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Preface

This thesis consists of an introductory chapter (Chapter 1), followed by six
technical chapters. These six chapters have been written in the style of journal
papers, based on the five joint papers which are listed on the next page.

The presented results of this thesis deal with graph entropy, a concept
in chemical graph theory inspired by the well-known Shannon entropy in
information theory. In fact, the thesis focuses on different variants of graph
entropy, mainly on degree-based and distance-based entropies.

Apart from Chapter 5, the other chapters of the thesis are mainly based
on the research results that the author obtained when she was working as a
joint Ph.D. candidate at Northwestern Polytechnical University in Xi’an, P.R.
China and the University of Twente in Enschede, the Netherlands.

Chapter 2 studies the effect of graph operations on the degree-based en-
tropy. The results of this chapter provide tools for the research on follow-up
extremal problems. Chapter 3 to Chapter 5 mainly deal with extremal prob-
lems involving the degree-based entropy restricted to specific graph classes.
Chapter 5 is based on research that was carried out while the author was visit-
ing the Algorithms and Complexity group in the Computer Science department
of Durham University in Durham, UK.

Chapter 6 addresses extremal problems involving two important distance-
based entropies. Chapter 7 studies the computational complexity of spanning
tree problems for graphical function indices. These indices unify a large
number of well-studied topological indices originating from chemical graph
theory, and are closely related to degree-based graph entropies.
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Chapter 1

Introduction

“...everything that is going on in Nature means an increase of the entropy of

the part of the world where it is going on.” -Erwin Schrödinger[106]

As the title of the thesis indicates, this thesis deals with contributions
to graph theory involving the concept of graph entropy and related topics.
However, the notion of entropy originates from thermodynamics, not graph
theory. Therefore, before introducing the relevant graph-theoretical definitions
and notation, let us first briefly sketch the background on the origin of the
term entropy from thermodynamics and its widely studied variants. More
details on the history and relevance of entropy can be found in Section 1.2.

Entropy is not an arcane concept in the literature. It has appeared in many
scientific disciplines, such as mathematics, chemistry, physics and information
theory. As some of the readers might know, this concept originating from
thermodynamics was introduced by the German physicist R. Clausius [34, 35].
He gave the first mathematical version of the concept of entropy, and also
introduced its name. In fact, he used the notion of entropy in his attempt to
give a mathematical interpretation of the second law of thermodynamics.

About ten years after the definition and formula of entropy given by R.
Clausius, L. Boltzmann introduced a variant of entropy in his kinetic theory of
gases [14]. His formula for entropy expresses that the entropy is proportional
to the logarithm of probability, and later became known as Boltzmann entropy.

1



2 Chapter 1. Introduction

Boltzmann entropy can be thought of as a measure associated with a state
of disorder, randomness or uncertainty. The more chaotic a system is, the
more uniform the distribution of the macroscopic state will be. The Boltzmann
entropy and the more general Clausius entropy agree for systems with slow
changes in particle density, energy density, and momentum density on a
microscopic scale.

Figure 1.1: The formula of Boltzmann entropy carved on his
gravestone in the Central Cemetery of Vienna.

The equation S = k log W on L. Boltzmann’s gravestone (see Figure 1.1)
was not formulated in this form by L. Boltzmann, but by M. Planck [103].
He credited L. Boltzmann for the main idea of the formula. Moreover, he
underlined his respect by using the symbol “W ”, which stands for the German
word “Wahrscheinlichkeit” meaning probability and referring to the probability
of a microscopic state.

In 1948, C.E. Shannon extended the concept of entropy from statistical
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physics to information communication, thereby laying one of the key foun-
dations for information theory [108]. Although the mathematical concept
of information predates Shannon entropy, C.E Shannon combined this con-
cept with ideas originating from ergodic theory and random coding, to give a
measure for the transmission of information from one place to another.

To explain the development from Shannon entropy to graph entropy, the
paper Three great challenges for half-century-old computer science [26] by F.P.
Brooks plays a crucial role. In his paper, which appeared in the Journal of the
ACM in 2003, this recipient of the National Medal of Technology (in 1985)
and the Turing Award (in 1999) posed the following challenge:

“We have no theory, however, that gives us a metric for the information embod-

ied in structure, especially physical structure. We know that an automobile

is a more complex structure than a rowboat. We cannot yet say it is x times

more complex, where x is some number. Yet we know that the complexity

is related to the Shannon information that would be required to specify the

structures of the car and the boat.”

This quotation addresses the challenge to develop good measures for
the quantification of structural information. F.P. Brooks believed that such
a missing metric was the fundamental gap in theory between information
science and computer science.

Moreover, further recent developments have made it timely to address
this issue. The encoding of genetic information by DNA is apparently simple
enough to be handled by existing theories of communication. The way in
which the four amino acids can form pairs determines the acid sequence
in the DNA protein. Despite this fact that proteins have a relatively simple
basic structure, the way they are folded determines their functionality to a
large extent. So entropy and energy considerations are probably not powerful
enough to explain and predict their functional structure.

Nevertheless, defining and using several different variants of graph entropy
seems a good starting point for developing measures for quantifying the
complexity of structures that can be modeled by graphs. These variants of
graph entropy will be introduced in Section 1.3, after presenting the relevant
graph-theoretical terminology and notation in Section 1.1, and more historical
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annotations in Section 1.2.

This introductory chapter will end with a short description of the main
results of this thesis in Section 1.4. Particular questions that will be addressed
are: what are the extremal values of the studied variant of graph entropy?
Can we characterize the graphs attaining the maximum or minimum value of
this graph entropy? Such questions are typical for the field of extremal graph
theory.

1.1 Terminology and notation

Before we start with the formal terminology and notation, let us try to make
intuitively clear how graphs come into play when considering structures like
molecules.

A graph is a mathematical object consisting of a finite set of vertices that
can be interpreted as abstractions of atoms in a molecule, and a finite set of
edges that can be interpreted as abstractions of bonds between pairs of atoms
in a molecule. In this graph model, each edge represents a bond between a pair
of atoms, and multiple bonds between the same pair of atoms are represented
by multiple edges between the corresponding pair of vertices in the graph.

With the above in mind, in this section we introduce some basic terminol-
ogy and notation. All graphs considered in this thesis are finite, undirected
and without loops. We use standard graph-theoretic terminology and notation,
as can be found in the textbook of Bondy and Murty [22].

A graph G is an ordered pair (V (G), E(G)) consisting of a vertex set V (G)
and an edge set E(G), together with an incidence function ψG that associates
with each edge of G an unordered pair of vertices of G. If e is an edge and u
and v are vertices such that ψG(e) = uv, then e is said to join u and v, and u
and v are also called adjacent. We say that u and v are the end-vertices of e, and
that e is incident with u and v. If G is a simple graph, i.e., contains no multiple
edges, then we can avoid the use of ψG. We use uv or vu to indicate the
unique edge e with end-vertices u and v. In this thesis, a graph may contain
multiple edges, but we assume it is simple unless otherwise indicated.
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For a vertex v ∈ V (G), we use NG(v) to denote the set of neighbors of v
in G, i.e., the set of all vertices adjacent to v. The cardinality of V (G) and
E(G) are the order and size of G, respectively. The degree of a vertex v in G,
denoted by degG(v), is the number of edges incident with v in G. We also
use deg(v) to denote the degree of v in G if there is no ambiguity. A vertex
with degree 0 is called an isolated vertex. We use degmax(G) and degmin(G)
to denote the maximum degree and the minimum degree among the vertices
of G, respectively.

A graph is connected if, for every partition of its vertex set into two
nonempty sets A and B, there is an edge with one end-vertex in A and one
end-vertex in B; otherwise the graph is disconnected. A coloring of a graph G
is a partition of its vertex set into independent sets. Here an independent set is
a set of mutually nonadjacent vertices. The chromatic number of G, denoted
by χ(G), is the smallest number of classes in any coloring of G.

Two graphs G and H are said to be isomorphic if there exist two bijections
θ : V (G) → V (H) and φ : E(G) → E(H) such that ψG(e) = uv if and only
if ψH(φ(e)) = θ(u)θ(v). An automorphism of a graph G is an isomorphism
of G to itself. The collection of automorphisms forms a group Aut(G) under
composition. Vertices u and v are said to be similar if there exists an automor-
phism mapping u to v. An orbit of Aut(G) is the set of all vertices similar to a
given vertex. The collection of orbits constitutes a partition of V (G).

We next introduce some special families of graphs. A path of length n,
denoted by Pn+1, is an alternating sequence of distinct vertices and edges
v0e1v1 · · · vn−1envn, such that the vertices vi−1 and vi are the end-vertices of
the edge ei for all i ∈ {1,2, . . . , n}. A tree is a connected graph in which any
two distinct vertices are connected by a unique path. A graph is said to be a
complete graph and denoted by Kn if all its n vertices are pairwise adjacent. A
graph G is called bipartite if V (G) can be partitioned into two disjoint sets X
and Y such that every edge of G has one end-vertex in X and one end-vertex
in Y . A bipartite graph with bipartition (X , Y ) satisfying x y ∈ E for any pair
in {(x , y) : x ∈ X , y ∈ Y } is a complete bipartite graph and is denoted by Ks,t

if |X | = s and |Y | = t. In particular, the complete bipartite graph K1,n−1 is also
called a star.
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Let G and H be two graphs. Then H is called a subgraph of G if V (H) ⊆
V (G) and E(H) ⊆ E(G). A spanning subgraph of G is a graph obtained by only
deleting edges of G. A spanning tree of G is a spanning subgraph that is a tree.
An induced subgraph of G is a subgraph obtained from G by deleting a number
of vertices and all the edges incident with these vertices.

A perfect graph is a graph in which the chromatic number of every induced
subgraph equals the order of a largest clique of that subgraph. Here a clique is
a set of mutually adjacent vertices.

The distance between two vertices u and v, denoted by d(u, v), is the length
of a shortest path from u to v. If there is no path between u and v, then we
set d(u, v) :=∞. The eccentricity of a vertex v, denoted by ecc(v), is the
maximum distance from v to any other vertex (i.e., ecc(v) = max{d(v, u) :
u ∈ V}). The diameter diam(G) of G is the maximum eccentricity among all
vertices of G. For a vertex v ∈ V , the j-sphere of v is the set of vertices at
distance j from v denoted by S j(v, G) (i.e., S j(v, G) = {u ∈ V : d(u, v) = j}).

We define two graph operations. The complement G of G = (V, E) is the
graph with E(G) = E(K|V (G)|) \ E(G) and V (G) = V (G). The conormal product
(also known as disjunction) G∨G′ of two disjoint graphs G and G′ is the graph
with vertex set V (G)× V (G′) in which uv ∈ E(G) or u′v′ ∈ E(G′) produces an
edge (u, u′)(v, v′) ∈ E(G ∨ G′). Let G∨n be the n-th conormal power of G with
vertex set V (G∨n) = V × V × · · · × V

︸ ︷︷ ︸

n

= V n and edge set

E(G∨n) = {(u, v) ∈ V n × V n : u= (u1, u2, . . . , un), v = (v1, v2, . . . , vn) and

∃ i : ui vi ∈ E(G)}

We also need to define several matrices associated with graphs. For this
purpose, let G be a graph with vertex set {v1, v2, . . . , vn}. The distance matrix of
G, denoted by D(G), is an n× n matrix, the (i, j)-entry of which is [D(G)]i, j =
d(vi , v j). The adjacency matrix of G is an n× n matrix, denoted by M(G), the
(i, j)-entry of which is defined as follows

[M(G)]i, j =

(

1, if vi v j ∈ E(G);

0, if vi v j /∈ E(G).
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The degree matrix of G is an n×n matrix, denoted by De(G), the (i, j)-entry
of which is defined as follows

[De(G)]i, j =

(

deg(vi), if i = j;

0, if i ̸= j.

The combinatorial Laplacian matrix (for short, Laplacian) of G is the matrix

L(G) = De(G)−M(G).

If G has size m, then the density matrix of G is the matrix

ρ(G) =
1

2m
L(G).

Before continuing with the formal introduction of several variants of graph
entropy, in the next section we present more details on the history of entropy.
Readers with a major focus on the mathematical aspects or a main interest in
the results of this thesis can safely skip the next section.

1.2 History of entropy

From thermodynamics to information theory, entropy plays an important role
in their development.

The discovery of the laws of thermodynamics is closely related to the
study of improving the efficiency of heat engines. The steam engine was
invented in the 18th century, but it took a long time from its inception to its
widespread use. The French physicist, mathematician and inventor D. Papin,
one of the founders of thermodynamics, worked with R. Boyle from 1676 to
1679. During this time, he invented the steam digester which inspired the
later invention of the pressure cooker and the steam engine. It was the English
inventor T. Newcomen who developed the atmospheric engine in 1712, as the
first practical fuel-burning engine. The steam pump, invented by T. Savery,
an English inventor and engineer, is regarded as a model of the Newcomen
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steam engine. Nearly 70 years later, J. Watt advanced T. Newcomen’s steam
engine, which laid the foundation for the Industrial Revolution.

In the years that followed, many efforts were made to improve the ef-
ficiency of these steam engines. In 1824, a young French engineer named
S. Carnot wrote his only published book Reflections on the Motive Power of
Fire [31]. In this book, he proposed the concept of the Carnot heat engine and
the Carnot cycle. He also argued that only heat is not enough to give impetus,
but cold must be present. Without cold, heat will be useless. He believed that
just as the flow of water could drive a water mill, the flow of a hot substance
across a temperature difference (from a heat source to a so-called cold sink)
could also lead to the completion of mechanical work. It was this idea that led
S. Carnot to equate “the motion of heat” with “the flow of heat” (from high to
low) and from this to derive “the unidirectional nature of the motion of heat”.
S. Carnot’s work was unread and unacknowledged during his lifetime. But his
work was later restated by R. Clausius and W. Thomson, 1st Baron Kelvin, and
was an important basis for establishing the formal definition of entropy as the
second law of thermodynamics. Reflections on the Motive Power of Fire [31]
also became the symbol of thermodynamics as a modern science. In 1832, S.
Carnot unfortunately caught cholera and died in Paris on August 24, at the
age of 36.

The German physicist R. Clausius was the first to rigorously formulate
the laws of thermodynamics. In 1850, R. Clausius published a paper [36]
discussing the significance of unidirectional restriction of spontaneous thermal
motion. He declared that “there is no process whose sole result is a transfer
of energy from a cooler to a hotter environment”. Since heat can only flow
spontaneously from hot to cold, the opposite process (sometimes called re-
frigeration) requires work. W. Thomson believed that in any thermodynamic
process, there is always some degradation of available energy. This belief
inspired R. Clausius to develop a concept that he defined as “the direction of
spontaneous change”. He called this concept “entropy”, which he described as
“the property of a system that can measure the degradation of energy availabil-
ity associated with spontaneous changes”. This definition is sometimes called
the “thermodynamic definition of entropy”. R. Clausius explained that entropy
in the system does not decrease because of spontaneous changes. The entropy
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in the system can only increase or stay the same. Therefore, spontaneous
changes will continue to occur until entropy reaches a maximum.

J.C. Maxwell, a Scotsman, was a prominent theoretical physicist and a
big believer in the atomic theory of matter. J.C. Maxwell believed (as did
many before him) that, in any system, the microscopic particles in the system
must obey Newton’s laws of motion. The information in [123] tells us that,
from 1859 to 1866, J.C. Maxwell developed the theory of the distributions of
velocities in particles of a gas. He connected thermodynamics with mechanics.
He explained that while it is obviously impossible to determine the motion of
individual microscopic particles because of their infinitesimal size and large
number, the nature of “the system as a whole” can be determined by using
statistical averages.

In 1877, the Austrian physicist L. Boltzmann [14], inspired by J.C. Maxwell’s
theory of dynamics, equated the overall state of a system with the internal
activities of atoms. He came up with another thermodynamic definition of
entropy, and he used mathematical probability to define entropy: entropy
is a measure of the probability of finding any given system configuration.
This definition is called the “statistical definition of entropy”. According to
L. Boltzmann’s definition, entropy increases until it reaches a maximum. This
maximum is determined as the point at which the atoms of the system adopt
the most random arrangement (no additional activity can further increase the
degree of randomness of the system). The maximum value of the Boltzmann
entropy can be calculated by entering the probability of the Boltzmann formula.
This definition of entropy leads to another way of looking at the second law
of thermodynamics, which implies that the states of any system will always
shift from less likely to more likely states, and will continue to do so until
the most likely state is reached. It is this interpretation of the second law
of thermodynamics that eventually leads to the common understanding that
entropy increases as the system spontaneously moves from order to disorder.

The next quote from N. Wiener in his Cybernetics: or Control and Com-
munication in the Animal and the Machine [121] points out the important
position of information: “Information is information, not matter or energy.
No materialism which does not admit this can survive at the present.” The
profound meaning of this sentence is that material, energy and information
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are the three elements that constitute the objective world. To extend L. Boltz-
mann’s interpretation of entropy to the transmission of information, one way
to think about it is that when there are multiple possible scenarios for some-
thing, the uncertainty about which of those scenarios is specific to someone
is called entropy. The thing that removes someone’s uncertainty about the
matter is called information. The measure used to describe the uncertainty
of an event should have the characteristic that when the event is perfectly
certain, the value of the measure should be zero. The more possible states or
consequences of something, the greater the value of the measure should be.
When the possible outcomes are known and the probability of each outcome
is equal, the uncertainty reaches a maximum, that is, this kind of event is
the most uncertain. As a measure of uncertainty, the Shannon entropy [108]
meets the requirements of an uncertainty measure as proposed above.

In the next section, we start with the definition of the Shannon entropy,
followed by a description of a large number of graph entropies which have
been introduced over the years, based on the Shannon entropy.

1.3 Graph entropies

All variants of graph entropies are based on the same original ideas and concept
due to Shannon. In [108], he defined what is now known as the Shannon
entropy of a discrete random variable X as

−
n
∑

i=1

pi logb pi ,

where the possible outcomes x i of X occur with probability pi for i = 1, 2, . . . , n,
and where b denotes the base of the logarithm. The most commonly used
value for b is 2. Throughout the thesis, we use log to denote log2.

To get from the Shannon entropy to a graph entropy, a simple and natural
idea is to replace the probabilities pi in the above expression by fractions which
add up to one. For defining such fractions one might use any of the graph
parameters or invariants introduced in Section 1.1. Indeed, many different
graph entropies have been introduced this way, as we will see in this section.
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With such graph-theoretical interpretations of the Shannon entropy, leading-
edge investigations on graph entropy are conducted at the intersection of
information science, biology, physics, mathematics and chemistry. A limitation
of all the existing measures is that structurally non-equivalent graphs may re-
sult in the same value of the chosen graph entropy. Therefore, many different
variants of graph entropy have been introduced and studied. According to
different research objectives, different measures have emerged. We classify
some important graph entropies into:

• global graph entropies, e.g., Körner entropy [79, 111], von Neumann
entropy [24], degree-based entropy [29] and distance-based entropies
[21, 43, 41];

• local graph entropies, e.g., local vertex entropies[45, 50].

In the following two subsections, we give an overview of some important
graph entropies according to the above classification. The section ends with
some applications of graph entropy.

1.3.1 Global entropies

N. Rashevsky was an American theoretical physicist, one of the pioneers of
mathematical biology, and is considered the father of mathematical biophysics
and theoretical biology. He founded the Bulletin of Mathematical Biophysics,
the first international journal of mathematical biology. In 1955, N. Rashevsky
proposed the concept of the structural information content of graphs, con-
sidered as the first graph entropy, in biological applications [104]. Such a
measure is based on the Shannon entropy defined by C.E. Shannon [108]
and related to the probability distribution of the partition induced by the
equivalence relation implied by the automorphism group of a graph. A year
later, E. Trucco [115] gave the formal definition of N. Rashevsky’s structural
information content. Let G be a graph of order n, and let Ai for i = 1, . . . , k
denote the orbits of G. These orbits define a finite probability distribution
P= (p1, p2, . . . , pk), where pi =

|Ai |
n . Then the structural information content
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of G is given by
k
∑

i=1

pi log(pi).

In 1968, A. Mowshowitz [97, 98, 99, 100] successively published four further
papers on this structural information content. In [97], A. Mowshowitz gave
some behaviour of undirected graphs under different graph operations such
as complement, sum, join, Cartesian product and composition. In [98], he
extended these results to directed graphs. In [99], he gave a construction
algorithm to investigate the properties of directed graphs with zero information
content. In addition, an algorithm to compute the automorphism group of
digraphs and to find the condition content to ensure that two digraphs have the
same information was presented [99]. In [100], A. Mowshowitz proposed the
chromatic information content defined as follows, and compared it with the
previous measure. Let G be a graph of order n. Let P = {V1, V2, . . . , Vχ(G)}
be a partition of V (G) such that Vi is an independent set for i = 1, 2, . . . ,χ(G),
∪k

i=1Vi = V (G) and Vs ∩ Vt = ; for s ̸= t. The chromatic information content
of G is

min
P

§

−
|Vi|
n

log
� |Vi|

n

�ª

,

where P = {V1, V2, . . . , Vχ(G)} ranges over all possible partitions of V (G)
satisfying the corresponding conditions of P .

D. Bonchev and N. Trinajstić [21] discussed entropy measures based on
graph distance. Before introducing these measures, we first recall the definition
of the information content of a given partition of a set of n elements, as defined
in [25]. Let S = {S1, S2, . . . , Sk} be a partition of an n-element set S such that
∪k

t=1St = S and Si ∩S j = ; for i ̸= j. The definition of the information content
of the partition S = {S1, S2, . . . , Sk} of n-element set S is

n log(n)−
k
∑

i=1

|Si| log(|Si|).

According to the above information content and the Shannon entropy, the
authors in [21] defined two measures of information on distances of a given
graph. Let G be a connected graph with vertex set {v1, v2, . . . , vn}. Let 2ni



1.3. Graph entropies 13

be the number of times that i appears in the distance matrix D(G) with
i = 1, 2, . . . , k. Let p0 =

n
n2 =

1
n and pi =

2ni
n2 for i = 1, 2, . . . , k. Two measures

of information on distances of G in [21] are

n2 log(n2)− n log(n)−
diam(G)
∑

i=1

2ni log(2ni) (1.1)

and

−
1
n

log
�

1
n

�

−
diam(G)
∑

i=1

2ni

n2
log

�

2ni

n2

�

. (1.2)

It is not hard to find that equation (1.1) is n2 times equation (1.2). Among
all graphs of order n, graphs minimize (resp., maximize) equation (1.1) also
minimize (resp., maximize) equation (1.2).

As a generalized distance entropy, M. Dehmer [43, 41] proposed a defini-
tion of graph entropy based on the j-spheres of the graph. Let G be a graph
with vertex set {v1, v2, . . . , vn}, and let S j(vi , G) denote the j-sphere of vi in G.
He defined a graph entropy based on the j-spheres of G by

Is1
(G) = −

n
∑

i=1

 ∑diam(G)
j=1 αc j |S j(vi ,G)|

∑n
t=1

∑diam(G)
j=1 αc j |S j(vt ,G)|

!

log

 ∑diam(G)
j=1 αc j |S j(vi ,G)|

∑n
t=1

∑diam(G)
j=1 αc j |S j(vt ,G)|

!

,

for some fixed real numbers α > 0 and c j > 0 with j = 1, 2, . . . , diam(G).
Another graph entropy of G taking into account all j-spheres was defined

in [47, 84] by

Is2
(G) = −

n
∑

i=1

 ∑diam(G)
j=1 c j |S j(vi , G)|

∑n
t=1

∑diam(G)
j=1 c j |S j(vt , G)|

!

log

 ∑diam(G)
j=1 c j |S j(vi , G)|

∑n
t=1

∑diam(G)
j=1 c j |S j(vt , G)|

!

,

for some fixed real numbers c j > 0 with j = 1,2, . . . , diam(G).

If we relax the condition of c j from greater than zero to greater than or
equal to zero, then for c1 = 1 and c j = 0 for j = 2,3, . . . , diam(G), this leads
to the degree-entropy Id(G) defined in [29]. Let G be a graph with vertex set
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V = {v1, v2, . . . , vn} and size m. A simpler expression for Id(G) is

Id(G) = −
n
∑

i=1

deg(vi)
2m

log
�

deg(vi)
2m

�

.

In the literature [47, 84], the following entropy regarding the eccentricity of
G has been defined by

Ie(G) = −
n
∑

i=1

ciecc(vi)
∑n

j=1 c jecc(v j)
log

�

ciecc(vi)
∑n

j=1 c jecc(v j)

�

,

for some fixed real numbers ci > 0 and i = 1, 2, . . . , n. For ci = 1, the entropy
is called eccentricity-entropy. In [47, 84], the authors proved some extremal
results on this entropy and proposed some related conjectures.

Related to graph invariants involving vertices, M. Dehmer unified some
graph entropies by using a so-called information functional [42]. Let G be
a graph with vertex set V = {v1, v2, . . . , vn}. Let f : V → R≥0 be an arbitrary
information functional. Then the entropy of G related to f is defined by

I f (G) = −
n
∑

i=1

pi log(pi),

where

pi =
f (vi)

∑n
j=1 f (v j)

for i = 1, 2, . . . , n. In [45], the authors gave some special examples of the above
defined entropy associated with different information functionals. In [29, 43,
44, 119, 118, 120], the interested reader can find some of the more recent
examples. In [49], M. Dehmer and A. Mowshowitz derived a number of
inequalities involving graph entropies based on an information functional.

Related to spectral properties of graphs, S.L. Braunstein, S. Ghosh and
S. Severini [24] proposed the von Neumann entropy of a graph G, which is
based on the eigenvalues of the density matrix ρ(G). Let λ1,λ2, . . . ,λn be the
eigenvalues of ρ(G). Then the von Neumann entropy of G is defined by the
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formula

Ivon(G) =
n
∑

i=1

λi log(λi).

K. Anand and G. Bianconi [8] showed that the Shannon entropy is linearly
related to the von Neumann entropy for so-called scale-free networks.

We end this subsection by presenting three versions of the Körner entropy.
These versions look somewhat different but are in fact equivalent. The follow-
ing version, which was put forward in [39], is not the first one but probably
the easiest one to understand. Let G = (V, E) be a graph. The vertex pack-
ing polytope of G, denoted by V P(G), is the convex hull of the characteristic
vectors of the independent sets of G. Let P= (p1, p2, . . . , pn) be a probability
distribution on V (G), and let a = (a1, a2, . . . , an) ∈ V P(G) be a vector. The
Körner entropy of G with respect to P is

I(G,P) = min
a∈V P(G)

n
∑

i=1

pi log
�

1
ai

�

.

The other two versions of the Körner entropy have appeared in [79]. The
next one is related to the concept of mutual information. For two random
variables X and Y , their mutual information is defined as

I(X ; Y ) =
∑

x∈X ,y∈Y

p(X ,Y )(x , y) log

�

p(X ,Y )(x , y)

pX (x)pY (y)

�

,

where p(X ,Y ) is the joint probability mass function of X and Y , and pX and
pY are the marginal probability mass functions of X and Y , respectively. Let
variable X take its values on V (G) and Y on the independent sets of G, and
let their joint distribution satisfy X ∈ Y having probability 1. The marginal
distribution of X is given by a probability distribution P on V (G). The Körner
entropy of G regarding P is defined by

I(G,P) =min I(X ; Y ).

J. Körner [79] defined the following version as the original Körner entropy.
Let P be a probability distribution on V (G). Define the probability distribution
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pn on V n by pn(x) =
∏n

i=1 p(x i). Let 0< ε < 1 be a real number and

T∨n
ε = {U ⊆ V n :

∑

x∈U

pn(x)> 1− ε}.

For U ⊆ V n, let G∨n[U] denote the subgraph induced by U in G∨n, where G∨n

is the n-th conormal power of G. Then the Körner entropy I(G,P) is defined
by

I(G,P) = lim
n→∞

min
U∈T∨n

ε

1
n

log
�

χ(G∨n[U])
�

.

For more details and for proofs of the equivalence of these three versions of
the Körner entropy, we refer the reader to [39, 79, 110].

The above exposition gives just a small impression of the many variants
of global graph entropies which have been introduced and studied over the
last seventy years, since the first concepts of so-called information content or
entropy were introduced in the 1950s by N. Rashevsky [104] and E. Trucco
[115]. We refer the interested reader to the two survey papers [48, 110] and
the two books [19, 46] for more information.

In the next subsection, we give a few examples of local graph entropies.

1.3.2 Local entropies

Let G be a connected graph with vertex set V = {v1, v2, . . . , vn}. In [45],
M. Dehmer and F. Emmert-Streib defined a local entropy based on the distances
from one vertex to all the other vertices, as follows:

Iℓ(vi) =
n
∑

j=1

c jd(vi , v j)
∑n

t=1 ct d(vi , vt)
log

�

c jd(vi , v j)
∑n

t=1 ct d(vi , vt)

�

,

where c j > 0 for j = 1,2, . . . , n. By setting c j = 1 for j = 1,2, . . . , n, a special
case of this local entropy was defined and studied in [78]. Two global distance-
based entropies can be obtained by taking the average or the sum of the above
expression over all vertices. Taking the average, one graph entropy of G is
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defined by the formula

Iℓ(G) =

∑n
i=1 Iℓ(vi)

n
.

Taking the sum, the other graph entropy of G is defined by the formula

Îℓ(G) =
n
∑

i=1

Iℓ(vi).

For the statistical analysis of certain chemical structures, M. Dehmer, K. Var-
muza, S. Borgert and F. Emmert-Streib [50] explored several special cases
of the above local entropy. For this purpose, they applied several different
choices for the coefficients, including

• c1 = n, c2 = n− 1, . . . , cn = 1 (linearly decreasing coefficients), and

• c1 = n, c2 = ne−1, . . . , cn = ne1−n (exponentially decreasing coeffi-
cients).

These coefficients are depending on the number of vertices n.

Based on the j-spheres of a connected graph G of order n, E.V. Konstanti-
nova and A.A. Paleev [78] defined a local entropy by the formula

Is(vi) = −
ecc(vi)
∑

j=1

|S j(vi , G)|
n

log

�

|S j(vi , G)|
n

�

.

The authors studied the sensitivity of these local entropies when applied to
so-called polycyclic graphs. They also defined and studied the associated
global graph entropy of G, obtained by taking the sum

Îs =
n
∑

i=1

Is(vi).

