆t

ε2

)
‖Un,1 − Ũn,1‖2 + ∆t‖QQQn,1 − Q̃̃Q̃Qn,1‖2 6 0,

which implies uniqueness of (Un,1,QQQn,1) if the time step satisfies the con-
dition

∆t <
ε2

CL − 1
. (4.24)

Next, we will give a similar proof for the well posedness of (Un+1,QQQn+1).

• Existence and uniqueness of (Un+1,QQQn+1)

For the existence, we need to prove a condition similar to (4.22). From
the above analysis, we know that there exist unique numerical solutions of
(4.16) and (4.18), then by taking v = Un,1, φφφ = QQQn,1, we obtain

‖Un,1‖2 − ‖Un‖2 + ‖Un,1 − Un‖2

2∆t
+ ‖QQQn,1‖2

+
1

ε2
(f(Un,1)− f(0) + Un,1 − Un, Un,1) = 0.

By a simple use of the Cauchy and Young inequalities, there holds(
1

2
+

(1− 2CL)∆t

2ε2

)
‖Un,1‖2 + ∆t‖QQQn,1‖2 6

(
1

2
+

∆t

2ε2

)
‖Un‖2. (4.25)
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Hence, for equations (4.17) and (4.19), similar to (4.22), we have

(Gh(χχχ),χχχ) =(χ1 − Un, χ1) + ∆t‖χχχ2‖2 −
∆t

2
(QQQn,1,χχχ2) +

∆t

2
(QQQn,χχχ2)

+
∆t

ε2
(f(χ1), χ1)− ∆t

2ε2
(f(Un,1), χ1) +

∆t

2ε2
(f(Un), χ1)

− ∆t

ε2
(Un,1, χ1) +

∆t

ε2
(χ1, χ1)

>

(
1

2
+

∆t

2ε2
− 3CL∆t

2ε2

)
‖χ1‖2 −

(
∆t

2ε2
+
CL∆t

4ε2

)
‖Un,1‖2

−
(

1

2
+
CL∆t

4ε2

)
‖Un‖2 +

∆t

2
‖χχχ2‖2 −

∆t

4
‖QQQn,1‖2 −

∆t

4
‖QQQn‖2

>

(
1

2
+

∆t

2ε2
− 3CL∆t

2ε2

)
‖χ1‖2 −

(
C0 +

CL∆t

4ε2
+
C0∆t

ε2

)
‖Un‖2

+
∆t

2
‖χχχ2‖2 −

∆t

4
‖QQQn‖2,

where C0 is a fixed positive constant generated by (4.25) and the last
inequality is based on (4.23) and (4.25).
Let

∆t <
ε2

3CL − 1
, (4.26)

then (4.23) and (4.24) are satisfied.
So if ‖χχχ‖ is large enough, together with condition (4.26), we have

(Gh(χχχ),χχχ) > 0,

which completes the proof of the existence of the numerical solutions.
The proof of the uniqueness is similar to the proof for (Un,1,QQQn,1) and

we omit the details.

4.3.3 Stability

Theorem 4.3.3. If ∆t <
3

5
ε2, numerical solutions of the second order

accurate semi-implicit SDC-LDG discretization (4.16)-(4.19) of the Allen-
Cahn equation (4.1) satisfy the stability estimate

1

10
‖Un+1‖2 +

∆t

4
‖QQQn+1‖2 +

7∆t

8ε2
‖U2

n+1‖2

6 exp

(
40T

ε2

)(
‖U0‖2 +

∆t

4
‖QQQ0‖2 +

7∆t

8ε2
‖U2

0 ‖2
)
.
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Proof. We rewrite (4.16)-(4.19) as the following system

(Un,1 − Un, v)K =∆tΓ+
K(QQQn,1, v)− ∆t

ε2
(U3

n,1 − Un, v)K , (4.27)

(Un+1 − Un,1, v)K =∆tΓ+
K(QQQn+1, v)− 3∆t

2
Γ+
K(QQQn,1, v) +

∆t

2
Γ+
K(QQQn, v)

− ∆t

ε2
(U3

n+1 − Un, v)K +
2∆t

ε2
(U3

n,1 − Un, v)K

− ∆t

2ε2
(U3

n,1 − Un,1, v)K −
∆t

2ε2
(U3

n − Un, v)K , (4.28)

(QQQn,l,φφφ)K =Γ−K(Un,l,φφφ), l = 1, 2, (4.29)

where QQQn,2 = QQQn+1, Un,2 = Un+1.

Choose v = −1

4
Un+1 +

3

2
Un,1 −

1

4
Un in (4.27) and v = Un+1 in (4.28),

respectively. After summation of the above equations over all elements

K ∈ Th and splitting v = −1

4
Un+1 +

3

2
Un,1 −

1

4
Un into three parts: v =

−1

4
(Un+1 − Un,1), v = Un,1, v =

1

4
(Un,1 − Un), we have

‖Un+1‖2 − ‖Un‖2 + ‖Un+1 − Un,1‖2 + ‖Un,1 − Un‖2

2∆t

− (Un,1 − Un, Un+1 − Un,1)

4∆t
+
‖Un,1 − Un‖2

4∆t
=

2∑
i=1

Ei, (4.30)

where

E1 =
1

4ε2
(U3

n,1 − Un, Un+1 − Un,1)− 1

ε2
‖U2

n,1‖2 +
1

ε2
(Un, Un,1)

− 1

4ε2
(U3

n,1 − Un, Un,1 − Un)− 1

ε2
‖U2

n+1‖2 +
1

ε2
(Un, Un+1)

+
2

ε2
(U3

n,1 − Un, Un+1)− 1

2ε2
(U3

n,1 − Un,1, Un+1)

− 1

2ε2
(U3

n − Un, Un+1),

E2 =− 1

4

∑
K

Γ+
K(QQQn,1, Un+1 − Un,1) +

∑
K

Γ+
K(QQQn,1, Un,1)

+
1

4

∑
K

Γ+
K(QQQn,1, Un,1 − Un) +

∑
K

Γ+
K(QQQn+1, Un+1)

− 3

2

∑
K

Γ+
K(QQQn,1, Un+1) +

1

2

∑
K

Γ+
K(QQQn, Un+1).
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• Estimates for E1

E1 =− 3

2ε2
‖U2

n,1‖2 −
1

ε2
‖U2

n+1‖2 +
7

4ε2
(U3

n,1, Un+1) +
1

4ε2
(U3

n,1, Un)

− 1

2ε2
(U3

n, Un+1)− 3

4ε2
(Un, Un+1) +

3

2ε2
(Un, Un,1)

+
1

2ε2
(Un,1, Un+1)− 1

4ε2
(Un, Un)

6− 3

2ε2
‖U2

n,1‖2 −
1

ε2
‖U2

n+1‖2 +
7

4ε2

(
3

4
‖U2

n,1‖2 +
1

4
‖U2

n+1‖2
)

+
1

4ε2

(
3

4
‖U2

n,1‖2 +
1

4
‖U2

n‖2
)

+
1

2ε2

(
3

4
‖U2

n‖2 +
1

4
‖U2

n+1‖2
)

− 3

4ε2
(Un, Un+1) +

3

2ε2
(Un, Un,1) +

1

2ε2
(Un,1, Un+1)− 1

4ε2
(Un, Un)

=− 7

16ε2
(‖U2

n+1‖2 − ‖U2
n‖2) +

1

2ε2
(Un,1 − Un, Un+1)

+
1

4ε2
(Un,1 − Un, Un)− 1

4ε2
(Un+1 − Un,1, Un) +

1

ε2
(Un, Un,1 − Un+1)

+
1

ε2
(Un, Un+1)

6− 7

16ε2
(‖U2

n+1‖2 − ‖U2
n‖2) +

3

4ε2
‖Un+1‖2 +

5

4ε2
‖Un‖2

+
5

8ε2
‖Un+1 − Un,1‖2 +

3

8ε2
‖Un,1 − Un‖2, (4.31)

where we have used the Cauchy and Young inequalities in the first estimate.

• Estimates for E2

Recalling the boundary conditions in (4.14), Lemma 4.3.1 and (4.29),
with 0 6 i, j 6 2, there holds∑

K

Γ+
K(QQQn,i, Un,j) =

∑
K

(
−(QQQn,i,∇Un,j)K + (Q̂QQn,i · ννν, Un,j)∂K

)
=
∑
K

(
−(Un,j , ν ·QQQn,i)∂K + (Un,j ,∇ ·QQQn,i)K + (Q̂QQn,i · ννν, Un,j)∂K

)
=−

∑
K

Γ−K(Un,j ,QQQn,i) = −(QQQn,j ,QQQn,i) = −(QQQn,i,QQQn,j), (4.32)
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where QQQn,0 = QQQn, Un,0 = Un. Using the Cauchy and Young inequalities,
we obtain that

E2 =
1

4
(QQQn,1,QQQn+1 −QQQn,1)− ‖QQQn,1‖2 −

1

4
(QQQn,1,QQQn,1 −QQQn)− ‖QQQn+1‖2

+
3

2
(QQQn,1,QQQn+1)− 1

2
(QQQn,QQQn+1)

=− 5

4
‖QQQn,1‖2 − ‖QQQn+1‖2 +

1

2
(QQQn,1 −QQQn,QQQn+1) +

5

4
(QQQn,1,QQQn+1)

− 1

4
(QQQn,1,QQQn,1 −QQQn)

6− 5

4
‖QQQn,1‖2 −

1

2
‖QQQn+1‖2 +

1

8
‖QQQn,1 −QQQn‖2 +

5

4
(QQQn,1,QQQn+1)

− 1

8

(
‖QQQn,1‖2 − ‖QQQn‖2 + ‖QQQn,1 −QQQn‖2

)
=− 1

8

(
‖QQQn+1‖2 − ‖QQQn‖2

)
− S,

where

S =
11

8
‖QQQn,1‖2 +

3

8
‖QQQn+1‖2 −

5

4
(QQQn,1,QQQn+1).

