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A B S T R A C T

Knowledge and evaluation of extreme precipitation is important for water resources and flood risk management,
soil and land degradation, and other environmental issues. Due to the high potential threat to local
infrastructure, such as buildings, roads and power supplies, heavy precipitation can have an important social
and economic impact on society. At present, satellite derived precipitation estimates are becoming more readily
available. This paper aims to investigate the potential use of the Meteosat Second Generation (MSG) Multi-
Sensor Precipitation Estimate (MPE) for extreme rainfall assessment in Tunisia. The MSGMPE data combine
microwave rain rate estimations with SEVIRI thermal infrared channel data, using an EUMETSAT production
chain in near real time mode. The MPE data can therefore be used in a now-casting mode, and are potentially
useful for extreme weather early warning and monitoring. Daily precipitation observed across an in situ gauge
network in the north of Tunisia were used during the period 2007–2009 for validation of the MPE extreme
event data. As a first test of the MSGMPE product's performance, very light to moderate rainfall classes,
occurring between January and October 2007, were evaluated. Extreme rainfall events were then selected, using
a threshold criterion for large rainfall depth ( > 50 mm/day) occurring at least at one ground station. Spatial
interpolation methods were applied to generate rainfall maps for the drier summer season (from May to
October) and the wet winter season (from November to April). Interpolated gauge rainfall maps were then
compared to MSGMPE data available from the EUMETSAT UMARF archive or from the GEONETCast direct
dissemination system. The summation of the MPE data at 5 and/or 15 min time intervals over a 24 h period,
provided a basis for comparison. The MSGMPE product was not very effective in the detection of very light and
light rain events. Better results were obtained for the slightly more moderate and moderate rain event classes in
terms of percentage of detected events, correlation coefficient, and ratio bias. The results for extreme events
were mixed, with high pixel correlations of R=0.75 achieved for some events, while for other events the
correlation between satellite and ground observation was rather weak. MPE data for northern Tunisia seem
more reliable during the summer season and for larger event scales. The MSGMPE data have demonstrated to
be very informative for early warning purposes, but need to be combined with other near real time data or
information to give reliable and quantitative estimates of extreme rainfall.

1. Introduction

North Tunisia has a sub-humid climate in the Northern
Mediterranean coastal region and is semi-arid in its southern and
eastern parts. The rainfall gauging network of northern Tunisia, 35°2′
N 8°E; 37°2′ N 11°E, is scattered across the area with about 318
stations operational (covering around 113 km2/station) during the
period between 2006 and 2009. For the period of observation
(January 2007 to June 2009), the maximum recorded daily rainfall

was 136 mm on 12/01/2009. Rainfall actually occurred during five
consecutive days from 11/01/2009 to 15/01/2009 and led to extensive
flooding in the region. At present, satellite observations covering
Tunisia have the potential to furnish near real time rainfall estimations,
which are important for predicting weather hazards, flood risks and for
environmental management. Rain clouds that produce rain for less
than one hour typically cover an area at meso or γ-scale resolution of
between 2 and 20 km (Orlanski, 1975). Taking this into account, as
well as the poor density of the pluviograph network in some areas,
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remote sensing may provide an interesting additional data source for
evaluating short duration rainfall spatial variability.

The operational geostationary MSG satellites are very suitable for
weather monitoring over Europe and Africa due to their viewing position.
According to La Barbera et al. (1993) the high temporal and spatial
resolution of the MSG in the visible (VIS) and infrared (IR) wavelength
regions allows for the capture of growth and microstructure of pre-
cipitating clouds. However, a more direct method to retrieve rain rates is
the use of passive microwave (MW) sensors. An example of a MW sensor
is the Special Sensor Microwave Imager (SSM/I) measuring microwave
brightness temperatures (BT) at different microwave lengths. With this
system, a given location on Earth is revisited every six hours (Thomas
et al., 1993). Tsintikidis et al. (1997) adopted two statistical methods: the
log-linear regression model (Hinde and Demetrio, 1998) and artificial
neural networks (NNs) (Nath et al., 2008) to estimate MW rainfall rates.
Comparing the results with radar-estimated rain rates, Nath et al. (2008)
found that NNs represented the fundamental relationship between BT
and rain rates more accurately than the regression model. However, MW
sensors underestimate rainfall volumes because of a phenomenon called
“beam-filling effect” (BFE), which is very sensitive to cloud type and
especially to low cloud (Lafont and Guillemet, 2004). To overcome this
problem, the combination of geostationary sensors (i.e., their thermal
bands) and microwave sensors, like the SSM/I, has been adopted by
several authors (Adler et al., 1993; Vicente, 1994; Levizzani et al., 1996;
Todd et al., 1998; Turk et al., 1999). The MPE method was proposed by
EUMETSAT in 1999 and is based on combining observations of high
temporal and high spatial resolution of the MSG at IR 10.8 µm with
higher accuracy rain rate retrieval data received by the SSM/I at 85 GHz
(Heinemann et al., 2002). This product was revealed as most suitable for
convective precipitation in areas with poor or no radar coverage like
Africa and Asia. The underlying assumption is that cold clouds are
expected to produce more precipitation than warm clouds (Heinemann
and Kerényi, 2004).