Since this thesis is focused on global graph entropies, we close this subsection
on local entropies here, and turn to some applications. For more information
on local graph entropies, we refer the interested reader to the book [113].
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1.3.3 Applications

Since graphs can be used to model any set of objects and their pairwise
relations, it will not come as a surprise that graph entropies have been applied
in many different applications areas. In these applications, the entropy of
a graph is usually interpreted as its structural information content and as a
measure of its complexity. Most of such applications can be found in chemical
graph theory, where the entropy is used in attempts to characterize the atomic
structure and properties of molecules. A good source for more information on
applications in chemistry is the book by D. Bonchev [16]. Here we start our
exposition by highlighting some applications in other areas.

From 1973 to 1992, the Körner entropy which we have defined earlier
has been widely studied. J. Körner [79] discovered that the subadditivity of
graph entropy in connection with a problem in coding theory can be used to
prove good bounds for graph covering problems. In his follow up paper [80],
he showed that a result which is known as the Fredman-Komlós lemma is a
consequence of a simple inequality between entropies of graphs. This in turn
enabled him to handle more problems on separating partition systems, includ-
ing problems related to hashing. A few years later, in a joint paper by J. Körner
and K. Marton [82], the authors derived new bounds for perfect hashing based
on an extension of graph entropy to hypergraphs. Their bounds improved the
bounds obtained by M. Fredman and J. Komlós [60] for a complete family
of hash functions. In another paper by J. Körner and K. Marton [81], it was
proved that for a bipartite graph G and an arbitrary probability distribution
P on its vertex set, the entropies of G and its complement add up to the
entropy of P. Their results have interesting connections with the well-known
Ford–Fulkerson method in the theory of network flows.

Another equivalent version of the Körner entropy was defined in terms of
the vertex packing polytope of the graph, and first appeared in [39]. Using
this version, I. Csiszár, J. Körner, L. Lovász, K. Marton and G. Simony in [39]
gave an information theoretic characterization of so-called perfect graphs.
In [83], J. Körner, G. Simonyi and Z. Tuza gave the following alternative
characterization of perfect graphs, based on the additivity of graph entropy:
G is a perfect graph if and only if the entropy of the complete graph is equal
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to the sum of those of G and its complement. For more information on the
relationship between graph entropy and perfect graphs, we refer the reader
to the survey [111].

In another interesting application area related to computational complexity,
I. Newman and A. Wigderson [101] used hypergraph entropy to derive lower
bounds on the formula size of Boolean functions.

Our next applications of graph entropy fall within the area of informa-
tion and communication theory, and start with another classic work due to
C.E. Shannon [109]. In this paper, he formulated and studied the zero-error
capability of a single-input single-output channel. For this, he represented
a memoryless channel as a graph whose vertices are the input letters of an
alphabet, and in which any two vertices are joined by an edge if they are
not distinguishable (can be confused) at the output of the channel. In [109],
C.E. Shannon dealt with all graphs on at most five edges, except the cycle
on five vertices. For this remaining case, he only established a lower bound.
This problem was not solved until 1979, when L. Lovász [93] proved that C.E.
Shannon’s lower bound was tight. In [93], other special graph classes are
treated as well.

In the general setting, a sender wants to pass a piece of information
accurately to a receiver who has some (possibly related) data. In [4], N. Alon
and A. Orlitsky examined the expected number of bits that the sender must
transmit in order to pass the information correctly. They consider single and
multiple instances of two related communication scenarios. They show that
the expected number of bits is related to the chromatic number of the graph
which represents the data. Interestingly, they show that the Körner entropy
of the graph gives a lower bound for the single instance case, and that it is
precisely the asymptotic per-instance number of bits for the unrestricted-inputs
scenario.

One of the reasons why there are so many different variants of graph en-
tropy around is that it is impossible to capture the complexity or information
content of graphs in one measure. Different applications usually require dif-
ferent types of structural information and naturally lead to different measures.
In [11], it is stated that describing complexity quantitatively is a large and
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rapidly developing subject. Although various interpretations of the term have
been proposed in different disciplines, no comprehensive discussion has been
attempted. The intuitive notion of complexity is well expressed by the Collins
English dictionary definition: “Complexity is the state of having many different
parts connected or related to each other in a complicated way”.

In the work of E.B. Allen [3], an information-theoretic approach has been
used to measure the complexity of graph abstractions of software systems
and modules in computer-related disciplines. In this approach, graphs are
used for representing many abstractions of software at the system and module
level, and extensions to hypergraphs are suggested as well. Graph entropy
measures are proposed for measuring the size, length, complexity, coupling
and cohesion of software engineering abstractions.

Graph entropy measures have also been applied to gene networks. In [7],
G. Altay and F. Emmert-Streib used information theory technology to statisti-
cally analyze network inference algorithms for gene networks. They employ
local network-based entropy measures to assess the performance of these
algorithms. This initiated a graph-theoretic perspective on the problem, and
enabled studying arbitrary network components instead of the entire net-
work. Using this approach they compared four different network inference
algorithms. They demonstrated that these measures allow an exploratory anal-
ysis of inference algorithms on the level of network components, e.g., edges,
motifs or subnetworks. In addition, F. Emmert-Streib and M. Dehmer [57]
explored information dissemination in gene networks by performing single
gene knockouts. For information theoretical analysis of networks, K. Anand
and G. Bianconi [8] discussed physics-based network entropies including the
von Neumann entropy, and defined network integration.

Also within the field of robotics and multi-agent systems, graph entropy
measures have proved to be useful and effective. In [13], T. Balch introduced
the concept of hierarchic social entropy in order to quantify the diversity of
robot teams. He also examined the correlation between these measures by
using a collection of business processes that represent the network. In [87],
A. Li and Y. Pan proposed that structural entropy is the first measure of the
dynamical complexity of networks, measuring the complexity of interactions,
communications, operations, and even the evolution of networks. In [88],
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by using structural entropy, a generalized degree-graph entropy, the authors
proved that the modular structure of the genome spatial organization may
be fundamental to even a small cohort of single cells. To classify some of the
most important complexity measures, we recommend the reader to consider
the following outline due to M. Dehmer [43]:

• classical information measures [15, 16, 20, 18, 21, 19, 61, 108, 112];

• entropic measures for characterizing graph classes [79, 111];

• information-theoretic measures to determine the structural information
content of a network [16, 41, 97, 98, 99, 100, 104, 115];

• complexity measures for networks based on the principle of Kolmogorov-
complexity [17, 20, 89];

• information-theoretic robustness measures for complex networks [55,
56];

• statistical correlation measures for structurally characterizing complex
networks [112];

• simulated annealing methods to investigate network structures [112,
107].

It is clear from the previous sections that many different variants of graph
entropy have been introduced and studied in many different application areas.
We close this introductory chapter by presenting a short outline of our main
contributions in the next section.

1.4 Outline of the main results of this thesis

Apart from this introductory chapter, this thesis consists of six technical chap-
ters that are based on earlier submitted papers. In these six chapters, we mainly
concentrate on determining extremal values of degree-based and distance-
based entropies restricted to certain graph classes. We also consider some
related problems, such as the complexity of spanning tree problems involving
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graphical indices, including the degree-based graph entropy. The remainder
of this thesis is organized as follows.

In Chapter 2, we consider the effect of graph operations on the value of
the degree-entropy. We derive several new results, based on graph operations
including concepts like the complement, the weak product, the blow-up and
the identification of vertices.

In Chapter 3, we determine the minimum and maximum values of the
degree-entropy among trees and unicyclic graphs with a given bipartition, re-
spectively. We identify the corresponding extremal graphs. We also determine
the minimum value of the degree-entropy among trees with a given diameter
and characterize the extremal graphs.

In Chapter 4, we characterize the bipartite graphs that minimize the degree-
entropy, among all bipartite graphs of a given size, or a given size and (upper
bound on the) order. The extremal graphs turn out to be complete bipartite
graphs, or nearly complete bipartite. Here we make use of an equivalent
representation of bipartite graphs by means of Young diagrams, which makes
it easier to compare the entropy of related graphs. We conclude that the
general characterization of the extremal graphs is a difficult problem, due
to its connections with number theory, but they are easy to find for specific
values of the order and size. We also give a direct argument to characterize
the graphs of a given order and size maximizing the entropy. We indicate how
our ideas extend to other graphical function-indices as well. This implies the
known result due to S. Cao, M. Dehmer and Y. Shi [29] that the path and star
attain the maximum and minimum degree-entropy among trees of order n,
respectively.

In Chapter 5, we study the extremal problems of finding the graphs attain-
ing the minimum degree-entropy among graphs of a given order and size. We
characterize the unique extremal graph achieving the minimum value. The
extremal graphs turn out to be so-called threshold graphs.

In Chapter 6, we consider the Wiener-entropy, which is together with the
eccentricity-entropy one of the most natural distance-based graph entropies.
By deriving the (asymptotic) extremal behavior, we conclude that the Wiener-
entropy of graphs of a given order is more spread than the eccentricity-entropy.
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We resolve three known conjectures on the eccentricity-entropy and propose
two new conjectures on the Wiener-entropy. These conjectures are reflecting
some surprising behavior of the graphs minimizing it.

In Chapter 7, we consider the computational complexity of spanning tree
problems involving the graphical function-index. This index was recently intro-
duced by X. Li and D. Peng [90] as a unification of a long list of chemical and
topological indices. We present a number of unified approaches to determine
the N P -completeness andAPX -completeness of maximum and minimum
spanning tree problems involving this index. We give many examples of well-
studied topological indices for which the associated complexity questions are
covered by our results.





Chapter 2

Graph operations on
degree-entropy

The results in this chapter deal with the effect of certain graph operations on the
degree-entropy, which was introduced in [29]. Recall that this degree-entropy
Id(G) of a graph G of size m > 0 is obtained from the Shannon entropy
−
∑n

i=1 p(x i) log p(x i) by replacing the probabilities p(x i) by the fractions
deg(vi)

2m , where {v1, v2, . . . , vn} is the vertex set of G, and deg(vi) is the degree
of vi in G. The effect of graph operations on some topological indices could
be used to study the extremal problems on the corresponding indices. This
motivates us to do some research of the effect of graph operations on the
degree-entropy. In Chapter 3, we study extremal problems involving the
degree-entropy restricted to trees and unicyclic graphs under some given
parameters. This is mainly done by analyzing the effect of graph operations
on the degree-entropy.

2.1 Introduction

We start this section with some background and preliminary results underpin-
ning our research.

25
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2.1.1 Background

Recalling that the degree of a vertex is the number of edges having this vertex
as an end-vertex, it is obvious that each edge contributes 2 to the sum of the
degrees taken over all vertices of G. Hence, the sum of the vertex degrees is
equal to twice the number of edges of G, a folklore result that goes back to L.
Euler [59], who proved this result in 1736. This result implies that in a graph
G of size m> 0, the fraction deg(v)

2m is between 0 and 1 for every vertex v of G,
and that the sum of these fractions taken over all vertices of G is equal to 1. As
we discussed in the previous chapter, it is natural to replace the probabilities
in the formula of the Shannon entropy by these fractions. This is the basic
idea behind the following definition of the degree-entropy which we adopted
from [29].

Let G be a graph with vertex set V = {v1, v2, . . . , vn} and size m > 0. We
recall that the degree-entropy of G, denoted by Id(G), is defined as

Id(G) = −
n
∑

i=1

deg(vi)
2m

log
�

deg(vi)
2m

�

. (2.1)

For later reference, we also define a function

hd(G) =
n
∑

i=1

deg(vi) log(deg(vi)). (2.2)

Straightforward calculations show that Id(G) = log(2m) − 1
2mhd(G). This

function hd(G) comes in handy if we want to compare Id(G) and Id(G′) for
two graphs G and G′ of the same size, or if we want to obtain the minimum
or maximum of Id(G), where G ranges over all members of a class of graphs
of size m.

S. Cao, M. Dehmer and Y. Shi [29] were the first to study the extremal
values of entropies based on degree powers for certain families of graphs, and
in more detail for the entropy defined in (2.1). More recently, A. Ghalavand,
M. Eliasi and A.R. Ashrafi [63] established the first maximum and minimum
values of the entropy in (2.1) for families of trees and unicyclic graphs, by
applying majorization techniques. We come back to this in Subsection 2.1.2,
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where we extend and apply one of their fundamental lemmas. In a very recent
paper, J. Yan [125] investigated the extremal properties of this entropy for
general graphs.

Our main results in the next section deal with the effect of certain graph
operations on the value of the degree-entropy from (2.1). It has been demon-
strated in many papers that graph operations can form an effective and valuable
tool in determining extremal values of several topological indices. Examples of
their benefit in obtaining these values have been illustrated with respect to the
eccentric connectivity coindex [10], the first and second Zagreb indices [76],
and the hyper-Wiener index [77]. For the degree-entropy, results in this di-
rection are generally lacking. Our contributions are motivated by the above
observations.

In the next subsection, we introduce some terminology and notation which
will be used later.

2.1.2 Preliminaries

In this subsection, we give some additional terminology and notation, and we
state and prove a number of lemmas which will be used in the proofs of our
results.

Whenever we use the term graph in this chapter, we allow multiple edges.
Let G = (V, E) be a graph. If the number of vertices in G with degree di is ai

for i = 0, 1, . . . , k, then we denote by D(G) = (dk, . . . , dk
︸ ︷︷ ︸

ak

, dk−1, . . . , dk−1
︸ ︷︷ ︸

ak−1

, . . . ,

d1, . . . , d1
︸ ︷︷ ︸

a1

) the degree sequence of G in which 0 = d0 < d1 < · · · < dk and

a0 + a1 + · · ·+ ak = |V (G)|.
In the context of our research, majorization is a useful relationship between

two non-increasing integer (degree) sequences A= (a1, a2, . . . , an) and B =
(b1, b2, . . . , bn). We say that A majorizes B, denoted by A ⪰ B, if for all k ∈
{1, 2, . . . , n− 1}:

k
∑

i=1

ai ≥
k
∑

i=1

bi , and
n
∑

i=1

ai =
n
∑

i=1

bi .
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If at least one of the above inequalities is strict, then we say the majorization
is strict. We use A≻ B to express that A strictly majorizes B.

A. Ghalavand, M. Eliasi and A.R. Ashrafi [63] proved the following result
for simple graphs, but it is straightforward to extend their proof to graphs. We
omit the proof.

Lemma 2.1. Let G and G′ be two graphs of the same order and size. If D(G)⪰
D(G′) , then Id(G)≤ Id(G′), with equality holding in the inequality if and only
if D(G) = D(G′).

2.2 The effect of graph operations

We consider some unary operations, an operation with only one operand, in
the following subsection.

2.2.1 Unary operations

Let G = (V, E) be a graph. For a subset S ⊆ E, we use G−S to denote the graph
(V, E \S) (for which we restrict the incidence functionψG to E \S if necessary).
Similarly, we use G + F to denote the graph obtained from G by adding a set
F of new edges incident with pairs of distinct vertices of G (possibly creating
multiple edges and defining or extending the incidence function ψG in the
obvious way). If S = {e} or F = {e}, we use G − e and G + e as shorthand for
G −{e} and G + {e}, respectively. Similarly, we use G − e+ f as shorthand for
(G − e) + f .

The following four results and their consequences deal with the effect of
edge additions and edge deletions on the value of the degree-entropy Id(G)
of (2.1).

Theorem 2.1. Let u, v, w and x be four vertices of a graph G. Set G′ = G+e and
G′′ = G + f , in which ψG′(e) = uv and ψG′′( f ) = wx. If degG(u) ≥ degG(w)
and degG(v) ≥ degG(x), then Id(G′) ≤ Id(G′′), with equality holding in the
latter inequality if and only if degG(u) = degG(w) and degG(v) = degG(x).

The following known result is an easy consequence of Theorem 2.1.
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Corollary 2.1 ([29]). Let u, v and w be three vertices of a simple graph G.
Suppose that u and v are adjacent, and w and v are not adjacent, and set
G′ = G − uv +wv. If degG(u)− degG(w)≥ 2, then Id(G)< Id(G′).

In fact, since Theorem 2.1 holds for graphs with multiple edges, we can
deduce the slightly stronger statement in which we assume e (withψG(e) = uv)
is one of possibly more than one edges joining u and v, and f (with ψG′( f ) =
wv) is a new edge of G′ joining the possibly already adjacent vertices w and v
of G. We also immediately obtain the following result involving the deletion
and addition of pendant edges.

Corollary 2.2. Let u, v and w be three vertices of a graph G. Suppose that
degG(v) = 1, u and v are adjacent, and w and v are not adjacent. Set G′ =
G − e+ f , in which ψG(e) = uv and ψG′( f ) = wv. Then Id(G)≤ Id(G′) if and
only if degG(u)> degG(w).

In our next result, we compare the effect of adding one edge between two
different pairs of vertices with the same degree sum.

Theorem 2.2. Let s be a positive integer, and let u, v, w and x be four vertices of
a graph G. Suppose that degG(u)≥ degG(v)≥ 1, degG(w)≥ degG(x)≥ 1, and
degG(u) + degG(v) = degG(w) + degG(x) = s. Set G′ = G + e and G′′ = G + f ,
in which ψG′(e) = uv and ψG′′( f ) = wx. If degG(u)− degG(v) ≤ degG(w)−
degG(x), then Id(G′)≤ Id(G′′), with equality holding in the latter inequality if
and only if degG(u) = degG(w).

In our next subsection, we consider a number of more global operations
on a graph.

2.2.2 Binary operations

The firstoperationis the so-called k-blow up of G, denoted by G(k). This is
the graph obtained by replacing every vertex v of G with k > 0 distinct copies,
and joining every copy of u to every copy of v in G(k) with ℓuv edges if and
only if there are ℓuv edges joining u and v in G. We deduce the following
expression for the degree-entropy of G(k).
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Theorem 2.3. Let G be a graph with at least one edge, and let k ≥ 1 be an
integer. Then Id(G(k)) = Id(G) + log(k).

In the next result, we consider the graph G/{x , y} obtained from a graph
G by identifying two distinct nonadjacent vertices x and y, i.e., replacing x
and y by a single new vertex z and making z incident to all edges that were
incident to x or y (possibly creating multiple edges). The following result
shows that the degree-entropy decreases if two distinct nonadjacent vertices
are identified.

Theorem 2.4. Let G be a graph with at least one edge. Suppose that x and y are
two distinct nonadjacent vertices of G. Set G′ = G/{x , y}. Then Id(G)> Id(G′)
if and only if degG(x)> 0 and degG(y)> 0.

We next consider the identification of two vertices x ∈ V (G) and z ∈ V (H)
from disjoint graphs G and H, resulting in the graph denoted as GxHz. We
observe the following effect of the degree of x on the degree-entropy of GxHz.

Theorem 2.5. Let G and H be two disjoint graphs. Suppose that x and y are
two vertices of G, and z is a non-isolated vertex of H. If degG(x) ≥ degG(y),
then Id(GxHz) ≤ Id(G yHz), with equality holding in the latter inequality if
and only if degG(x) = degG(y).

Our final result of this subsection deals with the weak product (also known
as tensor product or Kronecker product) G × G′ of two disjoint graphs G and
G′. This is the graph with vertex set V (G) × V (G′), in which every pair
of edges f ∈ E(G) with ψG( f ) = uv and f ′ ∈ E(G′) with ψG′( f ′) = u′v′

produces two edges e1, e2 ∈ E(G × G′) with ψG×G′(e1) = (u, u′)(v, v′) and
ψG×G′(e2) = (v, u′)(u, v′) (in other words, either (u, u′)(v, v′) or (v, u′)(u, v′)
has multiplicity ab if uv has multiplicity a and u′v′ has multiplicity b).

We deduce the following nice relationship between the degree-entropy of
G × G′, G and G′.

Theorem 2.6. Let G and G′ be two disjoint graphs with at least one edge. Then
Id(G × G′) = Id(G) + Id(G′).
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2.3 Proofs

In this final section, we gathered all the missing proofs of the statements in
earlier sections.

Proof of Theorem 2.1. Without loss of generality, we assume that degG(u) ≥
degG(v). If degG(u) = degG(w) or degG(v) = degG(x), then we have D(G′)⪰
D(G′′). Using Lemma 2.1, we get Id(G′) ≤ Id(G′′), with equality holding
in this inequality if and only if degG(u) = degG(w) and degG(v) = degG(x).
We consider degG(u)> degG(w) and degG(v)> degG(x) in the following. It
follows that D(G′) ≻ D(G′′) if degG(u) = degG(v). Then, using Lemma 2.1
again, we have Id(G′)< Id(G′′). We only prove the case degG(u)> degG(w)>
degG(v) > degG(x), since the other cases degG(u) > degG(v) = degG(w) >
degG(x), degG(u) > degG(v) > degG(w) > degG(x), degG(u) > degG(v) >
degG(w) = degG(x), and degG(u) > degG(v) > degG(x) > degG(w) can be
proved similarly. Let us relabel the vertices of the graph G as v1, v2, . . . , vn

such that degG(v1)≥ degG(v2)≥ · · · ≥ degG(vn). Suppose that vi = u, v j = w,
vs = v and vr = x . We may assume i < j < s < r in which

i =min{l|degG(vl) = degG(u)},

j =min{l|degG(vl) = degG(w)},

s =min{l|degG(vl) = degG(v)},

and
r =min{l|degG(vl) = degG(x)}.

For each k ∈ {1, 2, . . . , i − 1}, we have

k
∑

t=1

degG′(vt) =
k
∑

t=1

degG′′(vt);

for each k ∈ {i, i + 1, . . . , j − 1}, we have

k
∑

t=1

degG′(vt)>
k
∑

t=1

degG′′(vt);
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for each k ∈ { j, j + 1, . . . , s− 1}, we have

k
∑

t=1

degG′(vt) =
k
∑

t=1

degG′′(vt);

for each k ∈ {s, s+ 1, . . . , r − 1}, we have

k
∑

t=1

degG′(vt)>
k
∑

t=1

degG′′(vt);

for each k ∈ {r, r + 1, . . . , n}, we have

k
∑

t=1

degG′(vt) =
k
∑

t=1

degG′′(vt).

Therefore, D(G′) ≻ D(G′′). Using Lemma 2.1, we conclude that Id(G′) <
Id(G′′).

Proof of Corollary 2.1. Set H = G−uv. We have G = H+uv and G′ = H+wv.
Since degG(u)− degG(w)≥ 2, degH(u) = degG(u)− 1> degG(w) = degH(w).
By Theorem 2.1, we have Id(G)< Id(G′).

Proof of Corollary 2.2. Set H = G − e. We have G = H + e and G′ = H + f .

Suppose that degG(u) ≤ degG(w). We have degH(u) = degG(u) − 1 <
degG(w) = degH(w). By Theorem 2.1, we have Id(G) > Id(G′), a contradic-
tion.

Hence, degG(u) > degG(w) and degH(u) = degG(u) − 1 ≥ degG(w) =
degH(w). By Theorem 2.1, we have Id(G)≤ Id(G′).

Proof of Theorem 2.2. Since degG(u)+degG(v) = degG(w)+degG(x) = s and
degG(u)−degG(v)≤ degG(w)−degG(x), we have degG(u)≥

s
2 , degG(w)≥

s
2

and degG(w) ≥ degG(u). If degG(u) = degG(w), then Id(G′) = Id(G′′). We
consider the case degG(w)> degG(u) in the following.



2.3. Proofs 33

Let g(t) = t log t+1
t + log(t + 1) + (s − t) log s−t+1

s−t + log(s − t + 1) for
s
2 ≤ t ≤ s− 1. By calculating the first-order derivative, we obtain

g ′(
s
2
) = 0

and
g ′(t) = log

t + 1
t
− log

s− t + 1
s− t

< 0

for s
2 < t ≤ s − 1. This implies g(t) strictly decreases as t increases for

s
2 ≤ t ≤ s−1. Let m be the size of G. Because degG(u)+degG(v) = degG(w)+
degG(x) = s, we have

Id(G
′) = log (2m+ 2)−

1
2m+ 2

hd(G)

+
1

2m+ 2
(degG(u) log (degG(u)) + degG(v) log (degG(v))

− (degG(u) + 1) log (degG(u) + 1)− (degG(v) + 1) log (degG(v) + 1))

= log (2m+ 2)−
1

2m+ 2
hd(G)−

1
2m+ 2

�

degG(u) log

�

degG(u) + 1

degG(u)

�

+ log (degG(u) + 1) + degG(v) log

�

degG(v) + 1

degG(v)

�

+ log (degG(v) + 1)

�

= log (2m+ 2)−
1

2m+ 2
hd(G)−

1
2m+ 2

�

degG(u) log

�

degG(u) + 1

degG(u)

�

+ log (degG(u) + 1) + (s− degG(u)) log

�

s− degG(u) + 1

s− degG(u)

�

+ log (s− degG(u) + 1)

�

= log (2m+ 2)−
1

2m+ 2
hd(G)−

1
2m+ 2

g(degG(u)).

By similar calculations, Id(G′′) = log (2m+ 2)− 1
2m+2hd(G)−

1
2m+2 g(degG(w)).

Since degG(x) ≥ 1, s − 1 ≥ degG(w). This implies s
2 ≤ degG(u) <

degG(w) ≤ s − 1. So we have g(degG(u)) > g(degG(w)). Thus Id(G′) <
Id(G′′).

Proof of Theorem 2.3. Let {v1, v2, . . . , vn} denote the vertex set of G. We use
vi1, vi2, . . . , vik to denote k copies of vi in the blow-up graph G(k). Let m be the
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size of G. By definition, we have degG(k)(vi j) = k degG(vi) for i = 1,2, . . . , n

and j = 1,2, . . . , k. Thus
∑k

j=1

∑n
i=1 degG(k)(vi j) =

∑k
j=1

∑n
i=1 k degG(vi) =

∑k
j=1 2km= 2k2m. So we have

Id(G
(k)) = log(2k2m)−

1
2k2m

n
∑

i=1

k
∑

j=1

degG(k)(vi, j) log
�

degG(k)(vi, j)
�

= log(2k2m)−
1

2k2m

n
∑

i=1

(k2 degG(vi)) log(k degG(vi))

= log(2k2m)−
k2

2k2m

�

log (k)
n
∑

i=1

degG(vi) +
n
∑

i=1

degG(vi) log
�

degG(vi)
�

�

= log(2m)−
1

2m
hd(G) + log(k)

= Id(G) + log(k).

Proof of Theorem 2.4. Let m be the size of G. Identifying x and y of G, we use
a vertex z to replace these vertices. This implies degG′(z) = degG(x)+degG(y).

Suppose that degG(x) = 0 or degG(y) = 0. It follows from degG(x) = 0
(resp., degG(y) = 0) that degG′(z) = degG(y) (resp., degG′(z) = degG(x)).
Because the case with degG(y) = 0 can be proved similarly, we only consider
the case that degG(x) = 0. We have

Id(G
′)− Id(G) =

1
2m
(degG(x) log(degG(x)) + degG(y) log(degG(y))

− degG′(z) log(degG′(z)))

=
1

2m

�

0 log(0) + degG(y) log(degG(y))− degG(y) log(degG(y))
�

= 0,

a contradiction.

This contradiction implies degG(x)> 0 and degG(y)> 0, and

degG(x)
degG(x) + degG(y)

degG(y)

(degG(x) + degG(y))(degG(x)+degG(y))
< 1.
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So we have

Id(G
′)− Id(G) =

1
2m
(degG(x) logdegG(x) + degG(y) log degG(y)

− degG′(z) logdegG′(z))

=
1

2m
(degG(x) logdegG(x) + degG(y) log degG(y)

− (degG(x) + degG(y)) log(degG(x) + degG(y)))

=
1

2m
log

�

degG(x)
degG(x) + degG(y)

degG(y)

(degG(x) + degG(y))(degG(x)+degG(y))

�

< 0.

Proof of Theorem 2.5. Let G and H be two graphs satisfying the hypothesis of
the theorem. Since z is a non-isolated vertex of H, we have degH(z) ≥ 1. If
degG(x)> degG(y), then

degG(y)
degG(y)(degG(x) + degH(z))

degG(x)

degG(x)degG(x)(degG(y) + degH(z))degG(y)
> 1

and
degG(x) + degH(z)
degG(y) + degH(z)

> 1.

This implies

hd(GxHz)− hd(G yHz) = (degG(x) + degH(z)) log(degG(x) + degH(z))

+ degG(y) log degG(y)

− (degG(y) + degH(z)) log(degG(y) + degH(z))

− degG(x) logdegG(x)

= degG(x) log

�

degG(x) + degH(z)
degG(x)

�

+ degG(y) log

�

degG(y)
degG(y) + degH(z)

�

+ degG(z) log

�

degG(x) + degH(z)
degG(y) + degH(z)

�

= log

�

degG(y)
degG(y)(degG(x) + degH(z))

degG(x)

degG(x)degG(x)(degG(y) + degH(z))degG(y)

�
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+ degG(z) log

�

degG(x) + degH(z)
degG(y) + degH(z)

�

> 0.

So we have Id(GxHz)< Id(G yHz). If degG(x) = degG(y), then D(GxHz) =
D(G yHz). Therefore, Id(GxHz) = Id(G yHz).

Proof of Theorem 2.6. Let m (resp., m′) be the size of G (resp., G′). By defi-
nition, degG×G′((u, u′)) = degG(u)degG′(u

′) for u ∈ V (G) and u′ ∈ V (G′). So
we have

∑

u∈V (G)
u′∈V (G′)

degG×G′((u, u′))

=
∑

u∈V (G)

∑

u′∈V (G′)

degG(u)degG′(u
′)

= 2m′
∑

u∈V (G)

degG(u)

= 4mm′.

This implies

Id(G × G′) = log (4mm′)−
1

4mm′

∑

u∈V (G)
u′∈V (G′)

degG×G′((u, u′)) log(degG×G′((u, u′)))

= log (4mm′)−
1

4mm′

∑

u∈V (G)
u′∈V (G′)

degG(u)degG′(u
′) log (degG(u)degG′(u

′))

= log (4mm′)−
1

4mm′

∑

u∈V (G)
u′∈V (G′)

(degG(u)degG′(u
′) log(degG(u))

+ degG(u)degG′(u
′) log(degG′(u

′))

= log (4mm′)−

2m′
∑

u∈V (G)
degG(u) log(degG(u))

4mm′

−

2m
∑

u′∈V (G′)
degG′(u

′) log(degG′(u
′))

4mm′

= log(2m)−
1

2m
hd(G) + log(2m′)−

1
2m′

hd(G
′)
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=Id(G) + Id(G
′).