We set XXX = (QQQn,1,QQQn+1), and S =
∫

ΩXXXMXXXTdx with

M =

(
11/8 −5/8
−5/8 3/8

)
. (4.33)

It is easy to prove that M is positive definite, which shows that S > 0.
Inserting the estimates of E1, E2 into (4.30), we obtain(
1− 3∆t

2ε2

)
‖Un+1‖2 −

(
1 +

5∆t

2ε2

)
‖Un‖2 +

(
3

4
− 5∆t

4ε2

)
‖Un+1 − Un,1‖2

+

(
5

4
− 3∆t

4ε2

)
‖Un,1 − Un‖2 +

∆t

4

(
‖QQQn+1‖2 − ‖QQQn‖2

)
+

7∆t

8ε2

(
‖U2

n+1‖2 − ‖U2
n‖2
)
6 0.

Then (
1− 3∆t

2ε2

)
‖Un+1‖2 +

(
3

4
− 5∆t

4ε2

)
‖Un+1 − Un,1‖2

+

(
5

4
− 3∆t

4ε2

)
‖Un,1 − Un‖2 +

∆t

4
‖QQQn+1‖2 +

7∆t

8ε2
‖U2

n+1‖2

6

(
1 +

5∆t

2ε2

)
‖Un‖2 +

∆t

4
‖QQQn‖2 +

7∆t

8ε2
‖U2

n‖2. (4.34)
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If ∆t <
3ε2

5
, the coefficients of the left hand side terms in (4.34) are all

positive, hence we conclude that

‖Un+1‖2 +
∆t

4α
‖QQQn+1‖2 +

7∆t

8αε2
‖U2

n+1‖2

6

(
1 +

4∆t

αε2

)
‖Un‖2 +

∆t

4α
‖QQQn‖2 +

7∆t

8αε2
‖U2

n‖2,

where α = 1− 3∆t

2ε2
. Note that ∆t <

3ε2

5
is equivalent to α >

1

10
, then

‖Un+1‖2 +
∆t

4α
‖QQQn+1‖2 +

7∆t

8αε2
‖U2

n+1‖2

6

(
1 +

40∆t

ε2

)(
‖Un‖2 +

∆t

4α
‖QQQn‖2 +

7∆t

8αε2
‖U2

n‖2
)
.

Summing the above equation from 0 to n < N yields

‖Un+1‖2 +
∆t

4α
‖QQQn+1‖2 +

7∆t

8αε2
‖U2

n+1‖2

6 exp

(
40T

ε2

)(
‖U0‖2 +

∆t

4α
‖QQQ0‖2 +

7∆t

8αε2
‖U2

0 ‖2
)
.

That is

1

10
‖Un+1‖2 +

∆t

4
‖QQQn+1‖2 +

7∆t

8ε2
‖U2

n+1‖2

6 exp

(
40T

ε2

)(
‖U0‖2 +

∆t

4
‖QQQ0‖2 +

7∆t

8ε2
‖U2

0 ‖2
)
,

which completes the proof of Theorem 4.3.3.

Remark 4.3.4. To prove stability for the second order time accurate SDC-
LDG discretization, the choice of the test functions is non-trivial, especially
for the equations that contain nonlinear terms.

The above proof mainly contains two parts. Firstly, without loss of
generality, we choose the test function v = Un,1, v = Un+1 in (4.27), (4.28)
respectively. Secondly, by analyzing the energy equation obtained in the first

step, we take v = −1

4
(Un+1−Un,1), v =

1

4
(Un,1−Un) in (4.27) to eliminate

several terms, which simplifies the stability analysis.

Remark 4.3.5. For the nonlinear terms containing U , we use the following
inequality

(u3, v) 6
1

2
‖u2‖2 +

1

2
‖uv‖2 6

3

4
‖u2‖2 +

1

4
‖v2‖2. (4.35)
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4.3.4 Error estimates

Assume that the solution u of equation (4.1) is sufficiently smooth and
satisfies

u ∈ L∞((0, T );Hk+2(Ω)), ut ∈ L∞((0, T );Hk+1(Ω)),

uttt ∈ L∞((0, T );L2(Ω)). (4.36)

For simplicity, we use the following notations in the error analysis

enu := un − Un = un − Pun + Pun − Un := un − Pun + Peun ,

enqqq := qqqn −QQQn = qqqn −Πqqqn + Πqqqn −QQQn := qqqn −Πqqqn + Πeqqqn ,

with similar relations for other variables. Here we choose

(P,Π) = (P−, P+) in one dimension,

(P,Π) = (P−,Π+) in multi-dimensions,

which are defined in Section 4.2.4.

We rewrite the second order accurate SDC-LDG discretization for the
Allen-Cahn equation (4.1) into a similar form as (4.27)-(4.29), which gives

(∂tun,1, v)K =Γ+
K(qqqn,1, v)− 1

ε2
(u3
n,1 − un, v)K , (4.37)

(∂tun+1, v)K =Γ+
K(qqqn+1, v)− 3

2
Γ+
K(qqqn,1, v) +

1

2
Γ+
K(qqqn, v) + (ιn, v)K

− 1

ε2
(u3
n+1 − un, v)K +

2

ε2
(u3
n,1 − un, v)K

− 1

2ε2
(u3
n,1 − un,1, v)K −

1

2ε2
(u3
n − un, v)K , (4.38)

(qqqn,l,φφφ)K =Γ−K(un,l,φφφ), l = 1, 2, (4.39)

where

∂tun,1 =
un,1 − un

∆t
, ∂tun+1 =

un+1 − un,1
∆t

and ‖ιn‖ ≤ C∆t2 is the local truncation error for the second order accurate
SDC time discretization [120].
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Subtracting (4.27)-(4.29) from (4.37)-(4.39), we obtain the error equa-
tions

(∂t(un,1 − Un,1), v)K =Γ+
K(qqqn,1 −QQQn,1, v)

− 1

ε2
(u3
n,1 − un − (U3

n,1 − Un), v)K , (4.40)

(∂t(un+1 − Un+1), v)K =Γ+
K(qqqn+1 −QQQn+1, v)− 3

2
Γ+
K(qqqn,1 −QQQn,1, v)

+
1

2
Γ+
K(qqqn −QQQn, v)− 1

ε2
(u3
n+1 − un − U3

n+1

+ Un, v)K +
2

ε2
(u3
n,1 − un − (U3

n,1 − Un), v)K

− 1

2ε2
(u3
n,1 − un,1 − (U3

n,1 − Un,1), v)K + (ιn, v)K

− 1

2ε2
(u3
n − un − (U3

n − Un), v)K , (4.41)

(qqqn,l −QQQn,l,φφφ)K =Γ−K(un,l − Un,l,φφφ), l = 1, 2. (4.42)

By choosing

U0 = Pu0, (QQQ0,φφφ)K = Γ−K(U0,φφφ), (4.43)

it is easy to show thatQQQ0 is well-defined. In addition, from the interpolation
properties of P and Π, we have that

‖Πeqqq0‖Ω ≤ Chk+1. (4.44)

Next, we present error estimates for the system (4.40)-(4.42). The proof of
the error estimates follows the same line as for the stability analysis.