Sánchez-Moreno et al. (2008) performed a rainfall estimate com-
parison for the semi-arid country Cape Verde. A single storm was
studied and data from different satellite sensors were compared,
drawing on the combined Microwave imager (TMI) algorithm 2A12,
precipitation radar (PR) 2A25, the TRMM 3B42 product, and the MPE
method, while using ground data as the reference. It was found that
TRMM 3B42 underestimates the amount of rainfall, while PR analysis

2A25 and MPE were most similar to the ground data. MSGMPE proved
reasonable accurate at estimating daily or decadal rainfall amounts
over the islands (totaling 4033. km2 in land surface). The MSGMPE
images are freely available at the EUMETSAT website and can be
directly ingested and analyzed by the ILWIS Open GEONETCast
Toolbox (Maathuis et al., 2011). Another inter-comparison of
MSGMPE with RFE2.0, TAMSAT, and in situ station data was under-
taken by Ataklti (2012), who showed that MSGMPE 3 km data gave a
good estimation of areal rainfall in the Tigray region of Northern
Ethiopia during the rainfall season in 2010.

The main objective of this study is to investigate the use of MSGMPE
satellite data to estimate very light to moderate rain classes and,
especially, substantial and extreme daily rainfall events in Northern
Tunisia. This was done by comparing satellite estimates of a collection of
rainfall events that occurred during the period 2007–2009 over Northern
Tunisia, to rainfall estimates derived from the surface rain-gauge
network. The paper is organized in three parts: part one includes
materials and methods, including a description of the study area
(North Tunisia). Part two presents the results and discussion. The final
part reports on conclusions and perspectives of the research.

2. Materials and methods

2.1. Ground data

The study area covers the north of Tunisia. It is divided into three
geographical sub regions: the Medjerda River watershed (W-5), the
Meliane River watershed (W-4) and the smaller watersheds of the
northern coastal basins (W-3). The region covers an area of almost
36,000 km2. To the north and east it is bounded by the Mediterranean
Sea, to the west by Algeria and to the south by the Atlas Mountain
range in the center of Tunisia. The study period extended from January
2007 to August 2009. Daily rainfall data were provided by the DGRE
(General Direction of Water Resources). Three sub periods are
considered: January 2007 to September 2007, September 2007 to
September 2008, and September 2008 to September 2009.

Fig. 1 depicts the rainfall stations’ locations in the study area. Their
elevation range indicates important variations, with high orographic
areas located in the southwestern part. The number of operational
stations is listed by sub region and observation period in Table 1.

Fig. 1. The study area (North Tunisia) and rainfall station network. The symbols represent the elevation of rainfall stations, which varies between 1 and 1020 m.
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Before evaluating extreme events, the first 10 months (from
January to October 2007) were used to evaluate the performance of
MSGMPE for very light and moderate rainfall events. This classification
is based on a threshold S having been registered in at least one station:
very light event (0 > S > 10 mm/day), light (10 > S > 20 mm/day),
slightly moderate (20 > S > 30 mm/day), or moderate (30 > S >
50 mm/day). In total, 185 events were identified. They were classified
into two seasons according to their time of occurrence: dry summer
season (May to October) and wet winter season (November to April).
Out of 185 events, 100 occurred during the wet season and 85 during
the dry season (Fig. 3).