Chapter 3

Degree-entropy of trees and
unicyclic graphs

In this chapter, we characterize the graphs that minimize or maximize the
degree-entropy among trees and unicyclic graphs with some given parameters
relying on some results from Chapter 2. Firstly, we determine the minimum
and maximum values of the degree-entropy among trees and unicyclic graphs
with given bipartitions, respectively. Secondly, we characterize all the corre-
sponding extremal graphs. Finally, we determine the minimum value of the
degree-entropy among trees and unicyclic graphs with a given diameter.

3.1 Introduction

Before we present our results , we start with some background and recall some
terminology and notation.

In this chapter, we call a graph of order n an n-vertex graph. Let G be
an n-vertex graph with V = {v1, v2, . . . , vn}. We refer to equations (2.1) and
(2.2) in Chapter 2 for the definition of the degree-entropy Id(G) of G, and
to the function hd(G) =

∑n
i=1 degG(vi) log degG(vi), respectively. From the

discussion following equation (2.2), we see that, for certain families of graphs

39



40 Chapter 3. Degree-entropy of trees and unicyclic graphs

of order n and size m, the extremal values of Id(G) can be obtained directly
from the extremal values of hd(G). We will frequently use this in our proofs.

One of the fundamental and first natural problems in studying any (new)
graph invariant is determining its minimum and maximum values, and char-
acterizing the extremal graphs attaining these values. For such problems,
restrictions to special graph classes are also often considered. This holds in
particular for graph entropies and more generally for topological indices of
graphs. Especially in application areas like chemistry, the class of trees and
more sophisticated special graph classes are motivated by the atomic structure
of hydrocarbon molecules or their carbon atom skeleton.

The problems of determining the minimum and maximum values of the
degree-entropy of trees and unicyclic graphs have been studied in [29, 63]. S.
Cao, M. Dehmer and Y. Shi [29] determined the minimum value and maximum
value of degree-entropy among trees of a given order, and characterized the
corresponding extremal graph. Before showing their results, we introduce
some notation. As usual, Pn denotes the n-vertex path. We also recall that
by K1,n−1 we denote the n-vertex star, and we call v the center of K1,n−1 if
degK1,n−1

(v) = n− 1.

Theorem 3.1 ([29]). Let T be an n-vertex tree. We have

(a) Id(T )≤ Id(Pn), with equality holding if and only if T ∼= Pn;

(b) Id(T )≥ Id(K1,n−1), with equality holding if and only if T ∼= K1,n−1.

Related to the work presented here, H. Zhang and S. Li [127] established
sharp lower bounds on the so-called cover cost among trees with given di-
ameters and bipartition. Similarly, Z. Du [54] determined the minimum and
maximum Wiener indices of trees with a given bipartition, as well as the mini-
mum Wiener index of unicyclic graphs with a given bipartition. Motivated by
the above results, in this chapter we study the minimum and maximum values
of the degree-entropy of trees and unicyclic graphs with a given bipartition,
and the minimum value of the degree-entropy of trees and unicyclic graphs
with a given diameter.
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3.2 Results

In this section, we present our results on the extremal values of the degree-
entropy among trees and unicyclic graphs for which we fix some graph invari-
ants. In addition, we give the corresponding extremal graphs.

Before we can present our first result in this section, we need some addi-
tional notation.

For an integer k ≥ 1, let Tn(n0, n1, . . . , nk) be the n-vertex tree which is
obtained from the path Pk+1 = v0v1 · · · vk by attaching ni pendant vertices to
the vertex vi for i = 1, 2, . . . , k− 1, so with n− 2=

∑k−1
i=1 (ni + 1). Now we let

T ∗n,k (see Figure 3.1) denote the set of all n-vertex trees Tn(n0, n1, . . . , nk) with
n1 = · · · = ni−1 = ni+1 = · · · = nk−1 = 0 and ni = n−1−k for i = 1, 2, . . . , k−1.

All the trees of Figure 3.1 have the same degree-entropy log(2n− 2)−
(n−k+1) log(n−k+1)

2n−2 − k−1
n−1 , and they appear naturally in the following extremal

result.

v0 v1 v2 vk−1 vk

vk+1

vk+2
vn−1

v0 v1 vi−1 vi vi+1 vk−1 vk

vk+1

vk+2
vn−1

v0 v1 vk−2 vk−1 vk

vk+1

vk+2
vn−1

Figure 3.1: The trees in T ∗n,k.

Theorem 3.2. Let T be an n-vertex tree with diameter k ≥ 1. If Id(T ) attains
the minimum value among all n-vertex trees with diameter k, then T ∈ T ∗n,k.
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u1

u2

u3

u4u5

u6

uk−1

uk

un

uk+2uk+1

Figure 3.2: The unicyclic graph Cn(n1, n2, . . . , nk) for n1 =
n− k > 0 and n2 = · · ·= nk = 0.

We can prove an analogous result for unicyclic graphs (possibly a tree with
one double edge). Let Cn denote the n-vertex cycle with n ≥ 2 (where C2

corresponds to a double edge). Let Cn(n1, n2, . . . , nk) be the n-vertex unicyclic
graph obtained from the cycle Ck = u1u2 · · ·uku1 by attaching ni pendant
neighbors to the vertex ui for i = 1,2, . . . , k. Figure 3.2 shows the unicyclic
graph Cn(n1, n2, . . . , nk) for n1 = n − k > 0 and n2 = · · · = nk = 0 (i.e.,
Cn(n− k, 0, . . . , 0

︸ ︷︷ ︸

k−1

)).

Theorem 3.3. Let C be an n-vertex unicyclic graph containing a cycle of order
k ≥ 2. If Id(C) attains the minimum value among all n-vertex unicyclic graphs
containing a k-vertex cycle, then C ∼= Cn(n− k, 0, . . . , 0

︸ ︷︷ ︸

k−1

).

We continue with the extremal results for specific subclasses of trees and
unicyclic graphs, but first need some additional terminology and notation.

We say that a graph G admits a (p, q)-bipartition if V (G) = V1 ∪ V2 for
disjoint sets V1 and V2 with |V1| = p > 0 and |V2| = q > 0, and each edge of G
has end-vertices in V1 and V2.

Let T (p, q) denote the set of all trees admitting a (p, q)-bipartition. Let
S∗(p, q) be the member of T (p, q) obtained by attaching p − 1 and q − 1
pendant vertices to the two vertices of a P2, respectively (as indicated in
Figure 3.3).

Let G be a graph, and recall that degmax(G) and degmin(G) denote the
maximum degree and minimum degree among the vertices in G, respectively.
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p− 1 q− 1

Figure 3.3: The tree S∗(p, q).

We consider another specific subclass of T (p, q). Let T ∗(p, q) denote the
set of all trees that can be obtained from any q-vertex tree T with degmax(T )≤
 

p+q−1
q

£

in the following way. First subdivide every edge of T , i.e., replace
each edge e = uv by a path uxuv v for a newly added vertex xuv . The new tree
clearly admits a (q− 1, q)-partition with V2 = V (T) and V1 consisting of the
newly added vertices. Next attach p− q+ 1 pendant vertices to the vertices of
V2 in such a way that the maximum degree of the vertices in V2 exceeds their
minimum degree by at most 1. The construction of one member of T ∗(15, 6)
is illustrated in Figure 3.4. Clearly, by construction every tree in T ∗(p, q) has
a (p, q)-bipartition.

Figure 3.4: The construction of a tree in T ∗(15,6).

The next result determines the minimum value of Id(T ) among all trees
T ∈ T (p, q) and characterizes the unique extremal tree.

Theorem 3.4. Let p and q be integers with p ≥ q ≥ 1. Then Id(T ) attains the
minimum value among all trees in T (p, q) if and only if T ∼= S∗(p, q).

The following result determines the maximum value of Id(T ) among all
trees T ∈ T (p, q) and characterizes all the extremal trees.

Theorem 3.5. Let p and q be integers with p ≥ q ≥ 1. Then Id(T ) attains the
maximum value among all trees in T (p, q) if and only if T ∈ T ∗(p, q).
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Figure 3.5: The construction of one member of C ∗(4, 3).

We finish this section with the counterparts of the above tree results for
unicyclic graphs. For this, we let C (p, q) denote the set of all unicyclic graphs
(possibly a tree with one double edge) admitting a (p, q)-bipartition. Obviously,
every member of C (p, q) has a unique cycle of an even order. We define a
subclass C ∗(p, q) of C (p, q) in a similar way as we did for trees. Let C ∗(p, q)
consist of all unicyclic graphs that can be obtained from a q-vertex unicyclic
graph C with degmax(C)≤

 

p+q
q

£

in the following way. First subdivide every
edge of C to obtain a unicyclic graph which admits a (q, q)-bipartition with
V2 = V (C) and V1 consisting of the newly added vertices. Next attach p− q
pendant vertices to the vertices of V2 in such a way that the maximum degree of
the vertices in V2 exceeds their minimum degree by at most 1. The construction
of one member of C ∗(4, 3) is illustrated in Figure 3.5. Clearly, by construction
every unicyclic graph in C ∗(p, q) has a (p, q)-bipartition.

The next result determines the minimum value of Id(C) among all unicyclic
graphs C ∈ C (p, q) and identifies the unique extremal graph.

Theorem 3.6. Let p and q be integers with p ≥ q ≥ 1. Then Id(C) attains
the minimum value among all unicyclic graphs in C (p, q) if and only if C ∼=
Cn(p− 1, q− 1).

Note that Cn(p− 1, q− 1) in the above statement is a special case of the
previously defined class Cn(n1, n2, . . . , nk), and that Cn(p − 1, q − 1) can be
obtained from the tree in Figure 3.3 by replacing the middle edge by a double
edge.

Our final result determines the maximum value of Id(C) among all unicyclic
graphs C ∈ C (p, q) and characterizes all the extremal graphs.

Theorem 3.7. Let p and q be integers with p ≥ q ≥ 1. Then Id(C) attains the
maximum value among all unicyclic graphs inC (p, q) if and only if C ∈ C ∗(p, q).
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3.3 Preliminaries

In this section, we give some additional terminology and notation, and we
state a number of lemmas which will be used in the proofs of our results.

Let G be a graph, and let S be a nonempty subset of V (G). If the num-
ber of vertices in S with degree di is ai for i = 0,1, . . . , k, then we denote by
D(S) = (dk, . . . , dk

︸ ︷︷ ︸

ak

, dk−1, . . . , dk−1
︸ ︷︷ ︸

ak−1

, . . . , d1, . . . , d1
︸ ︷︷ ︸

a1

) = [dak
k , dak−1

k−1 , . . . , da1
1 ] the de-

gree sequence of S in which 0 = d0 < d1 < · · ·< dk and a0+a1+ · · ·+ak = |S|.
We use D(G) to represent the degree sequence D(V (G)). If there exists a graph
G with degree sequence D = D(G), then D is called graphic, and G is called
a realization of D. Let A and B be two non-increasing sequences. Adopting
the notation of Subsection 2.1.2, we use A⪰ B and A≻ B to denote that A
majorizes B and that A strictly majorizes B, respectively.

Let G be a fixed graph with at least one edge, and let T be a randomly
chosen n-vertex tree. Denote by GuTw the graph obtained from G and T
by identifying a fixed non-isolated vertex u ∈ V (G) and a randomly chosen
vertex w ∈ V (T). Let v be the center of the star K1,n−1. For our proofs of
Theorems 3.2 and 3.3, the following two lemmas are key ingredients.

The first result shows that among all n-vertex trees, Id(GuK1,n−1v) attains
the minimum value.

Lemma 3.1. Let T be an n-vertex tree with w ∈ V (T ), and let v be the center of
K1,n−1. Suppose that G is a fixed graph with a fixed non-isolated vertex u ∈ V (G).
Then Id(GuTw)≥ Id(GuK1,n−1v), with equality holding in the inequality if and
only if GuTw∼= GuK1,n−1v.

Proof. Suppose that Id(GuTw)≤ Id(GuK1,n−1v) and GuTw is not isomorphic
to GuK1,n−1v. So we have degT (w) < n− 1. This implies that degGuTw(u) =
degG(u) + degT (w) < degG(u) + n − 1 = degGuK1,n−1v(u). By Theorem 3.1
(b), and recalling (2.2) and the remarks we made there, we have hd(T) ≤
hd(K1,n−1). Since degG(u) ≥ 1, the function g(t) = (t + degG(u)) log(t +
degG(u))− t log t strictly increases as t increases for t > 0. This implies

hd(GuK1,n−1v)− hd(GuTw) =hd(K1,n−1)− (n− 1) log(n− 1)

+ degGuK1,n−1 v(u) log degGuK1,n−1 v(u)− hd(T )
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+ degT (w) log degT (w)− degGuTw(u) logdegGuTw(u)

=hd(K1,n−1)− hd(T ) + (degG(u) + n− 1) log(degG(u) + n− 1)

− (degG(u) + degT (w)) log(degG(u) + degT (w))

+ degT (w) logdegT (w)− (n− 1) log(n− 1)

=hd(K1,n−1)− hd(T ) + g(n− 1)− g(degT (w))

>0,

a contradiction.

For our next lemma, let Tn,k (resp., Cn,k) denote the set of all trees
Tn(n0, n1, . . . , nk) (resp., all unicyclic graphs Cn(n1, n2, . . . , nk)). We consider
the extremal results for Tn,k and Cn,k.

Lemma 3.2. Let Tn,k and Cn,k be defined as above. Then

(a) Id(T) attains the minimum value among all trees in Tn,k if and only if
T ∈ T ∗n,k for n> k ≥ 1;

(b) Id(C) attains the minimum value among all unicyclic graphs in Cn,k if and
only if C ∼= Cn(n− k, 0, . . . , 0

︸ ︷︷ ︸

k−1

) for n≥ k ≥ 2.

Proof. We only prove (a) because (b) can be proved similarly.

Suppose that T /∈ T ∗n,k and Id(T ) attains the minimum value among all trees
in Tn,k. Let Pk+1 = v0v1 · · · vk be the diametrical path of T . This implies that
there exist two distinct vertices vi and v j with degT (vi)≥ 3 and degT (v j)≥ 3.
Without loss of generality, we may assume that degT (vi) ≤ degT (v j). Let
v /∈ V (Pk+1) be a neighbor of vi . Set T ′ = T − vi v + v j v. By Corollary 2.1, we
have Id(T ′)< Id(T ), a contradiction.

We need the next two lemmas for our proof of Theorem 3.6. Let n, p,
q and k be four integers with p + q = n, p ≥ q ≥ 1 and k ≥ 2. The fol-
lowing lemma shows that, among all possible values for n1, n2, . . . , nk with
Cn(n1, n2, . . . , nk) ∈ C (p, q), the minimum value is attained by Id(Cn(p−

k
2 , q−

k
2 , 0, . . . , 0
︸ ︷︷ ︸

k−2

)).
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Lemma 3.3. Let n, p, q and k be four integers with p+ q = n, p ≥ q ≥ 1 and
k ≥ 2. If Cn(n1, n2, . . . , nk) ∈ C (p, q), then Id(Cn(n1, n2, . . . , nk))≥ Id(Cn(p−
k
2 , q− k

2 , 0, . . . , 0
︸ ︷︷ ︸

k−2

)).

Proof. Let Ck = u1u2 · · ·uku1 be the cycle of Cn(n1, n2, . . . , nk) and let (V1, V2)
correspond to a (p, q)-bipartition of Cn(n1, n2, . . . , nk). Suppose that u2 j ∈ V1

and u2 j−1 ∈ V2 for j = 1,2, . . . , k
2 . This implies that

k
2
∑

j=1

�

degCn(n1,n2,...,nk)(u2 j−1)− 2
�

= p−
k
2

and
k
2
∑

j=1

�

degCn(n1,n2,...,nk)(u2 j)− 2
�

= q−
k
2

.

It follows that
2≤ degCn(n1,n2,...,nk)(u2 j)≤ p−

k
2
+ 2

and
2≤ degCn(n1,n2,...,nk)(u2 j−1)≤ q−

k
2
+ 2

for j = 1, 2, . . . , k
2 , and

degCn(n1,n2,...,nk)(u) = 1

for u ∈ V (Cn(n1, n2, . . . , nk)) \ V (Ck). We have D(Cn(p−
k
2 , q− k

2 , 0, . . . , 0
︸ ︷︷ ︸

k−2

)) =

[p− k
2 + 2, q− k

2 + 2,2k−2, 1n−k]. This implies D(Cn(p−
k
2 , q− k

2 , 0, . . . , 0
︸ ︷︷ ︸

k−2

))⪰

D(Cn(n1, n2, . . . , nk)). By Lemma 2.1, we have

Id(Cn(p−
k
2

, q−
k
2

,0, . . . , 0
︸ ︷︷ ︸

k−2

))≤ Id(Cn(n1, n2, . . . , nk)).

We state and prove one more lemma to complete this section. This lemma
shows the effect of shortening the cycle of Cn(s, t, 0, . . . , 0

︸ ︷︷ ︸

k−2

) on the value of the

degree-entropy.
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Lemma 3.4. Let n, s, t and k be four integers with s+ t + k = n, n≥ k ≥ 4 and
s, t ≥ 0. Then

Id(Cn(s+ 1, t + 1,0, . . . , 0
︸ ︷︷ ︸

k−4

))< Id(Cn(s, t, 0, . . . , 0
︸ ︷︷ ︸

k−2

)).

Proof. Without loss of generality, we assume that s ≥ t. It follows from

D(Cn(s, t, 0, . . . , 0
︸ ︷︷ ︸

k−2

)) = [s+ 2, t + 2, 2k−2, 1n−k]

and
D(Cn(s+ 1, t + 1, 0, . . . , 0

︸ ︷︷ ︸

k−4

)) = [s+ 3, t + 3,2k−4, 1n−k+2]

that D(Cn(s+1, t+1, 0, . . . , 0
︸ ︷︷ ︸

k−4

))≻ D(Cn(s, t, 0, . . . , 0
︸ ︷︷ ︸

k−2

)). By Lemma 2.1, we have

Id(Cn(s+ 1, t + 1,0, . . . , 0
︸ ︷︷ ︸

k−4

))< Id(Cn(s, t, 0, . . . , 0
︸ ︷︷ ︸

k−2

)).

3.4 Proofs

We present all proofs of our main results in this section.

Proof of Theorem 3.2. Let Pk+1 = v0v1 · · · vk be a diametrical path of T , and
let T i be the component of T − E(Pk+1) containing vi for i = 0,1, . . . , k. Let
H be the component of T − E(T i) containing vi. By Lemma 3.1, we have
Id(Hvi T

i vi)≥ Id(HviK1,|V (T i)|−1v) in which v is the center of K1,|V (T i)|−1. This
implies that T ∈ Tn,k. And by Lemma 3.2 (a), we have T ∈ T ∗n,k.

Proof of Theorem 3.3. Let Ck = u1u2 · · ·uku1 be the cycle of C , and let T i be
the component of C − E(Ck) containing ui for i = 1,2, . . . , k. Let H be the
component of C−E(T i) containing ui . By Lemma 3.1, we have Id(Hui T

iui)≥
Id(HuiK1,|V (T i)|−1v) in which v is the center of K1,|V (T i)|−1. This implies that
C ∈ Cn,k. And by Lemma 3.2 (b), we have C ∼= Cn(n− k, 0, . . . , 0

︸ ︷︷ ︸

k−1

).
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Proof of Theorem 3.4. Let Pt+1 = v0v1 · · · vt be a diametrical path of T . Sup-
pose that the diameter of T is at least 4 (i.e, t ≥ 4). Let A be the set of
neighbors of v3 excluding v2 of T . Let H1 (resp., H2) be the component of
T −A (resp., T − v2v3) containing v3. Then T can be obtained from H1 and H2

by identifying v3 ∈ V (H1) and v3 ∈ V (H2). Let T ′ be the tree obtained from
H1 and H2 by identifying v1 ∈ V (H1) and v3 ∈ V (H2). We may partition the
vertex set of T ′ and T in the same way. Thus T ′ has a (p, q)-bipartition. Clearly,
degH1

(v1)> degH1
(v3). By Theorem 2.5, we have Id(T ′)< Id(T ), a contradic-

tion. Therefore, the diameter of T is at most 3, that is, T ∼= S∗(p, q).

Proof of Theorem 3.5. Let V1 and V2 be two subsets of V (T ) satisfying |V1| = p
and |V2| = q, and such that each edge of T joins a vertex in V1 and a vertex in
V2. Let r = (p+ q− 1)− q⌊ p+q−1

q ⌋. We state a claim.

Claim 1. D(V1) = [2q−1, 1p−q+1] and D(V2) = [(⌈
p+q−1

q ⌉)r , (⌊ p+q−1
q ⌋)q−r].

Proof. We only prove D(V1) = [2q−1, 1p−q+1], since D(V2) = [(⌈
p+q−1

q ⌉)r ,
(⌊ p+q−1

q ⌋)q−r] can be proved similarly. Suppose that D(V1) = [2q−1, 1p−q+1]
does not hold. This implies there exist two vertices u ∈ V1 and v ∈ V1 satisfying
degT (u)− degT (v)≥ 2. Let P be the path from u to v, and let w /∈ V (P) be a
neighbor of u. Let A be the set of neighbors of u excluding w. Let H1 (resp.,
H2) be the component of T − A (resp., T − uw) containing u. Then T can be
obtained from H1 and H2 by identifying u ∈ V (H1) and u ∈ V (H2). Let T ′ be
the tree obtained from H1 and H2 by identifying u ∈ V (H1) and v ∈ V (H2).
We may partition the vertex set of T and T ′ in the same way. This implies
that T ′ has a (p, q)-bipartition. Clearly, degH2

(u)> degH2
(v). By Theorem 2.5,

we have Id(T) < Id(T ′), a contradiction. Since all graphs in T ∗(p, q) are
realizations of D(V1) = [2q−1, 1p−q+1] and D(V2) = [(⌈

p+q−1
q ⌉)r , (⌊ p+q−1

q ⌋)q−r],
this pair of degree sequences is graphic. ♦

Using Claim 1, to prove T ∈ T ∗(p, q), it suffices to show that realizations of
D(V1) = [2q−1, 1p−q+1] and D(V2) = [(⌈

p+q−1
q ⌉)r , (⌊ p+q−1

q ⌋)q−r] are in T ∗(p, q).
Let T ′′ be a tree obtained from T by deleting pendant vertices in V1, and
identifying vertices with degree 2 in V1 with one of their neighbors (avoiding
loops). It follows that T ′′ is a q-vertex tree with maximum degree at most
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⌈ p+q−1
q ⌉, and T can be obtained by subdividing every edge of T ′′ and attaching

the pendant vertices to the original vertices. Thus T ∈ T ∗(p, q).

Proof of Theorem 3.6. Let V1 and V2 be two subsets of V (C) satisfying |V1|=
p and |V2| = q, and such that each edge of C joins a vertex in V1 and a
vertex in V2. Let Ck = u1u2 · · ·uku1 be the cycle of C . If k = n = 2, then
C ∼= C2. Suppose that C ∼= Cn (i.e., k = n) for n ≥ 4. If Cn ∈ C (p, q)
and n ≥ 4, then Cn(1,1,0, . . . , 0

︸ ︷︷ ︸

n−4

) ∈ C (p, q). Then, by Lemma 3.4, Id(Cn) >

Id(Cn(1,1,0, . . . , 0
︸ ︷︷ ︸

n−4

)) for n ≥ 4, which leads to a contradiction. So we have

k < n for n≥ 4. This implies there is a vertex ui of degree at least 3.

Let A be the set of neighbors of ui of C excluding ui−1 and ui+1, where the
addition is taken modulo k. Let H1 (resp., T1) be the component of C−A (resp.,
C − {e1, e2}) containing ui in which ψC(e1) = ui−1ui and ψC(e2) = uiui+1.
Then C can be obtained from H1 and T1 by identifying ui ∈ V (H1) and
ui ∈ V (T1). We next prove that T1 is a star.

Suppose that T1 is not a star. This implies that T1 has a (p′, q′)-bipartition
with p′, q′ ≥ 2. Let T ′ be the tree obtained by attaching p′−1 and q′−1 pendant
vertices to the two vertices u and w of a P2, respectively. By Theorem 3.4, we
have Id(T ′) ≤ Id(T1) (i.e., hd(T ′) ≥ hd(T1) ). Let C ′ be the unicyclic graph
obtained from H1 and T ′ by identifying either ui ∈ V (H1) and u ∈ V (T ′), or
ui ∈ V (H1) and w ∈ V (T ′), such that C ′ has a (p, q)-bipartition. Without loss
of generality, we assume that C ′ is obtained from H1 and T ′ by identifying
ui ∈ V (H1) and u ∈ V (T ′). It is easy to check that degT1(ui) ≤ degT ′(u).
Thus (degT1(ui)+2) log(degT1(ui)+2)−degT1(ui) logdegT1(ui)− (degT ′(u)+
2) log(degT ′(u) + 2) + degT ′(u) log degT ′(u)≤ 0. So we have

hd(C
′)− hd(C) = hd(H1) + hd(T

′)− 2 log2− degT ′(u) log degT ′(u)

+ (degT ′(u) + 2) log(degT ′(u) + 2)

− hd(H1)− hd(T
1) + 2 log 2+ degT 1(ui) log degT 1(ui)

− (degT 1(ui) + 2) log(degT 1(ui) + 2)

= hd(T
′)− hd(T

1) + (degT 1(ui) log degT 1(ui)

− (degT 1(ui) + 2) log(degT 1(ui) + 2))

− (degT ′(u) logdegT ′(u)− (degT ′(u) + 2) log(degT ′(u) + 2))

≥ 0.
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This implies Id(C ′)≤ Id(C). Let B be the set of neighbors of w in T ′ excluding
u of T ′. Since p′, q′ ≥ 2, we have B ̸= ;. Let H2 (resp., T2) be the component
of C ′ − B (resp., C ′ − f ) containing w in which ψC ′( f ) = uw. Then C ′ can
be obtained from H2 and T2 by identifying w ∈ V (H2) and w ∈ V (T2). Let
C ′′ be the unicyclic graph obtained from H2 and T2 by identifying ui+1 ∈
V (H2) and w ∈ V (T2). Clearly, we may partition the vertices of C ′ and
C ′′ in the same way, that is, C ′′ also has a (p, q)-bipartition. It is easy to
check that degH2

(ui+1) > degH2
(w), where the addition is taken modulo k.

By Theorem 2.5, we have Id(C ′′) < Id(C ′) ≤ Id(C), a contradiction. There
exist some integers n1, n2, . . . , nk and k such that C ∼= Cn(n1, n2, . . . , nk). By
Lemmas 3.3 and 3.4, we have C ∼= Cn(p− 1, q− 1).

Proof of Theorem 3.7. Let V1 and V2 be two subsets of V (C) satisfying |V1| = p
and |V2| = q, and such that each edge of C joins a vertex in V1 and a vertex
in V2. The statement is trivial for q = 1. So we only consider q ≥ 2 in the
following. Let r = (p+ q)− q⌊ p+q

q ⌋. We state a claim.

Claim 2. D(V1) = [2q, 1p−q] and D(V2) = [(⌈
p+q

q ⌉)
r , (⌊ p+q

q ⌋)
q−r].

Proof. We only prove D(V1) = [2q, 1p−q], since D(V2) = [(⌈
p+q

q ⌉)
r , (⌊ p+q

q ⌋)
q−r]

can be proved similarly. Suppose that D(V1) = [2q, 1p−q] does not hold.
This implies there exist two vertices u ∈ V1 and v ∈ V1 satisfying degC(u)−
degC(v)≥ 2. Let Ck = u1u2 · · ·uku1 be the cycle of C . Let T i be the component
of C − E(Ck) containing ui for i = 1,2, . . . , k. We distinguish three cases.

Case 1. u ∈ V (Ck) and v ∈ V (Ck).

We have degC(u) ≥ 4. Let w /∈ V (Ck) be a neighbor of u. Let A be the set of
neighbors of u excluding w. Let H1 (resp., H2) be the component of C − A
(resp., C−e) containing u in whichψC(e) = uw. Then C can be obtained from
H1 and H2 by identifying u ∈ V (H1) and u ∈ V (H2). Let C ′ be the unicyclic
graph obtained from H1 and H2 by identifying u ∈ V (H1) and v ∈ V (H2). We
may partition the vertex set of C ′ and C in the same way. This implies that
C ′ has a (p, q)-bipartition. Clearly, degH2

(u)> degH2
(v). By Theorem 2.5, we

have Id(C)< Id(C ′), a contradiction.

Case 2. u ∈ V (Ck) and v /∈ V (Ck).
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Let w ∈ V (Ck) be the neighbor of u different from v. Let C ′ = C−e+ f in which
ψC(e) = uw and ψC( f ) = wv. We may partition the vertex set of C ′ and C in
the same way. Thus C ′ has a (p, q)-bipartition. Since degC(u)− degC(v)≥ 2,

hd(C)− hd(C
′) = degC(u) logdegC(u) + degC(v) logdegC(v)

− (degC(u)− 1) log(degC(u)− 1)

− (degC(v) + 1) log(degC(v) + 1)

= (degC(u) logdegC(u)− (degC(u)− 1) log(degC(u)− 1))

− ((degC(v) + 1) log(degC(v) + 1)− degC(v) logdegC(v))

= (logξ1 +
1

ln2
)− (logξ2 +

1
ln2
)

> 0,

where ξ1 ∈ (degC(u) − 1,degC(u)) and ξ2 ∈ (degC(v), degC(v) + 1). Thus
Id(C)< Id(C ′), a contradiction.

Case 3. u /∈ V (Ck).

Suppose that u ∈ V (T i). If v ∈ V (T i), we denote the path from u to v by P;
otherwise, we denote the path from u to ui by P. Let w /∈ V (P) be a neighbor
of u. Let A be the set of neighbors of u excluding w. Let H1 (resp., H2) be the
component of C −A (resp., C − e) containing u in which ψC(e) = uw. Then C
can be obtained from H1 and H2 by identifying u ∈ V (H1) and u ∈ V (H2). Let
C ′ be the unicyclic graph obtained from H1 and H2 by identifying u ∈ V (H1)
and v ∈ V (H2). We may partition the vertex set of C and C ′ in the same way.
Thus C ′ has a (p, q)-bipartition. Clearly, degH2

(u)> degH2
(v). By Theorem 2.5,

we have Id(C)< Id(C ′), a contradiction.