Theorem 4.3.6. Let u be the exact solution of the Allen-Cahn equation
(4.1)-(4.2), which satisfies the smoothness assumptions (4.36), and Un be
the numerical solution of the second order accurate semi-implicit SDC-
LDG scheme (4.16)-(4.19). Then for n = 1, 2, . . . , N , there exist positive
constants h and ∆t0, where ∆t0 depends on ε, but is independent of h,
such that for ∆t ≤ ∆t0 the error in the second order accurate SDC-LDG
discretization of the Allen-Cahn equation is bounded as

max
n∆t≤T

‖enu‖ ≤ Chk+1 + C∆t2, (4.45)

where C depends on ‖u‖L∞((0,T );Hk+2(Ω)), ‖ut‖L∞((0,T );Hk+1(Ω)),
‖uttt‖L∞((0,T );L2(Ω)), ε and T .
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Proof. Based on relation (4.32), with (4.42), we obtain

∑
K

Γ+
K(Πeqqqn,i , P eun,j ) = −

∑
K

Γ−K(Peun,j ,Πeqqqn,i) = −(qqqn,j

−QQQn,j ,Πeqqqn,i) +
∑
K

Γ−K(un,j − Pun,j ,Πeqqqn,i), 0 6 i, j 6 2. (4.46)

Let v = −1

4
Peun+1 +

3

2
Peun,1 −

1

4
Peun in (4.40) and v = Peun+1 in (4.41),

respectively, dividing v = −1

4
Peun+1 +

3

2
Peun,1 −

1

4
Peun into three parts:

v = −1

4
(Peun+1−Peun,1), v = Peun,1 , v =

1

4
(Peun,1−Peun), together with

the definition of Π and (4.46), we have

‖Peun+1‖2 − ‖Peun‖2 + ‖Peun+1 − Peun,1‖2 + ‖Peun,1 − Peun‖2

2∆t

−
(Peun,1 − Peun , P eun+1 − Peun,1)

4∆t
+
‖Peun,1 − Peun‖2

4∆t

=RHS :=

6∑
i=1

Fi + (ιn, P eun+1), (4.47)

where

F1 =− ‖Πeqqqn,1‖2 +
1

4
(Πeqqqn,1 ,Πeqqqn+1 −Πeqqqn,1)− 1

8
(‖Πeqqqn,1‖2 − ‖Πeqqqn‖2

+ ‖Πeqqqn,1 −Πeqqqn‖2)− ‖Πeqqqn+1‖2 +
3

2
(Πeqqqn,1 ,Πeqqqn+1)

− 1

2
(Πeqqqn ,Πeqqqn+1),

F2 =− (qqqn,1 −Πqqqn,1,Πeqqqn,1) +
1

4
(qqqn+1 −Πqqqn+1 − (qqqn,1 −Πqqqn,1),Πeqqqn,1)

− 1

4
(qqqn,1 −Πqqqn,1 − (qqqn −Πqqqn),Πeqqqn,1)− (qqqn+1 −Πqqqn+1,Πeqqqn+1)

+
3

2
(qqqn+1 −Πqqqn+1,Πeqqqn,1)− 1

2
(qqqn+1 −Πqqqn+1,Πeqqqn),
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F3 =− 1

ε2
(f(un,1)− f(Un,1), P eun,1)

+
1

4ε2
(f(un,1)− f(Un,1), P eun+1 − Peun,1)

− 1

4ε2
(f(un,1)− f(Un,1), P eun,1 − Peun)

− 1

ε2
(f(un+1)− f(Un+1), P eun+1)

+
3

2ε2
(f(un,1)− f(Un,1), P eun+1)− 1

2ε2
(f(un)− f(Un), P eun+1),

F4 =− ∆t

ε2
(∂tPeun,1 , P eun,1) +

∆t

4ε2
(∂tPeun,1 , P eun+1 − Peun,1)

− ∆t

4ε2
(∂tPeun,1 , P eun,1 − Peun)− ∆t

ε2
(∂tPeun+1 , P eun+1)

+
2∆t

ε2
(∂tPeun,1 , P eun+1),

F5 =− (∂t(un,1 − Pun,1), P eun,1)− ∆t

ε2
(∂t(un,1 − Pun,1), P eun,1)

+
1

4
(∂t(un,1 − Pun,1), P eun+1 − Peun,1)

+
∆t

4ε2
(∂t(un,1 − Pun,1), P eun+1 − Peun,1)

− 1

4
(∂t(un,1 − Pun,1), P eun,1 − Peun)

− ∆t

4ε2
(∂t(un,1 − Pun,1), P eun,1 − Peun)

− (∂t(un+1 − Pun+1), P eun+1)− ∆t

ε2
(∂t(un+1 − Pun+1), P eun+1)

+
2∆t

ε2
(∂t(un,1 − Pun,1), P eun+1),

F6 =
∑
K

(Γ−K(un,1 − Pun,1,Πeqqqn,1)

− 1

4
Γ−K(un+1 − Pun+1 − (un,1 − Pun,1),Πeqqqn,1))

+
1

4

∑
K

(Γ−K(un,1 − Pun,1 − (un − Pun),Πeqqqn,1)

+ Γ−K(un+1 − Pun+1,Πeqqqn+1))

− 3

2

∑
K

(Γ−K(un+1 − Pun+1,Πeqqqn,1) +
1

2
Γ−K(un+1 − Pun+1,Πeqqqn)).
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Next, we estimate each term Fi, 1 6 i 6 6. It is easy to see that

F1 =− 11

8
‖Πeqqqn,1‖2 +

1

4
(Πeqqqn,1 ,Πeqqqn+1) +

1

8
‖Πeqqqn‖2 −

1

8
‖Πeqqqn,1 −Πeqqqn‖2

− ‖Πeqqqn+1‖2 + (Πeqqqn,1 ,Πeqqqn+1) +
1

2
(Πeqqqn,1 −Πeqqqn ,Πeqqqn+1)

6− 11

8
‖Πeqqqn,1‖2 +

5

4
(Πeqqqn,1 ,Πeqqqn+1) +

1

8
‖Πeqqqn‖2 −

1

2
‖Πeqqqn+1‖2.

Based on the interpolation properties of the projections P and Π, as well
as the Lipschitz continuity property (4.3) of f , there holds

|
5∑
i=2

Fi| 6Ch2k+2 + C(‖Peun+1‖2 + ‖Peun,1‖2 + ‖Peun‖2)

+
ε1
2

(‖Πeqqqn+1‖2 + ‖Πeqqqn,1‖2 + ‖Πeqqqn‖2),

where C depends on ε and ε1 > 0 is a small enough constant generated by
Young’s inequality.

In one-dimension, F6 = 0. In multi-dimensions, using Lemma 4.2.1 we
have

|F6| 6 Ch2k+2 +
ε1
2

(‖Πeqqqn+1‖2 + ‖Πeqqqn,1‖2 + ‖Πeqqqn‖2).

Inserting the estimates of Fi, i = 1, . . . , 6 into (4.47), together with the
error estimate for ιn, we have

RHS 6Ch2k+2 + C∆t4 + C(‖Peun+1‖2 + ‖Peun,1‖2 + ‖Peun‖2)

+ ε1(‖Πeqqqn+1‖2 + ‖Πeqqqn,1‖2 + ‖Πeqqqn‖2)− 11

8
‖Πeqqqn,1‖2

+
5

4
(Πeqqqn,1 ,Πeqqqn+1) +

1

8
‖Πeqqqn‖2 −

1

2
‖Πeqqqn+1‖2

6Ch2k+2 + C∆t4 + C‖Peun+1‖2 + C‖Peun,1 − Peun‖2

+ C‖Peun‖2 −
(

1

8
+ ε1

)
(‖Πeqqqn+1‖2 − ‖Πeqqqn‖2)− SS, (4.48)

where

SS =

(
3

8
− 2ε1

)
‖Πeqqqn+1‖2 −

5

4
(Πeqqqn,1 ,Πeqqqn+1) +

(
11

8
− ε1

)
‖Πeqqqn,1‖2.
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Similar to (4.33), we have SS > 0 provided by

(
3

8
− 2ε1

)(
11

8
− ε1

)
>

25

64
,

i.e. 0 < ε1 6
25−

√
561

32
. Combining (4.47) with (4.48), gives

(1− C∆t)‖Peun+1‖2 − (1 + C∆t)‖Peun‖2 + ∆t

(
1

4
+ 2ε1

)
(‖Πeqqqn+1‖2

− ‖Πeqqqn‖2) + (
5

4
− C∆t)‖Peun,1 − Peun‖2 6 C∆t(h2k+2 + ∆t4).

Let ∆t 6 ∆t0 <
1

C
, where ∆t0 depends on ε, but is independent of h.

Summing the above equation from 0 to n < N yields

(1− C∆t)‖Peun+1‖2 + ∆t

(
1

4
+ 2ε1

)
‖Πeqqqn+1‖2 6 C∆t

n∑
i=0

(h2k+2 + ∆t4)

+ C∆t
n∑
i=0

‖Peui‖2 + ‖Peu0‖2 + ∆t

(
1

4
+ 2ε1

)
‖Πeqqq0‖2.

Using (4.43), (4.44) and Gronwall’s inequality, we have

‖Peun+1‖2 6 C(h2k+2 + ∆t4),

which completes the proof.

4.4 LDG discretization combined with third
order accurate SDC time integration method

In this section, we will discuss stability and error estimates of the third
order time accurate SDC-LDG scheme for the Allen-Cahn equation (4.1)-
(4.2) in Ω ⊂ Rd with d 6 3.

4.4.1 Fully-discrete numerical scheme

We use the following numerical fluxes in the LDG discretization

Q̂QQn,l = QQQRn,l, Ûn,l = ULn,l, l = 1, 2, . . . , 6. (4.49)

In view of the boundary condition (4.2), we take

Q̂QQn,l · ννν = 0, Ûn,l = (Un,l)
in, l = 1, 2, . . . , 6 (4.50)
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at ∂Ω, where (Un,l)
in, l = 1, . . . , 6, refer to values obtained from the inte-

rior of the boundary elements. The numerical solutions Un,l, l = 1, . . . , 6
correspond to ukn,m in the third order SDC discretization, with Un,1 corre-
sponding to u1

n,1, Un,2 to u1
n,2, Un,3 to u2

n,1, Un,4 to u2
n,2, Un,5 to u3

n,1 and

Un,6 to u3
n,2.