To identify heavy rainfall events, the proposed selection criterion
was a precipitation threshold S occurring at least at M stations. Dealing
with heavy rainfall, a threshold of S=50 mm/day was selected. To
choose M, we refer to Orlanski (1975), who indicated that the scale of
variability for thunderstorms corresponds to 1 km for cumulus con-
vective rainfalls. As the minimum distance between stations in the
study area is 5 km, the value M=1 was retained. Thus, 77 extreme
rainfall events (days) were identified. The selection of heavy rainfall
events brought two aberrant values in the gauge data to light, with
rainfall exceeding 100 mm in a single station while the rainfall
recorded in neighboring stations did not exceed 10 mm. These
anomalies were reported to DGRE that verified and corrected these
values in their rainfall annual.

Of the 77 events, 35 occurred during the summer season and 42
during the winter season. The most extreme rainfalls occurred at the end
of the dry season, on 24/09/2007, 13/10/2007, and 13/09/2008 with
62, 33, and 18 ground stations, respectively, receiving more than 50 mm
that day. In fact, in all three cases, these extremes were included in
rainfall periods of 72 h (three days). The number of stations meeting the
selection criteria (S=50 andM=1) is presented in Table 2 for both the dry
and wet seasons. For the wet season the most important events were
from 08/03/2007 to 11/03/2007, from 12/01/2009 to 13/01/2009, and
from 09/04/2009 to 13/04/2009 (Table 2).

2.2. Interpolation

The spatial interpolation of the light and moderate ground rainfall
data was undertaken employing a Moving average (inverse distance
weighted) method using ILWIS. The extreme events were interpolated
using two interpolation methods: Moving average method and ordinary
kriging. The reason for this was purely operational: due to the large
number of events to be interpolated, the manual (per event) interpolation
process in ILWIS was replaced with an automatic estimation based on
especially created FORTRAN code (Bargaoui and Chebbi, 2009), using
the kriging interpolation method. Kriging was applied to analyze summer
period events and inverse distance weighting to the winter period events.

The kriging interpolation method is derived from the regionalized
variables theory (Oliver and Webster, 1990). It requires a semi-
variogram model analysis to identify the type of semi- variogram
model, as well as its sill and range (Stein, 1999), which represent the
scales of variability. An automatic method was adopted for estimating
model parameters (sill and range). The method is presented in
Bargaoui et al. (2013). Moving average (Mav) applies a weighted
averaging on point values of the input point map. There are two weight
functions available in ILWIS. The inverse distance method may be
selected when the measured point values are very accurately known or,

otherwise, the linear decrease method, which decreases the impact of
uncertain or erroneous measurements, can be used (Ilwis help 1999).
The limiting distance (range) is automatically detected by ILWIS.

A comparison between the two interpolation estimates obtained for
the dry season event of 18/05/2008 resulted in a discrepancy in the
range estimation of about 20%: 23.6 km by Ilwis, compared to 20 km
by kriging. The inverse distance algorithm provided a better correlation
with kriging estimates (R=0.95) than the linear decrease method
(R=0.89) did. Furthermore, the inverse distance method performed
better regarding the root mean square error coefficient (RMSE), which
was 2.5 mm/day (compared to 3.8 mm/day using the linear decrease
interpolation method). As a result, the moving average method using
an inverse distance weighting was further adopted for interpolating the
rainfall maps corresponding to the winter season.

Fig. 2 reports three well distinguishable experimental semi vario-
grams (24/09/2007, 13/10/2007, and 13/09/2008) out of a total of 77.
They were adjusted to form spherical models (Berolo and Laborde,
2003) which are depicted in Fig. 2. The three variogram fitting results
were within ranges of respectively 22, 17, and 18 km with sills of 480,
180, and 280 (mm/day)2.

On the other hand, the presence of a “hole effect”, characterized by
important fluctuations around the sill, is outlined for some variograms.
According to Bosser (2011) this is a characteristic of heterogeneous
data, and in our study occurred during the 24/09/2007, 13/10/2007,
and 14/10/2007 events. However, we did not analyze this aspect and
assumed a spherical model for all events. The quality of variogram
fitting was assessed using cross validation. Ranges varied between
15 km and 25 km. A typical range of 20 km was adopted in this study to
perform the kriging interpolations.

