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Abstract
Purpose Accuracy of image-guided liver surgery is challenged by deformation of the liver during the procedure. This study
aims at improving navigation accuracy by using intraoperative deep learning segmentation and nonrigid registration of hepatic
vasculature from ultrasound (US) images to compensate for changes in liver position and deformation.
Methods This was a single-center prospective study of patients with liver metastases from any origin. Electromagnetic
tracking was used to follow US and liver movement. A preoperative 3D model of the liver, including liver lesions, and hepatic
and portal vasculature, was registered with the intraoperative organ position. Hepatic vasculature was segmented using a
reduced 3D U-Net and registered to preoperative imaging after initial alignment followed by nonrigid registration. Accuracy
was assessed as Euclidean distance between the tumor center imaged in the intraoperative US and the registered preoperative
image.
Results Median target registration error (TRE) after initial alignment was 11.6 mm in 25 procedures and improved to 6.9 mm
after nonrigid registration (p = 0.0076). The number of TREs above 10 mm halved from 16 to 8 after nonrigid registration.
In 9 cases, registration was performed twice after failure of the first attempt. The first registration cycle was completed in
median 11 min (8:00–18:45 min) and a second in 5 min (2:30–10:20 min).
Conclusion This novel registrationworkflowusing automatic vascular detection and nonrigid registration allows to accurately
localize liver lesions. Further automation in the workflow is required in initial alignment and classification accuracy.

Keywords Image-guided liver surgery · Ultrasound · Electromagnetic tracking · Nonrigid registration

Introduction

During liver surgery, it is of great importance to accurately
localize all lesions. Malignant lesions are often clearly visi-
ble on diagnostic imaging, but it can be challenging to locate
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all lesions during surgery. Localization is especially difficult
when lesions are small, appear isoechoic on intraoperative
ultrasound (US), or when they have vanished after neoadju-
vant chemotherapy treatment [1, 2]. Surgical navigation may
improve localization when preoperative imaging is merged
with intraoperative imaging.

Despite several available research systems and continu-
ous improvements in the last decade [3], the use of surgical
navigation during liver surgery is still not adopted in clinical
practice. Two main challenges can be identified for accurate
navigation in liver surgery. First, registration between pre-
operative imaging and the intraoperative positioning is often
performed manually, hindering the workflow as it is time-
consuming and prone to errors. Second, the registration is
often compromised by an altered organ shape and position of
the liver due to laparotomy in open surgery, or CO2 insuffla-
tion in laparoscopic surgery [4, 5]. To tackle these challenges
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any movement and deformation of the liver during surgery
need to be registered.

To track movement of the liver and to map the amount
of deformation, several solutions have been investigated,
including optical tracking of liver movement combined with
finite elementmodeling [6–8].While a subcentimeter surface
registration is feasible, finite element modeling requires high
computational power which makes real-time intraoperative
use difficult. Moreover, instruments or hands in the camera’s
limited field of view complicate this approach. It has been
investigated to improve this technology by using deep learn-
ing [9]; its current reliability, however, is still uncertain and
compromises intraoperative application at short term. When
registration is performed based on the liver surface, it does
not guarantee an accurate registration of structures within the
parenchyma such as targeted lesions and vasculature.

Instead of optical tracking of the liver contour, liver vas-
culature can be used for patient-to-image registration with
preoperative imaging. Ultrasound imaging of liver vascu-
lature is standard of care during liver surgery and hence
easily available. Nevertheless, imaging artifacts regularly
occur during image acquisition thereby hindering classical
image processing techniques for hepatic vasculature seg-
mentation in US. Recently, deep learning approaches have
been evaluated to circumvent these problems [10]. Deep
learning-based (DL-based) segmentation enables automated
classification between hepatic and portal vasculature which
allows for selective registration and improved registration
accuracy [11].

Registration accuracy of the segmented vessels to pre-
operative imaging is influenced by liver movement and
deformation. In earlier studies [12, 13], we used electro-
magnetic (EM) tracking of the liver to compensate for liver
movement and rigid registration methods for image registra-
tion between intra-operative US imaging and preoperative
CT or MR imaging. In the current study, we aim to improve
navigation accuracy by compensating for tissue deformation
with nonrigid registration. Registration is performed after
multi-label deep learning-based segmentation of hepatic vas-
culature. This method is examined intraoperatively in open
liver surgery, after which navigation accuracy is determined
at the target lesion.

