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Metal halide perovskite semiconductors have outstanding optoelectronic properties. Although these per-
ovskites are defect-tolerant electronically, defects hamper their long-term stability and cause degradation.
Density functional theory (DFT) calculations are an important tool to unravel the microscopic structures of
defects, but results suffer from the different approximations used in the DFT functionals. In the case of metal
halide perovskites, qualitatively different results have been reported with different functionals, either predicting
vacancy or interstitial point defects to be most dominant. Here, we conduct a comprehensive comparison of a
wide range of functionals for calculating the equilibrium defect formation energies and concentrations of point
defects in the archetype metal halide perovskite, MAPbI3. We find that it is essential to include long-range van
der Waals interactions in the functional, and that it is vital to self-consistently optimize structure and volume of
all compounds involved in the defect formation. For calculating equilibrium formation energies of point defects
in MAPbI3 and similar metal halide perovskites, we argue that the exact values of the chemical potentials of the
species involved, or of the intrinsic Fermi level, are not important. In contrast to the simple Schottky or Frenkel
pictures, we find that the dominant defects are MA and I interstitials, and Pb vacancies.
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I. INTRODUCTION

Metal halide perovskites are emerging photovoltaic mate-
rials for solar cells, whose power conversion efficiency (PCE)
has increased spectacularly from a few to over 25 percent
over the last decade [1,2]. The impressive photovoltaic perfor-
mance is linked to the materials’ defect tolerance [3,4], and
attributed to a low intrinsic defect density, 1011–1016 cm−3,
[5–10] and to the dominant defects not creating deep trap
levels [11,12]. Despite the impressive progress, the long-term
stability of the perovskite solar cells is still limited, which
is ascribed to intrinsic instabilities of the material, and to
defect-triggered degradation reactions [4,13–21].

The defects in halide perovskites are rich in types and
charge states. Taking the prime metal halide compound
MAPbI3 as an example, there are already six different simple
point defects, i.e., vacancies and interstitials, and this number
is doubled or tripled if one takes different charge states into
consideration [11]. To increase the long-term efficiency and
stability of perovskite solar cells, it is necessary to come up
with efficient strategies for defect passivation, which requires
an understanding of the fundamental defect chemistry and
physics of perovskites. It is therefore essential to identify the
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types and densities of defects, and their consequences for the
electronic properties.

In experiment, the overall density and distribution of
trap states can be extracted through electrical measurements
[5,6,10]. However, it remains challenging to pin-point the ex-
act types of defects and correlate those to electronic trap states
[22]. Another challenge emerging from experiments is that the
types of dominant defects can depend on details of the fabri-
cation process, such as the ratio of precursor materials used
[11,23,24], or the thermal annealing procedure [14,25,26],
leading to different morphology and final compositions. This
stresses the importance of being able to identify which defects
would be present under ideal thermodynamic conditions.

To provide atomistic insight in the defect physics, compu-
tational modeling based upon density functional theory (DFT)
is often invoked. In particular, one focuses on calculating the
defect formation energies (DFEs) and charge state transition
levels (CSTLs), which are key quantities for predicting the
abundance and the electronic nature of defects [27]. Unfortu-
nately, the quality of density functionals is not yet at a stage
that all key defect quantities can be obtained simultaneously
with the same accuracy [28]. Besides total energy differences
between pristine and defective structures, obtaining DFEs
requires accurate calculations of the thermochemistry (for-
mation enthalpies) of sometimes widely different compounds
(metals, insulators, molecules), as well as of basic electronic
properties, such as band edge positions and band gaps.
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A general-purpose semilocal functional based upon the
generalized gradient approximation (GGA), such as the
Perdew-Burke-Ernzerhof (PBE) functional [29], can lead to
errors in formation enthalpies of order ∼0.2 eV/atom [30,31].
Hybrid functionals do not give a uniform improvement
[30,32], and in some cases, (transition) metals in particular,
yield significantly worse formation enthalpies [33]. Moreover,
results critically depend upon how much Hartree-Fock ex-
change is mixed in with GGA exchange, and on how exactly
that is done, i.e., as a constant fraction as in the PBE0 func-
tional, or range separated as in the HSE functional [34]. Given
the fact that using a hybrid functional increases the compu-
tational costs by one to two orders of magnitude, and the
results depend on how and how much Hartree-Fock exchange
is mixed in, hybrid functionals seem a less attractive option
for calculating formation enthalpies at present.

To deal with the imperfect formation energies resulting
from PBE, semi-empirical schemes have been developed,
such as the fitted elemental-phase reference energies (FERE)
approach [35,36]. It assumes the error predominantly depends
on the overall composition, and attempts an improvement
through using the total energies of elemental phases as fitting
parameters. The FERE approach can improve DFEs signif-
icantly [36], but it requires the construction of an extensive
parameter set for each group of compounds studied.

A significant step forward is presented by the recently
developed strongly constrained and appropriately normed
(SCAN) meta-generalized gradient approximation (meta-
GGA) functional [37,38]. Compared to standard GGA,
SCAN more uniformly improves formation enthalpies of both
strongly bonded solids and molecules [30,32,39], typically at
least halving the error as compared to PBE [31].