2.3. Satellite databases

The satellite rainfall database was constructed from data orders
obtained through the internet from the UMARF archive of
EUMETSAT. Since the daily gauge data on the ground are always
monitored from 7 am one day to 7 am the next, local time in Tunisia, it
was necessary to perform a temporal re-scaling of the 15 (or in some
cases 5) minute duration satellite images. This step was automated
using the ILWIS scripting language. A mapcross or overlay operation
was further performed using the ILWIS resample routines to develop
an equally gridded geolocation for both the ground observations and
satellite rainfall maps.

2.4. Map intercomparison

Firstly, using pixel estimations with a three km resolution, Pearson
correlation coefficients were estimated to compare the ground rainfall
maps with the satellite rainfall estimations on an event by event basis.
The generated scatter plots of the events’ average spatial rainfall were
examined to assess the general goodness of fit. Next, a comparison of
map quantiles was performed through the examination of quantiles of
the scatter plot for a given event. Additionally, map aggregations to
resolutions of 30 km and 50 km were performed in order to examine
the sensitivity of the performance criteria to spatial resolution. Finally,
to understand the influence of the interpolation methods for matching
ground and satellite estimations, we inverted the interpolation meth-
ods used for the dry and wet seasons of the extremes events. The
correlation coefficient, ratio bias and RMSE coefficients were used as
criteria of performance.

3. Results

3.1. Very light and moderate rainfall events

Fig. 3 reports on the statistic results of the evaluation of satellite
estimations versus ground estimations for the 185 events and the

Table 1
Station network size by year and region.

2006/2007 2007/2008 2008/2009

Watershed 3 67 67 43
Watershed 4 116 117 111
Watershed 5 148 144 142
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different rainfall classes at a three km spatial resolution. MSGMPE
shows a weak capacity to detect very light events (at least one station
recorded rainfall of more than 0 and less than 10 mm/day). This
weakness is seen in both seasons, with 50% and 72% of events

remaining undetected during the wet season (Fig. 3a) and dry season
(Fig. 3b), respectively. The correlation coefficient of this class is very
weak with an average of 0 for both seasons. The ratio bias coefficient
(average by satellite/average on the ground) is overestimated in both

Fig. 2. Sample and modeled variograms for basin 5 (3 events during wet season). The lines incorporating triangles represent the adjusted variograms. The three other lines represent the
experimental semi variograms for 24/09/2007 (continuous line), 13/10/2007 (dotted line), and 13/09/2008 (the ‘plus’ patterned line).

Fig. 3. The statistic coefficient for each class of rainfall event: the number of selected and undetected events during the wet season for each class (a), the number of selected and
undetected events during the dry season for each class (b), correlation coefficients of all the classes during the dry season (c), ratio bias of all the classes during the dry season (d),
correlation coefficient of all the classes during the wet season (e), ratio bias coefficient of all the classes during the wet season (f).
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seasons (Figs. 3d and f). For the light rain class (10 mm/day < R <
20 mm/day) MSGMPE detected rainy events better during dry season,
with only 31% of events remaining undetected. During the wet season
47% of events remained undetected. The correlation coefficients for the

light rain events are superior to those for the very light rain events
(Figs. 3c and e).

The highest percentage regarding detection is found in the slightly
moderate and moderate classes, with a variation of 67–77% for both
seasons. The ratio bias coefficients of these two classes are more or less
similar with better correlation coefficients occurring in the moderate class.

3.2. Extreme events

3.2.1. Comparison of summer season rainfall events
Fig. 4 depicts the scatter plot of satellite estimations versus ground

estimations for the 35 events selected during the summer season at a
3 km spatial resolution. It indicates a slight average under-estimation
of the rainfall by the satellite algorithm of 8%.

Although some events show a high correlation between ground and
satellite observation, there are 16 events for which the satellite
estimation indicates zero rain (in particular 13/09/2008, 03/10/
2008, and 25/09/2007). For certain events a high discrepancy is
reported, as for example for the 24/09/2007 event. For the event that
occurred on 18/05/2008 and was quite well estimated (Fig. 4), a map
comparison was undertaken. The spatial gradients in these two maps
are similar (Figs. 5a and b) with a correlation coefficient of 0.51. A

Fig. 4. Comparison of spatially averaged precipitation between ground stations and
satellite estimations for the summer period (36 events).