Since all graphs in C ∗(p, q) are realizations of D(V1) = [2q, 1p−q] and
D(V2) = [(⌈

p+q
q ⌉)

r , (⌊ p+q
q ⌋)

q−r], this pair of degree sequences is graphic. ♦

Using Claim 2, to prove C ∈ C ∗(p, q), it suffices to show that realizations
of D(V1) = [2q, 1p−q] and D(V2) = [(⌈

p+q
q ⌉)

r , (⌊ p+q
q ⌋)

q−r] are in C ∗(p, q).
Let C ′′ be a unicyclic graph obtained by deleting all pendant vertices in V1,
and identifying the vertices of degree 2 in V1 with one of their neighbors
(avoiding loops). It is easy to check that C ′′ is a q-vertex unicyclic graph with
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maximum degree at most ⌈ p+q
q ⌉, and C can be obtained by subdividing every

edge of C ′′ and attaching the pendant vertices to the original vertices. Thus
C ∈ C ∗(p, q).





Chapter 4

Extremalities of degree-entropy
of bipartite graphs

In this chapter, we characterize the bipartite graphs that minimize the degree-
entropy, among all bipartite graphs of a given size, or a given size and (upper
bound on the) order. The extremal graphs turn out to be complete bipartite
graphs, or nearly complete bipartite. Here we make use of an equivalent
representation of bipartite graphs by means of Young diagrams, which make
it easier to compare the degree-entropy of related graphs. We conclude that
the general characterization of the extremal graphs is a difficult problem, due
to its connections with an unsolved problem in number theory, but it is easy
for specific values of the order n and size m. We also give a direct argument
to characterize the graphs maximizing the degree-ntropy. We indicate how
some of our ideas extend to other graphical function-indices as well.

4.1 Introduction

Recall that the degree-entropy Id(G) of a graph G is the Shannon entropy
of its degree sequence normalized by the degree sum. In this chapter, we
continue our work on determining the extremal graphs (and thus extremal
values) for the degree-entropy among all bipartite graphs satisfying some

55
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natural restrictions. For convenience, we will study the extremal problems
of Id(G) by making use of the function hd(G) =

∑n
i=1 degG(vi) log(degG(vi))

for some graph classes of a give size. For the justification of this, we refer to
the definitions in equations (2.1) and (2.2), and the subsequent discussion in
Chapter 2.

4.1.1 Motivation and contributions

Here we determine the graphs with the extremal degree-entropy among all
bipartite graphs of a given size m, or a given size m and (upper bound on
the) order n. The maximum value for the degree-entropy is obtained by the
graphs for which the degree sequence is as balanced as possible. This is a
corollary of Karamata’s inequality. Note that the random graphs Gn,m and Gn,p

are close to balanced, i.e., the maximum degree and the minimum degree
are nearly the same for m = Θ(n2), and thus attain a degree-entropy which is
almost maximal. This is in line with the intuition that entropy is a measure
for randomness.

In graph theory, bipartite graphs are one of the main special classes to
investigate, because they find several applications in pure and applied mathe-
matics. Hall’s Matching theorem is a famous theorem on bipartite graphs with
several applications in scheduling and matching problems, e.g., the kidney
matching process. When edges represent bonds between positive and negative
charges, the resulting graph is bipartite. Furthermore, results on bipartite
graphs often lead to results on more general classes of graphs. A famous
example is given by the Kahn-Zhao theorem, where V. Kahn [74] considered a
problem on the maximum number of independent sets for bipartite graphs
and Y. Zhao [129] reduced the general case to the bipartite case.

We will show that, given the size m, the bipartite graphs attaining the
minimum degree-entropy are precisely the complete bipartite graphs of size m.
So if m has σ(m) divisors, there are

 

σ(m)
2

£

non-isomorphic extremal graphs,
all of which are of the form Kq,y with yq = m.

Theorem 4.1. If G = (U ∪ V, E) is a bipartite graph of size m, then Id(G) ≥
1+ log(

p
m), with equality holding if and only if G is a complete bipartite graph.
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Let n, m and y be three integers with y ∤ m and n> y + ⌊m
y ⌋. When there

is an upper bound on the order (one can extend with isolated vertices since
0 log(0) = 0), such that m cannot be written as a product yq with n> y+⌊m

y ⌋,
the problem is harder. Let Kq,y = (U ∪ V, E) be a complete bipartite graph
with |U | = q, |V | = y and |E| = q y in which q = ⌊m

y ⌋. Let B(n, m, y) be the
bipartite graph of order n and size m obtained from Kq,y by adding one vertex
adjacent to m− yq vertices in V and adding n− y − q − 1 isolated vertices.
We will prove that the extremal bipartite graphs of a given size m and order
no more than n, are of the form B(n, m, y) for some 1≤ y ≤

p
m.

A Young diagram is a finite collection of cells arranged in left-justified rows
with the row lengths in non-decreasing order. We will consider a different
representation of bipartite graphs by means of Young diagrams, as it simplifies
the description of the graph operations needed in our proofs. For a bipartite
graph G = (U ∪V, E), let us write U = {u1, u2, . . . , ux} and V = {v1, v2, . . . , vy}
such that degG(ui)≥ degG(u j) and degG(vi)≥ degG(v j) whenever i ≤ j. Let
yi = degG(ui) and x j = degG(v j) for every 1 ≤ i ≤ x and 1 ≤ j ≤ y. We
associate the diagram T which contains a cell (i, j) if and only if ui v j ∈ E. Note
that this gives a one-to-one correspondence between diagrams and bipartite
graphs.

An example of an extremal bipartite graph with n= 10 and m= 22 has
been represented in these two ways in Figure 4.1. Remark that the number of
cells in column i corresponds to the degree of ui and the number of cells in
row j equals the degree of v j .

u1 u2 u3 u4 u5 u6

v4 v3 v2 v1

Graph representation

5

5

6

6

4 4 4 4 4 2
Associated Young diagram

Figure 4.1: Two representations of the extremal bipartite
(10, 22)-graph B(10, 22,4).
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In Section 4.2, we prove that the bipartite graphs minimizing the degree-
entropy given the size are exactly the complete bipartite graphs. We give
two different approaches to prove this. One of them is a proof by induction,
and the other one consists in proving that the associated diagram has to be
a rectangle. In Section 4.3, we study the possible extremal bipartite graphs
of given order n and size m, by proving that under certain restrictions they
are of the form B(n, m, y), and we estimate the value of hd for these graphs.
Next, in Section 4.4, we prove that the extremal graphs are indeed of the
form B(n, m, y). For this, we use the equivalent representation with Young
diagrams, and we give local operations that decrease the degree-entropy
(or equivalently, increase hd). Furthermore, in Section 4.5, we remark that
some of the ideas can be applied to other graphical function-indices, such
as the Second Zagreb index and the Reciprocal Randić index. Just as has
been done in [28], we notice that certain results hold more generally, and we
give the essence of the proofs of some known results. Here, we give short
proofs for the main results in [71] and [53] about the graphs and bipartite
graphs maximizing the degree-entropy in the more general context of a class
of graphical function-indices. Finally, in Section 4.6, we give some conclusions
on the precise extremal graphs B(n, m, y). We do this based on computational
results and the estimates in Section 4.3.

4.1.2 Preliminaries

In this subsection, we define the notions and help functions we will frequently
use, as well as give some basic results.

We define the function f (x) = x · log(x) for x ≥ 0. Here we use the
convention that f (0) = 0. Let G be a graph with vertex set {v1, v2, . . . , vn}. We
have hd(G) =

∑n
i=1 f (degG(vi)).

For formulating the following inequality, which became known as Kara-
mata’s inequality, we only consider non-increasing sequences. We also recall
the definition of (strict) majorization, as introduced in Subsection 2.1.2.

Theorem 4.2 ([75]). Let (x1, x2, . . . , xn) be majorizing (y1, y2, . . . , yn). Then
for every convex function g, we have

∑

1≤i≤n g(x i)≥
∑

1≤i≤n g(yi). Furthermore
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this inequality is strict if the sequences are not equal and g is a strictly convex
function. For concave functions, the same holds with the opposite sign.

It is not hard to see that Lemma 2.1 is a corollary of Karamata’s inequality,
which was also observed by A. Ghalavand, M. Eliasi and A.R. Ashrafi [63].

We will also make use of so-called difference graphs, which were intro-
duced by P.L. Hammer, U.N. Peled, and X. Sun [67]. The following equivalent
characterization is due to N.V.R. Mahadev and U.N. Peled [94].

Theorem 4.3 ([94]). Let G = (U ∪ V, E) be a bipartite graph. The graph G is a
difference graph if and only if one of the following equivalent conditions holds:

(a) there are no u1, u2 ∈ U and v1, v2 ∈ V such that u1v1, u2v2 ∈ E(G) and
u1v2, u2v1 /∈ E(G);

(b) every induced subgraph without isolated vertices has on each side of the
bipartition a domination vertex, that is, a vertex which is adjacent to all
the vertices on the other side of the bipartition.

Lemma 4.1. If G is a graph maximizing hd(G) among all bipartite graphs of
size m, then G is a difference graph.

Proof. Suppose that G is not a difference graph. By Theorem 4.3 (a), there
are four vertices u1, u2 ∈ U and v1, v2 ∈ V such that u1v1, u2v2 ∈ E(G)
and u1v2, u2v1 ̸∈ E(G). Assume without loss of generality that degG(u1) ≥
degG(u2). In that case the degree sequence of the graph G′ = G − u2v2 + u1v2

strictly majorizes the degree sequence of G. So we get the desired contradiction
by Lemma 2.1.

Lemma 4.2. Let x , t,ℓ be fixed positive integers. Under the condition that
∑x

j=1 zi = t and all zi ≥ 0 are integers,
∑x

j=1 f (z j+ℓ)−
∑x

j=1 f (z j) is maximized
when z1 = z2 = · · ·= zx =

� t
x

�

.

Proof. Note that the function ∆ℓ(z) = f (z + ℓ) − f (z) is a strictly concave
function for every ℓ > 0, and that every sequence of x integers with sum t
majorizes the sequence with z1 = z2 = · · ·= zx =

� t
x

�

. Now the result follows
immediately from Karamata’s inequality.
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For the function ∆1, we write ∆ for ease of notation. We define it here
separately, as it will be used frequently. Recall that f (x) = x · log(x) for x ≥ 0.

Definition 4.1. The function ∆ is defined by ∆(x) = f (x) − f (x − 1) =
1+

∫ x
x−1 log(t)dt. This is a strictly increasing and concave function.

We also use Landau notation, such as o(·) and ω(·). A function q(x , y) or
expression is oy(p(x , y)) or ωy(p(x , y)) if q(x ,y)

p(x ,y) → 0 respectively |q(x ,y)|
|p(x ,y)| →

∞ when y → ∞. Sometimes the dependency on y is removed to keep
the notation light. We also use the notation [k] = {1,2, . . . , k} and [k..ℓ] =
{k, k+ 1, . . . ,ℓ− 1,ℓ}.

4.2 Minimum degree-entropy of bipartite graphs of
given size

In this section, we prove Theorem 4.1. In both approaches, we assume that our
bipartite graph is G = (U ∪ V, E), U = {u1, u2, . . . , ux} and V = {v1, v2, . . . , vy}
are the vertices with degree at least 1. Here we assume these are ordered,
i.e., degG(ui) ≥ degG(u j) and degG(vi) ≥ degG(v j) whenever i ≤ j. Let yi =
degG(ui) and x j = degG(v j) for every 1 ≤ i ≤ x and 1 ≤ j ≤ y. So with this
notation, we have y = y1 and x = x1.

4.2.1 Approach 1

Proof of Theorem 4.1. We prove the statement by induction on m. The base
case m= 1 is trivial since we only have one edge. So assume the statement
is true when the size is at most m − 1 and let G be a graph maximizing
hd(G) among all graphs of size m. By Lemma 4.1, we can assume that G is a
difference graph. This implies that u1 is a dominating vertex (dominates V ).
Let G′ = G − u1. By the induction hypothesis applied to G′ and Lemma 4.2
applied with ℓ= 1 and zi = x i − 1, we know

hd(G) = hd(G
′) + f (y) +

y
∑

j=1

f (x j)−
y
∑

j=1

f (x j − 1)



4.2. Minimum degree-entropy of bipartite graphs of given size 61

≤ hd(K1,m−y) + f (y) + y
�

f
�

m
y

�

− f
�

m
y
− 1

��

.

Equality here is only attained if x j =
m
y for every 1≤ j ≤ y. Now the conclusion

is direct as

hd(G)≤(m− y) log(m− y) + y log(y) +m (log(m)− log(y))

− (m− y) (log(m− y)− log(y))

= m log(m).

By induction, we see that equality is attained precisely for the complete
bipartite graphs of size m. Using the observation after equations (2.1) and
(2.2), we get Id(G)≥ 1+ log(

p
m).

4.2.2 Approach 2

In this subsection, we give an alternative proof for the fact that K1,m minimizes
the degree-entropy among all bipartite graphs of size m, which does not use
any prerequisites. Note that the proof can be formulated without the notion
of a diagram and that we give a short proof of Lemma 4.1 as a claim in this
notation.

In every cell (i, j) of the associated diagram T of a bipartite graph G,
we put log(yi x j) = log(x j) + log(yi). The sum over all cells, hd(T) =
∑

(i, j)∈T log(x j yi) is now exactly equal to
∑

j f (x j) +
∑

i f (yi) = hd(G).

Proof of Theorem 4.1. We first prove that the associated diagram T is a Young
diagram, i.e., if (i, j) ∈ T and 0< i′ ≤ i and 0< j′ ≤ j, then (i′, j′) ∈ T.

Claim 1. If G = (U ∪ V, E) is a bipartite graph maximizing hd(G) among all
bipartite graphs of size m, then its associated diagram is a Young diagram.

Proof. Assume (i, j) ∈ T and (i′, j′) ̸∈ T . If i′ < i and j′ < j, then G′ =
G−ui v j+ui′ v j′ satisfies hd(G′) = hd(G)−∆(yi)−∆(x j)+∆(yi′+1)+∆(x j′+
1) > hd(G). The latter holds due to ∆ being strictly increasing and yi ≤ yi′

and x j ≤ x j′ . If i′ = i or j′ = j, it is analogous as hd(G′) − hd(G) equals
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∆(yi′ + 1)−∆(yi) > 0 or ∆(x j′ + 1)−∆(x j) > 0. This implies that G is not
extremal and so we reach a contradiction. ♦

Next, we note that

∑

(i, j)∈T

x j yi ≤
∑

i, j

x j yi =

 

∑

j

x j

!

�

∑

i

yi

�

= m2.

So by Jensen’s inequality, we have

∑

(i, j)∈T

log(x j yi)≤ m log

�

m2

m

�

= m log(m)

with equality if and only if x j yi = m for every choice of (i, j), i.e., G is complete
bipartite.

4.3 Minimum degree-entropy among dense bipartite
graphs

We state two propositions in terms of the Young diagrams. Note that by taking
x = q+ 1, we conclude that B(n, m, y) is extremal in both cases.

Proposition 4.1. Let x > y > r > 0 and m = x y − r be integers. Among all
Young diagrams with m cells in [x]× [y], hd(T ) is maximized by

T ′ = ([x]× [y])\ (x × [y − r + 1..y]) .

If x > y =ω(r2), then the latter diagram has hd(T ′)∼ m log m− r + o(1).

Proof. Let T be a Young diagram which equals [x]×[y], except from the r cells
which have coordinates (i1, j1), (i2, j2), . . . , (ir , jr), where these are ordered
in reverse lexicographic order. In particular (i1, j1) = (x , y) and for every
1 ≤ k ≤ r the pair (ik, jk) satisfies ik + jk ≥ x + y + 1− k, jk ≤ y and ik ≤ x .
Since ∆ is increasing and concave, by Karamata’s inequality, we have

∆(ik) +∆( jk)≥∆(x) +∆(y + 1− k).
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Now

hd(T ) = x y log(x y)−
r
∑

k=1

(∆(ik) +∆( jk))

≤ x y log(x y)−
r
∑

k=1

(∆(x) +∆(y + 1− k))

= hd(T
′),

and furthermore equality occurs if and only if (ik, jk) = (x , y + 1 − k) for
every k, i.e., T = T ′. Now since 1+ log(x)− 1

x−1 ≤ ∆(x) < 1+ log(x) and
1+ log(y)− k

y−k ≤∆(y + 1− k)< 1+ log(y), we note that when y =ω(r2),
we have

hd(T
′) = x y log(x y)− r∆(x)−

r
∑

k=1

∆(y + 1− k)

= m log(m+ r)− 2r − o(1)

= m log(m)− r − o(1),

where the o(1) term tends to zero as x , y →∞ for fixed r.

Proposition 4.2. Let q ≥ y > r > 0 and m = q y + r be integers. Among all
Young diagrams containing [q]× [y] with m cells, hd(T ) is maximized by

T ′ = ([q]× [y])∪ ((q+ 1)× [r]) .

If q =ω(r), the latter diagram satisfies hd(T ′)∼ m log(m)− r log
� y

r

�

.

Proof. Let T be a Young diagram which equals [q]×[y], with r additional cells
which have coordinates (i1, j1), (i2, j2), . . . , (ir , jr), where these are ordered in
lexicographic order. We note that for every 1≤ k ≤ r the pair (ik, jk) satisfies
ik + jk ≤ q+ k+ 1 and min{ik, jk} ≤ k. Since ∆ is increasing and concave, by
Karamata’s inequality, we have

∆(ik)+∆( jk)≤∆(min{ik, jk})+∆(q+1+k−min{ik, jk})≤∆(q+1)+∆(k).
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Now

hd(T ) = yq log(yq) +
r
∑

k=1

(∆(ik) +∆( jk))

≤ yq log(yq) +
r
∑

k=1

(∆(q+ 1) +∆(k))

= hd(T
′),

and furthermore equality occurs if and only if (ik, jk) = (q+ 1, k) for every k,
i.e., T = T ′.

Now since 1+ log(q)≤∆(q+1)< 1+ log(q)+ 1
q and

∑r
k=1∆(k) = f (r) =

r log(r), we note that when q =ω(r), we have

hd(T
′) = yq log(yq) + r∆(q+ 1) + f (r)

= q y log(q) + q y log(y) + r log(q) + r + f (r) + o(1)

= m log(m− r)− r log(y) + r + r log(r) + o(1)

= m log(m)− r log
� y

r

�

+ o(1),

where the o(1) term tends to zero when q→∞ for fixed r.

4.4 Minimum is attained by dense Young diagrams

In this section, we list and prove a number of lemmas showing that the extremal
Young diagrams are dense, in the sense that they are of the form presented in
Section 4.3.

We start with proving that the extremal Young diagram cannot have the
following specific form.

Lemma 4.3. Let m= x y − r − s+ 1 with 1 ≤ r ≤ x − y and 1 ≤ s < y, such
that r + s− 1= wy + r ′ for some integers 0< w and 0≤ r ′ < y. If

T = ([x]× [y])\ ([x − r + 1..x]× y)\ (x × [y − s+ 1..y − 1]) and

T ′ = ([x −w]× [y])\
�

(x −w)× [y − r ′ + 1..y]
�

,
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then hd(T )< hd(T ′). See Figure 4.2.

r

s

t

x

y

Young diagram T

x

y

r ′

t ′

w

Young diagram T ′

Figure 4.2: The Young diagrams from Lemma 4.3.

Proof. We prove this in a number of steps. First we show that it is sufficient
to prove it for s = 1.

Claim 2. If Lemma 4.3 does hold whenever s = 1, then so it does for all other
cases.

Proof. Assume there are choices of x , y, r, s (and thus Young diagrams T and
T ′) for which Lemma 4.3 is false. Let t = y − s and t ′ = y − r ′, and assume
0< t < y − 1. We now consider two cases.
Case 1. t ′ ≤ t.
In this case, we note that ∆(t+1)+∆(x)>∆(t ′+1)+∆(x −w) and thus we
also have a counterexample with s− 1 instead of s. We can repeat this until
s = 1.
Case 2. t ′ > t.
Note that y · (x − w) > m > x · (y − 1), implying x−w

x >
y−1

y > t
t+1 ≥

t
t ′ and

hence (x −w)t ′ > x t. Now we have ∆(t) +∆(x)<∆(t ′) +∆(x −w). When
t + x ≤ (x − w) + t ′, this is by Karamata’s inequality and the fact that ∆ is
increasing and concave. When t+x > (x−w)+ t ′, we note that (x−u)(t−u) =
x t − u(x + t) + u2 < (x −w)t ′ − u((x −w) + t ′) + u2 = (x −w− u)(t ′ − u) for
every u≥ 0 and thus

∫ 1

u=0

log ((x − u)(t − u)) du<

∫ 1

u=0

log
�

(x −w− u)(t ′ − u)
�

du.
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The latter is equivalent to ∆(t) +∆(x)<∆(t ′) +∆(x −w). This implies that
we can construct a counterexample with s+ 1 instead of s as well and we can
repeat this until s = y, which corresponds to an example with s = 1. ♦

Next, we show that we can assume that x − r = y.

Claim 3. If Lemma 4.3 does hold whenever s = 1 and r = x − y, then so it does
for all other cases.

Proof. Assume there are Young diagrams T and T ′ for which Lemma 4.3 is false,
where s = 1 and y+ r < x . Now deleting the first column of both diagrams im-
plies that hd(T ) decreases by∆(x−r)+(y−1)∆(x)+ f (y) and hd(T ′) has been
decreased by (y−r ′)∆(x−w)+r ′∆(x−w−1)+ f (y). Since {x , x , . . . , x

︸ ︷︷ ︸

y−1

, x−r}

majorizes {x −w, x −w, . . . , x −w
︸ ︷︷ ︸

y−r ′

, x −w− 1, . . . , x −w− 1
︸ ︷︷ ︸

r ′

}, as ∆ is strictly

concave, the value hd(T ′) has decreased by a larger amount than hd(T ). So
Lemma 4.3 is false for a construction with parameters (x − 1, y, r). We can
repeat this, until x = y + r. ♦

r

x

y

Young diagram T

x

y

r ′

w

Young diagram T ′

Figure 4.3: The two Young diagrams from Claim 3.

Now we finish the proof by proving that Lemma 4.3 is true when s = 1
and r = x − y. In the latter case, we can write x = a y + b where a > 0 is an
integer and 0≤ b < y , in which case we know the precise shapes of T and T ′.
These have been represented in Figure 4.4.
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y

a y + b

y

Young diagram T

a(y − 1) + b+ 1

y b

Young diagram T ′

Figure 4.4: The two Young diagrams in the remaining case.

When a = 1, we have hd(T )≤ hd(T ′) by Proposition 4.1, and the inequality
is even strict when b > 1. We now finish the proof by induction on a. So
assume it is proven for the values a, b, y. Going from a to a + 1, the value
hd(T ) increases by

I1 = y · f (y − 1) + (y − 1) ( f ((a+ 1)y + b)− f (a y + b)) (4.1)

while hd(T ′) increases by at least

I2 = (y − 1) · f (y) + y
�

f
��

a+ 1+
b
y

�

(y − 1)
�

− f
��

a+
b
y

�

(y − 1)
��

.

(4.2)
Now one can note that I1 = I2 by implementing the following two equalities
in the equation (4.1) and equation (4.2).

f ((a+ 1)y + b)− f (a y + b) = y + y

∫ a+1+ b
y

u=a+ b
y

(log(u) + log(y)) du

f
��

a+ 1+
b
y

�

(y − 1)
�

− f
��

a+
b
y

�

(y − 1)
�

=y − 1+ (y − 1)

∫ a+1+ b
y

u=a+ b
y

(log(u) + log(y − 1)) du.
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Having proven this particular case in Lemma 4.3, we continue with some
observations from which we can conclude that the extremal diagrams will be
as given in Section 4.3.

Lemma 4.4. If G = (U ∪ V, E) is an extremal bipartite of order n and size m,
then the minimum degree of the smaller partition class is at least the maximum
degree of the other partition class.

Proof. Consider the associated Young diagram T of G. Let i be the value for
which (i, i) ∈ T and (i + 1, i + 1) ̸∈ T . Let S1 = {(i′, j′) ∈ T | j′ > i} and
S2 = {(i′, j′) ∈ T | i′ > i}. Now if both S1 and S2 are non-empty, we can
construct a diagram T ′ for which the rows in S1 are deleted and are added as
columns, in such a way that another Young diagram T ′ has been formed. It
is not hard to see that the degree sequence of the graph G′ associated with
T ′ majorizes the degree sequence of G. For this, note that it is sufficient
to compare the degrees of {u1, u2, . . . , ui , v1, . . . , vi} (and thus the number of
cells in their rows/columns). Thus, since f is strictly convex, by Karamata’s
inequality we know hd(T ′)> hd(T ).

S1

S2

Young diagram T Young diagram T ′

Figure 4.5: Sketch of the rearrangement in Lemma 4.4.

Theorem 4.4. For fixed integers m and n, let T∗ be a diagram with m cells for
which the sum of its length x and width y is at most n. If hd(T∗) is maximal
among all such diagrams, then x , y satisfy x y −min{x , y}< m≤ x y.
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Proof. Assume m cannot be written as a product x y with x + y ≤ n, and T∗ is
an extremal diagram with m≤ (x−1)y, where y < x . Let x1 = x , x2, . . . , x y be
the number of cells in every row. By Lemma 4.4, we know that [y]× [y] ⊂ T∗,
and thus x i ≥ y for every 1≤ i ≤ y. Furthermore, since m≤ (x − 1)y, there
is a smallest index i such that x i < x − 1. Now, the first i rows of T∗, i.e.,
Ti = T∗ ∩ ([x]× [i]), form a diagram that has the form of the diagram T in
Lemma 4.3. Replacing Ti by the corresponding T ′i from Lemma 4.3 (which
does not increase the length of the diagram) will imply that we also form a T ′∗
for which hd(T ′∗) > hd(T∗), since hd(T ′∗)− hd(T∗) = hd(T ′i )− hd(Ti) > 0. For
the latter, note that the only rows and columns that have possibly changed,
are rows 1 until i and columns x i + 1 until x , all of which do not contain any
cell outside Ti or T ′i . This is the desired contradiction. Figure 4.6 presents
this final comparison.

S

Ti

Young diagram T∗

S

T ′i

Young diagram T ′∗

Figure 4.6: The local move increasing hd(T∗) in Theorem 4.4.

4.5 Extremal values of other graphical function-indices

As we have argued before, the degree-entropy is just one example of a graphical
function-index. Let g(x , y) be a real symmetric function. Then the associated
graphical function-index is

GF Ig(G) =
∑

uv∈E(G)

g(degG(u), degG(v)).
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For some special examples of g, this unifying approach has been considered
in [65]. For an overview of more examples that are covered by the unifying
expression, we refer the reader to [90, Table 1].

There also exist graphical indices as defined in [114, 126] by a real function
g(x) and the expression

∑

v∈V (G) g(degG(u)). This is a special case of GF Ig

since
∑

uv∈E(
g(degG(u))

degG(u)
+ g(degG(v))

degG(v)
) =

∑

u∈V g(degG(u)) (i.e., this function-

index is obtained by choosing g(x , y) = g(x)
x +

g(y)
y in the above expression

for GF Ig). Therefore, the function hd(G) =
∑n

i=1 degG(vi) log(degG(vi)) can
be written as hd(G) =

∑n
i=1 g(degG(vi)) by choosing g(x) = x log(x) (i.e., by

choosing g(x , y) = x log(x)
x + y log(y)

y = log(x y) in the above expression).

Our idea of approach 2 in Subsection 4.2.2 works for any GF Ig whenever
g(x , y) is an increasing strictly concave function in x y. For example, when
g(x , y) = x y or g(x , y) =px y (i.e., for the Second Zagreb index and Recipro-
cal Randić index), the graphs maximizing GF Ig(G) among all bipartite graphs
of size m are precisely the complete bipartite graphs Kq,y with q · y = m. When
we restrict both the order and size, one can expect that a similar exposition
implies that the extremal graphs are again near complete bipartite, i.e., Ky,x

with some small number r of removed (or added) edges. K. Xu, K. Tang, H.
Liu and J. Wang [124] studied these for the First and Second Zagreb indices,
for example.

Theorem 4.5. Let G be a bipartite graph of size m, and let g(x , y) be an
increasing strictly concave function in x y.Then GI Fg(G) attains the minimum
value if and only if G is a complete bipartite graph.

If g(x , y) = x + y or g(x , y) = (x + y)2, since degG(u) +degG(v)≤ m+ 1
for every uv ∈ E(G) the unique extremal graph (maximizing GF Ig(G)) among
all bipartite graphs of size m is easily seen to be the star K1,m. In particular,
this implies that among bipartite graphs of a given size, the set of graphs
maximizing the First Zagreb index (i.e., for g(x , y) = x + y) and Second
Zagreb index (i.e., for g(x , y) = x y) are not equal. This contrasts some of the
intuition in the concluding section of [124, Section 4].

Also among bipartite graphs of a given order and size, the bipartite graphs
with the maximum First Zagreb index might be different from the one with
the maximum Second Zagreb index. For the First Zagreb index these extremal
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bipartite graphs were determined by S. Zhang and C. Zhou [128]. Here the
asymmetry (large degrees) plays a major role, and so there are examples for
which the bipartite graphs maximizing the First Zagreb index are not complete
bipartite, while there do exist complete bipartite graphs Ky,x with x y = m
and x + y < n that maximize the Second Zagreb index.

Finally, we prove that the graphs which attain the maximum degree-
entropy can be easily determined, and are the graphs for which the degree
sequence is as balanced as possible. We prove these statements by showing
that the latter graphs are those which minimize GF Ig(G) for any increasing
strictly convex function g(x , y) in x y . Thus, we give a short alternative proof
for the result in [53] in this more general setting, and for the result of [71].

Note that hd(mK2) = 0. Among all graphs with fixed size m, without
constraints on the order, we have the following result.

Proposition 4.3. Let G be a graph of size m and order n≥ 2m. Then Id(G)≥
log(2m), with equality if and only if G ∼= mK2 ∪ Kn−2m.

If there is a condition on both the order and size, the extremal graphs
and bipartite graphs are precisely the almost regular graphs, as proven in
the following two propositions. C.E. Cheng, Y. Guo, S. Zhang and Y. Du [32]
determined these bipartite graphs with the minimum value of the First Zagreb
index for bipartite graphs of a given order and size. The proof is essentially a
corollary of Karamata’s inequality and noting that there is a degree sequence
that is majorized by all other possible realizations. We also make use of a
result attributed to Walecki. A decomposition of a graph is a collection of
subgraphs such that each edge belongs to exactly one subgraph. The complete
graph K2k+1 admits a decomposition into Hamiltonian cycles and K2k can be
decomposed into Hamiltonian cycles and a perfect matching, see [5, 6].