A complicating factor in solids such as the hybrid metal-
halide perovskites, is that heavy elements like Pb and I are
involved, and organic cations are embedded in the inorganic
metal-halide framework, both of which suggest that van der
Waals (vdW) interactions may play a non-negligible role in
the bonding. The simplest way to include vdW interactions, is
to add an atom-pairwise parametrized vdW energy to a stan-
dard DFT total-energy expression, such as in the D3 or D3(BJ)
schemes [40,41], leading to the PBE-D3 and PBE-D3(BJ)
functionals, for instance. Mixed results have been reported,
where PBE-D3/D3(BJ) gives good results on the cohesive
energy of rare-gas solids, for instance [30], but PBE-D3 does
not perform well in cases where anion-anion interactions play
a significant role [39].

A fundamentally different approach constructs an explic-
itly nonlocal density functional, which incorporates vdW
interactions directly, where one has to carefully balance these
nonlocal with (semi-)local terms in the functional. The rev-
vdW-DF2 [42–45] functional shows good results for weakly
and strongly bound solids, with errors in formation energies
on the scale of ∼0.1 eV/atom, as does the SCAN + rVV10
functional, where the latter has the additional advantage that
it is more accurate for molecules as well [46].

The functionals mentioned above do not solve the band-
gap problem of DFT [28,36]. This problem is actually less
severe if calculating DFEs under thermodynamic equilibrium
conditions, as we will discuss below, which is the focus
of the present paper. To calculate electronic properties such

as CSTLs accurately on an absolute energy scale, requires
the correct positions of the band edges. Postprocessing DFT
results using GW or hybrid functional calculations can in prin-
ciple be applied for this purpose [36,47]. In addition, further
corrections to the band gap should be applied, because of the
large band-gap renormalization with increasing temperature
[48]. In the present paper, however, we will only compare
the results of pure DFT calculations on 0 K equilibrium
structures.

Defect calculations on hybrid metal iodide perovskites us-
ing the PBE functional, have found the iodine vacancy to be
one of the dominant point defects [49–52]. In contrast, more
recent studies incorporating vdW corrections using the DFT-
D3 scheme, as well as a hybrid functional postprocessing step,
have led to the conclusion that the iodine interstitial is a more
dominant point defect [47,53,54]. These studies illustrate the
sensitivity of the predicted defect properties to the functionals
used, and call for a careful and systematic comparison.

Whereas the addition of semi-empirical atom-pairwise
vdW corrections within the D3 approach [40] have a siz-
able effect on the calculated DFEs of MAPbI3 [47], an
improved version based on the same scheme with Becke and
Johnson damping added [DFT-D3(BJ)] [41], which provides
better corrections for nonbonding distances and intramolecu-
lar interactions [55], has not been tried yet. The same holds
for accurate nonlocal vdW density functionals, such as rev-
vdW-DF2.

The SCAN functional is reported to perform better than
standard GGA functionals in predicting the orientation of
organic cations in halide perovskites and the phase transi-
tions of these materials [56,57], but has not yet been applied
in calculating defects of halide perovskites. The nonlocal
correlation functional rVV10 seamlessly supplements SCAN
with long-range vdW interactions [58], and the resulting
SCAN + rVV10 functional [59] can also be tested in defect
calculations on hybrid metal halide perovskites. Finally, as
these perovskites contain heavy elements like Pb and I, the
effects of spin-orbit coupling (SOC) should also be considered
[60].

In the present paper, we use a wide range of functionals to
calculate the DFEs and CSTLs of the intrinsic vacancies and
interstitials in MAPbI3, including PBE, PBE-SOC, SCAN,
PBE-D3, PBE-D3(BJ), rev-vdW-DF2, and SCAN + rVV10.
Comparing all data sets to the ones obtained by using PBE,
the effects of switching from GGA to meta-GGA, from pair-
wise atomic to nonlocal vdW corrections, with and without
SOC, are analyzed. While SOC has only little effect on the
structures and the energies, it does impact the positions of the
CSTLs. However, the latter can be straightforwardly included
by applying an postcorrection.

In contrast, the inclusion of vdW interactions is shown
to have a large effect on the DFEs, where the PBE-D3(BJ),
rev-vdW-DF2 and SCAN + rVV10 functionals give similar
results. To obtain accurate results, we find that it is vital to
optimize structures self-consistently for each functional. The
SCAN functional captures part of the nonchemical bonding
interactions, but including long-range vdW interactions, as
in SCAN + rVV10, still has a sizable effect on the DFEs.
Considering that it is a universally applicable functional for
accurate calculations on solids and molecules, we suggest to
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use SCAN + rVV10 also for studying defects in other per-
ovskite compounds.

II. COMPUTATIONAL APPROACH

A. DFT calculations

DFT calculations are performed with the Vienna ab ini-
tio simulation package (VASP) [61–63]. Defects are created
starting from a 2 × 2 × 2 tetragonal supercell of the MAPbI3

perovskite structure with optimized volume and ionic posi-
tions. For each type of defect, cation or anion interstitial
or vacancy, several different defective structures are tested,
inserting or removing a cation or an anion in a different
nonequivalent position, and optimizing the ionic positions
within the supercell. The structures with the lowest total en-
ergy are then selected, and will be discussed below. A more
detailed description of the strategy for creating the defective
structures is given in the Supplemental Material [64] Figs.
S2–S4.

These calculations are repeated for the following function-
als: PBE [29], SCAN [37], PBE-D3 [40], PBE-D3(BJ) [41],
rev-vdW-DF2 [42–45], and SCAN + rVV10 [59], using the
default parameters appropriate for the respective functionals.
To assess the influence of spin-orbit coupling, we have also
tested PBE-SOC [60], as well as SCAN-SOC, but this time
only on PBE- and SCAN-optimized structures, respectively.
Our calculations use a plane wave kinetic energy cutoff of
500 eV and a �-point only k-point mesh. The energy and
force convergence criteria are set to 10−4 eV and 0.02 eV/Å,
respectively.