Materials andmethods

A prospective feasibility study was conducted at the Nether-
lands Cancer Institute, a tertiary referral center for treat-
ment of colorectal liver metastases. The study protocol was
approved by the institutional medical ethics committee in
July 2018 (NL65724.031.18) and registered in the Nether-
lands Trial Register (number NL7951). Two phases of the
study were designed. In the first phase, the navigation setup

as described previously was tested [13]; in the second phase,
the deformable (i.e., nonrigid) registration method was eval-
uated.

Patients were eligible for inclusion when scheduled for
open surgery of liver tumors, if the diameter of the target
lesion was smaller than 8 cm, if bifurcations of vasculature
around the target lesion were present in the preoperative
imaging, and if the diagnostic scan was not older than
2 months at the day of surgery. Patients with a pacemaker
or large cysts (> 5 cm) in the targeted area were excluded.

Navigation setup and surgical workflow

All details of the navigation setup have been described in
a previous study [13]. Electromagnetic tracking (Northern
Digital Inc, Waterloo, Ontario, Canada) was used to track
an intraoperative US transducer (type I14C5T, BK Medi-
cal, Denmark). The tracked transducer allows registration of
vasculature as it is visible on intraoperative US and in the
patient-specific 3D models which are based on preoperative
magnetic resonance imaging (MRI) or computed tomogra-
phy (CT) scans. Navigation was performed with CustusX
navigation software, enabling ultrasound acquisition and
visualization of the tracked ultrasound and patient-specific
3D models [14].

For image acquisition, the EM-tracked US transducer
was covered by a sterile sleeve, while ensuring that the
liver was within the field of view of the EM field generator
when US imaging was performed. Next, the surgical work-
flow of image acquisition starts by attaching an EM sensor
close to the targeted lesion with surgical glue (Dermabond®
advanced adhesive, Ethicon), followed by an initial registra-
tion step and a subsequent ultrasound sweep of the area of
interest. After image acquisition a registration workflow is
started. An overview of the workflow steps is provided in
Fig. 1.

Initial alignment

Nonrigid registration requires an initialization step, consist-
ing of a rough alignment that was performed by initially
aligning the coordinate systems of the trackedUSwith the 3D
model, followed by a landmark registration as described by
Pérez de Frutos et al. [15]. For this, the imaging plane of the
US transducer was aligned to the longitudinal body axis of
patient, by pointing the US transducer to the caudal direction
of the patient. Afterward, minimally one landmark (mostly a
vessel bifurcation) close to the target lesion was digitized. A
visual inspection to assure correct initial alignment was per-
formed by assessing the overlay of the registered 3D models
on US.
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Fig. 1 Workflow overview (DL = deep learning, CPD = coherent point drift)

Ultrasound acquisition

After initial alignment, an ultrasound volume was recorded
by sweeping the tracked US transducer over the liver surface.
The surgeon was instructed to acquire an US sweep contain-
ing at least a main branch of vasculature which enclosed the
targeted lesion. The pixels from the single 2D US slices can
be placed in a 3D voxel grid, as all 2D slices have specific
EM tracking data based on calibration of the transducer. The
US volume was reconstructed using Pixel-nearest-neighbor
(PNN) reconstruction [16].

Segmentation and nonrigid registration

A 3D U-Net was used for segmentation and classification of
portal and hepatic vasculature [11]. This network was based
on a conventional 3D U-Net architecture [17], but with a
reduced number of filters to minimize memory bottlenecks.
Training was performed with the Dice loss function, using
85 US volumes in training and validation.

After inference of the network during surgery, segmen-
tation results were loaded into 3D Slicer together with the
US volume for quality control [18]. Wrongly classified ves-
sel branches were corrected if needed. No manual additions
were applied to the segmentations. From the segmented vas-
culature, centerlines were extracted and registered to the
corresponding counterparts of vasculature from the preop-
erative 3D model. A nonrigid coherent point drift algorithm
(CPD) was used for registration of the centerlines [19], for

which a python implementation was used [20]. Two parame-
ters are tunable in this implementation. First, deformability of
the preoperative model was set as α = 0.3 (range 0.1–0.5).
Second, the width of the smoothing Gaussian kernel was
set as β = 550 (range 50–800). Either the portal vein or
the hepatic vein was used for registration, depending on the
proximity to the target. Registration of the target lesion was
based on the eight closest vectors to the tumor center ofmass,
extracted from the vector field after the applied nonrigid reg-
istration. The specific deformability parameters for CPD and
the number of closest vectors were determined by grid search
optimization in previous work [11].

If the first registration did not result in a correct overlay
on US imaging, a second attempt was performed.