Fig. 5. Comparison of gauge and satellite rainfall occurring on 18/05/2008 at different spatial resolutions (3 km, 30 km and 50 km): in situ rain at 3 km resolution (a), satellite
estimated rain at 3 km resolution (b), in situ rain at 30 km resolution (c), satellite rain at 30 km resolution (d), in situ rain at 50 km resolution (e), satellite rain at 50 km resolution (f).
Maximal rainfall recorded on the interpolated ground map (Max.Gr.) and by satellite (Max.Sat.) at 3 km spatial resolution is about 68 mm/day and 25 mm/day, respectively.
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subsequent spatial aggregation to a resolution of 30 km raises the
Pearson correlation coefficient to 0.61 (Figs. 5c and d).

In Fig. 6a, pixel frequency curves are compared for the 18/05/2008
event. This reveals a serious underestimation of rainfall by the satellite.
Additionally, the percentage of pixels with zero rainfall is abnormally
high in the satellite estimation. On the other hand, as expected using
the MPE method, the scatter plot of quantiles restitutes a good
determination coefficient at 3 km resolution (R2=0.92, in Fig. 6b).

Fig. 6a reports the frequency curves at 30 km resolution. The
underestimation by satellite products is still visible. On the contrary,
the scatter plot of the quantiles (Fig. 6a) reflects good agreement
(R2=0.96). Aggregating the maps to a scale of 50 km (Figs. 5e and f)
results in very similar maps (Fig. 6b), with an increase in the
correlation coefficient from 0.61 to 0.72.

Events that remained undetected by satellite can be divided into
two types, based on an analysis of the gauge rainfall data: 1) very heavy
and extreme rainfall events exceeding 100 mm/day but occurring on
very localized and small areas, corresponding typically to a local
thunderstorm pattern (Fig. 7a), and 2) generalized low rainfall events,
where the maximum station or point rainfall recorded not exceeding
15 mm/day over large surfaces (Fig. 7b).

Based on the number of stations with recorded rainfall exceeding
50 mm/day, we note that most of the events, undetected by the satellite,
correspond to days where heavy rainfall either occurred in just one or two
stations (13 events), or occurred in localized spots (four events), or in
high orography mountain areas (one event). In the dry summer season,
only one important rainfall event (on 13/09/2008, when 18 stations
recorded rainfall exceeding 50 mm/day with an average of 50.9 mm) was
completely undetected using the MSGMPE satellite data. The reasons for

this non-detection can be multiple (atmospheric, physical, but also
satellite recording and data processing and production chain issues)
and would need more analysis and evaluation in future research.

3.2.2. Comparison of winter season rainfall events
In Fig. 8, the interpolated in situ daily averages are compared with the

satellite daily average estimates. During the wetter winter months, we also
observed a significant underestimation of rainfall based on MSGMPE. In
addition, only 24 out of 42 events were detected by satellite. For 14
events, out of 24, the spatial average rain estimated by satellite exceeded
3 mm/day. For the remaining events, it was less than 1 mm/day.

In order to complete the data inter-comparison, Fig. 8 reports the
standard deviations versus the averages at spatial resolutions of 3 and
30 km, both of ground and satellite estimations. The two scatter plots
of Fig. 8 are in good agreement for all events except for four cases: 12/
01/2009, 20/01/2009, 24/02/2009, and 19/04/2009. To help under-
stand the extent of the discrepancy between ground and satellite
estimations, Fig. 9 shows some of the corresponding rainfall maps. It
is clear that satellite rainfall amounts (Fig. 9b) are completely out of the
observed rainfall (Fig. 9a) range for 12/01/2009, despite the similarity
in the spatial variability structure. For 24/02/2009 (Fig. 9f) neither the
rainfall range nor the variability features conform to the ground
estimations (Fig. 9e).

For 20/01/2009 (Fig. 9c), the spatial extent of the rainfall is
overestimated by satellite estimations (Fig. 9d).

Correlation coefficients between average estimates improved at
30 km and 50 km resolutions. For example, the correlation coefficient
of 19/04/2009 increased from 0.38 at 3 km resolution to 0.43 at 30 km
resolution, and to 0.51 at 50 km resolution, thus showing a slight

Fig. 6. (a) Cumulative frequency curves for rainfall event 18/05/2008 on the ground (thick curves) and by satellite (thin curves) for 3 km (interrupted curves) and 30 km (continue
curves) spatial resolutions; (b) Statistical quantiles for rainfall event 18/05/2008 at different spatial resolutions (3 km and 30 km).