B. Defect formation energies

The defect formation energy (DFE) �Hf is calculated from

�Hf (Dq) = Etot (D
q) − Ebulk −

∑
i

niμi

+ q(EF + EVBM + �V ) + Eq
corr. (1)

Here D indicates the type of defect, interstitial or vacancy, and
q is its charge. Etot (Dq) and Ebulk are the DFT total energies of
the defective supercell and the pristine supercell, respectively.
As it only makes sense to compare total energies of systems
with the same atomic and electronic contents, and this is
clearly not the case comparing a defective with a pristine cell,
one has to define reservoirs to make up for the surplus or
shortage of atoms and electrons of the defective cell. Here, ni

and μi define the number of atoms and the chemical potential
of the species i added to (ni > 0) or removed from (ni < 0)
the pristine supercell in order to create the defective supercell.

Likewise, the Fermi level EF defines the electrochemi-
cal potential for electrons, if electrons need to be added or
removed from the pristine supercell to create the charge q.
Ordinarily one chooses the zero of EF at the valence band
maximum (VBM), so its energy EVBM appears in the expres-
sion of Eq. (1). The VBM is typically hard to identify in a
calculation of a defective cell, so one uses the value obtained
from the pristine cell, shifted by �V , which is, for instance,
calculated by lining up the core level on one same atom in

the pristine and the defective cell that is far removed from the
defect.

Finally, Eq
corr is introduced to correct for the electrostatic

interaction between a charged point defect and its periodically
repeated images. In agreement with Ref. [47] we find that the
2 × 2 × 2 tetragonal supercell and the dielectric screening in
MAPbI3 are in fact sufficiently large, such that this correction
is small and can be neglected.

We have also neglected vibrational contributions in Eq. (1).
Temperature effects on the vibrational free energies are negli-
gible on the scale of the defect formation energy [27,65], and
even the zero-point vibrational energies (ZPVEs) only give
a very small contribution. From frequency shifts in hydrogen-
related modes upon fluoride doping, we estimate that the latter
leads to a ∼0.02 eV (per fluoride ion) in the ZPVE change
upon doping [20]. A fluoride dopant is a large perturbation
to the lattice, as the ion forms strong hydrogen bonds to the
surrounding organic cations. For other types of defects we
expect the ZPVE change to be even smaller.

Likewise, thermal expansion has negligible influence on
the defect formation energies. In fact, there is hardly any
thermal expansion, as the difference between the lattice pa-
rameters at 0 K and at room temperature is only ∼0.01 Å [48].

The chemical potentials μi of the atomic species depend
upon the growth and environmental conditions, but they are
subject to some constraints. The conditions must be such that
the MAPbI3 phase is stable. In addition, we suppose it is in
equilibrium with the PbI2 phase. Moreover, the MAI phase is
not supposed to form. This leads to the following relations:

μMA + μPb + 3μI = μMAPbI3 , (2a)

μPb + 2μI = μPbI2 , (2b)

μMA + μI < μMAI. (2c)

All chemical potentials used in this work are represented
by DFT total energies of the compounds involved, see Table
S4 within the Supplemental Material [64]. The combination of
Eqs. (2a) and (2b) leaves one free parameter. Choosing μI =
1
2μI2,molecule, where μI2,molecule is the energy of a I2 molecule,
defines I-rich conditions. We have chosen this reference state
to conform to previous calculations [47,53,54]. One may
argue that the energy of a I2 molecule in a bulk iodine environ-
ment, μI2,bulk, is a more appropriate reference state. However,
as we will show below, the exact choice of the iodine reference
state is not so important when studying defects under intrinsic
conditions. Choosing μI = 1

2 (μPbI2 − μPb,bulk ), where μPb,bulk

is the energy of a Pb atom in bulk Pb metal, defines I-poor
conditions.

The presence of molecule I2 (I-rich) or bulk Pb (I-poor)
represent rather extreme conditions, neither of which are rep-
resentative for the growth and environmental conditions of
MAPbI3. We focus on so-called I-medium conditions, which
are halfway between I-rich and I-poor, and thus defined by

μI = 1
4

(
μI2,molecule + μPbI2 − μPb,bulk

)
. (3)

The chemical potentials of Pb and MA can then be obtained
from Eqs. (2b) and (2a), respectively, whereas the constraint
of Eq. (2c) is then automatically obeyed.
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Given the DFEs, the concentration of each type of defect
c(Dq) can be estimated by Boltzmann statistics

c(Dq) = c0(Dq) exp

(
−�Hf (Dq)

kBT

)
, (4)

where c0(Dq) is the density of possible sites for the defect, T is
the temperature, and kB is the Boltzmann constant. All results
displayed in this paper are calculated with T = 300 K. The
concentration c(Dq) of charged defects (q �= 0) is obviously a
function of the Fermi level EF , see Eqs. (1) and (4).