Accuracy and workflow evaluation

Navigation accuracy was evaluated by means of the Target
Registration Error (TRE)whichwas defined as the Euclidean
Distance between the center of the tumor in the preoperative
scan and the registered intraoperative 3D US. For this pur-
pose, the tumor was delineated in the US volume using the
Segment Editor of 3D Slicer. Both the TRE after rough initial
alignment and after nonrigid registration were calculated and
compared.

For all steps of the navigationprocess, timeswere recorded
to assess their impact on the surgical workflow. The work-
flow components were divided into five phases, i.e., sensor
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Fig. 2 a Visualization of the 3D
scene after initial alignment.
b The overlay of the registered
3D model on US is not
accurately aligned. c Vasculature
as segmented with DL is
visualized in the 3D scene with
respect to the tracked transducer.
d The intraoperative hepatic
(blue) and portal (purple)
vasculature segmented via DL
are accurately projected on US.
The location of a poorly visible
lesion is indicated (red) adjacent
to the actual location of the
hypoechoic lesion

attachment, initial alignment, US acquisition and reconstruc-
tion, segmentation and nonrigid registration, and a manual
check between segmentation and registration. Additionally,
the number of registration attempts per surgery was noted.

Statistical analysis

The study was designed with the aim to achieve a TRE
≤ 10 mm, as this is generally considered as an acceptable
threshold in the literature [3]. We aimed to achieve this
accuracy in minimally 70% of the navigated procedures. A
one-sampleWilcoxon signed-rank test was used to determine
whether the median TRE was ≤ 10 mm.

As the automatic registration is dependent on initial
alignment, the TRE after automatic registration was con-
sidered a paired measurement together with the TRE of
initial alignment. Therefore, a pair-wise comparison of man-
ual and automatic registration was performed using the
Mann–Whitney U-test to determine whether automatic reg-
istration improved accuracy after initial alignment.

Results

Thirty-one patients were included between July 2020 and
December 2021. Among these patients, the median diameter
of the target lesionwas 11mm (range 4–49). Targeted lesions
were located in all segments except segment VII; 20 of 31
targeted lesions (64.5%) were located in the left hemiliver

(segments I-IV). Segment IVa was targeted most often with
ten lesions (32.3%).

Registration and navigation were performed in 30 of 31
procedures. In one case, vasculature was not visible near the
target lesion which eliminated the possibility of registration
and subsequent navigation. In six cases, target registration
errors were not calculated. In two of these, hepatic steatosis
inhibited sufficient ultrasound quality to carry out DL-based
segmentation and therefore registration as well. In one other
case, the tumor was not visible in the ultrasound volume.
Software problems inhibited display of the tumor location in
two cases.

Based on the location of the target lesion, either the portal
vein (33.3%) or the hepatic vein (66.7%) was chosen for reg-
istration. The middle hepatic vein was most often used (16
out of 30 procedures). The registered vasculature and target
lesion, together with the DL segmentation, were loaded in
the navigation software to verify their location. An exam-
ple of initial registration and the intraoperatively segmented
vasculature is shown in Fig. 2.

Accuracy evaluation

Intraoperative to preoperative nonrigid vessel registration
resulted in a root-mean-squared error of the centerlines of
3.3 ± 1.4 mm. TREs were calculated in 25 navigated proce-
dures. Initial alignment resulted in amedian TRE of 11.6mm
(mean 15.4 ± 12.2 mm). Three initial TREs of approxi-
mately 35 mm or higher were found after initial alignment
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Fig. 3 Comparison of target registration error: manual (rigid) versus
automatic (deformable) registration.Median (line) andmean (diamond)
are shown

(Fig. 3). All TREs were computed at the center of the target
lesion, except in one case where the whole tumor could not
be imaged within the US volume. Here, a clear protrusion
of the lesion was used. Subsequent refinement by nonrigid
registration resulted in a median TRE of 6.9 mm (mean 9.8
± 10.3 mm), of which a successful and failed example is
shown in Fig. 4.

Accuracy increased significantly from initial alignment
to nonrigid refinement (p = 0.0076). The Wilcoxon signed-
rank test (α = 0.05) showed that the median TRE of 6.9 mm
was significantly lower than the aimed 10 mm (p = 0.016).
Additionally, the number of registrations having TREs above
10mmhalved from16 to 8 after nonrigid registration (Fig. 5).
In three cases, the TRE increased, although remained below
10 mm.