We use the third order semi-implicit SDC method introduced in Section
4.2.5 for the time discretization. Using (4.15), the fully-discrete third or-
der accurate SDC-LDG approximation scheme to the Allen-Cahn equation
(4.1) is given as: find Un,l ∈ V k

h , QQQn,l ∈WWW k
h, l = 1, 2, . . . , 6, such that, for

all v ∈ V k
h and φφφ ∈WWW k

h, we have

(Un,1 − Un, v)K =
∆t

2
Γ+
K(QQQn,1, v)− ∆t

2ε2
(U3

n,1 − Un, v)K , (4.51)

(Un,2 − Un,1, v)K =
∆t

2
Γ+
K(QQQn,2, v)− ∆t

2ε2
(U3

n,2 − Un,1, v)K , (4.52)

(Un,3 − Un,2, v)K =
∆t

2
Γ+
K(QQQn,3, v)− 13∆t

24
Γ+
K(QQQn,2, v)− 2∆t

3
Γ+
K(QQQn,1, v)

+
5∆t

24
Γ+
K(QQQn, v)− ∆t

2ε2
(U3

n,3, v)K +
13∆t

24ε2
(U3

n,2, v)K

+
2∆t

3ε2
(U3

n,1, v)K −
5∆t

24ε2
(U3

n, v)K

− ∆t

ε2
(

1

24
Un,2 +

1

6
Un,1 +

7

24
Un, v)K , (4.53)

(Un,4 − Un,3, v)K =
∆t

2
Γ+
K(QQQn,4, v)− 7∆t

24
Γ+
K(QQQn,2, v) +

∆t

3
Γ+
K(QQQn,1, v)

− ∆t

24
Γ+
K(QQQn, v)− ∆t

2ε2
(U3

n,4, v)K +
7∆t

24ε2
(U3

n,2, v)K

− ∆t

3ε2
(U3

n,1, v)K +
∆t

24ε2
(U3

n, v)K

+
∆t

ε2
(
1

2
Un,3 +

5

24
Un,2 −

1

6
Un,1 −

1

24
Un, v)K , (4.54)

(Un,5 − Un,4, v)K =
∆t

2
Γ+
K(QQQn,5, v)− 13∆t

24
Γ+
K(QQQn,4, v)− 2∆t

3
Γ+
K(QQQn,3, v)

+
∆t

3
Γ+
K(QQQn,2, v)− ∆t

6
Γ+
K(QQQn,1, v) +

∆t

24
Γ+
K(QQQn, v)

− ∆t

2ε2
(U3

n,5, v)K +
13∆t

24ε2
(U3

n,4, v)K +
2∆t

3ε2
(U3

n,3, v)K

− ∆t

3ε2
(U3

n,2, v)K +
∆t

6ε2
(U3

n,1, v)K −
∆t

24ε2
(U3

n, v)K
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− ∆t

ε2
(

1

24
Un,4 +

1

6
Un,3 +

1

6
Un,2 +

1

6
Un,1 −

1

24
Un, v)K ,

(4.55)

(Un,6 − Un,5, v)K =
∆t

2
Γ+
K(QQQn,6, v)− 7∆t

24
Γ+
K(QQQn,4, v) +

∆t

3
Γ+
K(QQQn,3, v)

− ∆t

24
Γ+
K(QQQn, v)− ∆t

2ε2
(U3

n,6, v)K +
7∆t

24ε2
(U3

n,4, v)K

− ∆t

3ε2
(U3

n,3, v)K +
∆t

24ε2
(U3

n, v)K

+
∆t

ε2
(
1

2
Un,5 +

5

24
Un,4 −

1

6
Un,3 −

1

24
Un, v)K , (4.56)

(QQQn,l,φφφ)K =Γ−K(Un,l,φφφ), l = 1, 2, . . . , 6, (4.57)

where Un+1 = Un,6, QQQn+1 = QQQn,6.

4.4.2 Existence and Uniqueness

The proof of the well-posedness for the LDG method combined with the
third order SDC time integration method is similar to the proof in Section
4.3.2 for the second order discretization. We only give the main result and
skip the proof details.

Theorem 4.4.1. There exists a positive constant C1 independent of ε and

h, such that if ∆t <
ε2

C1
, the third order accurate semi-implicit SDC-

LDG discretization (4.51)-(4.57) for the Allen-Cahn equation (4.1) is well-
defined.

4.4.3 Stability

Theorem 4.4.2. If ∆t <
ε2

C3
, numerical solutions of the third order ac-

curate semi-implicit SDC-LDG discretization (4.51)-(4.57) for the Allen-
Cahn equation (4.1) satisfy the stability estimate

C4‖Un+1‖2 +
∆t

2
‖QQQn+1‖2 +

∆t

2ε2
‖U2

n+1‖2

6 exp

(
C5T

ε2

)
(‖U0‖2 +

∆t

2
‖QQQ0‖2 +

∆t

2ε2
‖U2

0 ‖2), (4.58)

where C3, C4, C5 are positive constants and independent of ε and h.

Proof. The proof of Theorem 4.4.2 is given in Appendix 4.A.
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4.4.4 Error estimates

For the error estimates, we assume that the exact solution u has the fol-
lowing smoothness:

u ∈ L∞((0, T );Hk+2(Ω)), ut ∈ L∞((0, T );Hk+1(Ω)),

utttt ∈ L∞((0, T );L2(Ω)). (4.59)

In Section 4.3.4, we obtained error estimates for the second order ac-
curate SDC scheme. The same ideas can be used to obtain error estimates
for the third order accurate SDC-LDG discretization. We omit the proof
details and only give the error estimate.

Theorem 4.4.3. Let u be the exact solution of the Allen-Cahn equation
(4.1)-(4.2) satisfying the smoothness condition (4.59), and Un be the nu-
merical solution of the third order accurate semi-implicit SDC-LDG scheme
(4.51)-(4.57). Then for n = 1, . . . , N , there exist positive constants h
and ∆t0, where ∆t0 depends on ε, but is independent of h, such that for
∆t 6 ∆t0 the error in the third order accurate SDC-LDG discretization of
the Allen-Cahn equation is bounded as

max
n∆t6T

‖enu‖ 6 C(hk+1 + ∆t3),

where C depends on ‖u‖L∞((0,T );Hk+2(Ω)), ‖ut‖L∞((0,T );Hk+1(Ω)),
‖utttt‖L∞((0,T );L2(Ω)), ε, T .

4.5 Numerical tests

In this section, we will provide some numerical results to confirm the theo-
retical analysis. For more numerical simulations of the Allen-Cahn equation
using the SDC-LDG discretization, we refer to [55].

4.5.1 Accuracy test

We consider the Allen-Cahn equation

ut −∆u+
1

ε2
f(u) = g(t, x, y), in Ω× (0, T ] (4.60)

with periodic boundary condition on the domain Ω = [0, 1] × [0, 1]. We
take ε = 0.1, and the exact solution as

u(t, x, y) = (1 + 0.1 sin(2π(x+ y)) + 0.3 sin(4π(x+ y))) cos(t),
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Table 4.1: Error and order of accuracy for the second order accurate SDC-
LDG discretization at T = 0.5.

Q11

m×m ‖un − Un‖ Order ‖un − Un‖L∞(Ω) Order

8× 8 2.70E-002 – 5.04E-002 –
16× 16 7.58E-003 1.83 1.57E-002 1.68
32× 32 1.94E-003 1.97 4.11E-003 1.93
64× 64 4.89E-004 1.99 1.05E-003 1.97

Table 4.2: Error and order of accuracy for the third order accurate SDC-
LDG discretization at T = 0.5.

Q22

m×m ‖un − Un‖ Order ‖un − Un‖L∞(Ω) Order

8× 8 3.26E-003 – 7.39E-003 –
16× 16 4.57E-004 2.83 1.06E-003 2.80
32× 32 5.89E-005 2.96 1.37E-004 2.95
64× 64 7.46E-006 2.98 1.75E-005 2.97

for which we can easily calculate the function g(t, x, y).

In the computations, a uniform rectangular mesh with m+ 1 nodes in
each direction is used. The time step ∆t is chosen as ∆t = 0.0005 for
the LDG discretization of the Allen-Cahn equation (4.60) combined with
the second and third order accurate semi-implicit SDC time integration
methods. The error and order of accuracy at time T = 0.5 are shown in
Table 4.1 and Table 4.2 for, respectively, the linear and quadratic tensor
product basis functions Q11 and Q22 .