The tetragonal MAPbI3 crystal structure allows for cre-
ating the same defects at symmetry-inequivalent sites. A
vacancy MA or Pb on different sites gives the same total
energy within ∼0.05 eV, but a vacancy I on different sites
gives an energy spread of ∼0.15 eV, whereas for interstitials
MA, Pb on different sites the variation in energy is 0.3 to
1.5 eV, see Fig. S3 within the Supplemental Material [64]. For
estimating the concentration of defects according to Eq. (4)
we make the approximation that at room temperature (close
to the tetragonal to cubic phase transition) there is sufficient
thermal motion in the structure that we can use cubic sym-
metry to count the number of possible defect sites, see Table
S3 within the Supplemental Material [64], and use the lowest
energy structures to represent the defect energies.

C. Intrinsic conditions

If no charges are injected in a material, it has to be charge
neutral, as expressed by

p − n +
∑
Dq

qc(Dq ) = 0, (5)

where p and n are the intrinsic charge carrier densities of holes
and electrons of the semiconductor material, and the sum is
over all types of charged defects. Here p, n, and c(Dq) are
functions of EF , so the charge neutrality condition, Eq. (5),
serves to determine the intrinsic position of the Fermi level
E (i)

F . Note that, if E (i)
F is sufficiently far from the band edges,

then p and n are small, and can be neglected.
Whether this is the case can be checked easily. E (i)

F =
0.33 eV is the smallest value for the intrinsic Fermi level
found in our calculations on MAPbI3. With effective densities
of states at the valence and conduction band edges of NV =
2.41 × 1018 cm−3 and NC = 1.92 × 1018 cm−3 [66], the in-
trinsic hole and electron densities are p = 7.41 × 1012 cm−3

and n = 1.16 × 10−6 cm−3. Using these values to recalculate
the charge neutrality condition, the intrinsic Fermi level E (i)

F
changes from 0.327 eV to 0.328 eV, demonstrating that in-
trinsic hole and electron concentrations are unimportant for
establishing charge neutrality.

Under intrinsic conditions, defined by Eq. (5), the DFEs
and concentrations of the most prominent defects turn actu-
ally to be independent of the iodine chemical potential μI

over a large range of the latter [66]. If one changes μI to
μI + δ, then at a fixed Fermi level EF the DFE of an iodine
interstitial changes from �Hf (Ii ) to �Hf (Ii ) − δ, Eq. (1).
Because of the equilibria of Eqs. (2b) and (2a), the DFEs
of Pb and MA interstitials then change to �Hf (Pbi ) + 2δ

and �Hf (MAi ) + δ, respectively. Likewise, under the same
conditions the DFEs of I, Pb, and MA vacancies change

FIG. 1. Defect formation energies, Eq. (1), calculated using
(a) μI2,molecule in Eq. (3), or (b) μI2,bulk = μI2,molecule + 4δ, where
δ = −0.19 eV. The vertical dotted line indicates the intrinsic Fermi
level E (i)

F , calculated from Eq. (5). Note that the difference in E (i)
F

between (a) and (b) is −δ, and the DFEs at E (i)
F are unchanged. The

DFEs are calculated using the SCAN + rVV10 functional.

to �Hf (VI) + δ, �Hf (VPb) − 2δ, and �Hf (VMA) − δ,
respectively.

Close to intrinsic conditions, point defects in MAPbI3 turn
out to have a preference for a specific charge state, i.e., Ii

−,
Pbi

2+, MAi
+, VI

+, VPb
2−, VMA

−. Following the discussion
of the previous paragraph, if one changes the iodine chemical
potential from μI to μI + δ, the DFEs at a fixed Fermi level
EF of these point defects change to �Hf (Dq) + qδ, where
q is the charge of the defect. If one now applies the charge
neutrality condition, Eq. (5), assuming that the Fermi level
stays sufficiently far from the band edges such that p ≈ n ≈ 0,
then the intrinsic Fermi level changes to E ′(i)

F = E (i)
F − δ.

This means that, according to Eq. (1), the change in in-
trinsic Fermi level compensates exactly for the change in
iodine chemical potential for the DFEs of the mentioned point
defects, and the DFEs remain unaltered. In other words, the
DFEs and concentrations of these defects are independent of
the iodine chemical potential.

This effect is illustrated in Fig. 1, showing the DFEs calcu-
lated with the SCAN + rVV10 functional, using μI2,molecule or
μI2,bulk, respectively in Eq. (3). Note that this does not mean
that the DFEs of all charge states are unaltered. For instance,
�Hf (I+i ) becomes �Hf (I+i ) − 2δ [compare the upward slop-
ing red lines in Figs. 1(a) and 1(b)]. For MAPbI3 under normal
equilibrium conditions, these particular charged states do not
play a role, however.

At intrinsic conditions, Eq. (5), the DFEs are also inde-
pendent of the size of the band gap, or indeed of the exact
positions of the band edges (VBM and CBM). To illustrate
this, Fig. 2 shows the band edge positions calculated with
the PBE-SOC and rev-vdW-DF2 functionals, relative to those
calculated with the PBE functional, lining up the 1s core
level of a carbon atom on a MA molecule. Because of the
difference in VBM, the intrinsic Fermi level E (i)

F relative to
the VBM, is different in all three cases. However, the DFEs
at E (i)

F (calculated with the respective functional) are the same
for all three functionals. This is the basis of a posteriori band
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FIG. 2. Defect formation energies of the two most prominent
defects calculated with the PBE functional, as a function of EF .
The band edges (VBM and CBM) are indicated by red solid vertical
lines. Adding spin-orbit coupling (SOC) decreases the band gap, and
shifts the band edges (green dashed-dotted lines), as does replacing
the functional by rev-vdW-DF2 (purple-dashed lines). Although the
intrinsic Fermi level E (i)

F relative to the VBM (black-dotted line) is
different in all three cases, the (PBE-calculated) DFEs at E (i)

F remain
the same.

edge corrections for defect calculations [36]. Of course, using
a different functional for calculating the DFEs, the latter can
still change, which will be discussed in Sec. III.