Proposition 4.4. Let G be a graph of size m and order n, and let g(x) be a
strictly concave function in x. Among all graphs with fixed size m and order n,
GF Ig(G) =

∑

v∈V (G) g(degG(u)) attains the maximum value if and only if G is
almost regular (i.e., degmax(G)− degmin(G)≤ 1).

Proof. Since the degree sequence of any almost regular graph is majorized
by the degree sequence of any other graph of order n and size m, the result
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follows by Karamata’s inequality. The characterization of the extremal graphs
is a consequence of g being strictly convex. The existence of an almost regular
graph (even connected if m≥ n−1 when necessary) is immediate, and implied
by the decomposition of Kn into Hamiltonian cycles and at most one perfect
matching. If m = an+ b, then one can take the union of a Hamiltonian cycles
and a matching of size b (for 0≤ b ≤ n

2 ) or take a+1 Hamiltonian cycles and
remove a matching of size n− b from one Hamiltonian cycle (if b > n

2 ).

Proposition 4.5. Let G = (U ∪ V, E) be a bipartite graph of size m and order
n, and let g(x) be a strictly concave function in x. Among all bipartite graphs
of size m and order n, GF Ig(G) =

∑

v∈V (G) g(degG(u)) attains the maximum
value if and only if G = (U ∪ V, E) satisfies |U |=

� n
2

�

and |V |=
� n

2

�

for which
the degrees in one partition class differ by at most one.

Proof. Let G′ = (U ′ ∪ V ′, E′) be any other bipartite graph of size m and order
n whose partition classes have size |U ′|= u≥ v = |V ′|. The sum of the i ≤ v
largest degrees in V ′ is at least equal to the sum of the i largest degrees of G,
and the sum of the i ≤ u smallest degrees in U ′ is at most the sum of the i
smallest degrees in G. Here we use that u≥

� n
2

�

and v ≤
� n

2

�

, and the degrees
in G are as balanced as possible. Remark that if u≥ i >

� n
2

�

, then the sum of
the i degrees in U ′ is at most m. So we conclude that the degree sequence of
G is majorized by any degree sequence of any other bipartite graph of order
n and size m, from which we obtain the conclusion (also for the uniqueness
statement) by Karamata’s inequality and g(x) being strictly concave.

We remark that one can always construct at least one such a balanced
bipartite graph G. If n is even, just partition Kn/2,n/2 in perfect matchings
and add the edges from one matching at a time up to the point you selected
precisely m edges. When n is odd, for every 1≤ m≤

�

n2

4

�

, one can construct
a graph by adding for every 1≤ k ≤ m an edge between the vertices ai and
b j for which k ≡ i (mod

� n
2

�

) and k ≡ j (mod
� n

2

�

) respectively.

Let G = (V, E) be a graph of size m and order n, and let g(x) = c1 −
c2(x log(x))with c1 =

log(2m)
n and c2 =

1
2m . We have Id(G) =

∑

u∈V (G)
g(degG(u)).

Because g(x) is strictly concave for x > 0, by Propositions 4.4 and 4.5, we
have the following two results, respectively.
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Corollary 4.1. Let G be a graph of size m and order n. Among all graphs of
size m and order n, Id(G) attains the maximum value if and only if G is almost
regular (i.e., degmax(G)− degmin(G)≤ 1).

Corollary 4.2. Let G = (U ∪ V, E) be a bipartite graph of size m and order n.
Among all bipartite graphs of size m and order n, Id(G) attains the maximum
value if and only if G = (U ∪ V, E) satisfies |U |=

� n
2

�

and |V |=
� n

2

�

for which
the degrees in one partition class differ by at most one.

A few examples have been presented in Figure 4.7. Since everything boils
down to having a degree sequence that is as balanced as possible, i.e., it is
majorized by any other degree sequence of a graph, the result only depends
on the degree sequence.

We end with a few observations. There do exist both connected and
disconnected extremal bipartite graphs (as presented for m= n= 9). If n is
odd and m is fixed, it is possible there is no extremal bipartite graph attaining
the maximum over all graphs, since for bipartite graphs the maximum degree
might exceed the minimum degree by at least 2. Finally, we observe that the
partition itself does not necessarily have to be balanced (e.g., there exists an
example with m= 30, n= 22, |U |= 10 and |V |= 12).

n= 8 n= 9 (connected) n= 9 (disconnected)

Figure 4.7: Bipartite graphs of size 9 with maximum degree-
entropy.

4.6 Concluding remarks

In this chapter, we have shown that the bipartite graphs of size m that maximize
the degree-entropy are complete bipartite graphs. If there is a restriction on
the order, and m cannot be written as x · y where x+ y ≤ n, then the extremal
graphs are of the form B(n, m, y). Let us recall that B(n, m, y) is a bipartite
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graph of order n and size m obtained from Kq,y by adding one vertex adjacent
to m− yq vertices in one part of size y and adding n− y−q−1 isolated vertices,
where q =

�

m
y

�

. Despite these observed facts, it seems hard to determine a
general formula for y that minimizes the degree-entropy of B(n, m, y), as we
will explain here.

Using a computer program1, we were able to find all extremal bipartite
graphs for n≤ 50 and m≤

�

n2

4

�

. Interested readers can have a closer look at
the output2. For every pair (n, m) and value 1≤ y ≤

p
m, we computed the

values

q =
�

m
y

�

, x =
¡

m
y

¤

, m− q y, x y −m, h= hd(B(n, m, y)),

as well as three Boolean values expressing whether B(n, m, y) achieved the
maximum value of hd among all choices of y and whether m− q y or x y −m
were minimal among all possible choices for y for that pair (n, m). Among
all extremal graphs which are not complete bipartite, we found 547 cases for
which both x y −m and m− q y are minimal among all possibilities, 375 cases
where only m−q y is minimal, 3635 cases where only x y −m is minimal, and
no cases for which neither x y −m nor m− q y is minimal.

Intuitively, when x y −m or m− q y is small, the graph B(n, m, y) is nearly
complete bipartite (up to the edges of a small star which have been added
or removed), and so it might be extremal. Nevertheless, this was found not
to be the case in general. When n = 17726 and m = 318728, the extremal
graph is B(n, m, 18), which satisfies q = 17707, y = 18 and r = m− q y = 2,
even though y = 139 and q = 2293 would give r = 1. Taking into account
the estimates in Proposition 4.2, one can expect that there are more such
examples. The difference with the upper bound depends on both r and y , i.e.,
one would like both y and r to be small, but the ratio has an influence on
this. A precise statement here seems to be difficult to derive, as the above
discussion is related to some hard number theoretic questions.

1https://github.com/MatteoMazzamurro/extrema-graph-entropy/blob/
main/bipartite_graphs_entropy.R

2https://github.com/MatteoMazzamurro/extrema-graph-entropy/blob/
main/B_n_m_50.csv

https://github.com/MatteoMazzamurro/extrema-graph-entropy/blob/main/bipartite_graphs_entropy.R
https://github.com/MatteoMazzamurro/extrema-graph-entropy/blob/main/bipartite_graphs_entropy.R
https://github.com/MatteoMazzamurro/extrema-graph-entropy/blob/main/B_n_m_50.csv
https://github.com/MatteoMazzamurro/extrema-graph-entropy/blob/main/B_n_m_50.csv
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Consider the extremal bipartite graph associated with the extremal Young
diagram of Proposition 4.1. The statement in this proposition implies that a
complete bipartite graph Kx ,y with m+ r edges is obtained from the extremal
graph after adding r edges. Hence, when m is large, one might hope that there
is a relatively small value of r for which m+ r can be written as a product x y
with x + y ≤ n. In such cases, the extremal graph will be B(n, m, y), with y
chosen in such a way that y

 

m
y

£

−m is minimized under the constraint that

y +
 

m
y

£

≤ n, and so the extremal graph is a complete bipartite graph minus
a small star. Furthermore, when there are multiple choices for y, we need
to choose the smallest y, i.e., for fixed r, the complete bipartite graph will
be as asymmetric (unbalanced in terms of the bipartition classes) as possible.
To note the latter, one can compare the computations in Proposition 4.1 for
some x ′ > x > y > y ′ with x y = x ′ y ′. For a fixed 1 ≤ k ≤ y − 1, we have
∆(x) +∆(y + 1− k)≥∆(x ′) +∆(y ′ + 1− k), since (x − u)(y + 1− k− u)≥
(x ′ − u)(y ′ + 1− k− u) for u ∈ [0, 1].

We can prove that the intuition that r = x y−m is minimal for the extremal
B(n, m, y) is true in many cases, using the notion of M -smooth numbers. A
positive integer is called M -smooth (or M -friable) if its largest prime divisor
is at most M . At this point, the state-of-the-art on smooth numbers [95, 64]
does not address the question if for fixed constants 0< u< 1 and c > 0, the
interval [m, m+ c log(m)] necessarily needs to contain an mu-smooth number
whenever m is sufficiently large, but it does so for almost all m by [95, Cor. 6].

Proposition 4.6. Fix a δ > 0. For almost every pair (n, m) with ω(n1+δ) <
m < o(n3/2), the graph minimizing the entropy among all bipartite graphs of
order (bounded by) n and size m is the graph B(n, m, y) where y is chosen such
that r = x y −m≥ 0 is minimal among all possibilities of x , y with x + y ≤ n.

Proof. Let n and m be a random pair of values satisfying the inequality of
the statement. Write n = (m + log(m))u + (m + log(m))1−u for some real
number 2

3 ≤ u < 1. Now with high probability, there exists a number r ≤
1
2(1− u) log(m) such that m+ r is mu-smooth (by [95, Cor. 6]). Furthermore,
m + r being mu-smooth implies that all its prime divisors are bounded by
mu and thus also (m+ r)u. Therefore m+ r has two divisors x , y for which
(m+ r)1−u ≤ y ≤ x ≤ (m+ r)u; note that if the largest prime factor p of m+ r
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satisfies (m+ r)1−u ≤ p ≤ (m+ r)u, we can take {x , y} to be equal to
¦

p, m+r
p

©

and otherwise we can take a product P of prime divisors of m+ r which is
between (m+ r)1−u and (m+ r)2(1−u) ≤ (m+ r)u and take {x , y} to be equal
to
�

P, m+r
P

	

. Since the function P + m+r
P is increasing for P ≥

p
m+ r and

r < log(m), we have x+ y < n. Comparing Proposition 4.2 and Proposition 4.1,
we conclude that the extremal graph is equal to the graph B(n, m, y), where y
has been chosen in such a way that x y−m is minimized. The latter is because
y + m

y ≤ n and y <
p

m implies that y ≫ m0.5(1−u), so log(y)− r is large.

On the other hand, there will be infinitely many examples which are not of
this form. A simple example for this, where m−q y can be arbitrarily large, can
be constructed as follows. Let c > 0, and let n= 2a+ 1 and m= a2 + c with
a = b2 + b. Now B(n, m, a) is an example for which m− q y = c is minimized
(note that q+ y = 2a is needed). On the other hand B(n, m, y) will always
satisfy x y −m≥ 2b− c since (note that x + y = n is needed)

(a−b+1)(a+b)−m= a2+a−b2+b > m> a2+a−b2−b = (a−b)(a+b+1).

For fixed c, and b≫ c, we have 2b− c≫ c log
�2b−c

c

�

.

It will be clear from the above discussion that a full characterization of
the extremal bipartite graphs for degree-entropy remains a big challenge.



Chapter 5

Minimum values of
degree-entropy of graphs

In this chapter, we continue our previous work in Chapters 2, 3 and 4 by
considering extremal problems involving the degree-entropy Id as it was
defined in equation (2.1). For a graph with a given order and size achieving
the minimum entropy value, we derive its unique structure.

5.1 Introduction

The main result of this chapter will be presented in the next subsection after
recalling some definitions and notation.

5.1.1 Main result

In order to state our main result, we need to introduce some terminology and
notation.

Since we consider graphs with a given order and size, it is convenient to
use the term (n, m)-graph as shorthand for a graph of order n and size m.

Let G and G′ be two disjoint graphs. Then the union of G and G′, denoted
by G ∪ G′, is the graph with E(G ∪ G′) = E(G) ∪ E(G′) and V (G ∪ G′) =

77
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V (G)∪ V (G′). We use G to denote the complement of G. Let m be a positive
integer. Then we let k∗ =max{k ∈ N :

�k
2

�

≤ m} and t∗ = m−
�k∗

2

�

. By ω(G)
denote the clique number of G. It is trivial that ω(G) ≤ k∗ for a graph G of
size m.

We use K(k, t) to denote the graph obtained from Kk by adding a new
vertex and joining it to t vertices of Kk by edges. We also use the following
indicator function σ defined by

σ(x) =

�

0, if x = 0;
1, otherwise.

Motivated by earlier results on extremal graphs and values for the degree-
entropy in [53, 29, 63, 72], within the class of graphs with a given order and
size, we determine the graphs which minimize the degree-entropy.

Theorem 5.1. Let n and m be integers with n≥ 2 and 1≤ m≤
�n

2

�

, and let G
be an (n, m)-graph. Then

Id(G)≥ log(2m)−
t∗k∗ log(k∗) + (k∗ − t∗)(k∗ − 1) log(k∗ − 1) + t∗ log(t∗)

2m
,

with equality if and only if G ∼= K(k∗, t∗)∪ Kn−k∗−σ(t∗).

Our proof of Theorem 5.1 is postponed to Section 5.2. As in the previous
chapter, we will study the extremal problems of Id(G) by making use of
the function hd(G) =

∑n
i=1 degG(vi) log degG(vi). This is again based on the

observation following the equations (2.1) and (2.2).

In the next sections, we list some known results and deduce some auxiliary
results that we will use in our proof of Theorem 5.1.

5.1.2 Preliminaries

We start with recalling some of the basic concepts, and we focus on so-called
threshold graphs. They will play a key role in this chapter.

Recall that a degree sequence of a graph is called a graphical sequence, and
a graph with degree sequence D is called a realization of D. Let G = (V, E)
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be a graph, let 0 < d1 < · · · < ds be all positive distinct degrees of G, and
let d0 = 0. Moreover, let Di = {v ∈ V : degG(v) = di} for i = 0,1, . . . , s.
Then the sequence D0, D1, . . . , Ds is called the degree partition of G. If the
number of vertices in G with degree di is ai for i = 0, 1, . . . , k, then we denote
by D(G) = (dk, . . . , dk

︸ ︷︷ ︸

ak

, dk−1, . . . , dk−1
︸ ︷︷ ︸

ak−1

, . . . , d1, . . . , d1
︸ ︷︷ ︸

a1

) = [dak
k , dak−1

k−1 , . . . , da1
1 ] the

degree sequence of G in which 0 = d0 < d1 < · · ·< dk and a0+ a1+ · · ·+ ak =
|V (G)|. Note that we disregard any vertices with degree 0, as they have no
influence on the value of Id .

Recall that by NG(v) we denote the set of neighbors of vertex v in G.
We also use NG[v] = NG(v)∪ {v}. Let S be a nonempty subset of V (G). By
degmax(S) and degmin(S) we denote the maximum degree and minimum de-
gree among the vertices in S, respectively. Let A and B be two non-increasing
(degree) sequences. We recall that by A≻ B we indicate that A strictly ma-
jorizes B.

In [33], V. Chvátal and P.L. Hammer introduced the family of threshold
graphs.

Definition 5.1. A graph G with vertex set V = {v1, . . . , vn} is called a threshold
graph if each vertex vi of G can be assigned a non-negative real number wi,
and G can be assigned a non-negative real number r such that vi ∈ V (G) and
v j ∈ V (G) are adjacent in G if and only if wi +w j > r.

Using this definition, V. Chvátal and P.L. Hammer [33] established the
following fact.

Fact 5.1 ([33]). If G is a threshold graph, then every induced subgraph of G is
a threshold graph.

For stating the next known result about threshold graphs, we say that
a degree sequence is a threshold sequence if it is the degree sequence of a
threshold graph.

Theorem 5.2 ([94]). A graphical sequence is a threshold sequence if and only if
it has a unique labeled realization.
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Let G be a graph with degree partition D0, D1, . . . , Ds. Combining some
results from [33] and [94], we have the following three equivalent characteri-
zations of threshold graphs.

Theorem 5.3 ([33, 94]). The following three statements are equivalent:

(a) G is a threshold graph;

(b) G does not have an alternating 4-cycle (i.e., there are no four vertices
u, v, w, x ∈ V (G) such that uw, vx /∈ E(G) and uv, wx ∈ E(G));

(c) for each v ∈ Dk,

NG(v) = ∪k
j=1Ds+1− j for k = 1, 2, . . . , ⌊

s
2
⌋;

NG[v] = ∪k
j=1Ds+1− j for k = ⌊

s
2
⌋+ 1, ⌊

s
2
⌋+ 2, . . . , s,

in other words, for u ∈ Di and v ∈ Dj, u is adjacent to v if and only if
i + j > s; Figure 5.1 illustrates this with s = 6 and s = 7.

D4

D5

D6

D3

D2

D1

D0

(a) s = 6

D4

D5

D6

D7

D3

D2

D1

D0

(b) s = 7

Figure 5.1: An illustration of the degree partitions of two thresh-
old graphs with s = 6 and s = 7.
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Figure 5.1 illustrates the degree partitions of two threshold graphs with
s = 6 and s = 7, respectively. A line between Di and Dj indicates that every
vertex of Di is adjacent to every vertex of Dj. An oval indicates that the
included vertices form a clique.

Theorem 5.3 (c) indicates the following theorem which shows the relation
between degrees and degree partitions [94].

Theorem 5.4 ([94]). For any threshold graph, we have

dk+1 = dk + |Ds−k| for k = 0,1, . . . , s, k ̸= ⌊s/2⌋;

dk+1 = dk + |Ds−k| − 1 for k = ⌊s/2⌋.

As a consequence of Theorem 5.2, we know that a threshold graph is
uniquely determined by its degree sequence. Similarly, from Theorem 5.4,
we learn that a threshold graph is also uniquely determined by its degree
partition.

Before proving Theorem 5.1 in the next section, at the end of this section
we first obtain the following four useful lemmas.

Lemma 5.1. If G is a threshold graph with degree partition D0, D1, . . . , Ds, then
|D⌈ s

2 ⌉| ≥ 2.

Proof. We prove the statement by contradiction. Suppose that |D⌈ s
2 ⌉|= 1. By

straightforward calculations, we have that ⌈ s+1
2 ⌉ = ⌊

s
2⌋+ 1 > ⌊ s

2⌋. Let di be
the degree of the vertices in Di for i = 0, 1, . . . , s. Using Theorem 5.3 (c), we
obtain d⌈ s+1

2 ⌉
=
∑s

i=⌈ s
2 ⌉
|Di| − 1 =

∑s
i=⌈ s

2 ⌉+1 |Di| = d⌊ s
2 ⌋, which contradicts the

assumption that di > d j for i > j.

We apply Lagrange’s mean value theorem to prove the following result
which will be used in our proof of Theorem 5.1.

Lemma 5.2. Let a be a positive integer, and let A= (a1, a2, . . . , an) be a positive
integer sequence. If f is a strictly concave function and

∑n
i=1 ai = a, then

∑n
i=1 f (ai) attains its maximum value if and only if ai = ⌈

a
n⌉ or ai = ⌊

a
n⌋ for

i = 1, 2, . . . , n.
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Proof. We prove the statement by contradiction. Suppose that
∑n

i=1 f (ai)
attains its maximum value and that ai − a j ≥ 2 for some indices i and j. Let
A′ = (a′1, a′2, . . . , a′n) be a sequence with a′i = ai − 1, a′j = ai + 1 and a′k = ak

for k ≠ i, j. Because f is strictly concave (i.e., the first derivative f ′ is strictly
decreasing), we obtain

n
∑

i=1

f (ai)−
n
∑

i=1

f (a′i)

=( f (ai)− f (ai − 1))−
�

f (a j + 1)− f (a j)
�

= f ′(ξ1)− f ′(ξ2)

<0,

where ξ1 ∈ (ai − 1, ai) and ξ2 ∈ (a j , a j + 1). This contradicts the assumption
that

∑n
i=1 f (ai) attains its maximum value.

The next result is a direct consequence of Jensen’s inequality.

Lemma 5.3. Let a be a positive integer, and let A= (a1, a2, . . . , an) be a positive
integer sequence of. If f is strictly concave and

∑n
i=1 ai = a, then

∑n
i=1 f (ai)≤

nf ( a
n) with equality if and only if ai =

a
n for i = 1, 2, . . . , n.

Our final result of this section shows that threshold graphs play a key role
in this chapter. We use the characterization of Theorem 5.3 (b) in terms of
alternating 4-cycles and a lemma from Chapter 2 to prove this result.

Lemma 5.4. Let n and m be integers with n≥ 2 and 1≤ m≤
�n

2

�

, and let G be
an (n, m)-graph. If Id(G) attains the minimum value among all (n, m)-graphs,
then G is a threshold graph.

Proof. We prove the statement by contradiction. Suppose that G is not a
threshold graph and that Id(G) attains the minimum value among all (n, m)-
graphs. By Theorem 5.3 (b), there are four vertices u, v, w, x ∈ V (G) such that
uv, wx ∈ E(G) and ux , vw /∈ E(G). Now assume without loss of generality that
degG(v)≥ degG(x). Consider the graph G′ = G−wx+wv. It is straightforward
to check that D(G′)≻ D(G). Using Lemma 2.1, we obtain that Id(G′)< Id(G),
a contradiction.
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The remainder of this chapter is devoted to our proof of Theorem 5.1.

5.2 Proof of Theorem 5.1

Proof of Theorem 5.1. We assume that G∗ is an (n, m)-graph with Id(G∗) =
min{Id(G) : G is an (n, m)-graph}. Let D0, D1, . . . , Ds be the degree partition
of G∗. By Lemma 5.4, G∗ is a threshold graph. We want to show that G∗ is
isomorphic to K(k∗, t∗)∪ Kn−k∗−σ(t∗), which is indeed a threshold graph that
is uniquely determined by its degree partition (or degree sequence), which is
as follows:

(Ai) if t∗ = 0 (so if m =
�k∗

2

�

), then |D0| = n − k∗ and |D1| = k∗ (so then
D(Kk∗ ∪ Kn−k∗) = [(k∗ − 1)k

∗
]);

(Aii) if 1 ≤ t∗ < k∗ − 1 (so if 1 ≤ m−
�k∗

2

�

< k∗ − 1), then |D0| = n− k∗ − 1,
|D1| = 1, |D2| = k∗ − t∗ and |D3| = t∗ (so then D(K(k∗, t∗)∪ Kn−k∗−1) =
[(k∗)t

∗
, (k∗ − 1)k

∗−t∗ , t∗]);

(Aiii) if t∗ = k∗−1 (so if m−
�k∗

2

�

= k∗−1), then |D0| = n−k∗−1, |D1| = 2 and
|D2| = k∗−1 (so then D(K(k∗, k∗−1)∪Kn−k∗−1) = [(k∗)k

∗−1, (k∗−1)2]).

In the remainder, we are going to show that the degree partition D0, D1, . . . , Ds

of G∗ matches the above degree partition of K(k∗, t∗) ∪ Kn−k∗−σ(t∗). Since
|D0|= n−

∑s
i=1 |Di|, the value of |D0| can be obtained from the values of all

other |Di|. Hence, it is sufficient to determine |Di| for i = 1,2, . . . , s. Let K =
∪s

i=⌈ s+1
2 ⌉

Di , and let k =ω(G∗). By Theorem 5.3 (c), we have k =
∑s

i= s+2
2
|Di|+1

(resp., k =
∑s

i= s+1
2
|Di|) for s even (resp., odd). So we have |K |= k− 1 (resp.,

|K |= k) for s even (resp., odd). We continue by proving five claims, the first
of which is the following.

Claim 1. If degmax(K)− degmin(K)≤ 1, then s ≤ 4.

Proof. We prove the claim by contradiction. Suppose that s ≥ 5. Then there are
at least three distinct degrees of vertices in K of G∗. This implies degmax(K)−
degmin(K)≥ 2, a contradiction. ♦
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Before we state the next claim, we first define the unique non-negative

integer c satisfying (c−1)(k−1)< m−
�k

2

�

≤ c(k−1) (i.e., c = ⌈m−(k2)
k−1 ⌉). This

integer c appears as follows in the next claim.

Claim 2. We have degmax(K)− degmin(K)≤ 1 if and only if

(i) |D1|= k for m−
�k

2

�

= c(k− 1) and c = 0;

(ii) |D1|= c + 1 and |D2|= k− 1 for m−
�k

2

�

= c(k− 1) and c ≥ 1;

(iii) |D1| = 1, |D2| =
�k+1

2

�

−m and |D3| = m−
�k

2

�

for (c−1)(k−1)< m−
�k

2

�

<

c(k− 1) and c = 1;

(iv) |D1| = 1, |D2| = c, |D3| = c(k−1)+
�k

2

�

−m and |D4| = m−
�k

2

�

−(c−1)(k−1)
for (c − 1)(k− 1)< m−

�k
2

�

< c(k− 1) and c ≥ 2.

Proof. The if part of the equivalence follows directly from Theorem 5.4, since
its statement implies

(i) degmax(K) = degmin(K) = d1 = k− 1 for m−
�k

2

�

= c(k− 1) and c = 0;

(ii) degmax(K) = degmin(K) = d2 = c+ k−1 for m−
�k

2

�

= c(k−1) and c ≥ 1;

(iii) degmax(K) = d3 = k and degmin(K) = d2 = k − 1 for (c − 1)(k − 1) <
m−

�k
2

�

< c(k− 1) and c = 1;

(iv) degmax(K) = d4 = c+k−1 and degmin(K) = d3 = c+k−2 for (c−1)(k−
1)< m−

�k
2

�

< c(k− 1) and c ≥ 2.

Thus degmax(K)− degmin(K)≤ 1 in all four cases.

For proving the only-if part of the statement, we assume that degmax(K)−
degmin(K)≤ 1. By Claim 1, this implies s ≤ 4. Now we distinguish four cases,
depending on the value of s. In each of these four cases we show that the
corresponding statement of the claim holds.

Case 1. s = 1.

This implies K = D1 and |D1| = k. By Theorem 5.4, we have degmax(K) =
degmin(K) = d1 = k− 1. By Theorem 5.3 (c), every vertex in D1 is adjacent to
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all other vertices in D1, which implies m =
�k

2

�

, that is, m−
�k

2

�

= c(k− 1) and
c = 0.

Case 2. s = 2.

This implies K = D2 and |D2|= k− 1. By Theorem 5.4, we have degmax(K) =
degmin(K) = d2 = d1 + |D1| − 1 and d1 = d0 + |D2| = k − 1. Since d1|D1|+

d2|D2| = 2m by the degree sum argument, we have |D1| =
m−(k−1

2 )
k−1 =

m−(k2)
k−1 +1.

This implies c =
m−(k2)

k−1 , or equivalently that m−
�k

2

�

= c(k−1). By Lemma 5.1,
we have |D1| ≥ 2, which implies c ≥ 1.

Case 3. s = 3.

This implies K = D2 ∪ D3 and |K | = k. This in turn implies degmax(K) = d3,
degmin(K) = d2 and |D2|+ |D3| = k. By Theorem 5.4, we have d1 = d0+ |D3| =
|D3|, d2 = d1+ |D2|−1 and d3 = d2+ |D1|. If |D1| ≥ 2, then d3− d2 = |D1| ≥ 2,
which contradicts degmax(K)− degmin(K)≤ 1. So we have |D1|= 1. Because
|D2| + |D3| = k, d2 = d1 + |D2| − 1 and d1 = |D3|, we obtain d2 = k − 1.
Since d3 = d2 + 1, we also get d3 = k. We use the degree sum argument to
deduce that 2m = d1|D1|+ d2|D2|+ d3|D3| = kd1 + (k − 1)(k − d1) + d1. By
straightforward calculations, we obtain d1 = m−

�k
2

�

. Now it follows from
|D3| = d1 = m−

�k
2

�

and |D2|+|D3| = k that |D2| = k−(m−
�k

2

�

) =
�k+1

2

�

−m. By
Lemma 5.1, we have |D2| ≥ 2. Because |D2|+ |D3| = k, we have 1≤ d1 ≤ k−2.
This implies 0 < m−

�k
2

�

< k− 1, so (c − 1)(k− 1) < m−
�k

2

�

< c(k− 1) and
c = 1.

Case 4. s = 4.

This implies K = D3∪D4 and |K | = k−1. This in turn implies degmax(K) = d4,
degmin(K) = d3 and |D3| + |D4| = k − 1. By Theorem 5.4, we have d1 =
d0 + |D4| = |D4|, d2 = d1 + |D3|, d3 = d2 + |D2| − 1 and d4 = d3 + |D1|. Since
|D3|+|D4| = k−1, d1 = |D4| and d2 = d1+|D3|, we have d2 = k−1. If |D1| ≥ 2,
then d4− d3 = |D1| ≥ 2, which contradicts degmax(K)− degmin(K)≤ 1. So we
have |D1| = 1. Because d2 = d1+|D3|, d1 = |D4| and |D3|+|D4| = k−1, we have
d2 = k−1. It follows from d3 = d2+|D2|−1 and d2 = k−1 that d3 = |D2|+k−2.
Now the degree sum argument yields 2m = d1|D1|+d2|D2|+d3|D3|+d4|D4| =
2d1+2(k−1)|D2|+(k−1)(k−2). By straightforward calculations, we obtain



86 Chapter 5. Minimum values of degree-entropy of graphs

|D2| =
m−(k−1

2 )−d1
k−1 . Because 0 < d1 < d2 = k − 1, we have |D2| = ⌊

m−(k−1
2 )

k−1 ⌋ =

⌊m−(k2)
k−1 +1⌋ = ⌈m−(k2)

k−1 ⌉. Thus c = ⌈m−(k2)
k−1 ⌉ = |D2| =

m−(k−1
2 )−d1

k−1 . So we have d1 =
m−

�k−1
2

�

−c(k−1) = m−(
�k−1

2

�

+k−1)+k−1−c(k−1) = m−
�k

2

�

−(c−1)(k−1) =
|D4|. This implies |D3| = k− 1− |D4| = c(k− 1) +

�k
2

�

−m. By Lemma 5.1, we
have |D2| ≥ 2, which implies c ≥ 2. Thus (c − 1)(k− 1)< m−

�k
2

�

< c(k− 1)
and c ≥ 2. ♦

In the next claim, we will gather more information on the degree partition
of G∗. To prepare for the induction proof of this claim, we need the following
set up. Let u be a vertex in D⌈ s

2 ⌉. By Theorem 5.4, we have degG∗(u) = k− 1.
Set G′ = G∗ − u. Since G′ is an induced subgraph of G∗, by Fact 5.1, we know
that G′ is also a threshold graph. Let ω(G′) = k′. If s is even, then there exists
a maximum clique in G∗ which does not contain u, since we can use another
vertex of D s

2
to replace u. So we have k′ = k if s is even. If s is odd, then

k′ = k− 1, since u must be contained in the maximum clique. Our next claim
provides us with more information on the degree partition of G∗.