Tables 4.1-4.2 show that ‖un − Un‖ and ‖un − Un‖L∞(Ω) converge at
the rate O(h2) for the second order accurate SDC-LDG scheme using Q11

basis functions, and ‖un − Un‖ and ‖un − Un‖L∞(Ω) convergence at the
rate O(h3) for the third order accurate SDC-LDG scheme using Q22 basis
functions, which is consistent with our theoretical analysis.

4.5.2 Dependence of stability on the ε parameter in the
Allen-Cahn equation

Next, we study the dependence of the stability of the SDC-LDG discretiza-
tion on the parameter ε in the Allen-Cahn equation (4.1). We consider a
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Table 4.3: Maximum stable time step ∆t0 as a function of the parameter
ε in the Allen-Cahn equation.

Q11 Q22

ε 1.00E-006 3.00E-006 4.00E-006 4.00E-006 6.00E-006 8.00E-006

∆t0 1.482 14.149 27.295 2.321 10.208 32.547

one-dimensional problem with periodic boundary conditions and take

u(t, x) = sin(2πx) exp(−2t), x ∈ [0, 1]

as the exact solution by choosing the appropriate source term in (4.1).

In the computations, we use 200 elements in the domain [0, 1]. The
final simulation time T = 5000. Table 4.3 shows the maximum stable time
step ∆t0 that can be chosen for the second order accurate semi-implicit
SDC-LDG scheme with Q11 basis functions and the third order accurate
semi-implicit SDC-LDG scheme with Q22 basis functions. From the values
of ∆t0, we can observe that the time step depends on ε, which confirms
the theoretical results stated in Theorems 4.3.3 and 4.4.2.

4.6 Conclusion

The semi-implicit SDC-LDG discretization provides an accurate and robust
numerical method when solving the Allen-Cahn equation. The Allen-Cahn
equation has a clear separation between stiff and non-stiff terms, which
makes the semi-implicit SDC time integration method a good choice to
solve this equation in combination with an LDG discretization. In addition,
it is easy to construct SDC time discretizations for any order of accuracy,
with the order increasing with one after each iteration. The LDG method
is easy to use in domains with a complicated geometry.

The following results were obtained for the second and third order ac-
curate SDC time integration methods combined with a LDG spatial dis-
cretization. For the nonlinear fully-discrete SDC-LDG discretization, we
proved existence and uniqueness of the numerical solutions by making use
of a standard fixed point argument in finite dimensional spaces. Stability
of the SDC-LDG discretization was proven on Cartesian meshes, in the
sense that stability is guaranteed if ∆t 6 ∆t0, where ∆t0 > 0 depends on
ε, but is independent of h. Finally, with the above time step condition, we
obtained error estimates that show the optimal order of accuracy k + 1.
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4.A Proof of Theorem 4.4.2

Proof. For the following analysis, we set

Un,0 = Un, QQQn,0 = QQQn.

• Energy inequality

Step 1.

Choosing v in (4.51)-(4.56, respectively, as v = 2Un,1, 2Un,2, 2Un,3, 2Un,4,
2Un,5, 2Un+1, together with (4.32), we have

LHS :=
‖Un+1‖2 − ‖Un‖2

∆t
+

6∑
l=1

(
‖Un,l − Un,l−1‖2

∆t
+ ‖QQQn,l‖2 +

1

ε2
‖U2

n,l‖2
)

=
4∑
i=1

(Qi(QQQn,i+2) + Ui(Un,i+2)) +A1, (4.61)

where

Q1(φφφ) =
13

12
(QQQn,2,φφφ) +

4

3
(QQQn,1,φφφ)− 5

12
(QQQn,φφφ), (4.62)

Q2(φφφ) =
7

12
(QQQn,2,φφφ)− 2

3
(QQQn,1,φφφ) +

1

12
(QQQn,φφφ), (4.63)

Q3(φφφ) =
13

12
(QQQn,4,φφφ) +

4

3
(QQQn,3,φφφ)− 2

3
(QQQn,2,φφφ) +

1

3
(QQQn,1,φφφ)

− 1

12
(QQQn,φφφ), (4.64)

Q4(φφφ) =
7

12
(QQQn,4,φφφ)− 2

3
(QQQn,3,φφφ) +

1

12
(QQQn,φφφ), (4.65)

(4.66)

U1(v) =
13

12ε2
(U3

n,2, v) +
4

3ε2
(U3

n,1, v)− 5

12ε2
(U3

n, v), (4.67)

U2(v) =
7

12ε2
(U3

n,2, v)− 2

3ε2
(U3

n,1, v) +
1

12ε2
(U3

n, v), (4.68)

U3(v) =
13

12ε2
(U3

n,4, v) +
4

3ε2
(U3

n,3, v)− 2

3ε2
(U3

n,2, v) +
1

3ε2
(U3

n,1, v) (4.69)

− 1

12ε2
(U3

n, v), (4.70)

U4(v) =
7

12ε2
(U3

n,4, v)− 2

3ε2
(U3

n,3, v) +
1

12ε2
(U3

n, v), (4.71)



116 CHAPTER 4. ALLEN-CAHN EQUATION

and

A1 =
1

ε2
(Un, Un,1) +

1

ε2
(Un,1, Un,2)− 1

12ε2
(Un,2, Un,3)− 1

3ε2
(Un,1, Un,3)

− 7

12ε2
(Un, Un,3) +

1

ε2
(Un,3, Un,4) +

5

12ε2
(Un,2, Un,4)

− 1

3ε2
(Un,1, Un,4)− 1

12ε2
(Un, Un,4)− 1

12ε2
(Un,4, Un,5)

− 1

3ε2
(Un,3, Un,5)− 1

3ε2
(Un,2, Un,5)− 1

3ε2
(Un,1, Un,5)

+
1

12ε2
(Un, Un,5) +

1

ε2
(Un,5, Un+1) +

5

12ε2
(Un,4, Un+1)

− 1

3ε2
(Un,3, Un+1)− 1

12ε2
(Un, Un+1).

The terms
1

ε2
(Un,i, Un,j), i, j = 0, 1, 2, . . . , 6 can be controlled by the

left hand side of (4.61) under the condition ∆t 6
ε2

C̃
, where C̃ is a positive

constant generated by Young’s inequality. For example

(Un,3, Un,5) =(Un,3 − Un,2, Un,5 − Un+1) + (Un,2 − Un,1, Un,5 − Un+1)

+ (Un,1 − Un, Un,5 − Un+1) + (Un, Un,5 − Un+1)

+ (Un,3 − Un,2, Un+1) + (Un,2 − Un,1, Un+1)

+ (Un,1 − Un, Un+1) + (Un, Un+1)

6‖Un‖2 + 2‖Un+1‖2 + 2‖Un,5 − Un+1‖2 + ‖Un,3 − Un,2‖2

+ ‖Un,2 − Un,1‖2 + ‖Un,1 − Un‖2. (4.72)

In the following, we denote linear combinations of
1

ε2
(Un,i, Un,j), i, j =

0, 1, 2, . . . , 6 as A2, A3, A4, . . ..

Step 2.

Next, choose v = −1

2
(Un,5 − Un+1) in (4.55). Using (4.32), we can

eliminate then
1

3
(QQQn,3,QQQn,5 −QQQn+1) with the following equation

B1 :=−

(
Un,5 − Un,4,

1

2
(Un,5 − Un+1)

)
∆t

=
1

4
(QQQn,5,QQQn,5 −QQQn+1) +A2

− 1

4
Q3(QQQn,5 −QQQn+1) +

1

4ε2
(U3

n,5, Un,5 − Un+1)− 1

4
U3(Un,5 − Un+1).
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After summation of B1 and (4.61), we obtain

LHS + B1 =

4∑
i=1

(Qi(QQQn,i+2) + Ui(Un,i+2)) + B1 +A1. (4.73)

Step 3.

For the terms
4

9
(QQQn,1 −QQQn,QQQn,3),

4

9
(QQQn,2 −QQQn,1,QQQn,4) and

1

3
(QQQn,4 −

QQQn,3,QQQn+1), we have the estimate

4

9
(QQQn,1 −QQQn,QQQn,3) 6

2

9
‖QQQn,1 −QQQn‖2 +

2

9
‖QQQn,3‖2,

4

9
(QQQn,2 −QQQn,1,QQQn,4) 6

2

9
‖QQQn,2 −QQQn,1‖2 +

2

9
‖QQQn,4‖2,

1

3
(QQQn,4 −QQQn,3,QQQn+1) 6

1

6
‖QQQn,4 −QQQn,3‖2 +

1

6
‖QQQn+1‖2. (4.74)

In order to eliminate the left three terms in (4.74), we choose, respectively,

v =
8

9
(Un,1 − Un), v =

8

9
(Un,2 − Un,1), v =

2

3
(Un,4 − Un,3)

in (4.51), (4.52), (4.54) to obtain

B2 :=

(
Un,1 − Un,

8

9
(Un,1 − Un)

)
∆t

=− 2

9
(‖QQQn,1‖2 − ‖QQQn‖2 + ‖QQQn,1 −QQQn‖2)

− 4

9ε2
(U3

n,1 − Un, Un,1 − Un),

B3 :=

(
Un,2 − Un,1,

8

9
(Un,2 − Un,1)