D. Charge state transition levels

Under non-equilibrium, operating, conditions, charges are
injected in the material, shifting the position of the (quasi)
Fermi level(s). The charge state transition level (CSTL)
ε(q/q′) is defined as the Fermi level position where the charge
states q and q′ of the same type of defect have equal forma-
tion energy, �Hf (Dq) = �Hf (Dq′

), so that if the Fermi level
crosses the CSTL, the defect changes its charge state. As the
DFEs have a simple linear dependence on EF , Eq. (1), this
condition translates into

ε(q/q′) = �Hf (Dq, EF = 0) − �Hf (Dq′
, EF = 0)

q′ − q
, (6)

where �Hf (Dq, EF = 0) is the defect formation energy calcu-
lated for EF = 0. In calculating CSTLs, the absolute position
of the VBM obviously plays a role.

III. RESULTS AND DISCUSSION

A. PBE calculations

As PBE is the most widely-employed functional, we will
use it as reference for studying the defect thermodynamics
and electronic properties. The calculated DFEs and CSTLs
are shown in Fig. 3. At equilibrium conditions, as expressed
by the charge neutrality condition, Eq. (5), the intrinsic Fermi
level E (i)

F = 0.59 eV. At these conditions, the most stable
point defects are the vacancies VPb

2− and VI
+ with DFEs

of 0.36 eV and 0.38 eV, respectively, which leads to equilib-

FIG. 3. (a) Defect formation energies of vacancies and intersti-
tials calculated with PBE; the solid lines give the most stable defects;
the dashed lines represent other defects; the dashed-dotted lines
represent three charge states of interstitial iodine. (b) Charge state
transition levels; the most important ones are indicated by colored
lines.

rium concentrations, Eq. (4), of 2.8 × 1015 cm−3 and 5.7 ×
1015 cm−3 for these defects, respectively.

The formation energies of the other elementary point de-
fects VMA

−, MAi
+, Pbi

2+, and Ii
−, are 0.2 to 0.4 eV higher,

resulting in a lower equilibrium concentration by a factor of
103 to 106. PBE calculations thus support the classic picture
of Schottky defects in ionic crystals, as represented by the
oppositely charged vacancies VPb

2− and VI
+.

The CSTLs of these defects, calculated with the PBE func-
tional, are shown in Fig. 3(b). One defect can have more than
two charge states, and thus more than one transition level,
where it is also possible that the charge changes by more than
one unit e. However, starting from one stable charge state of
a defect, only the transition levels representing a change of a
single unit ±e are considered to be active. This is because the
probability of capturing two or more holes/electrons simulta-
neously is very low [47,67].

Marking the CSTLs in Fig. 3(b) where the charge state
changes by more than ±e as inactive, then shows that the
remaining levels are all within 10 kBT (0.26 eV at the room
temperature) from the band edges, which qualifies them as
shallow impurities [27,28,50,68].

B. SOC, van der Waals and meta-GGA functionals

Keeping the PBE results as a reference, we now turn to
different functionals. The most obvious ingredients to add,
are van der Waals (vdW) interactions. The simplest approach
uses parameterized semi-empirical expressions on top of
the PBE functional, leading to the PBE-D3 or PBE-D3(BJ)
functionals [40,41]. An alternative approach defines explicit
nonlocal terms representing vdW interactions. They can be
incorporated in the density functional, as in the rev-vdW-
DF2 functional, or added seamlessly to an existing functional,
such as rVV10. Switching from a standard GGA to a more
advanced meta-GGA functional, we also use the SCAN func-
tional, without and with explicit vdW terms, the latter in the
form of SCAN + rVV10. Spin-orbit coupling (SOC) can be
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FIG. 4. Differences between defect formation energies
�Hf [X ∗], calculated with different functionals for PBE optimized
structures, and �Hf [PBE] calculated with PBE.

added straightforwardly to the Hamiltonian, irrespective of the
density functional.

Previous defect studies on hybrid metal halide perovskites
often adopt the strategy of applying vdW interactions, SOC, or
hybrid functionals to the equilibrium structures optimized by
PBE, in order to avoid the high computational costs associated
with geometry optimization [47,53,69]. We perform two sets
of calculations, a first set where the different functionals are
used on the structures optimized by PBE, and a second set
where all structures are optimized self-consistently with the
respective functionals. This allows us to assess the effects on
the DFEs of replacing the functional, and of geometry opti-
mization separately. The results of the first set of calculations
are discussed in this section, and those of the second set in the
next section. The changes in the calculated DFEs if switching
from the PBE functional to one of the other functionals (while
keeping the geometries fixed), are shown in Fig. 4.

This figure demonstrates that adding SOC, while holding
on to the PBE functional, leads to relatively small changes in
the DFEs. SOC decreases the DFEs of all elementary vacancy
and interstitial point defects by 0.04–0.11 eV. Moreover,
switching to the SCAN functional, the differences between
the DFEs calculated with and without SOC, are very similar
to those obtained by PBE, as is illustrated by Table I. This
indicates (i) that the effect of SOC on the DFEs is small, and
(ii) that it can be added as an a posteriori correction.