Workflow evaluation

The number of attempts for completion of the whole registra-
tion workflow (i.e., initial alignment followed by deformable
refinement) was one (n = 21) or two (n = 9). On average,
two landmarks were used for initial alignment. The com-
plete workflow was achieved in a median time of 11 min
(8:00–18:45 min, detailed breakdown in Table I). This

Fig. 4 Example of a successful
(a–b) and failed registration
(c–d). a An initial alignment of
the vasculature in US (black)
with the preoperative portal vein
(purple) is shown. b Nonrigid
registration generates a deformed
portal vein (green) and positioned
the co-registered lesion (red)
close to the actual tumor position
in US (yellow). c The second
example shows large angulation
after initial alignment of the
preoperative (blue) and
intraoperative (black) hepatic
vein. d Nonrigid registration did
not result in a correct deformed
hepatic vein (green), which
resulted in incorrect registration
of the tumor
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Fig. 5 Pair-wise comparison of initial alignment (left) versus
deformable registration (right). Three cases (red) showed a clear
increase of TRE after performing deformable registration

includes sensor attachment (median: 1:45 min), initial align-
ment (4:40 min), ultrasound acquisition and reconstruction
(1:15 min), inspection and correction of vein classification
(1:45 min) and deformable registration (2:25 min). In the
cases where a first deformable registration did not provide
accurate navigation, a median 4:45 min was needed for a
second registration. In these cases, time was mainly spent
on acquisition, segmentation and registration of a new US
volume, as sensor placement and initial alignment were gen-
erally already performed during the first registration attempt.

Discussion

This study demonstrated a new navigation workflow based
on deep learning segmentation and classification of hep-
atic vasculature and subsequent deformable registration. In
combination with local EM tracking of the liver, we comple-
ment compensation of local liver movement from previous
work [13] by integrating nonrigid registration. Results indi-
cate that navigation accuracy was improved by deformable
registration when compared to the initial alignment. A rigid
initial alignment can often provide sufficient accuracy to
enable image guidance. Nevertheless, when organ manip-
ulation occurs and a landmark-based rigid registration does
not compensate for the deformation, nonrigid registration
becomes essential. This is a step toward a navigation work-
flow that is less user-dependent than manual registration.

Table I Required time divided per workflow step

Workflow steps Median time, min
(range)

First registration attempt (n = 21) 11:15 (8:00–18:45)

Liver sensor attachment 1:45 (1:00–3:00)

Initial alignment 4:45 (1:45–9:15)

US acquisition and reconstruction 1:15 (0:30–3:00)

DL segmentation and registration 2:25 (0:40–6:30)

Inspection/correction of vein classification 1:45 (0:45–3:20)

Second registration attempt (n = 9) 4:45 (2:30–10:20)

Adjustment of initial alignment (n = 3) 1:30 (1:00–3:40)

US acquisition and reconstruction (n = 7) 0:45 (0:30–1:00)

DL segmentation and registration 2:35 (1:00–3:15)

Inspection/correction of vein classification 1:25 (0:00–4:40)

Improvements in initial alignment and automation are still
required.

This novel approach has the potential to provide accu-
rate navigation to help the surgical team in finding difficult
lesions, such as vanishing or deep-seated lesions, which
otherwise would not be found with conventional imaging.
Compared to previous studies [21, 22], this approach has the
advantage of using 3D information which compensates for
deformation between the preoperative scan and intraopera-
tive liver positioning.

Only in patients with liver steatosis segmentation of
vasculature was poor. This may be explained by underrepre-
sentation of steatosis in training data. If segmentation results
would improve here, surgical navigation could contribute
during these procedures in which retrieval of lesion locations
is even more difficult than in homogeneous parenchyma.

Initial alignments of up to 25 mm are positively corrected
with the nonrigid registration. Especially in the presence of
subcentimeter lesions, this approach shows potential ben-
efit when rigid alignment does not reveal the locations of
these small lesions. The hypothesis that nonrigid registra-
tion would increase navigation accuracy is confirmed by the
observed TREs. The decreased number of procedures with
errors above 10 mm supports this claim. Nevertheless, it was
observed that when wrong landmarks were selected and thus
initial alignment failed, the nonrigid CPD algorithm could
not compensate. The two outliers where deformable regis-
tration did not result in correct tumor locations, encountered
a large offset in both orientation and translation during initial
alignment of the middle hepatic vein. As different bifurca-
tions of the hepatic vein often have a similar shape, a correct
rough alignment is key to initialize a correct deformable
alignment.

In the majority of previous studies, automatic registration
requires manual initial alignment. Our two-step registration
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approach is comparable to previous studies [23, 24]. Contrary
to these studies, we use a deformable registration method
instead of a conventional Iterative Closest Point algorithm.
Similar to Clements et al. [25] a deformable registration
was implemented; however, we apply it on intraparenchy-
mal structures rather than the liver surface. In contrast to
these studies, two advantages of our methodology are vali-
dation on a larger patient group and accuracy evaluation at
the center of the tumor, as it is the most clinically relevant
structure.