)
∆t

=− 2

9
(‖QQQn,2‖2 − ‖QQQn,1‖2 + ‖QQQn,2 −QQQn,1‖2)

− 4

9ε2
(U3

n,2 − Un,1, Un,2 − Un,1),

B4 :=

(
Un,4 − Un,3,

2

3
(Un,4 − Un,3)

)
∆t

= −1

6
(‖QQQn,4‖2 − ‖QQQn,3‖2

+ ‖QQQn,4 −QQQn,3‖2) +
1

3
Q2(QQQn,4 −QQQn,3)

− 1

3ε2
(U3

n,4, Un,4 − Un,3) +
1

3
U2(Un,4 − Un,3) +A3.
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Then from (4.73), we get

LHS +
4∑
j=1

Bj =
4∑
i=1

(Qi(QQQn,i+2) + Ui(Un,i+2)) +
4∑
j=1

Bj +A1. (4.75)

Adding and subtracting
4

9
(QQQn,1−QQQn,QQQn,3),

4

9
(QQQn,2−QQQn,1,QQQn,4),

1

3
(QQQn,4−

QQQn,3,QQQn+1) to (4.75), together with (4.74), gives

LHS +
4∑
j=1

Bj 6

(
4∑
i=1

(Qi(QQQn,i+2) + Ui(Un,i+2))− 4

9
(QQQn,1 −QQQn,QQQn,3)

−4

9
(QQQn,2 −QQQn,1,QQQn,4)− 1

3
(QQQn,4 −QQQn,3,QQQn+1)

)
+

2

9
‖QQQn,1 −QQQn‖2 +

2

9
‖QQQn,2 −QQQn,1‖2 +

1

6
‖QQQn,4 −QQQn,3‖2

+
2

9
‖QQQn,3‖2 +

2

9
‖QQQn,4‖2 +

1

6
‖QQQn+1‖2 +

4∑
j=1

Bj +A1. (4.76)

Step 4.

Next, in order to deal with terms containing QQQn,1 and QQQn,2, we choose
v in (4.51) and (4.52), respectively, as

v =
8

9
(Un,3 − Un,4) +

2

3
(Un,3 − Un,1),

v =
13

9
(Un,3 − Un,2) +

1

3
(Un,3 − Un,5) +

2

3
(Un,4 − Un,5),
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which gives

B5 :=

(
Un,1 − Un,

8

9
(Un,3 − Un,4) +

2

3
(Un,3 − Un,1)

)
∆t

+

(
Un,2 − Un,1,

13

9
(Un,3 − Un,2) +

1

3
(Un,3 − Un,5) +

2

3
(Un,4 − Un,5)

)
∆t

=−
(
QQQn,1,

4

9
(QQQn,3 −QQQn,4) +

1

3
(QQQn,3 −QQQn,1)

)
− 1

ε2

(
U3
n,1 − Un,

4

9
(Un,3 − Un,4) +

1

3
(Un,3 − Un,1)

)
−
(
QQQn,2,

13

18
(QQQn,3 −QQQn,2) +

1

6
(QQQn,3 −QQQn,5) +

1

3
(QQQn,4 −QQQn,5)

)
− 1

ε2(
U3
n,2 − Un,1,

13

18
(Un,3 − Un,2) +

1

6
(Un,3 − Un,5) +

1

3
(Un,4 − Un,5)

)
.

Using the definitions of Qi, Ui (1 6 i 6 4) given in (4.62)-(4.71), the right
hand side of Bj (1 6 j 6 5) and (4.76), we obtain the energy inequality

LHS +

5∑
j=1

Bj =

4∑
i=1

(Qi(QQQn,i+2) + Ui(Un,i+2)) +

5∑
j=1

Bj +A1

6
3∑

k=1

Ck +
5∑
l=1

Dl, (4.77)

where

C1 =
1

6
‖QQQn+1‖2 +

1

4
‖QQQn,5‖2 +

1

18
‖QQQn,4‖2 +

7

18
‖QQQn,3‖2 +

1

2
‖QQQn,2‖2

+
1

3
‖QQQn,1‖2 +

2

9
‖QQQn‖2,

C2 =
1

3
(QQQn,1,QQQn,3) +

1

9
(QQQn,QQQn,4) +

1

4
(QQQn,1,QQQn,5)− 1

6
(QQQn,2,QQQn+1)

+
1

12
(QQQn,1,QQQn+1),

C3 =
13

16
(QQQn,4,QQQn,5) + (QQQn,3,QQQn,5)− 1

16
(QQQn,QQQn,5)− 1

4
(QQQn,5,QQQn+1)

+
25

48
(QQQn,4,QQQn+1) +

1

16
(QQQn,QQQn+1),
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and

D1 =
4

9ε2
(f(Un,1), Un) +

4

9ε2
(f(Un,2), Un,1)− 1

9ε2
(f(Un,1), Un,1)

+
5

18ε2
(f(Un,2), Un,2) +A4,

D2 =
1

3ε2
(f(Un,4), Un,3) +

7

9ε2
(f(Un,1), Un,3)− 4

9ε2
(f(Un), Un,3),

D3 =− 1

3ε2
(f(Un,4), Un,4) +

4

9ε2
(f(Un,2), Un,4)− 4

9ε2
(f(Un,1), Un,4)

+
1

9ε2
(f(Un), Un,4),

D4 =
1

4ε2
(f(Un,5), Un,5) +

13

16ε2
(f(Un,4), Un,5) +

1

ε2
(f(Un,3), Un,5)

+
1

4ε2
(f(Un,1), Un,5)− 1

16ε2
(f(Un), Un,5),

D5 =− 1

4ε2
(f(Un,5), Un+1) +

41

48ε2
(f(Un,4), Un+1)− 1

3ε2
(f(Un,3), Un+1)

− 1

6ε2
(f(Un,2), Un+1) +

1

12ε2
(f(Un,1), Un+1) +

1

16ε2
(f(Un), Un+1).

• Estimates for the energy inequality (4.77)

a. Estimates for Bj (1 6 j 6 5) and Ck (1 6 k 6 3)

For C2, using the Cauchy and Young inequalities we obtain the estimate

C2 6

(
1

24
+

1

48

)
‖QQQn+1‖2 +

1

16
‖QQQn,5‖2 +

1

18
‖QQQn,4‖2 +

1

12
‖QQQn,3‖2

+
1

6
‖QQQn,2‖2 +

(
1

3
+

1

4
+

1

12

)
‖QQQn,1‖2 +

1

18
‖QQQn‖2,

which implies that

C1 + C2 6
11

48
‖QQQn+1‖2 +

5

16
‖QQQn,5‖2 +

1

9
‖QQQn,4‖2 +

17

36
‖QQQn,3‖2

+
2

3
‖QQQn,2‖2 + ‖QQQn,1‖2 +

5

18
‖QQQn‖2. (4.78)
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In addition, the following lower bounds are obtained for Bj (1 6 j 6 5)

5∑
j=1

Bj >

(
8

9
− 2

9
− 1

2
− 1

3

)
‖Un,1 − Un‖2

∆t

+

(
8

9
− 13

18
− 1

12
− 1

3
− 1

3

)
‖Un,2 − Un,1‖2 −

(
13

18
+

2

9

)
‖Un,3 − Un,2‖2

∆t

+

(
2

3
− 1

3
− 8

9

)
‖Un,4 − Un,3‖2 −

(
3

4
+

1

8

)
‖Un,5 − Un,4‖2

∆t

−

1

2
‖Un+1 − Un,5‖2

∆t
. (4.79)

Inserting LHS, C3, (4.78) and (4.79) into (4.77), we obtain then the esti-
mate

‖Un+1‖2 − ‖Un‖2 +
1

2
‖Un+1 − Un,5‖2 +

1

8
‖Un,5 − Un,4‖2 +

4

9
‖Un,4 − Un,3‖2

∆t

+

1

18
‖Un,3 − Un,2‖2 +

5

12
‖Un,2 − Un,1‖2 +

5

6
‖Un,1 − Un‖2

∆t

+
1

2
(‖QQQn+1‖2 − ‖QQQn‖2) +

13

48
‖QQQn+1‖2 +

11

16
‖QQQn,5‖2 +

8

9
‖QQQn,4‖2

+
19

36
‖QQQn,3‖2 +

2

9
‖QQQn‖2 +

1

ε2

∑
i=16

‖U2
n,i‖2

6
13

16
(QQQn,4,QQQn,5) + (QQQn,3,QQQn,5)− 1

16
(QQQn,QQQn,5)− 1

4
(QQQn,5,QQQn+1)

+
25

48
(QQQn,4,QQQn+1) +

1

16
(QQQn,QQQn+1) +

5∑
l=1

Dl. (4.80)

b. Estimates for Dl (1 6 l 6 5)

For D1, using the Lipschitz condition (4.3) of f and (4.35), we have the



122 CHAPTER 4. ALLEN-CAHN EQUATION

estimate

D1 6
CL

18ε2

(
‖Un,2 − Un,1‖2 + ‖Un,1 − Un‖2 + ‖Un‖2

)
+

4

9ε2
(f(Un,1), Un)

+
1

3ε2
(f(Un,2), Un,1) +

5

18ε2
(f(Un,2), Un,2) +A4

=
CL

18ε2

(
‖Un,2 − Un,1‖2 + ‖Un,1 − Un‖2 + ‖Un‖2

)
+

4

9ε2
(U3

n,1, Un)

+
1

3ε2
(U3

n,2, Un,1) +
5

18ε2
(U3

n,2, Un,2) +A5

6
CL

18ε2

(
‖Un,2 − Un,1‖2 + ‖Un,1 − Un‖2 + ‖Un‖2

)
+

(
1

3
+

1

12

)
‖U2

n,1‖2

+

(
1

4
+

5

18

)
‖U2

n,2‖2 +
1

9
‖U2

n‖2 +A5.