In contrast, adding vdW corrections to PBE [PBE-D3,
PBE-D3(BJ)], or using a vdW functional (rev-vdW-DF2),
brings significant changes of up to ∼0.4 eV to the DFEs, see

TABLE I. Differences of defect formation energies (eV) induced
by adding SOC on top of PBE and SCAN, respectively. Here, single
point calculations including SOC are based on equilibrium structures
optimized by PBE and SCAN, respectively.

Functional VMA
− VPb

2− VI
+ MAi

+ Pbi
2+ Ii

−

PBE-SOC −0.04 −0.06 −0.08 −0.07 −0.11 −0.05
SCAN-SOC −0.03 −0.04 −0.05 −0.07 −0.12 −0.02

FIG. 5. (a) Differences between defect formation energies
�Hf [X ], calculated with different functionals with optimized struc-
tures, and �Hf [X ∗] with PBE structures. (b) Differences between
�Hf [X ] and �Hf [PBE] (DFEs calculated with PBE).

Fig. 4. All interstitials are stabilized, whereas all vacancies are
destabilized. van der Waals interactions generally increase the
bonding strength between atoms, molecules, and ions, which
makes it easier to insert one of these in an existing lattice, and
more difficult to extract one. Comparing the effect of adding
vdW interactions on the DFEs of specific defects, one notices
that the DFE changes of Pb interstitials and vacancies are only
∼0.1 eV, whereas MA and iodine vacancies and interstitials
are (de)stabilized by 0.3 to 0.4 eV.

The SCAN functional is reported to capture intermediate-
range vdW-type interactions [38], which is confirmed by
Fig. 4. Compared to PBE, SCAN corrects the DFEs in the
same direction as adding explicit vdW terms does, i.e., it
stabilizes interstitials and destabilizes vacancies, albeit quan-
titatively to a lesser extend. Adding on top of this explicit
long-range vdW interactions, as in SCAN + rVV10, then en-
hances these corrections.

C. Structure optimizations

As a next step we consider optimization of the structure
with each functional. Figure 5(a) shows the changes in the
DFEs upon structure optimization, using the PBE-optimized
structures as a reference. The DFEs of vacancies are only
mildly affected; VI

+ becomes more stable by �0.1 eV, VPb
2−

becomes less stable by �0.05 eV, and VMA
− is barely affected

at all. In contrast, the DFEs of interstitials become signifi-
cantly larger upon structure optimization by ∼0.2 eV.
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FIG. 6. Deviations of equilibrium volumes of MAPbI3, Pb metal
and PbI2, calculated by different functionals, relative to the experi-
mental volumes [70–72].

We correlate this markedly asymmetric behavior of va-
cancies and interstitials to differences in lattice volumes
calculated with PBE, or with any of the other functionals.
The deviation from the experimental value [70] of the opti-
mized volume of MAPbI3 is shown in Fig. 6. For comparison,
also shown in this figure are the corresponding deviations for
PbI2 and Pb metal [71,72]. Immediately obvious is that PBE
significantly overestimates the volume of MAPbI3 by ∼6%.
In this respect, the other functionals perform much better, as
they give a notable improvement to volumes within 0.5–1.5%
of the experimental value. It should be noticed that the dif-
ferences in volume are not accompanied by large changes in
the bond distance or strength of the Pb-I bonds. Instead, the
volume changes are mainly incorporated by changes of I-Pb-I
angles, which leads to tilting of PbI6 octahedra.

Similarly, PBE overestimates the volume of Pb metal by
∼5%, and the other functionals bring this deviation down to
0.5–2%. PbI2 is somewhat special, as it is a layered com-
pound, which requires inclusion of vdW terms to capture the
interaction between the two-dimensional PbI2 layers. Not sur-
prisingly then, PBE overestimates the PbI2 volume by ∼14%,
as it lacks these terms. Including D3 vdW terms corrects
this to ∼3%, whereas the D3(BJ) vdW terms and the rev-
vdW-DF2 functional reproduce the experimental value more
or less exactly. The PBE error is more than halved by the
SCAN functional regarding the volume of PbI2, confirming
the notion that SCAN captures some of the intermediate-range
vdW attraction [38]. However, capturing the longer range
interactions requires adding explicit long-range vdW terms,
such as rVV10. The SCAN + rVV10 functional overshoots
the correction a little, and gives a volume of PbI2 that is ∼2%
too small. More details about the optimized lattice parameters
can be found in Tables S1 and S2 within the Supplemental
Material [64].

Relating these volume changes to the DFEs, one observes
that, compared to PBE, all other functionals in Fig. 6 give a
markedly smaller volume for the MAPbI3 lattice. One might
expect that it becomes more difficult to insert an additional
cation or anion in a smaller lattice, which explains why the
DFEs of interstitials increase if optimizing the lattice starting

FIG. 7. Defect formation energies calculated by different func-
tionals including structure optimization.

from the PBE volume. The vacancies are generally much less
affected by volume changes, as they can more easily be com-
pensated by changes in I-Pb-I angles, and tilting of octahedra.

The changes in the DFEs, calculated via self-consistent
structure optimization with the different functionals, with re-
spect to the PBE-calculated results, are shown in Fig. 5(b).
They show a similar qualitative trend as the results shown in
Fig. 4, which were obtained without structure optimization,
i.e., vacancies are less stable and interstitials are generally
more stable. However, in particular for interstitials the size
of these changes is notably smaller if structure optimization is
included. The change for Pbi

2+ becomes �0.05 eV, whereas
Ii

− becomes more stable by 0.05–0.25 eV. Remarkably, the
largest effect is for MAi

+, which is stabilized by 0.1–0.3 eV.
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TABLE II. Formation energies �Hf (eV) and concentrations c (cm−3) at T = 300 K of different defects in MAPbI3 calculated by different
functionals, including self-consistent geometry optimization. The asterisk * represents single-point calculations including SOC, based on PBE
optimized structures.