Claim 3. The degree partition of G∗ satisfies

(i) |D1|= k for m−
�k

2

�

= c(k− 1) and c = 0;

(ii) |D1|= c + 1 and |D2|= k− 1 for m−
�k

2

�

= c(k− 1) and c ≥ 1;

(iii) |D1| = 1, |D2| =
�k+1

2

�

−m and |D3| = m−
�k

2

�

for (c−1)(k−1)< m−
�k

2

�

<

c(k− 1) and c = 1;

(iv) |D1| = 1, |D2| = c, |D3| = c(k−1)+
�k

2

�

−m and |D4| = m−
�k

2

�

−(c−1)(k−1)
for (c − 1)(k− 1)< m−

�k
2

�

< c(k− 1) and c ≥ 2.

Proof. By induction on m. The statement is trivial for m = 1, and easy to
check for m = 2. In the latter case, G∗ ∼= K1,2 ∪ Kn−3, that is, |D1| = 2 and
|D2| = 1 (i.e., m−

�k
2

�

= k− 1 and k = 2). So, we may assume m≥ 3 and that
the statement holds for all extremal graphs with fewer than m edges.

Adopting the above set up, it follows that G′ is a threshold graph with
n′ = n− 1 vertices, m′ = m+ 1− k edges and ω(G′) = k′. Let D′0, D′1, . . . , D′s′

be the degree partition of G′. Let c′ = ⌈m′−(k
′

2)
k′−1 ⌉. We assume that G′ satisfies



5.2. Proof of Theorem 5.1 87

(i) |D′1|= k′ for m′ −
�k′

2

�

= c′(k′ − 1) and c′ = 0;

(ii) |D′1|= c′ + 1, |D′2|= k′ − 1 for m′ −
�k′

2

�

= c′(k′ − 1) and c′ ≥ 1;

(iii) |D′1| = 1, |D′2| =
�k′+1

2

�

−m′ and |D′3| = m′ −
�k′

2

�

for (c′ − 1)(k′ − 1) <

m′ −
�k′

2

�

< c′(k′ − 1) and c′ = 1;

(iv) |D′1| = 1, |D′2| = c′, |D′3| = c′(k′ − 1) +
�k′

2

�

−m′ and |D′4| = m′ −
�k′

2

�

−
(c′ − 1)(k′ − 1) for (c′ − 1)(k′ − 1)< m−

�k′

2

�

< c′(k′ − 1) and c′ ≥ 2.

To relate G∗ to G′, we use the following recurrence relation

hd(G
∗) =hd(G

′) + (k− 1) log(k− 1)

+
∑

v∈K\{u}

(degG∗(v) log(degG∗(v))

− (degG∗(v)− 1) log(degG∗(v)− 1)).

Let f (x) = x log(x) − (x − 1) log(x − 1) for x ≥ 2. It follows that f (x) is
strictly concave. Since

∑

v∈K\{u} degG∗(v) = m+
�k−1

2

�

and |K \{u}| = k−1, by
Lemma 5.2,

∑

v∈K\{u}(degG∗(v) log(degG∗(v))− (degG∗(v)−1) log(degG∗(v)−
1)) attains the maximum value if and only if the maximum degree exceeds
the minimum degree by at most 1, that is, degmax(K)− degmin(K) ≤ 1. The
statement of the claim now follows from Claim 1 and the induction hypothesis.

♦

We next prove that k = k∗. We first make some observations, and we define
an auxiliary graph and a help function to facilitate our proof. By Claim 3, for
s = 1, we have |D1| = k∗ in which

�k∗

2

�

= m; for s = 3, we have |D0| = n−k∗−1,
|D1| = 1, |D2| = k∗−t∗ and |D3| = t∗ in which 1≤ m−

�k∗

2

�

< k∗−1. By Claim 3,
if m−

�k
2

�

= c(k−1), then the degree sequence of G∗ is [(c+k−1)k−1, (k−1)c+1]
(i.e., degmax(K)− degmin(K) = 0). Let Gn,m,k be the (n, m)-graph satisfying

D(Gn,m,k) = [(c+k−1)k−1, (k−1)c+1] in which c =
m−(k2)

k−1 . Notice that there are
n−c−k isolated vertices in Gn,m,k. By Theorem 5.2, this threshold sequence has
a unique labeled realization. Therefore Gn,m,k

∼= G∗ if m−
�k

2

�

= c(k− 1). Let
the function g(m, k) = (k−1)(c+k−1) log(c+k−1)+(c+1)(k−1) log(k−1),



88 Chapter 5. Minimum values of degree-entropy of graphs

in which c =
m−(k2)

k−1 . It follows that hd(Gn,m,k) = g(m, k). Now we are ready
to prove the final two claims.

Claim 4. We have hd(G∗)≤ g(m, k), with equality if and only if G∗ ∼= Gn,m,k.

Proof. Because
∑

v∈K\{u} degG∗(v) = m+
�k−1

2

�

, |K\{u}| = k−1 and f (x+1) =
(x + 1) log(x + 1)− x log(x) is strictly concave, by Lemma 5.3, we have

∑

v∈K\{u}

(degG∗(v) log(degG∗(v))− (degG∗(v)− 1) log(degG∗(v)− 1))

≤(k− 1)

��

m+
�k

2

�

k− 1

�

log

�

m+
�k

2

�

k− 1

�

+

�

m+
�k

2

�

k− 1
− 1

�

log

�

m+
�k

2

�

k− 1
− 1

��

,

with equality if and only if degG∗(v) =
m+(k−1

2 )
k−1 . For m = 2, G∗ ∼= K1,2 ∪

Kn−3 and hd(G∗) = 2 = g(2,2). By the same set up and similar induction
arguments as in the proof of Claim 3, we assume hd(G′) ≤ g(m′, k′). Using
these arguments, we conclude that hd(G∗)≤ g(m, k), with equality if and only
if G∗ ∼= Gn,m,k. ♦

Next we prove that g(m, k) is strictly increasing in k.

Claim 5. We have hd(Gn,m,k)≤ hd(Gn,m,k∗), with equality if and only if k = k∗.

Proof. By straightforward calculations, we have

hd(Gn,m,k) = g(m, k)

=
�

m+
�

k− 1
2

��

log

�

m+
�k−1

2

�

k− 1

�

+
�

m−
�

k− 1
2

��

log(k− 1).

For k ≥ 2 and m≥
�k

2

�

, by taking the derivative and after some reshuffling, we
obtain

∂ g(m, k)
∂ k

=
�

2k− 3
2

�

log(
(k− 1)(k− 2) + 2m

2(k− 1)2
) +

log(e)
2

> 0,
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in which e is the natural constant. So, we conclude that hd(Gn,m,k) is strictly
increasing in k. Since k ≤ k∗, this implies hd(Gn,m,k) = g(m, k)≤ hd(Gn,m,k∗),
with equality if and only if k = k∗. ♦

We now finish the proof by going through the four cases of Claim 3, and
showing that in each case the degree partition of G∗ indeed matches the
statements in (Ai)–(Aiii) of the beginning of this proof. Since ω(G∗) ≤ k∗,
we get 0≤ t∗ = m−

�k∗

2

�

≤ k∗ − 1. In particular, this shows that Case (iv) of
Claim 3 cannot occur. Note that Case (i) and (iii) correspond to the statements
in (Ai) and (Aii), respectively. We are done for t∗ = 0 (i.e., for the statement
in (Ai)) and 0< t∗ < k∗ − 1 (i.e., for the statement in (Aii)). So we consider

t∗ = m −
�k∗

2

�

= k∗ − 1 (i.e.,
m−(k

∗
2 )

k∗−1 = 1) in the remainder of this proof.
By Claims 4 and 5, we have hd(G∗) ≤ g(m, k∗), with equality if and only if
G∗ ∼= Gn,m,k∗ . Recall that by definition, D(Gn,m,k) = [(c+ k−1)k−1, (k−1)c+1]

in which c =
m−(k2)

k−1 . This implies D(Gn,m,k∗) = [(c∗ + k∗ − 1)k
∗−1, (k∗ − 1)c

∗+1]

in which c∗ =
m−(k

∗
2 )

k∗−1 = 1. Substituting c∗ = 1, we directly obtain D(Gn,m,k∗) =
[(k∗)k

∗−1, (k∗ − 1)2]. Thus |D1| = 2 and |D2| = k∗ − 1 for t∗ = k∗ − 1. This
matches the statement in (Aiii), and completes the proof.





Chapter 6

Extremal problems on two
distance-based entropies

In this chapter, we mainly study the behavior of two distance-based entropies.
We first recall the definitions of the Wiener-entropy and the eccentricity-
entropy. By deriving their (asymptotic) extremal behavior, we conclude that
the values of the Wiener-entropy of graphs of a given order are more spread
than the values of the eccentricity-entropy. We resolve three known conjec-
tures on the eccentricity-entropy. We propose two new conjectures (in one
statement) on the Wiener-entropy, based on some surprising observed behavior
of the graphs minimizing it.

6.1 Introduction

In this section, we repeat some of the definitions related to distance-based
entropies, for convenience. In Subsection 6.1.1, we explain our notation and
give an overview of the main distance-based graph entropies. This is followed
by Subsection 6.1.2, in which we present an elementary result, showing that
the upper bound of many graph entropies is log(n). As a consequence, we
also show that the extremal graphs attaining this upper bound exhibit some
kind of regularity. Finally, an overview of our contributions is summarized in

91
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Subsection 6.1.3 of this section.

6.1.1 Distance-based graph entropies

All graphs considered in this chapter are connected. Before introducing the
main concepts, we need to recall and introduce some related terminology and
notation.

Let G = (V, E) be a graph. We recall that the distance between two vertices
u and v is denoted by d(u, v). In particular, it satisfies the triangle inequality
d(u, v)≤ d(u, w) + d(w, v) for all vertices u, v, w ∈ V . Recall that by diam(G)
we denote the diameter of G. As before, the eccentricity of a vertex v is denoted
by ecc(v). A central vertex of G is a vertex with the minimum eccentricity. The
radius, denoted by rad(G), is the minimum eccentricity among all vertices
of G. Recall that S j(v, G) = {u ∈ V : d(u, v) = j} is called the j-sphere of
v ∈ V . The transmission of a vertex v is denoted by σG(v), or σ(v) if the
graph G is clear, and equals the sum of distances towards all other vertices:
σ(v) =

∑

u∈V d(v, u).

Let us recall some graph entropies which will be studied in this chapter.
Let G = (V, E) be a graph with vertex set {v1, v2, . . . , vn}. Dehmer [43] defined
a general form of graph entropy for G using an information functional f (vi)
by the formula

I f (G) = −
n
∑

i=1

f (vi)
∑n

j=1 f (v j)
log

�

f (vi)
∑n

j=1 f (v j)

�

.

The entropy Is2
(G) of G was defined in [47, 84] by the formula

Is2
(G) = −

n
∑

i=1

 ∑diam(G)
j=1 c j |S j(vi , G)|

∑n
t=1

∑diam(G)
j=1 c j |S j(vt , G)|

!

log

 ∑diam(G)
j=1 c j |S j(vi , G)|

∑n
t=1

∑diam(G)
j=1 c j |S j(vt , G)|

!

,

for some fixed real numbers c j > 0 with j = 1, 2, . . . , diam(G).
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When c j = j for every 1≤ j ≤ diam(G), we define it as the Wiener-entropy
by the formula

Iw(G) = −
n
∑

i=1

σ(vi)
∑n

j=1σ(v j)
log

�

σ(vi)
∑n

j=1σ(v j)

�

,

where σ(vi) is the transmission of vi. The Wiener index of G, proposed by
Wiener [122], is defined by

W (G) =
∑

{vi ,v j}⊆V

d(vi , v j).

Since
∑n

j=1σ(v j) = 2W (G), we have

Iw(G) = log(2W (G))−
1

2W (G)

n
∑

i=1

σ(vi) log(σ(vi)).

In the literature [47, 84], the following entropy regarding the eccentricity
of G was defined by

Ie(G) = −
n
∑

i=1

ciecc(vi)
∑n

j=1 c jecc(v j)
log

�

ciecc(vi)
∑n

j=1 c jecc(v j)

�

,

for some fixed real numbers ci > 0 and i = 1,2, . . . , n. For ci = 1, the
eccentricity-entropy was defined in [47, 84] by the formula

Iecc(G) = −
n
∑

i=1

ecc(vi)
∑n

j=1 ecc(v j)
log

�

ecc(vi)
∑n

j=1 ecc(v j)

�

.

6.1.2 Maximum graph entropies

We state the following elementary result for clarity.

Theorem 6.1. Let G = (V, E) be a graph, and let f : V → R+ be an information
functional. Then I f (G)≤ log(n), with equality if and only if G is f -regular, in
the sense that f (v) is a constant for every v ∈ V.
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Proof. In general, the Shannon entropy of a discrete variable X with set of
possible outcomes {x1, x2, . . . , xn} is upper bounded by log(n), with equality
if and only if X has a uniform distribution. This is a well-known fact and
consequence of Jensen’s inequality (since f (x) = −x log x is concave on [0, 1]).
As a corollary, this implies that I f (G) ≤ log(n), with equality if and only if
f (v) is a constant for every v ∈ V.

As a corollary, we obtain the following statements for the main examples
of the degree-entropy Id (see the equation (2.1)) and distance-based graph
entropies Iw and Iecc. Before giving statements, we need some definitions of
some classes of graphs. A graph is transmission-regular if σ(v) = σ(u) for
every u, v ∈ V. Such graphs have been studied in the past, also under the name
distance-balanced graphs, see e.g., [1, 12, 68]. If all the vertices in G have
the same eccentricity, then G is a self-centered graph [27].

Corollary 6.1. For a graph G of order n,

• Id(G)≤ log(n), with equality if and only if G is a regular graph,

• Iw(G) ≤ log(n), with equality if and only if G is a transmission-regular
graph,

• Iecc(G)≤ log(n), with equality if and only if G is a self-centered graph.

If one is restricting the class to trees, determining the maximum given the
order is not trivial anymore. For Id , it is known that the path is extremal [29,
Thm. 1]. In Section 6.3, we prove that the trees maximizing Iecc among all
trees of order n≥ 4 are precisely the trees with diameter 3. For Iw, we claim
that the extremal tree is again a different one, being the star, whenever n≥ 5.

Conjecture 6.1. Let T be an arbitrary tree of order n ≥ 5. Then Iw(T) ≤
Iw(K1,n−1) with equality if and only if T ∼= K1,n−1.

6.1.3 Contributions

When one is considering graphs, eccentricity and transmission are the local ana-
logues of diameter and total distance (linearly related with average distance),
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the two main distance measures for graphs. As such, among distance-based
entropies, the eccentricity-entropy and the Wiener-entropy seem to be among
the most natural ones (besides the more general versions). In this chapter, we
focus on these two.

Before that, in Section 6.2, we collect and prove some general results
and observations about the Shannon entropy of normalized sequences (the
probability distribution linearly related with the sequence). These general
results are useful to apply and give intuition on questions for graph entropies,
but might also be handy when working on general problems about (Shannon)
entropy.

In Section 6.3, we focus on the eccentricity-entropy and resolve the fol-
lowing three conjectures.

Conjecture 6.2 ([84]). Among graphs of order n, the minimum value of Iecc is
attained by the graph obtained by removing a small number of edges from the
complete graph of order n. In particular, the extremal graphs of order n will have
k ≥ n

2 vertices of degree n− 1.

Conjecture 6.3 ([47]). Among trees of order n, the maximum value of Iecc is
attained by the tree obtained by attaching n− 3 vertices to a pendant vertex of
the path of length 2.

Conjecture 6.4 ([47]). Among trees of order n and diameter d ≪ n, the
maximum value of Is2

and Ie are attained by the tree obtained by identifying the
central vertex of the star of order n− d with a central vertex of the path of length
d.

Below is a brief statement of the relationship between our results and the
above conjectures.

• Conjecture 6.2([84, Conj. 6.2]) is proven to be true (see Theorem 6.3),
except from the statement about the removal of a few edges (see Remark
6.2).

• Conjecture 6.3 ([47, Conj. 4.6]) is true for Iecc but false for general
Ie, since one can choose the ci in such a way that ones favorite tree is
extremal (see Proposition 6.7).
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• Conjecture 6.4 ([47, Conj. 4.3]) is refuted (see Proposition 6.8 and
Corollary 6.2).

Our proofs mainly rely on the general results in Section 6.2. Intuitively,
the eccentricity sequence has to be as unbalanced or balanced as possible to
attain the minimum or maximum value for the entropy.

In Section 6.4, we prove that the minimum of Iw(G) among all graphs
of order n is of the form

�3
4 + o(1)

�

log(n). Since the minimum of Iecc(G) is
(1− o(1)) log(n), the Wiener-entropy has a better distinguishing character, i.e.,
the difference between the maximum and minimum is larger.

Finally, in Section 6.5 we give some remarks on the trees and graphs that
conjecturally attain the minimum Wiener-entropy. For this, we define the
graph Gn,k, j formally as follows. Take the disjoint union of a path Pk and
clique Kn−k, and join one pendant vertex of the path with j vertices of the
clique by edges. An example of such a graph Gn,k, j has been presented in
Figure 6.1.

Figure 6.1: The graph Gn,k, j for n= 14, k = 6 and j = 4.

When we consider the value of j that minimizes Iecc(Gn,k, j), there is some
surprising behavior. When n ranges from 16 to 100, the value of j fluctuates
a lot, which intuitively can be explained as the clique at the end growing in a
less discretized way. Nevertheless, for n large, it seems that j = 1 is always
true, i.e., we conjecture that Iw for graphs of order n is maximized by a graph
of the form Gn,k,1 whenever n is sufficiently large. Explaining this evolution
in behavior of the graphs Gn,k, j seems to be already interesting.
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6.2 General results on entropy

The normalized vector (or unit vector) of a non-zero vector a = (a1, a2, . . . , an),
is a vector in the same direction with norm 1. It is denoted by ba and given by
ba= a

||a||1
, where ||a||1 =

∑n
i=1 |ai| is the 1-norm of a.

Definition 6.1. Let a = (a1, a2, . . . , an) be a positive real vector, and let p = ba =
(p1, p2, . . . , pn). We define the entropy of a by

H(a) = −(p1, p2, . . . , pn)(log(p1), log(p2), . . . , log(pn))
T

= −
n
∑

j=1

p j log(p j).

The following theorem is a direct consequence of Karamata’s inequal-
ity [75] applied on the (strictly) concave function −x log(x) (for x ∈ [0,1]).
Here we omit the definition of majorization that was introduced in Subsection
2.1.2.

Theorem 6.2. Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be two different
sequences of positive reals such that a majorizes b. Then

H(a)< H(b).

Proposition 6.1. Let S ⊂ (R+)n be the convex hull of N points. If H(s) attains
the minimum value among s ∈ S, then s is one of the extremal points of the
convex hull.

Proof. Assume this is not the case. So s is not one of the extremal points
of the convex hull. In that case there is a non-zero vector t for which the
interval [s− t, s+ t] is fully contained in S. Since (s− t) + (s+ t) = 2s, we
have ||s− t||1Ôs− t+ ||s+ t||1Ôs+ t = 2||s||1bs. So bs = λÔs− t+(1−λ)Ôs+ t, where
0< λ < 1.

Since the entropy is strictly concave, this immediately implies that

min{H(s− t), H(s+ t)}< H(s).

This leads to a contradiction with the choice of s.
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Proposition 6.2. Let a1, a2, . . . , as be fixed positive reals and b1, b2, . . . , bt be

positive variables. Let β be the solution for β = exp
�∑s

j=1 a j log(a j)
∑s

j=1 a j log(e)

�

. Then the

entropy of (the normalized vector of) (a1, a2, . . . , as, b1, . . . , bt) is maximized if

and only if b1 = b2 = · · ·= bt = β . Furthermore, H

 

(a1, a2, . . . , as, b, . . . , b
︸ ︷︷ ︸

t

)

!

is increasing when b < β and decreasing when b > β .

Proof. First note that due to concavity of f (x) = −x log(x), once
∑

bi is fixed,
we know that the maximum occurs when all bi are equal to a value b. In that
case

H((a1, a2, . . . , as, b1, . . . , bt)) = log
�∑

ai + bt
�

−
∑

ai log(ai) + t b log(b)
∑

ai + bt
.

The maximum can be found by taking the derivative towards b and setting
this equal to zero:

d
db

H

 

(a1, a2, . . . , as, b, . . . , b
︸ ︷︷ ︸

t

)

!

=
t

∑

ai + bt
−

t(1+ log(b))
∑

ai + bt

+ t

∑

ai log(ai) + t b log(b)
(
∑

ai + bt)2

=

∑

ai log(ai)− log(b)
∑

ai

(
∑

ai + bt)2
.

So this is zero when log(b) =
∑s

j=1 a j log(a j)
∑s

j=1 a j
, i.e., b = β , and it is positive

respectively negative if b is smaller or larger, implying it indeed attains a
maximum for this choice.

Proposition 6.3. Let a1, a2, . . . , as > 1 be fixed reals and b1, b2, . . . , bt be
variables that are positive integers. Let β be the real solution for the equality β =

exp
�∑s

j=1 a j log(a j)
∑s

j=1 a j log(e)

�

. Then the entropy of (a1, a2, . . . , as, b1, . . . , bt) is maximized

for b1 = b2 = · · ·= bt = b, where b is the optimal choice in {⌊β⌋, ⌈β⌉}.
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Proof. Let (bi)1≤i≤t be positive integers maximizing H((a1, a2, . . . , as, b1, . . . ,
bt)). As a first step, we prove that all bi are equal to ⌈β⌋. Assume to the contrary
that b1 ≤ b2 ≤ · · · ≤ bt (i.e., they are ordered) and bu−1 < bu = bu+1 = · · ·=
bt > ⌈β⌉ (the case where some numbers are smaller than ⌊β⌋ is analogous).
Now applying Proposition 6.2 with fixed reals (a1, a2, . . . , as, b1, . . . , bu−1) and
variables (t−u+1) times a variable b, we conclude that H

�

(a1, a2, . . . , as, b1, . . . ,
bu−1, b, . . . , b

︸ ︷︷ ︸

t−u+1

)
�

is decreasing when b > β ′. Here β ′ ≤max{β , bu−1} ≤ bu − 1.

Hence decreasing bu = bu+1 = · · · = bt by one increases the entropy. This
contradiction implies the result.
Alternatively, one can repeat the above argument of increasing the entropy
by decreasing all occurrences of the largest value by one if it is larger than
⌈β⌉. This implies that max{bi} ≤ ⌈β⌉ for an optimal choice of (bi)1≤i≤t .
Analogously an optimal sequence satisfies min{bi} ≥ ⌊β⌋.

In the second step, we prove that all bi are equal. Assume this is not the
case and t1 of the bi equal b1 = ⌊β⌋ and t2 = t − t1 equal (possible after
renaming the index) ⌈β⌉ = b2. Consider (a1, a2, . . . , as, b3, . . . , bt) as fixed
values and b1 and b2 as the variable ones. Now there do exist positive reals
c1, c2 for which

c1 b1 + c2 b2 =
s
∑

i=1

ai +
t
∑

i=3

bi

c1 b1 log(b1) + c2 b2 log(b2) =
s
∑

i=1

ai log(ai) +
t
∑

i=3

bi log(bi).

We will need the following claim in the remaining of the proof.

Claim 1. For fixed positive reals n and b ≥ 1, consider the function

h(c) = log(nb+ c)−
c(b+ 1) log(b+ 1) + (n− c)b log(b)

nb+ c
.

Then h(c) is a strictly convex function on [0, n].

Proof. Since h(c) is a function that is twice continuously differentiable on
[0, n], to prove h(c) is strictly convex, it is sufficient to prove its second
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derivative is positive for all c in [0, n]. By calculating, its second derivative
is 2b(b+1)n(ln(b+1)−ln(b))−bn−c

(bn+c)3 ln(2) . This second derivative is positive since bn+ c ≤
(b+ 1)n and 2b(ln(b+ 1)− ln(b))> 1 for every b ≥ 1. ♦

We apply Claim 1 with fixed b = ⌊β⌋ and n= c1 + c2 + 2. Let c = c2 + 1.
Then due to convexity of h, h(c)<max{h(c − 1), h(c + 1)}. But this is exactly
telling that changing b1 into ⌈β⌉ or b2 into ⌊β⌋ will increase the entropy
H((a1, a2, . . . , as, b1, . . . , bt)). This contradicts the choice of the sequence hav-
ing the maximum entropy and thus we can conclude that all bi are equal.

Definition 6.2. Let Hn((a1, a2, . . . , as)) = H

 

(a1, a2, . . . , as, b, . . . , b
︸ ︷︷ ︸

n−s

)

!

where

b is chosen such that b = exp
�∑s

j=1 a j log(a j)
∑s

j=1 a j log(e)

�

.

Lemma 6.1. Hn((a1, a2, . . . , as)) = log(n− r) where r = s−
∑s

j=1 a j

b .

Proof. Note that

H

 

(a1, a2, . . . , as, b, . . . , b
︸ ︷︷ ︸

n−s

)

!

= log

 

s
∑

j=1

a j + (n− s)b

!

−

∑s
j=1 a j log(a j) + (n− s)b log(b)

∑s
j=1 a j + (n− s)b

= log

 

s
∑

j=1

a j + (n− s)b

!

− log(b)

= log

�

n− s+

∑s
j=1 a j

b

�

.

Proposition 6.4. Let a = (a1, a2, . . . , as) and c = (c1, c2, . . . , cs) be two sequences
of positive reals such that a majorizes c. Then for every n≥ s,

Hn(a)≤ Hn(c).
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Proof. Let log(b) =
∑s

j=1 a j log(a j)
∑s

j=1 a j
and log(b′) =

∑s
j=1 c j log(c j)
∑s

j=1 c j
. By Theorem 6.2

and Proposition 6.2 (with b′ as maximizer) respectively,

H

 

(a1, a2, . . . , as, b, . . . , b
︸ ︷︷ ︸

n−s

)

!

≤H

 

(c1, c2, . . . , cs, b, . . . , b
︸ ︷︷ ︸

n−s

)

!

≤H

 

(c1, c2, . . . , cs, b′, . . . , b′
︸ ︷︷ ︸

n−s

)

!

.

Remark 6.1. Observe that by definition, if c is a subsequence of a, then Hn(a)≤
Hn(c).

6.3 On eccentricity-entropy

This section is devoted to the three conjectures mentioned in Section 6.1. We
start by proving Conjecture 6.2.

Theorem 6.3. The minimum value for Iecc among all graphs of order n is
attained by graphs of diameter 2.

Proof. Let G be a graph attaining the minimum value for Iecc(G) among all
graphs of order n. Let r be the radius of the graph and let S = [r, 2r]n. The
sequence of eccentricities (ecc(v))v∈V belongs to S and by Proposition 6.1
every eccentricity is r or 2r if it attains the minimum in S. If all eccentricities
are equal, then the entropy equals log(n) and so it would be the maximum
instead of minimum. If r > 1, then if there are vertices with eccentricity
r, as well as with 2r, there is also a vertex with eccentricity 2r − 1. When
r = 1, equality can clearly be attained and since the normalization made the
precise value of r being unimportant, we conclude that the graphs with radius
1 indeed attain the minimum.

Remark 6.2. A vertex has eccentricity 1 if and only if it has degree n− 1. The
entropy is completely determined once the number k of vertices of degree n− 1 is
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known. The other n−k vertices have eccentricity 2. The entropy of the graph equals
log(2n−k)− 2(n−k)

2n−k . This is a concave function for 0≤ k ≤ n, with the minimum
being attained by k = (2− 2 ln(2))n (over the reals, and so k will be of the form
⌈(2− 2 ln(2))n⌋). This minimum is roughly log(n)− 0.086 = (1− o(1)) log(n).
As such, for n ≥ 10, we immediately have that k > n

2 , so together with the
verification for small n, this addresses Conjecture 6.2 completely. Since there is a
set S of s = ⌈(2 ln(2)− 1)n⌋ vertices with eccentricity 2, the complement of G[S]
needs to have degree at least 1. In particular, taking G[S] to be the empty graph,
we observe that there are extremal graphs with at least

�⌊(2 ln(2)−1)n⌋
2

�

pairs of
non-adjacent vertices. It also implies that there are many minimal graphs, 2Θ(n

2)

(roughly the number of non-isomorphic connected graphs of order s), contrasting
the ideas of [84].

Then we turn attention to Conjecture 6.3. When restricting to the class
of trees, we will observe that the star (the only tree with diameter 2) is not
the graph minimizing the eccentricity-entropy, mainly due to the reason that
there is no possibility to play with the ratio of eccentricities with values 1 and
2. Actually the trees minimizing Iecc will be caterpillars with many pendant
vertices attached to both the central vertices and pendant vertices of a path,
such that most eccentricities are r + 1 and 2r, for some value of r(n). On the
other hand, the star has the third largest possible value for Iecc among all trees
of order n. This will be verified by deriving the three largest possible values
of the eccentricity-entropy for the class of trees, and as such we also confirm
Conjecture 6.3. To do so, we first observe that the eccentricities of vertices on
a diametrical path (a path between two furthest apart vertices) are fixed.

Remark 6.3. Let P be a diametrical path of length d in a tree. If v is a vertex
on the path at distance i from one end vertex of P, then ecc(v) =max{i, d − i}.
Otherwise, there exists a path of length larger than d.

Lemma 6.2. For a star Sn, Iecc(Sn)> log
�

n− 1−ln(2)
2

�

.

Proof. Observe that d
d x log(x) = 1

ln(2)x , and thus

Iecc(Sn) = log
�

n−
1
2

�

+
1
2

n− 1
2
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≥ log
�

n−
1
2

�

+
1

ln(2)

∫ n− 1−ln(2)
2

n− 1
2

1
x

dx

= log
�

n−
1− ln(2)

2

�

Proposition 6.5. If T is a graph of order n and diameter d ≥ 6, then Iecc(T )<
Iecc(Sn).