Analogously to the estimate for D1, we obtain the estimates

5∑
l=2

Dl 6
C2

ε2

(
6∑
l=1

‖Un,l − Un,l−1‖2 + ‖Un‖2 + ‖Un+1‖2
)

+
1

3ε2
(U3

n,4, Un,3)

+
1

3ε2
(U3

n,1, Un,3)− 2

9ε2
(U3

n,4, Un,4) +
1

4ε2
(U3

n,5, Un,5)

+
3

4ε2
(U3

n,4, Un,5) +
1

ε2
(U3

n,3, Un,5) +
1

4ε2
(U3

n,1, Un,5)

+
5

48ε2
(U3

n,4, Un+1) +
1

12ε2
(U3

n,1, Un+1) +
1

16ε2
(U3

n, Un+1) +A6

6
C2

ε2

(
6∑
l=1

‖Un,l − Un,l−1‖2 + ‖Un‖2 + ‖Un+1‖2
)

+
1

ε2[( 5

192
+

1

48
+

1

64

)
‖U2

n+1‖2 +

(
1

4
+

3

16
+

1

4
+

1

16

)
‖U2

n,5‖2

+

(
1

4
− 2

9
+

9

16
+

5

64

)
‖U2

n,4‖2 +

(
1

12
+

1

12
+

3

4

)
‖U2

n,3‖2

+

(
1

4
+

3

16
+

1

16

)
‖U2

n,1‖2 +
3

64
‖U2

n‖2
]

+A6,

where C2 is a positive constant generated by Young’s inequality.
Inserting the estimates for Dl (1 6 l 6 5) and (4.72) into (4.80), with
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∆t <
ε2

C3
, we obtain(

1− C3∆t

ε2

)
‖Un+1‖2 −

(
1 +

C3∆t

ε2

)
‖Un‖2

∆t
+

1

2
(‖QQQn+1‖2 − ‖QQQn‖2)

+W +
1

ε2

∑
i=16

‖U2
n,i‖2

6
1

ε2

[ 1

16
‖U2

n+1‖2 +
3

4
‖U2

n,5‖2 +
385

576
‖U2

n,4‖2 +
11

12
‖U2

n,3‖2 +
19

36
‖U2

n,2‖2

+
11

12
‖U2

n,1‖2 +
91

576
‖U2

n‖2
]
,

where

W =
13

48
‖QQQn+1‖2 +

11

16
‖QQQn,5‖2 +

8

9
‖QQQn,4‖2 +

19

36
‖QQQn,3‖2 +

2

9
‖QQQn‖2

− 13

16
(QQQn,4,QQQn,5)− (QQQn,3,QQQn,5) +

1

16
(QQQn,QQQn,5) +

1

4
(QQQn,5,QQQn+1)

− 25

48
(QQQn,4,QQQn+1)− 1

16
(QQQn,QQQn+1).

We denote YYY = (QQQn+1,QQQn,5,QQQn,4,QQQn,3,QQQn), and W =
∫

ΩYYY DYYY
Tdx

with

D =


13/48 1/8 −25/96 0 −1/32
1/8 11/16 −13/32 −1/2 1/32
−25/96 −13/32 8/9 0 0

0 −1/2 0 19/36 0
−1/32 1/32 0 0 2/9

 .

It is easy to see that W is positive definite, which shows that if ∆t <
ε2

C3
,

we have the estimate(
1− C3∆t

ε2

)
‖Un+1‖2 −

(
1 +

C3∆t

ε2

)
‖Un‖2 +

∆t

2
(‖QQQn+1‖2 − ‖QQQn‖2)

+
∆t

2ε2
(‖U2

n+1‖2 − ‖U2
n‖2) 6 0,

Finally, similar to the analysis of (4.34), we obtain

C4‖Un+1‖2 +
∆t

2
‖QQQn+1‖2 +

∆t

2ε2
‖U2

n+1‖2

6 exp

(
C5T

ε2

)
(‖U0‖2 +

∆t

2
‖QQQ0‖2 +

∆t

2ε2
‖U2

0 ‖2).





Chapter 5

Conclusions and Outlook

In this dissertation, we study higher order accurate time-implicit Discontin-
uous Galerkin (DG) discretizations for several classes of nonlinear partial
differential equations (PDEs). The main conclusions are as follows:

• Based on the Karush-Kuhn-Tucker (KKT) limiter, which imposes
bounds on the numerical solution using Lagrange multipliers, higher
order accurate bounds preserving time-implicit Local Discontinuous
Galerkin (LDG) and DG discretizations were constructed, respec-
tively, for nonlinear degenerate parabolic equations and the chemi-
cally reactive Euler equations. Numerical results demonstrate that
the bounds preserving time-implicit discretizations are of optimal or-
der of accuracy and accurate in preserving the bounds on the nu-
merical solution, even on coarse meshes and for relatively large time
steps.

• The unique solvability and unconditional entropy dissipation of the
positivity preserving KKT-LDG discretizations were proven for non-
linear degenerate parabolic equations. This analysis gives the theo-
retical support for the use of the KKT limiter, that is, the KKT-LDG
discretizations preserve the positivity of the numerical solutions and
are numerically stable.

• Stability and error estimates for second and third order accurate
time-implicit Spectral Deferred Correction (SDC) LDG discretiza-
tions were proven for the Allen-Cahn equation. The theoretical anal-
ysis addresses the fully discrete analysis, both in space and time, of
the higher order accurate time-implicit discretizations for the Allen-
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Cahn equation. Numerical examples are presented to illustrate the
theoretical results.

Regarding bounds preserving limiters and error estimates for higher
order accurate time-implicit DG discretizations, there are several topics
that are interesting for further research:

• Proving error estimates for the higher order bounds preserving KKT-
DIRK-LDG discretizations for nonlinear degenerate parabolic PDEs.

• Developing higher order time-implicit bounds preserving discretiza-
tions for the compressible Navier-Stokes equations modelling multi-
species chemically reactive flows.

• Proving unconditional energy stability and optimal error estimates
for higher order accurate time-implicit LDG discretizations for the
Cahn-Hilliard equation. This will provide an important extension of
the results obtained in Chapter 4 for the Allen-Cahn equation.



Summary

This dissertation discusses higher order accurate time-implicit Discontin-
uous Galerkin (DG) discretizations for several classes of nonlinear Par-
tial Differential Equations (PDEs). The two main topics considered are
bounds preserving limiters combined with Diagonally Implicit Runge-Kutta
(DIRK) methods, and novel efficient higher order accurate semi-implicit
Spectral Deferred Correction (SDC) DG discretizations, including error es-
timates.

In Chapter 2, positivity constraints are imposed on time-implicit Lo-
cal Discontinuous Galerkin (LDG) discretizations of degenerate parabolic
equations using Lagrange multipliers. In addition, mass conservation of
the positivity limited solution is ensured by imposing a mass conserva-
tion equality constraint. This results in a mixed complementarity problem,
which is expressed by the Karush-Kuhn-Tucker (KKT) equations. This
approach results in a direct coupling of the bounds constraints and the DG
discretization and is well suited for time-implicit discretizations. We call
this approach to enforce bounds constraints “KKT-limiter”, which differs
significantly from frequently used limiters in combination with explicit time
integration methods that generally suffer from serious time step constraints
for parabolic or stiff hyperbolic PDEs. The KKT-DIRK-LDG discretiza-
tions preserve higher order accuracy, and allow for a significantly larger time
step than the time-explicit bounds preserving DG discretizations. We prove
entropy stability, both for the unlimited DIRK-LDG discretization and the
KKT-DIRK-LDG discretization, and unique solvability of the KKT-DIRK-
LDG discretizations. Finally, numerical results are shown which illustrate
the higher order accuracy and entropy dissipation of the positivity preserv-
ing KKT-DIRK-LDG discretizations.