Functional VMA
− VPb

2− VI
+ MAi

+ Pbi
2+ Ii

−

Defect formation energy �Hf (eV)
PBE 0.56 0.36 0.38 0.72 0.65 0.67
PBE-SOC* 0.52 0.30 0.31 0.67 0.55 0.61
SCAN 0.68 0.50 0.51 0.61 0.74 0.61
PBE-D3 0.86 0.47 0.55 0.48 0.70 0.51
PBE-D3(BJ) 0.89 0.47 0.63 0.44 0.71 0.45
rev-vdW-DF2 0.91 0.45 0.66 0.42 0.72 0.43
SCAN+rVV10 0.81 0.50 0.61 0.47 0.71 0.48

Defect concentration c (cm−3)
PBE 1.27 × 1012 2.83 × 1015 5.66 × 1015 7.74 × 109 1.17 × 1011 7.58 × 1010

PBE-SOC* 7.66 × 1012 3.93 × 1016 7.87 × 1016 7.67 × 1010 6.16 × 1012 6.58 × 1011

SCAN 1.39 × 1010 1.45 × 1013 2.89 × 1013 6.46 × 1011 4.28 × 109 6.01 × 1011

PBE-D3 1.58 × 107 4.63 × 1013 6.44 × 1012 1.18 × 1014 2.22 × 1010 3.19 × 1013

PBE-D3(BJ) 3.95 × 106 4.57 × 1013 3.41 × 1011 4.12 × 1014 1.37 × 1010 3.21 × 1014

rev-vdW-DF2 1.89 × 106 1.18 × 1014 8.84 × 1010 9.64 × 1014 1.08 × 1010 7.28 × 1014

SCAN+rVV10 8.68 × 107 1.44 × 1013 6.10 × 1011 1.37 × 1014 1.59 × 1010 1.09 × 1014

In general, SCAN gives DFEs that are within 0.15 eV of
PBE, although the changes for vacancies and interstitials tend
to be of opposite sign. Including vdW interactions enlarges
these changes up to 0.3 eV, while maintaining the same trend.
This number is still notably smaller than what is obtained
without structure optimization, which emphasizes the impor-
tance of performing structure optimization self-consistently if
switching the functional.

D. Defect formation energies and concentrations

The DFEs under intrinsic conditions and the equilib-
rium concentrations of the elementary point defects in
MAPbI3, calculated with the different functionals including
self-consistent structure optimization, are given in Fig. 7 and
Table II. For comparison, the DFEs calculated by different
functionals based on PBE-optimized structures are shown in
Figure S5. As we have argued in the previous section, in
order to obtain accurate results, it is important to perform a
self-consistent structure optimization for each functional.

As discussed in Sec. III A, the PBE functional yields the
lowest DFEs for the standard Schottky defects VPb

2− and VI
+,

whereas the DFEs of the other point defects are significantly
larger. In terms of equilibrium concentrations, this means that
VPb

2− and VI
+ are the dominant effects by far. Adding SOC

gives little change; all DFEs are slightly reduced, increasing
equilibrium concentrations by roughly an order of magnitude,
but maintaining approximately the ratios between different
defects. As argued in Sec. III B, adding SOC has the same
effect also for other functionals.

Using the SCAN functional, one observes that the DFEs
of the Schottky defects VPb

2− and VI
+ still are the smallest,

but they are somewhat larger than those obtained with PBE,
so that their equilibrium concentration is roughly two orders
of magnitude smaller. In addition, the SCAN DFEs of the
interstitials MAi

+ and Ii
−, although still larger than the va-

cancy DFEs, have become smaller, such that their equilibrium

concentrations are within a factor of fifty or so from that of
the vacancies.

Adding vdW interactions [PBE-D3, PBE-D3(BJ), rev-
vdW-DF2, SCAN + rVV10] enforces this trend. In fact, the
DFEs of the interstitials MAi

+ and Ii
− are now the smallest of

all points defects, where only the DFE of the lead vacancy,
VPb

2−, has a similar magnitude. This implies that MAi
+

and Ii
− have the largest equilibrium concentrations, with the

VPb
2− concentration being of the same order of magnitude.

The equilibrium concentration of the iodine vacancy VI
+ is

typically two to four orders of magnitude smaller, and the
concentrations of Pbi

2+ and VMA
− are even smaller.

There are small differences between the results calculated
with the different functionals that include vdW interactions,
but the DFEs calculated with PBE-D3(BJ), rev-vdW-DF2 and
SCAN + rVV10 are within ∼0.05 eV of one another, and
even PBE-D3 gives values that are quite close. The calcu-
lated concentrations at T = 300 K of dominant defects fall
in the range 1013–1015 cm−3, which is consistent with the
experimentally reported range of values [5–10]. Defect con-
centrations are sensitive to the temperature, of course. For
instance, at T = 300 K the equilibrium concentration of one
of the dominant defects, Ii

−, is 1.09 × 1014 cm−3, calculated
using SCAN + rVV10, see Table II. Raising or lowering the
temperature by 100 K increases, respectively decreases this
concentration to 1.13 × 1016 and 1.00 × 1010 cm−3.