Fig. 7. Examples of undetected rainfall events. (a) Max.Gr.=14 mm/day, Max.Sat.=1 mm/day, (b) Max.Gr.=43 mm/day, Max.Sat.=0 mm/day.
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correction at the 50 km resolution. However, the correlation coeffi-
cients of the 12/01/2009, 20/01/2009, and 24/02/2009 events
remained low (Fig. 8).

The events that remained undetected by the satellite in the wet
season differed and represented either rainfall widely scattered in space
(2 events), or rainfall very localized in areas of high elevation (8 events),

Fig. 8. Comparison of spatially averaged precipitation between ground station measurements and satellite estimations for the wet winter period (42 events). The filled symbols (triangle,
circle, and square) represent the average ground rainfall and the vacuum symbols represent the average satellite rainfall at resolutions of, respectively, 3 km, 30 km, and 50 km.

Fig. 9. Comparison of satellite and ground-based rainfall for 3 events during the winter season. (a) and (b) represent the 12/01/2009 event regarding satellite and ground rainfall,
respectively. (Max.Gr.=124 mm/d, Max.Sat.=11 mm/d), (c) and (d) represent the 20/01/2009 event regarding satellite and ground rainfall, respectively. (Max.Gr.=30 mm/d,
Max.Sat.=70 mm/d), (e) and (f) represent the 24/02/2009 event regarding satellite and ground rainfall, respectively. (Max.Gr.=25 mm/d, Max.Sat.=70 mm/d).
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or events restricted to one or two ground stations receiving more than
50 mm/day rainfall (9 events). In particular, 5 non-detected events are
characterized by more than 15 stations receiving more than 50 mm/day
rainfall, revealing a certain inadequacy in MSGMPE satellite estimates
for these atmospheric situations and rainfall systems. Further analysis of
these events, using other MSG data such as daytime microphysical color
scheme composite and physical cloud property data, are required to shed
more light on the non-detection issue.

3.2.3. Comparison between the interpolation methods (inverse
distance and kriging)

The results indicate a better performance of the Inverse distance
method for the correlation coefficient in the dry season and for both
seasons in terms of ratio bias and RMSE. However, the kriging method
presented slightly better correlation coefficients for events in the wet
season.

4. Discussion and conclusions

The main goal of this study was to compare the near real time
satellite rainfall estimates from MSGMPE with ground station rainfall
gauge observations to assess the accuracy of the MSGMPE for the
estimation of extreme rainfall in Northern Tunisia. Because MSGMPE is
a near real time product, it can be quite useful as an early warning
system in case of heavy rainfall occurrences and subsequent water
hazards, such as flooding and inundation. Another goal of this study
was to compare the reliability of MSGMPE multisensory precipitation
estimates for two different seasons (the dry summer and wet winter). Ten
months from January to October 2007 were used to evaluate the
performance of MSGMPE for very light to moderate rainfall classes. In
all, 185 events were identified and interpolated using the inverse
distance method. The MSGMPE product displayed weak skill in the
detection of very light and light events. Better percentage of detection
was obtained for slightly moderate and moderate classes, with better
correlation and ratio bias coefficients. Large and extreme rainfall events
were identified using a threshold of 50 mm/day, at least observed at one
ground station. The in situ database of daily rainfall data for the period
from January 2007 to August 2009 was interpolated using the ordinary
kriging method for the dry period May to October and the moving
average method for the wet period November to April. It became clear
that aggregation of the MSGMPE estimates, from an original sample
resolution of 3 km to resolutions of 30 km and 50 km, introduced a
moderate improvement. We also observed that events of extreme rain-
fall, but with a low geographic extent (recorded rainfall of > 50 mm/day,
but detected by less than 3 stations) were underestimated by the MPE
satellite product. This was also the case for events characterized with
high rainfall heterogeneity within the pixels. In general, we can confirm
an underestimation of rainfall by the MSGMPE algorithm (77 events),
except for five events, which were overestimated. Based on the percen-
tage of events detected by the satellite, we conclude that the MPEmethod
is more suitable in North Tunisia during the drier summer period, when
convective rainfall prevails. Finally, we suggest this method to be
combined with other data and/or information, in order to produce more
reliable extreme rainfall estimations for all weather situations in Tunisia.
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