Proof. By combining Remark 6.1, Proposition 6.4 and Lemma 6.1, we conclude
that for even diameter d = 2r where r ≥ 3 (r is the radius) and n≥ 2r + 1,

Hn((r, r + 1, r + 1, r + 2, r + 2, . . . , 2r − 1, 2r − 1, 2r, 2r))

≤Hn((r, r + 1, r + 1,2r − 1, 2r − 1, 2r, 2r))

≤Hn
�

(r,
4
3

r,
4
3

r,
5
3

r,
5
3

r, 2r, 2r)
�

=Hn((3,4, 4,5, 5,6, 6))

< log(n− 0.17).

For the second inequality, it is sufficient to note that r + 1< 4
3 r < 5

3 r < 2r − 1
when r ≥ 4. Analogously, for d = 2r − 1 odd and n≥ 2d we have

Hn((r, r, r + 1, r + 1, 2r − 2,2r − 2,2r − 1,2r − 1))

≤Hn((4,4, 5,5, 6,6, 7,7))

< log(n− 0.16).

Since 1−ln(2)
2 < 0.154, we conclude by Remark 6.3.

Proposition 6.6. If a tree T of order n has diameter 5 and Iecc(T)< Iecc(Sn),
then it has at most 2 vertices with eccentricity 5. Every tree T of order n with
diameter 4 satisfies Iecc(T )< Iecc(Sn).

Proof. For diameter 5, by Lemma 6.2 it is sufficient to compute with Lemma 6.1
that Hn ((3, 3,4, 4,5, 5,5, 5))< log(n− 0.157) for every n≥ 8, and
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Hn



(3, 3,4, . . . , 4
︸ ︷︷ ︸

40

, 5, 5, 5)



 < log(n− 0.15345) for every n ≥ 45, and verify

that H



(3,3, 4, . . . , 4
︸ ︷︷ ︸

n−5

, 5, 5, 5)



< Iecc(Sn) for every n≤ 44.

For diameter 4, similarly it is sufficient to compute that Hn ((2,3, 3,4, 4,4))<
log(n− 0.18),

Hn



(2, 3, . . . , 3
︸ ︷︷ ︸

10

, 4, 4)



< log(n− 0.154) (for n sufficiently large) and

H



(2,3, . . . , 3
︸ ︷︷ ︸

n−3

, 4, 4)



< Iecc(Sn) for every n≤ 12.

By Propositions 6.5 and 6.6 there are only 3 candidates of extremal graphs.

The next result determines the first three maximum values of eccentricity-
entropy for trees of a given order by their corresponding trees or eccentricity
sequences.

Proposition 6.7. Among all trees of order n, the three largest possible values
of Iecc are obtained (in order) by a tree T3,n of diameter 3, a tree T5,n with
eccentricity sequence (3,3, 4, . . . , 4

︸ ︷︷ ︸

n−4

, 5, 5), and the star Sn.

Proof. We compute that (computations analogous to the ones in the proof of
Lemma 6.2)

Iecc(T3,n)− Iecc(T5,n) = log(n− 2/3) +
4 log(3)− 4 log(2)

3n− 2

− log(n)−
16− 3 log(3)− 5 log(5)

2n
≥ log(n− 2/3)− log(n)

+
(4/3+ 3/2) log(3) + 5/2 log(5)− (8+ 4/3)

n− 2/3
> 0
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and

Iecc(T5,n)− Iecc(Sn) = log(n) +
16− 3 log(3)− 5 log(5)

2n
− log

�

n−
1
2

�

−
1

2n− 1

is a strictly decreasing function (for n ≥ 6) for which the limit is zero, so
always positive.

To end this section, we consider trees of a given order and diameter to
refute Conjecture 6.4.

Proposition 6.8. There exists a value b such that the maximum value for Iecc

among all trees of diameter d and order n is obtained by the trees with eccentricity
sequence

• ( d
2 , d

2 + 1, d
2 + 1, . . . , d, d, b, . . . , b

︸ ︷︷ ︸

n−d−1

) for even d

• ( d+1
2 , d+1

2 , . . . , d, d, b, . . . , b
︸ ︷︷ ︸

n−d−1

) for odd d.

Here b ∼
3p2p

e d as d →∞.

Proof. Let T be a tree attaining the maximum value for Iecc among trees
of order n. Since we can add pendant vertices with any eccentricity in
[rad(T) + 1,diam(T)] to a diametrical path, we conclude by Remark 6.3 and
Proposition 6.3. For d sufficiently large, we have the following computations,
which we compute exactly up to a 1+O

� 1
d

�

factor.

log(b)∼
2
∑d

i= d
2

i log(i)

2
∑d

i= d
2

i

∼

∫ d
d
2

x log(x)dx
∫ d

d
2

x dx

∼
3
8 d2 log(d)− 3

16 ln(2)d
2 + 1

8 d2

3
8 d2
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= log(d)−
1

2 ln(2)
+

1
3

.

Since exp(log(d)/d) = 1+ o(1), we conclude that

b ∼
3p2
p

e
d ∼ 0.764d.

Corollary 6.2. Since the eccentricity-entropy Iecc is a special case of Ie, Conjecture
6.4 is not true when d is sufficiently large, as then the value b in Proposition 6.8
satisfies b > ⌈ d

2 ⌉+ 1.

6.4 Asymptotic minimum Wiener-entropy of graphs

We start by proving the following two elementary lemmas.

Lemma 6.3. Let G be a connected graph and v ∈ V . Then (n−1)σ(v)≥W (G),
with equality if and only if G is a star and v is its center.

Proof. By rewriting the sum and applying the triangle-inequality,

(n− 1)σ(v) = σ(v) + (n− 2)
∑

u∈V\v

d(v, u)

= σ(v) +
∑

w,u∈V\v

(d(u, v) + d(v, w))

≥ σ(v) +
∑

w,u∈V\v

d(u, w)

=W (G).

Equality only occurs if for every u, w ∈ V\v, there is a shortest path from u to
w containing v. In particular, d(u, w)≥ 2 for all u, w ∈ V\v implies that V\v
is an independent set. Since G is a connected graph, this implies that G is a
star with center v.

Lemma 6.4. Let G be a connected graph and uv ∈ E. Then σ(v)≥ n− 1. Also
|σ(u)−σ(v)| ≤ n− 2, with equality if and only if u or v is a pendant vertex.
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Proof. The first observation is trivial, since σ(v) is the sum of n− 1 distances
that are all at least one. Let w be a vertex different from u and v. Then
d(u, w)≤ d(u, v)+d(v, w) = d(v, w)+1 and vice versa, so |d(u, w)− d(v, w)| ≤
1. Hence we conclude, by applying the triangle inequality again: |σ(u)−σ(v)| =
|
∑

w∈V\{u,v} (d(u, w)− d(v, w))| ≤
∑

w∈V\{u,v} |d(u, w)− d(v, w)| ≤ n− 2.

Proposition 6.9. Let T be the broom consisting of a path Pk with one of its
pendant vertices c joined to n− k pendant vertices by edges. For fixed 1

3 > ε > 0,
let k = n1/2+ε and n sufficiently large. Then Iw(T )∼

3+2ε
4 log(n).

Proof. Note that

W (T ) =W (Pk) +W (Sn−k+1) + (n− k)

� k
∑

i=1

i

�

=
�

k+ 1
3

�

+ (n− k)2 + (n− k)
�

k+ 1
2

�

∼
nk2

2
.

If ℓ is one of the pendant vertices of the star, then σ(ℓ) = 2(n− k− 1) +
∑k

i=1 i ∼ k2

2 .

If v is a vertex on the path at distance i − 1 from c, then σ(v) = i(n− k) +
� i

2

�

+
�k−i+1

2

�

. The sum of the transmissions for the vertices at distance i − 1
from c for 2≤ i ≤ n2ε is bounded by

n2ε
∑

i=2

�

in+
�

k
2

��

< n
n4ε

2
+ n2ε n1+2ε

2
= n1+4ε.

Hence the sum of associated values pi =
σ(v)

2W (G) is of the order n1+4ε

nk2 =
O(n2ε−1) = o(1). By Lemma 6.3, we have that every pi is at least 1

2(n−1) and
thus − log(pi)≤ log(2(n− 1)). This implies that the contribution to Iw(G) of
the vertices at distance i − 1 from c for 2≤ i ≤ n2ε is o(log n).

When i > n2ε, then σ(v) ∼ in. As such, the probability pi =
σ(v)

2W (G) ∼
i

k2 .
For a pendant vertex ℓ of the star, we have that the associated probability for

the functional σ(i)
2W (G) ∼

k2
2

k2n ∼
1

2n .
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All together, this implies that

Iw(G)∼
k
∑

i=n2ε

i
k2
(2 log(k)− log(i)) + n

1
2n

log(2n)

∼ log(k)−
1
k2

k
∑

i=2

i log(i) +
1
2

log n

∼
1
2

log n+
1
2

log(k)

=
3+ 2ε

4
log(n).

Here we used that
∫ k

1 x log x dx ∼ k2

2 log(k).

Theorem 6.4. Let G be a connected graph of order n. Then Iw(G) >
3
4(1 +

o(1)) log(n).

Proof. Let p1, p2, . . . , pn be the n fractions of the form σ(v)
2W (G) , ordered in a

decreasing order, i.e., pi ≥ pi+1 for every i. By Lemma 6.3, we know pn ≥
1

2(n−1) >
1

2n . By Lemma 6.4 and 2W (G)≥ n(n−1), we also note that pi−pi+1 <
n−2

n(n−1) <
1
n for every 1≤ i ≤ n− 1.

Let k be the largest number for which k2 − k ≤ n. Then the sequence
(p1, p2, . . . , pn) is majorized by the sequence (a1, a2, . . . , an)with a1 =

n−k2+3k−1
2n ,

ai =
2k−2i+1

2n for 2≤ i ≤ k and ai =
1

2n whenever n≥ i > k.

Since the function f (x) = −x log(x) is concave, by Karamata’s inequality
we have

∑

i

f (pi)≥
∑

i

f (ai).

Note that one term separately is negligible, i.e., f (a1) = o(log(n)), and so we
can replace it by f

�2k−1
2n

�

in the estimation.

Now

(n− k) f
�

1
2n

�

=
1
2
(1+ o(1)) log(2n) =

1
2
(1+ o(1)) log(n)
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and

k−1
∑

i=1

f
�

2i − 1
2n

�

≥
k−1
∑

i=1

f
�

i
n

�

=
1
2
(1+ o(1)) log(n)−

1
n

k−1
∑

i=1

i log(i)

∼
1
2

log(n)−
1
n

∫ k−1

1

x log x dx

∼
1
2

log(n)−
1
4

log n

=
1
4

log(n).

Together, this implies that

∑

i

f (pi)≥
3
4
(1+ o(1)) log(n).

6.5 Further thoughts on the extremal graphs for the
Wiener-entropy

In Section 6.4, we determined the minimum value of Iw(G) among graphs of
order n asymptotically. A precise result, or characterizing the extremal graphs
seems to be much harder. In this section, we present some thoughts about the
extremal graphs.

From the idea of Theorem 6.4, for the class of trees, the trees of order n
with minimum Wiener-entropy are expected to be brooms for sufficiently large
n. If this intuition is true, the extremal broom would be completely determined
by the length k of the path in Proposition 6.9, and the optimal choice k(n) can
be expected to be a step-wise increasing function which behaves like n1/2+o(1).
For small n, the asymptotic analysis does not give a clear indication of the
extremal tree. In particular, for n ≤ 16 the extremal trees are not brooms.
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Let Ts(n) be a tree of order n which attains the minimum Wiener-entropy.
For 3 ≤ n ≤ 16, the trees with the minimum Wiener-entropy are listed in
Table 6.11.

n Ts(n) n Ts(n)

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

Table 6.1: Trees with the minimum Wiener-entropy.

Next, we focus on graphs instead of trees. As a corollary of Proposition 6.2,
one can easily observe that if there are two vertices u, v for which σ(u) and
σ(v) are small (smaller than the corresponding value β) and uv does not affect
σ(w) for w ̸∈ {u, v}, then uv is always present. The latter also holds for a set
of vertices. Starting from a broom, by the previous argument, all edges should
be present between the leaves of the star, and we obtain the concatenation
of a path and a clique. It has to be observed that for n ≤ 15, the extremal
graphs are not of this form. This is not surprising, as the asymptotic estimates
and intuition in the proof of Theorem 6.4 are only about big order behavior,
and also for trees the broom was not extremal for small n. For 5≤ n≤ 9, the
extremal graphs are presented in Figure 6.2.

If the extremal graphs are the concatenation of a path and a clique, they
would again be defined by a stepwise increasing function k(n) on the integers

1See https://github.com/yndongmath/wiener-entropy for verification.

https://github.com/yndongmath/wiener-entropy
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Figure 6.2: Graphs on n vertices which attain the minimum
Wiener-entropy for 5≤ n≤ 9.

n. One can expect that if it would be plausible, the optimal function k(x)
on the reals would be more continuous. By joining one pendant vertex of
the path with only a portion of the vertices of the clique, there is this more
continuous behavior. Recall that Gn,k, j is the disjoint union of a path Pk and a
clique Kn−k, with j vertices of the clique joined to one pendant vertex of the
path (Figure 6.1).

Restricted to the class of graphs of the form Gn,k, j, we computed the
extremal graphs for small n. For 16 ≤ n ≤ 94, the results reveal behavior
one can expect. When n is growing, k grows stepwise and in these steps j
decreases. For larger n, we observe that j = 1 appears more often, e.g., when
208 ≤ n ≤ 222 this happens for 6 out of the 13 values for which k(n) = 26.
All of these values are presented in Table 6.2.

n (k, j) Iw(Gn,k, j)
32 (8, 22) 4.8418782994
33 (8, 20) 4.8824114556
34 (8, 18) 4.9217394089
35 (8, 15) 4.9599202002
36 (8, 12) 4.9970026044
37 (8, 8) 5.0330361551
38 (8, 4) 5.0680644063
39 (9, 26) 5.1020833397
40 (9, 23) 5.1352102662
41 (9, 20) 5.1675123079
42 (9, 16) 5.1990223046
43 (9, 12) 5.2297674906
44 (9, 8) 5.2597769036
45 (9, 3) 5.2890774027
46 (10, 31) 5.3176708476

n (k, j) Iw(Gn,k, j)
208 (25,1) 7.2287884533
209 (26, 159) 7.2347291497
210 (26, 133) 7.2406346487
211 (26, 108) 7.246505897
212 (26,84) 7.2523437764
213 (26,61) 7.2581490247
214 (26,38) 7.2639222854
215 (26,16) 7.2696641255
216 (26,1) 7.2753755053
217 (26,1) 7.281063551
218 (26,1) 7.2867307557
219 (26,1) 7.2923773056
220 (26,1) 7.2980033842
221 (26,1) 7.3036091723
222 (27, 175) 7.3091923114

Table 6.2: Minimum value of Wiener-entropy among graphs of
the form Gn,k, j for 32≤ n≤ 46 and 208≤ n≤ 222.

Maybe surprisingly, for large n, it seems that j = 1 always yields the
extremal graphs. So, there seems to be some stability result or discretization
for large values of n, which was not there for the smaller values. Noting that
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the size m =
�n−k

2

�

+ j+ k−1, one can also plot the value Iw(Gn,k, j) in terms of
the size, and expect some monotonicity below and above the optimal choice.
This seems to be true in large regions, but is not always true. As an example,
when n = 48, then the optimal size is m = 736 (k = 10 and j = 24) and
around this value the function Iw behaves nicely, but for k = 38 we do not have
monotonicity in terms of j. This is presented in Figure 6.3 of the appendix
(Section 6.6).

For a given n, let k′ be the optimal choice for which there is a j such that
Gn,k′, j attains the minimum Wiener-entropy among all choices of graphs of
the form Gn,k, j. Then for k = k′ ± 1, we observed the same behavior as was
the case with n= 48 for larger values. Nevertheless, when plotting Iw(Gn,k′, j)
for larger n as a function of j, there are examples with multiple local minima.
This leads to the following question.

Question 6.1. Can one explain (give some intuition for) the difference in behavior,
depending on the order, for the graphs of the form Gn,k, j minimizing Iw(G).

We expect that the extremal graphs are of the form Gn,k, j from a reasonably
small constant onwards, and we conjecture that the extremal graphs for large
n are indeed the concatenation of a path and a clique, i.e., graphs of the form
Gn,k,1. Based on the above discussions, we propose the following conjecture
(or in fact two conjectures combined into one statement).

Conjecture 6.5. There exists a value n0 such that for all n≥ n0, among all trees
and graphs of order n, the Wiener-entropy is minimized by respectively a broom
and a Gn,k,1.

Based on a verification among the graphs of the form Gn,k, j, it seems
plausible that n0 = 1270. The sporadic examples for which 1000≤ n≤ 25402

and j > 1 are given in Table 6.3.

For n ≥ 16, the graphs of the form Gn,k, j with the minimum value of
Iw(Gn,k, j) have been computed and are summarized in Table 6.3 for some
powers of 2. For these powers of 2, the value for the Wiener-entropy can be

2Computations have been done within a restricted range, based on an assumption of mono-
tonicity in k, see https://github.com/yndongmath/wiener-entropy/tree/main/
CalE.

https://github.com/yndongmath/wiener-entropy/tree/main/CalE
https://github.com/yndongmath/wiener-entropy/tree/main/CalE
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n (k, j) Iw(Gn,k, j)
1003 (67,401) 9.1328643808
1004 (67, 75) 9.1340468031
1029 (68,152) 9.163275375
1054 (69,389) 9.1917887671
1055 (69, 29) 9.1929126061
1080 (70,323) 9.2207190796
1133 (72,112) 9.2775546382
1269 (77, 37) 9.4118343668

Values of 1000≤ n≤ 2540 for which
the graph Gn,k, j attaining the

minimum value of Iw satisfies j > 1

n (k, j) Iw(Gn,k, j)
16 (5,9) 3.9126433225
32 (8, 22) 4.8418782994
64 (12,26) 5.744804111
128 (19,69) 6.624593606
256 (29,4) 7.4845154156
512 (44,1) 8.32786753
1024 (67,1) 9.1574755626
2048 (101,1) 9.9757653248
4096 (152,1) 10.7847443225
8192 (225,1) 11.5860993918

Minimum values of Iw among
graphs of the form Gn,k, j in which

n is a power of 2

Table 6.3: Minimum values of Iw(Gn,k, j) for some special cases.

easily compared with log(n) and as such, we observe that the o(1) part in
Theorem 6.4 tends to zero rather slowly.
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6.6 Appendix

Figure 6.3: Plots of Iw(G48,k, j) for k ∼ 10 and k ∼ 38.



Chapter 7

The complexity of spanning tree
problems

This chapter differs from the other chapters, in the sense that it deals with
algorithmic problems and their computational complexity. However, it is
related to the previous chapters, in the sense that the algorithmic problems
we address involve graphical function-indices, including graph entropies. In
particular, in this chapter we study the computational complexity of decision
and optimization problems concerning maximum and minimum spanning
trees for graphical function-indices that are computable in polynomial time.
Among trees of a given size and order, many topological indices attain either
their maximum or minimum value for the unique case that the tree is a path.
We show that either the maximum or the minimum spanning tree problems
for such topological indices are N P -complete. We also prove that if the
corresponding functions are strictly convex or concave, then the minimum
and maximum spanning tree problems for these graphical function-indices
are N P -complete, and their optimization versions are APX -complete,
respectively.

115
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7.1 Introduction

Within the popular area of chemical graph theory, so-called graphical indices
(also known as chemical indices or topological indices) play an important
role in capturing the structural properties of molecules. Our main focus
here is on graphical indices which are based on functions of the degrees
of the vertices of the graphs that represent these molecules. Adopting the
terminology of Li and Peng [90], for a symmetric real function f (x , y), we
use the unifying term graphical function-index of a graph G = (V, E) for
the expression

∑

uv∈E f (degG(u), degG(v)), where degG(·) denotes the degree.
This definition captures many well-studied graphical indices, some of which
we included with their commonly used name in Table 7.1 in the appendix
(Section 7.8).

The above term also captures graphical indices defined in [114, 126] by
a real function f (x) and the expression

∑

u∈V f (degG(u)). This follows from
∑

uv∈E(
f (degG(u))

degG(u)
+ f (degG(v))

degG(v)
) =

∑

u∈V f (degG(u)) (i.e., by choosing f (x , y) =
f (x)

x +
f (y)

y in the above expression).

We are interested in the computational complexity of decision problems
and optimization problems related to topological indices. In particular, we aim
to unify decision problems concerning lower and upper bounds on the value
of the graphical function-index of spanning trees, as well as the associated
optimization problems, for different choices of the function f (x , y). For this
reason, we assume that all graphs are simple and connected. We refer to [62]
for any undefined notation and terminology related to complexity.

7.2 Spanning tree problems and their complexity

As in Chapter 4, we use GF I f (G) to denote the graphical function-index of a
graph G = (V, E), where GF I f (G) =

∑

uv∈E f (degG(u), degG(v)) for a suitable
choice of the symmetric real function f (x , y). Since we deal with complexity
questions, throughout the chapter we assume that the chosen function f (x , y)
is computable in polynomial time, without explicitly mentioning it.
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In this contribution, we are interested in the computational complexity
of determining a spanning tree T of G that maximizes (minimizes) GF I f (T ).
For this purpose, we define the two associated decision problems as follows.

MAXST-GFI f

INSTANCE: A graph G of order n, and a real number k.
QUESTION: Does G have a spanning tree T with GF I f (T )≥ k?

MINST-GFI f

INSTANCE: A graph G of order n, and a real number k.
QUESTION: Does G have a spanning tree T with GF I f (T )≤ k?

Our first main observation is that the above problems are N P -complete
if paths are the unique extremal trees, in the following sense.

Theorem 7.1. Suppose Pn is the unique tree with the largest value of GF I f (T )
among all spanning trees T of G for every connected graph G of order n. Then
MAXST-GFI f is N P -complete.

Theorem 7.2. Suppose Pn is the unique tree with the smallest value of GF I f (T )
among all spanning trees T of G for every connected graph G of order n. Then
MINST-GFI f is N P -complete.

Since the proofs of both results are similar, we only present the proof of
Theorem 7.1.

Proof. MAXST-GFI f is clearly in N P , since it is straightforward to check in
polynomial time whether GF I f (T )≥ k for any given spanning tree T of G and
real number k. Note that here we implicitly use the assumption that GF I f (T )
can be computed in polynomial time.

To show the N P -completeness of MAXST-GFI f , we use a reduction from
the well-knownN P -complete problem HAMILTON PATH [62], which is defined
as follows.

HAMILTON PATH

INSTANCE: A graph G of order n.
QUESTION: Does G have a Hamilton path, i.e., a subgraph isomorphic to
Pn?
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Suppose that Pn is the unique tree with the largest value of GF I f (T)
among all spanning trees T of G for every connected graph G of order n. Then
an arbitrary graph G is a YES-instance of HAMILTON PATH if and only if G
is connected and G has a spanning tree T with GF I f (T) ≥ GF I f (Pn). This
completes the proof of Theorem 7.1.

We note here that N P -completeness results similar to the statements in
Theorem 7.1 or Theorem 7.2 hold for other topological indices, as long as
these indices are computable in polynomial time and similar extremal results
are known or can be proved. We come back to this in Section 7.7.

We first continue with some complexity results on GF I f (G) in case f (x , y) =
f (x)

x + f (y)
y for a real function f (x). Recall that this implies GF I f (G) =

∑

u∈V f (degG(u)). We focus on the cases for which we know that f (x) is
strictly concave or convex. In these cases we can prove that the above prob-
lems MAXST-GFI f and MINST-GFI f remain N P -complete when restricted to
cubic graphs, i.e., instance graphs in which all vertices have degree 3.

7.3 More complexity results

In this section, throughout we assume GF I f (G) =
∑

u∈V f (degG(u)) for a real
function f (x) which is computable in polynomial time. We consider the below
special cases of MAXST-GFI f and MINST-GFI f for such GF I f (G) and restricted
to cubic graphs.

C-MAXST-GFI f

INSTANCE: A cubic graph G of order n, and a real number k.
QUESTION: Does G have a spanning tree T with GF I f (T )≥ k?

C-MINST-GFI f

INSTANCE: A cubic graph G of order n, and a real number k.
QUESTION: Does G have a spanning tree T with GF I f (T )≤ k?

In the next section, we show how we can use the following problem 1,3-ST
to prove complexity results if f (x) is assumed to be either strictly concave or
convex in the above problems.
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1,3-ST
INSTANCE: A cubic graph G of order n.
QUESTION: Does G have a spanning tree with no vertices of degree 2?

The problem 1,3-ST is known to beN P -complete by a result of Lemke [86].
We use it to deduce the following complexity results.

Theorem 7.3. If f is a strictly concave function, then C-MINST-GFI f is N P -
complete.

Theorem 7.4. If f is a strictly convex function, then C-MAXST-GFI f is N P -
complete.

We only prove Theorem 7.3; the counterpart for strictly convex functions
can be proved in a similar way.

The above results directly imply that MINST-GFI f (resp., MAXST-GFI f )
are N P -complete if f is a strictly concave (resp., convex) function and
GF I f (G) =

∑

u∈V f (degG(u)) for a real function f (x) which is computable in
polynomial time. We show examples of known topological indices satisfying
these conditions in Section 7.7.

In the next section, we introduce some additional terminology and notation,
and present our proof of Theorem 7.3.

7.4 Proof of Theorem 7.3

We start this section with two useful lemmas, but first need to recall some
additional terminology and notation.

For a graph G, we use the same notation D(G) and the same way to denote
the degree sequence of G as in Subsection 5.1.2. Let A and B be two non-
increasing (degree) sequences of the same length. Then, as previously, we use
A≻ B to denote that A strictly majorizes B. If T is any tree of order n different
from Pn (resp., K1,n−1), then clearly D(T )≻ D(Pn) (resp., D(K1,n−1)≻ D(T )).
So, by Karamata’s inequality (Theorem 4.2), we immediately obtain the fol-
lowing result as a consequence.
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Lemma 7.1. Let T be a tree of order n. If f is a strictly concave (resp., convex)
function, then

(a) GF I f (T )≤ GF I f (Pn) (resp., GF I f (T )≥ GF I f (Pn)), with equality holding
in the inequality if and only if T ∼= Pn;

(b) GF I f (T )≥ GF I f (K1,n−1) (resp., GF I f (T )≤ GF I f (K1,n−1)), with equality
holding in the inequality if and only if T ∼= K1,n−1.

Note that the statements in Lemma 7.1 (a) can be considered as special
cases of the statements in Theorems 7.1 and 7.2, for the case that GF I f (G) =
∑

u∈V f (degG(u)). Theorem 7.3 and its counterpart show the stronger versions
of the latter case when restricted to cubic graphs. We complete this section
with our proof of Theorem 7.3.

Proof of Theorem 7.3. We assume that f is a strictly concave function, and our
aim is to prove that the problem C-MINST-GFI f is N P -complete.

The problem is clearly in N P .

Let T ∗ be a tree of order n with degree sequence [3
n−2

2 , 1
n+2

2 ] (where n
is even by the well-known fact that the degree-sum is twice the number of
edges). We consider the problem C-MINST-GFI f for k = GF I f (T ∗). We prove
the required N P -completeness by a reduction from the 1,3-ST problem.
Recall that the latter problem is N P -complete. Let G be a cubic graph with
vertex set {v1, v2, . . . , vn}. It is sufficient to prove that G has a spanning tree
with no vertices of degree 2 if and only if G has a spanning tree T with
GF I f (T )≤ GF I f (T ∗).

Suppose first that T ′ is a spanning tree of G with no vertices of degree
2. Set D(T ′) = [3a, 1b]. Then a + b = n and 3a + b = 2(n − 1). By
straightforward calculations, we obtain a = n−2

2 and b = n+2
2 . So we have

D(T ′) = [3
n−2

2 , 1
n+2

2 ] = D(T ∗). Thus GF I f (T ′) = GF I f (T ∗), and hence G has
a spanning tree T = T ′ with GF I f (T )≤ GF I f (T ∗).

For the other implication, suppose that all spanning trees of G have at
least one vertex of degree 2. Let T be an arbitrary spanning tree of G. We
complete the proof by showing that GF I f (T )> GF I f (T ∗).

Set D(T) = [3a1 , 2a2 , 1a3] = (d1, d2, . . . , dn). So we have a2 ≥ 1. Then
a1+a2+a3 = n and 3a1+2a2+a3 = 2(n−1). By straightforward calculations,
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we have a1 =
n−a2−2

2 and a3 =
n−a2+2

2 . Since a2 ≥ 1, we have a1 <
n−2

2 and
a3 <

n+2
2 . Recall that D(T ∗) = [3

n−2
2 , 1

n+2
2 ] = (d ′1, d ′2, . . . , d ′n). It is easy to

check the validity of the following inequalities.

k
∑

i=1

di = 3k =
k
∑

i=1

d ′i for k = 1, 2, . . . , a1;

k
∑

i=1

di = 3a1 + 2(k− a1)< 3k =
k
∑

i=1

d ′i for k = a1 + 1, a1 + 2, . . . ,
n− 2

2
;

k
∑

i=1

di = 2n− 2− 2t − a3 ≤ 2n− 2− t − a3 =
k
∑

i=1

d ′i

for t = n− a3 − k and k =
n
2

,
n
2
+ 1, . . . , a1 + a2;

k
∑

i=1

di = 2n− 2− ℓ=
k
∑

i=1

d ′i

for ℓ= n− k and k = a1 + a2 + 1, a1 + a2 + 2, . . . , n.

Hence D(T ∗) ≻ D(T). Since we assume f is strictly concave, using Theo-
rem 4.2, we conclude that GF I f (T )> GF I f (T ∗). This completes the proof of
Theorem 7.3.

7.5 APX−completeness

In this and the next section, we continue to consider GF I f (G) =
∑

u∈V
f (degG(u))

for a real function f (x) which is computable in polynomial time.

However, we will turn our attention to the optimization problems associ-
ated with the decision problems we considered in the previous sections.

Adopting the way optimization problems are presented in a classic paper
by D.S. Johnson [73], we list the optimization versions of C-MINST-GFI f and
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C-MAXST-GFI f as follows.

C-MINST-GFI f

INSTANCE: A cubic graph G of order n.
FEASIBLE SOLUTION: A spanning tree T of G.
OBJECTIVE FUNCTION: GF I f (T ).
OPT: Min.