E. Changing the Fermi level

Figure 7 displays the DFEs as a function of the position of
the Fermi level EF , calculated with full structure optimization.
Results obtained with PBE-optimized structures are shown
in Figs. S5 and S6 within the Supplemental Material [64].
Figure 7 demonstrates the differences between the DFEs cal-
culated with different functionals, discussed in the previous
section. In particular, at the intrinsic Fermi levels (the dashed
vertical lines in Fig. 7) the interstitials MAi

+ and Ii
− and the
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FIG. 8. Charge state transition levels calculated by different
functionals including structure optimization.

vacancy VPb
2− have the smallest DFE for the functionals that

include vdW interactions, whereas without vdW interactions
the vacancies VI

+ and VPb
2− have the smaller DFE. The

figure also illustrates that most defects stay in the same charge
states over a large range of EF . Only the iodine interstitial, Ii,
shows a change from + to − charge at EF well inside the gap
(varying from 0.1 eV above the VBM for SCAN + rVV10 to
0.3 eV above VBM for PBE).

Using such results, the CSTLs can be determined for all
point defects for all functionals used. The results are shown
in Fig. 8. One can observe that the CSTLs of most defects are
close to the band edges for all functionals, implying that they
are shallow traps, which is consistent with the common notion
that electronically MAPbI3 is defect tolerant [4,11,73]. One
exception is Ii, where the CSTLs (−/+) and (0/+) are well
inside the gap for all functionals. However, the (−/+) CSTL
is inactive under device operating conditions, as it requires the

simultaneous capture of two charge carriers of the same type,
which is highly unlikely. Meggiolaro et al. have argued that
the (0/+) CSTL is also inactive under these conditions, as it
involves a considerable structural change accompanied by an
energy barrier [53]. This remains true for all functionals tested
here.

A second exception is (2 + /+) CSTL of Pbi calculated
with SCAN or SCAN + rVV10, at 0.26 eV and 0.31 eV
below the CBM, respectively, which is somewhat too deep to
be termed a shallow trap. However, the concentration of Pbi

defect will be extremely small due to its large DFE.
Of course the absolute positions of the CSTLs are affected

by the band gap error displayed by DFT functionals. In the
present case of MAPbI3 the relative positions of the CSTLs
with respect to the band edges are probably correct. In fact,
most of the CSTLs are close to the band edges. The associated
states have a similar character as the band edges, and one ex-
pects them to move along with the band edges upon changing
the functional.

IV. SUMMARY AND CONCLUSIONS

We have studied the intrinsic point defects, vacancies and
interstitials, in the archetype organometal hybrid perovskite,
MAPbI3, by means of DFT calculations, employing a wide
range of functionals. Although such defects do not seem to
hamper the electronic operation of perovskite solar cells, they
are vital in understanding the instabilities and degradation
mechanisms of perovskite materials. Identifying the dominant
defects from DFT calculations is hampered by the fact that
different functionals give different results. Using the standard
PBE (GGA) functional as a starting point, we have systemat-
ically investigated the effects of adding van der Waals (vdW)
interactions, either in simple parametrized form [D3, D3(BJ)],
or as nonlocal functional (rev-vdW-DF2, rVV10), switch-
ing to meta-GGA (SCAN), as well as including spin-orbit
coupling (SOC).

Besides on the parent material MAPbI3, defect formations
energies (DFEs) depend on the chemical potentials of the ele-
ments involved, and in case of charged defects, on the position
of the Fermi level, which draws in inaccuracies in thermody-
namic (formation enthalpies), as well as electronic properties
(band positions), caused by DFT functionals. Focusing on
intrinsic thermodynamic conditions, we show that the DFEs
of MAPbI3 are relatively insensitive to these inaccuracies. The
same will hold for other organometal hybrid perovskites.

Nevertheless, different functionals present different defects
as most common. Whereas PBE predicts the standard Schot-
tky defects, iodine and lead vacancies, VI

+ and VPb
2−, to

be dominant, including vdW interactions favors the iodine
and methylammonium interstitials, Ii

− and MAi
+, besides

lead vacancies, VPb
2−. In general, vdW interactions stabilize

interstitials, and destabilize vacancies.
In addition, we conclude that self-consistent structural op-

timization is important in order to obtain accurate DFEs. We
correlate this outcome to a difference in equilibrium volume
found for MAPbI3 by the different functionals. PBE in par-
ticular gives a volume that is too large. If one adds vdW
interactions without reoptimizing the structure and volume,
one overestimates the stability of interstitials in particular.
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The meta-GGA (SCAN) functional performs overall better
than GGA (PBE), evidenced by the consistent improvements
in lattice parameters of the relevant perovskite (MAPbI3)
and precursor (PbI2). However, regarding DFEs, SCAN only
captures part of the nonbonding interactions between the or-
ganic cations and the inorganic iodine and lead ions, and we
suggest to include long-range vdW interactions in the form
of SCAN + rVV10. Adding vdW terms to PBE, D3(BJ) in
particular, or using the vdW functional rev-vdW-DF2 also
gives decent DFEs. However, given the proven versatility of
SCAN to accurately describe a large variety of compounds
and molecules in different bonding configurations, we express
a preference for the SCAN + rVV10 functional.

In contrast, the inclusion of SOC gives only relatively small
and consistent corrections to the DFEs, which can be added
straightforwardly as a postcorrection.
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