In Chapter 3, we develop higher order accurate bounds preserving time-
implicit DG discretizations for the chemically reactive Euler equations.
These equations are used to describe inviscid, compressible chemically re-
acting flows, including detonations. Since in chemically reactive flows, the
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time step can be significantly limited by the large difference between the
fluid dynamics time scales and the reaction time scales, we use a fractional
step method, which separates the convection and reaction steps, and com-
bine this with higher order accurate DIRK methods for the time discretiza-
tion. In order to ensure that the density and pressure are nonnegative, and
mass fractions are in the range between zero and one, the KKT limiter is
adopted to construct bounds preserving DIRK-DG discretizations for the
reactive Euler equations. In order to deal with the stiff source terms in
chemically reactive flows, we use Harten’s subcell resolution technique in
the reaction step. This ensures proper wave speeds in the reaction zone
and improves stability. Numerical examples demonstrate that the KKT-
DIRK-DG discretization results in the correct wave speed, preserves the
physical bounds on the solution, and compares well with exact solutions
and accurate reference solutions obtained with explicit bounds preserving
discretizations for the chemically reactive Euler equations. Without the
KKT limiter, most computations break down due to unphysical solutions.

In Chapter 4, we prove stability and error estimates for second and third
order accurate semi-implicit SDC-LDG discretizations of the Allen-Cahn
equation. For the numerical discretization of this parabolic equation, im-
plicit time integration methods, which alleviate the time-step restrictions,
result in a nonlinear system of equations that must be solved each time
step. We first prove the unique solvability of the implicit SDC-LDG dis-
cretizations through a standard fixed point argument in finite dimensional
space. Next, by a careful selection of the test functions, stability and er-
ror estimates for second and third order accurate time-implicit SDC-LDG
discretizations are obtained in the sense that the time step only requires a
positive upper bound and is independent of the mesh size. Also, numerical
examples are presented that illustrate the theoretical results.



Samenvatting

Dit proefschrift bespreekt tijdsimpliciete discontinue Galerkin (DG) me-
thoden voor verschillende klassen van hogere orde niet-lineaire partiële dif-
ferentiaalvergelijkingen (PDVs). De twee belangrijkste onderwerpen zijn
discontinue Galerkin discretizaties met limiters die de numerieke oplossing
binnen de fysische grenzen moeten houden in combinatie met diagonaal
impliciete Runge-Kutta (DIRK) tijdsintegratie methoden, en nieuwe ef-
ficiënte hogere orde nauwkeurige semi-impliciete spectral deferred correc-
tion (SDC) tijdsintegratiemethoden in combinatie met local discontinue
Galerkin (LDG) discretizaties, inclusief foutafschattingen.

In hoofdstuk 2 worden via limiters positiviteitsvoorwaarden opgelegd
aan tijdsimpliciete local discontinuous Galerkin discretizaties die met be-
hulp van Lagrange multipliers zorgen dat de numerieke oplossing van ont-
aarde parabolische vergelijkingen positief is. Bovendien wordt massabe-
houd van de numerieke discretizatie met de positiviteits limiter gegaran-
deerd door massabehoud als extra voorwaarde in de numerieke discretizatie
op te leggen. Dit resulteert in een gemengd complementariteitsprobleem
dat wordt beschreven door de Karush-Kuhn-Tucker (KKT) vergelijkingen.
Deze aanpak resulteert in een directe koppeling van de positiviteitseisen
waaraan de numerieke oplossing moet voldoen met de DG discretizatie en
is zeer geschikt voor tijdsimpliciete numerieke discretizaties. Wij noemen
deze aanpak om positiviteitseisen aan de numerieke oplossing op te leggen
”KKT-limiter”. Deze aanpak verschilt sterk van de vaak gebruikte tech-
nieken om positiviteitseisen aan de numerieke oplossing op te leggen bij
tijdsexpliciete numerieke discretizaties. De KKT-DIRK-LDG numerieke
discretizaties hebben een hogere orde nauwkeurigheid en staan een aan-
zienlijk grotere tijdstap toe dan wanneer tijdsexpliciete positiviteitbehou-
dende DG discretizaties worden gebruikt. We bewijzen entropie-stabiliteit,
zowel voor de DIRK-LDG discretizaties als voor de KKT-DIRK-LDG dis-
cretizaties, en ook de uniciteit van de oplossing van de KKT-DIRK-LDG
discretizaties. Tenslotte worden numerieke resultaten getoond die de ho-
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gere orde nauwkeurigheid, entropiedissipatie en de positiviteitbehoudende
eigenschappen van de KKT-DIRK-LDG discretizaties illustreren.

In hoofdstuk 3 ontwikkelen we hogere orde nauwkeurige tijdsimpliciete
positiviteitsbehoudende DG discretizaties voor de chemisch reactieve Euler
vergelijkingen. Deze vergelijkingen worden gebruikt om niet-visceuze, sa-
mendrukbare chemisch reagerende stromingen, inclusief detonaties, te be-
schrijven. Aangezien in stromingen met chemische reacties de tijdstap in de
numerieke tijdsdiscretizatie aanzienlijk kan worden beperkt door het grote
verschil tussen de vloeistofdynamische tijdschalen en de reactie tijdschalen
gebruiken we een fractionele stapmethode, die de convectie en reactiestap-
pen scheidt, en combineren deze methode met hogere orde nauwkeurige
DIRK tijdsintegratiemethoden. Om ervoor te zorgen dat de dichtheid en
de druk niet negatief worden, en de massafracties tussen nul en één liggen,
wordt de KKT-limiter toegepast om te zorgen dat numerieke oplossingen
van de DIRK-DG numerieke discretizaties van de reactieve Euler vergelij-
kingen aan deze fysische eisen voldoet. Om stijve brontermen in chemisch
reactieve stromingen nauwkeurig te kunnen discretizeren gebruiken we in de
reactiestap de subcelresolutie-techniek van Harten. Dit zorgt voor de juiste
golfsnelheden en reactiesnelheden in de reactiezone en verbetert de stabi-
liteit van de numerieke methode. Numerieke simulaties tonen aan dat de
KKT-DIRK-DG discretizatie resulteert in de juiste golfsnelheid, dat de nu-
merieke oplossing voldoet aan de fysische grenzen en goed overeenkomt met
exacte oplossingen en nauwkeurige referentieoplossingen die verkregen zijn
met positiviteitsbehoudende tijdsexpliciete numerieke discretizaties van de
chemisch reactieve Euler vergelijkingen. Zonder de KKT-limiter lopen de
meeste berekeningen stuk op niet-fysische oplossingen.

In hoofdstuk 4 bewijzen we de numerieke stabiliteit en geven foutschat-
tingen voor tweede en derde orde nauwkeurige semi-impliciete SDC-LDG
discretizaties van de Allen-Cahn vergelijking. Impliciete tijdsdiscretizaties
van deze parabolische vergelijking resulteren in een niet-lineair stelsel van
vergelijkingen dat elke tijdstap moet worden opgelost. Eerst bewijzen we de
uniciteit van de oplossing van de semi-impliciete SDC-LDG discretizaties
in een eindig dimensionale ruimte door middel van een standaard dekpunt
argument. Vervolgens worden door een zorgvuldige selectie van de testfunc-
ties voorwaarden voor de numerieke stabiliteit en foutschattingen voor de
tweede en derde orde nauwkeurige tijdsimpliciete SDC-LDG discretizaties
verkregen. Hierbij worden condities voor de grootte van de tijdstap afge-
leid die onafhankelijk zijn van de maaswijdte van het rekenrooster. Ook
worden numerieke simulaties gepresenteerd die de theoretische resultaten
illustreren.
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[93] L. Ortellado and L. Góme, Phase-field modeling of dendritic growth
on spherical surfaces, Front. Mater., 7 (2020), 00163.

[94] T. Qin and C.-W. Shu, Implicit positivity-preserving high-order discon-
tinuous Galerkin methods for conservation laws, SIAM J. Sci. Com-
put., 40 (2018), A81–A107.

[95] T. Qin, C.-W. Shu and Y. Yang, Bound-preserving discontinuous
Galerkin methods for relativistic hydrodynamics, J. Comput. Phys.,
315 (2016), 323–347.

[96] W. Reed and T. Hill, Triangular mesh method for the neutron trans-
port equation, Technical report LA-UR-73-479, Los Alamos Scientific
Laboratory, Los Alamos, NM, 1973.

[97] J. Shen and X. Yang, A phase-field model and its numerical approxi-
mation for two-phase incompressible flows with different densities and
viscosities, SIAM J. Sci. Comput., 32 (2010), 1159–1179.

[98] C.-W. Shu and S. Osher, Efficient implementation of essentially non-
oscillatory shock-capturing schemes, J. Comput. Phys., 77 (1988), 439–
471.

[99] L. Skvortsov, Diagonally implicit Runge-Kutta methods for stiff prob-
lems, Comput. Math. Math. Phys., 46 (2006), 2110–2123.

[100] H. Song and C.-W. Shu, Unconditional energy stability analysis of a
second order implicit-explicit local discontinuous Galerkin method for
the Cahn-Hilliard equation, J. Sci. Comput., 73 (2017), 1178–1203.

[101] J. Stoer and R. Bulirsch, Introduction to numerical analysis,
Springer-Verlag, New York, Berlin, 1991.

[102] G. Strang, On the construction and comparison of difference schemes,
SIAM J. Numer. Anal., 5 (1968), 506–517.



140 BIBLIOGRAPHY
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