The computational part of the navigation workflow, i.e.,
the segmentation and deformable registration, can be per-
formed in approximately one minute which is concordant
with a previous study [11]. However, with all steps prior
to registration, the total time rapidly increases to 8 min
(see Table I). The amount of time required for a manual
initial alignment and themanual check and classification cor-
rections caused the largest additional time increase to the
workflow. Another time-consuming factor was caused by
switching between the navigation software (CustusX), the
segmentation framework (a python-based pipeline) and 3D
Slicer for quality checks of segmentation. Software switch-
ing and data transfer between the different software platforms
caused considerable delay, as well as many interactions by
the technical physician who assisted the surgeons in the nav-
igation process. Currently, such additional personnel is still
needed to perform the current navigation protocol. In future,
we aim for an improved integration of all workflow compo-
nents within one application requiring less user-interactions.

The fact that the second attempts after failure of the first
registration cycle were always of shorter duration is mostly
caused by the already performed sensor placement and ini-
tial alignment. In most of these cases, the second registration
cycle started at a new acquisition because the acquisition
from the first registration cycle did not provide a good regis-
tration. This was mostly caused by an insufficient amount of
vasculature in the US volume, or by a low-quality ultrasound
acquisition.

Strengths of this study include the combined use of 3DUS
segmentation and classification of vasculature, deformation
compensation, and active tracking of the liver. Progress is
made toward an approachwhere the surgeon is providedwith
guidance during resection, where the EM sensor is placed
near the target lesion as close as possible.While Pelanis et al.
[26] propose to update a registration using fluoroscopy based
on injected radiopaque fiducials, an EM-based method for
local liver tracking provides an improved and more robust
way of tracking organ movement. Our approach prevents
additional radiation and interruption of the surgical workflow
and provides a more continuous stream of tumor tracking
eliminating the need for single snapshots in time as needed
by fluoroscopy.

Limitations of this study include the non-even spread of
tumor targets throughout the liver. Registration was mainly
limited to the middle hepatic vein. For lesions surrounding
the right hepatic vein in the dorsal segments VI and VII,
investigation of the method was limited. These lesions are
more difficult to approach and sensor placement near the tar-
get lesions is only possible after full mobilization of the liver,
inducing considerable deformation. It would also be interest-
ing to further investigate the portal vein for registration as it
was underrepresented in the current study.

The manual check of the DL-based vessel segmentation
and classification currently delays the surgical workflow.
Preferably this step is omitted. At this stage of development,
the manual checks were still required to prevent the registra-
tion of wrongly classified vasculature, which would require
another registration attempt. Right now, classification was
performed by the 3D U-net. An alternative is to perform seg-
mentation of all vasculature followed by classification by a
connected components algorithm or another DL network.

As possible addition to the proposed registration frame-
work, improvements are required in the process of the initial
alignment. Searching for a correct bifurcation fiducial can
be time-consuming, and adding fiducials to improve the ini-
tial registration is undesirable. This could be solved by using
content-based image registration as performed by Ramal-
hinho et al. [27]. As their solution was initially developed for
laparoscopic US to CT registration where less deformation is
expected, this approach asks for additional validation in the
open setting. Their results indicate that an initial alignment
of 20 mm or less is feasible, which could be followed by the
proposed deformable registration in this study.

While the nonrigid registration compensates for deforma-
tion between the preoperative scan and the intraoperative
situation, it does not compensate for differences in ultra-
sound transducer pressure or, more importantly, movements
after surgical manipulation. Further focus should therefore
be devoted to maintaining the accuracy after registration,
i.e., during the process of resection or ablation. Maintaining
navigation accuracy is partially aimed for in the described
set-up by using local liver tracking with an EM sensor, but
this approach is not all-encompassing. A possible solution is
to update the registration with content-based image retrieval
for which a 2D US vessel segmentation network is required
[22]. As their approach aims to register intraoperative US to
preoperative CT, US to US registration could be more accu-
rate for registration updates as this provides more common
features. Application is potentially useful during ablation,
in which US is continuously used for needle placement and
confirmation of a correct ablation zone [28].
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Conclusion

The combination of DL-based segmentation of hepatic vas-
culature and deformable registration improves navigation
accuracy during open liver surgery. In cases where lesions
are small and deformation is large, this approach is benefi-
cial when compared to rigid registration. Improvements are
needed in the initial alignment and automation of the work-
flow.
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