C-MAXST-GFI f

INSTANCE: A cubic graph G of order n.
FEASIBLE SOLUTION: A spanning tree T of G.
OBJECTIVE FUNCTION: GF I f (T ).
OPT: Max.

The following results deal with theAPX -completeness of the above op-
timization versions of C-MINST-GFI f and C-MAXST-GFI f . These results imply
that there exists an ε > 0 such that no polynomial time (1+ ε)-approximation
algorithm is possible for these two problems, unless P =N P [9].

Theorem 7.5. If f is a strictly concave function, then the optimization version
of C-MINST-GFI f isAPX -complete.

Theorem 7.6. If f is a strictly convex function, then the optimization version of
C-MAXST-GFI f isAPX -complete.

We only prove Theorem 7.5 below, since the proof of Theorem 7.6 is similar.
We first give some remarks. The above results directly imply that the optimiza-
tion version of MINST-GFI f (resp., MAXST-GFI f ) isAPX -complete if f is a
strictly concave (resp., convex) function and GF I f (G) =

∑

u∈V f (degG(u)) for
a real function f (x) which is computable in polynomial time.

There exists an extensive literature on proofs forAPX -completeness of
optimization problems by L-reductions (See, e.g., [2, 38, 102, 105]). Given
two optimization problems F and G, and a polynomial time transformation h
from instances of F to instances of G, we say that h is an L-reduction if there
are positive constants α and β such that for every instance x of F

1. optG(h(x))≤ α · optF (x);
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2. for every feasible solution y of h(x) with objective value gG(h(x), y) =
c2, we can in polynomial time find a solution y ′ of x with gF (x , y ′) = c1

such that |optF (x)− c1| ≤ β · |optG(h(x))− c2|.

We next prove Theorem 7.5 by an L-reduction; the counterpart for strictly
convex functions can be proved in a similar way. For the full proof of Theo-
rem 7.5 we also need to show that C-MINST-GFI f ∈APX . This will be done
in Section 7.6.

Proof of Theorem 7.5. We present our proof that C-MINST-GFI f ∈APX in
Section 7.6. Next we prove the APX -hardness by an L-reduction from
the optimization problem C-MLST to C-MINST-GFI f . The c-MLST problem
is defined as follows; it is known to be APX -complete by a result due to
Bonsma [23].

C-MLST
INSTANCE: A cubic graph G of order n.
FEASIBLE SOLUTION: A spanning tree T of G.
OBJECTIVE FUNCTION: The number of leaves of T .
OPT: Max.

Let G = (V, E) be a cubic graph of order n. Let T1 and T2 be two spanning
trees of G on distinct numbers of leaves ℓ1 and ℓ2, respectively. It is easy to see
that D(Ti) = [3ℓi−2, 2n+2−2ℓi , 1ℓi ] for i = 1, 2. Under the majorization relation,
any pair of degree sequences of two spanning trees of G are comparable.
This implies either D(T1) ≻ D(T2) or D(T2) ≻ D(T1). By straightforward
calculations, ℓ1 > ℓ2 if and only if D(T1)≻ D(T2). By Theorem 4.2, we have
GF I f (T1)< GF I f (T2) if and only if ℓ1 > ℓ2. This implies that a spanning tree
T ∗ of G has the maximum number ℓ∗ of leaves if and only if GF I f (T ∗) attains
the minimum value among all spanning trees of G. Let T be a spanning tree
of G with GF I f (T ) = (ℓ−2) f (3)+ (n+2−2ℓ) f (2)+ ℓ f (1). This implies that
T has ℓ leaves. Since f (x) is strictly concave, we have

�

�

�

�

(ℓ∗ − 2) f (3) + (n+ 2− 2ℓ∗) f (2) + ℓ∗ f (1)
ℓ∗

�

�

�

�
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≤
�

�

�

�

ℓ∗( f (3)− 2 f (2) + f (1))
ℓ∗

�

�

�

�

+

�

�

�

�

(n+ 2) f (2)
ℓ∗

�

�

�

�

+

�

�

�

�

2 f (3)
ℓ∗

�

�

�

�

≤ 2 f (2)− f (3)− f (1) +
(n+ 2)| f (2)|

2
+ | f (3)|

≤ 2| f (3)|+
(n+ 6)| f (2)|

2
− f (1)

and
�

�

�

�

ℓ∗ − ℓ
(ℓ∗ − ℓ) f (3)− 2(ℓ∗ − ℓ) f (2) + (ℓ∗ − ℓ) f (1)

�

�

�

�

=
1

2 f (2)− f (3)− f (1)
.

Therefore,

|(ℓ∗ − 2) f (3) + (n+ 2− 2ℓ∗) f (2) + ℓ∗ f (1)| ≤ α · |ℓ∗|

and

|ℓ∗ − ℓ| ≤ β · |(ℓ∗ − ℓ) f (3)− 2(ℓ∗ − ℓ) f (2) + (ℓ∗ − ℓ) f (1)| ,

where α= 2| f (3)|+ (n+6)| f (2)|
2 − f (1) and β = 1

2 f (2)− f (3)− f (1) .

7.6 Approximation algorithm

In this section, we prove the following results for the optimization problems
we introduced in the previous section. As before, we only give the details for
the minimization version.

Theorem 7.7. If f is a strictly concave function, then C-MINST-GFI f ∈APX .

Theorem 7.8. If f is a strictly convex function, then C-MAXST-GFI f ∈APX .

We prove Theorem 7.7 by showing that the next algorithm is a polynomial-
time approximation algorithm for the optimization version of C-MINST-GFI f .
An explanation of the notation and rationale of the algorithm follows.
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Algorithm 1 LOCAL SEARCH-C-MINST-GFI f

Initial: a cubic graph G.
Output: a spanning tree T ′ and GF I f (T ′).

1: Initialize a spanning tree T of G;
2: bE← E(G) \ E(T );
3: while bE ̸= ; do
4: randomly choose an edge e ∈ bE;
5: if e ∈ E∗(T + e) then
6: bE← bE \ {e};
7: else
8: randomly choose an edge e∗ ∈ E∗(T + e);
9: T ← T + e− e∗;

10: bE← E(G) \ E(T );
11: end if
12: end while
13: return T ′← T and GF I f (T ′)← GF I f (T ).

Let G = (V, E) be a graph. Define hG(w) = f (degG(w))− f (degG(w)− 1)
for w ∈ V (G). Suppose that e ∈ E(G) is an edge joining vertices u ∈ V (G)
and v ∈ V (G). Define ∆G(e) = hG(u) + hG(v). Let ∆∗G = max

e∈E(G)
{∆G(e)|G −

e is connected} and E∗(G) = {e|∆G(e) = ∆∗G and G − e is connected}. Our
local search algorithm is based on the following observation: if e∗ ∈ E∗(G),
then GF I f (G − e∗) attains the minimum value among all connected spanning
subgraphs of size |E(G)| − 1. If we add a new edge e to a tree T , then we
obtain a unicyclic graph. Deleting an edge e∗ ∈ E∗(T + e) gives us a new tree
T + e− e∗ with GF I f (T + e− e∗)≤ GF I f (T ). This is the rationale behind the
algorithm LOCAL SEARCH-C-MINST-GFI f .

Before proving Theorem 7.7, we take on the job of analyzing its running
time on an input cubic graph G of order n. We may call the breadth-first search
algorithm of [37] to generate a spanning tree of G in running time O(n). Let T
be a spanning tree of G. Since G is a cubic graph, for any edge e ∈ E(G)\E(T ),
∆∗T+e is one value in the set {2 f (3)−2 f (2), f (3)− f (1), 2 f (2)−2 f (1)}. This
implies that, for e∗ ∈ E∗(T + e), GI F f (T )−GI F f (T + e− e∗)≥ 2 f (2)− f (3)−
f (1) if GI F f (T + e − e∗) < GI F f (T). By Lemma 7.1, we have GI F f (T) ≤
(n− 2) f (2) + 2 f (1). The number of iterations of the while-loop is at most
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(n−2) f (2)+2 f (1)
2 f (2)− f (3)− f (1) , which is O(n). Each iteration runs in time ( n

2 +1)× n = O(n2).
Therefore, LOCAL SEARCH-C-MINST-GFI f runs in time O(n3), where n is the
order of the input cubic graph G.

Now we have all the ingredients to prove Theorem 7.7.

Proof of Theorem 7.7. Let G be a cubic graph of order n. Let T ′ be a spanning
tree of G obtained by using Algorithm 1. Let a, b and c be the numbers of
vertices of degree 3, 2 and 1 of T ′, respectively. We first state and prove two
claims.

Claim 1. a < c.

Proof. Using the above notation, we have 3a+c = 2n−2b−2 and a+c = n−b.
This implies a− c = −2< 0. ♦

An M-path P is a maximal path with all internal vertices of degree 2 and
ends of degrees 1 or 3. It follows that the sum of the numbers of internal
vertices of M-paths of T ′ is b.

Claim 2. b ≤ 4c.

Proof. By Claim 1, the number of M-paths is less than 2c. If each M-path has
at most two internal vertices, then the claim holds. If all internal vertices of
every M-path are adjacent to pendant vertices of T ′, then the claim holds as
well. This follows since each pendant vertex of T ′ is adjacent to at most two
internal vertices, hence b ≤ 2c ≤ 4c.

Let P be an M-path. Suppose that there exist at least three internal vertices
of P, with one internal vertex not adjacent to any pendant vertex of T ′.

Suppose that u is an internal vertex of P and w is a vertex in G with
degT ′(w) = 2 satisfying e = uw ∈ E(G) \ E(T ′). Then there exists a vertex
v ∈ NP(u) such that e′ = uv ∈ E(P). It follows that T ′ + e− e′ is a spanning
tree of G.

By straightforward calculations, we obtain the following expression for
∆T ′+e(e′)−∆T ′+e(e):

∆T ′+e(e
′)−∆T ′+e(e)
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=( f (degT ′+e(u))− f (degT ′+e(u)− 1)

+ f (degT ′+e(v))− f (degT ′+e(v)− 1))

− ( f (degT ′+e(u))− f (degT ′+e(u)− 1)

+ f (degT ′+e(w))− f (degT ′+e(w)− 1))

= f (degT ′+e(v))− f (degT ′+e(v)− 1)− f (degT ′+e(w)) + f (degT ′+e(w)− 1)

= f (2)− f (1)− f (3) + f (2)

=2 f (2)− f (3)− f (1).

Recall that a real-valued function f on an interval is said to be strictly concave
if f ((1 − α)x + αy) > (1 − α) f (x) + α f (y) for any α ∈ (0,1) and x ̸=
y. Setting x = 3, y = 1 and α = 1

2 , we get f (2) > 1
2 f (3) + 1

2 f (1) (i.e.,
2 f (2)− f (3)− f (1) > 0). So we obtain ∆T ′+e(e′) > ∆T ′+e(e). This implies
GF I f (T ′+e−e′)< GF I f (T ′), which contradicts that T ′ is a minimal spanning
tree of G constructed by Algorithm 1.

This completes the proof of Claim 2. ♦

Let bT be a spanning tree of G with the minimum graphical function-index.
Let T ∗ be a tree with degree sequence D(T ∗) = [3

n−2
2 , 1

n+2
2 ]. From the proof

of Theorem 7.3, we have GF I f (T ∗)≤ GF I f (bT ) and c ≤ n+2
2 . By Claims 1 and

2, we have n = a + b + c < 6c. This implies a + b < 5n
6 . Since G is a cubic

graph, we have n≥ 4. If f (3)≥ f (2), then we get

GF I f (G)(T
′) = a f (3) + b f (2) + c f (1)

≤ (a+ b) f (3) + c f (1)

≤
5n
6

f (3) +
n+ 2

2
f (1)

≤
10
3

�

n− 2
2

f (3) +
n+ 2

2
f (1)

�

=
10
3

GF I f (T
∗)

≤
10
3

GF I f (bT ).
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If f (3)< f (2), then we get

GF I f (G)(T
′) = a f (3) + b f (2) + c f (1)

≤
5n
6

f (2) +
n+ 2

2
f (1)

≤
10 f (2)
3 f (3)

�

n− 2
2

f (3) +
n+ 2

2
f (1)

�

=
10 f (2)
3 f (3)

GF I f (T
∗)

≤
10 f (2)
3 f (3)

GF I f (bT ).

It follows that GF I f (G)(T ′)≤ γ · GF I f (bT ) in which γ=max{10
3 , 10 f (2)

3 f (3) }.

7.7 Concluding remarks

To complete this chapter, we reflect on an earlier remark by listing some
examples of well-studied topological indices in Table 7.2 of the appendix
(Section 7.8) that do not fall under our general description, but for which
similar complexity results hold. Following the table, we gathered the known
associated extremal results from literature in Theorem 7.9 below. The conse-
quences of these extremal results for the complexity of our studied decision
and optimization problems are summarized in two corollaries.

For a better understanding of the expressions of the topological indices
that are listed in the table, we introduce some additional notation, without
going into the details.

Let G be a graph. As usual, with d(u, v) we denote the distance between
two vertices u and v in G, assuming that G is connected. Under the same
assumption, we use δG(u) to denote the distance sum of a vertex u ∈ V (G)
to all other vertices in G. In the table, µ = |E(G)| − |V (G)|+ 1 is used for
the cyclomatic number, and λ1,λ2, . . . ,λ|V (G)| indicate the eigenvalues of the
adjacency matrix of G. Furthermore, α is used to indicate a real number, k is an
integer, and m(G, k) denotes the number of distinct matchings of G consisting
of k edges. So, by definition, m(G, 0) = 1 and m(G, 1) = |E(G)|. Finally, in
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the table i(G, k) denotes the number of distinct k-element independent vertex
sets of G. So, by definition, i(G, 0) = 1 and i(G, 1) = |V (G)|.

Below we present the known extremal results with respect to the listed
topological indices, together with their sources.

Theorem 7.9. Among trees on n vertices, Pn is the unique extremal tree with the
minimum Balaban index [51, 52], the maximum degree-based graph entropy
for k > 0 [72], the maximum energy [91], the minimum Estrada index [40],
the minimum general first Zagreb index Mα

1 (G) for α < 0 or α > 1 [92], the
maximum general first Zagreb index Mα

1 (G) for 0< α < 1 [92], the minimum
general Randíc index Rα(G) for 0< α≤ 1 [70], the maximum general Randíc
Rα(G) for α < 0 [69], the maximum geometrical-arithmetic index [116], the
maximum harmonic index [130], the maximum Hosoya index [117], the maxi-
mum hyper-Wiener index [66], the minimum Merrifield-Simmons index [117],
the minimum second Zagreb index [85], the maximum sum-connectivity index
[30], and the maximum Wiener index [58].

In order to show these results more clearly, we list some known topological
indices with Pn as the unique extremal tree in Tables 7.3 and 7.4 of the appendix
(Section 7.8). The above extremal results have the following consequences.
In the first corollary, the decision version of the maximization problem for a
specific topological index T I(G) is the problem of deciding whether G has a
spanning tree T with T I(T )≥ k, for an arbitrary graph G and real number k.
The decision versions of the minimization problems are defined analogously.

Corollary 7.1. The decision version of the maximization problem is N P -
complete for the following topological indices: the degree-based entropy for
k > 0, the energy, the general first Zagreb index Mα

1 (G) for 0 < α ≤ 1, the
general Randíc index Rα for α < 0, the harmonic index, the Hosoya index, the
hyper-Wiener index, the sum-connectivity index, and the Wiener index.

The decision version of the minimization problem is N P -complete for the
following topological indices: the Balaban index, the Estrada index, the general
first Zagreb index Zα1 (G) for α < 0 or α > 1, the general Randíc index Rα(G) for
0< α≤ 1, the Merrifield-Simmons index, and the second Zagreb index.
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The general first Zagreb index Mα
1 (resp., the degree-entropy Id) corre-

sponds to f (x) = xα (resp., f (x) = x
2|E(G)| log2(

2|E(G)|
x )). We immediately

obtain that f (x) regarding Mα
1 is strictly concave for 1< α < 1, and strictly

convex for α < 0 or α > 1; f (x) regarding Id is strictly concave. By applying
Theorems 7.3, 7.4, 7.5 and 7.6, we obtain the following result.

Corollary 7.2. The maximization problem isN P -complete andAPX -complete
for the general first Zagreb index Mα

1 for α < 0 or α > 1.

The minimization problem is N P -complete and APX -complete for the
following indices: the general first Zagreb index Mα

1 for 0 < α < 1, and the
degree-entropy Id .
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7.8 Appendix

Table 7.1: Some known graphical function-indices.

Name f (x , y) =
First Zagreb index x + y

Second Zagreb index x y

First hyper-Zagreb index (x + y)2

Second hyper-Zagreb index (x y)2

Modified first Zagreb index x−3 + y−3

Albertson index |x − y|
Extended index (x/y + y/x)/2

Sigma index (x − y)2

Randić index 1/
p

x y

Reciprocal Randić index
p

x y

Sum-connectivity index 1/
p

x + y

Reciprocal sum-connectivity index
p

x + y

Harmonic index 2/(x + y)
Atom-bond connectivity index

p

(x + y − 2)/(x y)
Argumented Zagreb index x3 y3/(x + y − 2)3

Forgotten index x2 + y2

Inverse degree x−2 + y−2

Geometric-arithmetic index 2
p

x y/(x + y)
Arithmetic-geometric index (x + y)/2px y

Inverse sum index x y/(x + y)
First Gourava index x + y + x y

Second Gourava index (x + y)x y

First hyper-Gourava index (x + y + x y)2

Second hyper-Gourava index x2 y2(x + y)2

Sum-connectivity Gourava index 1/
p

x + y + x y

Product-connectivity Gourava index
p

(x + y)x y

Sombor index
p

x2 + y2
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Table 7.2: Some topological indices and their definition.

Name Expression

Balaban index J(G) = |E(G)|µ+1

∑

uv∈E(G)

1p
δG(u)δG(v)

Degree-based entropy I k
d (G) = −

∑

u∈V (G)

degG(u)
k

∑

v∈V (G)
degG(v)k

log

�

degG(u)
k

∑

v∈V (G)
degG(v)k

�

Degree-entropy Id(G) = −
∑

u∈V (G)

degG(u)
2|E(G)| log

�

degG(u)
2|E(G)

�

Energy EN(G) =
∑n

i=1 |λi|
Estrada index EE(G) =

∑n
i=1 eλi

First Zagreb index M1(G) =
∑

v∈V (G)
degG(v)

2

General first Zagreb index Mα
1 (G) =

∑

v∈V (G)
degG(v)

α

General Randić index Rα(G) =
∑

uv∈E(G)
(degG(u)degG(v))

α

Geometric-arithmetic index GA(G) =
∑

uv∈E(G)

2
p

degG(u)degG(v)
degG(u)+degG(v)

Harmonic index H(G) =
∑

uv∈E(G)

2
degG(u)+degG(v)

Hosoya index Z(G) =
∑

k≥0
m(G, k)

Hyper-Wiener index WW (G) =

∑

u,v∈V (G)
d(u,v)+

∑

u,v∈V (G)
d2(u,v)

2

Merrifield-Simmons index σ(G) =
∑

k≥0
i(G, k)

Randić index R(G) =
∑

uv∈E(G)

1p
degG(u)degG(v)

Second Zagreb index M2(G) =
∑

uv∈E(G)
degG(u)degG(v)

Sum-connectivity index χ(G) =
∑

uv∈E(G)

1p
degG(u)degG(v)

Wiener index W (G) =
∑

{u,v}⊆V (G)
d(u, v)

Table 7.3: Some known topological indices with Pn

as the unique extremal tree attaining the maximum value.
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Name Notation Condition

Degree-based entropy I k
d (G)) k > 0

Energy EN(G) None

General first Zagreb index Mα
1 (G) 0< α < 1

General Randić index Rα(G) α < 0

Geometric-arithmetic index GA(G) None

Harmonic index H(G) None

Hosoya index Z(G) None

Hyper-Wiener index WW (G) None

Sum-connectivity index χ(G) None

Wiener index W (G) None

Table 7.4: Some known topological indices with Pn

as the unique extremal tree attaining the minimum value.

Name Notation Condition

Balaban index J(G) None

Estrada index EE(G) None

General first Zagreb index Mα
1 (G) α < 0 or α > 1

General Randić index Rα(G) 0< α≤ 1

Merrifield-Simmons index σ(G) None

Randić index R(G) None

Second Zagreb index M2 None





Summary

This thesis focuses on extremal problems involving various graph parameters
that were introduced in graph theory motivated by the well-known Shan-
non entropy in information theory. In particular, new results are obtained
for extremal problems involving degree-based and distance-based entropies.
Moreover, results on the computational complexity of decision and optimiza-
tion problems concerning maximum and minimum spanning trees for graphical
function indices are derived.

Determining extremal values of topological indices and the extremal graphs
that attain these values is a popular research direction within graph theory. In
Chapter 1 of this thesis we give a general introduction to this theme, together
with some historical background and an overview of the contributions from
this thesis. One of the approaches is to look at the effect of certain graph
operations on the value of such indices. This approach is particularly useful
if the extremal graphs can be obtained through a series of graph operations.
In Chapter 2, we consider the effect of graph operations, including concepts
like the weak product, the blow-up and the identification of vertices, on the
degree-based entropy.

In Chapter 3 to Chapter 5, we study extremal problems involving the
degree-based entropy restricted to some specific graph classes. In Chapter 3,
we focus on trees and unicyclic graphs, and determine the maximum and
minimum values of the degree-based entropy under some given parameters, in-
cluding the diameter and a given bipartition. This is mainly done by analyzing
the effect of graph operations on the degree-based entropy.
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Chapter 4 studies the extremal values of the degree-based entropy of bi-
partite graphs, using the representation of bipartite graphs by Young diagrams.
We prove that the extremal graph attaining the minimum value is a complete
bipartite graph or nearly complete bipartite graph. We show that the general
problem of characterizing the extremal graphs is related to a very compli-
cated problem in number theory. Therefore, we believe that this problem is
difficult to solve. Among bipartite graphs with a given order and size, we
use the degree sequence to characterize the extremal graphs attaining the
maximum value of the degree-based entropy. We extend these results to some
generalized graphical function indices. We prove that the difference between
the maximum degree and the minimum degree of the degree sequence of the
extremal graphs does not exceed 2.

In Chapter 5, we fully characterize the extremal graphs for which the
degree-based entropy attains the minimum value among all graphs with a
given order and size. The extremal graphs turn out to be special so-called
threshold graphs.

In Chapter 6, we study two kinds of distance-based entropies, namely the
eccentricity-entropy, denoted by Iecc, and the Wiener-entropy, denoted by Iw.
By deriving the (asymptotic) extremal behavior, we conclude that the Wiener-
entropy of graphs of a given order is more spread than the eccentricity-entropy.
We resolve three known conjectures on Iecc and propose two new conjectures
on Iw, which we formulate at the end of this summary.

In Chapter 7, we study the computational complexity of decision and
optimization problems concerning maximum and minimum spanning trees
for graphical function indices that are computable in polynomial time. Among
trees of a given size and order, many topological indices attain either their
maximum or minimum value for the unique case that the tree is a path.
We show that either the maximum or the minimum spanning tree problems
for such topological indices are N P -complete. We also prove that if the
corresponding functions are strictly convex or concave, then the minimum
and maximum spanning tree problems for these graphical function indices
are N P -complete, and their optimization versions are APX -complete,
respectively.
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Although this thesis contains many new results, several questions and
conjectures remain open. One of the challenging open problems is to fully
characterize the bipartite graphs of a given size and order which minimize
the degree-based entropy. Regarding the Wiener-entropy, we propose the
following two conjectures (in one statement). For this, we define the graph
Gn,k, j and the broom of order n> k ≥ 2 as follows. To construct Gn,k, j, take
the disjoint union of a path Pk and a complete graph Kn−k, and join one end
vertex of the path with j vertices of the complete graph by edges. The broom
of order n is a tree obtained from a Pk by joining one end vertex with n− k
additional vertices by edges. We conjecture that there exists an integer n0 such
that for all n≥ n0, among all trees and graphs of order n, the Wiener-entropy
is minimized by respectively a broom and a Gn,k,1. Based on a computer-aided
verification among graphs of the form Gn,k, j , it seems plausible that n0 = 1270.

Apart from the open problems in the thesis, there are still many other
problems to be explored and solved involving graph entropies. In this sense,
the results of this thesis are only the tip of the iceberg.





Samenvatting

Dit proefschrift richt zich op extremaalproblemen betreffende diverse graaf-
parameters die binnen de grafentheorie geïntroduceerd zijn gemotiveerd door
de bekende Shannon-entropie uit de informatietheorie. In het bijzonder wor-
den er nieuwe resultaten gepresenteerd op het gebied van graadgebaseerde en
afstandsgebaseerde entropieën. Bovendien worden er resultaten afgeleid met
betrekking tot de complexiteit van beslissings– en optimaliseringsproblemen
betreffende maximale en minimale opspannende bomen voor graafgerela-
teerde functie-indices.

Het bepalen van extreme waarden voor topologische indices en het karak-
teriseren van de bijbehorende grafen is een populair onderwerp binnen de
grafentheorie. In Hoofdstuk 1 van dit proefschrift geven we een algemene
inleiding tot dit gebied, tezamen met wat historische achtergrond en een
overzicht van de bijdragen uit dit proefschrift. Eén van de benaderingen is om
te onderzoeken wat het effect is van bepaalde graafoperaties op de waarde van
zulke indices. Deze aanpak is vooral nuttig als de extremale grafen kunnen
worden bepaald door een serie van die graafoperaties. In Hoofdstuk 2 van
dit proefschrift beschouwen we het effect van bepaalde graafoperaties op de
waarde van de graadgebaseerde entropie.

In Hoofdstuk 3 tot en met Hoofdstuk 5 bestuderen we extremaalproblemen
met betrekking tot de graadgebaseerde entropie voor grafen uit specifieke
graafklassen. In Hoofdstuk 3 gaat het daarbij om bomen en unicyclische
grafen. Voor die klassen worden de maximale en minimale waarde van de
graadgebaseerde entropie bepaald, op basis van specifieke graafparameters
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zoals de diameter en een gegeven bipartitie van de graaf. Deze resultaten wor-
den met name afgeleid door te analyseren wat het effect is van graafoperaties
op de graadgebaseerde entropie.

Hoofdstuk 4 richt zich op de algemene klasse van bipartiete grafen, daarbij
gebruikmakend van de representatie van bipartiete grafen door middel van
zogenoemde ’Young-Diagramm’. We bewijzen dat de extremale grafen die de
minimale waarde aannemen ofwel volledig bipartiet zijn, ofwel bijna volledig
bipartiet, in een bepaalde zin. Bovendien laten we zien dat het algemene
probleem van het karakteriseren van de extremale grafen gerelateerd is aan
een zeer ingewikkeld probleem uit de getaltheorie. Naar aanleiding daarvan
geloven we dat dit probleem moeilijk op te lossen is. Binnen de klasse van
bipartiete grafen met een gegeven aantal punten en lijnen karakteriseren we
de extremale grafen die de maximale graadgebaseerde entropie bereiken, door
gebruik te maken van hun graadrij. Tevens breiden we deze resultaten uit tot
meer algemene graaf-indices. Hiervoor wordt bewezen dat de maximale en
minimale graden in de graadrij van de extremale grafen hooguit 2 kunnen
verschillen.

In Hoofdstuk 5 wordt een volledige karakterisering gegeven van de ex-
tremale grafen met een gegeven aantal punten en lijnen die de minimale
waarde van de graadgebaseerde entropie aannemen. Deze extremale grafen
blijken te vallen binnen een bekende klasse van grafen die in het Engels
worden aangeduid als ‘threshold graphs’.

Hoofdstuk 6 bevat resultaten op het gebied van twee afstandsgebaseerde
entropieën, namelijk de zogenoemde ‘eccentricity-entropy’, aangeduid met
Iecc, en de zogenoemde ‘Wiener-entropy’, aangeduid met Iw. Door naar het
(asymptotische) extremale gedrag van die entropieën te kijken, concluderen
we dat de spreiding van de waarden van Iw groter is dan die van Iecc. We ont-
raadselen drie bekende vermoedens betreffende Iecc en poneren twee nieuwe
vermoedens betreffende Iw die we tegen het eind van deze samenvatting
formuleren.

Hoofdstuk 7 gaat in op de rekenkundige complexiteit van beslissings–
en optimaliseringsproblemen die verband houden met het bepalen van de
maximale en minimale opspannende bomen met betrekking tot algemene
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graafgerelateerde functie-indices. Binnen de klasse van bomen blijken veel
van die indices hun extreme waarden te bereiken in het unieke geval dat de
boom een pad is. Voor indices met deze laatste eigenschap laten we zien dat
de bijbehorende beslissingsproblemen N P -volledig zijn. Tevens bewijzen
we dat strikt convexe of strikt concave functies leiden tot N P -volledige
beslissingsproblemen enAPX -volledige optimaliseringsproblemen voor de
corresponderende functie-indices.

Hoewel dit proefschrift een flink aantal nieuwe resultaten bevat, blijven
er verscheidene onbeantwoorde vragen en open vermoedens die om een
oplossing vragen. Eén van de uitdagende open problemen is het volledig
karakteriseren van de bipartiete grafen met een gegeven aantal punten en
lijnen die de kleinste graadgebaseerde entropie hebben.

Met betrekking tot de ‘Wiener-entropy’ poneren we de volgende twee
vermoedens (in één formulering). Daartoe definiëren we eerst de graaf Gn,k, j

en de ‘broom’ met n> k ≥ 2 punten, als volgt. Begin voor de constructie van
Gn,k, j met de disjuncte vereniging van een pad Pk en een volledige graaf Kn−k,
en verbind één van de eindpunten van het pad met j punten van de volledige
graaf door middel van lijnen. De ‘broom’ op n punten is een boom die uit
een Pk ontstaat door één van de eindpunten te verbinden met n− k nieuw
toegevoegde punten door middel van lijnen. We vermoeden dat er een getal n0

bestaat zodanig dat voor alle n≥ n0 de ‘Wiener-entropy’ binnen de klasse van
bomen, respectievelijk grafen met n punten de kleinste waarde aanneemt voor
de ‘broom’, respectievelijk voor Gn,k,1. Uit computerondersteunde verificatie
lijkt het aannemelijk dat dit geldt voor n0 = 1270.

Naast de open problemen die betrekking hebben op dit proefschrift zijn
er veel andere problemen op het gebied van graafentropieën die onderzocht
kunnen worden. In die zin vormen de resultaten uit dit proefschrift slechts
het topje van de ijsberg.
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